
The Journal of Systems and Software 162 (2020) 110515

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Cost-efficient dynamic scheduling of big data applications in apache

spark on cloud

Muhammed Tawfiqul Islam

a , ∗, Satish Narayana Srirama a , b , Shanika Karunasekera a ,
Rajkumar Buyya

a

a Cloud Computing and Distributed Systems (CLOUDS) Laboratory School of Computing and Information Systems The University of Melbourne, Australia
b Mobile & Cloud Lab, Institute of Computer Science University of Tartu, Estonia

a r t i c l e i n f o

Article history:

Received 1 October 2019

Revised 17 November 2019

Accepted 23 December 2019

Available online 27 December 2019

Keywords:

Cloud

Apache spark

Scheduling

Cost-efficiency

a b s t r a c t

Job scheduling is one of the most crucial components in managing resources, and efficient execution

of big data applications. Specifically, scheduling jobs in a cloud-deployed cluster are challenging as the

cloud offers different types of Virtual Machines (VMs) and jobs can be heterogeneous. The default big

data processing framework schedulers fail to reduce the cost of VM usages in the cloud environment

while satisfying the performance constraints of each job. The existing works in cluster scheduling mainly

focus on improving job performance and do not leverage from VM types on the cloud to reduce cost.

In this paper, we propose efficient scheduling algorithms that reduce the cost of resource usage in a

cloud-deployed Apache Spark cluster. In addition, the proposed algorithms can also prioritise jobs based

on their given deadlines. Besides, the proposed scheduling algorithms are online and adaptive to clus-

ter changes. We have also implemented the proposed algorithms on top of Apache Mesos. Furthermore,

we have performed extensive experiments on real datasets and compared to the existing schedulers to

showcase the superiority of our proposed algorithms. The results indicate that our algorithms can reduce

resource usage cost up to 34% under different workloads and improve job performance.

© 2020 Elsevier Inc. All rights reserved.

1

l

s

a

H

c

i

b

v

a

b

i

t

m

a

p

(

s

e

e

i

p

w

i

a

i

p

j

f

a

a

r

c

r

h

0

. Introduction

Big Data processing has become crucial due to massive ana-

ytics demands in all the major business and scientific domains

uch as banking, fraud detection, healthcare, demand forecasting,

nd scientific explorations. Data processing frameworks such as

adoop

1 , Storm

2 , and Spark (Zaharia et al., 2016) are the most

ommon choice when it comes to big data processing. Large organ-

sations generally run private compute clusters with one or more

ig data processing frameworks on top of it. As public cloud ser-

ices can provide infrastructure, platform, and software for storing

nd computing of data, it is also becoming popular to deploy the

ig data processing clusters on public clouds. However, schedul-

ng these big data jobs can be difficult in a cloud-deployed clus-

er since the jobs can be of different types such as CPU-intensive,

emory-intensive, and network-intensive. Furthermore, jobs can

lso vary based on their resource demands to maintain a stable

erformance. Moreover, various types of Virtual Machines (VM) in-
∗ Corresponding author.

E-mail addresses: tawfiq.shobhon@gmail.com , muhammedi@student.unimelb.edu.au

M.T. Islam).
1 http://hadoop.apache.org/ .
2 http://storm.apache.org/ .

F

a

ttps://doi.org/10.1016/j.jss.2019.110515

164-1212/© 2020 Elsevier Inc. All rights reserved.
tances available on the cloud make it difficult to generate cost-

ffective scheduling plans. Therefore, in this paper, we propose

fficient job scheduling algorithms that reduce the cost of us-

ng a cloud-deployed Apache Spark cluster while enhancing job

erformance.

To demonstrate the effectiveness of our scheduling algorithms,

e have chosen Apache Spark as our target framework because it

s a versatile, scalable and efficient big data processing framework

nd is rapidly replacing traditional Hadoop-based platforms used

n the industry. Spark utilises in-memory caching to speed up the

rocessing of applications. The resource requirements of a Spark

ob can be specified by using the number of required executors

or that particular job, where each executor can be thought of as

 process, having a fixed chunk of resources (e.g., CPU, memory

nd disk). However, different jobs can have varying executor size

equirements depending on the type of workloads they are pro-

essing. Therefore, jobs exhibit different characteristics regarding

esource dependability.

The default scheduling mechanism for Spark job scheduling is

irst in First Out (FIFO) 3 , where each job is scheduled one after
3 https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-across-

pplications .

https://doi.org/10.1016/j.jss.2019.110515
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110515&domain=pdf
mailto:tawfiq.shobhon@gmail.com
mailto:muhammedi@student.unimelb.edu.au
http://hadoop.apache.org/
http://storm.apache.org/
https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-across-applications
https://doi.org/10.1016/j.jss.2019.110515

2 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

i

p

a

o

h

2

w

m

t

s

2

p

f

w

e

t

s

C

I

c

s

d

(

b

t

l

o

W

o

b

p

V

fi

p

2

p

n

c

e

T

w

h

j

u

w

r

t

e

r

r

b

s

r

a

a

t

r

t

another. If no resource limit is set, one job might consume all

the resources in the cluster. On the other hand, if the user sets a

limit on the required resources of a job, the remaining resources

can be used to schedule the next job in the queue. In addition

to the FIFO scheduler, a Fair Scheduler is also available to prevent

resource contention among jobs. By default, both of these sched-

ulers place the executors of a job in a round-robin fashion in all

the VMs/worker nodes for load-balancing and performance im-

provement. However, when a cloud-deployed cluster is not fully

loaded with jobs, round-robin executor placement leads to re-

source wastage in all the VM. Although Spark also has an option to

consolidate the executor placements, the cluster manager does not

consider the resource capacity and price of different cloud VM in-

stance types, and thus fails to make cost-efficient placement deci-

sions. Most of the existing scheduling techniques focus on Hadoop-

based platforms (Kc and Anyanwu, 2010; Zaharia et al., 2009; Chen

et al., 2010; Tian et al., 2009). Nevertheless, these mechanisms can-

not be directly applied to Spark job scheduling as the architectural

paradigm is different from in-memory computing frameworks. A

very few works have been done to tackle the scheduling prob-

lem of in-memory computing-based frameworks like Apache Spark

(Delimitrou and Kozyrakis, 2014; Sidhanta et al., 2016; Jyothi et al.,

2016; Dimopoulos et al., 2017). However, most of these works as-

sume the cluster setup to be homogeneous (there is only one type

of VM instance for all the worker nodes) thus fail to make the

scheduling technique cost-efficient from a cloud perspective.

As a motivating example, consider a cluster having 2 homoge-

neous VMs each having 8 CPU cores capacity. If a Spark job has 2

executors requirement with 2 cores for each, the total CPU cores

requirement is 4. However, most of the existing strategies will use

both the VMs to place these 2 executors which will lead to re-

source wastage and a higher VM usage cost. On the contrary, if a

scheduler can consider the VM pricing model and different VM in-

stance types in the cluster, executors from the jobs could be tightly

packed in fewer cost-effective VMs. Thus, the instances with more

resource capacity and higher price will be used only if there is a

high load on the cluster. Therefore, in this paper, we formulate the

scheduling problem of Spark jobs in a cloud-deployed cluster as a

variant of the bin-packing problem. Here, our primary target is to

reduce the cost of VM usage while maximising resource utilisation

and improving job performance.

In summary, our work makes the following key contributions :

• We propose two job scheduling algorithms. The first algorithm

is a greedy algorithm adapted from the Best-Fit-Decreasing

(BFD) heuristic, and the second algorithm is based on Integer

Linear Programming (ILP). Both of these algorithms can im-

prove cost-efficiency of a cloud deployed Apache Spark clus-

ter. Besides, our proposed algorithms also prioritise jobs based

on their deadlines and enhance job performance for network-

bound jobs.
• We develop a scheduling framework by utilising Apache Mesos

(Hindman et al., 2011) cluster manager and this framework can

be used to implement scheduling policies for any Mesos sup-

ported data processing frameworks in addition to Spark.
• We implement the proposed algorithms on top of the devel-

oped scheduling framework.
• We perform extensive experiments with real applications and

workload traces under different scenarios to demonstrate the

superiority of our proposed algorithms over the existing tech-

niques.

The rest of the paper is organised as follows. In Section 2 , we

discuss the background of Apache Spark and Apache Mesos. In

Section 3 , we describe the existing works related to this paper.

In Section 4 , we show the motivating examples and formu-

late the scheduling problem. In Section 5 , we demonstrate the
mplemented prototype system. In Section 6 , we evaluate the

erformance of our proposed algorithms, show the sensitivity

nalysis of various system parameters and discuss the feasibility

f our proposed algorithms. Section 7 concludes the paper and

ighlights future work.

. Background

We use Apache Spark as the target big data processing frame-

ork and Apache Mesos as the cluster manager where we imple-

ent our scheduling policies. In this section, we briefly introduce

he basic concepts, system architecture, resource provisioning and

cheduling mechanisms in these two frameworks.

.1. Apache spark

Apache Spark is one of the most prominent in-memory big data

rocessing frameworks. It is a multi-purpose open-source plat-

orm with high scalability. Spark supports applications to be built

ith various programming languages like Java, Scala, R, Python

tc. Besides, extensive and interactive analysis can be done using

he available high-level APIs. Furthermore, a variety of input data

ources like HDFS (Shvachko et al., 2010), HBase (George, 2011),

assandra (Lakshman and Malik, 2010) etc. are supported by Spark.

t outperforms traditional Hadoop-MapReduce based platform by

onducting most of the computations in memory. In addition, re-

ults from the intermediate stages are cached in memory for faster

ata re-processing. Spark uses Resilient Distributed Dataset (RDD)

 Zaharia et al., 2012) for data abstraction which is fault tolerant

y nature. In contrast to HDFS, Spark does not implement replica-

ion. Spark keeps track of how a specific piece of data was calcu-

ated, so it can recalculate any lost RDD partitions if a node fails

r is shutdown by a scheduler. A Spark cluster follows a Master-

orker model, where there should be at least one Master node and

ne or more Worker nodes. However, multiple master nodes can

e used by leveraging ZooKeeper (Hunt et al., 2010). From a cloud

erspective, each master/worker node can be deployed in a cloud

M . Spark has its default standalone cluster manager which is suf-

cient to deploy a production-grade cluster. Moreover, it also sup-

orts popular cluster managers like Hadoop Yarn (Vavilapalli et al.,

013), Apache Mesos (Hindman et al., 2011) etc.

When a Spark job/application is launched in a cluster, the Driver

rogram of that job creates one or more executors in the worker

odes. Executor is a process of an application that holds a fixed

hunk of resources (CPU cores, memory, and disk) and all the ex-

cutors from the same job have identical resource requirements.

asks are run in parallel in multiple threads inside each executor

hich lives during the entire duration of that job. As all the jobs

ave an independent set of executors, jobs are isolated, and each

ob’s driver program can create its own set of executors and sched-

le tasks in them.

Resource allocation in a Spark cluster can be done in three

ays: (1) Default: the user does not set any limits on the required

esources for a job, and it uses all the resources of the entire clus-

er. Therefore, only one job can run in the cluster at a time and

ven if that job only requires a small chunk of resources, all the

esources are allocated to it; (2) Static: if a user sets a limit on the

equired resources for a job, only that amount of resources will

e allocated for that job, and any remaining resources can be as-

igned to any future job. Therefore, in this mode, it is possible to

un multiple applications in the cluster and (3) Dynamic: resources

re allocated similarly as the static allocation mechanism, but if

ny resource (CPU core only) is not utilised, it could be released

o the cluster so that any other application can use it. Besides, this

esource can be taken back from the cluster in future if needed by

he original job.

M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515 3

f

j

e

w

c

s

a

a

p

E

t

h

s

t

t

f

p

a

a

i

2

m

s

p

m

f

i

i

e

u

i

i

w

f

i

p

M

a

A

p

v

s

r

n

u

c

i

t

F

s

r

i

p

t

b

o

F

3

s

f

s

t

d

s

(

s

o

H

d

i

t

2

a

u

c

e

s

o

d

w

T

t

i

t

e

p

t

f

u

G

t

i

g

b

i

t

l

a

I

S

b

g

t

c

m

t

u

s

t

j

M

t

p
By default, Spark supports FIFO scheduling across jobs. There-

ore, jobs wait in a FIFO queue and run one after another. A new

ob is scheduled whenever any resources are available to create any

xecutor for the next job. Besides, Spark also has a FAIR scheduler,

hich was modelled after the Hadoop Fair Scheduler 4 . Here, jobs

an be grouped into pools, and different scheduling options can be

et for each pool. For example, weight determines the priority of

 job pool. By default, each pool has a weight 1, but if any pool is

ssigned 2 as the weight, it will get twice the resources than other

ools. Within each job pool, jobs are scheduled in a FIFO fashion.

ach pool also has a minimum share (minShare) of resources in

he cluster, and a cluster manager only assigns more resources to a

ighly weighted pool once all the pools have met their minimum

hare of resources. By default, Spark spreads the executors from

he same job into multiple workers for load balancing. In addition,

he standalone cluster manager can also consolidate executors into

ewer worker nodes (by greedily using the current worker node to

lace as many executors as possible). However, Spark assumes that

ll the worker nodes are homogeneous (same resource capacity),

nd it also does not consider the price of using a worker node (if

t is deployed on cloud VM).

.2. Apache mesos

Apache Mesos is considered to be a data-center level cluster

anager due to its capability of efficient resource isolation and

haring across distributed applications. It resides between the ap-

lication and the OS layer and makes it easier to deploy and

anage large-scale clusters. In Mesos, jobs/applications are called

rameworks and multiple applications from different data process-

ng frameworks like Spark, Strom, and Hadoop can run in parallel

n the cluster. Therefore, Mesos can be used to share a pool of het-

rogeneous nodes among multiple frameworks efficiently. Mesos

tilises modern kernel features by using cgroups in Linux and zones

n Solaris to provide isolation of CPU, memory, file system etc.

Mesos introduces a novel two-level scheduling paradigm where

t decides a possible resource provisioning scheme according to the

eight, quota or role of a framework and offers resources to it. The

ramework’s scheduler is responsible for either rejecting or accept-

ng those resources offered by Mesos according to its scheduling

olicies. If a framework’s scheduler accepts a resource offer from

esos, the resources specified by that offer can be used to launch

ny computing tasks. Mesos also provides flexible Scheduler 5 HTTP

PIs which can be used to write custom user-defined scheduling

olicies on top of any big data processing platform. Besides, it pro-

ides Operator 6 HTTP APIs to control the resource provisioning and

cheduling of the whole cluster. Mesos supports dynamic resource

eservation; thus resources can be dynamically reserved in a set of

odes by using the APIs and then a job/framework can be sched-

led only on those resources. When a job is completed, resources

an be taken back and reserved for any future job. It is a signif-

cant feature of Mesos as any external scheduler implemented on

op of Mesos can have robust control over the cluster resources.

urthermore, the external scheduler can perform fine-grained re-

ource allocation for a job in any set of nodes with any resource

equirement settings. Lastly, various policies can be incorporated

nto an external scheduler without modifying the targeted big data

rocessing platform or Mesos itself; so the scheduler can be ex-

ended to work with other big data processing platforms. For the

enefits mentioned above, we have built a scheduling framework

n top of Mesos to implement our proposed scheduling algorithms.
4 https://hadoop.apache.org/docs/stable/hadoop- yarn/hadoop- yarn- site/

airScheduler.html .
5 http://mesos.apache.org/documentation/latest/scheduler- http- api/ .
6 http://mesos.apache.org/documentation/latest/operator- http- api/ .

m

i

m

a

j
. Related work

Most of the data processing frameworks like Hadoop, Spark

chedule jobs in a FIFO manner and distributes the tasks/executors

rom each job in a distributed round-robin fashion. To avoid re-

ource contention FAIR scheduler was introduced for fair distribu-

ion of cluster resources among the jobs. In Mesos, scheduling is

one by the Dominant Resource Fairness (DRF) (Ghodsi et al., 2011)

cheduling algorithm, which identifies the dominant resource type

CPU/memory) of each job. Then it offers resources to each job in

uch a way that overall use of cluster resources is well-balanced.

There has been a significant amount of research in the area

f cluster scheduling. However, most of these schedulers focused

adoop-MapReduce based clusters. Kc and Anyanwu (2010) ad-

ressed the problems of Hadoop FIFO scheduler by introduc-

ng a deadline constraint scheduler that prioritises map/reduce

asks from each job based on their deadline. LATE (Zaharia et al.,

009) is a delay scheduler that targets to improve job throughput

nd response times by considering data locality into the sched-

ler in a multi-user MapReduce cluster. However, it treats the

luster setup to be homogeneous thus performs poorly in het-

rogeneous environments. SAMR (Chen et al., 2010) proposed a

elf-adaptive scheduling algorithm that classifies the performance

f jobs from the historical data. It also identifies slow nodes

ynamically and creates backup tasks so that MapReduce jobs

ill have a better performance in a heterogeneous environment.

ian et al. (2009) considered job heterogeneity and proposed a

riple-queue scheduler to keep the CPU and I/O bound applications

solated to improve the overall cluster performance. However, all of

hese works are focused on Hadoop-MapReduce performance mod-

lling and scheduling and cannot be applied to an in-memory data

rocessing framework like Spark.

As a platform like Spark has many configuration parame-

ers, it is hard to set the appropriate resource requirement

or a job. Wang et al. (2016) tried to fine-tune Spark config-

ration parameters to improve the overall system performance.

ounaris et al. (2017) investigated the problem of resource wastage

hat happens when a Spark application consumes all the nodes

n a cluster. Gibilisco et al. (2016) built multiple polynomial re-

ression models on the application profile data and selects the

est model to predict application execution time with unknown

nput data or cluster configuration. Wang and Khan (2015) tried

o model application performance in DAG-based in-memory ana-

ytics platforms. Here, the execution times from multiple stages of

 job are collected and then used to predict the execution time.

slam et al. (2017) focused on fine-grained resource allocation for

park jobs with deadline guarantee. However, these works can only

e applied to predict job-specific resource demands under homo-

eneous cluster environments.

There are a very few cluster schedulers (Soualhia et al., 2017)

hat support Spark jobs focusing on performance improvement and

ost saving. Quasar (Delimitrou and Kozyrakis, 2014) is a cluster

anagement system that minimises resource utilisation of a clus-

er while meeting user-provided application performance goals. It

ses efficient classification techniques to find the impacts of re-

ources on an application’s performance. Then it uses this informa-

ion for resource allocation and scheduling. It also dynamically ad-

usts resources for each application by monitoring resource usage.

orpheus (Jyothi et al., 2016) estimates job performance from his-

orical data using performance graphs. Then it performs a packed

lacement of containers where it places a job that results in the

inimal cluster resource usage cost. Moreover, Morpheus dynam-

cally re-provisions failed jobs to improve overall cluster perfor-

ance. Justice (Dimopoulos et al., 2017) is a fair share resource

llocator that uses deadline information of each job and historical

ob execution logs in an admission control. It automatically adapts

https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
http://mesos.apache.org/documentation/latest/scheduler-http-api/
http://mesos.apache.org/documentation/latest/operator-http-api/

4 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

Table 1

Related Work.

Features Related Work Our Work

DRF (Ghodsi et al.,

2011)

Quasar

(Delimitrou and

Kozyrakis, 2014)

Morpheus

(Jyothi et al., 2016)

Justice

(Dimopoulos et al.,

2017)

OptEx

(Sidhanta et al.,

2016)

Frameworks ✗ ✗ ✗ ✗ ✗
√

VM types ✗ ✗ ✗ ✗ ✗
√

Job types
√ √ √ √ √ √

Cost-efficient ✗ ✗ ✗
√ √ √

Performance
√ √ √ √ √ √

Self-adaptive ✗
√ √ √

✗
√

Deadline ✗
√ √ √ √ √

Fig. 1. Job submission frequencies in a single day (Facebook Hadoop Workload

Trace-2009).

t

g

4

f

m

F

d

i

w

n

a

b

c

t

o

d

c

T

s

c

t

to workload changes and provides sufficient resources to each job

so that it meets deadlines just in time. OptEx (Sidhanta et al., 2016)

models the performance of Spark jobs from application profiles.

Then the performance model is used to schedule a cost-efficient

cluster by deploying each job as a service in the minimal set of

nodes required to satisfy its deadline.

The problems with most of the cluster schedulers are that they

do not consider executor-level job placement. All of them only

select the total number of resources or nodes needed for each

job while making any scheduling decision. However, our sched-

uler takes advantage of VM heterogeneity (different types of VM

instances) and uses smaller VMs for executor placement to min-

imise the overall resource usage cost of the whole cluster. Besides,

most of the cluster schedulers use the round-robin placement of

executors in the VMs while we consolidate the executors to use

less number of VMs. Therefore, it minimises inter-node communi-

cations for network-bound jobs thus improves the performance. A

comparison of our approach with the existing works is illustrated

in Table 1 . It can be observed that our proposed solution consid-

ers multiple VM types in the scheduling algorithm. Moreover, we

also provide a scheduling framework to incorporate new schedul-

ing policies.

Currently, commercial cloud service providers such as AWS and

Windows Azure provide clusters and big data analytics services on

the Cloud. For example, Apache Spark on Amazon EMR

7 and Azure

HDInsight 8 . Besides job scheduling, there are many other ways to

reduce costs in a commercial cloud computing platform. For ex-

ample, EC2 spot instances and reserved instances have many fea-

tures 9 . Commercial cloud service providers optimise instance usage

costs from their side by turning off idle instances. Our proposed

approach complements these solutions by tight packing of execu-

tors in fewer instances so that those instances can be turned off.

Hence, even if all the nodes are Spot instances, our approach is

still cost-efficient as we use minimal number of instances as com-

pared to the default Spark scheduler. While the commercial cloud

service providers work on the VM instance level, our approach

works on the executor level scheduling which is more fine-grained.

Therefore, for the most cost-benefit, job scheduling from user-side

also plays a vital role and while used in conjunction with com-

mercial cloud providers’ instance features, significant performance

improvement and cost reduction can be achieved. Lastly, our ap-

proach can also be used for a local cluster which is deployed with

on-premise physical resources.

4. Cost-efficient job scheduling

In this section, we explain the motivations of this work, the

problem formulation, the proposed job scheduler and the execu-
7 https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html .
8 https://azure.microsoft.com/en-au/services/hdinsight/ .
9 https://aws.amazon.com/emr/features/ .

-

or placement algorithms and the complexity of the proposed al-

orithms.

.1. Motivation

The utilisation of resources in a big data cluster varies at dif-

erent times of the day. For example, Fig. 1 depicts the job sub-

ission frequencies at different hours in a particular day from a

acebook Hadoop workload trace 10 . There are several hours in a

ay when the job submission rate is lower than usual. Therefore,

f a big data processing cluster is deployed in the public cloud, it

ould be costly to keep all the VMs turned on as the cluster might

ot be fully utilised. However, the bill of using a VM is charged

s pay-per-use basis and most of the cloud providers per-second

illing period

11 . Hence, if a VM is not used to schedule any jobs, it

an be turned off to reduce the monetary cost of the cluster. The

urned off VMs can be turned on again in future depending on the

verall resource demands in the cluster.

Cloud service providers offer different types of VMs which have

ifferent pricing model. In general a small VM with lower resource

apacity is cheaper than a large VM with high resource capacity 12 .

herefore, if a cluster is deployed with different types of VM in-

tances, smaller VMs can be used in the low-load period of the

luster to save cost whereas the bigger VMs can be utilised only in

he high-load period.
10 https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository .
11 https://aws.amazon.com/blogs/aws/new- per- second- billing- for- ec2- instances

 and- ebs- volumes .
12 https://aws.amazon.com/ec2/pricing/on-demand/ .

https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html
https://azure.microsoft.com/en-au/services/hdinsight/
https://aws.amazon.com/emr/features/
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository
https://aws.amazon.com/blogs/aws/new-per-second-billing-for-ec2-instances-and-ebs-volumes
https://aws.amazon.com/ec2/pricing/on-demand/

M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515 5

Fig. 2. An example cluster with different types of Jobs and VMs.

j

t

s

(

F

d

f

a

o

r

e

e

e

V

t

s

e

s

e

c

T

A

e

i

c

t

S

c

s

c

p

a

c

o

4

e

h

c

q

t

t

V

i

m

a

p

t

d

a

t

p

e

s

t

c

e

t

Most of the cluster schedulers place the executors from each

ob in a distributed (round-robin) fashion in the VMs which has

he following problems:

• VMs are under-utilised, and resources are wasted in all the

VMs. This problem leads to a higher cost of using the whole

cluster as most of the VMs are turned on at all times.
• In the cloud, different types of VM instances are available to

use as the worker nodes and using only a single type of VM

to compose a cluster might not be cost-effective. For example,

a cluster has only one type of VM (16 CPU core, 64GB mem-

ory). If at a light-load hour only a single job is submitted (2

CPU core, 2GB memory), even using one VM would be costly.

Using only small VM instances to compose a cluster would also

fail as executors from different Spark jobs might have different

size (resource requirement), so executors with high resource re-

quirement will not fit in smaller VMs.
• For network-bound jobs, performance is reduced due to in-

creased network transfers among the executors due to the dis-

tributed placement of executors in different VMs.

The consolidated executor placement option of Spark can not

ave cost as it does not consider the prices of different workers

VMs), and may choose the biggest VM to consolidate executors.

ig. 2 shows an example scheduling scenario where two jobs (with

ifferent resource demand) are submitted to a cluster composed of

our VMs (with different resource capacity). For simplicity, let us

ssume that the executors from all the jobs require only one type

f resource (e.g., CPU cores). The total number of slots in each VM

epresents its resource capacity. Similarly, the width of each ex-

cutor of a job represents its resource demand. Therefore, in our

xample, each executor from job-1 requires 1 CPU core, and each
Fig. 3. Different Executor P
xecutor from job-2 requires 2 CPU cores. VM-1, VM-2, VM-3, and

M-4 have a resource capacity of 2, 4, 6 and 8 CPU cores, respec-

ively. In addition, the cost of using each VM is equivalent to its

ize, hence VM-1 is the cheapest VM whereas VM-4 is the costli-

st VM. Fig. 3 a- 3 c depicts some of the possible executor placement

trategies. Fig. 3 a shows a distributed executor placement strat-

gy (round-robin) which is used by most of the scheduling poli-

ies. In this placement, all the VMs are used but under-utilised.

herefore, this placement will lead to the highest VM usage cost.

n alternative strategy which can be used in Spark to consolidate

xecutors can be seen in Fig. 3 b. However, as the cluster manager

s unaware of the VM instance pricing or resource capacity, if it

hooses to place job-1 in VM-4, job-2 will also be placed in VM-4

o consolidate executors from both jobs in fewer VMs. Even though

park’s executor consolidation strategy provides a better VM usage

ost than the round-robin strategy, it can be further improved as

hown in Fig. 3 c. Here, when job-1 first arrives it is placed in the

heapest VM (VM-1) where the executors of the current job fits

roperly. Then, job-2 is placed into the 2nd cheapest VM (VM-2),

s VM-1 is already used. This strategy provides the cheapest VM

ost usage even though executors are consolidated in more than

ne VM.

.2. Problem formulation

In an Apache Spark cluster, the resource requirements of the ex-

cutors from the job are same. In addition, each worker node (VM)

as a set of available resources (e.g., CPU cores, memory) which

an be used to place executors from any job if the resource re-

uirements are met. Therefore, for each submitted job in the clus-

er, the main problem is to find the placement of all its executors

o one or more available VMs. Besides, resource capacity in each

M must not be exceeded while placing one or more executors

n that VM during the scheduling process. As the compact assign-

ent of executors leads to cost reduction due to fewer VM us-

ges, we model the scheduling problem as a variant of the bin-

acking problem. Table 2 shows the notations we use to formulate

he problem.

We consider the resource requirement of an executor in two

imensions – CPU cores and memory. Therefore, each executor of

 job can be treated as an item with multi-dimensional volumes

hat needs to be placed to a particular VM (bin) in the scheduling

rocess. Suppose, we are given a job with E executors where each

xecutor has CPU and memory requirements of τ cpu
i

and τmem

i
, re-

pectively (i ∈ ξ). There are K types of VM available each with a

wo-dimensional resource capacity (CPU, Mem) and incurs a fixed

ost P k , if used. The problem is to select VMs and place all the ex-

cutors into these VMs such that the total cost is minimised and

he resource constraints are met.
lacement Strategies.

6 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

Table 2

Definition of Symbols.

Symbol Definition

job The current job to be scheduled

E Total executors required for job

ξ The index set of all the executors of job , ξ = { 1 , 2 , 3 , . . . , E}
� The index set of all the VM types, � = 1 , 2 , . . . , K

m k An upper-bound on the number of type k VMs

δk The index set for each type k VM; δk = { 1 , 2 , . . . , m k } , k ∈ �
P k Price of using a VM of type k

ω

cpu

jk
Available CPU in the j th VM of type k, j ∈ δk , k ∈ �

ω

mem
jk

Available Memory in the j th VM of type k, j ∈ δk , k ∈ �
τ cpu CPU demand of any executor of job

τ mem Memory demand of any executor of job

RA jk Resource Availability metric of the j th VM of type k

RD job Resource Demand metric for job

4

t

i

o

a

t

r

o

t

α

s

w

t

U

r

E

m

i

a

o

t

c

α

C

M

R

R

s

s

e

B

s

J

r

o

t

T

q

W

j

b

t
The optimisation problem is:

Minimise: Cost =

∑

k ∈ �
P k

(∑

j∈ δk

y jk

)

(1)

∑

k ∈ �

∑

j∈ δk

x i jk = 1 ∀ i ∈ ξ (2)

∑

i ∈ ξ
(x i jk ∗ τ cpu) ≤ ω

cpu

jk
∗ y jk ∀ k ∈ �, j ∈ δk (3)

∑

i ∈ ξ
(x i jk ∗ τ mem) ≤ ω

mem

jk ∗ y jk ∀ k ∈ �, j ∈ δk

x i jk , y jk ∈ { 0 , 1 } , ∀ i ∈ ξ , k ∈ �, j ∈ δk (4)

Cost Minimisation: As shown in Eq. 1 , our objective is to min-

imise the cost of using the whole cluster while scheduling any

job. The total cost is modelled as the aggregated cost of using all

the VMs. The binary decision variable y jk is used which controls

whether VM j of type k is used or not.

y jk =

{
1 if the j th VM of type k is used ;
0 otherwise.

Executor Placement Constraint: An executor can be placed only in

one of the VMs and this placement constraint is denoted in Eq. 2 .

The binary decision variable x ijk is used which controls whether

executor i is placed on VM j of type k .

x i jk =

{
1 if executor i is placed in j th VM of type k ;
0 otherwise.

Resource Capacity Constraints: The total resource demands of

all the executors placed in a VM should not exceed the total re-

source capacity of that VM. The resource constraints for CPU cores

and memory are shown in Eq. 3 and 4 , respectively.

Bin packing is a combinatorial optimisation problem and has

proved to be NP-Hard (Coffman Jr. et al., 2013). The above op-

timisation problem is an Integer Linear Programming (ILP) for-

mulation of the multi-dimensional bin packing problem. When

the scheduler has to schedule a job, the ILP model can be con-

structed by using the current job’s resource demand and clus-

ter resource availability. Then, it can be solved by exact meth-

ods such as Simplex (Nelder and Mead, 1965), Branch and Bound

(Ross and Soland, 1975) to find the most cost-effective executor

placement for that job. However, constructing the ILP dynamically

before scheduling each job can be time-consuming. Especially, if

the problem size goes bigger (large cluster, or jobs with many ex-

ecutors), the ILP might not be feasible as it requires exponential

time to solve. In this case, efficient heuristic methods can be used

for faster executor placement.
.3. Job scheduler

The proposed job scheduler exhibits the following characteris-

ics:

• The scheduler is online, that means it has no prior knowledge

of job arrival and dynamically schedules jobs upon arrival.
• The scheduler prioritises jobs based on their deadline.
• The scheduler tries to minimise the cost of VM usage while

placing the executors of a job.

Before discussing the scheduling algorithm, we introduce the

mportant concepts used to design the scheduler.

Resource Unification Thresholds (RUT): As we have two types

f resources (e.g., CPU and memory), the resource capacity of a VM

nd resource demand of a job cannot be represented with only one

ype of resource. Therefore, to holistically unify multiple types of

esources, we introduce RUT and use it as a system parameter. Each

f the thresholds acts as a weight for a single resource type, and

he summation of these threshold values is 1 (Eq. 5). In our case,

is the threshold associated with CPU and β is the threshold as-

ociated with memory. Note that, this is a generalised unification

hich can be extended to multiple resource types depending on

he system needs. A detailed discussion on how to assign Resource

nification Threshold (RUT) values is provided in Section 6.6 .

Resource Availability (RA jk) : It is a metric that represents the

esource availability of a VM in the unified form. Eq. 6 and

q. 7 shows the formula to compute the total amount of CPU and

emory in the cluster, respectively. We use the formula shown

n Eq. 8 to calculate RA jk of a VM. Here, the currently available

mount from each resource type is converted to the percentage

f resource w.r.t the total cluster resource (of the same type) and

hen multiplied to the corresponding RUT. Then, the total resource

apacity is found by summing these values.

+ β = 1 (5)

P U total =

∑

k ∈ �

∑

j∈ δk

ω

cpu

jk
(6)

EM total =

∑

k ∈ �

∑

j∈ δk

ω

mem

jk (7)

A jk =

ω

cpu

jk

CP U total

∗ α +

ω

mem

jk

MEM total

∗ β (8)

D job =

(
τ cpu

CP U total

∗ α +

τ mem

MEM total

∗ β

)
∗ E (9)

Resource Demand (RD job) : It is a metric that represents the re-

ource demand of a job in the unified form. We first find the re-

ource demand of one executor, then multiply it to the total ex-

cutors to find the RD job as shown in Eq. 9 .

JobBuffer, JobQueue and DeadlineJobQueue: We use a Job-

uffer to hold all the incoming jobs that are submitted to the

cheduler. Moreover, two priority queues: JobQueue and Deadline-

obQueue are used to keep regular and deadline-constrained jobs,

espectively. In JobQueue , jobs are kept sorted in descending order

f their resource demand (RD job). Jobs are kept sorted based on

he Earliest Deadline First (EDF) strategy in the DeadlineJobQueue .

he scheduler can transfer jobs from the JobBuffer to the priority

ueues at any time.

Algorithm 1 shows the policy used by the proposed scheduler.

hen the scheduler starts, at first it fetches deadline-constrained

obs from the JobBuffer (line 3). As DeadlineJobQueue is kept sorted

ased on EDF, if a newly added deadline-constrained job has a

ighter deadline than the already awaiting jobs, it will be extracted

M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515 7

Algorithm 1: Algorithm for the Job Scheduler.

Input : J obBu f f er, J obQueue, DeadlineJ obQueue

1 while SchedulerTerminationSignal � = true do

2 while true do

3 F etchDeadlineJ obs (J obBu f f er)

4 if DeadlineJobQueue = φ then

5 break

6 end

7 Job = Ext ract Job(DeadlineJobQueue)

8 if P laceExecutor(Job) is successful then

9 LaunchJ ob(J ob, P lacement List)

10 end

11 end

12 while true do

13 F etchRegularJ obs (J obBu f f er)

14 if DeadlineJobQueue � = φ then

15 break

16 end

17 Job = Ext ract Job(JobQueue)

18 if P laceExecutor(Job) is successful then

19 LaunchJ ob(J ob, P lacement List)

20 end

21 end

22 end

f

I

p

8

u

w

c

fi

t

t

d

u

p

w

g

s

d

J

j

t

4

m

s

S

c

a

t

l

p

4

A

a

e

Algorithm 2: ILP-based Executor Placement Algorithm.

Input : Job, the current job to be scheduled

Output : P lacement List , a list of VMs where the executors of

Job will be placed

1 Procedure PlaceExecutor (Job)

2 P lacementList ← φ
3 Update Cluster Resource Availability

4 Generate Optimisation target (Eq. 1)

5 Generate Executor Placement Constraints (Eq. 2)

6 Generate Resource Capacity Constraints (Eq. 3,4)

7 Solve ILP Problem

8 if ILP is solved then

9 return P lacementList

10 end

11 return F ailure

12 end

d

a

j

I

c

e

t

g

u

t

g

V

a

c

4

p
rom the queue to be scheduled before any other jobs (line 7).

f the PlaceExecutor () procedure returns success in finding VMs to

lace the executors, the job will be launched in the cluster (lines

–9). The scheduler is not preemptive, so when a job is sched-

led (whether it is a regular or a deadline-constrained job), it

ill not be killed or suspended. Therefore, while any deadline-

onstrained jobs are waiting and the cluster does not have suf-

cient resources to execute them (PlaceExecutor () procedure re-

urns failure), the scheduler does not fetch any regular jobs un-

il all the deadline-constrained jobs are scheduled. If there are no

eadline-constrained jobs to schedule (line 4), only then the sched-

ler fetches regular jobs (line 13). Otherwise, it keeps trying to

lace executors for deadline-constrained jobs.

Before scheduling any regular jobs, the scheduler always checks

hether any new deadline-constrained job has arrived. If so, it

oes back to schedule those jobs (line 14–15). Otherwise, it starts

cheduling regular jobs (lines 17–19). In some cases, it might be

ifficult to place a regular job with huge resource demand (as the

obQueue is kept sorted in decreasing order of resource demand for

obs). In these cases, the scheduler skips the current job and tries

o schedule the next job from the JobQueue .

.4. Executor placement

We propose two algorithms for cost-effective executor place-

ents for any job in the cluster. The first algorithm con-

tructs the Integer Linear Programming (ILP) model as shown in

ection 4.2 and tries to solve the ILP problem to find the most

ost-effective executor placement for the current job. The second

lgorithm uses a greedy approach which is a modified version of

he Best Fit Decreasing (BFD) heuristic to solve bin packing prob-

ems. Both of these algorithms can be used as the PlaceExecutor ()

rocedure of Algorithm 1 .

.4.1. ILP-Based executor placement:

Algorithm 2 shows the ILP-based executor placement approach.

t first, the cluster status is updated to obtain the latest resource

vailability of each VM. After this step, the optimisation target, ex-

cutor placement constraints, and resource capacity constraints are
ynamically generated by using the current cluster resource avail-

bility and the resource demand for the executors of the current

ob. Then the constructed ILP problem is solved (by an ILP solver).

f a feasible solution is found, the PlacementList is returned which

ontains the chosen VMs where the executors can be created. Oth-

rwise, if the modelled problem is not solvable, a failure is re-

urned. Note that, when the constraints of resource availability are

enerated before scheduling each job, the VMs which are already

sed by other jobs will be set (y jk = 1) so that the cost of using

hat machine will be taken into account in the optimisation tar-

et. Therefore, if there are any free resources available in the used

Ms, the ILP solver will automatically try to fit as many executors

s possible in those VMs before using any new VM to optimise

ost.

.4.2. BFD Heuristic-based executor placement:

To find the VMs where a job’s executors can be placed, our pro-

osed scheduler also uses a greedy algorithm. Algorithm 3 shows

Algorithm 3: BFD Heuristic-based Executor Placement Algo-

rithm.

Input : Job, the current job to be scheduled

Output : P lacement List , a list of VMs where the executors of

Job will be placed

1 Procedure PlaceExecutor (Job)

2 P lacementList ← φ
3 Sort (V MList)

4 forall the V M ∈ V MList do

5 while Placement of an executor in V M satisfies the

constraints (Eq.3,4) do

6 Update Resource Availability in V M

7 P lacement List .ad d (V M)

8 if P lacement List .size = E then

9 return P lacementList

10 end

11 end

12 end

13 if Cluster has unused VM(s) then

14 Turn on the smallest V M new

that satisfies the

constraints (Eq.3,4)

15 V MList ← V MList ∪ V M new

16 goto step 3

17 end

18 return F ailure

19 end

8 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

Fig. 4. The implementation of the prototype system on top of Apache Mesos.

t

c

a

i

t

p

o

c

o

a

U

s

a

t

m

c

g

i

q

r

c

m

d

o

t

L

S

b

i

o

s

c

s

f

S

t

m

w

13 https://github.com/tawfiqul- islam/SLA- Scheduler .
14 http://scpsolver.org/ .
15 http://lpsolve.sourceforge.net/5.5/ .
16 https://boto3.readthedocs.io/en/latest/ .
the procedure PlaceExecutor () which can be used to find the execu-

tor placement of any job. At first, the VMList (a list of used VMs

in the cluster) is sorted based on an ascending order of Resource

Availability (RA jk) of the VMs (line 3). Then, it iterates all the VMs

(line 4) and checks whether the current VM’s resource availability

satisfies an executor’s resource demand (line 5). If so, it updates

the resource availability of that VM (line 6) and adds this VM to

a list called PlacementList (line 7). Instead of looking at the next

VM, the current VM is greedily used to place as many executors

as possible so that we have a tight packing of the executors and

use a fewer number of VMs in the cluster. If this procedure finds

placements for all the executors of a given job, it returns the Place-

mentList (lines 8–9). If the VMs in VMList are not sufficient to place

all the executors, and the cluster has unused VM(s) (line 13), the

smallest VM that satisfies the resource constraints will be turned

on (line 14) and added to the VMList (line 15). Then the placement

finding steps will be repeated (line 16). Otherwise, if the cluster

does not have sufficient resources to place all the executors of the

current job, a failure will be returned (line 18).

4.5. Complexity analysis

To calculate the worst-case time complexity of Algorithm 1 ,

we first assume that, p and r is the total number of deadline-

constrained and regular jobs, respectively that need to be sched-

uled. If the total number of VM in the cluster is m , the time

required to sort the VMList is mlog (m). If an exact algorithm is

used to solve the ILP model built in Algorithm 2 , the worst-

case time complexity is O (2 n) where n is the maximum num-

ber of slots available for placing executors across all the VMs.

However, the worst-case time complexity of the BFD-based greedy

approach shown in Algorithm 3 is O (me), where e is the maxi-

mum number of possible executors for any job. Therefore, if ILP-

based executor placement is used, the worst-case time complex-

ity of Algorithm 1 is, O ((2 n mlog(m))(p + r)) . Thus, it might re-

quire exponential time to complete the scheduling process for ILP

based approach. In contrast, for the BFD-based executor place-

ment, Algorithm 1 has a polynomial worst-case time complexity

of O ((m

2 log(m))(p + r)) .

5. System design and implementation

We design a scheduler on top of the Mesos cluster manager in-

stead of modifying the native Spark scheduler to implement our

scheduling algorithms. The benefit of keeping a separate mod-

ule for the scheduler without extending the existing framework is
wo-fold. First, it can be extended to work with any other data pro-

essing frameworks supported by Mesos. Second, it can be used

s a generic scheduling framework so that new policies can be

ncorporated into the scheduler. The prototype scheduler can be

reated as an external scheduler in the system architecture as de-

icted in Fig. 4 . The implementation of the prototype system is

pen-source 13 so that it can be used or extended by the research

ommunity.

The external scheduler can be installed in any VM, but in

ur case, we plugged it in the Mesos master node and ran it as

 separate application alongside with the Mesos master process.

sers submit jobs to the external scheduler and depending on the

cheduling policy, the scheduler provisions resources in the cluster

nd launch any job with the help of Mesos master. In the archi-

ectural diagram shown in Fig. 4 , dashed lines represent job sub-

ission or executor creation flow where solid lines represent the

ontrol flows of the scheduler. As discussed previously in the al-

orithm section, there are three data structures to keep the jobs

n the scheduler: Job buffer (to hold the incoming jobs), deadline

ueue (to hold deadline-constrained jobs), and job queue (to hold

egular jobs). When the scheduler decides to schedule a job in the

luster, at first, it uses the Mesos HTTP APIs and sends JSON for-

atted request messages to Mesos master HTTP API endpoints to

ynamically reserve resources. After getting the acknowledgment

f successful resource reservation by the Mesos master, it launches

hat job through the Mesos cluster manager by using the Spark-

auncher APIs. At this stage, the driver program of the launched

park job takes control and creates executor(s) in one or more VMs

y using the reserved resources only. At any point of the schedul-

ng process, if a VM is unused and no jobs are currently reserved

n it for any future jobs to be scheduled, it is turned off by the

cheduler to save resource usage cost. Additionally, the scheduler

an also turn on one or more VMs if the currently available re-

ources in the active VMs is not sufficient to schedule new jobs.

We have implemented this pluggable external scheduling

ramework in Java. We have used SCPSolver 14 API with LPSolve

olver Pack 15 library to solve the proposed ILP-based execu-

or placement model in the scheduler. To implement the auto-

atic VM turn on/off mechanism from the scheduling process,

e have developed a module by using OpenStack Boto3 16 library.

https://github.com/tawfiqul-islam/SLA-Scheduler
http://scpsolver.org/
http://lpsolve.sourceforge.net/5.5/
https://boto3.readthedocs.io/en/latest/

M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515 9

Table 3

Experimental cluster details.

Instance Type CPU Cores Memory (GB) Pricing (AWS) Quantity

m1.large 4 16 $0.24/h 6

m1.xlarge 8 32 $0.48/h 5

m2.xlarge 12 48 $0.72/h 3

H

c

u

t

c

H

J

u

s

a

J

i

q

f

a

i

(

6

t

a

t

d

p

t

6

6

f

i

d

t

i

a

h

s

m

T

S

t

e

i

G

H

H

e

r

V

a

l

p

a

c

a

t

d

a

f

g

s

p

w

t

c

i

f

6

b

a

t

S

E

i

(

P

d

c

e

t

l

h

h

t

p

d

T

e

t

6

i

o

n

c

c

e

p

s

owever, this module can be easily extended to support any other

loud service providers by using their APIs. The scheduler also

ses Mesos scheduler HTTP API and operator HTTP API to con-

rol the resource provisioning in the cluster. The Mesos master ac-

epts messages in JSON format while communicating through the

TTP APIs. Therefore, java-json

17 API was used to construct/parse

SON formatted messages. Furthermore, SparkLauncher 18 API was

sed to automate Spark job submission from the scheduler. The

cheduler accepts job submission requests from the users through

 job processor interface that listens on a configurable TCP port.

ob submission requests to the scheduler should be constructed

n JSON format with some simple fields. In a job submission re-

uest, the users have to specify the details of a job having the

ollowing fields: job-id, input-path, output-path, application-path,

pplication-main-class, resource requirement (CPU cores, memory

n GB and total-executors) and an optional application argument

e.g., iteration).

. Performance evaluation

In this section, we first provide the experimental setup de-

ails which includes the cluster resource configurations, benchmark

pplications, and baseline schedulers. Then we show the evalua-

ions of the proposed algorithms in terms of cost, job performance,

eadline violations, and scheduling overhead. Moreover, we also

rovide a sensitivity analysis of the system parameters and discuss

he applicability of the proposed algorithms.

.1. Experimental setup

.1.1. Cluster configuration:

We have used Nectar Cloud

19 , a national cloud computing in-

rastructure for research in Australia to deploy a Mesos cluster. It

s a cluster consisting of three different types of VM instances. The

etailed VM configurations and quantity used from each type with

heir similar pricing in Amazon AWS (Sydney, Australia) is shown

n Table 3 . In summary, our experimental cluster has 14 VMs with

 total CPU (cores) of 100 and memory of 400GB. In each VM, we

ave installed Apache Mesos (version 1.4.0) and Apache Spark (ver-

ion 2.3.1). One m1.large type VM instance was used as the Mesos

aster while all the remaining VMs were used as Mesos Agents.

he external scheduler was plugged into the Mesos master node.

park supports different input sources as mentioned before, and

he users can select which data sources they want to use. How-

ver, HDFS is the most prominent distributed storage service as it

s highly scalable, and provides fault-tolerance through replication.

enerally, HDFS keeps replica of a storage block in 3 datanodes.

ence, if any of these datanodes (VMs) are turned-off to save cost,

DFS will automatically create replicas on the available VMs. How-

ver, a storage block might be lost if all the 3 datanodes where its

eplicas reside are turned off. Therefore, in this special case, the

M turn on/off module should be modified to allow HDFS to cre-

te replicas before shutting down all the datanodes. For the sim-
17 http://www.oracle.com/technetwork/articles/java/json-1973242.html .
18 https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/

auncher/package-summary.html .
19 https://nectar.org.au/research-cloud/ .

licity of the current system implementation to test our proposed

pproach, we have mounted a 1TB volume in the master node and

reated a Network File System (NFS) to share this storage space with

ll the Mesos agents. As the NFS server is running on the mas-

er node which will not be turned off, the current implementation

oes not need to consider about data loss due to VM turn off. In

ddition, the performance overhead due to fetching the input data

rom the NFS server is negligible as it is only done once at the be-

inning of the jobs execution, and all the intermediate results are

tored in each VMs local storage which is managed by Spark. For

roviding fault-tolerance, we plan to extend our implementation to

ork with HDFS in the future. We have used Bash scripting to au-

omate the cluster setup process so that a large-scale deployment

an also be conducted through these scripts. Furthermore, an ex-

sting cluster can also be scaled up if more VMs are provisioned

rom the Cloud service provider.

.1.2. Benchmarking applications:

We have used BigDataBench (Wang et al., 2014), a big data

enchmarking suite to evaluate the performance of our proposed

lgorithms. We have chosen three different types of applica-

ions from BigDataBench, namely WordCount (compute-intensive),

ort (memory-intensive) and PageRank (network/shuffle-intensive).

ach application was used to generate a workload where each job

n a workload has varying input size ranging from 1GB to 20GB

for WordCount and Sort) or iterations ranging from 5 to 15 (for

ageRank). To generate a heterogeneous workload, we have ran-

omly mixed the previously mentioned different types of appli-

ations. We have extracted the job arrival times from two differ-

nt hours of a particular day from the Facebook Hadoop workload

race 20 . From a high-load hour, 100 jobs are used, and from a light-

oad hour, 50 jobs are used. The arrival rate of jobs in the high-load

our is higher than the light-load hour. Therefore, in the high-load

our, most of the resources are overwhelmed with jobs while in

he light-load hour, the cluster is slightly under-utilised. The job

rofiles are collected by first submitting each job to run indepen-

ently (without any interference from other jobs) in the cluster.

hen the job completion time is averaged from multiple runs (5 for

ach job). While generating a workload, each job’s average comple-

ion time is used as a hard deadline.

.1.3. Baseline schedulers:

The problem with most of the cluster schedulers for Spark jobs

s that they do not consider executor-level job placement. Most

f these approaches only select the total number of resources or

odes (VMs) needed for each job while making any scheduling de-

isions. However, our approach works on a fine-grained level by in-

orporating executor placements in job scheduling. Therefore, the

xisting works can not be directly compared with our proposed ap-

roach. The following schedulers are compared with our proposed

cheduling algorithms:

• FIFO: The default FIFO scheduler of Apache Spark deployed

on top of Apache Mesos. It schedules jobs on a first come

first serve basis. We have used the consolidation option of the

scheduler so that it tries to pack executors in fewer VMs in-

stead of distributing executors on a round-robin fashion. As

most of the existing scheduling algorithms use this default

approach for executor placement, and it is also the common

choice of a user with Spark jobs, we chose this scheduler to

be one of the baselines.
• Morpheus (Jyothi et al., 2016): We have adapted the executor

placement policy of Morpheus. In this policy, lowcost packing is

used for executor placement. Depending on the current cluster
20 https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository .

http://www.oracle.com/technetwork/articles/java/json-1973242.html
https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/launcher/package-summary.html
https://nectar.org.au/research-cloud/
https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository

10 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

Fig. 5. Cost comparison between the scheduling algorithms under different workload types.

r

a

a

o

t

i

s

s

e

f

t

e

i

l

I

t

t

c

a

s

i

n

r

w

2

r
load, this policy finds the scarce resource demand (e.g., mem-

ory or CPU cores) of each job (Eq. 10). Then jobs are sorted

in increasing order of their scarce resource demands. There-

fore, resources in the cluster are well-balanced throughout the

scheduling process so that more jobs can be executed in the

long run. As Morpheus also uses a packing based approach for

executor placement, we chose it as a baseline.

c job = M ax

(
C P U load + C P U job

CP U total

,
M EM load + M EM job

M EM total

)
(10)

Note that, Spark dynamic resource allocation feature was

turned on for both the baseline and the proposed scheduling al-

gorithms.

6.2. Evaluation of cost efficiency

In this evaluation, we show the applicability of our proposed

scheduling algorithms to different types of applications while re-

ducing the cost of using a big data cluster. To calculate the total

cost incurred by a scheduler, we save the status of a VM (whether

it was turned on or off) in each second. Lastly, all the per-second

costs (cost i , cost incurred in i th second, i = 1 , 2 , 3 , . . . T ; T = total

makespan of the scheduler) incurred by a scheduler is calculated

by using Eq. 1 . Then all these per-second costs are summed for the

whole makespan of the scheduling process as shown in Eqn. 11 to

find the Total cost .

T otal cost =

∑

i ∈ T
Cost i (11)
Fig. 5 depicts cost comparison between the scheduling algo-

ithms under different workload types. The bar charts in Fig. 5 a

nd Fig. 5 b show the total cost incurred by different scheduling

lgorithms in the light-load and high-load hour, respectively. As

ur proposed scheduling algorithms use bin packing to consolidate

he executors to a minimal set of VMs, the cost is reduced signif-

cantly as compared to other schedulers. In general, the ILP-based

cheduling algorithms incur slightly lower cost than the BFD-based

cheduling algorithm in all the scenarios as it can find the cost-

ffective executor placement for a job. Moreover, Morpheus per-

orms slightly better than FIFO to lower the cost, because it priori-

ises jobs in such a way that cluster resources are well-balanced to

xecute more jobs in the overall scheduling process.

As shown in Fig. 5 a, both BFD-based and ILP-based schedul-

ng algorithms exhibit significant cost reductions during the light-

oad hour. As compared to baseline scheduling algorithms, BFD and

LP reduce the cluster usage cost by at least 30% and 34%, respec-

ively for WordCount and Sort applications. For PageRank applica-

ion, BFD and ILP reduce the resource usage cost by at least 12% as

ompared to FIFO. Moreover, BFD and ILP reduce the resource us-

ge cost by at least 5% as compared to Morpheus. As our proposed

cheduling algorithms try to place the executors from the same job

n fewer nodes (VMs), most of the shuffle operations happen intra-

ode thus improving job performance which results in overall cost

eduction for network-bound applications. In the case of the mixed

orkload, BFD and ILP reduce the resource usage cost by 21% and

5%, respectively as compared to FIFO. Furthermore, BFD and ILP

educe the resource usage cost by 17% and 22%, respectively as

M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515 11

Fig. 6. Comparison between the scheduling algorithms regarding average job completion times under different workload types.

c

i

a

a

f

f

r

c

i

o

i

I

6

d

r

p

t

p

a

l

s

P

t

T

i

p

m

t

c

s

t

l

a

p

a

g

P

6

l

(

Fig. 7. Comparison of deadline violations by different scheduling algorithms.

m

θ

B

j

t

m

a

i

t

h

c

u

c

D

a

l

c

e

i

v

o

b

t

1

B
ompared to Morpheus. In the case of the high-load hour as shown

n Fig. 5 b, the cost reduction is smaller than the light-load period

s the cluster is over-utilised. In this scenario, BFD and ILP show

bout 5–20% of cost reduction in different workloads.

Fig. 5 c and Fig. 5 d represents the cumulative VM cost by dif-

erent scheduling algorithms during the whole scheduling process

or the mixed workload in the light load and high load hours,

espectively. It can be observed that in the high-load hour, the

umulative cost graph of all the scheduling algorithms look sim-

lar as it is not possible to reduce the cost significantly of an

ver-utilised cluster. However, in the light-load hour, the cost sav-

ngs can be observed to increase over time for both BFD and

LP.

.3. Evaluation of job performance

Fig. 6 a and 6 b report the average job completion times for

ifferent scheduling algorithms in light-load and high-load hours,

espectively. It can be observed that for WordCount and Sort ap-

lications, sometimes FIFO and Morpheus perform slightly better

han our proposed algorithms. As our algorithms use fewer VMs to

lace all the executors, these VMs are stressed as both CPU cores,

nd memory resources are used at full capacity. However, it is neg-

igible as compared to the total resource cost usage by the baseline

chedulers. On the contrary, network-bound applications such as

ageRank reduces the performance of both FIFO and Morpheus due

o excessive network communications during the shuffle periods.

herefore, both BFD and ILP outperform the baseline algorithms

n case of PageRank and mixed applications. As all the algorithms

erform similarly for CPU/memory intensive applications, perfor-

ance benefits in mixed workload mainly depend on the propor-

ion of network-intensive applications. In the high-load hour, the

luster is overloaded with jobs so it might not be possible to con-

olidate the executors from the same job in fewer VMs. Therefore,

he performance benefits can be observed to be higher in the light-

oad hour than the high-load hour for the mixed and PageRank

pplications. In the light-load hour, our proposed algorithms im-

rove job completion time for at least 14% and 5% for PageRank

nd mixed applications, respectively. In the high-load hour, our al-

orithms improve job completion time for at least 3% and 5% for

ageRank and mixed applications, respectively.

.4. Evaluation of deadline violation

In this evaluation, we compare the percentage of deadline vio-

ations of different scheduling algorithms. This performance metric

 θd) is found by using Eq. 12 where θm

and θ s is the number of
issed and satisfied deadlines by a scheduler, respectively.

d =

θm

θs
× 100% (12)

oth FIFO and Morpheus do not consider deadline-constrained

obs. In FIFO, a high priority job with the earliest deadline has

o wait in the scheduling queue if it is submitted after one or

ore non-priority jobs. It will be scheduled only after executing

ll the previously arrived jobs. Morpheus determines the job prior-

ty by itself, where a job which results in the most balanced dis-

ribution of resources in the cluster (if that job is scheduled) will

ave the highest priority. However, in reality, top priority deadline-

onstrained jobs might not provide balanced resource distributions

pon placement. Therefore, other non-priority jobs will be exe-

uted before these jobs. Both BFD and ILP use a simple Earliest

eadline First (EDF) strategy. Thus, all the jobs are kept sorted

ccording to their deadlines, and the job with the earliest dead-

ine is scheduled first. Fig. 7 depicts the deadline violation per-

entage of different schedulers. For this experiment, we have ex-

cuted a heterogeneous mix (different application types) of prior-

ty (strict deadline) and non-priority jobs to measure the deadline

iolations by each scheduler. For FIFO and Morpheus, deadline vi-

lation occurred for 41% and 35% of jobs, respectively. However,

oth BFD and ILP were able to meet the deadlines for most of

he jobs and have deadline violation percentage of only 8% and

2%, respectively. ILP has slightly higher deadline violation than the

FD because sometimes it takes a significant time to find the most

12 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

Table 4

Comparison of average scheduling delays (unit: seconds) of different scheduling algorithms.

Schedulers Light-load High-load

WC Sort PR Mixed WC Sort PR Mixed

FIFO 0.002 0.004 0.002 0.004 0.003 0.003 0.003 0.004

Morpheus 0.004 0.004 0.003 0.005 0.005 0.004 0.003 0.004

BFD-based 0.006 0.005 0.005 0.004 0.005 0.004 0.004 0.005

ILP-based 3.31 3 0.75 1.92 0.73 2.63 0.65 1.3

Fig. 8. Effects of Resource Unification Threshold (RUT) values on average job completion time and cost.

c

r

r

f

b

t

v

u

a

c

i

t

u

p

V

j

c

c

a

p

a

6

m

O

b

a

c

t

r

i

a

s

b

B

cost-effective placement by this approach which causes deadline

misses.

6.5. Evaluation of scheduling overhead

In this evaluation, we compare the scheduling delays caused by

different scheduling algorithms. It is found by measuring the time

it takes to find the executor placements of a job. Table 4 records

the average scheduling delays by different scheduling algorithms

under different workload types in both high-load and light-load

hours. It can be observed that the native FIFO is the fastest among

all the schedulers with scheduling delays averaging only from 2ms

to 4ms. Both Morpheus and BFD are also fast as their average

scheduling delay varies in the range from 3ms to 5ms and 4ms

to 6ms, respectively. In contrast, as the ILP tries to find the most

cost-effective executor placement for each job, in some cases it

might require exponential time to complete. The results also in-

dicate the same as the average scheduling delay varied from 0.65

seconds to up to 3.31 seconds for ILP. Although most of the jobs

had a scheduling delay within 1 second, for the ILP, the average

is higher as for some jobs it took about 3–4 minutes. The higher

scheduling delay of ILP-based scheduling algorithm might cause

some deadline misses. It can also be observed in Fig. 7 that, ILP-

based scheduling algorithm has a slightly higher deadline miss per-

centage than the BFD-based algorithm. However, this performance

degradation is negligible as compared to the baseline scheduling

algorithms. Furthermore, for regular jobs or periodic jobs (e.g.,

long-running data analytics) that do not have strict deadlines, us-

ing the ILP-based scheduling algorithm is preferred as it can pro-

vide better cost reduction in the long run.

6.6. Effects of resource unification thresholds (RUT)

RUT is a system parameter, and we have performed a sensitiv-

ity analysis to demonstrate the effects of it on both cluster usage

cost and job performance. In our experimental cluster, we have

two types of resources (e.g., CPU cores and memory). Resource uni-

fication thresholds (RUT) play a vital role in the scheduling pro-
ess by acting as a weight while combining these two types of

esources to determine the resource capacity of the VMs or the

esource demand of the jobs. We have associated α as the RUT

or CPU cores and β as the RUT for memory. The proper balance

etween RUT values depends on both the VM instance types and

he workload types. Fig. 8 represents the effects of different RUT

alues on both average job completion time (Fig. 8 a) and resource

sage cost (Fig. 8 b). This analysis was done by running both BFD

nd ILP-based scheduling algorithms with the mixed workload. It

an be observed from the figure that, decreasing the α value and

ncreasing the β value tends to increase both average job comple-

ion time and resource usage cost in our experimental cluster. As

sing α = 0 . 8 and β = 0 . 2 gives us both lower cost and job com-

letion time, we use these RUT values in our experiments.

RUT values can also be tuned to give more priority to specific

Ms or jobs. For example, if a cluster has more memory-bound

obs, to prefer VMs which have more memory to fit these jobs

orrectly, the β value can be increased, and α value can be de-

reased so that VMs which have high memory capacity/availability

re preferred in the scheduling process. Similarly, jobs can also be

rioritised based on their demand on a particular resource-type by

djusting the corresponding RUT values.

.7. Discussion

The proposed scheduling algorithms can be applied to opti-

ise the cost of using a cloud-deployed Apache Spark cluster.

ur performance evaluation results show that the BFD heuristic-

ased approach performs very close to the ILP-based approach in

ll the cases. However, the ILP-based approach might have signifi-

ant scheduling delays for a large cluster (many VMs). Therefore, in

his case, we recommended using the BFD-based scheduling algo-

ithm as it gives similar results with a small scheduling overhead

dentical to the native FIFO. Another approach could be using both

lgorithms and using a time-constraint in the ILP. If the ILP can be

olved within the time-constraint, the executor placements found

y this approach will be used. Otherwise, the solution from the

FD-based approach will be used.

M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515 13

g

a

a

T

a

i

V

7

d

f

s

p

a

p

p

t

b

o

t

l

b

i

d

a

p

t

i

f

g

a

t

s

j

S

c

s

w

p

i

s

i

i

s

t

a

C

S

W

C

&

y

C

s

-

A

M

a

p

g

R

C

C

D

D

G

G

G

G

H

H

I

J

K

L

N

R

S

S

S

T

V

W

W

The proposed approach can also be used with HDFS. As HDFS

enerally creates replicas in 3 datanodes (VMs), if all these 3 VMs

re selected to be turned off in the scheduling process to save cost,

 storage block which was only saved in these 3 VMs will be lost.

o mitigate this issue, it is not required to modify the scheduling

lgorithms. However, the VM turn on/off module should be mod-

fied for allowing HDFS to create replicas before shutting down a

M (datanode).

. Conclusions and future work

Scheduling is a challenging task in big data processing clusters

eployed on the cloud. It gets even harder in the presence of dif-

erent types of VMs and job heterogeneity. Most of the existing

chedulers only target on improving job performance. In this pa-

er, we have used bin packing to formulate the scheduling problem

nd proposed two dynamic scheduling algorithms that enhance job

erformance and minimise resource usage cost. We have built a

rototype system on top of Apache Mesos which can be extended

o incorporate new scheduling policies. Therefore, this system can

e used as a scheduling framework. We have demonstrated the

utcomes of our extensive experiments on real datasets to prove

he applicability of the proposed algorithms under various work-

oad types.

Moreover, we have compared our algorithms with the existing

aseline schedulers. The results suggest that our proposed schedul-

ng algorithms reduce resource usage cost up to 34% in a cloud-

eployed Apache Spark cluster. Furthermore, both network-bound

nd mixed jobs gain performance benefits (up to 14%) from tighter

acking of executors in fewer VMs. We have also done the sensi-

ivity analysis of the system parameter and discussed the effects of

t on both cost and job performance. Lastly, we have discussed the

easibility of the proposed approach.

In the future, we plan to extend the proposed scheduling al-

orithms by incorporating some essential SLA requirements, such

s budget, and job inter-dependency. Furthermore, we would like

o combine the performance prediction/modelling of jobs with the

chedulers to dynamically determine the resource requirements of

obs while satisfying SLA and performance constraints. Although

park jobs do not specify network as a resource constraint, when

o-locating multiple jobs in the same VM, network and I/O usage

hould also be considered. To achieve this, we want to extend our

ork so that these constraints can be added to the optimisation

roblem. As major cloud service providers such as AWS is offer-

ng Arm-based instances 21 that consume less-power and inexpen-

ive, user-centric cost optimisation techniques should be benefited

f arm-based instances are used. Although arm-based instances are

nexpensive, x86-based instances still outperform arm-based in-

tances if compared regarding instance performance. Therefore, in

he future we plan to investigate the trade-offs between arm-based

nd x86-based instances regarding cost and performance.

RediT authorship contribution statement

Muhammed Tawfiqul Islam: Conceptualization, Methodology,

oftware, Formal analysis, Validation, Investigation, Data curation,

riting - original draft, Visualization. Satish Narayana Srirama:

onceptualization, Methodology, Formal analysis, Writing - review

 editing. Shanika Karunasekera: Conceptualization, Formal anal-

sis, Writing - review & editing, Supervision. Rajkumar Buyya:

onceptualization, Resources, Writing - review & editing, Supervi-

ion, Project administration, Funding acquisition.
21 https://aws.amazon.com/blogs/aws/new- ec2- instances- a1- powered- by

 arm- based- aws- graviton- processors/ .

W

cknowledgements

We would like to thank Dr. Xunyun Liu, Prof. Vlado Stankovski,

r. Shashikant Ilager, Dr. Maria Rodriguez, Dr. Adel Nadjaran Toosi

nd Dr. Minxian Xu for providing their valuable suggestions to im-

rove this work. This work is partially supported by a research

rant from the Australian Research Council (ARC).

eferences

hen, Q. , Zhang, D. , Guo, M. , Deng, Q. , Guo, S. , 2010. Samr: A self-adaptive mapre-

duce scheduling algorithm in heterogeneous environment. In: Proceedings of
the 10th IEEE International Conference on Computer and Information Technol-

ogy .
offman Jr., E.G. , Csirik, J. , Galambos, G. , Martello, S. , Vigo, D. , 2013. Bin Packing

Approximation Algorithms: Survey and Classification. Springer New York, New
York, NY, pp. 455–531 .

elimitrou, C. , Kozyrakis, C. , 2014. Quasar: Resource-efficient and qos-aware cluster

management. In: Proceedings of the 19th International Conference on Architec-
tural support for programming languages and operating systems (ASPLOS) .

imopoulos, S. , Krintz, C. , Wolski, R. , 2017. Justice: A deadline-aware, fair-share re-
source allocator for implementing multi-analytics. In: Proceedings of the IEEE

International Conference on Cluster Computing (CLUSTER) .
eorge, L. , 2011. HBase: the definitive guide: random access to your planet-size

data. O’Reilly Media, Inc. .

hodsi, A. , Zaharia, M. , Hindman, B. , Konwinski, A. , Shenker, S. , Stoica, I. , 2011. Dom-
inant resource fairness: Fair allocation of multiple resource types. In: Proceed-

ings of the 8th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI) .

ibilisco, G.P. , Li, M. , Zhang, L. , Ardagna, D. , 2016. Stage aware performance model-
ing of dag based in memory analytic platforms. In: Proceedings of the 9th IEEE

International Conference on Cloud Computing (CLOUD) .
ounaris, A. , Kougka, G. , Tous, R. , Montes, C.T. , Torres, J. , 2017. Dynamic configu-

ration of partitioning in spark applications. IEEE Transactions on Parallel and

Distributed Systems (TPDS) 28 (7), 1891–1904 .
indman, B. , Konwinski, A. , Zaharia, M. , Ghodsi, A. , Joseph, A.D. , Katz, R.H. ,

Shenker, S. , Stoica, I. , 2011. Mesos: A platform for fine-grained resource sharing
in the data center.. In: Proceedings of the 8th USENIX Conference on Networked

Systems Design and Implementation (NSDI) .
unt, P. , Konar, M. , Junqueira, F.P. , Reed, B. , 2010. Zookeeper: Wait-free coordina-

tion for internet-scale systems. In: Proceedings of the USENIX Annual Technical

Conference .
slam, M.T. , Karunasekera, S. , Buyya, R. , 2017. dspark: Deadline-based resource al-

location for big data applications in apache spark. In: Proceedings of the 13th
IEEE International Conference on e-Science (e-Science) .

yothi, S.A. , Curino, C. , Menache, I. , Narayanamurthy, S.M. , Tumanov, A. , Yaniv, J. ,
Mavlyutov, R. , Goiri, I.n. , Krishnan, S. , Kulkarni, J. , Rao, S. , 2016. Morpheus:

Towards automated slos for enterprise clusters. In: Proceedings of the 12th

USENIX Conference on Operating Systems Design and Implementation (OSDI) .
c, K. , Anyanwu, K. , 2010. Scheduling hadoop jobs to meet deadlines. In: Proceed-

ings of the 2nd IEEE International Conference on Cloud Computing Technology
and Science .

akshman, A. , Malik, P. , 2010. Cassandra: a decentralized structured storage system.
ACM SIGOPS Oper. Syst. Rev. 44 (2) .

elder, J.A. , Mead, R. , 1965. A simplex method for function minimization. Comput.

J. 7 (4), 308–313 .
oss, G.T. , Soland, R.M. , 1975. A branch and bound algorithm for the generalized

assignment problem. Math. Program. 8 (1), 91–103 .
hvachko, K. , Kuang, H. , Radia, S. , Chansler, R. , 2010. The hadoop distributed file

system. In: Proceedings of the 26th IEEE Symposium on Mass Storage Systems
and Technologies (MSST) .

idhanta, S. , Golab, W. , Mukhopadhyay, S. , 2016. Optex: A deadline-aware cost op-

timization model for spark. In: Proceedings of the 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid) .

oualhia, M. , Khomh, F. , Tahar, S. , 2017. Task scheduling in big data platforms: a
systematic literature review. J. Syst. Softw. 134, 170–189 .

ian, C. , Zhou, H. , He, Y. , Zha, L. , 2009. A dynamic mapreduce scheduler for hetero-
geneous workloads. In: Proceedings of the 8th International Conference on Grid

and Cooperative Computing .

avilapalli, V.K. , Murthy, A.C. , Douglas, C. , Agarwal, S. , Konar, M. , Evans, R. , Graves, T. ,
Lowe, J. , Shah, H. , Seth, S. , et al. , 2013. Apache hadoop yarn: Yet another re-

source negotiator. In: Proceedings of the 4th ACM Annual Symposium on Cloud
Computing .

ang, G. , Xu, J. , He, B. , 2016. A novel method for tuning configuration parameters of
spark based on machine learning. In: Proceedings of the 18th IEEE International

Conference on High Performance Computing and Communications (HPCC) .
ang, K. , Khan, M.M.H. , 2015. Performance prediction for apache spark platform.

In: Proceedings of the 17th IEEE International Conference on High Performance

Computing and Communications (HPCC) .
ang, L. , Zhan, J. , Luo, C. , Zhu, Y. , Yang, Q. , He, Y. , Gao, W. , Jia, Z. , Shi, Y. , Zhang, S. ,

et al. , 2014. Bigdatabench: A big data benchmark suite from internet services.
In: Proceedings of the 20th IEEE International Symposium on High Performance

Computer Architecture (HPCA) .

https://aws.amazon.com/blogs/aws/new-ec2-instances-a1-powered-by-arm-based-aws-graviton-processors/
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0001
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0002
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0003
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0004
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0005
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0006
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0007
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0008
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0009
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0010
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0011
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0012
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0013
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0014
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0015
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0016
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0017
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0018
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0019
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0020
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0021
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0022
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0023
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0024

14 M.T. Islam, S.N. Srirama and S. Karunasekera et al. / The Journal of Systems and Software 162 (2020) 110515

o

b

c

S

c

P

U

M

J

r

c

m

R

C

C

h

C

m

d

b

l

m

W

n

a

n

c

Zaharia, M. , Borthakur, D. , Sarma, J.S. , Elmeleegy, K. , Shenker, S. , Stoica, I. ,
2009. Job scheduling for multi-user mapreduce clusters. Technical Report

UCB/EECS-2009-55. EECS Department, University of California, Berkeley .
Zaharia, M. , Chowdhury, M. , Das, T. , Dave, A. , Ma, J. , McCauley, M. , Franklin, M.J. ,

Shenker, S. , Stoica, I. , 2012. Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing. In: Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation (NSDI) .
Zaharia, M. , Xin, R.S. , Wendell, P. , Das, T. , Armbrust, M. , Dave, A. , Meng, X. , Rosen, J. ,

Venkataraman, S. , Franklin, M.J. , Ghodsi, A. , Gonzalez, J. , Shenker, S. , Stoica, I. ,

2016. Apache spark: a unified engine for big data processing. Commun. ACM 59
(11), 56–65 .

Muhammed Tawfiqul Islam is a Ph.D. candidate with the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the University of Melbourne, Australia.

He received the BS and MS degree in Computer Science from the University of

Dhaka in 2010 and 2012, respectively. He joined as Lecturer in the Department
f Computer Science & Engineering, the University of Dhaka in 2014. Before join-

ing academia, he also worked as a Software Engineer for Internet Society and REVE
Systems. His research interests include resource management, cloud computing, and

big data.

Satish Narayana Srirama is a Research Professor and the head of the Mobile &

Cloud Lab at the Institute of Computer Science, University of Tartu, Estonia and a

Visiting Professor at the University of Hyderabad, India. He received his Ph.D. in
computer science from RWTH Aachen University, Germany, in 2008. His current re-

search focuses on cloud computing, mobile web services, mobile cloud, Internet of
Things, fog computing, migrating scientific computing and enterprise applications

to the cloud and large scale data analytics on the cloud. He is an IEEE Senior Mem-
er, an Editor of Wiley Software: Practice and Experience journal and a program
ommittee member of several international conferences and workshops.

hanika Karunasekera received the B.Sc. degree in electronics and telecommuni-
ations engineering from the University of Moratuwa, Sri Lanka, in 1990 and the

h.D. degree in electrical engineering from the University of Cambridge, Cambridge,
.K., in 1995. From 1995 to 2002, she was a Software Engineer and a Distinguished

ember of Technical Staff with Lucent Technologies, Bell Labs Innovations, USA. In

anuary 2003, she joined the University of Melbourne, Victoria, Australia, and cur-
ently, she is a Professor in the School of Computing and Information Systems. Her

urrent research interests include distributed system engineering, distributed data-
ining, and social media analytics.

ajkumar Buyya is a Redmond Barry Distinguished Professor and Director of the
loud Computing and Distributed Systems (CLOUDS) Laboratory in the School of

omputing and Information Systems at the University of Melbourne, Australia. He

as authored over 625 publications and seven textbooks including “Mastering Cloud
omputing” published by McGraw Hill, China Machine Press, and Morgan Kauf-

ann for Indian, Chinese and international markets respectively. Microsoft Aca-
emic Search Index ranked Dr. Buyya as #1 author in the world (2005–2016) for

oth field rating and citations evaluations in the area of Distributed and Paral-
el Computing. “A Scientometric Analysis of Cloud Computing Literature” by Ger-

an scientists ranked Dr. Buyya as the World’s Top-Cited (#1) Author and the

orld’s Most-Productive (#1) Author in Cloud Computing. Dr. Buyya is recog-
ized as a “2016 Web of Science Highly Cited Researcher” by Thomson Reuters,

 Fellow of IEEE, and Scopus Researcher of the Year 2017 with Excellence in In-
ovative Research Award by Elsevier for his outstanding contributions to Cloud

omputing.

http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0025
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0026
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027
http://refhub.elsevier.com/S0164-1212(19)30289-4/sbref0027

	Cost-efficient dynamic scheduling of big data applications in apache spark on cloud
	1 Introduction
	2 Background
	2.1 Apache spark
	2.2 Apache mesos

	3 Related work
	4 Cost-efficient job scheduling
	4.1 Motivation
	4.2 Problem formulation
	4.3 Job scheduler
	4.4 Executor placement
	4.4.1 ILP-Based executor placement:
	4.4.2 BFD Heuristic-based executor placement:

	4.5 Complexity analysis

	5 System design and implementation
	6 Performance evaluation
	6.1 Experimental setup
	6.1.1 Cluster configuration:
	6.1.2 Benchmarking applications:
	6.1.3 Baseline schedulers:

	6.2 Evaluation of cost efficiency
	6.3 Evaluation of job performance
	6.4 Evaluation of deadline violation
	6.5 Evaluation of scheduling overhead
	6.6 Effects of resource unification thresholds (RUT)
	6.7 Discussion

	7 Conclusions and future work
	CRediT authorship contribution statement
	Acknowledgements
	References

