
Availability-Aware Virtual Cluster Allocation
in Bandwidth-Constrained Datacenters

Jialei Liu , Shangguang Wang , Senior Member, IEEE, Ao Zhou,

Rajkumar Buyya , Fellow, IEEE, and Fangchun Yang

Abstract—As greater numbers of data-intensive applications are required to process big data in bandwidth-constrained datacenters

with heterogeneous physical machines (PMs) and virtual machines (VMs), network core traffic is experiencing rapid growth. The VMs

of a virtual cluster (VC) must be allocated as compactly as possible to avoid bandwidth-related bottlenecks. Since each PM/switch has

a certain failure probability, a VC may not be executed when it meets with any PM/switch fault. Although the VMs of a VC can be spread

out across different fault domains to minimize the risk of violating the availability requirement of the VC, this increases the network core

traffic. Therefore, avoiding the decrease in availability caused by the heterogeneous PM/switch failure probabilities and bandwidth-

related bottlenecks has been a constant challenge. In this paper, we first introduce a joint optimization function to measure the overall

risk cost and overall bandwidth usage in the network core to allocate the same set of data-intensive applications. We then introduce an

approach to maximize the value of the joint optimization function. Finally, we performed a side-by-side comparison with prior

algorithms, and the experimental results show that our approach outperforms the other existing algorithms.

Index Terms—Bandwidth-constrained datacenter, virtual cluster, availability, bandwidth-related bottleneck, risk, fault domain

Ç

1 INTRODUCTION

WITH the growing popularity of cloud computing,
datacenters have become common platforms for

supporting data-intensive applications using modern dis-
tributed computing frameworks, e.g., Spark, MapReduce,
and MPI. In such frameworks, a data-intensive application
is often processed by a virtual cluster (VC) which is com-
posed of virtual switch, virtual links, and virtual machines
(VMs) connected through virtual switch and virtual links
with guaranteed bandwidth (as shown in Fig. 2), and its
intermediate results are transferred iteratively through
multiple stages [1]. Further, the flows not only between
VMs but also into the Internet are created by the traffic
generated by the application [2], e.g., existing study [3]
shows that traffic between VMs in a typical Internet data-
center accounts for about 80 percent of its total traffic.
Therefore, a significant portion of the running time of a
data-intensive application is necessary for communication
[4], for example, job traces from Facebook reveal that

network transfers on average account for 33 percent of the
running time of jobs [1], which can have a significant
impact on job performance.

Due to the increase in data-intensive applications
required to process big data in cloud datacenters, cloud
datacenter traffic is experiencing rapid growth. As Cisco
predicted, there will be nearly a tripling of global datacenter
IP traffic from 2015 to 2020 with a combined annual growth
rate of 27 percent, that is, from 4.7 ZB/year in 2015 to 15.3
ZB/year in 2020 [5]. Therefore, numerous data-intensive
applications consume mass bandwidth resources in the net-
work core of cloud datacenters. In this case, the bandwidth
resources in the network core are very easy to become the
bandwidth resource bottleneck of the cloud datacenter [6].
Further, traffic interference results in unpredictable running
times, which can result in a degradation in performance
experienced by end-users due to service unavailability as
well as losses to the business, both in terms of immediate
revenue and long-term reputation.

It is well known that modern-day cloud datacenters
mount hundreds of thousands of physical machines (PMs)
interconnected via a mass of switches, which communicate
and coordinate tasks to deliver highly available cloud com-
puting services. Service providers typically have specific
requirements for their VCs, with certain amounts of
resource guarantees (e.g., VMs and bandwidth) [7]. How-
ever, failures in cloud datacenter elements (e.g., switches
and PMs) have severe impacts on the availability of cloud
services; in particular, Top-of-Rack (ToR) switches account
for the majority (approximately more than 60 percent) of
the downtime in datacenters [6]. According to a study by
the Ponemon institute in 2016 [8], the median total cost asso-
ciated with unplanned outages is $648,174 per unplanned

� J. Liu is with the State Key Laboratory of Networking and Switching tech-
nology, Beijing University of Posts and Telecommunications, Beijing
100088, China and with the Department of Computer Science and Infor-
mation Engineering, Anyang Institute of Technology, Anyang 302017,
China. E-mail: jlliu22@163.com.

� S.Wang, A.Zhou and F. Yang are with the State Key Laboratory of Net-
working and Switching technology, Beijing University of Posts and Tele-
communications, Beijing 100088, China.
E-mail: {sgwang, aozhou, fcyang}@bupt.edu.cn.

� R. Buyya is with the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory, Department of Computing and Information Sys-
tems, The University of Melbourne, Parkville VIC 3010, Australia.
E-mail: rbuyya@unimelb.edu.au.

Manuscript received 16 Dec. 2016; revised 30 Mar. 2017; accepted 6 Apr.
2017. Date of publication 17 Apr. 2017; date of current version 12 June 2020.
Digital Object Identifier no. 10.1109/TSC.2017.2694838

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020 425

1939-1374� 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-9537-9740
https://orcid.org/0000-0002-9537-9740
https://orcid.org/0000-0002-9537-9740
https://orcid.org/0000-0002-9537-9740
https://orcid.org/0000-0002-9537-9740
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-7245-1298
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
https://orcid.org/0000-0001-9754-6496
mailto:
mailto:
mailto:


incident for those users who expect to meet their availability
requirements which is service uptime divided by the sum of
service uptime and service downtime [9], by demanding a
more stringent Service Level Agreement.

An intuitive way to improve the availability of VC alloca-
tion is to spread out the VMs of the VC to as many fault
domains (i.e., racks) as possible. In this way, the impact of
any single failure on the VC is minimized, but this comes
at the price of bandwidth usage in the network core. In con-
trast, an alternative way to minimize bandwidth usage
in the network core would be to accommodate these VMs
close to each other so that the flows have shorter paths. The
shorter the path, the lower the number of switches and links
visited by these flows, which can decrease bandwidth usage
in the network core. VC allocation benefits from the coloca-
tion; however, as a result, the entire VC is unavailable when
a failure occurs at the exact PM or ToR switch.

Existing studies have introduced many fault-tolerant
approaches to improving the availability of VCs, one strat-
egy is to design new topologies with network redundancy,
which provides rich path multiplicity to deliver large bisec-
tional bandwidth, mitigating bandwidth resource bottle-
necks [10]. However, these improvements are mainly due
to the reduction of the median impact of failures via only
40 percent of network redundancy at the price of increasing
capital expenditures, wiring complexity and energy con-
sumption [6]. Many incumbent datacenter networks
(DCNs) are under-provisioned with bandwidth, i.e., over-
subscribed. In bandwidth-constrained datacenters, incom-
ing VC requests may be rejected while free VMs are still
available. Therefore, only the strategy above is not enough.
Another strategy introduced in this paper analyzes the VC
allocation problem from a novel angle. It not only considers
the risk cost of violating the availability requirement of a
data-intensive application due to heterogeneous failure
probabilities of the ToR switch/PM, but it also exploits
the sum of usage on the core links as an overall measure
of the bandwidth usage in the network core; this measure is
denoted by BW.

To solve these challenges, in this paper, we propose an
Availability-aware VC Allocation (AVCA) approach with
biogeography-based optimization (BBO) [11] that simulta-
neously minimizes the bandwidth usage in the network
core and risk cost whereby each PM/ToR switch has a
certain failure probability. To find a trade-off between the
above two objectives, we separately measure the bandwidth
usage in the network core and risk cost, and make a joint
optimization of these two goals.

To summarize, the key contributions of our work are:

� We propose two novel models: One is to formulate
the risk cost of violating the availability requirement
of a VC while both a ToR switch and a PM have
heterogeneous failure probabilities and fail concur-
rently; the other formulates the bandwidth usage in
the network core of a VC.

� Based on the above two models, we first establish a
joint optimization model to measure a risk cost and
bandwidth usage in the network core of the VC alloca-
tion solution. Then, we introduce an AVCA with the
BBO algorithm to maximize the joint optimization

value, i.e., simultaneously minimize the overall risk
cost and bandwidth usage in the network core.

� We build a system model to evaluate the perfor-
mance of our approach. The experimental results
show that our approach can achieve flexible balances
between the overall risk cost and bandwidth usage
in the network core.

Organization. Section 2 introduces the research back-
ground and related work. Section 3 introduces a system
model, VC abstraction model, and motivation. Section 4
describes the technical details of our approach. Section 5 pro-
vides a performance evaluation, including an introduction
to the experiment parameter configuration and comparison
results. Section 6 presents the limitations of our approach
and Section 7 concludes with research recommendations.

2 BACKGROUND AND RELATED WORK

VC allocation, which is similar to virtual network embedding
[2], [12], [13], [14], has attracted a great deal of attention in
recent years. The growing demand for always-on data-inten-
sive computing services has driven VC allocation solutions to
be efficient in terms of virtual resource utilization (e.g., band-
width) and availability of allocated VCs [2]. Thus, cloud data-
center failure characteristics have been analyzed in several
recent studies, and the main finding is that these datacenters
often contain heterogeneous equipment (e.g., PMs, switches)
[15] with skewed distributions of failure rates, impact and
repair time [3], [6], [16], [17]. In addition, availability-aware
VC allocation approaches have also been introduced. Here,
we briefly summarize the achievements in this field.

Heterogeneous Failure Probabilities of Physical Components.
Viswanath et al. [16] first attempted to study PM failures
and hardware repairs for large datacenters. They presented
a detailed analysis of failure characteristics of 100,000 PMs
across multiple Microsoft datacenters over a duration of
14 months. Their analysis yields the following results; 70
percent of all server failures are due to hard disks, 6 percent
are due to the RAID controller, 5 percent are due to memory
and the rest (18 percent) are due to other factors. Their
reports also show that the number of PM failures is closely
connected with the number of hard disks hosted in the PM.
Furthermore a PM that has experienced a failure is highly
likely to experience another failure in the near future. The
above analysis results lead to a skewed distribution of PM
failure probabilities. On the other hand, Gill et al. [6] pre-
sented the first large-scale analysis of failures in a DCN.
Based on their analysis of multiple data sources commonly
collected by network operators, several key findings are
presented indicating that the failure rates are unevenly dis-
tributed; that is, the failure probabilities of different forms
of network equipment can vary significantly based on type
(PMs, ToR switches, aggregation switches, routers) and
model. For example, Load Balancers have a more than 20
percent failure probability, whereas the ToR switches often
have very low failure probability (i.e., less than 5 percent).

Heterogeneous Impact and Repair Times of Failures. Gill et al.
[6] introduced the idea that although certain network fail-
ures can take up to seconds to fix, PM failures can be fixed
within hours [6]. Wu et al. [17] proposed that although most
network failures can be mitigated promptly using simple

426 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



actions, certain failures can still cause significant network
downtime. For instance, Greenberg et al. [3] collected failure
logs for over a year from eight production datacenters. Their
analysis shows that most failures are small in size (e.g., 50
percent of network device failures involve less than 4 devi-
ces and 95 percent of network device failures involve less
than 20 devices) and that large correlated failures are rare.
However, downtimes can be significant; i.e., 95 percent of
failures are resolved in 10 min, 98 percent in less than 1 hr,
99.6 percent in less than 1 day, but 0.09 percent last more
than 10 days. Similarly, Gill et al. [6] analyzed the correla-
tions among link failures and found that more than 50 per-
cent of link failures are single link failures, and that more
than 90 percent of link failures involve less than 5 links.

Available VC Allocation. Since providing cloud service
availability is significantly important in cloud datacenters,
there is a trend toward designing the availability-aware VC
allocation algorithm for VC requests. For example, Liu et al.
[18], [19] proposed inspiring efforts to intelligently reduce
Web services execution on mobile browsers via cloud-
assisted middle-box, where the bandwidth is not always
sufficient or even unreliable. They believe that their solution
can well collaborate with such efforts to further improve
user-perceived latency in mobile web browsing. Yeow et al.
[20] proposed a technique for estimating the number of
backup VMs required to achieve the desired availability
objectives. However, they only assumed that PMs have
identical failure probabilities. Xu et al. [21] introduced a
resource allocation solution for provisioning virtual data-
centers with backup VMs and links. However, their solution
does not consider the availability of PMs. Bodik et al. [22]
presented a detailed analysis of a large-scale Web applica-
tion and its communication patterns. Based on this, they
proposed and evaluated a novel optimization framework
for improving service survivability while mitigating the
bandwidth bottleneck in the core of the DCN. Their solution
improves the fault tolerance by spreading out VMs across
multiple fault domains while minimizing total bandwidth
consumption. However, they did not consider the heteroge-
neous failure probabilities of the underlying physical equip-
ment and the heterogeneous configuration of PMs and
VMs. In addition, they only considered that a PM hosts a
VM. Zhang et al. [12] presented a reliable VDC embedding
framework that considers the availability aspect of embed-
ding in terms of dependencies among virtual components
and heterogeneous hardware failure rates. Yang et al. [23]
not only considered concurrent PM and ToR switch failures
but also the minimization of an overall cost that is based on
energy consumption and the risk cost of violating the avail-
ability requirements. However, they did not consider band-
width usage in the network core and the heterogeneous
configuration of PMs and VMs and only considered that the
failure probabilities of the PM or ToR switch were homoge-
neous. To avoid bandwidth related bottlenecks in the net-
work core, C. da Silva et al. [24] introduced a topology-
aware VM placement algorithm to use small regions of the
DCN in order to consolidate the network flows produced
by the communicating VMs. Meanwhile, Ho et al. [2] intro-
duced an admission control mechanism to detect and rectify
bandwidth-wasting VM placement via VM reshuffling as
well as to accommodate newly arriving VC requests.

Unlike previous studies, our research not only considers
concurrent PM/ToR switches with heterogeneous failure
probabilities but also exploits heterogeneous PMs and VMs.
In addition, we propose an approach using an original BBO
algorithm to maximize the joint optimization value (i.e.,
simultaneously minimizing the overall risk cost and band-
width usage in the network core) while processing a set of
data-intensive applications.

3 PRELIMINARIES AND SYSTEM MODEL

In this section, we first describe our system model. Then, we
introduce a VC abstraction, which is allocated to a fat-tree
DCN. Finally, we introduce our research motivation.

3.1 System Model

We build a system model based on a network topology, for
example, fat-tree DCNs interconnected by k-port commod-
ity Ethernet switches [10] (as shown in Fig. 1). The fat-tree
DCN can be recursively constructed by building blocks (i.e.,
basic fat-tree networks) that consist of 2 tiers of switches.
Since the results can be recursively applied, any properties
of these building blocks are still held, explaining the scal-
ability of fat-tree networks.

Fig. 1 shows a basic fat-tree DCN, which consists of three
tiers of switch modules: edge switches, aggregation switches,
and core switches. There are k pods, each containing two tiers
of k/2 switches. Each k-port switch in an edge tier is an edge
switch, which is directly connected to k/2 PMs. All PMs physi-
cally connected to the same edge switch are in the same rack
(i.e., subnet). Since ToR switches account for the majority
(roughly over 60 percent) of downtime in datacenters and it is
unlikely to have largely correlated failures, each rack is
referred to as an individual fault domain. Each of the remain-
ing k/2 port is linked to a k/2 aggregation switch in the aggre-
gation tier of the hierarchy. A pod consists of PMs, which
share the same aggregation switches. The core tier contains
(k/2)2 k-port core switches, in which each core switch has one
port linked to each k pod. Since the pod i connects ith port of
each core switch, there are the core switches on (k/2) strides
connecting consecutive ports in the aggregation tier of each
pod switch. That is, there are k3/4 PMs in fat tree with k-port
switches.

3.2 VC Abstraction

The VC abstraction (as shown in Fig. 2) is the variant of the
hose model, which was originally designed for VPNs [25].
In a hose model abstraction, all VM are connected to a cen-
tral virtual switch by a dedicated link that has a minimum
bandwidth guarantee. The authors in [7] propose Octopus,

Fig. 1. Fat-tree DCN (the switches in the bottom (white), middle (red), and
top (blue) tiers are the edge, aggregation, and core switches, respectively).

LIU ET AL.: AVAILABILITY-AWARE VIRTUAL CLUSTER ALLOCATION IN BANDWIDTH-CONSTRAINED DATACENTERS 427

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



which includes one type of abstraction, i.e., VC, to expose
tenants’ virtual network requirements to cloud providers.
The VC abstraction is designed for the all-to-all traffic pat-
tern and assumes that a single non-oversubscribed virtual
switch connects all VMs, such as MapReduce-like data-
intensive applications.

When a data-intensive application is accepted, the applica-
tion is processed by a VC, which is assigned by the datacenter
and consists of a set of virtual links, a virtual switch, and
multiple VMs connected by these virtual links. Please note
that each virtual link owns the same fraction of link capacity,
each virtual switch is mapped to multiple physical switches,
each VM occupies w fraction of a PM. However, from the
point of view of the user, the above details are invisible. That
is, the network and PMs exploited have a very simple struc-
ture, in which each switch owns non-blocking capability and
is connected bymultiple private links connecting the PM.

3.3 Motivation

The virtual network embedding is known to be NP-hard [26],
this is due to that it involves the complexmapping ofmultiple
network component parts (e.g., VMs, virtual switch, and vir-
tual links). Although the VC allocation of this paper does not
consider the mapping of the virtual links and virtual switch,
its complexity can be not reduced [7]. This is because that the
mapping of VMs (i.e., VMplacement) is often formulated as a
variant of the vector bin-packing problem, which is a classic
NP-hard optimization problem [27]. For example, a 3-tier web
application is processed by three VMs of a VC, which are allo-
cated to three PMs (i.e., a database PM, a web PM, and an
application PM), if the web PM fails, the entire web applica-
tion becomes unavailable regardless of whether the applica-
tion and database PMs are available. Further, the above
situation leads to the unavailability of future VC requests. In
this paper, in view of the impact of the PM/ToR switch with
heterogeneous failure probabilities on the VC allocation
scheme, we research the VC allocation problem from a novel
angle. That is, when we solve the VC allocation problem,
whereby each PM/ToR switch has heterogeneous failure
probability, we need to jointly minimize the overall risk cost
and bandwidth usage in the network core. More specifically,
we identify the joint minimum of the overall risk cost and
bandwidth usage in the network core to accommodate these
VCs. The only constraint is that the resources that an incoming
VC requires, such as PMs, should be no more than the free
resources in the datacenter. Finally, we propose an approach
with the original BBO algorithm to solve the joint optimiza-
tion problem.

4 PROPOSED AVCA APPROACH

In this section, we first introduce the details of near-optimal
availability-aware VC allocation based on a general applica-
tion model in Section 5.1 including the risk metric model,

BW metric model, and near-optimal availability-aware VC
allocation model. Then, we introduce the ecosystem model
of the BBO algorithm. Finally, we present implementation
scheme of our approach.

4.1 Near-Optimal Availability-Aware VC Allocation

4.1.1 Risk Metric Model

Theorem 1. Since the PMs and ToR switches often have heteroge-
neous failure probabilities in cloud datacenters, we consider a sim-
ple situation (i.e., a PM failure and a ToR switch failure) to make
the discussion clearer. The PM failure often results in all VMs
hosted on the failed PM to fail, while the ToR switch failure leads
to all VMs being accommodated in the corresponding rack and all
PMs being inaccessible. Therefore, when the VC allocation algo-
rithm is exploited to allocate these VCs, the selected priority of
rack is higher than that of PM. That is, the allocation algorithm
gives preference to the minimumToR switch failure probability to
accommodate them.We have the following results.

riski ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

M�1

P
m ðPm Pi;md

B1
i;m þPm Pi;md

B2
i;m � dB1i;m � dB2i;mÞ

2
q

Si �
P

m Pi;md
B1
i;m �Pm Pi;md

B2
i;m

(1)

s.t.

dB1i;m ¼
X
n

X
j

Xm;n
i;j

QMN
i¼1 1� Pið ÞQMN

i¼1 1� Pið Þ þMNPk

QMN
i¼1;i6¼k 1� Pið Þ

 !

(2)

dB2
i;m ¼

X
n

X
j

Xm;n
i;j þM � 1

M

X
m

X
n

X
j

Xm;n
i;j Pk

 !

� MNPk

QMN
i¼1;i 6¼k 1� Pið ÞQMN

i¼1 1� Pið Þ þMNPk

QMN
i¼1;i 6¼k 1� Pið Þ ;

(3)

where m, n, i, and j denote the number of ToR switches, the
PMs in a rack, VCs, and the VMs in a VC, respectively;
M and N denote the total number of racks and PMs in a rack,
respectively; Si denotes the total number of VMs required by
VC i;Xm;n

i;j denotes the allocation of a VM in a VC; if the VM j
of VC i is assigned to PM n belonging to rack m, then
Xm;n

i;j ¼ 1; otherwise, Xm;n
i;j ¼ 0; Pi;m denotes the failure rate of

the ToR switch m associated with VC i; Pi and Pk denote the
failure rate of different PMs; event B1 denotes a ToR switch m
failure along with no PM failure; event B2 denotes a PM fail-
ure concurrently with a ToR switch m failure; dB1

i;m and dB2
i;m

denote the number of unavailable VMs in a VC i due to B1 and
B2 when ToR switch m fails, respectively.

Proof. Refer to the proof in Appendix A, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TSC.2017.2694838. tu

4.1.2 BW Metric Model

Considering overlapping and hierarchical fault domains,
we segment the set of PMs (i.e., pmlist) to multiple racks to
decrease the complexity of the optimization problem. Since
all PMs within a given rack belong precisely to the same
fault domains and are indistinguishable in accordance with
faults, an assignment of a VC can be described by a set of

Fig. 2. Virtual cluster abstraction.

428 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TSC.2017.2694838
http://doi.ieeecomputersociety.org/10.1109/TSC.2017.2694838


variables {tm,i,k}; the variable tm;i;k ¼ 1 if the VM k of VC i is
allocated to the rack m; otherwise, tm;i;k ¼ 0. To formally
define BWi, the indicator function for which rack pairs are
used as its inputs, is represented by Ið�; �Þ. For each such
pair ðm1;m2Þ, if traffic from m1 to m2 (and vice-versa)
traverses through a core link, Iðm1;m2Þ ¼ 1; otherwise,
Iðm1;m2Þ ¼ 0. bwk1;k2 denotes the required bandwidth from
VM k1 to VM k2. Thus, the overall bandwidth usage in the
network core of VC i (i.e., BWi) can be computed as follows.

BWi ¼
X
m1;m2

X
k1;k2

I m1;m2ð Þtm1;i;k1tm2;i;k2bwk1;k2 (4)

4.1.3 Optimal Availability-Aware VC Allocation Model

In order to identify a near-optimal availability-aware VC
allocation solution, our goal is to simultaneously minimize
Equations (1) and (4). More specifically, we exploit a joint
optimization function, abbreviated as JOF, to measure the
joint optimization value of the VC allocation solution as fol-
lows:

JOF ¼ 1

min ð1� uÞ
P

i
BWi�BW0

BW�BW0
þ u

P
i
riski�risk0

risk�risk0

� � ; (5)

s.t.

XV
i¼1

Dmem
i xij < Cmem

j (6)

XV
i¼1

Dbw
i xij < Cbw

j (7)

XV
i¼1

Dcpu
i xij < Ccpu

j (8)

XP
j¼1

xij ¼ 1; xij ¼ 0 or 1; (9)

where u is a tunable positive weight 0 < u < 1; P is the num-
ber of PMs in the cloud datacenter;V is the number of VMs in
the cloud datacenter; Equations (6) to (8) show that the sum of
the resource requirements of the VMs must be less than the
PM’s idle resource capacity; Equation (9) shows that a VM
can only be placed on a PM, such that xij¼ 1 if ith VM runs on
the jth PM; otherwise, xij ¼ 0; BW0 denotes the minimum
overall bandwidth usage in the network core, its value can be
approximately acquired by the IVCA algorithm [28] after the
VMs of each VC are clustered together. BW denotes the maxi-
mum overall bandwidth usage in the network core, its value
can be approximately acquired byAlgorithm 1.When a VM is
allocated to a PM, VCMBW first traverses all the PMs (i.e.,
pmlist) to identify all other VMs in list of VMs (i.e., vmlist)
and in the same VC as the VM. And then all pods accommo-
dating these VMs are removed from a list of pod (i.e., podlist).
Finally, a pod is randomly selected from the podlist to accom-
modate the VM.

risk denotes the maximum overall risk cost of all VC allo-
cation solutions, its value can be approximately acquired by
Algorithm 2.

As shown in the Algorithm 2, first, the VMs of each VC are
clustered together. Second, when a VM is allocated to a PM,

VCMaRfirst traverses all racks (i.e., racklist) of the cloud data-
center to identify a rack, which has the maximum failure
probability. Then, it searches the rack for a PM, which has the
maximum failure probability and can accommodate the VM.

Algorithm 1. VC Allocation of the Maximum BW
(VCMBW)

1 Input: pmlist, vmlist, podlist Output:VC allocation solution
2 the VMs of each VC in vmlist are clustered together
3 for VMs in vmlist do
4 for PMs in pmlist do
5 for vm1 of vmlist in the PM do // vm1 is a VM
6 if vm1 and VM are in the same VC then
7 remove the pod including the vm1 from podlist
8 for pods in podlist do
9 if the pod can accommodate the VM then
10 select a PM to accommodate the VM
11 return VC allocation solution

Algorithm 2. VC Allocation of the Maximum Risk
(VCMaR)

1 Input: vmlist, racklist, pmlist Output:VC allocation solution
2 Initialize the failure probability of each rack and PM
3 the VMs of each VC in vmlist are clustered together
4 for VMs in vmlist do
5 for racks in racklist do
6 if the rack has the maximum failure probability then
7 for PMs in the rack do
8 if the PM has the maximum failure probability

then
9 if the PM can accommodate the VM then
10 allocate the VM to the PM
11 return VC allocation solution

risk0 denotes the minimum overall risk cost of all VC allo-
cation solutions, its value can be approximately acquired by
Algorithm 3.

