
Received: 28 June 2020 Revised: 5 October 2020 Accepted: 6 October 2020

DOI: 10.1002/spe.2917

R E S E A R C H A R T I C L E

BigDataSDNSim: A simulator for analyzing big data
applications in software-defined cloud data centers

Khaled Alwasel1,2 Rodrigo N. Calheiros3 Saurabh Garg4 Rajkumar
Buyya5 Mukaddim Pathan6 Dimitrios Georgakopoulos7 Rajiv Ranjan1

1School of Computing, Newcastle
University, Newcastle upon Tyne, UK
2College of Computing and Informatics,
Saudi Electronic University, Riyadh, Saudi
Arabia
3School of Computer, Data and
Mathematical Sciences, Western Sydney
University, Sydney, New South Wales,
Australia
4School of Computing and Information
Systems, University of Tasmania, Hobart,
Tasmania, Australia
5School of Computing and Information
Systems, The University of Melbourne,
Melbourne, Victoria, Australia
6Telstra Corporation Limited, Melbourne,
Victoria, Australia
7School of Software and Electrical
Engineering, Swinburne University of
Technology, Melbourne, Victoria,
Australia

Correspondence
Khaled Alwasel, School of Computing,
Newcastle University, Newcastle upon
Tyne, UK.
Email: kalwasel@gmail.com

Funding information
FloodPrep, Grant/Award Number:
NE/P017134/1; LANDSLIP, Grant/Award
Number: NE/P000681/1; PACE,
Grant/Award Number: EP/R033293/1

Abstract
The integration and crosscoordination of big data processing and
software-defined networking (SDN) are vital for improving the performance of
big data applications. Various approaches for combining big data and SDN have
been investigated by both industry and academia. However, empirical evalua-
tions of solutions that combine big data processing and SDN are extremely costly
and complicated. To address the problem of effective evaluation of solutions
that combine big data processing with SDN, we present a new, self-contained
simulation tool named BigDataSDNSim that enables the modeling and simula-
tion of the big data management system YARN, its related programming models
MapReduce, and SDN-enabled networks in a cloud computing environment.
BigDataSDNSim supports cost-effective and easy to conduct experimentation
in a controllable, repeatable, and configurable manner. The article illustrates
the simulation accuracy and correctness of BigDataSDNSim by comparing the
behavior and results of a real environment that combines big data process-
ing and SDN with an equivalent simulated environment. Finally, the article
presents two uses cases of BigDataSDNSim, which exhibit its practicality and
features, illustrate the impact of data replication mechanisms of MapReduce in
Hadoop YARN, and show the superiority of SDN over traditional networks to
improve the performance of MapReduce applications.

K E Y W O R D S

big data, joint-optimization, MapReduce programming model, modeling and simulation,
performance optimization, software-defined networking

1 INTRODUCTION

As modern applications need to generate and consume massive amounts of data, traditional database systems strug-
gle to cope with such data demand.1 The main obstacle for these systems is the requirements of excessive time and
super-computing capacity. Big data analytics1 has emerged as the preferred option to effectively analyze large-scale
datasets at an astonishing speed. It harnesses the power of clustering commodity hardware to carry out data analysis
in a parallel manner. Big data has become the most prominent mechanism to delve into datasets and provide valuable

Softw: Pract Exper. 2021;51:893–920. wileyonlinelibrary.com/journal/spe © 2020 John Wiley & Sons, Ltd. 893

https://orcid.org/0000-0002-2530-1163
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0002-6610-1328
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspe.2917&domain=pdf&date_stamp=2020-10-27

894 ALWASEL et al.

insights, such as detection of emerging risks and threats, predicting behaviors and patterns, and providing business
opportunities.2

To bring big data analytics into existence, several frameworks have been developed and launched in cloud-based
environments, such as Hadoop MapReduce3 and Apache Storm.4 These frameworks facilitate the process of utilizing
parallel programming models and engines, along with meeting different aspects of big data requirements. For instance,
the MapReduce programming model can be used to analyze historical data in a few lines of code, while a stream processing
model is used to handle a never-ending data stream at a speed of milliseconds.5 Nevertheless, a big data application
can rely on multiple big data engines to handle different aspects of data analysis simultaneously; therefore, big data
management systems (BDMS) such as Apache Hadoop YARN6 have emerged to coordinate and schedule computing
resources among big data engines and applications cohosted on a shared big data cluster.

One critical issue of big data is that every application faces several performance challenges due to its unique con-
text and requirements of data flow and processing.5,7-9 In particular, every MapReduce application has its characteristics
and runs across tens of servers distributed in different data center racks; therefore, every application would most often
require unique scheduling mechanisms, subject to the given processing and communication requirements and patterns.10

MapReduce scheduling plays a vital role in achieving performance goals, reducing execution time, minimizing computing
costs, and ensuring proper resource utilization and management.11,12 Surprisingly, scheduling is not a new phenomenon;
it has been studied for decades in different contexts.13 Thousands of algorithms have been introduced where each one tack-
les a scheduling problem based on specific factors, constraints, and conditions (FCC).14,15 This also applies to MapReduce
applications, where slight changes in FCC values can lead to a new scheduling problem and require a novel solution.

A large volume of recently published studies proposed solutions concerning MapReduce scheduling for achieving
diverse performance goals.10,16 The limitations of these studies is that the evaluation of the approaches is most often
carried out in small-scale infrastructures because real environments can be impractical and difficult to use for reasons
related to cost, time, configuration complexity, and behavior instability. Besides, every MapReduce application is required
to be configured independently across computing and network layers, which makes the scheduling and optimization of
every application a daunting task to accomplish in testbeds. Finding a feasible solution for a scheduling problem usually
requires a massive search of all possible solutions, which involves tens of thousands, if not millions, of possibilities and
combinations. Such kind of MapReduce problems is determined to be NP-complete.8,17

The software-defined networking (SDN)18 paradigm aims to enable dynamic configuration of networks and to over-
come the limitations of traditional network infrastructure. The critical difference between traditional networks and SDN
is that the control layer of network devices is moved away to an SDN controller. Such a tactic makes networks more robust,
simplified, and flexible to changes as the network is controlled from a central point instead of a complex, distributed con-
trol mechanism. The control layer seamlessly enforces SDN customized management and routing policies in the data
layer using well-defined application programming interfaces (APIs), such as OpenFlow.19 Several network vendors (e.g.,
HP, Pica8, Netgear) have introduced numerous network devices that are SDN-enabled to bring better consumer experi-
ence. As a result of the attractive features and world-wide adoption, SDN has gained significant attention from researchers
working on improving the performance of diverse applications and systems, including MapReduce applications.

With the advent of SDN, a number of studies have leveraged MapReduce in SDN-enabled environments and proposed
novel joint-optimization solutions, which notably enhance MapReduce performance.20-22 Still, several challenges need to
be tackled to leverage and evaluate the benefits of SDN for supporting the network capabilities for big data applications
in MapReduce contexts. One evaluation approach for SDN-enabled MapReduce new solutions is to use live produc-
tion environments. However, such environments are hard to obtain and configure along with posing an impediment to
the evaluation process due to the continuous changing in behavior. Another superior evaluation approach is to use a
simulation tool,23-25 which incorporates the concepts of SDN and big data for conducting large-scale infrastructure exper-
iments in easy, repeatable, controllable, and configurable manner. To fill this gap, we present BigDataSDNSim: a new,
discrete-event simulation tool designed to enable the modeling and simulation of BDMS (YARN), big data programming
models (MapReduce), and SDN-enabled networks within cloud computing environments. To the best of our knowledge,
BigDataSDNSim is the first tool that models and simulates the three merging technologies (MapReduce-BDMS, SDN,
cloud) in a single simulated environment. Based on our proposed system-based and mathematical models, the simulator
is capable of capturing the key functions, characteristics, and behaviors of the SDN-enabled MapReduce computing envi-
ronment. It can also model the functionalities of MapReduce applications in line with mimicking diverse SDN capabilities
and interactions with BDMS systems in a seamless manner.

The main contribution of BigDataSDNSim is the ability to generate different samples of SDN-enabled
MapReduce-BDMS infrastructures, along with to reduce the complexity of deploying new solutions. The simulator can

ALWASEL et al. 895

predict and quantify the impact of new MapReduce SDN-based solutions and designs running in cloud environments.
The accuracy and correctness of BigDataSDNSim are validated by comparing the behavior and results of a real environ-
ment that combines MapReduce and SDN with an equivalent simulated environment given by BigDataSDNSim. Evaluation
results demonstrate that BigDataSDNSim is closely comparable with real environments. To gain insight of the features
and functionalities of BigDataSDNSim, this article present two use cases that demonstrate the ability of SDN to improve
the performance of MapReduce applications as compared with traditional networks and illustrate the impact of Hadoop
distributed file system (HDFS) replication mechanisms in the overall MapReduce performance. In summary, the main
contributions of this article are as follows:

• A new holistic simulation framework that simulates MapReduce applications, BDMS, and SDN-related networks in a
cloud-based environment

• Theoretical modeling of MapReduce processing in SDN-aware cloud data centers
• Multiple system models to simulate different samples of MapReduce running in SDN-powered cloud infrastructures
• Validation and comparison of the accuracy and correctness of BigDataSDNSim with a real-world MapReduce

SDN-enabled environment

The rest of this article is organized as follows: Section 2 provides an overview of a MapReduce-BDMS architecture
running in an SDN-enabled cloud data center, which is used as a baseline for modeling BigDataSDNSim. Section 3
presents related work and reflects the importance and unique capabilities of BigDataSDNSim. Section 4 elaborates the
architecture and design of BigDataSDNSim framework in detail. Section 5 demonstrates the modeling of BigDataSDNSim
mathematically and descriptively. Section 6 illustrates the validation of BigDataSDNSim by comparing the results of an
identical simulation model given by BigDataSDNSim with the obtained results of a real MapReduce SDN-enabled envi-
ronment. Section 7 presents two use cases of BigDataSDNSim, which exhibit its practicality and features, illustrate the
impact of data replication mechanisms of MapReduce in Hadoop YARN, and show the superiority of SDN over traditional
networks in terms of optimizing MapReduce applications. Section 8 concludes the article and highlights some future
work.

2 OVERVIEW

MapReduce is a programming model that runs in the form of a big data application.3 Apache Hadoop YARN6 is considered
to be the most dominant framework for building MapReduce applications. A fundamental part of the YARN is HDFS,
which is a distributed file storage that distributes data across virtual machines (VMs) in a given big data cluster. It supports
a replication mechanism of datasets for fault tolerance purposes, which is set up to three replications by default. On dataset
submission, HDFS breaks down the data into small data blocks to be replicated and distributed into VMs. HDFS tries
to balance the distribution of data blocks among VMs fairly; however, the distribution of a given data block can be later
altered if all VMs that contain the data block are busy. By using a data locality technique, YARN copies the functions of map
and reduce to all salve VMs so that any VM can be selected to execute a map or reduce function. Whenever a MapReduce
application is being executed, YARN would specify it as a MapReduce job, which holds information and records regarding
a number of data blocks, the execution time of every map and reduce task, and so forth. So, a MapReduce application
and a MapReduce job are interchangeable. To avoid confusion, we use the “MapReduce application” throughout this
article.

MapReduce applications can have different building blocks and characteristics based on processing and data flow
requirements. The simplest model of MapReduce is shown in Figure 1, which consists of six phases, assuming that HDFS,
mappers, and reducers reside in different nodes. As it can be seen the HDFS splits the data (D) into several blocks (e.g.,
B1, B2, B3) where each block is replicated and forwarded to elected VMs via a network layer. For every data block, a
single mapper is selected to carry out the processing. Once every mapper completely processes the data, it starts the
transmission of the output to respective reducers (e.g., R1, R2) according to the key-value pairs. The MapReduce key-value
mechanism requires reducers to wait for all mappers to finish processing so that the output of reducers are accurate. Once
every reducer finishes processing, it transfers its output to the HDFS to be combined and reported. The block replication
mechanism is also required for reducers to divide their output into small-scale data blocks to be transferred to other
elected VMs based on the replication factor.

896 ALWASEL et al.

Map
Processing

B1

B2D

B3

Splitting Data
Flow

Data Flow
(Shuffling)

Reduce Data
Processing Flow

Data Blocks Mappers Reducers

1 2 3 4 5 6

M1
(VM 1)

M2
(VM 2)

M2
(VM 2)

R1
(VM 4)

R2
(VM 5)

F I G U R E 1 An overview model of MapReduce processing and data
flow phases [Colour figure can be viewed at wileyonlinelibrary.com]

AM 1

NM

VM 1

Resource ManagerHDFS

NM

Application Master
Node Managers

Mappers
Reducers

M M

R R

NM

M M

R R

M M

R R

VM 2 VM 3

M M

R R

AM 2

VM 4

NM

M M

R R

NM

M M

R R

VM 5

SDN ControllerAM
NM
M
R

F I G U R E 2 Overview of SDN-enabled YARN-related systems.
SDN, software-defined networking [Colour figure can be viewed at
wileyonlinelibrary.com]

Figure 2 illustrates an overview of SDN-enabled YARN systems running MapReduce applications. In a given data
center, every big data cluster is managed by a resource manager and have a single HDFS shared by all MapReduce applica-
tions. The resource manager contains a list of worker VMs where each VM is controlled and monitored by an implemented
agent (node manager). For every requested MapReduce application, the resource manager creates a new application mas-
ter and links requested VM resources to the application master. Once the application master is activated, it copies the
code-based functions of its map and reduce tasks to all respective VMs so that every VM can be elected to run the map
and/or reduce task, as previously mentioned to ensure the principle of data locality. Following that, the execution logic
of MapReduce applications follows the six processing and transmission phases, as mentioned earlier.

The description above of MapReduce, BDMS, and SDN should be considered to derive correct simulation models
and ensure the accuracy of simulated results. BigDataSDNSim, therefore, is modeled and designed accordingly with the
given descriptions. It also provides abstract layers for enforcing new policy-based solutions. For instance, a MapReduce
application might be located on different servers and/or racks of a cloud data center due to insufficient resource capacity
in a single server/rack. Such distribution logic requires accurate modeling of abstractions and interfaces so that users of
our tool can seamlessly deploy their scheduling policies for MapReduce server-rack placement. In another example, the
same MapReduce application might require special QoS requirements (e.g., traffic prioritization, policy-based routing
mechanisms) and excessive data transmission on the network layer from one server to another. As SDN-enabled networks
are capable of meeting such requirements, BigDataSDNSim is modeled to seamlessly provide easy deployments of QoS
requirements on behalf of every MapReduce application.

3 RELATED WORKS

Several simulation tools were developed due to the surge in adoption of MapReduce and SDN in cloud-based environ-
ments. Some of the tools were developed from the ground up while others were developed on top of existing tools. We
believe that there is a clear gap in state-of-the-art simulators in terms of modeling and support for MapReduce appli-
cations, BDMS, and SDN in cloud-based infrastructures. This section demonstrates existing simulators in terms of their
ability to model and simulate MapReduce-DBMS within SDN-enabled cloud data centers. It then illustrates how our simu-
lation framework fulfills the gap of existing simulation frameworks in a holistic manner. Table 1 illustrates the differences
and similarities of existing simulators and emulators as compared with our simulation framework.

There are several simulation tools capable of simulating and modeling the characteristics of cloud and legacy net-
works. For example, CloudSim23 is one of the most popular cloud-based tools that allow the modeling of physical and

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

ALWASEL et al. 897

T A B L E 1 Comparison of related simulators and emulators

Features

Simulators Language
Evaluation
objectives

MapReduce
model

Network
model

BDMS
model

SDN
model

Cloud
model

Dynamic routing
mechanisms

CloudSim23 Java Performance ✓

NetworkCloudSim26 Java Performance Limited ✓

WorkflowSim27 Java Performance ✓

GreenCloud28 C++/Otcl Energy ✓ ✓ ✓

iCanCloud29 C++ Performance ✓* ✓ ✓*

Mininet30 Python Performance ✓ ✓ ** ✓**

MaxiNet31 Python Performance ✓ ✓ ** ✓ ✓**

MRemu32 Python Performance ✓ ✓ ✓ ** ✓**

EstiNet33 C++ and Python Performance ✓ ✓ ✓

CloudSimSDN34 Java Performance
Energy

✓ ✓ ✓

SDNSim35 MATLAB and
Python

Performance ✓ ✓ ✓ ✓

SDN-Sim36 MATLAB, Java,
and Python

Performance ✓ ✓ ✓

IoTSim37 Java Performance ✓ ✓

MR-CloudSim38 Java Performance ✓ ✓

MRSim39 Java Performance ✓ Limited

MRPerf40 Python Performance ✓ ✓ Limited

BigDataNetSim41 Java Performance ✓ Limited ✓

MaxHadoop42 Python Performance ✓ ✓ ✓ ✓

BigDataSDNSim
(Proposed)

Java Performance and
Energy

✓ ✓ ✓ ✓ ✓ ✓

Abbreviations: BDMS, big data management systems; SDN, software-defined networking.
✓*with the help of the INET framework;43.
✓**with the help of SDN controllers from other projects (e.g., Floodlight44).

virtual cloud infrastructures using an event-driven architecture. It is capable of simulating and evaluating the perfor-
mance of cloud infrastructures as well as deploying various provisioning and allocation policies (e.g., VM placement,
CPU task scheduling). CloudSim forms the base upon which several simulation tools were developed to fill the gap of
networks and applications aspects (e.g., NetworkCloudSim,26 WorkflowSim27). GreenCloud,28 iCanCloud,29 and Net-
workCloudSim are other cloud-based tools focusing on the perspective of legacy networks in terms of characteristics and
communications in cloud data centers.

Mininet30 is an SDN-based emulation tool that runs on a single device configured with a Linux-based system. It emu-
lates different types of network topologies together with hundreds of virtual hosts and diverse UDP/TCP traffic patterns.
The external SDN controller(s) communicates and enforces network policies on Mininet via its unique IP address and
OpenFlow APIs. While Mininet is limited to run on a single physical machine, MaxiNet31 was introduced to enable
Mininet to run across multiple physical machines. MaxiNet is capable of emulating large-scale SDN cloud environments
along with evaluating new SDN-powered routing algorithms. Moreover, to allow Mininet to mimic the behaviors of
MapReduce applications, MRemu32 was introduced where it is capable of using realistic MapReduce workloads/traces
within Mininet environments. It operates on latency periods extracted from MapReduce job traces (duration of tasks,
waiting times, and so forth).

Similarly, EstiNet33 is another SDN-based simulation and emulation tool, allowing each simulated host to run a real
Linux-based system coupled with several types of real applications. It is capable of simulating hundreds of OpenFlow

898 ALWASEL et al.

switches and generating real TCP/IP traffic. CloudSimSDN34 is an SDN-based cloud simulator that is modeled and imple-
mented on top of CloudSim.23 It enables the simulation of SDN-network behaviors in a cloud-based environment. The
focus of CloudSimSDN is to model power-based management policies to reduce the energy consumption of hosts and net-
work devices. SDNSim35 is an SDN-enabled simulator that simulates data center elements (e.g., switches, links, and hosts)
along with the layer of SDN data plane. The control plane of SDNSim is handled by an external SDN controller, which
enforces network decisions and solutions through APIs. Moreover, SDN-Sim36 is an SDN-based simulation and emula-
tion tool that integrates several frameworks to facilitate the end-to-end performance evaluation of wireless technologies
(e.g., 5G). The Virtual infrastructure of SDN-Sim depends on VMWare ESXi servers while its network layer is managed
by OpenFlow protocol and Opendaylight controller. SDN-Sim’s network can be emulated using GNS3 and Mininet. It
depends on MATLAB server to run real-world SDN wireless scenarios.

IoTSim37 is an extension of CloudSim that mimics the characteristics of the MapReduce programming model. It
allows simulation and modeling of the old version of the Hadoop framework (e.g., job trackers, task trackers). It pro-
vides a simple management mechanism to configure MapReduce applications based on IoT-generated data. Similarly,
MR-CloudSim,38 MRSim,39 and MRPerf40 are other tools that enable the simulation of MapReduce-based applications
with different focuses and features. In addition, BigDataNetSim41 is a simulator designed to evaluate the data placement
strategies of HDFS within a dynamic network cluster. It focuses on evaluating solutions for transferring HDFS data to
distributed nodes while it neglects the logic and dependencies of MapReduce. MaxHadoop42 is an emulation tool devel-
oped on top of MaxiNet31 to evaluate the performance of MapReduce strategies within an SDN network environment.
The network within MaxHadoop is managed by an external SDN controller, such as Floodlight.44

While these tools are powerful for simulating cloud-based environments, MapReduce applications, traditional net-
works, and SDN, BigDataSDNSim differs in supporting a holistic simulation framework that simulates MapReduce
applications, BDMS, and SDN-related networks in cloud-based environments. In particular, BigDataSDNSim is capable
of modeling and simulating:

• A generic big data approach for executing different big data programming models (e.g., MapReduce, Stream) simulta-
neously

• MapReduce applications within BDMS, which is one of the prominent platforms for running different big data models
• behaviors and features of SDN dynamic networks coupled with the coordination and interaction with MapReduce

applications within cloud environments
• dynamic routing mechanisms based on graph theory to enable any type of network topology to be seamlessly simulated
• model of several policies for SDN, MapReduce, and VM within cloud data centers for multilevel optimization

4 ARCHITECTURE

This section demonstrates the fundamental functionalities and components of BigDataSDNSim. The modeling logic of
our simulation framework is based on the overview in Section 2. Figure 3 presents the key components of our proposed
architecture, in addition to a few used elements of CloudSim and CloudSimSDN. The figure facilitates our simulator’s
use by categorizing the architecture into two main layers: programming and infrastructure and big data. The detailed
description of every component in every layer is discussed later in Section 5. The overall description of each layer is given
as follows:

4.1 Programming layers

The programming layer facilitates the deployment of strategies, policies, and algorithms. It abstracts away the under-
lying complexities of BigDataSDNSim. It provides the baseline to implement multilevel MapReduce optimizations in
SDN-enabled cloud environments. It consists of the following layers:

• Input: This layer allows the implementation of different simulation scenarios in a simple manner. The configura-
tions of data centers (e.g., requirements and descriptions of hosts and networks) can be easily defined using a single
JSON file. The layer also provides mechanisms for configuring big data clusters, such as the number of required

ALWASEL et al. 899

F I G U R E 3 Architecture of
BigDataSDNSim simulator

Programming Layers

Input Physical

Configuration

MapReduce

Configuration

Policy
App Selection

HDFS Replica

Placement

Workload

CPU

Scheduling

Routing Traffic

Big Data

Infrastructure and Big Data Layers

MapReduce HDFS Resource Manager

Node Manager Application Master Big Data Task

Infrastructure
Host VM SDN Controller

Topology Switch Forwarding Table

CloudSim Core Engine

VM Placement

VMs and MapReduce applications. The descriptions of processing and data transmission of MapReduce applications
can be submitted in a CSV file—which includes attributes such as start time, and the size of data to be transferred
between components (e.g., from HDFS to VMs). By using the input of this layer, BigDataSDNSim instructs its respective
components to behave according to the given rules.

• Policy: By considering the importance of different policy requirements of MapReduce applications and SDN traffic
engineering, this layer is designed to provide a mixed composition of MapReduce and SDN policies. Such policies are
key factors for obtaining optimal performance in MapReduce processing and transmission. Therefore, these layers
allow the implementation of new algorithms for every listed policy.

4.2 Infrastructure and big data layers

The Infrastructure and big data layers contain the core, complex components of BigDataSDNSim. In case new function-
alities emerge for big data programming models and SDN capabilities and are not supported by BigDataSDNSim, these
layers should be extended. In this layer, most of the components communicate with each other using a discrete-event
mechanism.

