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Chapter 1 

Big Data Analytics = Machine Learning + Cloud Computing 

Caesar Wu, Rajkumar Buyya, and Kotagiri Ramamohanarao 

1.1 Introduction 

Although the term Big Data has become popular, there is no general consensus about what it really means. Often, 

many professional data analysts would imply the process of Extraction, Transformation and Load (ETL) for large 

datasets as the connotation of Big Data.  A popular description of Big Data is based on three attributes of data: volume, 

velocity, and variety (or 3Vs). Nevertheless, it does not capture all the aspects of Big Data accurately. In order to 

provide a comprehensive meaning of Big Data, we will investigate this term from a historical perspective and see how 

it has been evolving from yesterday’s meaning to today’s connotation.  

Historically, the term Big Data is quite vague and ill-defined. It is not a precise term and does not carry a particular 

meaning rather than the notion of its size. The word “Big” is too generic. The question how “big” is big and how 

“small” is small [1] is relative to time, space and a circumstance. From an evolutionary perspective, the size of “Big 

Data” is always evolving. If we use the current global Internet traffic capacity [2] as a measuring stick yard, the 

meaning of Big Data’s volume would lie between Terabyte (TB or 1012 or 240) and Zettabyte (ZB or 1021 or 270) range. 

Based on historical data traffic growth rate, Cisco claimed that human has entered the ZB era in 2015 [2]. To understand 

significance of the data volume’s impact, let us glance at the average size of different data files shown in Table 1. 

Media Average Size of Data File Notes (2014) 

Web Page  1.6 - 2 MB Ave 100 objects 

eBook  1 - 5 MB 200-350 pages 

Song  3.5 - 5.8 MB Ave 1.9 MB/per minute(MP3) 256 Kbps rate (3 mins) 

Movie  100 - 120 GB 60 frames per second (MPEG-4 format, Full High Definition, 2 hours) 

Table 1: Typical Size of Different Data Files 

The main aim of this chapter is to provide a historical view of Big Data and to argue that Big Data is not just 3Vs, but 

rather 32Vs or 9Vs. These additional Big Data attributes reflect the real motivation behind Big Data Analytics (BDA). We 

believe that these expanded features clarify some basic questions about the essence of BDA: what problems Big Data 

can address, and what problems should not be confused as BDA. These issues are covered in the chapter through 

analysis of historical developments along with associated technologies that support Big Data processing. The rest of 

the chapter is organised into eight sections as follows:   

1) A historical Review for Big Data 
2) Interpretation of Big Data 3Vs, 4Vs and 6Vs  
3) Defining Big Data from 3Vs to 32Vs 
4) Big Data and Machine Learning 
5) Big Data and Cloud Computing 
6) Hadoop, HDFS, MapReduce, Spark and Flink   
7) ML + CC  BDA and Guidelines  
8) Conclusion 

1.2 A Historical Review of Big Data 

In order to capture the essence of Big Data, we provide the origin and history of BDA and then propose a precise 

definition of BDA. 
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1.2.1  The Origin of Big Data 

Several studies have been conducted on historical views and developments in BDA area.  Gil Press [3] provided a short 

history of Big Data starting from 1944, which was based on Rider’s work [4]. He covered 68 years of history of 

evolution of Big Data between 1944 and 2012 and illustrated 32 Big Data related events in the recent data science 

history. As Press’ indicated in his article, the fine line between the growth of data and Big Data has become blurred. 

Very often, the growth rate of data has been referred as “information explosion” (although “data” and “information” 

are often used interchangeably, two terms have different connotations). Press’ study is quite comprehensive and 

covers BDA events up to December 2013. Since then, there have been many relevant Big Data events.  Nevertheless, 

Press’ review did cover both Big Data and Data Science events. To this extent, the term Data Science could be 

considered as a complementary meaning of BDA.   

In comparison with Press’ review, Frank Ohlhorst [5] established the origin of Big Data to 1880 when the 1oth US census 

was held. The real problem during the 19th century was a statistics issue, which was how to survey and document 50 

million of North-American citizens. Although Big Data may contain computation of some statistics elements, these two 

terms have different interpretations today. Similarly, Winshuttle [6] believe the origin of Big Data was in the 19th 

century. They argue if data sets are so large and so complex and beyond traditional process and management 

capability, then these data sets can be considered as “Big Data”. In comparison to Press’, Winshuttle’s review 

emphasizes Enterprise Resource Planning (ERP) and implementation on cloud infrastructure. Moreover, the review 

also makes a predication for data growth to 2020. The total time span of its review was more than 220 years. 

Winshuttle’s Big Data history included many SAP events and its data products, such as HANA.  

The longest span of historical review for Big Data belongs to Bernard Marr’s description [7]. He traced the origin of Big 

Data back to 18,000 BCE. Marr argued that we should pay attention to historical foundations of Big Data, which are 

different approaches for human to capture, store, analyze and retrieve both data and information. Furthermore, Marr 

believed that the first person who casted the term “Big Data” was Erik Larson [9], who presented an article for 

Harper’s Magazine and it was subsequently reprinted in The Washington Post in 1989 because there were two 

sentences that consisted of the words of Big Data: “The keepers of Big Data say they do it for the consumer’s benefit. 

But data have a way of being used for purposes other than originally intended.” 

In contrast, Steve Lohr [10] disagrees with Marr’s view. He argues that just adopting the term alone might not have the 

today’s Big Data connotation because “The term Big Data is so generic that the hunt for its origin was not just an effort 

to find an early reference to those two words being used together”. Instead, the goal was the early use of the term 

that suggests its present interpretation — that is, not just a lot of data, but different types of data handled in new 

ways”. This is an important point. Based on this reasoning, we consider that Cox and Ellsworth  [8] as the origin of Big 

Data because they assigned a relatively accurate meaning to the existing view of Big Data, which they stated “…data 

sets are generally quite large, taxing the capacities of main memory, local disk and even remote disk. We call this the 

problem of Big Data. When data sets do not fit in main memory (in core), or when they do not fit even on local disk…”. 

Although today’s term may have extended meaning than Cox and Ellsworth’s term, this definition reasonably 

accurately reflects today’s connotation.  

Another historical review was contributed by Visualizing .org [11]. It focused on the timeline of how to implement BDA. 

Its historical description is mainly determined by events related to Big Data push by many Internet and IT companies, 

such as Google, Youtube, Yahoo, Facebook, Twitter and Apple. Especially, it emphasized the significant impact of 

Hadoop in the history of BDA. It primarily highlighted the significant role of Hadoop in the BDA. Based on these studies, 

we show the history of Big Data, Hadoop and its ecosystem in Figure 1. 
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Figure 1 A Short History of Big Data  

Undoubtedly, there will be many different views based on different interpretations of BDA. This will inevitably lead to 

many debates of Big Data implication or pros and cons.  

1.2.2 Debates of Big Data Implication 

 Pros 

There have been many debates regarding Big Data’ implication during the past few years. Many advocates declare Big 

Data as a new rock star [20] and Big Data will be the next frontier [21], [22] for innovation, competition and 

productivity because data is embedded in the modern human being’s life. Data that are generated by both machines 

and human in every second is a by-product of all other activities. It will become even the new epistemologies [23] in 

science. To certain degree, Mayer and Cukier [24] argued Big Data would revolutionize our way of thinking, working 

and living. They believe that a massive quantitive data accumulation will lead to qualitative advances at the core of BDA 

- machine learning, parallelism, metadata and predictions. “Big Data will be a source of new economic value and 

innovation”. Their conclusion is that data can speak for itself and we should let the data speak.  

