

Journal of Information Processing Systems, Vol.7, No.2, June 2011 DOI : 10.3745/JIPS.2011.7.2.017

17

Batch Resizing Policies and Techniques for Fine-
Grain Grid Tasks: The Nuts and Bolts

Nithiapidary Muthuvelu*, Ian Chai*, Eswaran Chikkannan*
and Rajkumar Buyya**

Abstract— The overhead of processing fine-grain tasks on a grid induces the need for
batch processing or task group deployment in order to minimise overall application
turnaround time. When deciding the granularity of a batch, the processing requirements
of each task should be considered as well as the utilisation constraints of the
interconnecting network and the designated resources. However, the dynamic nature of a
grid requires the batch size to be adaptable to the latest grid status. In this paper, we
describe the policies and the specific techniques involved in the batch resizing process.
We explain the nuts and bolts of these techniques in order to maximise the resulting
benefits of batch processing. We conduct experiments to determine the nature of the
policies and techniques in response to a real grid environment. The techniques are
further investigated to highlight the important parameters for obtaining the appropriate
task granularity for a grid resource.

Keywords— Batch Resizing, Task Granularity, Global Grid, Application Turnaround Time

1. INTRODUCTION
Utilising a grid [1] for executing fine-grain tasks increases the overall application processing

time due to the overhead involved in handling each small-scale task [2]. This overhead is mainly
caused by the communication latency when transferring a particular task file from a scheduler to
the designated resource and retrieving the processed task file from the resource [3-5].

This motivates the need for batch processing in a grid; we will refer to this as task group de-
ployment. Multiple tasks are grouped and processed together mainly for reducing the processing
overhead, especially in terms of task waiting time [6]. As shown in equation (1) and Fig. 1, the
total overhead in deploying four tasks (T) individually can be reduced if the tasks are grouped
and deployed together in a batch or a task group (TG). Section 4 of this paper produces the ex-
perimental results to prove the impacts of individual, fine-grain task processing in a grid. More-
over, the experiments reveal that deploying lightweight tasks on a grid leads to inefficient re-
source-network utilisation and unfavourable application throughput.

※ This paper is an extended version of ICA3PP 2010 [16]. Here, we would like to acknowledge e-ScienceFund, Minis-
try of Science, Technology, and Innovation, Malaysia, and Endeavour Awards, Department of Innovation, Industry,
Science and Research, Australia, for supporting the research work and the development of the meta-scheduler de-
scribed in this paper.

Manuscript received October 1, 2010; accepted January 25, 2011.
Corresponding Author: Nithiapidary Muthuvelu
* Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia ({nithiapidary, ianchai,

eswaran}@mmu.edu.my)
** Cloud Computing and Distributed Systems (CLOUDS) Laboratory, Dept. of Computer Science and Software

Engineering, The University of Melbourne, 3053 Carlton, Victoria, Australia (raj@csse.unimelb.edu.au)

Copyright ⓒ 2011 KIPS (ISSN 1976-913X)

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

18

TGTTTT overheadoverheadoverheadoverheadoverhead >+++ 4321 (1)

This motivates batch processing in a grid whereby the fine-grain tasks are grouped into

batches before being deployed on the resources. Here, the concern is the size of the batch or the
task granularity; “How many tasks can be grouped in a batch for a particular resource?”.

This concern leads us to understand the factors that affect the batch size before proceeding
with the task grouping process. In this paper, we learn about the impacts of batch size and the
overall task group deployment process on the participating grid entities. In conjunction with this
motivation, we discover the policies and techniques to determine the size of a task group for a
grid resource. We further investigate the batch resizing techniques to realise the important pa-
rameters involved in obtaining the appropriate task granularity.

The batch resizing policies and techniques are mainly for computation-intensive, bag-of-tasks
(BoT) applications. All the tasks in the BoT are independent and have a similar compilation
platform. Our goal is to reduce the overall application turnaround time while maximising the
usage of resource and network capacities.

The rest of the paper is organised as follows: Section 2 presents the related work. Section 3
conveys the set-up of all the experiments conducted in this paper. In Section 4, Experiment
Phase I is conducted to describe the motivation, policies, and issues involved in the batch resiz-
ing process. Section 5 explains the task categorisation and benchmarking techniques to decide
the granularity for BoT applications. These two techniques are then implemented in a meta-
scheduler explained in Section 6. Section 7 presents Experiment Phase II, which analyses the
performance of the two techniques. The importance of periodic average analysis is realised in
Section 8. Section 9 produces the results from Experiment Phase III (experiments on average
analysis). Finally, Section 10 concludes the paper by suggesting future work.

2. RELATED WORK
Task resizing has become an interesting focus for research in recent years [7-9]. Maghraoui et

al [10] used special constructs in the user job files to indicate the atomic computational units of
the jobs. In a distributed platform, upon resource unavailability, these constructs are referred

Fig. 1. Individual vs task group deployment

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

19

accordingly to split or merge the computational units before migrating the jobs to other re-
sources.

There are a number of simulations conducted that involve determining the granularity of a
batch in parallel and distributed environments. Sodan et al [11] proposed to compute the batch
size based on the average runtime of the jobs, machine size, number of running jobs in the ma-
chine, and minimum/maximum node utilisation. Their simulations did not consider the varying
network usage or bottleneck, and it limits the flexibility of the job groups by fixing the upper
and lower bounds of the number of jobs in the group.

The authors in [12,13] grouped the tasks based on resource’s Million Instructions Per Second
(MIPS) and task’s Million Instructions (MI); e.g. for utilising a resource with 500 MIPS for 3
seconds, tasks were grouped into a single task file until the maximum MI of the file was 1500.

Realising the inaccuracy of considering MI and MIPS [14], the authors in [15] enhanced the
task grouping process by considering the parameters from users (budget and deadline), applica-
tions (estimated task CPU time and task file size), utilisation constraints of the resources (maxi-
mum allowed CPU and wall-clock time, and task processing cost per time unit), and transmis-
sion time tolerance (maximum allowed task file transmission time). They used genetic algo-
rithms in the simulations to divide the user jobs to all the available resources before proceeding
with the actual task grouping and deployment activities. However, it was assumed that the task
file size reflected the processing length of the task.

Following from that, we [16] enhanced the algorithm in [15] by considering the task file size
apart from its processing length, the space availability at the resources, and the output file
transmission time. We incorporated the task grouping policies and techniques in the algorithm
that also supports an unlimited number of user tasks arriving at the scheduler at runtime.

This paper is an extended version of our previous work [16]. We developed a meta-scheduler
called GridBatch (using Java and multi-threading features) with our proposed batch resizing
policies and techniques. The GridBatch was tested in a grid environment with simple computa-
tional, independent tasks. All the parameters involved in the techniques are discussed in details
with experiments in order to realise their impacts on the entire batch resizing process.

3. EXPERIMENTAL PLAN
Three phases of experiments will be conducted throughout the paper. This section provides

the details of the grid resources and the BoT application used in the experiments.