• Big Data: This layer holds components responsible for simulating the behaviors and characteristics of MapReduce
and BDMS. Big data applications might require crossengine data executions; thus, this layer integrates big data
programming models/engines. Currently, this layer allows the simulation and analysis of the MapReduce model.
As maintaining various programming models of big data is essential to support applications that demand dif-
ferent processing mechanisms (MapReduce, stream, and so forth), more required components can be added to
this layer.

• Infrastructure: It contains physical and virtual resources of cloud data centers. With virtualization mechanisms, hosts
in BigDataSDNSim are designed to share their resources among multiple VMs, where each VM has its own mem-
ory, storage, and processor characteristics. This layer also maintains network and SDN entities. The fundamental
functionalities, deployment, and management of network components and SDN are handled in this layer.

• CloudSim: This layer is equipped with the core entities, functionalities, and engine of CloudSim, such as resource
provisioning and allocation and event processing mechanisms. It provides essential components to simulate cloud
data centers. The BigDataSDNSim simulator operates on top of this layer, where entities can easily communicate via a
discrete-event mechanism.

900 ALWASEL et al.

5 SIMULATION MODELING AND DESIGN

This section illustrates the modeling and design of our simulation framework. It first demonstrates its theoretical model-
ing of BigDataSDNSim. Next, it illustrates multiple proposed designs of BigDataSDNSim, which includes system, policies,
and interactions.

5.1 Theoretical model

According to the YARN framework,6 the first step required for execution of MapReduce applications is the determina-
tion of HDFS data block size. HDFS can be defined as a distributed file storage that breaks down every received dataset
into small-scale data, referred to as a block, and stores all the blocks on distributed VMs. In a MapReduce YARN-based
application, data is broken down into blocks for two times. First, when the HDFS splits a submitted dataset into several
HDFS blocks to be forwarded to elected VMs, which in turn are assigned to elected mappers for processing. Note that
HDFS would only instruct one of the elected mappers to carry out the execution while the others are in a standby mode.
The second time is when reducers finish executing where every reducer will split its output into several reducer blocks
and distribute the blocks into elected VMs. We denote the former to “HDFS block” and the latter to “reducer block.” The
two types of blocks use the same block factor bsc for determining their data block size.

Every generated HDFS block is first copied to elected VMs based on a given replication factor bsc. One of the
elected VMs is selected to run a new mapper for every received HDFS block, while other VMs are in a standby mode.
This technique is known as “data locality” where computation is moved to a given data location (e.g., HDFS blocks)
instead of vice versa, which helps in reducing MapReduce network loads. Moreover, the output of every reducer is
divided into other blocks (reducer blocks) where each block is replicated and copied to elected VMs based on the same
given replication factor bsc. The HDFS replication mechanism ensures that the processing time of HDFS blocks by
mappers is decreased while the reducer replication ensures that the final output of a MapReduce application, which
combines data from all reducers, is available at all times. The modeling of BigDataSDNSim MapReduce-HDFS is shown
in Figure 4.

Submitting data set

HDFS splits data into blocks

Yes

No

replication factorReplicate each block according to the

Send each block to elected VMs

Elected mappers start processing

Send processed data to reducers

Yes

No

Reducers start processing

Every reducer splits its output data into blocks

Send final data of every reducer to the main VM

Is replica

Combine data and report final results

factor > 1?

Is a request
from reducer?

F I G U R E 4 BigDataSDNSim
MapReduce-HDFS model. HDFS,
Hadoop distributed file system [Colour
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com

ALWASEL et al. 901

By default, the HDFS engine assigns a default data size bsd of 128 MB to all HDFS and reducer blocks. Every HDFS data
block is the input data for every mapper. To tune the number of required mappers, the block size bsn can be configured.
Equation (1) is used to select the overall block size where c is a decision variable to denote the demand for changing the
default data block size. Let H = {1, 2, … , U} be a set of HDFS blocks where each h∈H has a data block size, denoted as
Dh. Given the size of the MapReduce submitted dataset ds, Equation (2) is used to compute the total number of HDFS
blocks |H|. The total number of HDFS blocks |H| is inversely proportional to bsc, represented as (|H|∝(bsc)−1). YARN
applies division by repeated subtraction to determine the size of every HDFS block h, which means that all elected VMs
that store HDFS blocks obtain the same size for all the blocks except for the last one. To properly determine the data size
of every block d∈Dh, Equation (3) is used.

bsc =

{
bsd, if c = 0
bsn, if c = 1,

(1)

|H| = ceil
(

ds
bsc

)
, (2)

Dh =

{
bsc, if h < |H| − 1
ds%bsc, otherwise.

(3)

Every reducer needs to obtain intermediate data from every mapper. The output size of every mapper cannot be exactly
determined because every mapper may produce different patterns of output. For the sake of simplicity, we assume that all
of the reducers of a MapReduce application a∈A obtain an equal size input from every mapper. Let M = {1, 2, … , Q} be
a set of mappers where each m∈M has a data output, denoted as Outm. The total number of mappers |M| is equal to the
total number of HDFS blocks |H|. Let R= {1, 2, … , W } be a set of reducers where each r ∈R obtains input data, denoted
as Inr. Equation (4) is used to estimate the data input size Inr for every reducer r ∈R by dividing the output size of every
mapper m∈M by the total number of reducer |R|. For every MapReduce application, there must be at least one reducer;
therefore, BigDataSDNSim assigns a single reducer for every requested MapReduce application. However, the number of
reducers can be changed if required.

Inr =
(

Outm|R|
)
, ∀m ∈ M. (4)

The execution time of every mapper and reducer depends on the number of instructions that is required to be executed
on their VMs, which is given in million instructions. The execution time also depends on the speed of the central pro-
cessing unit (CPU) of VMs, which is measured in million of instructions per second (MIPS). In discrete-event simulators,
modeling the speeds, overheads, and sharing factors of CPU, memory, and a hard drive is hard, if not impossible. To cor-
rectly capture this type of model, a configurable parameter 𝛼 is used to capture hidden overheads of VMs when needed.
To compute the processing capacity for every VM assigned for any mapper or reducer, Equation (5) is used where Cvm is
the processing capacity of every vm∈VM = {1, 2, … , E}, mips(vm) is the MIPS speed of vm, and cpu(vm) is the number
of CPU cores of vm. Let Pm to be a processing demand of every m∈M, Gr be a processing demand of every r ∈R, and
t ∈ {M, R} be a MapReduce task. The execution time of every task t can be computed using Equation (6) where E(t, vm)
denotes the execution time of t executed in a VM vm.

Cvm = mips(vm) ∗ cpu(vm) ∗ 𝛼, 𝛼 ∈ [0, 1], (5)

E(t, vm) = Pt

Cvm
. (6)

Every mapper and reducer might have different execution times due to CPU sharing mechanisms among all map
and/or reduce tasks. In addition, the policy design (e.g., HDFS replica placement, CPU scheduling policies) plays a vital
role on the execution time. The feasible option for computing the execution time of a given set of mappers and reducers
belonging to a given MapReduce application is to observe the highest execution time of mappers and reducers. To estimate
the total execution time (a) of every MapReduce application a∈A, Equation (7) is used.

 (a) = max{E(t, v)} + max{E(t′, v)}, ∀t ∈ M, ∀t′ ∈ R, ∃v ∈ VM. (7)

902 ALWASEL et al.

By default, every MapReduce application a∈A creates three replicas for every block to ensure fault tolerance in case
of a VM failure. The replication is performed for every HDFS block and reducer block. Equation (8) is used to select the
number of required replicas Φ ∈ N where Ω is the requested replication factor and |VM| represents the total available
number of VMs. Ω cannot be higher than |VM|. Let each Rh ∈ N be the set of replicas for each HDFS block h∈H. Given
the set of the data of HDFS blocks Dh and the set of HDFS replica size |Rh| = Φ, every HDFS block d∈Dh is mapped to
every corresponding replica o ∈ Rh by using a matrix, denoted as Uh = Dh × Rh. The data of every replica u ∈ Uh will be
then transferred from the HDFS to every elected VM.

Φ =

{
Ω, if Ω < |VM||VM|, otherwise.

(8)

Similarly, every reducer divides and replicates its output into a number of reducer blocks based on the overall given
block size bsc. Every block is then replicated according to the replication factor Φ and forwarded to elected VMs. The
replication is required to ensure that the final output of every MapReduce application is not lost when some VMs are
not available. Let Outr be a set of reducer output and Br = {1, 2, … , P} be a set of reducer blocks for each r ∈R where
each b∈Br has some data, denoted as d∈Dr. The total number of reducer blocks |Br| is inversely proportional to bsc,
represented as (|Br|∝(bsc)−1). To determine the total number of blocks |Br| created by every reducer, Equation (9) is used.
To estimate the data size of every reducer block d∈Dr, Equation (10) is used. Let Each Rr ∈ N be the set of replicas for
each reducer block b∈Br. Given the set of the data of HDFS blocks Dr and the set of reducer replica size |Rr| = Φ, the data
of every HDFS block d∈Dr is mapped to every corresponding replica n ∈ Rr by using a matrix, denoted as Lr = Dr × Rr.
The data of every replica l ∈ Lr is then transferred from a VM that contains a corresponding reducer r ∈R to every other
elected VM.

|Br| = ceil
(

Outr

bsc

)
, ∀r ∈ R, (9)

Dr =

{
bsc, if r < |Br| − 1
Outr%bsc, otherwise.

(10)

A network channel must be established to transfer data from a source VM to a destination VM if they reside in different
hosts. The modeling of channels prevents VMs from overloading any given link existing in its route, which would lead
to network congestion. Let L= {1, 2, … , K} be a set of links where each l∈L has a bandwidth BWl and a number of
associated channels NCl passing through. Let C = {1, 2, … , Z} be a set of channels traveling through some links where
each c∈C obtains a bandwidth BWc based on the smallest bandwidth of links existing on the route of the channel c. To
compute BWc for every channel c, Equation (11) is used where BWc(s, d) is the bandwidth of channel c from a source VM
s to a destination VM d and BWl is the bandwidth of a link l that the channel c traverses through and NCl is the number
of channels traveling and sharing a link l.

BWc(s, d) = min{BWl(s, d)}
NCl

, s, d ∈ VM, ∃l ∈ L. (11)

For any data to be transferred via an SDN-enabled network, it must be encapsulated inside a network flow. We avoid
using network packet modeling to prevent our simulation tool from generating millions of network packet objects, which
would overload the computing resources of a machine that runs our simulator. Define NFc as a number of flows that a
channel c∈C has and F = {1, 2, … , U} as a set of flows where each f ∈F has a network bandwidth, denoted as BWf . As
every channel bandwidth BWc can be shared by flows that travel from a source VM s to a destination VM d, the bandwidth
of every flow f can be computed using Equation (12).

BWf (s, d) = BWc(s, d)
NFc(s, d)

, ∃c ∈ C. (12)

Every MapReduce application requires to transfer data at different times. The transmission of data can be summa-
rized as follows: (1) from HDFS to elected VMs, (2) from mappers to reducers, (3) from reducers to other elected VMs,
and (4) from reducers to a VM that reports the final MapReduce results. Let x ∈ {Uh,Outm,Lr,Outr} be data where each

ALWASEL et al. 903

x has an associated flow f to transfer the data of x from one VM to another via the SDN-enabled network. To compute
the transmission time of every data x, Equation (13) is used. The total transmission time (a) of a MapReduce applica-
tion a∈A is calculated using Equation (14). The overall completion time (a) of a MapReduce application a, which is
composed of all executions and transmissions, is computed using Equation (15).