To certain extent, Montjoye et al’s [25] echoed the above conclusion. They demonstrated that it is highly probable 

(over 90% reliability) to re-identify a person with as little as only four spatiotemporal data points (credit card 

transactions in a shopping mall) by leveraging Big Data Analytics. Their conclusion is that “large scale data sets of 

human behavior have the potential to fundamentally transform the way we fight diseases, design cities and perform 

research.” 

Cons 

In contrast, some argue that Big Data is inconclusive, overstated, exaggerated and misinformed by the media and data 

cannot speak for itself [12]. It does not matter how Big Dataset is. It could be just another delusion because “it is like 

having billions of monkeys typing, one of them will write Shakespeare.” [13]. In Dobelli’s term [14], we should “never 
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judge a decision by its outcome – outcome bias”. In other words, if one of the monkeys can type Shakespeare, we 

cannot conclude or inference that a monkey has sufficient intelligence to be Shakespeare.  

Gary Drenik [15] believed that the sentiment of the overeager adoption of Big Data is more like “Extraordinary Popular 

Delusion and the Madness of Crowds”, the description made by Charles Mackay [16] on his famous book’s title. 

Psychologically, it is a kind of a crowd emotion that seems to have a perpetual feedback loop. Drenik quoted this 

“madness” with Mackay’s warning: “We find that whole communities suddenly fix their minds upon one subject, and 

go mad in its pursuit; that millions of people become simultaneously impressed with one delusion, and run it till their 

attention is caught by some new folly more captivating than the first.”. The issue that Drenik has noticed “the hype 

overtaken reality and there was little time to think about” regarding Big Data.    The former Obama’s campaign CTO, 

Harper Reed, has the real story in terms of adoption of BDA. His remarks of Big Data were “literally hard” and 

“expensive” [34]. 

Danah Boyd et al [17] are quite sceptical regarding Big Data in term of its volume. They argued bigger data are not 

always better data from social science perspective. In responding to “The End of Theory” [18] proposition, Boyd 

asserted that theory or methodology is still highly relevant for today’s statistical inference and “The size of data should 

fit the research question being asked; in some cases, small is best”. They suggested that we should not pay a lot of 

attention to the volume of data. Philosophically, the critic is similar as the debate between John Stuart Mill (five Mill’s 

classical or empirical methods) and his critics [35] in 19th century, which Mill’s critics argued that it is impossible to bear 

on the intelligent question by just ingesting as much as data alone without some theory or hypothesis. This means that 

we cannot make Big Data do the work of theory.  

Another Big Data critique comes from David Lazer et al. [19]. They demonstrated that Google Flu Trends (GFT) 

prediction is the parable and identified two issues (Big Data hubris and algorithm dynamics) that contributed to GFT’s 

mistakes. The issue of “Big Data hubris” is that some observers believe that BDA can replace traditional data mining 

completely. The issue of “algorithm dynamics” is “the changes made by (Google’s) engineers to improve the 

commercial service and by consumers in using that service”. In another words, the changing algorithms for searching 

will directly impact on the users’ behavior. This will lead to the collected data is driven by deliberated algorithms. Lazer 

concluded there are many traps in BDA, especially for social media research. Their conclusion was “we are far from a 

place where they (BDA) can supplant more traditional methods or theories.”  

All these multiple views were due to different interpretations of Big Data and different implementations of BDA. This 

suggests that in order to resolve these issues, we should first clarify the definition of the term BDA and then discover 

the clash point based on the same term.   

1.3 Historical Interpretation of Big Data 

1.3.1 Methodology for Defining Big Data 

Intuitively, neither yesterday’s data volume (absolute size) nor today’s one can be defined as “Big”. Moreover, today’s 

“Big” may become tomorrow’s “small”. In order to clarify the term Big Data precisely and settle down the debate we 

can investigate and understand the functions of a definition based on the combination of Robert Baird’s [26] and Irving 

Copi’s [27] approaches (see Figure 2). 

 

Figure2: Methodology of Definition 
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Based on Baird or Irving’s approach of definition, we will first investigate the historical definition from an evolutionary 

perspective (lexical meaning). Then we extend the term from 3Vs to 9Vs or 32 Vs based on its motivation (stipulative 

meaning), which is to add more attributes for the term. Finally, we will eliminate ambiguity and vagueness of the term 

and make the concept of Big Data more precise and meaningful.  

1.3.2. Different Attributes of Definitions 

Gartner- 3Vs Definition 

Since 1997, many attributes have been added to Big Data. Among these attributes, three of them are the most popular, 

which they have been widely cited and adopted: The first one is so called Gartner’s interpretation or 3Vs. The root of 

this term can be traced back to February 2001. It was casted by Douglas Laney [28] in his white paper published by 

Meta group, which Gartner subsequently acquired in 2004. Douglas noticed that due to surging of e-commerce 

activities, data has grown along three dimensions, namely: 

1. Volume, which means Incoming data stream and Cumulative volume of data.  
2. Velocity, which represents the pace data used to support interaction and generated by interactions   
3. Variety, which signifies the variety of incompatible and inconsistent data formats and data structures. 

  
According to the history of Big Data timeline [28], Douglas Laney’s 3Vs definition has been widely regarded as the 

“common” attributes of Big Data but he stopped short of assigning these attributes to the term “Big Data”. 

IBM- 4Vs Definition 

IBM added another attribute or “V” for “Veracity” on the top of Douglas Laney’s 3Vs notation, which is so called as 

Four Vs of Big Data. It defines each “V” as following [29] [30]: 

1. Volume stands for scale of data 
2. Velocity denotes to analysing streaming data 
3. Variety indicates different forms of data 
4. Veracity implies uncertainty of data 

 
Paul C. Zikopoulos et al. [31] explained the reason behind the additional “V” or veracity dimension, which is “in 

response to the quality and source issues our clients began facing with their Big Data initiatives.” They are also aware of 

some analysts including other V-based descriptors for Big Data, such as variability and visibility. 

Microsoft - 6Vs Definition 

For the sake of maximising the business value, Microsoft extended Douglas Laney’s 3Vs attributes to 6 Vs [32], which it 

added Variability, Veracity and Visibility: 

1. Volume stands for scale of data 
2. Velocity denotes to analysing streaming data 
3. Variety indicates different forms of data 
4. Veracity focuses on trustworthiness of data sources. 
5. Variability refers to the complexity of data set. In comparison with “Variety” (or different data format), it 

means the number of variables in data sets. 
6. Visibility emphasise that you need have a full picture of data in order to make informative decision. 

More Vs for Big Data 

There has been also a 5 Vs Big Data definition presented by Yuri Demchenko [33] in 2013. He added the value dimension 

along with the IBM 4Vs’ definition (see Figure 3). Since Douglas Laney published 3Vs in 2001, there have been many 

additional “Vs”. We can find the number of Vs as many as eleven [41]. 
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Figure 3: From 3Vs, 4Vs, 5Vs and 6Vs Big Data Definition 

All these definitions, such as 3Vs, 4Vs, 5Vs or even 11 Vs are primarily trying to articulate the aspect of data. Most of 

them are the data-orientated definitions but fail to articulate Big Data clearly in a relationship to the essence of BDA. In 

order to understand the essential meaning, we have to clarify what data is. 

Data is everything within the universe. This means that data is within the existing limitation of technological capacity. If 

the technology capacity is allowed, there is no boundary or limitation for data. The question is why we should capture 

it in the first place. Clearly, the primary reason of capturing data is not because we have the capacity to capture high 

volume, high velocity and high variety data rather than expect to find a better solution for our research or business 

problem, which is to search for actionable intelligence. Pure data driven analysis may add little value for a decision 

maker. Sometime, it may only add the burden for the costs or resources of BDA. Perhaps, this is why Harper believes 

Big Data is really hard [34].  

1.3.3 Summary of 7 types Definitions of Big Data 

Table 2 shows seven types of definitions, summarized by Timo Elliott [41], based on more than 33 Big Data definitions 

[42]. 

No Type Description 

1 
The Original Big 
Data (3Vs) 

The original type of definition is referred to Douglas Laney’s Volume, Velocity and Variety or 
3Vs. It has been widely cited since 2001. Many have tried to extend the number of Vs, such as 
4Vs, 5Vs, 6Vs … up to 11 Vs  

2 
Big Data as 
Technology 

This type of definition is oriented by new technology development, such as MapReduce, Bulk 
Synchronous Parallel (BSP - Hama), Resilient Distributed Datasets (RDD, Spark), and Lambda 
architecture (Flink).  

3 
Big Data as 
Application 

This kind of definition emphasizes different applications based on different types of Big Data. 
Barry Devlin [43] defined it as application of process-mediated data, human-sourced 
information and machine generated data. Shaun Connolly [44] focused on analyzing 
transactions, interactions and observation of data. It looks for hindsight of data  

4 
Big Data as 
Signals 

This is another type of application oriented definition but it focuses on timing rather than type 
of data. It looks for a foresight of data or new ‘signal’ pattern in dataset   

5 
Big Data as 
Opportunity 

Matt Aslett [45]: “Big Data as analyzing data that was previously ignored because of 
technology limitations”. It highlights many potential opportunities by revisiting the collected 
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or archived datasets when new technologies are variable.  

6 
Big Data as 
Metaphor 

It defines Big Data as human thinking process [46]. It elevates BDA to the new level, which 
BDA is not just a type of analytics rather than the extension of human brain.  

7 
Big Data as New 
Term for Old 
Stuff 

This definition simply means the new bottle (relabel the new term “Big Data”) for old wine 
(Business intelligence or data mining or other traditional data analytic activities). It is one of 
the most cynical ways to define Big Data 

Table 2:  Seven Popular Big Data Definitions 

Each of the above definitions intends to describe a particular issue from one aspect of Big Data only and is very 

restrictive. However, a comprehensive definition can become complex and very long. A solution for this issueis to use  

“rational reconstruction” offered by Karl Popper, which  intends to make the reasons behind practice, decision and 

process explicit and easier to understand.  

1.3.4 Motivations behind the Definitions 

The purpose of doing Big Data or BDA is to gain hindsight (metadata patterns emerging from historical data), insight 

(deep understanding of issues or problems) and foresight (accurate prediction in near future) in a cost effective 

manner. However, these important and necessary attributes are often neglected by many definitions that only focus 

on either single issue or data aspects. In order to reflect all aspects of Big Data, we consider all attributes from 

different aspects.  

1.4 Defining Big Data from 3Vs to 32 Vs 

The real objective of BDA is actually to seek for Business Intelligence (BI). It enables decision makers to make right 

decision based on predictions through the analysis of available data. Therefore, we need to clarify new attributes of Big 

Data and establish their relationship meaning cross three aspects (or domain knowledge), namely: 

• Data Domain (Searching for patterns) 
• Business intelligent Domain (Making predictions) 
• Statistical Domain (Making assumptions) 

1.4.1  Data Domain 

Laney’s 3Vs have captured importance of Big Data characteristics reflecting the pace and exploration phenomena of 

data growth during the last few years. In this,  the key attribute in data aspect is Volume. If we look the history of data 

analytics, the variation of velocity and variety is relatively small in comparison with volume. The dominated “V” that is 

often exceeds our current capacity for data processing is “Volume”. Although volume cannot determine all attributes 

of data, it is one of the crucial factors in BDA.   

1.4.2 Business [1] Intelligent (BI) Domain 

When we discuss BI of BDA, we mean Value, Visibility and Verdict within the business intelligent domain. These 3Vs are 

the motivations or drivers for us to implement BDA process at the first place. If we cannot achieve BI, the pure exercise 

of data analytics will be meaningless. From a decision maker’s perspective, these 3Vs are how to leverage Data’s 3Vs 

for BI’s 3Vs.  

• Visibility: it does not only focus on the insight but also means metadata or sometime the wisdom of data crowds or 
hierarchical level of abstraction data patterns. From BI perspective, it provides hindsight, insight and foresight of a 
problem and an adequate solution associated with it.   

• Value: the purpose of V for value is to answer the question of “Does the data contain any valuable information for 
my business needs?” In comparison with 5Vs definition, it is not just the value of data but also the value of BI for 
problem solving. It is the value and utility for the long term or strategic pay off.  

• Verdict: It is a potential or possible choice or decision should be made by a decision maker or decision committee 
based on a scope of problem, available resources and certain computational capacity. This is the most challenging V 
to be quantified at the beginning of BDA. If there are many hypothesise of “What-if”s, the cost of collecting, 
retrieving data, ETL, especially to extract archived data would be costly (see Figure 4).  

                                                                            
1 Here, the term of business includes research activities. 
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Figure 4: Key Motivations of Big Data Analytics 

These business motivations led to the new BDA platforms or MapReduce processing frameworks such as Hadoop. It 

intends to answer the five basic questions in Big Data as shown in Figure 4.  These questions reflect the bottom line of 

Business Intelligence (BI):  

1. How to store massive data (such as in PB or EB scale currently) or information in the available resources 
2. How to access these massive data or information quickly 
3. How to work with datasets in variety formats: structured, semi-structured and unstructured 
4. How to process these datasets in full scalable, fault tolerant and flexible manner 
5. How to extract business intelligence interactively and relational way in a cost effective manner 

In this domain, the key notation of V is “Visibility”, which is to obtain the prediction or real time insight from BDA 

exercises. The relationship of these 3Vs in BI is that without visibility, other 2Vs will be impossible.  

1.4.3 Statistics Domain 

Similarly, we should have another set of 3Vs attributes in the statistic domain, which are Veracity, Validity and 

Variability. These 3Vs should establish the statistic models based on right hypothesis (What–if), which is the 

trustworthiness of data sets’ and the reliability of data sources. If the hypothesis is inadequate or the data source is 

contaminated or the statistics model is incorrect, the BDA might lead to a wrong conclusion. There have been many 

lessons regarding contaminated data samples. A famous example was the opinion poll for the 1936 US presidential 

election that was carried by the Literary Digest magazine before the election [36]. Because the sample data (2.4 million 

survey responses) was accidentally contaminated, the result of its predication (or president winner in 1936) became a 

disaster for the polling company.  Attributes in this domain are: 

• Veracity: Philosophically speaking, the true information (or fact) is the resolution of data uncertainty. V of Veracity 
is searching for trustworthiness and certainty of data sets. 

• Validity: It is to verify the quality of data being logically sound. The V of validity emphasizes how to correctly acquire 
data and avoid biases. Another essential meaning of validity is the inference process based on a statistical model.  

• Variability: It is the implication of data complexity and variation. For example, Bruce Ratner [37] believed that if 
there are more than 50 variables or different features in one dataset, it could be considered as “Big Data”. 
Statistically, it is how to use the logical inference process to reduce data complexity and reach desirable outcomes 
or predictions for business needs.   
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The key attribute of this aspect is “Veracity”, which emphasizes how to build a statistical model close to the reality. The 

process to approach “Veracity” can be considered as an exercise of a curve fitting. If we have few constraints, the 

regression errors of the curve will be too large. If we adopt too many constraints, it will cause an over-fitting problem. 

1.4.4 32 Vs Definition and Big Data Venn Diagram 

Once all 32 Vs attributes have been defined from three different aspects, we can establish a combined Venn diagram 

and their relationships. This has become our definition of Big Data (see Figure 5), which is comprehensive enough to 

capture all aspects of Big Data.  

 

Figure 5: 32 Vs Venn Diagrams in Hierarchical Model 

As shown in Figure 5, each Venn diagram is supported by one “V” shape of triangle to illustrate 3 Vs attributes in one 

aspect. Moreover, three key attributes from each Venn diagram can also form a single hierarchical triangle diagram. It 

represents the essential meaning of Big Data.  

If the original 3Vs data attributes represented a syntactic or logical meaning of Big Data, then 32 Vs (or 9Vs) represent 

the semantic meaning (relationship of data, BI and statistics). For many complex problems or applications, the 32 Vs 

could be interpreted as a hierarchical model, which three key attributes forms a higher level 3Vs to be learnt by a 

machine. At the heart of BDA, there is “machine learning” because without the machine (computer), the mission of 

learning from Big Data would be impossible.   

1.5 Big Data Analytics and Machine Learning 

1.5.1 Big Data Analytics 

If 32Vs represent semantic meaning of Big Data, then Big Data Analytics (BDA) represents pragmatic meaning of Big 

Data. We can view from computational view point, Big Data Venn diagram with a BDA’s Venn diagram in Figure 6.  

 

Figure 6: Correlation of 32 Vs to Machine Learning Venn Diagrams 
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According to Arthur Samuel, the original definition of Machine Learning (ML) was “The field of study that gives 

computers (or machine) that ability to learn without being explicitly programmed” [38]. Historically, there have been 

many terms that intend to describe the equivalent meaning of ML, such as “Learning from data”, “Pattern 

Recognition”, “Data science”, “Data Mining”, “Text Mining” or even “Business Intelligence” and etc. If we list all terms 

based on their different orientations, we can probably find there are more than 32 different descriptions that contain 

certain meaning of ML from four aspects (see Table 3): 

• Data 
• Information 
• Knowledge and 
• Intelligence 

Data Information Knowledge Intelligence 

Data Mining Information Analytics Real time Analytics Business analysis 

Data Science Information visualization Predictive analytics Business Intelligence 

Data Warehouse Information System Management Machine Learning Artificial Intelligence 

Learning from Data Text Analytics Knowledge Base System Decision Support System 

Data Smart Text Mining Pattern Recognition Actionable Intelligence 

Data Analytics Web Analytics Statistical Application Business Forecasting 

Making Sense of Data Web Semantic Analysis Knowledge Discovery Business Strategy 

Data Ingestion Web Searching Expert Systems Business Transformation 

Table 3: Popular Interpretation of ML 

1.5.2 Machine Learning 

The essence of ML is an automatic process of pattern recognition by a learning machine. The main objective of 

machine learning is build systems that can perform at or exceed human level competence in handling many complex 

tasks or problems. Machine learning is a part of Artificial Intelligence (AI). During the early AI research era, the AI’s goal 

was to build robots and to simulate human activities. Later, the application of AI has been generalized to solve general 

problems by a machine. The popular solution was to feed a computer with algorithms (or a sequence of instructions) 

so it can transform the input data to output answers. This is often called as a rule based system or Good Old Fashion of 

AI (GOFAI), such as expert systems. 

However, for many problems, we cannot easily find suitable algorithms, for example, the recognition of human 

handwriting. We do not know how to transform the input of hand writing letter to the output of the standard 

recognised letter. An alternative is learning from data. The principle of learning from data is similar as both trial-error 

and “The Wisdom of Crowds” [40]. This means that having one trial, it has a large error but if we can aggregate many 

trials, the error will be reduced down to an acceptable level or convergence. Figure 7 illustrates a typical example of 

machine learning process or learning from data. 

Since the dotcom boom started in late 1990s, the volume of data has become increasingly larger. A logical question is 

how to deal with these large volumes of data and how to find useful or meaningful patterns from larger volume of 

data. This leads to “knowledge discovery in database” (or KDD), which is also called as data mining. In other words, we 

want to dig in the database and discover the meaning or knowledge for decision making. Larose et al. [47] defined the 

term as “the process of discovering useful patterns and trends in large datasets”. In order to discover meaningful 

patterns from massive data set, statistics is the vital tool to add the value for data sampling, modelling, analysis, 

interpretation and presentation just as Jiawei Han et al. [48] indicated, “Data mining has an inherent connection with 

statistics”. This leads to converging of data mining and fuzzy expert system under the big umbrella of machine 

learning. From machine learning evolution perspective, the statistics theory or probability modelling has shifted AI 

discipline from rule-based expert systems or schema-on-write learning to a schema-on-read or data-driven 

methodology, which is to resolve the uncertainty issue with parameters’ probability of a model. From this perspective, 

the statistics has been embedded into machine learning. As Witten et al [49] indicated, “In truth, you should not look 

for a dividing line between machine learning and statistics because there is a continuum — and a multidimensional one at 

that—of data analysis techniques.”  
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Figure 7: Machine Learning Process [39]  

Since 1950s, there have been many functional definitions of ML. Different authors would emphasize different aspects 

of machine learning, such as process, application and utility. For example, Arthur Samuel’s definition emphasized on 

“automatically learning” of ML. Tom M. Mitchell described every component of ML process [50]. Kevin P. Murphy [51] 

and Christopher M. Bishop [52], on the other hand, stressed the function of pattern recognition. Noam Nisan and 

Shimon Schocken [53] argued that ML could turn abstract thoughts into physical operation. In the summary of over 30 

definitions, we can find some of essential and common ingredients of these ML definitions: 

• Train the machine to learn automatically and improve results as it gets more data 
• Discovery or recognize patterns and intelligence with input data 
• Predicate on unknown inputs 
• Machine will acquire knowledge directly from data and solve problems 

 
According to these elements, we can find that fundamentally, ML is “an outgrowth of the intersection of computer 

science and statistics, aims to automatically learn to recognize complex patterns and make intelligent decisions based on 

existing datasets” [54].  Another way to say that is “Machine learning is turning data into information” [55]. The ultimate 

goal of ML is to build systems that are of level of human competence (see Figure 8) in performing complex tasks. 

 

Figure 8: Replacing Human in the Learning Process 

ML underpins the BDA implementation. If without ML to mine ever-growing massive data, BDA would be impossible. In 

conclusion, ML is the centrepiece of any BDA. All other components within a framework of Big Data aim to support ML 

process. In terms of computational support to BDA, there are four major architectural models that are able to process 

large amounts of data in a reasonable time according to S. Wadkar et al [56]: 

 Massively parallel processing (MPP) database system: For example, EMC’s Greenplum and IBM’s Netezza 

 In-memory database systems such as Oracle Exalytics, SAP’s HANA and Spark 
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 MapReduce processing model and platforms such as Hadoop and Google File System (GFS) 

 Bulk Synchronous Parallel (BSP) systems such as Apache HAMA and Giraph 

To perform BDA in the most cost effective way, a fifth model—Cloud Computing (CC) — has become a preferred 

solution especially for small and media businesses (SMEs).  

 

1.6 Big Data Analytics and Cloud Computing 

Cloud Computing (CC) plays a critical role in BDA process as it offers subscription-oriented access computing 

infrastructure, data, and application services [74]. The original objective of BDA was to leverage commodity hardware 

to build computing clusters and scale out the computing capacity for web crawling and indexing system workloads. 

Due to the massive volume of dataset, searching for lower cost and fault tolerance computational capacity is an 

important factor for implementing BDA. On the other hand, the implementation of cloud computing were underpinned  

with 3 service models, 4 deployment models and – 5 Characteristics [76], which is so called 3S-4D-5C definition. 

o Service orientation or 3 S Service models (SaaS, PaaS and IaaS) 
o Customized delivery or 4D Deployment models (Private, Public, Community and Hybrid Cloud) 
o Shared Infrastructure or 5C Characteristics (On-Demand, Broad network Access, Resource Pool, Rapid 

elasticity and measured service)   

This means that the nature of cloud characteristics makes it as the most accessible infrastructure for many small to 

medium companies to be able to implement BDA.  

Cloud does not only enable us to easily scale out but also scale down to fit all sizes of dataset. When BDA is discussed, 

it is quite often that the only focus is how to scale out. However, it is not a necessary the case. Although the overall 

data volume may trend to increase, the daily volume for each individual case could be moderate and fluctuating or Big 

Data processing requirements needed for BI can vary from time to time. If we can leverage the elastic nature of cloud, 

we can save substantial amount of cost due to amortization benefits provided by the Cloud systems. The elastic nature 

of cloud can reduce the overall cost of computation for different types of Big Data workloads, such as batch, micro-

batch, interactive, real time, and near real time.  

Taking Yahoo sorting one TB data as an example, it took 3.5 minutes over 910 nodes to complete the task in 2008 but it 

only took 62 seconds over 1,460 nodes in 2009. To scale-out computational capacity did make huge difference 

regardless an improvement of each node due technological advances. This implies that cloud infrastructure provides 

computational flexibility if Big Data workload or business requirements need. For example, Amazon Web Service 

(AWS) offers spots instances at a fraction of the regular rate. If the workload only requires batch mode, we can 

leverage AWS’s spots instance to increase computational capacity and complete the job in a much shorter time.  

A popular and open platform that is widely deployed on a cloud infrastructure is Hadoop, whose implementation is 

inspired by Google MapReduce and Google File System (GFS). 

1.7 Hadoop, HDFS, MapReduce, Spark and Flink 

Figure 9 highlights one of the most popular platforms of BDA - Hadoop. It was the first choice for many analysts and 

decision makers for implementing BDA. One of the two Hadoop’s founders - Michael Cafarella remarked, “Nutch (the 

predecessor of Hadoop) is The National Public Radio (NPR) of search engines” [63]. There are several reasons behind 

this development: 

1. It is an open source platform and also programmed in java. 
2. It is linearly scalable, reliable and accepts hardware failure. 
3. It is a fault tolerant system 
4. It is a practical platform to store and process greater than 10s of TB data 
5. It leverages commodity type of hardware 
6. It is “schema on read” or has “data agility” character 
7. It is best fit for diversified data sources 
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Figure 9: Overview of Hadoop Framework or Technology Stack and Ecosystem 

The basic idea to create Hadoop is driven by both ever-growing data and cost of computational hardware. The 

objective of Hadoop is to leverage the commodity hardware for large scale of processing workload, which it used to be 

only possible to be accomplished by some expensive mainframe computers. From an infrastructure perspective, 

Hadoop enables the computational capacity to be scale-out rather than scale-up. Notice that it is quite often we use 

both terms interchangeably [57] but based on a standard definition, “scale-up” has a quality improvement sense while 

“scale-out” implies adding or repeating the same unit horizontally.  

The advantage to adopt Hadoop [57] platform is that “Hadoop is a free and open source distributed storage and 

computational platform. It was created to allow storing and processing large amounts of data using clusters of commodity 

hardware”. This statement also describes the basic principle of Hadoop architecture that consists of three essential 

components (see Figure 10): Hadoop Distributed File System (HDFS) for file storage function, Map for distribute 

function and Reduce for parallel processing function. 

 

Figure10: Hadoop Kernel 
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However, its main disadvantage is that it processes all workloads in batch mode because “Hadoop is a generic 

processing framework designed to execute queries and other batch read operations on massive datasets that can scale 

from tens of terabytes to petabytes in size”[58]. This means that the early version of Hadoop cannot handle streaming 

and interactive workloads. Table 5 summarizes main characteristics of Hadoop. 

Attributes Characteristics of Hadoop 

Initiators Doug Cutting and Michael J Cafarella 

Predecessor  Nutch 

Subsequent Version YARN or Hadoop 2.0 

Hadoop Written Language Java 

Philosophy of computation Divide and Conquer for large datasets 

Principle of Computational Processing Bring computer to data rather than bring data to computer 

System A distributed programming framework 

Main Characteristics Accessible, Robust, Scalable, Simple and Fault tolerance 

Storage -Hadoop Distributed File System (HDFS) Self-healing Distributed and shared storage element 

Initial Computational Program - MapReduce Distributed, aggregated and collaborated parallel processing 

MapReduce Library written language C++ code 

Process Type Batch 

Hardware Type Heterogeneous commodity hardware  

Software licence  Open Source 

Initial Applications Information Retrieval (IR) and searching index and Web Crawler 

Solution Type Software solution not hardware solution 

Scalability Solution Scale-out not Scale-up 

Typical Size of Data Set From few GBs to few TBs 

Capable Size of Data Set From Tens of TBs to Few PBs 

Simple Coherency Model Write-once and Read many 

Default Replication Factor  3 

A typical size of data block for HDFS 64MB 

Permission Model Relaxing POSIX [2] model 

Main Application Modules Mahout, Hive, Pig, HBase, Sqoop, Flume, Chukwa, Pentaho … 

Typical Vendors 
MapR, Cloudera, Hortonworks, IBM, Teradata, Intel, AWS, Pivotal Software and  
Microsoft 

Table 5: Common Aspects of Hadoop 

The origin of Hadoop can be traced back to Nutch project under Apache Software Foundation (ASF) in 2002 (see Figure 

11). The initial platform was built as an open source implementation of MapReduce [60] processing model and 

distributed file system [60] proposed by Google. In 2010, Google has granted a license to Apache for incorporating 

MapReduce model in Hadoop software freely and distributed it without any patent or IP rights infringement concerns.  

                                                                            
2 POSIX = the Portable Operating System Interface. Few POSIX rules (permissions model for supporting multiuser environment) have been relaxed in 
order to gain higher throughput of data uploads.  
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Figure 11: Briefing History of Hadoop 

1.7.1 Google File System (GFS) and HDFS 

The Hadoop project adopted “Google File System (GFS) architecture and developed Hadoop Distributed File System 

(HDFS). The original authors (Google’s engineers) laid out four pillars for GFS: 

 System Principles 

 System architecture 

 System assumptions and 

 System Interfaces 
 

 

Figure 12: GFS or HDFS Architecture 

The GFS principles departed from the traditional system design dogma that a failure was not allowed and a 

computation system should be designed as reliable as possible. In contrast, GFS anticipates the certain number of 

system failures with specified redundancy or replicating factor and automatic recovery. In comparison with the 

traditional file standard, GFS is capable of handling billions objects and I/O should be revisited. Moreover, most of files 

will be altered by appending rather than overwriting. Finally, the GFS flexibility is increased by balancing the benefits 

between GFS applications and file system API. The GFS architecture consists of three components (see Figure 12): 

 Single master server (or name node)  
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 Multiple chunk servers (or data nodes for Hadoop) 

 Multiple clients 

The master server maintains 6 types of the GFS’s metadata, which are: 1) Namespace, 2) Access control information, 3) 

Mapping from files to chunks (data), 4) Current locations of chunks or data, 5) System activities: (chunk lease 

management, garbage collection of orphaned chunks and chunk migration between chunk servers), 6) Master 

communication of each chunk server in heart beat messages.  

GFS was designed with five basic assumptions [59] according to its particular application requirements:  

1. GFS will anticipate any commodity hardware outages caused by both software and hardware faults. This 
means that an individual node may be unreliable. This assumption is similar to one of its system design 
principles. 

2. GFS accepts a modest number of large files. The quantitive of “modest” is few million files. A typical file size is 
100 MB/per file. The system also accepts smaller file but will not optimize them. 

3. Typical workload size for stream reading would be from hundred KBs to 1MB with small random reads for few 
KBs in batch mode 

4. GFS has its will defined sematic for multi-clients with minimal synchronization overhead 
5. A constant high file storage network bandwidth is more important than low latency 

 
In contrast to other file systems, such as Andrew File System (AFS) or Serverless File System (xFS) or Swift, GFS does 

not adopt a standard API POSIX permission model rather than relax its rules to support the usual operations to create, 

delete, open, close and write. 

According to these workload processing assumptions, GFS is actually a file storage system or framework that has two 

basic data structure: logs (metadata) and Sort String Table (SSTable). The main object of having GFS is to implement 

Google’s data-intensive applications. Initially, it was designed to handle the issues of web crawler and file indexing 

system under the pressure of accelerating data growing.  

The aim that Google published these influential papers [59] was to show how they scale out the file storage system for 

large distributed data-intensive applications. Doug Cutting and Mike Cafarella leveraged the Google’s GFS idea to 

develop their file system – Nutch or Nutch Distribute File System (NDFS) for web crawling application, namely Apache 

Lucene. NDFS was the predecessor of HDFS (see Figures 13 and 15). Although HDFS is based on GFS concept and has 

many similar properties and assumptions as GFS, it is different with GFS in many ways, especially in term of scalability, 

data mutability, communication protocol, replication strategy, and security.  

1.7.2 MapReduce  

MapReduce is a programming model to process large dataset workload. In contrast to imperative programming 

(describing computation as a bunch of statements to change program state), MapReduce treats computation as the 

evaluation of mathematic function. In essence, functional programming can avoid state and just list in and out states.  

The basic strategy of MapReduce is “Divide and Conquer”. In order to perform different data intensive applications 

effectively with MapReduce on the GFS framework, Dean and Ghemawat [60] presented a five-step process (a 

programming model can be considered as a process, see Figure 13).  

 

Figure 13: Five Steps MapReduce Programming Model  
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Step 1:  Splitting 
Step 2:  Mapping (distribution) 
Step 3:  Shuffling and sorting 
Step 4:  Reducing (parallelizing) 
Step 5:  Aggregating  

Lin et al [62] simplified this process model into three steps, mapping, shuffling and reducing. As shown in Figure 13, the 

1st step is the process of splitting input file into three files and the 2nd step is to generate a process of key/value pair by 

a user (or client) who specifies the function. In the above example, it is to count the number of different letters (A, B, C 

and D) with corresponding quantity within each split file. The 1st split file contains word “BAB”. The letter “A” is 

counted 1 and letter “B” is counted 2. In the 3rd step, the shuffling function is to generate intermediate key/value pair, 

which is to sort the same letter (or key) and quantity (or value) from different split files into one file. The 4th step is to 

merge all intermediate values (3, 2, 1, and 2) associated with the same intermediate key (A, B, C, and D). The final step 

aggregates these key/value pairs into one output file. Here, “key” is equal to different types of letters to be counted 

and “value” is equal to the quantity of each letter. 

From a programming perspective, MapReduce has other two meanings that “Mapping” is splitting for distribution and 

“Reducing” is shuffling + sorting in parallel. A major advantage is its capability of shared-nothing data processing, 

which means all mappers can process its data independently. 

The characteristic of shared-nothing enable MapReduce to run a simple program cross thousands or even millions of 

unreliable and homogeneous machines in parallel and complete a task in very short time. Theoretically speaking, it 

allows any programmer to access almost unlimited commodity type of computing resources instantly (theoretically) or 

within an acceptable time frame (practically) e.g. cloud infrastructure. Several Cloud computing platforms have 

implemented their own MapReduce processing model such as CouchDB, Cloud MapReduce and Aneka [74].  

According to Dean and Ghemawat [60], the original Google’s MapReduce is potentially capable to handle five types of 

workloads: 

1. Large-scale machine learning problems, 
2. Clustering problems for the Google News and Google products, 
3. Extraction of data used to produce reports of popular queries (e.g. Google Zeitgeist), 
4. Extraction of properties of web pages for new experiments and products (e.g. extraction of geographical 

locations from a large corpus of web pages for localized search), and 
5. Large-scale graph computations 

Eric Bieschke’ echoed this point and indicated, “Hadoop is cost efficient, but more than that, it makes it possible to do 

super large-scale machine learning” [61]. To this extent, the history of Hadoop is an evolutionary progress to generalize 

data processing task from a particular workload (e.g. web crawler) to all types of ML workloads (see Figure 14). 

However, MapReduce is not very efficient to perform iterative and recursive process that is widely utilised for a 

simulation type of workload in ML. In order to understand the issue, it is necessary to see how the Hadoop project has 

been evolved. 
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Figure 14: Evolution of GFS, HDFS MapReduce and Hadoop 

1.7.3 The Origin of Hadoop Project 

Lucene 

According to Otis Gospodnetic et al [63], “Lucene is a high performance scalable Information Retrieval (IR) library. It 

lets developers add indexing and searching capabilities to their applications. Lucene was a mature, free, open-source 

project implemented in Java. It’s a member of the popular Apache Jakarta family of projects, licensed under the liberal 

Apache Software License” (see Figure 15). It was written by Doug Cutting in 2000 in Java. In Sep 2001, Lucene was 

absorbed by Apache Software Foundation (ASF).  

 

Figure 15: Connection between Apache Lucene and other Applications 

However, Lucene was not an executable application or search engine rather than a toolbox or searching tool kits that 

enable many applications to borrow or use it. Lucene is just classification index. It converts any data to a textual format 

and enables them to be searchable. Its powerful searching capability is beneficial many third parties. At the heart of 
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Lucene IR library, it is the searching and indexing capability. In order to utilize Lucene’s searching and indexing 

functions, another open source software - Nutch is required, which was also built by Doug Cutting in 2002 (see Figure 

14). 

 Nutch 

Nutch is the predecessor of Hadoop, which is an open-source and executable search engine file system. There are two 

main reasons to develop Nutch: 

 Create a Lucene index (web crawler) 

 Assist developers to make query of their index 
 

There are a lot of codes in Nutch program (such as HTTP fetcher and URL database). Michael J. Cafarella indicated that 

the text searching was the center piece of any search engine or web crawler, which was included in Nutch.  

 Based on Zakir Laliwala et al [64], another Apache project, namely Solr was developing the similar searching function 

as Nutch in parallel. It was also an open source enterprise platform for full text search, which was initiated by CNET in 

2004. It became an Apache project in 2007. Since then, it has absorbed many tools in Apache Lucene’s library to 

enhance and extend its full text search capability. Like Apache Lucene, it was not an executable search application 

rather than a toolkit or information retrieval (IR) library [65]. Therefore, Solr and Lucene had been merged into a single 

development project since 2010 [66].  As shown in Figure 15, although both Lucene and Solr had adopted many 

techniques for index searching, text mining and information retrieval algorithms, many techniques can be generalized 

as classification algorithms.  

In general, BDA applications need different algorithms or techniques, such as clustering, collaborative filtering (or 

recommender engine) and others. These requirements lead to the beginning of Mahout Project in 2008 as a subproject 

of Apache Lucene. Since all the algorithms of both Lucene and Mahout are closely associated with the concept of 

machine learning, In Apr-2010, Mahout has risen as a top level project in its own right.   

Mahout 

The original object of Mahout was to build a Java-based machine learning library that covers all machine learning 

algorithms or techniques in theory but it can mainly handle three types of machine learning algorithms in practice: 

 Collaborative filtering (Recommender Engines) 

 Clustering and  

 Classification 

If other learning algorithms are required, we have to check the Apache Mahout URL [67] and to find out whether 

MapReduce can support particular algorithm or not before this algorithm can be applied in a large scalable 

environment. In other words, Mahout is not a universal ML library. In addition of scalable issue, Hadoop is very slow for 

ML workloads.  It led to the development of complimentary ecosystems, such as Hama, Storm, Spark, and Flink that 

addressed weakness of MapReduce-based systems.  

1.7.4 Spark and Spark Stack 

Spark was developed by UC Berkeley RAD Lab (now called as AMP Lab).  The main contributor is Matei Zaharia et al 

[68] [69]. ]. Its original objective was to extend Hadoop to a general purpose framework that adopts Resilient 

Distributed Datasets (RDDs) in memory computation (micro-batch) technique. In a simple term, it intends to replace 

MapReduce model with a better solution. It emphasizes the computational efficiency of iterative and recursive 

algorithms and interactive queries of data mining. It claimed that it would be 10-20X faster than MapReduce for certain 

type of workload, such as performing iterative algorithm.  

Although it attempts to replace MapReduce, it did not abandon HDFS. It leverages Hadoop’s file storage system. Like 

many other Hadoop related projects, it is an open source project under Apache Software Foundation (ASF). In June 

2013, it was moved to ASF as an incubator. Since 2014, it has become an Apache top level project and supported by 

many Big Data vendors, such as Cloudera, Horton, SAP and MapR as noted in Figure 16. 
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Figure 16: Spark History 

Generally, Spark is a fast and general- purpose computation platform based on large clusters. In contrast to 

MapReduce that is basically designed for web crawler, indexing system and limited machine learning, Spark includes 

SQL, interactive query, data stream, graph, and machine learning analytic functions into its computation platform. 

Based on the Berkeley Data Analytics Stack (BDAS) architecture, Spark developed as a unified stack integrating all 

libraries and higher level components together (see Figure 17). Spark consists of seven major elements: Spark core of 

data engine, Spark cluster manager (includes Hadoop, Apache Mesos and built-in Standalone cluster manger), Spark 

SQL, Spark streaming, Spark Machine Learning Library, Spark GraphX, and Spark programming tools.  

  

Figure 17: SPARK Analytic Stack 

1.7.5 Flink and other data process engines 

Apart from Spark, there are several data processing engines such as Microsoft Dryad, Storm, Tez, Flink and CIEL (see 

Figure 18) that are capable of supporting MapReduce like processing requirements. They aim to support more 

computational functions, such as standard queries, stream analysis, machine learning, graphic analysis and interactive 

or ad hoc queries efficiently. The effort made by these platforms is to generalize Hadoop to be able to support a wide 

variety of BDA workloads. 
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Figure 18: Potential data processing engines to replace MapReduce 

Stephan Ewen et. al. [70], Kostas Tzoumas [71] and Marton Balassi [72] argued that Flink is the next generation or the 

4th generation data processing engine in comparison with others (see Table 6 and Figure 19) although each data 

processing engine has its own special feature. Flink data engine is truly general purpose framework for Big Data 

Analytics (BDA).  They claim that Flink is capable of outperforming Spark by 2.5 times.  

 

 

Figure 19: Evolution of Data and Big Data process engines 
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Data process 
engines 

comparison 

MapReduce 

 

Tez 

 

Spark 

 

Flink 

 
Start at 2004 2007 2009 2010 

API 
MapReduce on 
Key/Value pairs  

Key/Value pair 
Readers/Writers 

Transformations on key/value 
pair collections 

Iterative transformations on 
collection or iteration aware 

Paradigm MapReduce 
Direct Acyclic Graph 

(DAG) 
Resilient Distributed Datasets 

(RDD) 
Cyclic data flows or dataflow 

with feedback edges 

Optimization none none Optimization of SQL queries Optimization in all APIs 

Execution Batch 
Batch sorting and 

partitioning 
Batch with memory pinning 

Stream with out of core 
algorithms 

Enhanced features 
plus 

Specialise particular 
workloads 

 Small recoverable 
tasks,  

 Sequential code 
inside map & 
reduce functions 

 Extends 
map/reduce model 
to DAG model 

 Backtracking-
based recovery 

 Functional implementation of 
Dryad recovery (RDDs) 

 Restrict to coarse-grained 
transformations 

 Direct execution of API 

 Embed query processing 
runtime in DAG engine  

 Extend DAG model to cyclic 
graphs  

 Incremental construction of 
graphs 

Table 6: Data Processing Engine Comparison 

A possible reason for Ewen et. al. to claim that Flink is better than Spark is that it is based on  Lambda architecture and 

able to process arbitrary Big Data workloads in real time. The basic concept of Lambda architecture is to build the data 

processing engine or system with the number of layers in order to deal with a subset of data with stream properties. 

These layers are only few thousand line of code to implement a total of seven steps (2 for batch layer, 2 for serving 

layer and 3 for speed layers, see Figures 20 and 21). 

 

Figure 20: The Process steps of Lambda Architecture 

 

Figure 21: The Elements of Lambda Architecture 
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The purpose for establishing these three layers, according to Nathan Marz [73], is to meet the characteristic 

requirements of all types of Big Data workloads. They are: 

 Robustness and fault tolerance 

 Low latency reads and updates 

 Scalability 

 Generalization 

 Extensibility 

 Ad hoc queries 

 Minimal maintenance 

 Debuggability 

Figure 22 shows that the batch layer as a part of Hadoop can easily meet robustness and fault tolerance requirements. 

Scalability is the requirement for both batch and serving layers that both Hadoop and Elephant DB can handle it. 

Extensibility means data stream adds a new function to the master dataset. The batch layer allows users to recompute 

another entire batch view from scratch. To some extent, this also means that batch layer can perform ad hoc queries 

because the master dataset in one location. Due to the nature of Hadoop’s robustness, minimal maintenance is 

acceptable because a serving layer database only gets a batch view per few hours, which emitted from batch layer. In 

other words, it doesn’t write randomly very often and has so few moving parts. Subsequently, it is less likely to go 

wrong.  

The combination of both batch and serving layers can record all intermediate steps of outputs (serving layer) and 

inputs (batch layer – master dataset) for data process. Therefore, if the process has any hiccup, the debug analysis is 

quite easier. 

The top element of the Lambda architecture is the speed layer. The purpose of having speed layer is to perform 

arbitrary computing function on arbitrary data in real time, which is to fill the gap time of new data for both batch and 

serving layers that have been left with. In contrast to batch layer, the speed layer only checks the latest data while 

batch layer covers all the data in one batch.  Moreover, it only does in an incremental manner rather than in a re-

compute from scratch manner that the batch layer does. The speed layer capability meets the Big Data requirements 

for low latency reads and updates. 

The overall Big Data query is the combination of real time and batch views as noted in Figure 22, which shows an 

example query processing system based on Lambda architecture.   In contrast to MapReduce (batch only), the Lambda 

architecture can meet all requirements of Big Data query whether it is batch or real time.  

  

Figure 22: An Example of Implementation of Lambda Architecture 

In addition to Flink and Spark, more than 40 processing engines are available, which are capable of processing different 

types of BDA workloads (see Table 7).  

 



BDA=ML + CC 

Page 24 

 

Bashreduce Gearman Minceat R3 

Ceph GoCircuit Mincemeat Riak 

Cloud MapReduce GPMR Misco SAMOA 

Cloud-Crowd HaLoop MongoDB Skynet 

Condor HPCC Octopy Spark 

Data Core HTTPMR Oryx Sphere 

DISCO Aneka MapReduce Plasma MapReduce Storm 

Elastic Phoenix MapRedus Preregrine Tachyon 

Filemap MapRejuice QFS TEZ 

Flink (Stratosphere) MARS Qizmt Weka 

 
Table 7: 40 Alternative Platforms for Big Data Processing. 

 

1.7.6 Summary of Hadoop and its Ecosystems 

Hadoop has become the standard framework to run distributed BDA that can process massive scale of data on large 

clusters based on the commodity hardware or a cloud infrastructure. Along with its evolutionary journey, it has 

absorbed and integrated some Apache projects that have similar functionalities, such as Taste, Solr and Mahout. Due 

to the demand for processing all types of BDA workloads, many Hadoop’s ecosystems have been developed, such as 

Spark, Storm, Hama, Tachyon, TEZ, S4 and Flink. These ecosystems intend to overcome MapReduce’s shortcomings 

and to specialize with particular type of BDA workload. Consequently, some platforms have been generalized to 

handle all types of BDA workloads.  

Hadoop Key Functions 

When Douglas Cutting and Michael J. Cafarella created it in early 2006, their original idea was to build Apache Nutch (or 

a web crawler engine) on a cheaper infrastructure. It consists of five key functional components (see Figure 5): 

1. ETL tools for data integration 
2. Functional element or programming model: MapReduce 
3. Core units: Distributed Framework or storage system 
4. Processing modules or libraries: Machine Learning 
5. Administration models  

 
In comparison with many other conventional databases, Hadoop is not a database but a distributed storage and 

computational framework. It is a free and open source ecosystem. It has six characteristics: 

1. Scale-out with distributed computing 
2. Expect failure with redundancies  
3. Smart software with dumb hardware 
4. Share nothing architecture 
5. Move processors not data (taking computer to data, rather than other way around) 
6. Building applications, not infrastructure  

Hadoop’s Distinguish Features 

One of the Hadoop’s unique features is that it is supported by so many auxiliary tools, especially for many 

administration tools, such as monitoring, management and maintenance (see Figure 9). It also has many APIs to 

interface with other BDA applications. Many ASF incubation projects (such as Spark and Flink) can replace MapReduce 

but it would be too costly to substitute the entire Hadoop framework.  

1.8 ML + CC  BDA and Guidelines 

We discussed the role of machine learning (ML), Cloud Computing (CC), and Hadoop like systems. We see that ML and 

CC are the two most important components of BDA. If there are no advances in ML and CC, BDA could not be 

implemented or operated cost effectively. Of course BDA needs good understanding of application domain. Effective 

BDA needs appropriate choice of ML techniques and the use of CC to handle big data sets for both training and 

extracting new meaningful data patterns. CC can provide an affordable solution for many individuals and small to 

medium scale enterprises. Therefore, we assert that ML + CC  BDA. Hadoop’s history and its ecosystems with 

machine learning applications have demonstrated this concept adequately.  
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Finally, BDA is not an ideal solution for every analytics problem. For some cases, it may only add the burden to the 

business. Table 8 provides guidelines to decide which cases could be applied for BDA solutions and which ones would 

not benefit from BDA. These guidelines help in determining the case for BDA.   

3 Aspects  9 Vs Fit for Big Data Analytics Not Fit for Big Data Analytics 

Data Volume 
 Datasets do not fit into one node (e.g. PB –EB size datasets)  

 Bringing computing to the data  

 Dataset can be fit into one node  

 Bringing data to the computing node  

 Variety 

 Not only SQL 

 Collection and discovery of datasets from different data 
sources (e.g. M2M, WSN, RFID, SCADA, SQL and NoSQL) 

 Schema [3] on read 

 One type workload (RDBMS or SQL) 

 Single data source 

 Schema on write  

 Velocity 
 Data agility 

 Interactive and dynamic data stream  

 Traditional stable environment 

 Static dataset  

Statistics Veracity 

 Datasets are not clean 

 Models construction need many “What-if” for fidelity issues 

 Rely on archived data for reliability and credibility    

 Dataset is relatively clean 

 Model construction is relatively simple 

 Require live data  

 Variability 

 Heterogeneous Dataset 

 Dynamic or flexible schemas 

 Numerous variables of dataset (e.g. > 50 variables) 

 Homogeneous Dataset 

 Fixed schema 

 Few variables of dataset 

 Validity 
 Require independent and transparent criteria to verify the 

result of BDA (e.g. GFT) 
 Simple and straightforward approach 

to verify the result of data mining 

Business 
Intelligence  

Value 

 Solving strategic problems that have long term 
consequences (e.g. competitive advantages, integrity, 
excellence, sustainability, success and cost leadership) 

 Leveraging business values from all data sources  

 Routine issues for a short term 

 Exploring business value from single 
source 

 Verdict  Ask for an answer   Ask for the answer  

 Visibility  Search for strategic insight  Search for temporary solutions 

Other 
Aspects 

 

 Large scale computing needing high  fault tolerance  

 Scale out 

 High percentage of parallel and distributed processing 
workload 

 Fault tolerance may not be essential 

 Scaling up 

 Percentage of serial processing 
workloads is higher 

Table 8: Guidelines for Big Data Analytics 

1.9 Conclusion 

We have highlighted many major events and debates in Big Data and introduced the original concept of Big Data and 

its 3Vs attributes. We proposed an extension to this view of Big Data from 3Vs to 32Vs  (9 Vs) to capture the full 

meaning of BDA to include additional attributes of Business Intelligence and Statistics aspects (see Figure 23). We 

provided an overview of many popular platforms for BDA such as Hadoop, Spark and Flink that are affordable to small 

and medium scale enterprises. We have developed the notion that ML + CC  BDA. That is, the execution of machine 

learning tasks on large-data sets in cloud computing environments is often called as Big Data analytics.  

 

Figure 23: Comprehensive meaning of Big Data 

 

                                                                            
3 “Schema-on-Read” means a table or a set of statements is not pre-defined. Sometime it is also named as “Schemaless” or “Schema 
free” In contrast, “Shema-on-Write” means that a table is predetermined. Sometime, it is also called as “fixed schema”[77] [78] [79]      
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