3.1 Grid Resources

Table 1 lists the five grid resources that will be participating in the experiments. Each re-
source is a single processing node with multiple cores. R0 is located at the University of Mel-
bourne (UNIMELB), Australia, whereas R1-R4 are at the Multimedia University (MMU), Malay-
sia. The experimental set-up is given in Fig. 2. The client machine (operating system: Ubuntu,
speed: 2.40GHz, RAM: 3GB) is located within the MMU domain.

3.2 BoT Application

The BoT grid application used throughout this paper is kind of non-parametric sweep applica-

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

20

tion. The BoT comprises instances of six computational programs, namely, heat distribution,
linear equations, finite differential equations, and three versions of Pi computations. The in-
stances of each program are to be executed using various parameter sets.
There are 568 tasks in this BoT; the task file size ranges from 7-10 KBytes; estimated task
CPU time ranges from 0.07-3.15 minutes; and the estimated output file size is 0.05-5950
KBytes. The majority of the tasks are considered fine-grain: 90.49% of the tasks have (CPU
time ≤ 2minutes) and 79.93% of the tasks have (output file size ≤ 1000KBytes).

Application turnaround time refers to the total time taken to successfully process all the tasks
in the BoT. It includes file transmission time, task waiting and execution time, as well as the
overhead at the scheduler, interconnecting network, and the resources.

4. BATCH RESIZING: MOTIVATION, POLICIES, AND ISSUES
This section compares the overhead in individual task deployment with group-based task de-

ployment, thus presenting the motivation towards batch processing in a grid environment. For
this purpose, we conduct Experiment Phase I with the experimental set-up given in Fig. 2.

4.1 Performance Analysis – Experiment Phase I

We select 50 tasks with (CPU time ≤ 1minute) and (output file size ≤ 16KBytes) from the
BoT for further deployment on the five resources. There are 10 experiments in this phase and
the task granularity or batch size for each experiment is indicated in Table 2.

Experiment I reflects the individual task deployment where the tasks are transmitted to the re-
sources one-by-one; the Task Granularity is set to 1. This induces 50 task executions and 100
file transmissions (50 for task file and 50 for output file transmissions). A task will be scheduled
and dispatched to a resource when the resource has successfully completed the current task.

In Experiment II, two tasks are grouped (compressed) together for deployment on a resource.

Table 1. Grid resources

ID Resource Name (Location) CPUs Operating System, Speed, RAM
R0 belle.csse.unimelb.edu.my (UNIMELB, Australia) 4 Ubuntu, 2.80GHz, 2GB
R1 sigs.mmu.edu.my (MMU, Malaysia) 4 OpenSUSE, 2.40GHz, 2GB
R2 agrid.mmu.edu.my (MMU, Malaysia) 2 Ubuntu, 2.40GHz, 1GB
R3 bgrid.mmu.edu.my (MMU, Malaysia) 2 Ubuntu, 2.40GHz, 1GB
R4 cgrid.mmu.edu.my (MMU, Malaysia) 2 Ubuntu, 2.40GHz, 1GB

Fig. 2. Environmental set-up for the experiments

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

21

This incurs 25 task groups and 50 file transmissions. In Experiment X, 18 tasks are grouped into
a batch. Thus, only three task groups are created and sent to the first three grid resources.

Fig. 3 shows the performance charts of Experiment Phase I. The total time for executing the
50 tasks sequentially on a local machine is 9.21 minutes. Chart (a) reveals the overall applica-
tion turnaround time for executing the tasks on the five grid resources.

The individual task deployment (Experiment I) consumes 5.51 minutes. The task group or
batch deployment with granularity 2 (Experiment II) consumes 4.23 minutes, revealing an im-
provement of 23.23% as compared to the individual task deployment. The minimum turnaround
time is 3.84 minutes with a performance improvement of 30.31%. This is achieved in Experi-
ment VI with granularity 10. Here, only five groups are created; each contains 10 tasks. The five
resources simultaneously process the five groups with less communication overhead.

However, the application turnaround time increases after Experiment VI. This is due to the
imbalanced task allocation to the resources. For example, in Experiment VIII, the 50 tasks are
divided into four groups and deployed on four resources. Each resource handles higher work-
loads sequentially (thus reducing the degree of parallelism) as opposed to Experiment VI in
which all five resources are engaged with balanced workloads.

Chart (b) shows the total transmission time involved in all the experiments. R1-R4 are located
within the same domain as the client machine with a better transmission speed as compared to
R0. Thus, frequent file transmissions with R0 will increase the overall application transmission
time.

Experiment I involves 50x2 transmissions, costing a total of 3.67 minutes; 11 task files are
transmitted to R0 (as indicated in Table 3). Experiment VI with 5x2 transmissions conveys a
better performance of 90.21% by consuming only 0.37 minutes in total. The smallest transmis-
sion time (0.3 minute) is obtained when the granularity is 18. Here, only three groups are created
and transmitted to R0, R1, and R2.

Chart (c) further explores the average transmission time in terms of task and output files. The
average task and output file transmission times for granularity 1 are 1.91 seconds and 2.49 sec-
onds respectively. Having 50x2 transmissions, involves approximately 1.91x50 seconds and
2.49x50 seconds merely for the communication purpose. Granularity 18 with 3x2 transmissions
involves only 2.86x3 seconds and 3.16x3 seconds for the task and output files.

Chart (d) reveals the average file size and the average utilisation of the network connection in
each experiment. In Experiment I, the average task file size is 3.75 KBytes and the average task
transmission rate is 6.07 KBytes/sec; the average output file size is 2.58 KBytes, which is trans-
ferred with 1.95 KBytes/sec. In Experiment VI, the average size of the five groups is 33.24
KBytes and the resulting transmission rate is 53.82 KBytes/sec. This shows that, task grouping
leads to a better utilisation of the achievable network bandwidth. The highest network utlisation
is achieved with granularity 18; 79.20 KBytes/sec and 34.81 KBytes/sec for task and output files
respectively. Here, one should note that the size of the group is less than 16 KBytes. When

Table 2. Task granularities for Experiment Phase I

Experiment I II III IV V VI VII VIII IX X
Task Granularity 1 2 4 6 8 10 12 14 16 18
Total Task groups 50 25 13 9 7 5 5 4 4 3
Total File Transmissions 100 50 26 18 14 10 10 8 8 6

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

22

grouping larger files, one may not get a similar impact since large files will overload the net-
work, resulting in an unfavourable transmission time [17].

During Experiment V, we noticed a slight increase in the turnaround time due to the addi-
tional workloads assigned to R0 by other users. In addition, more time is spent on file transmis-
sions due to the fluctuating network conditions that increase the communication overhead. Hav-
ing shared resources and communication overhead are inevitable in a grid environment.

4.2 Factors Influencing the Task Granularity

Experiment Phase I reveals the importance of task grouping before deploying the fine-grain
tasks on a grid. When adding a task into a batch, the processing need of the batch will increase
in terms of CPU time, wall-clock time, and the required storage space. This demands us to con-
trol the resulting granularity or the number of tasks in a batch. We discover the following four

(a) (b)

(c) (d)

Table 3. Total task groups processed by each resource

Experiment I II III IV V VI VII VIII IX X
R0 11 5 3 2 2 1 1 1 1 1
R1 11 5 3 2 2 1 1 1 1 1
R2 13 5 3 2 1 1 1 1 1 1
R3 8 5 2 2 1 1 1 1 1 0
R4 7 5 2 1 1 1 1 0 0 0

Total 50 25 13 9 7 5 5 4 4 3

Fig. 3. Performance charts – Experiment Phase I

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

23

main factors that affect the task granularity for a particular resource:

• The processing requirements of the tasks in a grid application.
• The processing speed and overhead of the grid resources.
• The utilisation constraints imposed by the providers to control the resource usage [18].
• The bandwidths of the interconnecting networks [19].

Fig. 4 depicts the information flow pertaining to the above-mentioned factors in a grid envi-

ronment. The grid model contains three entities: User; Meta-Scheduler; and Grid Resources. The
meta-scheduler gets the tasks from the user, groups the tasks into batches, and deploys the
batches on the resources. The task granularity is decided based on the following factors:

• The processing requirements of each task in an application that include the task file size

(TFSize), estimated task CPU time (ETCPUTime), and estimated output file size (OFSize).
• The utilisation constraints imposed by the resource providers to control the resource usage

[18] that include the maximum CPU time (MaxCPUTime) allowed for executing a task, the
maximum wall-clock time (MaxWCTime) a task can spend at the resource, and the maxi-
mum storage space (MaxSpace) that a task or a set of tasks (including the relevant output
files) can occupy at a time. The MaxWCTime encompasses the CPU time and the process-
ing overhead (waiting time and task packing/unpacking overhead) at the resource.

• The network utilisation constraint or the maximum time that a scheduler can wait for the
task and output files to be transmitted to and from the resources (MaxTransTime).

Having these three input sets, the meta-scheduler can perform task grouping for a resource, Rj,
based on the following five policies:

•Policy 1: TG CPU time ≤ MaxCPUTimeRi

The total CPU time of the task group should be less than the maximum allowed CPU time
of a resource Ri.

•Policy 2: TG wall-clock time ≤ MaxWCTimeRi

Fig. 4. The meta-scheduler and the information flow

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

24

The total wall-clock time of the task group should be less than the maximum allowed wall-
clock time of a resource Ri.

• Policy 3: TG and output transmission time ≤ MaxTransTimeRi
The transmission time of the task group and the relevant output files should be less than the
maximum allowed file transmission time for a resource Ri.

• Policy 4: TG and output file size ≤ MaxSpaceRi
The total size of the task group and the relevant output files should be less than the maxi-
mum allowed storage space of a resource Ri.

• Policy 5: Number of tasks in TG ≤ Remaining BoTTOTAL
The number of tasks in a task group should be less than the remaining tasks in the BoT;
BoTTOTAL refers to the total tasks in the BoT.

The Policies 1-4 are related to resource-network utilisation constraints and Policy 5 is on task

availability. There are some issues in using these policies due to the dynamic nature of a grid.

Issue I: Resource overhead and task wall-clock time. A grid resource can be a cluster of

multiple nodes or a node with single or multiple cores. The wall-clock time of a task is influ-
enced by the current processing load of the resource and the speed of the resource’s local job
scheduler. Policy 2 requires us to know the resource queuing system overhead in advance.

Issue II: Resource speed and task CPU time. Task CPU time differs according to a re-
source’s processing capability; e.g a group of five tasks might be handled by Resource A
smoothly, whereas it may exceed the maximum allowed CPU time or wall-clock time of Re-
source B, in spite of having a similar architecture as Resource A. In addition, a task with 20,000
instructions can be a fine-grain task for a machine that processes 10,000 instructions per second.
However, a machine that processes 100 instructions per second will consider the same task as an
average- or coarse-grain task. Policy 1 requires us to learn the resource speed and the processing
need of the tasks prior to the task grouping process.

Issue III: Network condition and task transmission time. Task grouping increases the file

size to be transmitted to and from the resources, and thus may overload the network. Moreover,
the achievable bandwidth and latency of the interconnected network [19,20] vary at times; e.g.
the network bandwidth at time tx may support the transmission of a batch of seven tasks, how-
ever, at time ty this may result in a heavily-loaded network (where x < y). Policy 3 requires us to
determine the most appropriate file size depending on the current network status.

5. BATCH RESIZING TECHNIQUES: TASK CATEGORISATION AND
BENCHMARKING

The three issues pertaining to conducting batch resizing policies (Section 4.2) can be viewed
from two perspectives:

• From a Task Perspective: The issues are related to estimating task wall-clock time, CPU

time, and task file transmission time.

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

25

• From a Resource Perspective: The issues are related to estimating the resource overhead,
processing speed, and network condition.

In this paper, we focus on deploying computational tasks from BoT applications. A BoT con-

sists of independent tasks that can be executed simultaneously. The order of the task executions
can be random; e.g. T1 can be executed before initiating T0.

The resources operate on the tasks at their own pace. Each heterogeneous resource is associ-
ated with its intrinsic processing speed, overhead, and storage space. Moreover, the resources
have their own workload or processing load. The individualistic and autonomous nature of the
BoT tasks and the resources let us deal with the above-mentioned issues using two techniques:
Task Categorisation; and Task Category-Resource Benchmarking.

In task categorisation, the BoT tasks are organised into categories according to their process-
ing requirements. Following that, in the task category-resource benchmarking, sample tasks
from the categories are scheduled and deployed on the grid resources in order to learn the behav-
iour of the resources and the interconnecting network on the task categories.

5.1 Task Categorisation

The tasks in a BoT may vary in terms of TFSize, ETCPUTime, and OFSize. When adding a
task into a group, the TFSize, ETCPUTime, and OFSize of the task group are accumulated.
Hence, the first concern is to ensure that the scheduler selects the most appropriate tasks from
the BoT so that the resulting task group satisfies all of the five batch resizing policies.

A BoT may contain thousands of tasks. The second concern is that the task selection should
be done in a timely manner, ensuring that the relevant overhead will not affect the application
processing time. Thus, there is a need for proper task file management and searching strategies.

Here, we address the two concerns by arranging the tasks in a tree structure based on certain
class interval thresholds applied to TFSize, ETCPUTime, and OFSize. This technique involves
three levels of categorisation. In the first level, the tasks are divided into categories according to
the task file size class interval (TFSizeCI). In the second level, the resulting categories are further
divided according to the estimated task CPU time class interval (ETCPUTimeCI). Finally, in the
third level, the tasks are divided based on the output file size class interval (OFSizeCI).

Algorithm 1 in Fig. 5 depicts the level 1 categorisation in which the tasks are divided into cat-
egories (TCat) based on TFSize of each task and the TFSizeCI. The range of a category is set
according to TFSizeCI. For example, the range of:

The category ID (TCatID) of a task is 0 if its TFSize is less than the TFSizeCI (line 2,3). Oth-

erwise, the mod and base values (line 5,6) of the TFSize are computed to determine the suitable
category range. For example, when TFSizeCI = 10 size unit,

TCat0: 0 to (1.5 x TFSizeCI)
TCat1: (1.5 x TFSizeCI) to (2.5 x TFSizeCI)
TCat2: (2.5 x TFSizeCI) to (3.5 x TFSizeCI)

tasks with (0 < TFSize <15) belong to TCat0
tasks with (15 ≤ TFSize <25) belong to TCat1

tasks with (25 ≤ TFSize <35) belong to TCat2

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

26

Fig. 5. Listing of level 1 task categorisation algorithm

This is followed by the level 2 categorisation in which the categories from level 1 are further

divided into sub-categories according to the ETCPUTime of each task and ETCPUTimeCI. A
similar categorisation algorithm is applied for this purpose. Subsequently, the level 3 categorisa-
tion divides the categories from level 2 into sub-categories based on OFSize and OFSizeCI. Fig.
6 presents an instance of task categorisation when TFSizeCI = 10, ETCPUTimeCI = 6, and OF-
SizeCI = 10.

The categories at each level are created only when there is at least one task belonging to that
particular category. For each resulting TCat, the average processing requirements are computed,
namely, the average task file size (AvgTFSize), the average estimated task CPU time (Av-
gETCPUTime), and the average output file size (AvgOFSize). These average details will be
used in a later technique. With this file organisation, one can easily locate the category that ob-
eys the five policies and then select a task from the particular category to be added into a batch.

The order of the categorisation process can be altered; e.g. in level 1 categorisation, the tasks
can be divided according to ETCPUTimeCI instead of TFSizeCI. The resulting categories are not
affected by the categorisation order, but merely depend on the class interval used at each level.
Small class intervals can be used to increase the number of categories in order to achieve better
accuracy when selecting a task for a batch. However, this will increase the overhead in searching

Algorithm 1: Level 1 Task Categorisation.
Data: Requires TFSize of each T and TFSizeCI
1 for i := 0 to BOTTOTAL-1do
2 if Ti-TFSize < TFSizeCI then
3 TCatID := 0;
4 else
5 ModV alue := Ti-TFSize mod TFSizeCI;
6 BaseV alue := Ti-TFSize - ModV alue;
7 if ModV alue < TFSizeCI / 2 then
8 TCatID := (BaseV alue / TFSizeCI) - 1;
9 else
10 TCatID := ((BaseV alue + TFSizeCI) / TFSizeCI) - 1;
11endif
12endif
13 Ti belongs to TCat of ID TCatID

Note: Ti-TFSize refers to the file size of the ith task.

Fig. 6. Task categorisation – an example

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

27

for the most appropriate task category.
Our next step is to determine how the task categories react along with the resources and the

interconnecting network. We achieve this using the second technique, task category-resource
benchmarking.

5.2 Task Category-Resource Benchmarking

As mentioned in Section 4.2, the performance and overhead of the resources or the network
cannot be estimated merely based on some written specifications. Hence, we suggest a bench-
mark phase in which a few tasks are selected from the BoT and deployed on the resources as to
study the behaviour of the grid in response to the user tasks before scheduling the entire BoT.

First, we determine the dominating categories based on the total number of tasks in the cate-
gories. Then, we select p tasks from the first m dominating categories and send them to each
resource. The total number of benchmark tasks, BTasksTOTAL:

resourcestotalpmBTasksTOTAL _××= (2)

Upon retrieving the processed output files of a benchmark task, the following eight deploy-

ment metrics of the task are computed:

The resource overhead (ROverhead) of a task refers to the waiting time and other overheads

(task packing and unpacking time) during the task execution at the resource:

CPUTimeWCTimeROverhead −= (3)

The actual processing time of a task (APTime):

 RTMTimeWCTimeMTRTimeAPTime ++= (4)

However, there are overheads at the meta-scheduler that will be a part of the task turnaround

time. Hence, the eighth deployment metric, task processing overhead (POverhead):

APTimeTRTimePOverhead −= (5)

Finally, after completing all of the benchmark tasks, the average of each deployment metric is

computed for each task category-resource pair. For a category k, the average deployment metrics
on a resource j are expressed as average deployment metrics of TCatk-Rj, which consist of:

task file transmission time from meta-scheduler to resource (MTRTime); CPU time
(CPUTime); wall-clock time (WCTime); output file transmission time from resource to
meta-scheduler (RTMTime); turnaround time (TRTime); actual task processing time
(APTime); resource overhead (ROverhead); and processing overhead (POverhead).

average task file transmission time (AvgMTRTimek,j); average CPU time (AvgCPUTimek,j);
average wall-clock time (AvgWCTimek,j); average output file transmission time
(AvgRTMTimek,j); average turnaround time (AvgTRTimek,j); average actual task processing
time (AvgAPTimek,j); average resource overhead (AvgROverheadk,j); and average process-
ing overhead (AvgPOverheadk,j).

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

28

It can be noted that not all the categories are participating in this benchmark. Therefore, the
average deployment metrics of those categories that missed the benchmark will be updated
based on the average ratio of the categories that participated in the benchmark, in the following
order:

∑
−

=

×=
1

0
,, /))/((

m

k
kjkiji mAvgTFSizeAvgMTRTimeAvgTFSizeAvgMTRTime (6)

∑
−

=

×=
1

0
,, /))/((

m

k
kjkiji mmeAvgETCPUTiAvgCPUTimemeAvgETCPUTiAvgCPUTime (7)

∑
−

=

×=
1

0
,, /))/((

m

k
kjkiji mAvgOFSizeAvgRTMTimeAvgOFSizeAvgRTMTime (8)

∑
−

=

=
1

0
,, /)((

m

k
jkji madAvgROverheadAvgROverhe (9)

∑
−

=

=
1

0
,, /)((

m

k
jkji madAvgPOverheadAvgPOverhe (10)

jijiji adAvgROverheAvgCPUTimeAvgWCTime ,,, += (11)

jijijiji AvgRTMTimeAvgWCTimeAvgMTRTimeAvgAPTime ,,,, ++= (12)

jijijijiji adAvgPOverheAvgRTMTimeAvgWCTimeAvgMTRTimeAvgTRTime ,,,,, +++= (13)

where,
k denotes the TCatID in the benchmark and k takes specific values in the range
{0,1,2,...,TCatTOTAL-1}.
i denotes the TCatID missed the benchmark and i takes specific values in the range
{0,1,2,...,TCatTOTAL-1}.
j = 0,1,2,...,total grid resources-1.
m = Total categories in the benchmark.

The average space consumed by each TCatk-Rj pair can be obtained from the AvgTFSize and

AvgOFSize computed during the task categorization process.
In short, this benchmark phase studies the response of the grid resources and the interconnect-

ing network on each task category. We select p tasks from the first m dominating categories for
each resource. Increasing p and m will lead to a better accuracy in learning the behaviour of the
grid environment. However, this will increase the BTasksTOTAL (the degree of individual task
deployment) and reduce the total remaining tasks available for batch deployment.

6. THE GRIDBATCH META-SCHEDULER
This section presents the GridBatch meta-scheduler that performs the task grouping based on

the proposed five batch resizing policies (Section 4) and two techniques (Section 5).
Fig. 7 shows the process flow of the entire GridBatch meta-scheduler system. There are eight

modules involved in the meta-scheduler: Controller, Task Categorisation, Scheduling, Task /
Batch Deployment, Output Collection, Progress Monitoring, Resource Planning, and Deploy-
ment Analysis. The Scheduling module encompasses three sub-modules, namely, Benchmark

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

29

Scheduling, Batch Resizing & Scheduling, and Task / Batch Deployment.

(1) When the task files and the processing requirements are passed to the GridBatch, the Con-

troller directs the value(s) of

• class intervals (TFSizeCI , ETCPUTimeCI , OFSizeCI) to the Task Categorisation, which will

be used during the task categorisation process;
• p and m to the Scheduling module, which will be used during the benchmark phase; and
• the network utilisation constraint, MaxTransTime, to the Scheduling module, which will be

used as the maximum time for transmitting the task and output files to and from a resource.

The process flow of the meta-scheduler includes two phases: Task Categorisation until the

Task Category-Resource Benchmarking; and Task Deployment Analysis until the Batch Task
Deployment.

6.1 Phase I: Task Categorisation till Task Category-Resource Benchmarking

(1) The Task Categorisation retrieves the task files from the user and categorises the tasks as
explained in Section 5.1, according to the class intervals provided by the Controller. It then,
prepares the task category list and (2) directs the list to the Scheduling module. Meanwhile, (3)
the Resource Planning keeps the information of the participating grid resources to which the
user has valid authorisations. (4) It presents a resource list that contains the IP addresses or host-
names of the participating resources to the Scheduling module. It also passes the utilisation con-
straints (MaxCPUTime, MaxWCTime, MaxSpace) of the resources to the Batch Resizing &
Scheduling module.

(5) Having the task and resource lists, the Benchmark Scheduling identifies the m dominating
categories and selects p tasks from each category to be deployed on each resource. It schedules
one task to one resource and (6) dispatches the task to the assigned resource via the Task / Batch
Deployment module. In total, it has to schedule and deploy BTasksTOTAL individual tasks.

Fig. 7. Process flow of the GridBatch meta-scheduler

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

30

(7) Meanwhile, the Progress Monitoring will be informed about the dispatched task. (8) It
then instructs the Output Collection to trace the progress of the dispatched task at the particular
resource. (9) Upon detecting the completion of the task, the Output Collection retrieves the
processed task files and (8) notifies the Progress Monitoring. (7) The Progress Monitoring then
informs the Scheduling module that the particular resource is available for the next task; a task
will be assigned to a resource once the resource completes the current task and becomes avail-
able for the next task. This mechanism also helps the meta-scheduler to identify the missing
tasks after the task dispatching activity.

In addition, (10) the Progress Monitoring periodically gets a list of available grid resources
from Resource Planning in order to keep track of any resource failure event that could cause the
loss of the deployed task. (7) The module then notifies the Scheduling to re-invoke the deploy-
ment of the failed tasks. The steps (3-10) continue until all the BTasksTOTAL benchmark tasks are
successfully deployed and processed.

In step (5), after the scheduling process, the module compresses the multiple files of a task in-
to one file. For example, a task can be composed of an instruction file, a program or executable
file, and a data file. The program and data files will be compressed into one file. Hence, the
module will dispatch the instruction and the compressed files to the resource. Then, it will in-
voke the instruction file in the resource using a remote shell (rsh) that will do the necessary op-
erations on the compressed files.

6.2 Phase II: Task Deployment Analysis till Batch Task Deployment

When collecting the output files of a task, (11) the Output Collection passes the task’s details
to Deployment Analysis. (12) The Deployment Analysis will get the progress details of the par-
ticular processed tasks from the Progress Monitoring. It then computes the eight deployment
metrics of the task (MTRTime, CPUTime, WCTime, RTMTime, TRTime, APTime, ROverhead,
POverhead). Upon computing the deployment metrics of all the benchmark tasks, the module
will calculate the average value of each deployment metric for each task category-resource pair
(TCatk-Rj), as mentioned in Section 5.2.

Here, the Resource Planning does an additional job where (3) it retrieves the resource utilisa-
tion constraints from the resources in a periodic manner and (4) passes the constraint details to
the Batch Resizing & Scheduling. (14) Having the resource-network utilisation constraints and
the TCatk-Rj average deployment metrics, the Batch Resizing & Scheduling builds a batch for a
particular resource based on the five batch resizing policies formulated in Section 4.2.

The task categorisation process derives the need for enhancing Policy 5 to control the total
number of tasks that can be selected from a category. Policy 5 can be expressed as follows:

(14) First, the Batch Resizing & Scheduling loops through the task categories and determines

the TCat that satisfies all the five policies. It selects a task from the particular TCat and adds it to
the batch. The processing needs of the batch are updated based on the average deployment met-
rics of the TCat. The process continues. Whenever adding a task into a batch, the processing
needs of the batch accumulate. Once the accumulated processing needs of the batch fit the re-

Policy 5: Total tasks in TG from a TCatk ≤ size_o f (TCatk)
where, k = 0,1,2,...,TCatTOTAl-1 (denoting the TCatID).

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

31

source-network utilisation constraints, the batch will be dispatched to the designated resource
via the Task / Batch Deployment. The steps (3, 4, 14, 6-10) are repeated until all the remaining
BoTTOTAL tasks are successfully deployed and processed.

7. PERFORMANCE ANALYSIS – EXPERIMENT PHASE II
In this section, experiments are conducted in the environmental set-up shown in Fig. 2 in or-

der to observe the impacts of the task categorization and task category-resource benchmarking
techniques. We will use all the 568 tasks from the BoT for this analysis.

Table 4 shows the 10 experiments in Phase II and the observations on the resulting total task
categories, benchmark tasks, and task groups. Experiment I reflects the individual task deploy-
ment. Experiments II-X involve task categorisation based on the class intervals (TFSizeCI, ETC-
PUTimeCI, and OFSizeCI) given in Table 4; two tasks from the first 20% of the dominating cate-
gories are selected to be deployed on each resource for the purpose of benchmarking.

First, we analyse an experiment (Experiment IV) in order to understand the process flow of
the meta-scheduler. In Experiment IV, 17 categories are generated with TFSizeCI = 1 KBytes,
ETCPUTimeCI = 1 minute, and OFSizeCI = 500 KBytes. The resulting categories are:

Then, the first three (20% of 17) dominating categories, namely, TCat0, TCat1, and TCat4, are

selected to participate in the benchmark phase; two tasks from each category are deployed for
each resource (BTasksTOTAL = 30). After the benchmark phase, the average deployment metrics
are computed for each TCatk-Rj, as mentioned in Section 5.2.

Subsequently, task grouping is conducted for each resource based on the resource-network
utilisation constraints stated in Table 5. Throughout the experiment, 199 task groups are created,
thus it involves a total of (30+199)x2 transmissions (for both the task and output files). Table 6
lists the granularity and the number of groups created for each resource; e.g. for R2, there are 6
benchmark tasks; 29 groups, each with one task; 3 groups, each with 3 tasks; 1 group with 15
tasks; and 2 groups, each with 20 tasks. In total, R2 has received 41 groups (including the indi-
vidual benchmark tasks) and processed 99 tasks. Overall, the experiment involves 229x2 trans-
missions to and from the five resources in order to process the 568 tasks. It can be noted that,
after benchmarking, 153 tasks do not get included in any group. The processing requirements of

0-330, 1-64, 2-20, 3-6, 4-22, 5-12, 6-12, 7-10, 8-10, 9-10, 10-8, 11-10, 12-16,
13-12, 14-8, 15-10, 16-8 (e.g. 0-330 indicated 330 tasks in category 0)

Table 4. Phase II experiments, configurations, and the observations

Experiment I II III IV V VI VII VIII IX X

TFSizeCI (KBytes) - 1 5 1 1 1 1 1 1 1

ETCPUTimeCI (mins) - 1 1 1 1 1 1 2 3 0.5

OFSizeCI (KBytes) - 100 100 500 1000 1500 2000 100 100 100

Total Categories - 58 58 17 11 9 8 56 54 63

Benchmark Tasks - 76 76 30 20 10 10 68 62 84

Task Groups - 170 168 199 220 260 261 152 143 189

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

32

each of these are sufficient enough to meet the resource-network utilisation constraints.
Fig. 8 shows the performance charts of Experiment Phase II. The observations in Chart (a)

and Chart (b) reveal that the task grouping highly reduces the overall application turnaround
time and the total transmission time. The minimum task turnaround time (115.38 minutes) is
achieved in Experiment VIII where 56 categories are generated with TFSizeCI = 1 KBytes,
ETCPUTimeCI = 2 minutes, and OFSizeCI = 100 KBytes. This experiment involves 68 bench-
mark tasks, and the remaining 500 tasks are grouped accordingly into 152 groups, leading to a
total of 220x2 transmissions. The minimum total transmission time (12.54 minutes) is achieved
with 205x2 transmissions in Experiment IX where 54 categories are generated with TFSizeCI = 1
KBytes, ETCPUTimeCI = 3 minutes, and OFSizeCI =100 KBytes.

We realize that a better performance is achieved when we increase the number of categories.
However, Experiments II and III with 58 categories deliver an average performance as compared
to Experiments VIII and IX with 56 and 54 categories, respectively. This is due to the number of
benchmark tasks, BTasksTOTAL, prior to the task group deployment and the overhead at the meta-

Table 5. Resource-network utilisation constraints

Utilisation Constraints R0 R1 R2 R3 R4

MaxCPUTime (mins) 5 4 4 5 4

MaxWCTime (mins) 10 8 10 15 10

MaxSpace (MBytes) 10 15 10 10 10

MaxTransTime (mins) 6 5 5 4 6

Table 6. Benchmark and task group deployment, Experiment IV

Resource Granularity

 1 (Benchmark) 1 2 3 4 8 12 15 20 22 23
(Benchmark+
Groups):Tasks

R0 6 24 2 2 - - - - - - 2 36:86

R1 6 35 2 - 1 - - - - 3 - 47:115

R2 6 29 - 3 - - - 1 2 - - 41:99

R3 6 31 - 3 2 - 7 - - - - 49:138

R4 6 34 3 4 - 9 - - - - - 56:130

Total 30 153 7 12 3 9 7 1 2 3 2 229:568

(a) (b)

Fig. 8. Performance Charts – Experiment Phase II

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

33

scheduler.
For example, increasing the categories will increase the BTasksTOTAL, which are to be de-

ployed on the resources individually. In addition, the overhead at the meta-scheduler to loop
through the list of categories for the task selection process will increase as well, leading to a
higher application turnaround time. A similar effect can be seen in Experiment X with 63 cate-
gories and 84 benchmark tasks.

On the other hand, increasing the categories and the BTasksTOTAL will increase the accuracy
of the meta-scheduler when computing the average deployment metrics of each TCatk-Rj. This
helps towards more accurate decisions on the task granularity of a batch. Thus, when deciding
the class intervals (TFSizeCI, ETCPUTimeCI, and OFSizeCI), one should consider the priorities of
the two factors: application turnaround time; and accuracy of task granularity.

8. BATCH RESIZING TECHNIQUE: PERIODIC AVERAGE ANALYSIS
The grid entities are autonomous in nature; they have their own workloads that are unknown

to each other. The task categorisation and benchmarking help the meta-scheduler to learn the
behaviour of a grid. However, as the grid operates autonomously in a dynamic environment, the
deployment metrics of a task category may not reflect the latest grid after a time period [21]; the
meta-scheduler will fail to keep up the accuracy level in deciding the appropriate batch size if it
uses the benchmark results for deploying the entire BoT over time.

In this section, we propose to conduct a periodic average analysis to update the deployment
metrics of each TCatk-Rj pair according to the current grid status during the meta-scheduler run-
time. This average analysis serves as a subsequent technique following the task categorisation
and benchmarking techniques. There are three main concerns in performing this technique.

Concern I: The period size of average analysis. The meta-scheduler should analyse the
processed task groups at regular intervals and update the deployment metrics of each TCatk-Rj.
Here, the concern is pertaining to the term ‘regular intervals’ or the ‘period size’. If we increase
the period size, the deployment metrics will not get updated along with the latest grid status fre-
quently. With a small period size, the average analysis is performed frequently within short in-
tervals. However, the meta-scheduler may not have completed any task group deployment be-
fore the subsequent average analysis. Moreover, this will increase the computation overhead at
the meta-scheduler. Hence, in our GridBatch, the average analysis is conducted after each of the
AAIterations iterations in the task group deployment. This ensures that there is at least one latest
processed task group when conducting the subsequent average analysis.

Concern II: The various tasks in the task groups. Upon benchmarking, when creating a
batch, multiple tasks from various categories are added into the group for deployment. The
group is accepted by a resource as a single task. Upon execution, the deployment metrics can
only be computed for a batch rather than for the individual tasks in the batch. Therefore, the
average ratio computation method used in the benchmark phase (Section 5.2) cannot be em-
ployed to update the deployment metrics of TCatk-Rj. The listing in Fig. 9 depicts the process
flow used by the GridBatch to compute and update the average deployment metrics of each
TCatk-Rj from the latest processed task groups.

Concern III: The selection of task groups for average analysis. The average analysis is
conducted at regular time intervals at runtime. Meanwhile, the number of processed task groups

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

34

fetched by the meta-scheduler increases at runtime as well. Here, the concern is related to the
number of groups that should be selected for an average analysis that can reflect the latest grid
status. In our approach, whenever the average analysis is invoked, the meta-scheduler will select
a maximum of AATasksTOTAL task groups processed by each resource within the last AALastest-
Time minutes. The batches that get processed earlier than the last AALastestTime minutes will
not be considered for an average analysis.

9. PERFORMANCE ANALYSIS – EXPERIMENT PHASE III
In this phase, we analyse the performance of the proposed periodic average analysis technique.

For this purpose, we use the same configurations of Experiment IV (of Experiment Phase II); the
tasks are divided into 17 categories based on TFSizeCI = 1 KBytes, ETCPUTimeCI = 1 minute,
and OFSizeCI = 500 KBytes; and BTasksTOTAL = 30.

There are four experiments conducted in this phase and the observations are given in Table 7.
For example, in Experiment I, for each resource, the average analysis is conducted after every
two iterations of task group deployment (AAItearions = 2).

During the analysis, all the tasks groups (AATaskTOTAL = All) from the last 5 minutes (AALat-
estTime = 5 minutes) are selected for the average computations to update the average deploy-
ment metrics of TCatk-Rj. As a result, 102 task groups are created throughout Experiment I to
deploy the remaining 538 tasks. Table 8 shows the granularity and the number of groups created
for all the resources. Note that, after the benchmarking, there are only 22 tasks that did not get
included in any group. Experiment I involves only (30+102)x2 transmissions between the meta-
scheduler and the resources as compared to (30+199)x2 transmissions in Experiment IV of
Phase II (without periodic average analysis).

Fig. 10 shows the application turnaround time and the total transmission time involved in Ex-
periment Phase III in comparison with Experiment Phase II. The observations prove that Ex-
periments with periodic average analysis deliver better performance; e.g. Experiment I shows a

During the average analysis, for a particular resource Rj,
1.Get a maximum of AATasksTOTAL latest processed task groups. Here, we select groups

that are successfully processed by Rj within the last AALatestTime minutes.
2.Get the ‘actual’ deployment metrics of the selected task groups. These metrics can be

retrieved from the progress report of the task groups.
3.The tasks in task groups come from various categories. Hence, identify the tasks and

their categories in each group.
4.Based on the previous TCatk-Rj average metrics, compute the ‘estimated’ task deploy-

ment metrics that each group is supposed to receive.
5.For each group, compute the ratios, ‘estimated’:‘actual’, of the eight deployment met-

rics.
6.Use these ratios to estimate and update the latest TCatk-Rj average deployment metrics.
7.Not all the categories will participate in the AATasksTOTAL latest processed task groups.

Update the TCatk-Rj average details of those categories based on the ratios of the par-
ticipated categories as explained in Section 5.2.

Fig. 9. Process flow of the average analysis

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

35

performance improvement of 16.45% as compared to Experiment Phase II.
We also realize that, for our environmental set-up (Fig. 2), the values of AALatestTime, AAIt-

erations, and AATaskTOTAL do not deliver major variations in terms of turnaround and transmis-
sion times. This is due to the Intranet access to four of the resources that are located within the
same domain as the meta-scheduler; the network condition was stable throughout the experi-
ments.

Despite this condition, it can be seen that Experiment I with a frequent, average analysis con-
veys the best performance. Performing an average analysis after every two task group iterations
reflects the latest state of the grid. In this case, we select the task groups processed within the
last 5 minutes for the analysis purpose. When we increase the AALatestTime to 10 minutes, there
is a slight decrease in the overall performance. Computing the average deployment metrics from
the groups processed within the last 10 minutes misses the accuracy towards reflecting the latest
grid status on the average deployment metrics. Similar impacts can be seen when we increase
the period size or the AAIterations.

Table 7. Phase III experiments, configurations, and the observations

Experiment I II III IV
AALatestTime 5 10 10 20
AAIterations 2 2 4 6
AATasksTOTAL All All All All
BTasksTOTAL 30 30 30 30
Task Groups 102 108 103 109

Table 8. Benchmark and task group deployment, Experiment I

Granularity
(B+

Groups)
:Tasks Resource

1 (B) 1 2 3 4 5 6 7 8 9 11 14 13 20 22 23
R0 6 15 - - 1 - - - - - - - - - - 2 24:71
R1 6 3 1 8 3 - 1 - - - - - - - 3 - 25:119
R2 6 - 4 5 1 - 1 1 - 1 - - - 3 - - 22:115
R3 6 3 4 4 4 3 - - 1 - - - 3 - - - 28:107
R4 6 1 7 3 3 1 3 2 3 - 1 3 - - - - 33:156

Total 30 22 16 20 12 4 5 3 4 1 1 3 3 3 3 2 132:568
B: Benchmark

(a) (b)

Fig. 10. Performance charts – Experiment Phase III

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

36

10. CONCLUSION
In this paper, we realize the need for task grouping when processing fine-grain tasks on global

grids. This leads us towards five policies to decide the task granularity or the size of a batch
before the task deployment. Thus, we propose task categorization and benchmarking techniques
in order to learn the behaviour of a grid before deciding the size of a batch. Following that, we
realize the need for a periodic average analysis to reflect the latest grid status on the task granu-
larity. We develop the GridBatch meta-scheduler to test and analyse the performance of the pro-
posed policies and techniques. We also analyse all the important parameters involved in the pro-
posed techniques that affect the overall application turnaround and communication times.

In the future, we will conduct these experiments in a massive grid environment in order to
further analyse the influence of the parameters introduced in our techniques. Meanwhile, the
proposed process flow of the entire meta-scheduler will be adapted to handle work-flow grid
applications.

REFERENCE

[1] F. Berman, G. C. Fox, A. J. G. Hey, “Grid Computing - Making the Global Infrastructure a Reality”,
Wiley and Sons, Mar., 2003.

[2] R. Buyya, S. Date, Y. M. Natsumoti, S. Venugopal, “Neuroscience Instrumentation and Distributed
Analysis of Brain Activity Data: A Case for e-Science on Global Grids”, Concurrency and Computa-
tion: Practice and Experience (CCPE), Vol.17, No.15, pp.1783-1798, 2005.

[3] M. Baker, R. Buyya, D. Laforenza, “Grids and Grid Technologies for Wide-Area Distributed Com-
puting”, Software: Practice and Experience (SPE), Vol.32, No.15, pp.1437-1466, 2002.

[4] B. Jacob, M. Brown, K. Fukui, N. Trivedi, “Introduction to Grid Computing”, IBM Publication, Dec.,
2005.

[5] S. Venugopal, R. Buyya, W. Lyle, “A Grid Service Broker for Scheduling e-Science Applications on
Global Data Grids”, Concurrency and Computation: Practice and Experience (CCPE), Vol. 18,
pp.685-699, 2006.

[6] H. James, K. Hawick, P. Coddington, “Scheduling Independent Tasks on Meta-Computing Systems”,
In Proceedings of Parallel and Distributed Computing Systems, Fort Lauderdale, pp. 156-162, 1999.

[7] E. G. Coffman, Jr., M. Yannakakis, M. J. Magazine, C. Santos, “Batch Sizing and Job Sequencing on
a Single Machine”, Annals of Operation Research, Vol.26, No. 1-4, pp.135-147, 1990.

[8] T. Cheng, M. Kovalyov, “Single Machine Batch Scheduling with Sequential Job Processing”, IIE
Transactions, Vol.33, No.5, pp.413-420, 2001.

[9] G. Mosheiov, D. Oron, “A Single Machine Batch Scheduling Problem with Bounded Batch Size”,
European Journal of Operational Research, Vol.187, No.3, pp.1069-1079, 2008.

[10] K. E. Maghraoui, T. J. Desell, B. K. Szymanski, C. A. Varela, “The Internet Operating System: Mid-
dleware for Adaptive Distributed Computing”, International Journal of High Performance Comput-
ing Applications, Vol.20, No.4, pp.467-480, 2006.

[11] A. C. Sodan, A. Kanavallil, B. Esbaugh, “Group-based Optimisation for Parallel Job Scheduling
with Scojo-PECT-O”, In Proceedings of the 22nd International Symposium on High Performance
Computing Systems and Applications, p.102-109, Washington, DC, USA, 2008. IEEE Computer So-
ciety.

[12] N. Muthuvelu, J. Liu, N. L. Soe, S. Venugopal, A. Sulistio, R. Buyya, “A Dynamic Job Grouping-
based Scheduling for Deploying Applications with Fine-Grained Tasks on Global Grids”, In Pro-
ceedings of the Australasian Workshop on Grid Computing and E-Research, p. 41-48, Australian
Computer Society, Inc., 2005.

[13] W. K. Ng, T. Ang, T. Ling, C. Liew, “Scheduling Framework for Bandwidth-Aware Job Grouping-
based Scheduling in Grid Computing”, Malaysian Journal of Computer Science, Vol.19, No.2,

Nithiapidary Muthuvelu, Ian Chai, Eswaran Chikkannan, and Rajkumar Buyya

37

pp.117-126, 2006.
[14] J. H. Stokes, “Behind the Benchmarks: Spec, Gflops, MIPS et al”, http://arstechnica.com/cpu/2q99/

benchmarking-2.html, 2000.
[15] N. Muthuvelu, I. Chai, E. Chikkannan, “An Adaptive and Parameterized Job Grouping Algorithm for

Scheduling Grid Jobs”, In Proceedings of the 10th International Conference on Advanced Communi-
cation Technology, Vol. 2, pp.975-980, 2008.

[16] N. Muthuvelu, I. Chai, E. Chikkannan, R. Buyya, “On-line Task Granularity Adaptation for Dynamic
Grid Applications”, In Proceedings of the 10th International Conference on Algorithms and Architec-
tures for Parallel Processing, Vol.6081, pp. 266-277, 2010.

[17] A. Ghobadi, C. Eswaran, N. Muthuvelu, I. K. T. Tan, Y. L. Kee, “An Adaptive Wrapper Algorithm
for File Transfer Applications to Support Optimal Large File Transfers”, In Proceedings of the 11th
International Conference on Advanced Communication Technology, p.315-320, Piscataway, NJ, USA,
2009. IEEE Press.

[18] J. Feng, G. Wasson, M. Humphrey, “Resource Usage Policy Expression and Enforcement in Grid
Computing”, In Proceedings of the 8th IEEE/ACM International Conference on Grid Computing,
p.66-73, Washington, DC, USA, 2007. IEEE Computer Society.

[19] R. G. O. Arnon, “Fallacies of Distributed Computing Explained”, http://www.webperformancemat-
ters.com/, 2007.

[20] B. Lowekamp, B. Tierney, L. Cottrell, R. H. Jones, T. Kielmann, M. Swany, “A Hierarchy of Net-
work Performance Characteristics for Grid Applications and Services”, Global Grid Forum, Jun.,
2003.

[21] P. Huang, H. Peng, P. Lin, X. Li, “Static Strategy and Dynamic Adjustment: An Effective Method for
Grid Task Scheduling”, Future Generation Computer Systems (FGCS), Vol.25, No.8, pp.884-892,
2009.

Nithiapidary
She received her B.IT degree from Universiti Tenaga Nasional, Malaysia, in
2003 and an M.IT degree from the University of Melbourne, Australia, in 2004.
She is teaching at Multimedia University, Malaysia, since 2005. Currently, she is
pursuing her Ph.D study in the field of grid computing at Multimedia University.
Her research interests include: Distributed and Parallel Processing and Data
Communication. She is a member of the IEEE Computer Society.

Dr. Ian Chai
He received his B.Sci. and M.Sci. in Computer Science from the University of
Kansas and his Ph.D. in Computer Science from the University of Illinois at Ur-
bana Champaign. Since 1999, he has taught at Multimedia University in Cyber-
jaya, Malaysia.

Batch Resizing Policies and Techniques for Fine-Grain Grid Tasks: The Nuts and Bolts

38

Prof. C. Eswaran
He received his B.Tech, M.Tech, and Ph.D degrees from the Indian Institute of
Technology Madras, India, where he worked as a Professor in the Department of
Electrical Engineering until January 2002. Currently he is working as a Professor
in the Faculty of Information Technology, at Multimedia University, Malaysia. He
served as a visiting faculty and research fellow in many international universities.
He has supervised successfully more than 25 Ph.D/M.S students and has pub-

lished more than 150 research papers in reputed International Journals and Conferences. Prof. C. Es-
waran is a senior member of IEEE.

Dr. Rajkumar Buyya
He is Professor of Computer Science and Software Engineering; and Director of
the Cloud Computing and Distributed Systems (CLOUDS) Laboratory at the
University of Melbourne, Australia. He is also serving as the founding CEO of
Manjrasoft Pty Ltd., a spin-of company of the University, commercialising its
innovations in Grid and Cloud Computing. He has authored and published over
300 research papers and four text books. Software technologies for Grid and

Cloud computing developed under Dr.Buyya’s leadership have gained rapid acceptance and are in use
at several academic institutions and in commercial enterprises in 40 countries around the world. Dr.
Buyya has led the establishment and development of key community activities, including serving as
foundation Chair of the IEEE Technical Committee on Scalable Computing and for four IEEE confer-
ences (CCGrid, Cluster, Grid, and e-Science). He has presented over 200 invited talks on his vision on
IT Futures and advanced computing technologies at international conferences and institutions. These
contributions and his international research leadership are recognised through the award of the “2009
IEEE Medal for Excellence in Scalable Computing” from the IEEE Computer Society, USA. For further
information on Dr. Buyya, please visit his cyberhome: www.buyya.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