 (x) = x
BWf (s, d)

, ∃s, d ∈ VM, ∃f ∈ F, (13)

 (a) = max{T(x)} + max{T(x′)} + max{T(x′′)} + max{T(x′′′)}},
∀x ∈ Uh, ∀x′ ∈ Outm, ∀x′′ ∈ Lr, ∀x′′′ ∈ Outr, (14)

 (a) = (a) + (a). (15)

Depending on the value of replication factor, the generated data of every MapReduce application a∈A is different. To
compute the total generated data TD(a) of every a, Equation (16) is used. The data characteristics generated by different
types of MapReduce applications differ from one another. For example, mappers in page-ranking MapReduce-based appli-
cations often have a larger size of outputs as compared with the size of their inputs, while word-count MapReduce-based
applications follow the opposite.45 The modeling logic of BigDataSDNSim allows different types of MapReduce applica-
tions to be seamlessly simulated by tuning the values of x ∈ {Uh,Outm,Lr,Outr}.

TD(a) =
∑

∀x∈Uh

x +
∑

∀x′∈Outm

x′ +
∑

∀x′′ ∈L

x′′ +
∑

∀x′′′ ∈Outr

x′′′ . (16)

5.2 Implementation

As mentioned earlier, BigDataSDNSim is a discrete-event simulator. Every element that requires communication and
cooperation with other elements (e.g., data center, resource manager, SDN controllers, and so forth) must do so by issuing
events that are processed and delivered by the simulation engine. Every event may contain actions to be carried out and
data to be used by destinations. The following describes and indicates the property of every component developed in
BigDataSDNSim:

• ResourceManager: This entity is responsible for the configuration, deployment, and scheduling of worker nodes’
resources among competing big data applications. It carries out provisioning mechanisms for new big data applications
in a given big data cluster. It tries to reserve the required resources using VM usage statistics. If cluster’s resources are
insufficient, requests are held in a waiting queue. Once resources become available, the required resources are reserved.
The queue is based on a first-come-first-served mechanism. This entity can be instructed with different policies if
required.

• ApplicationMaster: It is designed to manage the application life-cycle of big data programming models. A new appli-
cation master is initiated for every new big data application. The initiation of every application master is carried out
by a resource manager. The current development of this entity is based on the MapReduce programming model.

• NodeManager: This entity is in charge of controlling and monitoring VM resources. Every node manager is coupled
with a single VM to track and report the status of its VM. It informs the actual usage of the VM to a resource man-
ager. Such update is used to properly allocate a cluster’s resources among big data applications, alleviating resource
contention.

• NetworkNIC: It is an interface equipped in every node. It is responsible for establishing and maintaining the network
connection of a given node. It is similar to the network interface card (NIC) embedded in most of today’s devices. The
key feature of the interface is to allow the modeling of southbound network management protocols [OpenFlow and
Open vSwitch46 (OVS)] in switches and hosts. Such protocols enable SDN controller(s) to have a full network control
of nodes, build routing and forwarding tables, and capture a global network view.

• SDNController: This is an entity designed to mimic the behavior of an SDN controller. It provides abstractions for pro-
gramming and monitoring networks dynamically. By gathering the information from each node (switches and hosts),

904 ALWASEL et al.

the controller builds dynamic routing for each host, VM, or application based on a given routing algorithm. The con-
troller is developed to seamlessly shape network traffic for each MapReduce application based on a given traffic policy.
The network can be controlled and managed by more than one SDN controllers if required. Network optimization and
the reconfiguration of a given network can be easily achieved by implementing smart routing and traffic policies.

• HDFS: Every data submitted to a MapReduce application is stored in a distributed manner by the HDFS. The entity
divides the dataset into several blocks based on given block size. Once data blocks are determined, it copies them to
elected VMs via a network infrastructure. The election of VMs is based on a given HDFS replica placement policy.

• BigDataTask: This entity can be shaped in different ways based on a selected big data application. The current design
of BigDataTask represents the modeling of mappers and reducers. In the case where a new big data model is required
(e.g., stream), the entity can be inherited to obtain the common features that all other big data tasks have in common.

• Topology: It is responsible for maintaining a network graph and relations among switches and hosts. An SDN controller
uses this entity to obtain network graphs and relations and adjust the network graph if required. Moreover, the SDN
controller uses this entity to build routing and forward tables among VMs and applications.

• Flow: This is used to facilitate the process of network traffic modeling. A network flow is initiated for every traffic from
a source component to a destination component (e.g., hosts, VMs, MapReduce applications). An SDN controller shapes
the network traffic of every flow according to given routing and traffic policies.

Figure 5 demonstrates an overview of the interactions and workflows among entities throughout the runtime of Big-
DataSDNSim. The simulator’s functionalities are classified into four phases: building required infrastructure, establishing
requested MapReduce application(s), carrying out task processing and data transmission, and finally reporting the results
of every MapReduce application. The infrastructure is built by parsing a configuration file provided in the JSON format.
Once BigDataSDNSim obtains the file, it initiates the corresponding objects of hosts, switches, and network links. At
the same time, it establishes the required components, such as the SDN controller and resource manager, and builds a
required network topology. Once the resource manager is active, it couples every VM with a node manager for monitoring
and reporting purposes.

Shortly after BigDataSDNSim starts, it instructs the resource manager to initiate every requested MapReduce appli-
cation. The resource manager would create a single application master for each required MapReduce application. Once
every application master is active, every application is fed with the configuration requirements in a CSV file containing

SDN
Controller

Main VMManager
Execute MapReduce application

Print results

Build/update paths to destinations

Resource Application
Master

HDFS

Reserve VM resources

Execute MapReduce application

Distribute data blocks

Split data into blocks

Transfer data blocks to elected VMs

Forward data to destinations

Execute mappers

Execute mappers

ACK

MapReduce application has been
successfully executed

Transfer data to reducers

Execute reducers

ACK

Build/update paths to destinations

Forward data to destinations

Transfer data blocks to elected
VMs

Execute reducers

Build/update paths to destinations

Forward data to destinations

Split reducers
data into blocks

ACK

Transfer final data to main VM

FIGURE 5 Underlying interactions of BigDataSDNSim (overview)

F I G U R E 5 Underlying
interactions of BigDataSDNSim
(overview) [Colour figure can be
viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com

ALWASEL et al. 905

different information such as start time, number of mappers, size of flows, and amount of MIs. Each MapReduce appli-
cation is composed of computational tasks and data flow transmissions, which are carried out in a specific order. The
current application logic supported in BigDataSDNSim is based on two processing activities and four transmissions, as
depicted earlier in Figure 1. For the processing stage to take place, two requirements must be met: (i) the execution logic
of map and reduce tasks must be placed into VMs, and (ii) mappers and reducers must acquire the whole required data to
start execution. The transmission stage, on the other hand, includes four sequence activities (1) dividing initial data into
HDFS blocks and transferring the blocks from HDFS to elected VMs; (2) transferring the output of mappers to reducers;
(3) dividing the output of reducers into blocks and transferring the blocks to elected VMs; (4) transferring the output of
reducers to a VM, which reports the final MapReduce results.

Any element (e.g., HDFS, mapper, reducer) that requires data transmission must create a network flow and inject its
data to it. Next, it encapsulates the flow inside an event and sends the event to an SDN controller through the implemented
discrete-event mechanism. When the SDN controller receives the event, it updates the progress of existing network flows
and removes completed ones along with idle network channels. Next, the SDN controller updates or builds forwarding
tables based on VM-to-VM communications, with respect to the implemented SDN routing algorithms. If there is no
existing route between a source and a destination, the SDN controller will build a route, add a forwarding rule to every
node along the route (switches and hosts), create a channel, and encapsulate the received flow inside the channel. In
order for the SDN controller to track the completion of flows, it calculates the earliest finish time eft of existing flows,
creates an event with an invoking time of eft, and sends the event internally to itself to be intercepted according to the
given time of eft. In general, the eft can be computed using Equation (17) where f r(j) is the remaining data of the jth flow
to be transferred and cbw(j) is the flow bandwidth of the jth flow.

eft = min
{

fr(j)
fbw(j)

}
. (17)

Once there is no more activity or event to take place, the simulation concludes and results are reported. The report
structure reflects the information of MapReduce applications, performance measurement of transmission and processing,
and information of SDN forwarding tables. The overall output illustrates every MapReduce application’s status, such as
submission time, queuing delay, start time, and so forth. The processing result shows the performance metrics of mappers
and reducers (e.g., VM’s ID, start time, execution time), while the transmission result demonstrates the statistics of every
connection (IDs of source and destination, size of flows, start time, transmission time, and so forth). The information of
SDN forwarding tables shows the list of traversing nodes for every flow and any changes made to the flow’s bandwidth in
terms of size and time throughout the transmission period.

5.3 Policies design

Developing new policies that dynamically respond to changing behaviors and optimize the performance of different
MapReduce applications running in SDN-enabled clouds is essential. Implementing such policies within BigDataSDNSim
was a complex endeavor due to complex interactions among BigDataSDNSim’s components. Therefore, we modeled and
developed our simulator to support host-network policies so that different MapReduce policies can be seamlessly imple-
mented. Figure 6 shows a sample of different policies currently developed in BigDataSDNSim. The policies are categorized
into five groups: app selection, HDFS replica placement, VM-CPU scheduling, routing, and traffic. Several polices are
developed for each group. The significance of each group is described as follows:

• Application selection: Resources reserved for a big data cluster may be limited. Therefore, an application selection
policy is essential to determine the selection criteria based on given QoS (e.g., deadlines). A resource manager queues
incoming MapReduce applications and schedules them based on resource availability and given selection policy. There
are two different application selection policies implemented within BigDataSDNSim: prioritization and first come, first
served.

• HDFS replica placement: The replication mechanism is an integral part of MapReduce production systems to
ensure reliability and performance. There are many existing policies with different goals to tune the replication
mechanism according to a given criteria and constraints (e.g., rack-aware replica placement policy). Therefore,
we modeled the HDFS replica placement policy and also included examples of general policies (e.g., round-robin,

906 ALWASEL et al.

App Selection Policy

HDFS Replica
Placement Policy

Prioritization

First-Come-First-Served

LeastUsedVM

MostUsedVM

RoundRobin

Traffic Policy
FairShare

Prioritization

Routing Policy
Traditional Shortest Path

SDN Load Balancing

VM-CPU Scheduling
Time-Shared-Multiple-

CPUs
F I G U R E 6 Modeling of
policies in BigDataSDNSim

least used VM, most used VM). New HDFS replica placement policies can be implemented by extending this
component.

• VM-CPU scheduling: Multiple tasks can be scheduled to be executed in a single VM. The scheduling criteria can be dif-
ferent from one MapReduce application to another. The VM-CPU scheduling was originally implemented in CloudSim.
The overall MapReduce processing performance depends on this policy; therefore, we implemented a new VM-CPU
scheduling policy called Time-Shared-Multiple-CPUs to enable the use of multiple CPU cores by mappers and reducers.

• Routing: In general, the structure of every network is represented as graphs. The network and routing mechanisms of
BigDataSDNSim are modeled in a dynamic manner to establish pairwise relationships among different entities (e.g.,
switches, hosts, VMs, and applications). By such dynamic modeling, BigDataSDNSim enables any network type to
be simulated and pairwise relationships and routes to be defined based on different policies (e.g., shortest path). It
also enables an SDN controller to manage the entire network routes according to the given criteria. BigDataSDNSim
implements the Dijkstra’s algorithm,14 which is capable of finding the shortest paths from a single source (e.g., VM,
mapper, reducer) to all other destinations based on a single objective, which is a minimum number of traversed nodes.
We also enhanced the Dijkstra’s algorithm to meet multiple objectives by proposing SDN load balancing (SDN-LB)
algorithm. The objective of our proposed algorithm is to constantly load balance network traffic by finding different
paths based on maximum bandwidth.

• Traffic: As different types of applications share the resources of a given network, there must be some mechanisms
to ensure the network traffic quality for every application. The traffic requirements and flows of every MapReduce
application can be different; therefore, the modeling of network traffic policy within BigDataSDNSim is essential to
shape the data flows of MapReduce applications according to some QoS criteria. To illustrate the advantage of modeling
the traffic policy, we implemented two traffic policies: fair-share and prioritization. New MapReduce SDN-enabled
traffic policies can be implemented by extending this component.

6 VALIDATION OF BIGDATASDNSIM

This section reports the simulation accuracy and correctness of BigDataSDNSim by comparing the behavior and results
of a real environment that combines MapReduce and SDN with an identical simulated environment that is provided
by BigDataSDNSim. The experiment is conducted on two host machines. Each one has Intel Core i77500U 2.70 GHz,
16 GB of RAM memory, and 1000 Mbps of NIC. Each host is equipped with a single guest host (VM) running Linux
4.4.0-31-generic. Each VM has 4 virtual CPUs and 4 GB of memory. Two switches designed by Shenzhen Helor Cloud
Computer16 are used. Each switch has Intel Celeron 1037U (2 Cores, 1.80 GHz), 4 GB of memory, and 6 Ethernet ports.
The throughput of each port is 1000 Mbps. On each switch, Linux 4.15.0-29-generic and OvS17 are installed. The OvS
is a virtual switch used to allow an SDN controller to instruct and control the switches’ data plane via an OpenFlow
protocol. An SDN-based framework called Ryu is used as an SDN controller.47 The type of cables that connect machines
and switches is Ethernet Cat5e. Each cable attains 1000 Mbps of speed.

For the real experiment, we executed a word count MapReduce application using the Hadoop-YARN framework.6
We executed the experiment six times and reported the average processing and network transmission times. Moreover,
two simulated experiments were carried out: BigDataSDNSim with 𝛼 overhead (simulated exp1) and BigDataSDNSim
without 𝛼 overhead (simulated exp2). The obtained results of these experiments are compared with the real experiment.
The simulated exp1 is intended to slow the simulated VMs to represent performance overheads (e.g., I/O operations, and
so forth) introduced in the VMs of the real experiment. The configurations of MIPS, VMs, and network that we obtained
from the real testbed was replicated in the simulated experiments. In addition, the same setup scenario of the real experiment

ALWASEL et al. 907

F I G U R E 7 Validation setup of the
real experiment [Colour figure can be
viewed at wileyonlinelibrary.com]

T A B L E 2 Validation configuration

Configuration for every VM

Environment MIPS Number of cores Total number of MIPS Memory size Network bandwidth

Real experiment 3592 4 14,368 4 GB 850 Mbps

BigDataSDNSim with 𝛼 overheads 3563 4 14,252 4 GB 1000 Mbps

BigDataSDNSim 3592 4 14,368 4 GB 1000 Mbps

Abbreviations: MIPS, million of instructions per second; VM, virtual machine.

T A B L E 3 Configuration for validating MapReduce application

Environment
Total executed MIPS
per mapper (mptmi)

Total executed MIPS
per reducer (rdtmi)

Number of
mappers

Number of
reducers

File size (HDFS
to mappers)

Replication
factor

Real experiment 296,939 100,576 2 1 272.7 MB 1

Simulated experiments 296,939 100,576 2 1 272.7 MB 1

Abbreviations: HDFS, Hadoop distributed file system; MIPS, million of instructions per second.

(shown in Figure 7) is replicated in the simulated experiments. The configuration validation of the real and simulated
experiments is shown in Table 2.

The validation scenario is designed to have one VM that contains HDFS while the other VM contains two mappers and
a single reducer. The HDFS contains a text file of 272.7 MB that needs to be transferred to the mappers. Once the whole
file is transferred, the mappers start processing. In the real experiment, the Hadoop framework tries to place mappers and
reducers in the same VM; therefore, there is no need for network transmission between the mappers and reducers. We
configured the real experiment to have a single replication of data blocks; thus, the destination VM would only receive
unreplicated data blocks. Moreover, the reducer would not transfer its output and data blocks to other VMs since the
replication factor is set to one. Data is only transferred once from HDFS to mappers. Table 3 shows the MapReduce
configuration parameters used in the validation, which is obtained using Equations (18)–(23).

In the real environment, we executed a Linux command on VMs to obtain the number of MIPS nvm, which only
indicates the MIPS for a single core. Since the VMs have more than one core, we used Equation (18) to estimate the total
number of MIPS tnm for every VM where nvm is multiplied by the total number of VM cores vmc. We estimated the real
network bandwidth bw of the real experiment by dividing the file size fs by a network transmission time ntt, as shown in
Equation (19).

tnm = nvm ∗ vmc, (18)

bw =
fs

ntt
. (19)

http://wileyonlinelibrary.com

908 ALWASEL et al.

By using Equation (20), the number of MIPS for mappers mpmi is estimated where tnm is divided by the number of
mappers mpn running in the VM. We use Equation (21) to obtain the number of MIPS for reducers rdmi where tnm is
divided by the number of reducers rdn running in the VM. Note that reducers only run after all mappers are finished;
therefore, the number of MIPS for mappers and reducers are different. Equation (22) is used to calculate the total number
of MIPS mptmi executed by mappers where mpmi is multiplied by the maximum execution time mpex taken by the mappers
obtained in the real experiment. Equation (23) is used to estimate the total number of MIPS rdtmi executed by reducers
where rdmi is multiplied by the maximum execution time rdex taken by the reducers.

mpmi =
tnm
mpn

, (20)

rdmi =
tnm
rdn

, (21)

mptmi = mpmi ∗ max(mpex), (22)

rdtmi = rdmi ∗ max(rdex). (23)

Figure 8 shows the comparison results of real and simulated experiments. In Figure 8(A), it can be seen that the
bandwidth of the real experiment is 850 Mbps, while the simulated experiments are 1000 Mbps. The small discrepancy is
acceptable because there are many factors that hinder the real VMs to achieve the maximum network capacity, such as the
speed of CPU, the speed of hard drive (I/O), and the size of memory assigned to the MapReduce application. Figure 8(B)
illustrates the transmission times taken to transfer the text file from the source VM (HDFS) to the destination VM that
contains the mappers. It can be seen that the real experiment shows a slightly higher transmission time compared with the
simulated experiments. Such difference of time can be reduced by changing the value of𝛼 parameter in the simulated exp1.

850

1000 1000

0

250

500

750

1000

Real
experiment

Simulated
exp1

Simulated
exp2

B
a
n
d
w

id
th

 (
M

b
p
s
)

Bandwidth comparison

2.57

2.18 2.18

0.5

1.0

1.5

2.0

2.5

Real
experiment

Simulated
exp1

Simulated
exp2

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Transmission time comparison

41.33 41.67 41.33

6.67 6.72 6.67

0

10

20

30

40

Mappers Reducer

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Real experiment
Simulated exp1
Simulated exp2

Processing time comparison

50.56 50.57 50.18

0

10

20

30

40

50

Real
experiment

Simulated
exp1

Simulated
exp2

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Total completion time comparison

0

5000

10000

15000

20000

25000

1 100 200 300 400 500
Multiplication factor

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
) Real experiment

Simulated exp1

Simulated exp2

Correlation comparison

(A)

(D) (E)

(B) (C)

F I G U R E 8 Comparison of the real experiment, simulated exp1, and simulated exp2 [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com

ALWASEL et al. 909

In Figure 8(C), it can be observed that processing time of mappers and reducer of the real experiment and simulated
exp2 are the same. Such similarities are expected since the VMs, mappers, and reducer of both experiments have similar
configurations of MIPS. In the same figure, the simulated exp1 has a higher processing time as compared with the real
experiment because of the value of 𝛼 parameter, which makes up the time difference of the network transmission in the
real experiment. Figure 8(D) shows the completion time taken in every experiment. By tuning the value of 𝛼 parameter
of the simulated exp1, the simulated exp1 is capable of obtaining approximately a similar completion time as compared
with the real experiment. In addition, the completion time of the simulated exp2 is closely comparable to the real exper-
iment. Figure 8(E) illustrates the correlation of the completion time among the experiments. We derive the figure based
on the completion time of Figure 8(D). It can be seen that the completion time has a strong positive correlation, which
reveals that the accuracy and correctness of BigDataSDNSim are closely comparable to the real SDN-enabled MapReduce
environment.

7 USE CASES OF BIGDATASDNSIM

For the purpose of demonstrating the practicality and advantages of using BigDataSDNSim, we present two use cases: one
replica (1R) and three replicas (3R). They shed light on MapReduce performance in terms of illustrating the impact of using
HDFS replication mechanisms and the advantages of using SDN. We developed and implemented several MapReduce
policies and routing algorithms, which are used in the simulated use-case experiments. Following is the list of policies
we modeled and implemented in BigDataSDNSim:

• MapReduce application selection policy is configured on a first-come-first-served basis.
• HDFS replica placement policy is configured based on round-robin, where each replicated block is forwarded to an

elected VM in a sequence-based manner.
• VM-CPU scheduling is configured based on time-shared-multiple-CPUs, where every map and reduce task can use

multiple CPUs for processing.
• Traffic policies are configured as fair-share, where all the network flows obtain an equal amount of bandwidth.
• Routing algorithms are configured to use two different routing policies: SDN-LB and traditional network shortest path.

Each routing policy is used in both 1R and 3R experiments and final results are presented and compared.

Both routing algorithms play a vital role in illustrating some advantages of using our simulator. They clearly show the
difference between traditional networks and SDN-enabled networks in terms of optimizing performance of MapReduce
applications. For the traditional networks, we implemented the well-known Dijkstra’s algorithm14 to find the shortest
paths to destinations based on a minimum number of traversing network nodes. One limitation of traditional networks
is that it lacks the selection of different paths from a specific source to a specific destination in a dynamic manner, despite
having many elected paths. It finds all elected paths and randomly selects one path where flows of respective source and
destination permanently travel via the selected path. On the other hand, SDN-enabled networks can program the network
on the fly; therefore, we modeled and implemented an SDN-LB algorithm by extending the Dijkstra’s algorithm with
two objectives of finding routes that obtain a minimum number of traversing node and then finding a route that has the
maximum bandwidth among the elected routes. Every time a new flow enters the network, the SDN controller attempts
to balance the usage of links by finding an appropriate route for the flow based on our proposed algorithm. For example,
two flows from the same VM can have two different routes to the same destination VM, which would theoretically and
practically reduce network transmission time for MapReduce applications.

To set up the simulated environments, we created a single cloud data center with the most used fat-tree topology in
existing data centers.48 Figure 9 depicts the physical topology that includes three layers of switches and one leaf layer of
hosts containing VMs. There are four core switches (L4), eight aggregation switches (L3), eight edge switches (L2), and
16 VMs (L1) at the leaf of the tree. The network and VMs are configured according to Table 4. The structure and link
arrangement of the fat-tree topology enables all switches to have additional links to one another so that transmission of
data can follow different paths according to a given routing and QoS policies. Every link is configured with a bandwidth
of 1 Gbps. The main VM that contains the YARN engine, including the HDFS file system, is connected to the edge switch
via a link’s bandwidth of 3 Gbps. As the HDFS node is connected to a single link, it would not take advantage of SDN-LB
if its link cannot accommodate a high volume of data. Thus, it is important to have such high bandwidth to demonstrate
the impact of SDN-LB.

910 ALWASEL et al.

F I G U R E 9 Fat-tree topology used
in the simulated use-case experiments
[Colour figure can be viewed at
wileyonlinelibrary.com]

T A B L E 4 Infrastructure configuration for the use-case

CPUs RAM (GB) MIPS/CPU Total MIPS

VM 4 4 1250 5000

Link Bandwidth – –

Network HDFS to edge switch 3 Gbps – –

VMs to edge switches 1 Gbps – –

edge switches to aggregate switches 1 Gbps – –

aggregate switches to core switches 1 Gbps – –

Abbreviations: CPU, central processing unit; MIPS, million of instructions per second; VM, virtual machine.

The MapReduce configurations of R1 and R3 experiments are shown in Table 5. For R1, the replication factor is
set to one, which means that every block of HDFS and reducer is only transferred to a single elected VM. On the
other hand, R3 is configured to replicate every HDFS data block to three different VMs along with requesting every
reducer to split its final output into blocks and replicate each block according to the replication factor. Such configura-
tion demonstrates the impact of replication mechanisms on the overall MapReduce performance. As the HDFS block
size can be altered, we set it up to 950 MB so that the number of mappers is equal to 16. We try to place HDFS, map-
pers, and reducers in separate VMs as much as possible in order to heavily stress the network within more MapReduce
traffic.

7.1 Results of use cases

BigDataSDNSim derived the proper data sizes to be transferred from one element to another (e.g., from HDFS to elected
VMs) based on Table 5 and the MapReduce-HDFS modeling in Figure 4. Figure 10(A) demonstrates the size of blocks to
be transferred from HDFS, residing in the main VM, to other elected VMs, which are nominated for running mappers.
It can be seen that the last block(s) contain fewer data compared with others due to the use of division by repeated
subtraction. Figure 10(B) shows the output size to be transferred from every mapper to every reducer. We assume that
the output of every mapper is equally divided by the total number of reducers. Figure 10(C) illustrates the block size of
every reducer to be transferred to elected VMs. As mentioned earlier, the HDFS requires every reducer to split its output
into blocks, replicate every block according to the replication factor, and send every replicated block to nominated VMs.
Finally, Figure 10(D) shows the total output size of every reducer to be transferred to the main VM to be combined as the
final data.

http://wileyonlinelibrary.com

ALWASEL et al. 911

T
A

B
L

E
5

M
ap

Re
du

ce
co

nf
ig

ur
at

io
n

fo
rt

he
us

e-
ca

se
ex

pe
rim

en
ts

U
se

-c
as

e
R

ep
lic

at
io

n
fa

ct
or

To
ta

le
xe

cu
te

d
M

IP
S

pe
r

m
ap

pe
r

To
ta

le
xe

cu
te

d
M

IP
S

pe
r

re
du

ce
r

N
um

be
r

of
m

ap
pe

rs
N

um
be

r
of

re
du

ce
rs

D
at

a
si

ze
-

H
D

FS
to

V
M

s
(m

ap
pe

rs
)

D
at

a
si

ze
-

m
ap

pe
rs

to
re

du
ce

rs

Fi
na

ld
at

a
si

ze
-

re
du

ce
rs

to
th

e
m

ai
n

V
M

R
ep

lic
at

ed
da

ta
si

ze
-

re
du

ce
rs

to
V

M
s

H
D

FS
B

lo
ck

Si
ze

Si
ng

le
re

pl
ic

a
(R

1)
1

50
0,

00
0

15
0,

00
0

16
3

1
*1

5
=

15
G

B
12

G
B

3
G

B
1

*3
=

3
G

B
95

0
M

B

Th
re

e
re

pl
ic

as
(R

3)
3

50
0,

00
0

15
0,

00
0

16
3

3
*1

5
=

45
G

B
12

G
B

3
G

B
3

*3
=

9
G

B
95

0
M

B

A
bb

re
vi

at
io

ns
:H

D
FS

,H
ad

oo
p

di
st

rib
ut

ed
fil

e
sy

st
em

;M
IP

S,
m

ill
io

n
of

in
st

ru
ct

io
ns

pe
rs

ec
on

d;
V

M
,v

irt
ua

lm
ac

hi
ne

.

912 ALWASEL et al.

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

7
5
0

0

300

600

900

1
−

1

2
−

2

3
−

3

4
−

4

5
−

5

6
−

6

7
−

7

8
−

8

9
−

9

1
0
−

1
0

1
1
−

1
1

1
2
−

1
2

1
3
−

1
3

1
4
−

1
4

1
5
−

1
5

1
6
−

1
6

Block ID − VM ID

D
a
ta

 s
iz

e
 (

M
B

)

Block size transferred from HDFS to elected VMs (R1)

0

150

250

1
−

1
1
−

2
1

−
3

2
−

1
2

−
2

2
−

3
3

−
1

3
−

2
3
−

3
4
−

1
4
−

2
4
−

3
5
−

1
5
−

2
5
−

3
6
−

1
6
−

2
6
−

3
7
−

1
7
−

2
7
−

3
8
−

1
8
−

2
8
−

3
9
−

1
9
−

2
9
−

3
1
0
−

1
1
0
−

2
1
0
−

3
1
1
−

1
1
1
−

2
1
1
−

3
1
2
−

1
1
2
−

2
1
2
−

3
1
3
−

1
1
3
−

2
1
3
−

3
1
4
−

1
1
4
−

2
1
4
−

3
1
5
−

1
1
5
−

2
1
5
−

3
1
6
−

1
1
6
−

2
1
6
−

3

Mapper ID − Reducer ID

D
a
ta

 s
iz

e
 (

M
B

)

The output size of every mapper transferred to every reducer (R1)

950

50

950

50

950

50

0

250

500

750

1000

1−1 1−2 2−3 2−4 3−5 3−6
Block ID − VM ID

D
a
ta

 s
iz

e
 (

M
B

)

Reducer 1 Reducer 2 Reducer 3

The output block size of every reducer
transferred to elected VMs (R1)

0

250

500

750

1000

1 1 1
VM ID

D
a
ta

 s
iz

e
 (

M
B

)

Reducer 1 Reducer 2 Reducer 3

The final output size of every reducer
transferred to the main VM (R1)

(A)

(B)

(C) (D)

F I G U R E 10 Data size of a single replication (R1) [Colour figure can be viewed at wileyonlinelibrary.com]

Figures 11 and 12 illustrate the transmission time of R1 in the traditional network and SDN-LB, respectively. Some of
the transmissions are equal to zero because both the source and destination elements reside in the same VM. Moreover,
some of the transmissions are shorter than others. This is because the number of transmissions traveling in the same
path is smaller than the number of transmissions traveling via different paths, which results in shorter transmission time.
Figure 13 shows the performance comparison of the R1 experiment between the traditional network and SDN-LB. In
Figure 13(A), it is apparent that the SDN-LB decreases the transmission time by approximately 45% as compared with the
traditional network. Figure 13(B) shows the execution time of the mappers and reducers. It is expected similar execution
times for the SDN and traditional network as the policy for the CPU scheduling, the distribution of mappers and reducers,
and the number of MIPS is the same. The results in Figure 13(C) show the total completion time of R1 in the traditional
network and SDN-LB. The total completion time is determined from the time the HDFS starts transferring data blocks

http://wileyonlinelibrary.com

ALWASEL et al. 913

0

4
.7

5

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
3

.1

1
0

.5

0

5

10

15

1
−

1

2
−

2

3
−

3

4
−

4

5
−

5

6
−

6

7
−

7

8
−

8

9
−

9

1
0

−
1

0

1
1

−
1

1

1
2

−
1

2

1
3

−
1

3

1
4

−
1

4

1
5

−
1

5

1
6

−
1

6

Block ID − VM ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Transmission time of blocks from HDFS to the VMs of mappers (R1)

0

4
.2

5

7
.4

9

4
.2

5

0

7
.4

9

7
.4

9

7
.4

9

0

7
.4

9

7
.4

9

4
.2

5

9 9

0.0

2.5

5.0

7.5

10.0

1
−

1
1
−

2
1
−

3
2
−

1
2
−

2
2
−

3
3
−

1
3
−

2
3
−

3
4
−

1
4
−

2
4
−

3
5
−

1
5
−

2
5
−

3
6
−

1
6
−

2
6
−

3
7
−

1
7
−

2
7
−

3
8
−

1
8
−

2
8
−

3
9
−

1
9
−

2
9
−

3
1
0
−

1
1
0
−

2
1
0
−

3
1
1
−

1
1
1
−

2
1
1
−

3
1
2
−

1
1
2
−

2
1
2
−

3
1
3
−

1
1
3
−

2
1
3
−

3
1
4
−

1
1
4
−

2
1
4
−

3
1
5
−

1
1
5
−

2
1
5
−

3
1
6
−

1
1
6
−

2
1
6
−

3

Mapper ID − Reducer ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Transmission time ofintermediate data from every mapper to all reducers (R1)

0
0.15

2

0.2

2

0.2

0

1

2

3

4

1−1 1−2 2−3 2−4 3−5 3−6
Block ID − VM ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Reducer 1 Reducer 2 Reducer 3

Transmission time of blocks from reduc-
ers to elected VMs (R1)

0

1 1

0

1

2

3

1 1 1
VM ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Reducer 1 Reducer 2 Reducer 3

Transmission time of final outputs from
reducers to the main VM (R1)

(A)

(B)

(C) (D)

F I G U R E 11 Transmission time of MapReduce in a traditional network (R1) [Colour figure can be viewed at wileyonlinelibrary.com]

and ends when the reducers send their final output to the main VM. It can be seen that the SDN-LB decreases the total
completion time by approximately 8% in comparison to the traditional network.

Figure 14 illustrates the data size to be transferred from one element to another in R3. The only difference between R3
and R1 is that the former replicates every block of HDFS and reducer three times, which increases the overall data sizes.
Figures 15 and 16 illustrate the transmission time of R3 in the traditional network and SDN-LB, respectively. Figure 17
depicts a performance comparison of R3 between the traditional network and SDN-LB. It can be noticed that the former
decreases the network transmission time by approximately 48% as compared with the latter. The SDN-LB also decreases
the total completion time by approximately 14% in comparison to the traditional network.

The comparison of total data size and total completion time between R1 and R3 is shown in Figure 18. Figure 18(A)
shows that R1 has a smaller data size because its replication factor is set to one. In Figure 18(B), it can be observed that

http://wileyonlinelibrary.com

914 ALWASEL et al.

0

4
.7

5

6
.6

5

6
.4

5

6
.6

5

6
.4

5

6
.6

5

6
.4

5

6
.6

5

6
.4

5

6
.6

5

6
.4

5

6
.6

5

6
.4

5

6
.6

5

5
.2

5

0.0

2.5

5.0

7.5

1
−

1

2
−

2

3
−

3

4
−

4

5
−

5

6
−

6

7
−

7

8
−

8

9
−

9

1
0
−

1
0

1
1
−

1
1

1
2
−

1
2

1
3
−

1
3

1
4
−

1
4

1
5
−

1
5

1
6
−

1
6

Block ID − VM ID

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Transmission time of blocks from HDFS to the VMs of mappers (R1)

0

4
.2

4

4
.2

4

4
.2

4

0

4
.2

4

4
.2

4

4
.2

4

0

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

3
.7

5 4
.2

4

4
.2

4

0

1

2

3

4

5

6

1
−

1
1
−

2
1
−

3
2
−

1
2
−

2
2
−

3
3
−

1
3
−

2
3
−

3
4
−

1
4
−

2
4
−

3
5
−

1
5
−

2
5
−

3
6
−

1
6
−

2
6
−

3
7
−

1
7
−

2
7
−

3
8
−

1
8
−

2
8
−

3
9
−

1
9
−

2
9
−

3
1
0
−

1
1
0
−

2
1
0
−

3
1
1
−

1
1
1
−

2
1
1
−

3
1
2
−

1
1
2
−

2
1
2
−

3
1
3
−

1
1
3
−

2
1
3
−

3
1
4
−

1
1
4
−

2
1
4
−

3
1
5
−

1
1
5
−

2
1
5
−

3
1
6
−

1
1
6
−

2
1
6
−

3

Mapper ID − Reducer ID

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Transmission time ofintermediate data from every mapper to all reducers (R1)

0
0.15

2

0.2

2

0.2

0

1

2

3

4

1−1 1−2 2−3 2−4 3−5 3−6
Block ID − VM ID

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Reducer 1 Reducer 2 Reducer 3

Transmission time of blocks from reduc-
ers to elected VMs (R1)

0

1 1

0

1

2

3

1 1 1
VM ID

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Reducer 1 Reducer 2 Reducer 3

Transmission time of final outputs from
reducers to the main VM (R1)

(A)

(B)

(C) (D)

F I G U R E 12 Transmission time of MapReduce in an SDN load balancing network (R1). SDN, software-defined networking [Colour
figure can be viewed at wileyonlinelibrary.com]

R1 has a shorter total completion time in both SDN-LB and traditional network as compared with R3. Moreover, the
replication factor is directly proportional to the total completion time.

R1 and R3 illustrate an overview of BigDataSDNSim’s modeling and features. They stress the significance of
the simulator for testing the strengths and weaknesses of new solutions intended for optimizing the performance
of MapReduce applications in SDN-enabled cloud environments. BigDataSDNSim shows a full picture of the pos-
sible states of hypotheses and new proposed solutions. By obtaining the results of every solution, individuals can
easily identify and address hidden issues along with ensuring the optimal performance of their approaches and
algorithms.

http://wileyonlinelibrary.com

ALWASEL et al. 915

13.84

25.1

0

40

80

120

160

SDN
load balancing

Traditional
network

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Total transmission time

130 130

0

40

80

120

160

SDN
load balancing

Traditional
network

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Total processing time

143.84
155.1

0

40

80

120

160

SDN
load balancing

Traditional
network

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Total completion time

(A) (B) (C)

F I G U R E 13 Performance comparison of MapReduce in a traditional network and SDN load balancing (R1). SDN, software-defined
networking [Colour figure can be viewed at wileyonlinelibrary.com]

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

9
5
0

7
5
0

7
5
0

7
5
0

0

300

600

900

1
−

1
1
−

2
1
−

3
2
−

4
2
−

5
2
−

6
3
−

7
3
−

8
3
−

9
4
−

1
0

4
−

1
1

4
−

1
2

5
−

1
3

5
−

1
4

5
−

1
5

6
−

1
6

6
−

1
6
−

2
7
−

3
7
−

4
7
−

5
8
−

6
8
−

7
8
−

8
9
−

9
9
−

1
0

9
−

1
1

1
0
−

1
2

1
0
−

1
3

1
0
−

1
4

1
1
−

1
5

1
1
−

1
6

1
1
−

1
1
2
−

2
1
2
−

3
1
2
−

4
1
3
−

5
1
3
−

6
1
3
−

7
1
4
−

8
1
4
−

9
1
4
−

1
0

1
5
−

1
1

1
5
−

1
2

1
5
−

1
3

1
6
−

1
4

1
6
−

1
5

1
6
−

1
6

Block ID − VM ID

D
a
ta

 s
iz

e
 (

M
B

)

Block size transferred from HDFS to elected VMs (R3)

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

2
5
0

0

100

200

300

1
−

1
1
−

2
1
−

3
2
−

1
2
−

2
2
−

3
3
−

1
3
−

2
3
−

3
4
−

1
4
−

2
4
−

3
5
−

1
5
−

2
5
−

3
6
−

1
6
−

2
6
−

3
7
−

1
7
−

2
7
−

3
8
−

1
8
−

2
8
−

3
9
−

1
9
−

2
9
−

3
1
0
−

1
1
0
−

2
1
0
−

3
1
1
−

1
1
1
−

2
1
1
−

3
1
2
−

1
1
2
−

2
1
2
−

3
1
3
−

1
1
3
−

2
1
3
−

3
1
4
−

1
1
4
−

2
1
4
−

3
1
5
−

1
1
5
−

2
1
5
−

3
1
6
−

1
1
6
−

2
1
6
−

3

Mapper ID − Reducer ID

D
a
ta

 s
iz

e
 (

M
B

)

The output size of every mapper transferred to every reducer (R3)

9
5
0

9
5
0

9
5
0

5
0

5
0

5
0

9
5
0

9
5
0

9
5
0

5
0

5
0

5
0

9
5
0

9
5
0

9
5
0

5
0

5
0

5
0

0

300

600

900

1
−

1
1
−

2
1
−

3
2
−

4
2
−

5
2
−

6
1
−

7
1
−

8
1
−

9
2
−

1
0

2
−

1
1

2
−

1
2

1
−

1
3

1
−

1
4

1
−

1
5

2
−

1
6

1
−

1
1
−

2

Block ID − VM ID

D
a
ta

 s
iz

e
 (

M
B

)

Reducer 1 Reducer 2 Reducer 3

The output block size of every reducer
transferred to elected VMs (R3)

0

250

500

750

1000

1 1 1
VM ID

D
a
ta

 s
iz

e
 (

M
B

)

Reducer 1 Reducer 2 Reducer 3

The total output size of every reducer
transferred to the main VM (R3)

(A)

(B)

(C) (D)

F I G U R E 14 Data size of three replications (R3) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

916 ALWASEL et al.

0

1
4

.2
5

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

0

1
4

.2
5

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

0

1
4

.2
5

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
9

.3
1

3
1

.5
1

3
1

.5
1

3
1

.5
1

0

10

20

30

40

50

1
−

1
1

−
2

1
−

3
2

−
4

2
−

5
2

−
6

3
−

7
3

−
8

3
−

9
4

−
1

0
4

−
1

1
4

−
1

2
5

−
1

3
5

−
1

4
5

−
1

5
6

−
1

6
6

−
1

6
−

2
7

−
3

7
−

4
7

−
5

8
−

6
8

−
7

8
−

8
9

−
9

9
−

1
0

9
−

1
1

1
0

−
1

2
1

0
−

1
3

1
0

−
1

4
1

1
−

1
5

1
1

−
1

6
1

1
−

1
1

2
−

2
1

2
−

3
1

2
−

4
1

3
−

5
1

3
−

6
1

3
−

7
1

4
−

8
1

4
−

9
1

4
−

1
0

1
5

−
1

1
1

5
−

1
2

1
5

−
1

3
1

6
−

1
4

1
6

−
1

5
1

6
−

1
6

Block ID − VM ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Transmission time of blocks from HDFS to the VMs of mappers (R3)

0

4
.2

5

7
.4

9

4
.2

5

0

7
.4

9

7
.4

9

7
.4

9

0

7
.4

9

7
.4

9

4
.2

5

9 9

0.0

2.5

5.0

7.5

10.0

1
−

1
1

−
2

1
−

3
2

−
1

2
−

2
2

−
3

3
−

1
3

−
2

3
−

3
4

−
1

4
−

2
4

−
3

5
−

1
5

−
2

5
−

3
6

−
1

6
−

2
6

−
3

7
−

1
7

−
2

7
−

3
8

−
1

8
−

2
8

−
3

9
−

1
9

−
2

9
−

3
1

0
−

1
1

0
−

2
1

0
−

3
1

1
−

1
1

1
−

2
1

1
−

3
1

2
−

1
1

2
−

2
1

2
−

3
1

3
−

1
1

3
−

2
1

3
−

3
1

4
−

1
1

4
−

2
1

4
−

3
1

5
−

1
1

5
−

2
1

5
−

3
1

6
−

1
1

6
−

2
1

6
−

3

Mapper ID − Reducer ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Transmission time ofintermediate data from every mapper to all reducers (R3)

0

4
.1 4
.2

0
.6

0
.6

0
.6

6 6 6

0
.6

0
.6

0
.6

6 6 6

0
.6

0
.6

0
.6

0

2

4

6

1
−

1
1

−
2

1
−

3
2
−

4
2

−
5

2
−

6
1
−

7
1

−
8

1
−

9
2

−
1

0
2

−
1

1
2

−
1

2
1

−
1

3
1

−
1

4
1

−
1

5
2

−
1

6
1

−
1

1
−

2

Block ID − VM ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
) Reducer 1 Reducer 2 Reducer 3

Transmission time of blocks from reduc-
ers to elected VMs (R3)

0

1

2

3

1 1 1
VM ID

T
ra

n
s
m

is
s
io

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Reducer 1 Reducer 2 Reducer 3

Transmission time of final outputs from
reducers to the main VMs (R3)

(A)

(B)

(C) (D)

F I G U R E 15 Transmission time of MapReduce in a traditional network (R3) [Colour figure can be viewed at wileyonlinelibrary.com]

8 CONCLUSIONS AND FUTURE WORK

The advent of the MapReduce programming model, BDMS, and clouds has contributed to improving the existing practice
of data analysis and synthesis. The architecture and performance of MapReduce, which is managed by a BDMS, depends
on two major factors: processing and network transmission. Most of the existing solutions inform design decisions in
terms of MapReduce processing performance and neglects the transmission performance due to the lack of real-time,
dynamic network configurations. The emergence of SDN has enabled numerous applications, including big data applica-
tions, to jointly optimize the performance of processing and transmission. Simulation-based approaches can be significant
tools to test and trace the strengths of proposed MapReduce SDN-powered solutions and techniques. As the use of
simulation-based approaches has been widely applied in numerous fields for analyzing new hypotheses and solutions

http://wileyonlinelibrary.com

ALWASEL et al. 917

850

1000 1000

0

250

500

750

1000

Real
experiment

Simulated
exp1

Simulated
exp2

Ba
nd

w
id

th
 (M

bp
s)

Bandwidth comparison

2.57

2.18 2.18

0.5

1.0

1.5

2.0

2.5

Real
experiment

Simulated
exp1

Simulated
exp2

Tr
an

sm
is

si
on

 ti
m

e
(s

ec
on

ds
)

Transmission time comparison

41.33 41.67 41.33

6.67 6.72 6.67

0

10

20

30

40

Mappers Reducer

Pr
oc

es
si

ng
 ti

m
e

(s
ec

on
ds

)

Real experiment
Simulated exp1
Simulated exp2

Processing time comparison

50.56 50.57 50.18

0

10

20

30

40

50

Real
experiment

Simulated
exp1

Simulated
exp2

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

)

Total completion time comparison

0

5000

10000

15000

20000

25000

1 100 200 300 400 500
Multiplication factor

C
om

pl
et

io
n

tim
e

(s
ec

on
ds

) Real experiment

Simulated exp1

Simulated exp2

Correlation comparison

(A)

(D) (E)

(B) (C)

F I G U R E 16 Transmission time of MapReduce in SDN load balancing network (R3). SDN, software-defined networking [Colour figure
can be viewed at wileyonlinelibrary.com]

28.98

55.31

0

40

80

120

160

SDN
load balancing

Traditional
network

T
ra

n
s
m

is
s
io

n
 t
im

e
 (

s
e
c
o
n
d
s
)

Total transmission time (R3)

130 130

0

40

80

120

160

SDN
load balancing

Traditional
network

P
ro

c
e
s
s
in

g
 t
im

e
 (

s
e
c
o
n
d
s
)

Total processing time (R3)

158.98

185.31

0

50

100

150

200

SDN
load balancing

Traditional
network

C
o
m

p
le

ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Total completion time (R3)

(A) (B) (C)

F I G U R E 17 Performance comparison of MapReduce between a traditional network and SDN load balancing (R3). SDN,
software-defined networking [Colour figure can be viewed at wileyonlinelibrary.com]

along with raising awareness of hidden dilemmas, this article presents BigDataSDNSim: a novel simulation-based tool
that is capable of simulating and evaluating the performance of big data applications in SDN-enabled cloud data centers.

The objective of our simulator is to offer holistic modeling and integration of MapReduce BDMS-based models that
are compatible with SDN network functions in cloud infrastructures. BigDataSDNSim provides an infrastructure for
researchers to quantify the performance impacts of MapReduce applications in terms of a joint-design of host and net-
work. It contains a variety of application-network policies for diverse purposes (e.g., scheduling and routing), which can be
seamlessly extended without a deep understanding of the complex interactions among BigDataSDNSim’s components. In

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

918 ALWASEL et al.

33

69

0

20

40

60

80

One replica Three replicas

D
a

ta
 s

iz
e

 (
G

B
)

Total data size

143.84
155.1 158.98

185.31

0

50

100

150

200

One replica Three replica

C
o

m
p

le
ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

SDN load balancing
Traditional network

Total completion time

(A) (B) F I G U R E 18 Comparison
between R1 and R3 [Colour figure can
be viewed at wileyonlinelibrary.com]

order to demonstrate the correctness and accuracy of our simulator, the performance of BigDataSDNSim is validated with
a real MapReduce SDN-enabled environment. The validation measures the performance similarities of BigDataSDNSim
with the real environment. It reports the comparison results of bandwidth, transmission time, processing time, total com-
pletion time, and correlation. Validation results reveal that BigDataSDNSim simulation results are closely comparable to
results obtained from real MapReduce SDN-enabled environments.

The practicality and advantages of using BigDataSDNSim are demonstrated by presenting two use cases. The use cases
focus on MapReduce performance in terms of the impact of using HDFS replication mechanisms and the advantages of
using SDN. The performance impacts of SDN-LB versus traditional networks on MapReduce applications in cloud data
centers are illustrated. The results of the simulated experiments confirm the SDN-LB decreases the total completion time
of MapReduce applications as compared with the traditional networks. As our future work, we will focus on the modeling
and simulating of stream paradigms in the context of big data SDN-powered cloud environments.

Software availability: The BigDataSDNSim software with the source code can be downloaded from https://github.
com/kalwasel/BigDataSDNSim. A number of examples and tutorials illustrating the use of BigDataSDNSim are given on
the web site.

ACKNOWLEDGMENTS
The work in this article is supported by Saudi Electronic University (SEU) through the Saudi Arabian Culture Bureau
(SACB) in the United Kingdom. This research is also supported by three UK projects LANDSLIP: NE/P000681/1,
FloodPrep:NE/P017134/1, and PACE: EP/R033293/1.

ORCID
Khaled Alwasel https://orcid.org/0000-0002-2530-1163
Rajkumar Buyya https://orcid.org/0000-0001-9754-6496
Rajiv Ranjan https://orcid.org/0000-0002-6610-1328

REFERENCES
1. Chen M, Mao S, Liu Y. Big data: a survey. Mob Netw Appl. 2014;19(2):171-209.
2. Kambatla K, Kollias G, Kumar V, Grama A. Trends in big data analytics. J Parall Distrib Comput. 2014;74(7):2561-2573.
3. Dean Jeffrey, Ghemawat Sanjay. MapReduce: simplified data processing on large clusters; 2004.
4. Iqbal MH, Soomro TR. Big data analysis: apache storm perspective. Int J Comput Trends Technol. 2015;19(1):9-14.
5. Ranjan R. Streaming big data processing in datacenter clouds. IEEE Cloud Comput. 2014;1(1):78-83.
6. Vavilapalli VK, Murthy AC, Douglas C, et al. Apache Hadoop YARN: yet another resource negotiator. Paper presented at: Proceedings of

the 4th annual Symposium on Cloud Computing; 2013; Santa Clara, California.
7. Ahmad F, Chakradhar ST, Raghunathan A, Vijaykumar TN. Tarazu: optimizing MapReduce on heterogeneous clusters. ACM SIGARCH

Comput Architect News. 2012;40(1):61-74.
8. Fischer MJ, Su X, Yin Y. Assigning tasks for efficiency in hadoop. Paper presented at: Proceedings of the 22nd Annual ACM Symposium

on Parallelism in Algorithms and Architectures; 2010:30-39.
9. Alwasel K, Li Y, Jayaraman PP, Garg S, Calheiros RN, Ranjan R. Programming SDN-native big data applications: research gap analysis.

IEEE Cloud Computing. 2017;4(5):62-71.

http://wileyonlinelibrary.com
https://github.com/kalwasel/BigDataSDNSim
https://github.com/kalwasel/BigDataSDNSim
https://orcid.org/0000-0002-2530-1163
https://orcid.org/0000-0002-2530-1163
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0002-6610-1328
https://orcid.org/0000-0002-6610-1328

ALWASEL et al. 919

10. Cui L, Yu FR, Yan Q. When big data meets software-defined networking: SDN for big data and big data for SDN. IEEE Netw.
2016;30(1):58-65.

11. Cheng D, Rao J, Jiang C, Zhou X. Resource and deadline-aware job scheduling in dynamic hadoop clusters. Paper presented at: Proceedings
of the 2015 IEEE International Parallel and Distributed Processing Symposium; 2015:956-965: IEEE.

12. Hashem IAT, Anuar NB, Marjani M, et al. MapReduce scheduling algorithms: a review. J Supercomput. 2018;76:1-31.
13. Stone HS. Multiprocessor scheduling with the aid of network flow algorithms. IEEE Trans Softw Eng. 1977;1:85-93.
14. Dijkstra EW. A note on two problems in connexion with graphs. Numer Math. 1959;1(1):269-271.
15. Holland JH. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial

Intelligence. Cambridge, Massachusetts, United States: MIT Press; 1992.
16. Chen Q, Zhang D, Guo M, Deng Q, Guo S. Samr: a self-adaptive MapReduce scheduling algorithm in heterogeneous environment. Paper

presented at: Proceedings of the 2010 10th IEEE International Conference on Computer and Information Technology; 2010:2736-2743;
IEEE.

17. Jha DN, Michalak P, Wen Z, Watson P, Ranjan R. Multi-objective deployment of data analysis operations in heterogeneous IoT
infrastructure. IEEE Trans Ind Inform. 2019;16:7014–7024.

18. Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S, Uhlig S. Software-defined networking: a comprehensive survey.
Proc IEEE. 2015;103(1):14-76.

19. McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun
Rev. 2008;38(2):69-74.

20. Qin P, Dai B, Huang B, Xu G. Bandwidth-aware scheduling with SDN in Hadoop: a new trend for big data. IEEE Syst J.
2015;11(4):2337-2344.

21. Zhao S, Sydney A, Medhi D. Building application-aware network environments using SDN for optimizing Hadoop applications. Paper
presented at: Proceedings of the 2016 ACM SIGCOMM Conference; 2016:583-584.

22. Anadiotis A-CG, Morabito G, Palazzo S. An SDN-assisted framework for optimal deployment of MapReduce functions in WSNs. IEEE
Trans Mob Comput. 2015;15(9):2165-2178.

23. Calheiros RN, Ranjan R, Beloglazov A, De Rose CAF, Buyya R. CloudSim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms. Softw Pract Exp. 2011;41(1):23-50.

24. Jha DN, Alwasel K, Alshoshan A, et al. IoTSim-Edge: a simulation framework for modeling the behavior of internet of things and edge
computing environments. Softw Pract Exp. 2020;50:844-867.

25. Kecskemeti G, Casale G, Jha DN, Lyon J, Rajiv R. Modelling and simulation challenges in internet of things. IEEE Cloud Comput.
2017;4(1):62-69.

26. Garg SK, Buyya R. NetworkCloudSim: modelling parallel applications in cloud simulations. Paper presented at: Proceedings of the 4th
IEEE International Conference on Utility and Cloud Computing (UCC); 2011; Victoria, NSW, Australia.

27. Chen W, Deelman E. WorkflowSim: a toolkit for simulating scientific workflows in distributed environments. Paper presented at:
Proceedings of the IEEE 8th International Conference on E-science (e-science); 2012; Chicago, IL.

28. Kliazovich D, Bouvry P, Khan SU. GreenCloud: a packet-level simulator of energy-aware cloud computing data centers. J Supercomput.
2012;62(3):1263-1283.

29. Núñez A, Vázquez-Poletti JL, Caminero AC, Castañé GG, Carretero J, Llorente IM. iCanCloud: a flexible and scalable cloud infrastructure
simulator. J Grid Comput. 2012;10(1):185-209.

30. Lantz B, Heller B, McKeown N. A network in a laptop: rapid prototyping for software-defined networks. Paper presented at: Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks; 2010; Monterey, California.

31. Wette P, Dräxler M, Schwabe A, Wallaschek F, Zahraee MH, Karl H. Maxinet: distributed emulation of software-defined networks. Paper
presented at: Proceedings of the 2014 IFIP Networking Conference; 2014:1-9; IEEE.

32. Neves MV, De Rose CAF, Katrinis K. MRemu: an emulation-based framework for datacenter network experimentation using realistic
mapreduce traffic. Paper presented at: Proceedings of the IEEE 23rd International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS); 2015; Atlanta, GA.

33. Wang S-Y, Chou C-L, Yang C-M. EstiNet OpenFlow network simulator and emulator. IEEE Commun Mag. 2013;51(9):110-117.
34. Son J, Dastjerdi AV, Calheiros RN, Ji X, Yoon Y, Buyya R. CloudSimSDN: modeling and simulation of software-defined cloud data centers.

Paper presented at: Proceedings of the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid); 2015;
Shenzhen, China.

35. Kathiravelu P, Veiga L. Software-defined simulations for continuous development of cloud and data center networks. Paper presented at:
Proceedings of the OTM Confederated International Conferences “On the Move to Meaningful Internet Systems”; 2016:3-23: Springer,
New York, NY.

36. Ghosh S, Busari SA, Dagiuklas T, et al. SDN-Sim: integrating a system-level simulator with a software defined network. IEEE Commun
Stand Mag. 2020;4(1):18-25.

37. Zeng X, Garg SK, Strazdins P, Jayaraman PP, Georgakopoulos D, Ranjan R. IOTSim: a simulator for analysing IoT applications. J Syst
Archit. 2017;72:93-107.

38. Jung J, Kim H. MR-CloudSim: designing and implementing MapReduce computing model on CloudSim. Paper presented at: Proceedings
of the ICT Convergence (ICTC), International Conference; 2012; Jeju Island, South Korea

39. Hammoud S, Li M, Liu Y, Alham NK, Liu Z. MRSim: a discrete event based MapReduce simulator. Paper presented at: Proceedings of the
Fuzzy Systems and Knowledge Discovery (FSKD), Seventh International Conference; 2010; Yantai, China.

920 ALWASEL et al.

40. Wang G, Butt AR, Pandey P, Gupta K. Using realistic simulation for performance analysis of MapReduce setups. Paper presented at:
Proceedings of the 1st ACM Workshop on Large-Scale System and Application Performance; 2009; Garching, Germany.

41. Almeida LB, Almeida EC, Murphy J, Robson E, Ventresque A. BigDataNetSim: a simulator for data and process placement in large big
data platforms. Paper presented at: Proceedings of the 2018 IEEE/ACM 22nd International Symposium on Distributed Simulation and
Real Time Applications (DS-RT); 2018:1-10: IEEE.

42. Calcaterra C, Carmenini A, Marotta A, Bucci U, Cassioli D. MaxHadoop: an efficient scalable emulation tool to test SDN protocols in
emulated Hadoop environments. J Netw Syst Manag. 2020;28:1610-1638.

43. Tüxen M, Rüngeler I, Rathgeb EP. Interface connecting the INET simulation framework with the real world. Paper presented at: Proceed-
ings of the 1st International Conference on Simulation Tools and Techniques for Communications, Networks and Systems & Workshops;
2008:1-6.

44. Shalimov A, Zuikov D, Zimarina D, Pashkov V, Smeliansky R. Advanced study of SDN/OpenFlow controllers. Paper presented at:
Proceedings of the 9th Central & Eastern European Software Engineering Conference; 2013:1-6; Russia.

45. Huang S, Huang J, Dai J, Xie T, Huang B. The HiBench benchmark suite: characterization of the MapReduce-based data analysis. Paper
presented at: Proceedings of the 2010 IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010); 2010:41-51:
IEEE.

46. Pfaff B, Davie B. The open vSwitch database management protocol. Internet requests for comments, RFC Editor, RFC; 2013:7047.
47. Tomonori F. Introduction to Ryu SDN framework. Open networking summit; 2013:1-14.
48. Al-Fares M, Loukissas A, Vahdat A. A scalable, commodity data center network architecture. ACM SIGCOMM Comput Commun Rev.

2008;38(4):63-74.
49. Teixeira J, Antichi G, Adami D, Del Chiaro A, Giordano S, Santos A. Datacenter in a box: test your SDN cloud-datacenter controller at

home. Paper presented at: Proceedings of the 2nd European Workshop on Software Defined Networks (EWSDN); 2013; Berlin, Germany
50. Gubbi J, Buyya R, Marusic S, Palaniswami M. Internet of things (IoT): a vision, architectural elements and future directions. Future Generat

Comput Syst. 2013;29(7):1645-1660.

How to cite this article: Alwasel K, Calheiros RN, Garg S, et al. BigDataSDNSim: A simulator for analyzing big
data applications in software-defined cloud data centers. Softw Pract Exper. 2021;51:893–920. https://doi.org/10.
1002/spe.2917