Algorithm 3. VC Allocation of the Minimum Risk
(VCMiR)

1 Input: vmlist, racklist, pmlist Output:VC allocation solution
2 Initialize the failure probability of each ToR switch and PM
3 the VMs of each VC in vmlist are clustered together
4 for VMs in vmlist do
5 for racks excluding other VMs in the same VC with VM

do
6 if the rack has the minimum failure probability then
7 for PMs accommodating the VM in the rack do
8 if the PM has the minimum failure probability then
9 allocate the VM to the PM
10 return VC allocation solution

As shown in the Algorithm 3, first, the VMs of each VC are
clustered together. Second, when a VM is allocated to a PM,
VCMiRfirst traverses all racks of the cloud datacenter to iden-
tify a rack, which has the minimum failure probability and
does not accommodate all other VM in the same VC with the
VM. Then, it searches the rack for a PM, which has the mini-
mum failure probability and can accommodate the VM.

LIU ET AL.: AVAILABILITY-AWARE VIRTUAL CLUSTER ALLOCATION IN BANDWIDTH-CONSTRAINED DATACENTERS 429

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



4.2 Availability-Aware VC Allocation Optimization

It is well known that BBO [11], which has had many exten-
sions since its publication in 2008 (e.g., BBO/Complex [29]),
applies biogeography [30] to solve a variety of optimization
problems. It has certain features in common with other biol-
ogy-based algorithms (e.g., genetic algorithms [31] and par-
ticle swarm optimization (PSO) [32]) and performs well
compared to these algorithms [11].

Therefore, we exploit the standard BBO algorithm
to solve the availability-aware VC allocation discrete joint
optimization problem. In next section, we first introduce the
BBO algorithm including the ecosystem model and the defi-
nition of parameters and operators. We then propose imple-
mentation scheme for AVCA.

4.2.1 The BBO Algorithm

In the BBO algorithm, an archipelago of islands (i.e., habitat)
denotes the population of candidate solutions, in which each
candidate solution is an island. The goodness (or fitness) of a
solution with respect to an objective function is measured by
its Habitat Suitability Index (HSI). A good (or poor) solution
is an island with a high (or low) HSI. The decision variables
are Suitability Index Variables (SIVs) (e.g., temperature and
rainfall). A solution is represented by a vector of SIVs. Migra-
tion and mutation are two key operators of the BBO algo-
rithm. A distinguishing feature of the BBO algorithm from
other population-based optimization methods is migration,
which is introduced to probabilistically share SIVs between
solutions, thus increasing the quality of low HSI solutions.
The mutation is used to probabilistically replace some SIVs in
a solution by randomly generating new SIVs. The initial pop-
ulation of candidate solutions evolves iteratively from genera-
tion to generation until a termination criterion is met. In each
repetition, a migration followed by a mutation is performed.
Further, the above stochastic operatorsmodel the validity of a
potential solution and can improve the latter incrementally.

To exploit the BBO algorithm, we map the availability-
aware VC allocation problem to an ecosystem (i.e., popula-
tion), which is comprised of multiple islands (i.e., individu-
als). These islands have the same optimization objective
(i.e., Equation (5)) and constraints (i.e., Equations (6) to (9));
that is, each island optimizes itself by sharing information
with other islands to optimize the ecosystem,

EPL ¼
e1;1 e1;2 . . . e1;L
e2;1 e2;2 . . . e2;L
. . . . . . . . . . . .
eP;1 eP;2 . . . eP;L

��������

��������
: (10)

For reader convenience, the ecosystem is represented by a
matrix EPL (as shown in Equation (10)). The total number of
islands in the ecosystem (i.e., the size of the population) is
denoted by the row number P. The total number of VMs allo-
cated is denoted by the column number L. The PM number
assigned to jth VM in ith individual is denoted by the matrix
element ei,j. Therefore, the ith individual can be denoted by
the candidate solution fei;1; ei;2; . . . ; ei;j; . . . ; ei;Lg. For the
sake of clarity, island, habitat, and individual are equivalent
and used interchangeably in following section.

Let E ¼ fE1; E2; . . . ; EPg represent an ecosystem in-
cluding P islands.Ei ¼ fei;1; ei;2; . . . ; ei;L; O; C1; C2; C3; C4g

denotes the ith island, which contains a vector of L SIVs, one
objective O, and four constraints C1, C2, C3, and C4. O repre-
sents one objective (i.e., Equation (5)). The four constraints C1,
C2,C3, andC4 correspond to Equations (6) to (9). Each SIV rep-
resents the index of the PM, which hosts a VM. The HSI (i.e.,
fitness) of the islandEi is calculated by Equation (5). Consider-
ing the above ecosystem and the specific characteristics of the
VC allocation joint optimization problem, the parameters
and operators of the BBO algorithm are defined as follows.

According to the related literature [11], the immigration
rate � and emigration ratem of a habitat is a function of species
s (i.e., the number of PMs used) (as shown in Equations (11)
to (12)). As the number of species s gradually increases, the
immigration rate �s and emigration rate ms gradually
decreases and increases, respectively. When �s is equal to ms,
the number of species s in the habitat reaches equilibrium
state S0, whichmigrates as the environment changes. Assume
that the maximum immigration rate is equal to the maximum
emigration rate, and �s andms increase linearlywith them

ms ¼
I � s
Smax

(11)

�s ¼ I 1� s

Smax

� �
; (12)

where Smax and I denote themaximumnumber of species in a
habitat (i.e., theminimumnumber of PMs andVMs allocated)
and the immigration rate, respectively; and the probability
that the habitat contains exactly s species can be denoted by
Ps, which changes from time t to time ðtþ DtÞ as follows [11]:

Ps tþ Dtð Þ ¼ Ps tð Þð1� �sDt� msDtÞ þ Ps�1�s�1Dtþ Psþ1msþ1Dt:

(13)

When Dt is small enough, the probability of more than
one migration can be ignored. Therefore, taking the limit of
(13) as Dt ! 0, the steady state value for probability Ps is
formulated as follows [33]:

Ps ¼
1

1þ
PSmax

s¼1
�0�1 :::�s�1
m1m2 :::ms

s ¼ 0

�1�2:::�S�1

m1m2:::ms 1þ
PSmax

s¼1
�0�1 :::�s�1
m1m2 :::ms

� � 1 � s � Smax;

8><
>: (14)

where emigration rate ms cannot be assigned to zero to
ensure the existence of the above probabilities.

Definition 1 (Migration Operator). E!Ei is a probabilistic
operator that adjusts habitat Ei based on the ecosystem E. The
probability that Ei is modified is proportional to its immigration
rate �i, and the probability that the source of the modification
comes from Ej is proportional to the emigration rate mj.

Definition 2 (Mutation Operator). Ei ! Ei is a probabilistic
operator that randomly modifies habitat SIVs based on a priori
probability of existence of the habitat.

The mutation probability ms of the habitat is inversely
proportional to the number of species s, which can be for-
mulated as follows:

ms ¼ mmax 1� Ps

Pmax

� �
; (15)

430 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



where Pmax and mmax respectively represent the maximum
value of the probability Ps and the mutation probability
which is set at 0.1 [33].

Definition 3 (Removal Operator). Ei!Ei is an operator that
identify overloaded PMs of the habitat and replace them with
normal PMs.

In original BBO algorithm [11], the mutation operator
simply replaces the original SIV with a randomly generated
SIV, and the migration operator replaces the immigrated
SIV with the emigrated SIV. The two operators are easy to
produce similar solution and lead to poor diversity of popu-
lation. Therefore, the original BBO algorithm designs the
removal operator to eliminate these similar solutions and
improve the diversity of population. When they are applied
to AVCA, the two operators will generate the overloaded
PMs; that is, the resource requirement of all VMs placed in
one PM is far more than the maximum capacity of the PM.
Thus, to remove these overloaded PMs and improve the
diversity of the ecosystem, the removal operator is pro-
posed to identify the overloaded PMs and replace them
with normal PMs.

Since the above stochastic operators make the whole
algorithm non-deterministic, we exploit two strategies to
enhance the performance of the AVCA: (1) the exploitation
of elitism to ensure that the best habitat is not lost from one
generation to the next. It is common to save the best habitats
at the beginning of each generation into a set and then
replace the worst habitats with the set at the end of the gen-
eration. The size of the set (i.e., NE) is a tuning parameter,
but it typically includes the best two habitats [34]. (2) The
migration rates are introduced to decide how much infor-
mation to share between habitats; the selected SIVs are
replaced in a way that the modified habitat is always feasi-
ble and better than the original habitat. Since AVCA exploits
the mutation and removal operators to enhance the diver-
sity of population, the two strategies can improve its perfor-
mance and avoid local extrema.

4.2.2 Implementation Scheme of AVCA

In this section, we propose implementation scheme of
AVCA with the BBO algorithm to solve the availability-
aware VC allocation joint optimization problem. The pseu-
docode of the AVCA is presented in Algorithm 4.

The algorithm first initializes the size of the population P,
the number of generations G, the maximum species Smax,
the maximum immigration rates I, the maximum mutation
rate Smax, the number of elites NE, the maximum risk cost
risk, the minimum risk cost risk0, the maximum bandwidth
usage BW, and the minimum bandwidth usage BW0. Sec-
ond, it initializes and sorts a random set of habitats, and
each habitat corresponds to a potential solution of the given
problem. Third, it probabilistically uses the mutation and
migration operator to mutate and modify each non-elite
habitat using Definitions 1 and 2 and removes the over-
loaded PM in each habitat using Definition 3. Finally, it re-
computes each HSI to sort all habitats in the ecosystem,
replaces the habitats at the end by NE elites, reorder all hab-
itats replaced by HSI, and then proceeds to the third step
for next iteration. This loop can be terminated after a prede-
fined number of generations G.

Algorithm 4. Availability-Aware VC Allocation (AVCA)

1 Input: pmlist, vmlist, racklist, VCs Output: VC allocation
solution

2 Initialize the BBO parameters Smax, I, Smax, G, P, and NE
3 initialize BW using Algorithm 1
4 initialize BW0 using IVCA algorithm
5 initialize risk using Algorithm 2
6 initialize risk0 using Algorithm 3
7 Initialize and sort a random set of habitats by HSI
8 for count of generation is not equal to G do
9 Save the NE elites.
10 Use l and m to modify each non-elite habitat using

Definition 1
11 Mutate each non-elite habitat using Definition 2.
12 Remove the overloaded PM using Definition 3.
13 Sort all habitats by HSI recomputed.
14 Replace the NE habitats at the end with the elites.
15 Reorder all habitats by HSI.
16 end for
15 return VC allocation solution

5 PERFORMANCE EVALUATION

In this section, we exploit the experiments to evaluate the
efficiency and effectiveness of AVCA.

5.1 Experiment Setup

We implemented our algorithm inWebCloudSim system [28],
[35], which is based on CloudSim [36]. This system including
a 16-port fat-tree DCN with 64 core switches and 16 pods is
constructed to conduct all of the experiments. There are 8
aggregation switches and 8 edge switches in each pod. There-
fore, there are 128 aggregation switches and 128 edge switches
in the cloud datacenter, in which each edge switch can con-
nect to 8 PMs, and each PM can host one or more VMs. In
order to reflect the effect of VM allocation, we simulate a data
center comprising 1,024 heterogeneous PMs and 120 VMs.
Each PM is modeled randomly to have a dual-core CPU with
performance equivalent to 3,720 or 5,320 MIPS, 4 GB of RAM,
1 GB/s network bandwidth and 1 TB of storage [37]. The CPU
and memory capacity of each VM is chosen randomly from
four groups: 500 MIPS and 0.6 GB, 1000 MIPS and 1.7 GB,
2,000 MIPS and 3.75 GB, or 2,500 MIPS and 0.85 GB [37]. The
disk capacity of eachVM is 1 GB. The bandwidth requirement
of each VM is set randomly between 100 and 500 Mbps. The
failure probabilities of the ToR switch (Pr) and PM (Ps) are
respectively set randomly between 0.05� 0.15 and 0.02� 0.12
[6]. Appropriate parameter values of Algorithm 4 are deter-
mined on the basis of the related literatures and preliminary
experiments, the size of the populationwas set at 20, the num-
ber of generations was set at 30, and the number of elites was
set at 2 [34]. Based on the algorithms of the Section 4.1.3, we
can approximately acquire that the values of risk and risk0
are respectively 0.34 and 0.99, and the values of BW and BW0

are respectively 0 Mbps and 3,600 Mbps (as shown in Fig. 3)
while allocating 5 VC requests.

In order to research different allocation approaches, we
exploit the data-intensive application that requires multiple
VMs of different sizes to execute in our systemmodel. A study
on the number of VMs involved in a data-intensive applica-
tion shows thatmore than 80 percent of applications use fewer

LIU ET AL.: AVAILABILITY-AWARE VIRTUAL CLUSTER ALLOCATION IN BANDWIDTH-CONSTRAINED DATACENTERS 431

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



than 10 VMs [22]. There are three types of data-intensive
applications, including workflow data-intensive applications
[38], multi-tiered data-intensive applications [39], and batch
data-intensive applications (i.e., MapReduce) [40]. Based on
the characteristics of these data-intensive applications, a set of
general applications are exploited to make the discussion
clearer in our experiments. Each application is comprised of 3
tasks (e.g., t1, t2, and t3), in which each task consists of some
computation and communication stages and is processed by a
VM. Please note that only if t1 and t2 both transfer data to t3,
then, t3 can enter the execution stage [28]. Different from the
work in [12], our work is mainly focus on the VC allocation
algorithm at any given time. That is, when a certain number
of the VC requests are received at any given time, our VC
allocation algorithm is triggered to identify a near-optimal
VC allocation scheme based on two optimization objectives.
Therefore, we only need to give our VC allocation algorithm a
certain number of VC requests at some point and does not
have to consider the arrival pattern of VC requests.

To assess the performance of our approach (AVCA), in
later sections, we compare our approach with three other
algorithms: Random First-fit (RFF), PSO [41], and multi-
objective grouping genetic algorithm (MGGA) [42]. It is
well known that RFF is a classical greedy approximation
algorithm. When a VM is allocated, there may be multiple
PM candidates that satisfy the constraints. RFF randomly
selects the PM to host the VM. Please note that RFF is
mainly used as a reference value of other algorithms.

5.2 Experimental Results and Evaluation

In this section, we first compare the performance of AVCA
with the three related approaches in terms of JOF, overall

bandwidth usage in the network core, and overall risk cost
while executing a set of data-intensive applications. We
then analyze the impact of experimental parameters includ-
ing the tunable positive parameter u, the number of data-
intensive applications, and the failure ranges of the ToR
switch and PM.

5.2.1 Comparison of Joint Objective Function Result

The first set of experiments aims at analyzing the perfor-
mance of our approach by comparing the three other
approaches in terms of average JOF, average overall band-
width usage in the network core and average overall risk
cost, which processes a set of data-intensive applications. In
this experiment, the number of data-intensive applications,
VMs, and PMs was set at 5, 120, and 1024, respectively; the
tunable positive parameter u was set at 0.5; the failure
ranges of the ToR switch and PM were chosen randomly
between 0.05 � 0.15 and 0.02 � 0.12, respectively.

As shown in Figs. 4, 5, and 6, the JOF of AVCA is higher
than three other approaches (i.e., RFF, PSO, and MGGA).
This is due to the fact that RFF is a greedy approximation
algorithm, which randomly selects a PM to host a VM.
Although PSO and MGGA are heuristic algorithms, they
are more likely to clump together in similar groups, while
BBO is a new stochastic evolutionary algorithm developed
for global optimization, and its solutions do not necessarily
have a built-in tendency to cluster. Therefore, the average
growth rate in JOF using AVCA for the three other
approaches are 73, 20, and 46 percent, respectively. Mean-
while, since the tunable weight factor u of the RFF, PSO,
and MGGA algorithms is set at 0.5, the three approaches

Fig. 3. The values of BW0, risk, risk0, and BW are obtained by the algo-
rithms of Section 4.1.3.

Fig. 4. Comparison of JOF.

Fig. 5. Comparison of overall bandwidth usage in the network core.

Fig. 6. Comparison of overall risk cost.

432 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



consume relatively more overall bandwidth usage in the
network core and overall risk cost. Unlike the above three
approaches, the tunable weight factor u of AVCA is set at
0.2, 0.5, and 0.8. The JOF and the overall bandwidth usage
in the network core using the AVCA increase by 7.4 and
29.5 percent, respectively, and the overall risk cost using the
AVCA decreases by 16.5 percent, when the tunable weight
factor u adjusts from 0.2 to 0.5. Likewise, the JOF and the
overall bandwidth usage in the network core increase by
16.4 and 40.8 percent, respectively, and the overall risk cost
decreases by 7 percent, when the tunable weight factor u

adjusts from 0.5 to 0.8. Thus, the value of the tunable weight
factor u determines the optimization emphasis; that is,
when its values are set at 0.2, 0.8, and 0.5, the optimization
emphasis is the overall bandwidth usage in the network
core, the overall risk cost, or the above two aspects, respec-
tively. Further, the overall bandwidth usage in the network
core is increasing and the overall risk cost is decreasing
with the increase in the tunable weight factor u.

Based on the above experimental result analysis in terms
of average JOF, average overall bandwidth usage in the
network core, and average overall risk cost, our approach
(AVCA) outperforms three other approaches. Next, we
further analyze the impact of the different failure ranges of
the ToR switch and PM on the JOF (as shown in Fig. 7).
Meanwhile, we also analyze the impact of the different
number of data-intensive applications (i.e., VCs) on the JOF
(as shown in Fig. 8).

5.2.2 Sensitivity to the Failure Ranges of ToR Switch

and PM

Fig. 7 shows the impact of the failure ranges of the ToR
switch and PM on all approaches. To clearly show its
impact, the number of data-intensive applications, VMs and
PMs was set at 5, 120, and 1,024, respectively, and the tun-
able positive parameter u was set at 0.5. We varied the value
of the failure ranges of the ToR switch and PM from range1
to range2 in this experiment. The figure shows that the aver-
age JOF of each approach tends to decrease as a whole, as
the failure ranges of the ToR switch and PM are broadened
from range1 to range2. That is, the number of high failure
probabilities for the ToR switch and PM in range2 are

greater than those in range1. Therefore, when a set of VCs is
allocated to the cloud datacenter, where the failure ranges
of the ToR switch and PM are in range2, the availability of
the VC allocation scheme does not make it easy to obtain

Fig. 7. The sensitivity to different failure ranges of the ToR switch and
PM. The failure ranges of the ToR switch and PM represent that each
ToR switch and PM can be specified from the two failure probability
ranges; The JOF of all approaches tends to decrease when the failure
ranges of the ToR switch and PM are chosen from range1 (i.e., 0.05 �
0.15 and 0.02 � 0.12) to range2 (i.e., 0.05 � 0.25 and 0.02 � 0.22).

Fig. 8. The sensitivity to different number of data-intensive applications
and different values of the tunable positive parameter u. The number of
data-intensive applications represents how many data-intensive applica-
tions can be processed by a set of VCs. The tunable positive parameter
u is set at 0.2, 0.5, and 0.8. The JOF decreased with the increase in the
number of data-intensive applications for each value of the tunable posi-
tive parameter u.

LIU ET AL.: AVAILABILITY-AWARE VIRTUAL CLUSTER ALLOCATION IN BANDWIDTH-CONSTRAINED DATACENTERS 433

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 



the guarantee. Although the JOF of each approach decreases
from range1 to range2, our approach still outperforms the
three other approaches.

5.2.3 Sensitivity to the Number of Data-Intensive

Applications

Fig. 8 shows the impact of the different number of data-
intensive applications on all approaches. To clearly show its
impact, the number of VMs and PMs was set at 120 and
1,024, respectively, the tunable positive parameter u was set
at 0.2, 0.5, and 0.8; and the failure ranges of the ToR switch
and PM are chosen randomly from 0.05 � 0.15 and 0.02 �
0.12, respectively. We varied the number of data-intensive
applications from 5 to 9 with a step value of 2 in this experi-
ment. These figures show that the average JOF decreased
with the increase in the number of data-intensive applica-
tions; the JOF using the AVCA algorithm is the highest for
each value of u because with more applications, the mini-
mum bandwidth usage in the network core and the risk
cost needed are both larger; hence, the JOF calculated using
Equation (5) is smaller.

Moreover, the tunable positive parameter u is set at dif-
ferent values to further research the impact of data-inten-
sive applications on all approaches. As shown in Fig. 8,
when u varies from 0.2 to 0.8, the differences in the JOF
which exploits the AVCA algorithm, are more pronounced
than other algorithms. In particular, when u is set at 0.8,
although the JOF using the AVCA algorithm decreases by
about 62.2 percent when the number of data-intensive
applications increases from 5 to 9, its JOF is still the highest
of all the algorithms. This is due to the fact that the change
ranges for JOF searched by all algorithms are smaller with
the increase in applications under a certain number of VMs
and PMs. Meanwhile, these figures further confirm and
extend the analysis of Section 5.2.1; that is, the JOF of each
approach increases with the increase from 0.2 to 0.8.

6 LIMITATIONS OF OUR APPROACH

Besides the main objectives of reducing the bandwidth
usage in the network core and the risk cost by considering
the concurrent PM and ToR switch with heterogeneous fail-
ure probabilities, some further practical issues may need to
be considered during the deployment of our approach.
Next, we will describe some of them and discuss how our
approach can be extended to support them.

DCN Topologies. As aforementioned, we have introduced
the fat-tree DCNwith the VC abstractions to our experimen-
tal platform. Although the fat-tree is widely used in DCN,
other topologies (e.g., torus, 3D mesh) are also widely used
as interconnection network. To be feasible for these topolo-
gies, AVCA for more general DCN topologies is among our
future directions.

VC Migration. To achieve the goals of energy saving, fail-
ure recovery, load balancing, and system maintenance, live
migration of VMs has become a key ingredient behind the
management activities of cloud computing system [43].
However, since most of the live migration techniques of VM
mainly focused on the migration of a single VM, this means
that these techniques are insufficient when the whole VC or
multiple VCs need to be migrated [44]. Therefore, we leave

the research of VC migration strategies to improve the
migration performance of VCs for our future work.

Management Software Failures: It is a widely held belief
that software reliability is important branch of reliability
theory [9]. Although this paper only considers the hardware
failures, in our future work, we will research availability-
aware VC allocation optimization problem by combining
the hardware and software failures.

In addition to the above scenarios, there are interesting
extensions for future work. These include the multiple PM
and ToR switch failures, real applications, and other perfor-
mance metrics (e.g., CPU and memory) in addition to
network.

7 CONCLUSION AND FUTURE WORK

With the growing popularity of cloud computing, datacen-
ters have become common platforms for supporting data-
intensive applications. Enhancing the availability require-
ments of data-intensive applications has become a high-
profile problem for cloud providers. In this paper, we pro-
posed and mathematically defined two measures: 1) one
measure characterizes the bandwidth usage in the network
core; 2) the other measure formulates the risk cost by con-
sidering the concurrent PM and ToR switch with heteroge-
neous failure probabilities. We also introduced and
mathematically established a joint optimization function
to simultaneously minimize the above measures. Finally,
we proposed an approach with the BBO algorithm that is
demonstrated based on extensive experiments to be quite
effective.

In our experimentations, when we solve our joint optimi-
zation problem, the constraint of the core link capacity in
the fat-tree DCN and VC migration are not considered. In
the future, we will add the constraint and VC migration to
our optimization problem.

ACKNOWLEDGMENTS

The work presented in this paper is supported by the
NSFC (61472047 and 61602054), and Beijing Natural Science
Foundation (4174100). ShangguangWang is the correspond-
ing author.

REFERENCES

[1] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica,
“Managing data transfers in computer clusters with orchestra, “
in Proc. ACM Conf. Special Interest Group Data Commun., 2011,
pp. 98–109.

[2] J. Ho, P. Hsiu, and M.Chen, “Improving serviceability for virtual
clusters in bandwidth-constrained datacenters,” in Proc. 8th IEEE
Int. Conf. Cloud Comput., 2015, pp. 710–717.

[3] A. Greenberg, et al., “VL2: A scalable and flexible data center
network,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2009, pp. 51–62.

[4] L. Zhang, X. Yin, Z. Li, and C. Wu, “Hierarchical virtual machine
placement in modular data centers,” in Proc. IEEE 8th Int. Conf.
Cloud Comput., 2015, pp. 171–178.

[5] Cisco Global Cloud Index, “Forecast and Methodology, 2015–
2020,” (2016). [Online]. Available: http://www.cisco.com/c/
dam/en/us/solutions/collateral/service-provider/global-cloud-
index-gci/white-paper-c11-738085.pdf, Accessed on: March 2017.

[6] P. Gill, N. Jain, and N. Nagappan, “Understanding network fail-
ures in data centers: Measurement, analysis, and implications,”
in Proc. ACM Conf. Special Interest Group Data Commun., 2011,
pp. 350–361.

434 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 

http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf
http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf


[7] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards
predictable datacenter networks,” in Proc. ACM Conf. Special Inter-
est Group Data Commun., 2011, pp. 242–253.

[8] Cost of data center outages, Ponemon institute, (2016). [Online].
Available: http://www.emersonnetworkpower.com/en-US/
Resources/ Market/Data-Center/Latest-Thinking/Ponemon/
Documents/ 2016-Cost-of-Data-Center-Outages-FINAL-2.pdf

[9] E. Bauer, and R. Adams, Reliability and Availability of Cloud Com-
puting. Berlin, Germany: Wiley, 2012.

[10] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commod-
ity data center network architecture,” in Proc. ACM Conf. Special
Interest Group Data Commun., 2008, pp. 63–74.

[11] D. Simon, “Biogeography-based optimization,” IEEE Trans. Evol.
Comput., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[12] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable
virtual data center embedding in clouds,” in Proc. IEEE Int. Conf.
Comput. Commun., 2014, pp. 289–297.

[13] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hessel-
bach, “Virtual network embedding: A survey,” IEEE Commun.
Surveys Tutorials, vol. 15, no. 4, pp. 1888–1906, Oct.-Dec. 2013.

[14] J. Duan, Z. Guo, and Y.Yang, “Cost efficient and performance
guaranteed virtual network embedding in multicast fat-tree
DCNs,” in Proc. IEEE Conf. