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Job scheduling is one of the most crucial components in managing resources, and efficient execution
of big data applications. Specifically, scheduling jobs in a cloud-deployed cluster are challenging as the
cloud offers different types of Virtual Machines (VMs) and jobs can be heterogeneous. The default big
data processing framework schedulers fail to reduce the cost of VM usages in the cloud environment
while satisfying the performance constraints of each job. The existing works in cluster scheduling mainly
focus on improving job performance and do not leverage from VM types on the cloud to reduce cost.
In this paper, we propose efficient scheduling algorithms that reduce the cost of resource usage in a
cloud-deployed Apache Spark cluster. In addition, the proposed algorithms can also prioritise jobs based
on their given deadlines. Besides, the proposed scheduling algorithms are online and adaptive to clus-
ter changes. We have also implemented the proposed algorithms on top of Apache Mesos. Furthermore,
we have performed extensive experiments on real datasets and compared to the existing schedulers to
showcase the superiority of our proposed algorithms. The results indicate that our algorithms can reduce

resource usage cost up to 34% under different workloads and improve job performance.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Big Data processing has become crucial due to massive ana-
lytics demands in all the major business and scientific domains
such as banking, fraud detection, healthcare, demand forecasting,
and scientific explorations. Data processing frameworks such as
Hadoop', Storm?, and Spark (Zaharia et al., 2016) are the most
common choice when it comes to big data processing. Large organ-
isations generally run private compute clusters with one or more
big data processing frameworks on top of it. As public cloud ser-
vices can provide infrastructure, platform, and software for storing
and computing of data, it is also becoming popular to deploy the
big data processing clusters on public clouds. However, schedul-
ing these big data jobs can be difficult in a cloud-deployed clus-
ter since the jobs can be of different types such as CPU-intensive,
memory-intensive, and network-intensive. Furthermore, jobs can
also vary based on their resource demands to maintain a stable
performance. Moreover, various types of Virtual Machines (VM) in-
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stances available on the cloud make it difficult to generate cost-
effective scheduling plans. Therefore, in this paper, we propose
efficient job scheduling algorithms that reduce the cost of us-
ing a cloud-deployed Apache Spark cluster while enhancing job
performance.

To demonstrate the effectiveness of our scheduling algorithms,
we have chosen Apache Spark as our target framework because it
is a versatile, scalable and efficient big data processing framework
and is rapidly replacing traditional Hadoop-based platforms used
in the industry. Spark utilises in-memory caching to speed up the
processing of applications. The resource requirements of a Spark
job can be specified by using the number of required executors
for that particular job, where each executor can be thought of as
a process, having a fixed chunk of resources (e.g., CPU, memory
and disk). However, different jobs can have varying executor size
requirements depending on the type of workloads they are pro-
cessing. Therefore, jobs exhibit different characteristics regarding
resource dependability.

The default scheduling mechanism for Spark job scheduling is
First in First Out (FIFO)?, where each job is scheduled one after

3 https://spark.apache.org/docs/latest/job-scheduling.html#scheduling-across-
applications.
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another. If no resource limit is set, one job might consume all
the resources in the cluster. On the other hand, if the user sets a
limit on the required resources of a job, the remaining resources
can be used to schedule the next job in the queue. In addition
to the FIFO scheduler, a Fair Scheduler is also available to prevent
resource contention among jobs. By default, both of these sched-
ulers place the executors of a job in a round-robin fashion in all
the VMs/worker nodes for load-balancing and performance im-
provement. However, when a cloud-deployed cluster is not fully
loaded with jobs, round-robin executor placement leads to re-
source wastage in all the VM. Although Spark also has an option to
consolidate the executor placements, the cluster manager does not
consider the resource capacity and price of different cloud VM in-
stance types, and thus fails to make cost-efficient placement deci-
sions. Most of the existing scheduling techniques focus on Hadoop-
based platforms (Kc and Anyanwu, 2010; Zaharia et al., 2009; Chen
et al., 2010; Tian et al., 2009). Nevertheless, these mechanisms can-
not be directly applied to Spark job scheduling as the architectural
paradigm is different from in-memory computing frameworks. A
very few works have been done to tackle the scheduling prob-
lem of in-memory computing-based frameworks like Apache Spark
(Delimitrou and Kozyrakis, 2014; Sidhanta et al., 2016; Jyothi et al.,
2016; Dimopoulos et al., 2017). However, most of these works as-
sume the cluster setup to be homogeneous (there is only one type
of VM instance for all the worker nodes) thus fail to make the
scheduling technique cost-efficient from a cloud perspective.

As a motivating example, consider a cluster having 2 homoge-
neous VMs each having 8 CPU cores capacity. If a Spark job has 2
executors requirement with 2 cores for each, the total CPU cores
requirement is 4. However, most of the existing strategies will use
both the VMs to place these 2 executors which will lead to re-
source wastage and a higher VM usage cost. On the contrary, if a
scheduler can consider the VM pricing model and different VM in-
stance types in the cluster, executors from the jobs could be tightly
packed in fewer cost-effective VMs. Thus, the instances with more
resource capacity and higher price will be used only if there is a
high load on the cluster. Therefore, in this paper, we formulate the
scheduling problem of Spark jobs in a cloud-deployed cluster as a
variant of the bin-packing problem. Here, our primary target is to
reduce the cost of VM usage while maximising resource utilisation
and improving job performance.

In summary, our work makes the following key contributions:

We propose two job scheduling algorithms. The first algorithm
is a greedy algorithm adapted from the Best-Fit-Decreasing
(BFD) heuristic, and the second algorithm is based on Integer
Linear Programming (ILP). Both of these algorithms can im-
prove cost-efficiency of a cloud deployed Apache Spark clus-
ter. Besides, our proposed algorithms also prioritise jobs based
on their deadlines and enhance job performance for network-
bound jobs.

We develop a scheduling framework by utilising Apache Mesos
(Hindman et al., 2011) cluster manager and this framework can
be used to implement scheduling policies for any Mesos sup-
ported data processing frameworks in addition to Spark.

We implement the proposed algorithms on top of the devel-
oped scheduling framework.

We perform extensive experiments with real applications and
workload traces under different scenarios to demonstrate the
superiority of our proposed algorithms over the existing tech-
niques.

The rest of the paper is organised as follows. In Section 2, we
discuss the background of Apache Spark and Apache Mesos. In
Section 3, we describe the existing works related to this paper.
In Section 4, we show the motivating examples and formu-
late the scheduling problem. In Section 5, we demonstrate the

implemented prototype system. In Section 6, we evaluate the
performance of our proposed algorithms, show the sensitivity
analysis of various system parameters and discuss the feasibility
of our proposed algorithms. Section 7 concludes the paper and
highlights future work.

2. Background

We use Apache Spark as the target big data processing frame-
work and Apache Mesos as the cluster manager where we imple-
ment our scheduling policies. In this section, we briefly introduce
the basic concepts, system architecture, resource provisioning and
scheduling mechanisms in these two frameworks.

2.1. Apache spark

Apache Spark is one of the most prominent in-memory big data
processing frameworks. It is a multi-purpose open-source plat-
form with high scalability. Spark supports applications to be built
with various programming languages like Java, Scala, R, Python
etc. Besides, extensive and interactive analysis can be done using
the available high-level APIs. Furthermore, a variety of input data
sources like HDFS (Shvachko et al., 2010), HBase (George, 2011),
Cassandra (Lakshman and Malik, 2010) etc. are supported by Spark.
It outperforms traditional Hadoop-MapReduce based platform by
conducting most of the computations in memory. In addition, re-
sults from the intermediate stages are cached in memory for faster
data re-processing. Spark uses Resilient Distributed Dataset (RDD)
(Zaharia et al., 2012) for data abstraction which is fault tolerant
by nature. In contrast to HDFS, Spark does not implement replica-
tion. Spark keeps track of how a specific piece of data was calcu-
lated, so it can recalculate any lost RDD partitions if a node fails
or is shutdown by a scheduler. A Spark cluster follows a Master-
Worker model, where there should be at least one Master node and
one or more Worker nodes. However, multiple master nodes can
be used by leveraging ZooKeeper (Hunt et al., 2010). From a cloud
perspective, each master/worker node can be deployed in a cloud
VM. Spark has its default standalone cluster manager which is suf-
ficient to deploy a production-grade cluster. Moreover, it also sup-
ports popular cluster managers like Hadoop Yarn (Vavilapalli et al.,
2013), Apache Mesos (Hindman et al., 2011) etc.

When a Spark job/application is launched in a cluster, the Driver
program of that job creates one or more executors in the worker
nodes. Executor is a process of an application that holds a fixed
chunk of resources (CPU cores, memory, and disk) and all the ex-
ecutors from the same job have identical resource requirements.
Tasks are run in parallel in multiple threads inside each executor
which lives during the entire duration of that job. As all the jobs
have an independent set of executors, jobs are isolated, and each
job’s driver program can create its own set of executors and sched-
ule tasks in them.

Resource allocation in a Spark cluster can be done in three
ways: (1) Default: the user does not set any limits on the required
resources for a job, and it uses all the resources of the entire clus-
ter. Therefore, only one job can run in the cluster at a time and
even if that job only requires a small chunk of resources, all the
resources are allocated to it; (2) Static: if a user sets a limit on the
required resources for a job, only that amount of resources will
be allocated for that job, and any remaining resources can be as-
signed to any future job. Therefore, in this mode, it is possible to
run multiple applications in the cluster and (3) Dynamic: resources
are allocated similarly as the static allocation mechanism, but if
any resource (CPU core only) is not utilised, it could be released
to the cluster so that any other application can use it. Besides, this
resource can be taken back from the cluster in future if needed by
the original job.
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By default, Spark supports FIFO scheduling across jobs. There-
fore, jobs wait in a FIFO queue and run one after another. A new
job is scheduled whenever any resources are available to create any
executor for the next job. Besides, Spark also has a FAIR scheduler,
which was modelled after the Hadoop Fair Scheduler®. Here, jobs
can be grouped into pools, and different scheduling options can be
set for each pool. For example, weight determines the priority of
a job pool. By default, each pool has a weight 1, but if any pool is
assigned 2 as the weight, it will get twice the resources than other
pools. Within each job pool, jobs are scheduled in a FIFO fashion.
Each pool also has a minimum share (minShare) of resources in
the cluster, and a cluster manager only assigns more resources to a
highly weighted pool once all the pools have met their minimum
share of resources. By default, Spark spreads the executors from
the same job into multiple workers for load balancing. In addition,
the standalone cluster manager can also consolidate executors into
fewer worker nodes (by greedily using the current worker node to
place as many executors as possible). However, Spark assumes that
all the worker nodes are homogeneous (same resource capacity),
and it also does not consider the price of using a worker node (if
it is deployed on cloud VM).

2.2. Apache mesos

Apache Mesos is considered to be a data-center level cluster
manager due to its capability of efficient resource isolation and
sharing across distributed applications. It resides between the ap-
plication and the OS layer and makes it easier to deploy and
manage large-scale clusters. In Mesos, jobs/applications are called
frameworks and multiple applications from different data process-
ing frameworks like Spark, Strom, and Hadoop can run in parallel
in the cluster. Therefore, Mesos can be used to share a pool of het-
erogeneous nodes among multiple frameworks efficiently. Mesos
utilises modern kernel features by using cgroups in Linux and zones
in Solaris to provide isolation of CPU, memory, file system etc.

Mesos introduces a novel two-level scheduling paradigm where
it decides a possible resource provisioning scheme according to the
weight, quota or role of a framework and offers resources to it. The
framework’s scheduler is responsible for either rejecting or accept-
ing those resources offered by Mesos according to its scheduling
policies. If a framework’s scheduler accepts a resource offer from
Mesos, the resources specified by that offer can be used to launch
any computing tasks. Mesos also provides flexible Scheduler® HTTP
APIs which can be used to write custom user-defined scheduling
policies on top of any big data processing platform. Besides, it pro-
vides Operator® HTTP APIs to control the resource provisioning and
scheduling of the whole cluster. Mesos supports dynamic resource
reservation; thus resources can be dynamically reserved in a set of
nodes by using the APIs and then a job/framework can be sched-
uled only on those resources. When a job is completed, resources
can be taken back and reserved for any future job. It is a signif-
icant feature of Mesos as any external scheduler implemented on
top of Mesos can have robust control over the cluster resources.
Furthermore, the external scheduler can perform fine-grained re-
source allocation for a job in any set of nodes with any resource
requirement settings. Lastly, various policies can be incorporated
into an external scheduler without modifying the targeted big data
processing platform or Mesos itself; so the scheduler can be ex-
tended to work with other big data processing platforms. For the
benefits mentioned above, we have built a scheduling framework
on top of Mesos to implement our proposed scheduling algorithms.

4 https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/
FairScheduler.html.

5 http://mesos.apache.org/documentation/latest/scheduler- http-api/.

6 http://mesos.apache.org/documentation/latest/operator-http-api/.

3. Related work

Most of the data processing frameworks like Hadoop, Spark
schedule jobs in a FIFO manner and distributes the tasks/executors
from each job in a distributed round-robin fashion. To avoid re-
source contention FAIR scheduler was introduced for fair distribu-
tion of cluster resources among the jobs. In Mesos, scheduling is
done by the Dominant Resource Fairness (DRF) (Ghodsi et al., 2011)
scheduling algorithm, which identifies the dominant resource type
(CPU/memory) of each job. Then it offers resources to each job in
such a way that overall use of cluster resources is well-balanced.

There has been a significant amount of research in the area
of cluster scheduling. However, most of these schedulers focused
Hadoop-MapReduce based clusters. Kc and Anyanwu (2010) ad-
dressed the problems of Hadoop FIFO scheduler by introduc-
ing a deadline constraint scheduler that prioritises map/reduce
tasks from each job based on their deadline. LATE (Zaharia et al.,
2009) is a delay scheduler that targets to improve job throughput
and response times by considering data locality into the sched-
uler in a multi-user MapReduce cluster. However, it treats the
cluster setup to be homogeneous thus performs poorly in het-
erogeneous environments. SAMR (Chen et al., 2010) proposed a
self-adaptive scheduling algorithm that classifies the performance
of jobs from the historical data. It also identifies slow nodes
dynamically and creates backup tasks so that MapReduce jobs
will have a better performance in a heterogeneous environment.
Tian et al. (2009) considered job heterogeneity and proposed a
triple-queue scheduler to keep the CPU and I/O bound applications
isolated to improve the overall cluster performance. However, all of
these works are focused on Hadoop-MapReduce performance mod-
elling and scheduling and cannot be applied to an in-memory data
processing framework like Spark.

As a platform like Spark has many configuration parame-
ters, it is hard to set the appropriate resource requirement
for a job. Wang et al. (2016) tried to fine-tune Spark config-
uration parameters to improve the overall system performance.
Gounaris et al. (2017) investigated the problem of resource wastage
that happens when a Spark application consumes all the nodes
in a cluster. Gibilisco et al. (2016) built multiple polynomial re-
gression models on the application profile data and selects the
best model to predict application execution time with unknown
input data or cluster configuration. Wang and Khan (2015) tried
to model application performance in DAG-based in-memory ana-
lytics platforms. Here, the execution times from multiple stages of
a job are collected and then used to predict the execution time.
[slam et al. (2017) focused on fine-grained resource allocation for
Spark jobs with deadline guarantee. However, these works can only
be applied to predict job-specific resource demands under homo-
geneous cluster environments.

There are a very few cluster schedulers (Soualhia et al., 2017)
that support Spark jobs focusing on performance improvement and
cost saving. Quasar (Delimitrou and Kozyrakis, 2014) is a cluster
management system that minimises resource utilisation of a clus-
ter while meeting user-provided application performance goals. It
uses efficient classification techniques to find the impacts of re-
sources on an application’s performance. Then it uses this informa-
tion for resource allocation and scheduling. It also dynamically ad-
justs resources for each application by monitoring resource usage.
Morpheus (Jyothi et al.,, 2016) estimates job performance from his-
torical data using performance graphs. Then it performs a packed
placement of containers where it places a job that results in the
minimal cluster resource usage cost. Moreover, Morpheus dynam-
ically re-provisions failed jobs to improve overall cluster perfor-
mance. Justice (Dimopoulos et al., 2017) is a fair share resource
allocator that uses deadline information of each job and historical
job execution logs in an admission control. It automatically adapts
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Table 1
Related Work.
Features Related Work Our Work
Quasar Justice OptEx
DRF (Ghodsi et al., (Delimitrou and Morpheus (Dimopoulos et al., (Sidhanta et al.,
2011) Kozyrakis, 2014) (Jyothi et al., 2016) 2017) 2016)
Frameworks X X X X X v
VM types X x X v
Job types v v v N N v
Cost-efficient X X X Vv v v
Performance v Vv N N N J
Self-adaptive  x J Vv N X v
Deadline X V N N N N

to workload changes and provides sufficient resources to each job
so that it meets deadlines just in time. OptEx (Sidhanta et al., 2016)
models the performance of Spark jobs from application profiles.
Then the performance model is used to schedule a cost-efficient
cluster by deploying each job as a service in the minimal set of
nodes required to satisfy its deadline.

The problems with most of the cluster schedulers are that they
do not consider executor-level job placement. All of them only
select the total number of resources or nodes needed for each
job while making any scheduling decision. However, our sched-
uler takes advantage of VM heterogeneity (different types of VM
instances) and uses smaller VMs for executor placement to min-
imise the overall resource usage cost of the whole cluster. Besides,
most of the cluster schedulers use the round-robin placement of
executors in the VMs while we consolidate the executors to use
less number of VMs. Therefore, it minimises inter-node communi-
cations for network-bound jobs thus improves the performance. A
comparison of our approach with the existing works is illustrated
in Table 1. It can be observed that our proposed solution consid-
ers multiple VM types in the scheduling algorithm. Moreover, we
also provide a scheduling framework to incorporate new schedul-
ing policies.

Currently, commercial cloud service providers such as AWS and
Windows Azure provide clusters and big data analytics services on
the Cloud. For example, Apache Spark on Amazon EMR’ and Azure
HDInsight®. Besides job scheduling, there are many other ways to
reduce costs in a commercial cloud computing platform. For ex-
ample, EC2 spot instances and reserved instances have many fea-
tures®. Commercial cloud service providers optimise instance usage
costs from their side by turning off idle instances. Our proposed
approach complements these solutions by tight packing of execu-
tors in fewer instances so that those instances can be turned off.
Hence, even if all the nodes are Spot instances, our approach is
still cost-efficient as we use minimal number of instances as com-
pared to the default Spark scheduler. While the commercial cloud
service providers work on the VM instance level, our approach
works on the executor level scheduling which is more fine-grained.
Therefore, for the most cost-benefit, job scheduling from user-side
also plays a vital role and while used in conjunction with com-
mercial cloud providers’ instance features, significant performance
improvement and cost reduction can be achieved. Lastly, our ap-
proach can also be used for a local cluster which is deployed with
on-premise physical resources.

4. Cost-efficient job scheduling

In this section, we explain the motivations of this work, the
problem formulation, the proposed job scheduler and the execu-

7 https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark.html.
8 https://azure.microsoft.com/en-au/services/hdinsight/.
9 https://aws.amazon.com/emr/features/.

Job Submission Frequency

123456 7 8 9101112131415161718192021222324
Time of the day (hours)

Fig. 1. Job submission frequencies in a single day (Facebook Hadoop Workload
Trace-2009).

tor placement algorithms and the complexity of the proposed al-
gorithms.

4.1. Motivation

The utilisation of resources in a big data cluster varies at dif-
ferent times of the day. For example, Fig. 1 depicts the job sub-
mission frequencies at different hours in a particular day from a
Facebook Hadoop workload trace'?. There are several hours in a
day when the job submission rate is lower than usual. Therefore,
if a big data processing cluster is deployed in the public cloud, it
would be costly to keep all the VMs turned on as the cluster might
not be fully utilised. However, the bill of using a VM is charged
as pay-per-use basis and most of the cloud providers per-second
billing period'!. Hence, if a VM is not used to schedule any jobs, it
can be turned off to reduce the monetary cost of the cluster. The
turned off VMs can be turned on again in future depending on the
overall resource demands in the cluster.

Cloud service providers offer different types of VMs which have
different pricing model. In general a small VM with lower resource
capacity is cheaper than a large VM with high resource capacity'2.
Therefore, if a cluster is deployed with different types of VM in-
stances, smaller VMs can be used in the low-load period of the
cluster to save cost whereas the bigger VMs can be utilised only in
the high-load period.

10 https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.

1 https://aws.amazon.com/blogs/aws/new- per-second-billing-for-ec2-instances
-and-ebs-volumes.

12 https://aws.amazon.com/ec2/pricing/on-demand/.
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Size Cost ($)

VM-1
Executors

Job 1 VM-2

VM-3

Job 2

VM-4

Fig. 2. An example cluster with different types of Jobs and VMs.

Most of the cluster schedulers place the executors from each
job in a distributed (round-robin) fashion in the VMs which has
the following problems:

e VMs are under-utilised, and resources are wasted in all the
VMs. This problem leads to a higher cost of using the whole
cluster as most of the VMs are turned on at all times.

In the cloud, different types of VM instances are available to
use as the worker nodes and using only a single type of VM
to compose a cluster might not be cost-effective. For example,
a cluster has only one type of VM (16 CPU core, 64GB mem-
ory). If at a light-load hour only a single job is submitted (2
CPU core, 2GB memory), even using one VM would be costly.
Using only small VM instances to compose a cluster would also
fail as executors from different Spark jobs might have different
size (resource requirement), so executors with high resource re-
quirement will not fit in smaller VMs.

For network-bound jobs, performance is reduced due to in-
creased network transfers among the executors due to the dis-
tributed placement of executors in different VMs.

The consolidated executor placement option of Spark can not
save cost as it does not consider the prices of different workers
(VMs), and may choose the biggest VM to consolidate executors.
Fig. 2 shows an example scheduling scenario where two jobs (with
different resource demand) are submitted to a cluster composed of
four VMs (with different resource capacity). For simplicity, let us
assume that the executors from all the jobs require only one type
of resource (e.g., CPU cores). The total number of slots in each VM
represents its resource capacity. Similarly, the width of each ex-
ecutor of a job represents its resource demand. Therefore, in our
example, each executor from job-1 requires 1 CPU core, and each

VM-1

<
s
=
[
|

VM-2 VM-2

VM-3

executor from job-2 requires 2 CPU cores. VM-1, VM-2, VM-3, and
VM-4 have a resource capacity of 2, 4, 6 and 8 CPU cores, respec-
tively. In addition, the cost of using each VM is equivalent to its
size, hence VM-1 is the cheapest VM whereas VM-4 is the costli-
est VM. Fig. 3a-3c depicts some of the possible executor placement
strategies. Fig. 3a shows a distributed executor placement strat-
egy (round-robin) which is used by most of the scheduling poli-
cies. In this placement, all the VMs are used but under-utilised.
Therefore, this placement will lead to the highest VM usage cost.
An alternative strategy which can be used in Spark to consolidate
executors can be seen in Fig. 3b. However, as the cluster manager
is unaware of the VM instance pricing or resource capacity, if it
chooses to place job-1 in VM-4, job-2 will also be placed in VM-4
to consolidate executors from both jobs in fewer VMs. Even though
Spark’s executor consolidation strategy provides a better VM usage
cost than the round-robin strategy, it can be further improved as
shown in Fig. 3c. Here, when job-1 first arrives it is placed in the
cheapest VM (VM-1) where the executors of the current job fits
properly. Then, job-2 is placed into the 2nd cheapest VM (VM-2),
as VM-1 is already used. This strategy provides the cheapest VM
cost usage even though executors are consolidated in more than
one VM.

4.2. Problem formulation

In an Apache Spark cluster, the resource requirements of the ex-
ecutors from the job are same. In addition, each worker node (VM)
has a set of available resources (e.g., CPU cores, memory) which
can be used to place executors from any job if the resource re-
quirements are met. Therefore, for each submitted job in the clus-
ter, the main problem is to find the placement of all its executors
to one or more available VMs. Besides, resource capacity in each
VM must not be exceeded while placing one or more executors
in that VM during the scheduling process. As the compact assign-
ment of executors leads to cost reduction due to fewer VM us-
ages, we model the scheduling problem as a variant of the bin-
packing problem. Table 2 shows the notations we use to formulate
the problem.

We consider the resource requirement of an executor in two
dimensions — CPU cores and memory. Therefore, each executor of
a job can be treated as an item with multi-dimensional volumes
that needs to be placed to a particular VM (bin) in the scheduling
process. Suppose, we are given a job with E executors where each
executor has CPU and memory requirements of 77 and /"™, re-
spectively (i € £). There are K types of VM available each with a
two-dimensional resource capacity (CPU, Mem) and incurs a fixed
cost Py, if used. The problem is to select VMs and place all the ex-
ecutors into these VMs such that the total cost is minimised and
the resource constraints are met.

% "

VM-2

VM-3 VM-3

i

VM-4

T
T

21 la) P O P

VM-4 VM-4

(a) Distributed executor  (b)

placement

Packed
placement in 1 VM

executor  (c¢) Packed executor

placement in 2 VMs

Fig. 3. Different Executor Placement Strategies.
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Table 2
Definition of Symbols.
Symbol  Definition
job The current job to be scheduled
E Total executors required for job
& The index set of all the executors of job, & ={1,2,3,... E}
v The index set of all the VM types, ¥ =1,2,..., K
my An upper-bound on the number of type k VMs
Sk The index set for each type k VM; 8, = {1,2,..., m}, ke W
Py Price of using a VM of type k
wﬂ(’“ Available CPU in the jth VM of type k, j € 8, k € W
a)']?,’fm Available Memory in the jth VM of type k, j € §;, k € W
TP CPU demand of any executor of job
gmem Memory demand of any executor of job
RAj Resource Availability metric of the jth VM of type k
RD;j,p Resource Demand metric for job

The optimisation problem is:

Minimise: Cost = Y " Pe[ > " yj (1)
kew jeby

ZZXU’(21 VIGE (2)
keW jedy
D Xijpx TP < Wi * Y VkeW,jedy (3)
iek

Z(Xijk*‘[mem) =iy Vke W, jedy

ie&

Xijis Yik € {0, 1}, Vie& keW,jedy (4)

Cost Minimisation: As shown in Eq. 1, our objective is to min-
imise the cost of using the whole cluster while scheduling any
job. The total cost is modelled as the aggregated cost of using all
the VMs. The binary decision variable yj, is used which controls
whether VM j of type k is used or not.

~_J1 if the jth VM of type k is used:;
Yk =10 otherwise.

Executor Placement Constraint: An executor can be placed only in
one of the VMs and this placement constraint is denoted in Eq. 2.
The binary decision variable x;; is used which controls whether
executor i is placed on VM j of type k.

X — 1 if executor i is placed in jth VM of type k;
k=10 otherwise.

Resource Capacity Constraints: The total resource demands of
all the executors placed in a VM should not exceed the total re-
source capacity of that VM. The resource constraints for CPU cores
and memory are shown in Eq. 3 and 4, respectively.

Bin packing is a combinatorial optimisation problem and has
proved to be NP-Hard (Coffman Jr. et al., 2013). The above op-
timisation problem is an Integer Linear Programming (ILP) for-
mulation of the multi-dimensional bin packing problem. When
the scheduler has to schedule a job, the ILP model can be con-
structed by using the current job’s resource demand and clus-
ter resource availability. Then, it can be solved by exact meth-
ods such as Simplex (Nelder and Mead, 1965), Branch and Bound
(Ross and Soland, 1975) to find the most cost-effective executor
placement for that job. However, constructing the ILP dynamically
before scheduling each job can be time-consuming. Especially, if
the problem size goes bigger (large cluster, or jobs with many ex-
ecutors), the ILP might not be feasible as it requires exponential
time to solve. In this case, efficient heuristic methods can be used
for faster executor placement.

4.3. Job scheduler

The proposed job scheduler exhibits the following characteris-
tics:

o The scheduler is online, that means it has no prior knowledge
of job arrival and dynamically schedules jobs upon arrival.

o The scheduler prioritises jobs based on their deadline.

e The scheduler tries to minimise the cost of VM usage while
placing the executors of a job.

Before discussing the scheduling algorithm, we introduce the
important concepts used to design the scheduler.

Resource Unification Thresholds (RUT): As we have two types
of resources (e.g., CPU and memory), the resource capacity of a VM
and resource demand of a job cannot be represented with only one
type of resource. Therefore, to holistically unify multiple types of
resources, we introduce RUT and use it as a system parameter. Each
of the thresholds acts as a weight for a single resource type, and
the summation of these threshold values is 1 (Eq. 5). In our case,
« is the threshold associated with CPU and 8 is the threshold as-
sociated with memory. Note that, this is a generalised unification
which can be extended to multiple resource types depending on
the system needs. A detailed discussion on how to assign Resource
Unification Threshold (RUT) values is provided in Section 6.6.

Resource Availability (RA;): It is a metric that represents the
resource availability of a VM in the unified form. Eq. 6 and
Eq. 7 shows the formula to compute the total amount of CPU and
memory in the cluster, respectively. We use the formula shown
in Eq. 8 to calculate RAj, of a VM. Here, the currently available
amount from each resource type is converted to the percentage
of resource w.r.t the total cluster resource (of the same type) and
then multiplied to the corresponding RUT. Then, the total resource
capacity is found by summing these values.

a+pB =1 (5)
CPUrotar = Z Z a)]clzzu (6)
keW jedy
MEM;orq = Z Z wﬂem (7)
keW jedy
w P mem

Jjk Jjk

RO = Pl ™ MM * (®)
cpu ¢ mem

RDjos = (CPUM O M ™ P ) “E )

Resource Demand (RD;,p): It is a metric that represents the re-
source demand of a job in the unified form. We first find the re-
source demand of one executor, then multiply it to the total ex-
ecutors to find the RDj,;, as shown in Eq. 9.

JobBuffer, JobQueue and DeadlineJobQueue: We use a Job-
Buffer to hold all the incoming jobs that are submitted to the
scheduler. Moreover, two priority queues: JobQueue and Deadline-
JobQueue are used to keep regular and deadline-constrained jobs,
respectively. In JobQueue, jobs are kept sorted in descending order
of their resource demand (RDj,,). Jobs are kept sorted based on
the Earliest Deadline First (EDF) strategy in the DeadlineJobQueue.
The scheduler can transfer jobs from the JobBuffer to the priority
queues at any time.

Algorithm 1 shows the policy used by the proposed scheduler.
When the scheduler starts, at first it fetches deadline-constrained
jobs from the JobBuffer (line 3). As DeadlineJobQuetue is kept sorted

based on EDF, if a newly added deadline-constrained job has a
tighter deadline than the already awaiting jobs, it will be extracted
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Algorithm 1: Algorithm for the Job Scheduler.

Algorithm 2: ILP-based Executor Placement Algorithm.

Input: JobBuf fer, JobQueue, DeadlineJobQueue
1 while SchedulerTerminationSignal # true do

2 while true do

3 FetchDeadlinejJobs(JobBuf fer)

4 if DeadlineJobQueue = ¢ then

5 break

6 end

7 Job = ExtractJob(DeadlineJobQueue)
8 if PlaceExecutor(Job) is successful then
9 Launchjob(Job, PlacementList )

10 end

1 end

12 while true do

13 FetchRegularjobs (JobBuf fer)

14 if DeadlineJobQueue # ¢ then

15 break

16 end

17 Job = ExtractJob(JobQueue)

18 if PlaceExecutor(Job) is successful then
19 Launchjob(Job, PlacementList )

20 end

21 end

22 end

from the queue to be scheduled before any other jobs (line 7).
If the PlaceExecutor() procedure returns success in finding VMs to
place the executors, the job will be launched in the cluster (lines
8-9). The scheduler is not preemptive, so when a job is sched-
uled (whether it is a regular or a deadline-constrained job), it
will not be killed or suspended. Therefore, while any deadline-
constrained jobs are waiting and the cluster does not have suf-
ficient resources to execute them (PlaceExecutor() procedure re-
turns failure), the scheduler does not fetch any regular jobs un-
til all the deadline-constrained jobs are scheduled. If there are no
deadline-constrained jobs to schedule (line 4), only then the sched-
uler fetches regular jobs (line 13). Otherwise, it keeps trying to
place executors for deadline-constrained jobs.

Before scheduling any regular jobs, the scheduler always checks
whether any new deadline-constrained job has arrived. If so, it
goes back to schedule those jobs (line 14-15). Otherwise, it starts
scheduling regular jobs (lines 17-19). In some cases, it might be
difficult to place a regular job with huge resource demand (as the
JobQueue is kept sorted in decreasing order of resource demand for
jobs). In these cases, the scheduler skips the current job and tries
to schedule the next job from the JobQueue.

4.4. Executor placement

We propose two algorithms for cost-effective executor place-
ments for any job in the cluster. The first algorithm con-
structs the Integer Linear Programming (ILP) model as shown in
Section 4.2 and tries to solve the ILP problem to find the most
cost-effective executor placement for the current job. The second
algorithm uses a greedy approach which is a modified version of
the Best Fit Decreasing (BFD) heuristic to solve bin packing prob-
lems. Both of these algorithms can be used as the PlaceExecutor()
procedure of Algorithm 1.

4.4.1. ILP-Based executor placement:

Algorithm 2 shows the ILP-based executor placement approach.
At first, the cluster status is updated to obtain the latest resource
availability of each VM. After this step, the optimisation target, ex-
ecutor placement constraints, and resource capacity constraints are

Input: Job, the current job to be scheduled

Output: PlacementList, a list of VMs where the executors of
Job will be placed

1 Procedure PlaceExecutor(Job)

2 PlacementList < ¢

3 Update Cluster Resource Availability

4 Generate Optimisation target (Eq. 1)

5 Generate Executor Placement Constraints (Eq. 2)

6 Generate Resource Capacity Constraints (Eq. 3,4)

7 Solve ILP Problem

8 if ILP is solved then

9 return PlacementList

10 end
1 return Failure
12 end

dynamically generated by using the current cluster resource avail-
ability and the resource demand for the executors of the current
job. Then the constructed ILP problem is solved (by an ILP solver).
If a feasible solution is found, the PlacementList is returned which
contains the chosen VMs where the executors can be created. Oth-
erwise, if the modelled problem is not solvable, a failure is re-
turned. Note that, when the constraints of resource availability are
generated before scheduling each job, the VMs which are already
used by other jobs will be set (yj =1) so that the cost of using
that machine will be taken into account in the optimisation tar-
get. Therefore, if there are any free resources available in the used
VMs, the ILP solver will automatically try to fit as many executors
as possible in those VMs before using any new VM to optimise
cost.

4.4.2. BFD Heuristic-based executor placement:
To find the VMs where a job’s executors can be placed, our pro-
posed scheduler also uses a greedy algorithm. Algorithm 3 shows

Algorithm 3: BFD Heuristic-based Executor Placement Algo-
rithm.

Input: Job, the current job to be scheduled

Output: PlacementList, a list of VMs where the executors of

Job will be placed

1 Procedure PlaceExecutor(Job)
2 PlacementList < ¢
3 Sort (VMList)
4
5

forall the VM ¢ VMList do
while Placement of an executor in VM satisfies the
constraints (Eq.3,4) do

6 Update Resource Availability in VM

7 PlacementList.add (VM)

8 if PlacementList .size = E then

9 return PlacementList

10 end

1 end

12 end

13 if Cluster has unused VM(s) then

14 Turn on the smallest VMpe, that satisfies the
constraints (Eq.3,4)

15 VMList < VMList UV Mpew

16 goto step 3

17 end

18 return Failure

19 end
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Fig. 4. The implementation of the prototype system on top of Apache Mesos.

the procedure PlaceExecutor() which can be used to find the execu-
tor placement of any job. At first, the VMList (a list of used VMs
in the cluster) is sorted based on an ascending order of Resource
Availability (RAj;) of the VMs (line 3). Then, it iterates all the VMs
(line 4) and checks whether the current VM’s resource availability
satisfies an executor’s resource demand (line 5). If so, it updates
the resource availability of that VM (line 6) and adds this VM to
a list called PlacementList (line 7). Instead of looking at the next
VM, the current VM is greedily used to place as many executors
as possible so that we have a tight packing of the executors and
use a fewer number of VMs in the cluster. If this procedure finds
placements for all the executors of a given job, it returns the Place-
mentList (lines 8-9). If the VMs in VMList are not sufficient to place
all the executors, and the cluster has unused VM(s) (line 13), the
smallest VM that satisfies the resource constraints will be turned
on (line 14) and added to the VMList (line 15). Then the placement
finding steps will be repeated (line 16). Otherwise, if the cluster
does not have sufficient resources to place all the executors of the
current job, a failure will be returned (line 18).

4.5. Complexity analysis

To calculate the worst-case time complexity of Algorithm 1,
we first assume that, p and r is the total number of deadline-
constrained and regular jobs, respectively that need to be sched-
uled. If the total number of VM in the cluster is m, the time
required to sort the VMList is mlog(m). If an exact algorithm is
used to solve the ILP model built in Algorithm 2, the worst-
case time complexity is O(2") where n is the maximum num-
ber of slots available for placing executors across all the VMs.
However, the worst-case time complexity of the BFD-based greedy
approach shown in Algorithm 3 is O(me), where e is the maxi-
mum number of possible executors for any job. Therefore, if ILP-
based executor placement is used, the worst-case time complex-
ity of Algorithm 1 is, O((2"mlog(m))(p +r)). Thus, it might re-
quire exponential time to complete the scheduling process for ILP
based approach. In contrast, for the BFD-based executor place-
ment, Algorithm 1 has a polynomial worst-case time complexity
of O((m2log(m))(p+T1)).

5. System design and implementation

We design a scheduler on top of the Mesos cluster manager in-
stead of modifying the native Spark scheduler to implement our
scheduling algorithms. The benefit of keeping a separate mod-
ule for the scheduler without extending the existing framework is

two-fold. First, it can be extended to work with any other data pro-
cessing frameworks supported by Mesos. Second, it can be used
as a generic scheduling framework so that new policies can be
incorporated into the scheduler. The prototype scheduler can be
treated as an external scheduler in the system architecture as de-
picted in Fig. 4. The implementation of the prototype system is
open-source'? so that it can be used or extended by the research
community.

The external scheduler can be installed in any VM, but in
our case, we plugged it in the Mesos master node and ran it as
a separate application alongside with the Mesos master process.
Users submit jobs to the external scheduler and depending on the
scheduling policy, the scheduler provisions resources in the cluster
and launch any job with the help of Mesos master. In the archi-
tectural diagram shown in Fig. 4, dashed lines represent job sub-
mission or executor creation flow where solid lines represent the
control flows of the scheduler. As discussed previously in the al-
gorithm section, there are three data structures to keep the jobs
in the scheduler: Job buffer (to hold the incoming jobs), deadline
queue (to hold deadline-constrained jobs), and job queue (to hold
regular jobs). When the scheduler decides to schedule a job in the
cluster, at first, it uses the Mesos HTTP APIs and sends JSON for-
matted request messages to Mesos master HTTP API endpoints to
dynamically reserve resources. After getting the acknowledgment
of successful resource reservation by the Mesos master, it launches
that job through the Mesos cluster manager by using the Spark-
Launcher APIs. At this stage, the driver program of the launched
Spark job takes control and creates executor(s) in one or more VMs
by using the reserved resources only. At any point of the schedul-
ing process, if a VM is unused and no jobs are currently reserved
on it for any future jobs to be scheduled, it is turned off by the
scheduler to save resource usage cost. Additionally, the scheduler
can also turn on one or more VMs if the currently available re-
sources in the active VMs is not sufficient to schedule new jobs.

We have implemented this pluggable external scheduling
framework in Java. We have used SCPSolver'® API with LPSolve
Solver Pack!® library to solve the proposed ILP-based execu-
tor placement model in the scheduler. To implement the auto-
matic VM turn on/off mechanism from the scheduling process,
we have developed a module by using OpenStack Boto3'6 library.

13 https://github.com/tawfiqul-islam/SLA-Scheduler.
M http://scpsolver.org/.

15 http://lpsolve.sourceforge.net/5.5/.

16 https://boto3.readthedocs.io/en/latest/.
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Table 3

Experimental cluster details.
Instance Type  CPU Cores  Memory (GB)  Pricing (AWS)  Quantity
m1.large 4 16 $0.24/h 6
m1.xlarge 8 32 $0.48/h 5
m2.xlarge 12 48 $0.72/h 3

However, this module can be easily extended to support any other
cloud service providers by using their APIs. The scheduler also
uses Mesos scheduler HTTP API and operator HTTP API to con-
trol the resource provisioning in the cluster. The Mesos master ac-
cepts messages in JSON format while communicating through the
HTTP APIs. Therefore, java-json'” API was used to construct/parse
JSON formatted messages. Furthermore, SparkLauncher'® API was
used to automate Spark job submission from the scheduler. The
scheduler accepts job submission requests from the users through
a job processor interface that listens on a configurable TCP port.
Job submission requests to the scheduler should be constructed
in JSON format with some simple fields. In a job submission re-
quest, the users have to specify the details of a job having the
following fields: job-id, input-path, output-path, application-path,
application-main-class, resource requirement (CPU cores, memory
in GB and total-executors) and an optional application argument
(e.g., iteration).

6. Performance evaluation

In this section, we first provide the experimental setup de-
tails which includes the cluster resource configurations, benchmark
applications, and baseline schedulers. Then we show the evalua-
tions of the proposed algorithms in terms of cost, job performance,
deadline violations, and scheduling overhead. Moreover, we also
provide a sensitivity analysis of the system parameters and discuss
the applicability of the proposed algorithms.

6.1. Experimental setup

6.1.1. Cluster configuration:

We have used Nectar Cloud', a national cloud computing in-
frastructure for research in Australia to deploy a Mesos cluster. It
is a cluster consisting of three different types of VM instances. The
detailed VM configurations and quantity used from each type with
their similar pricing in Amazon AWS (Sydney, Australia) is shown
in Table 3. In summary, our experimental cluster has 14 VMs with
a total CPU (cores) of 100 and memory of 400GB. In each VM, we
have installed Apache Mesos (version 1.4.0) and Apache Spark (ver-
sion 2.3.1). One ml.large type VM instance was used as the Mesos
master while all the remaining VMs were used as Mesos Agents.
The external scheduler was plugged into the Mesos master node.
Spark supports different input sources as mentioned before, and
the users can select which data sources they want to use. How-
ever, HDFS is the most prominent distributed storage service as it
is highly scalable, and provides fault-tolerance through replication.
Generally, HDFS keeps replica of a storage block in 3 datanodes.
Hence, if any of these datanodes (VMs) are turned-off to save cost,
HDFS will automatically create replicas on the available VMs. How-
ever, a storage block might be lost if all the 3 datanodes where its
replicas reside are turned off. Therefore, in this special case, the
VM turn on/off module should be modified to allow HDFS to cre-
ate replicas before shutting down all the datanodes. For the sim-

17 http://www.oracle.com/technetwork/articles/java/json-1973242.html.

18 https://spark.apache.org/docs/latest/api/java/index.html?org/apache/spark/
launcher/package-summary.html.

19 https://nectar.org.au/research-cloud,.

plicity of the current system implementation to test our proposed
approach, we have mounted a 1TB volume in the master node and
created a Network File System (NFS) to share this storage space with
all the Mesos agents. As the NFS server is running on the mas-
ter node which will not be turned off, the current implementation
does not need to consider about data loss due to VM turn off. In
addition, the performance overhead due to fetching the input data
from the NFS server is negligible as it is only done once at the be-
ginning of the jobs execution, and all the intermediate results are
stored in each VMs local storage which is managed by Spark. For
providing fault-tolerance, we plan to extend our implementation to
work with HDFS in the future. We have used Bash scripting to au-
tomate the cluster setup process so that a large-scale deployment
can also be conducted through these scripts. Furthermore, an ex-
isting cluster can also be scaled up if more VMs are provisioned
from the Cloud service provider.

6.1.2. Benchmarking applications:

We have used BigDataBench (Wang et al., 2014), a big data
benchmarking suite to evaluate the performance of our proposed
algorithms. We have chosen three different types of applica-
tions from BigDataBench, namely WordCount (compute-intensive),
Sort (memory-intensive) and PageRank (network/shuffle-intensive).
Each application was used to generate a workload where each job
in a workload has varying input size ranging from 1GB to 20GB
(for WordCount and Sort) or iterations ranging from 5 to 15 (for
PageRank). To generate a heterogeneous workload, we have ran-
domly mixed the previously mentioned different types of appli-
cations. We have extracted the job arrival times from two differ-
ent hours of a particular day from the Facebook Hadoop workload
trace2’. From a high-load hour, 100 jobs are used, and from a light-
load hour, 50 jobs are used. The arrival rate of jobs in the high-load
hour is higher than the light-load hour. Therefore, in the high-load
hour, most of the resources are overwhelmed with jobs while in
the light-load hour, the cluster is slightly under-utilised. The job
profiles are collected by first submitting each job to run indepen-
dently (without any interference from other jobs) in the cluster.
Then the job completion time is averaged from multiple runs (5 for
each job). While generating a workload, each job’s average comple-
tion time is used as a hard deadline.

6.1.3. Baseline schedulers:

The problem with most of the cluster schedulers for Spark jobs
is that they do not consider executor-level job placement. Most
of these approaches only select the total number of resources or
nodes (VMs) needed for each job while making any scheduling de-
cisions. However, our approach works on a fine-grained level by in-
corporating executor placements in job scheduling. Therefore, the
existing works can not be directly compared with our proposed ap-
proach. The following schedulers are compared with our proposed
scheduling algorithms:

e FIFO: The default FIFO scheduler of Apache Spark deployed
on top of Apache Mesos. It schedules jobs on a first come
first serve basis. We have used the consolidation option of the
scheduler so that it tries to pack executors in fewer VMs in-
stead of distributing executors on a round-robin fashion. As
most of the existing scheduling algorithms use this default
approach for executor placement, and it is also the common
choice of a user with Spark jobs, we chose this scheduler to
be one of the baselines.

Morpheus (Jyothi et al., 2016): We have adapted the executor
placement policy of Morpheus. In this policy, lowcost packing is
used for executor placement. Depending on the current cluster

20 https://github.com/SWIMProjectUCB/SWIM/wiki/Workloads-repository.
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Fig. 5. Cost comparison between the scheduling algorithms under different workload types.

load, this policy finds the scarce resource demand (e.g., mem-
ory or CPU cores) of each job (Eq. 10). Then jobs are sorted
in increasing order of their scarce resource demands. There-
fore, resources in the cluster are well-balanced throughout the
scheduling process so that more jobs can be executed in the
long run. As Morpheus also uses a packing based approach for
executor placement, we chose it as a baseline.

Cjob _ MaX<CPUIoad + CPUjob MEMload + MEMjob)

CPUtotal ' MEMtotal
Note that, Spark dynamic resource allocation feature was
turned on for both the baseline and the proposed scheduling al-
gorithms.

(10)

6.2. Evaluation of cost efficiency

In this evaluation, we show the applicability of our proposed
scheduling algorithms to different types of applications while re-
ducing the cost of using a big data cluster. To calculate the total
cost incurred by a scheduler, we save the status of a VM (whether
it was turned on or off) in each second. Lastly, all the per-second
costs (cost;, cost incurred in ith second, i=1,2,3,...T ; T=total
makespan of the scheduler) incurred by a scheduler is calculated
by using Eq. 1. Then all these per-second costs are summed for the
whole makespan of the scheduling process as shown in Eqn. 11 to
find the Totalcst.

Totalest = Yy _ Cost; (11)
ieT

Fig. 5 depicts cost comparison between the scheduling algo-
rithms under different workload types. The bar charts in Fig. 5a
and Fig. 5b show the total cost incurred by different scheduling
algorithms in the light-load and high-load hour, respectively. As
our proposed scheduling algorithms use bin packing to consolidate
the executors to a minimal set of VMs, the cost is reduced signif-
icantly as compared to other schedulers. In general, the ILP-based
scheduling algorithms incur slightly lower cost than the BFD-based
scheduling algorithm in all the scenarios as it can find the cost-
effective executor placement for a job. Moreover, Morpheus per-
forms slightly better than FIFO to lower the cost, because it priori-
tises jobs in such a way that cluster resources are well-balanced to
execute more jobs in the overall scheduling process.

As shown in Fig. 5a, both BFD-based and ILP-based schedul-
ing algorithms exhibit significant cost reductions during the light-
load hour. As compared to baseline scheduling algorithms, BFD and
ILP reduce the cluster usage cost by at least 30% and 34%, respec-
tively for WordCount and Sort applications. For PageRank applica-
tion, BFD and ILP reduce the resource usage cost by at least 12% as
compared to FIFO. Moreover, BFD and ILP reduce the resource us-
age cost by at least 5% as compared to Morpheus. As our proposed
scheduling algorithms try to place the executors from the same job
in fewer nodes (VMs), most of the shuffle operations happen intra-
node thus improving job performance which results in overall cost
reduction for network-bound applications. In the case of the mixed
workload, BFD and ILP reduce the resource usage cost by 21% and
25%, respectively as compared to FIFO. Furthermore, BFD and ILP
reduce the resource usage cost by 17% and 22%, respectively as
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Fig. 6. Comparison between the scheduling algorithms regarding average job completion times under different workload types.

compared to Morpheus. In the case of the high-load hour as shown
in Fig. 5b, the cost reduction is smaller than the light-load period
as the cluster is over-utilised. In this scenario, BFD and ILP show
about 5-20% of cost reduction in different workloads.

Fig. 5 c and Fig. 5d represents the cumulative VM cost by dif-
ferent scheduling algorithms during the whole scheduling process
for the mixed workload in the light load and high load hours,
respectively. It can be observed that in the high-load hour, the
cumulative cost graph of all the scheduling algorithms look sim-
ilar as it is not possible to reduce the cost significantly of an
over-utilised cluster. However, in the light-load hour, the cost sav-
ings can be observed to increase over time for both BFD and
ILP.

6.3. Evaluation of job performance

Fig. 6 a and 6 b report the average job completion times for
different scheduling algorithms in light-load and high-load hours,
respectively. It can be observed that for WordCount and Sort ap-
plications, sometimes FIFO and Morpheus perform slightly better
than our proposed algorithms. As our algorithms use fewer VMs to
place all the executors, these VMs are stressed as both CPU cores,
and memory resources are used at full capacity. However, it is neg-
ligible as compared to the total resource cost usage by the baseline
schedulers. On the contrary, network-bound applications such as
PageRank reduces the performance of both FIFO and Morpheus due
to excessive network communications during the shuffle periods.
Therefore, both BFD and ILP outperform the baseline algorithms
in case of PageRank and mixed applications. As all the algorithms
perform similarly for CPU/memory intensive applications, perfor-
mance benefits in mixed workload mainly depend on the propor-
tion of network-intensive applications. In the high-load hour, the
cluster is overloaded with jobs so it might not be possible to con-
solidate the executors from the same job in fewer VMs. Therefore,
the performance benefits can be observed to be higher in the light-
load hour than the high-load hour for the mixed and PageRank
applications. In the light-load hour, our proposed algorithms im-
prove job completion time for at least 14% and 5% for PageRank
and mixed applications, respectively. In the high-load hour, our al-
gorithms improve job completion time for at least 3% and 5% for
PageRank and mixed applications, respectively.

6.4. Evaluation of deadline violation

In this evaluation, we compare the percentage of deadline vio-
lations of different scheduling algorithms. This performance metric
(6% is found by using Eq. 12 where 6, and 65 is the number of
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Fig. 7. Comparison of deadline violations by different scheduling algorithms.

missed and satisfied deadlines by a scheduler, respectively.
04 = “ % 100% (12)

Both FIFO and Morpheus do not consider deadline-constrained
jobs. In FIFO, a high priority job with the earliest deadline has
to wait in the scheduling queue if it is submitted after one or
more non-priority jobs. It will be scheduled only after executing
all the previously arrived jobs. Morpheus determines the job prior-
ity by itself, where a job which results in the most balanced dis-
tribution of resources in the cluster (if that job is scheduled) will
have the highest priority. However, in reality, top priority deadline-
constrained jobs might not provide balanced resource distributions
upon placement. Therefore, other non-priority jobs will be exe-
cuted before these jobs. Both BFD and ILP use a simple Earliest
Deadline First (EDF) strategy. Thus, all the jobs are kept sorted
according to their deadlines, and the job with the earliest dead-
line is scheduled first. Fig. 7 depicts the deadline violation per-
centage of different schedulers. For this experiment, we have ex-
ecuted a heterogeneous mix (different application types) of prior-
ity (strict deadline) and non-priority jobs to measure the deadline
violations by each scheduler. For FIFO and Morpheus, deadline vi-
olation occurred for 41% and 35% of jobs, respectively. However,
both BFD and ILP were able to meet the deadlines for most of
the jobs and have deadline violation percentage of only 8% and
12%, respectively. ILP has slightly higher deadline violation than the
BFD because sometimes it takes a significant time to find the most
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Table 4
Comparison of average scheduling delays (unit: seconds) of different scheduling algorithms.
Schedulers Light-load High-load
WC Sort PR Mixed WC Sort PR Mixed

FIFO 0.002 0.004 0.002 0.004 0.003 0.003 0.003 0.004
Morpheus 0.004 0.004 0.003 0.005 0.005 0.004 0.003 0.004
BFD-based  0.006 0.005 0.005 0.004 0.005 0.004 0.004 0.005
ILP-based 3.31 3 0.75 1.92 0.73 2.63 0.65 13
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Fig. 8. Effects of Resource Unification Threshold (RUT) values on average job completion time and cost.

cost-effective placement by this approach which causes deadline
misses.

6.5. Evaluation of scheduling overhead

In this evaluation, we compare the scheduling delays caused by
different scheduling algorithms. It is found by measuring the time
it takes to find the executor placements of a job. Table 4 records
the average scheduling delays by different scheduling algorithms
under different workload types in both high-load and light-load
hours. It can be observed that the native FIFO is the fastest among
all the schedulers with scheduling delays averaging only from 2ms
to 4ms. Both Morpheus and BFD are also fast as their average
scheduling delay varies in the range from 3ms to 5ms and 4ms
to 6ms, respectively. In contrast, as the ILP tries to find the most
cost-effective executor placement for each job, in some cases it
might require exponential time to complete. The results also in-
dicate the same as the average scheduling delay varied from 0.65
seconds to up to 3.31 seconds for ILP. Although most of the jobs
had a scheduling delay within 1 second, for the ILP, the average
is higher as for some jobs it took about 3-4 minutes. The higher
scheduling delay of ILP-based scheduling algorithm might cause
some deadline misses. It can also be observed in Fig. 7 that, ILP-
based scheduling algorithm has a slightly higher deadline miss per-
centage than the BFD-based algorithm. However, this performance
degradation is negligible as compared to the baseline scheduling
algorithms. Furthermore, for regular jobs or periodic jobs (e.g.,
long-running data analytics) that do not have strict deadlines, us-
ing the ILP-based scheduling algorithm is preferred as it can pro-
vide better cost reduction in the long run.

6.6. Effects of resource unification thresholds (RUT)

RUT is a system parameter, and we have performed a sensitiv-
ity analysis to demonstrate the effects of it on both cluster usage
cost and job performance. In our experimental cluster, we have
two types of resources (e.g., CPU cores and memory). Resource uni-
fication thresholds (RUT) play a vital role in the scheduling pro-

cess by acting as a weight while combining these two types of
resources to determine the resource capacity of the VMs or the
resource demand of the jobs. We have associated o as the RUT
for CPU cores and S as the RUT for memory. The proper balance
between RUT values depends on both the VM instance types and
the workload types. Fig. 8 represents the effects of different RUT
values on both average job completion time (Fig. 8a) and resource
usage cost (Fig. 8b). This analysis was done by running both BFD
and ILP-based scheduling algorithms with the mixed workload. It
can be observed from the figure that, decreasing the o value and
increasing the § value tends to increase both average job comple-
tion time and resource usage cost in our experimental cluster. As
using & = 0.8 and B = 0.2 gives us both lower cost and job com-
pletion time, we use these RUT values in our experiments.

RUT values can also be tuned to give more priority to specific
VMs or jobs. For example, if a cluster has more memory-bound
jobs, to prefer VMs which have more memory to fit these jobs
correctly, the B value can be increased, and « value can be de-
creased so that VMs which have high memory capacity/availability
are preferred in the scheduling process. Similarly, jobs can also be
prioritised based on their demand on a particular resource-type by
adjusting the corresponding RUT values.

6.7. Discussion

The proposed scheduling algorithms can be applied to opti-
mise the cost of using a cloud-deployed Apache Spark cluster.
Our performance evaluation results show that the BFD heuristic-
based approach performs very close to the ILP-based approach in
all the cases. However, the ILP-based approach might have signifi-
cant scheduling delays for a large cluster (many VMs). Therefore, in
this case, we recommended using the BFD-based scheduling algo-
rithm as it gives similar results with a small scheduling overhead
identical to the native FIFO. Another approach could be using both
algorithms and using a time-constraint in the ILP. If the ILP can be
solved within the time-constraint, the executor placements found
by this approach will be used. Otherwise, the solution from the
BFD-based approach will be used.
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The proposed approach can also be used with HDFS. As HDFS
generally creates replicas in 3 datanodes (VMs), if all these 3 VMs
are selected to be turned off in the scheduling process to save cost,
a storage block which was only saved in these 3 VMs will be lost.
To mitigate this issue, it is not required to modify the scheduling
algorithms. However, the VM turn on/off module should be mod-
ified for allowing HDFS to create replicas before shutting down a
VM (datanode).

7. Conclusions and future work

Scheduling is a challenging task in big data processing clusters
deployed on the cloud. It gets even harder in the presence of dif-
ferent types of VMs and job heterogeneity. Most of the existing
schedulers only target on improving job performance. In this pa-
per, we have used bin packing to formulate the scheduling problem
and proposed two dynamic scheduling algorithms that enhance job
performance and minimise resource usage cost. We have built a
prototype system on top of Apache Mesos which can be extended
to incorporate new scheduling policies. Therefore, this system can
be used as a scheduling framework. We have demonstrated the
outcomes of our extensive experiments on real datasets to prove
the applicability of the proposed algorithms under various work-
load types.

Moreover, we have compared our algorithms with the existing
baseline schedulers. The results suggest that our proposed schedul-
ing algorithms reduce resource usage cost up to 34% in a cloud-
deployed Apache Spark cluster. Furthermore, both network-bound
and mixed jobs gain performance benefits (up to 14%) from tighter
packing of executors in fewer VMs. We have also done the sensi-
tivity analysis of the system parameter and discussed the effects of
it on both cost and job performance. Lastly, we have discussed the
feasibility of the proposed approach.

In the future, we plan to extend the proposed scheduling al-
gorithms by incorporating some essential SLA requirements, such
as budget, and job inter-dependency. Furthermore, we would like
to combine the performance prediction/modelling of jobs with the
schedulers to dynamically determine the resource requirements of
jobs while satisfying SLA and performance constraints. Although
Spark jobs do not specify network as a resource constraint, when
co-locating multiple jobs in the same VM, network and 1/O usage
should also be considered. To achieve this, we want to extend our
work so that these constraints can be added to the optimisation
problem. As major cloud service providers such as AWS is offer-
ing Arm-based instances?! that consume less-power and inexpen-
sive, user-centric cost optimisation techniques should be benefited
if arm-based instances are used. Although arm-based instances are
inexpensive, x86-based instances still outperform arm-based in-
stances if compared regarding instance performance. Therefore, in
the future we plan to investigate the trade-offs between arm-based
and x86-based instances regarding cost and performance.
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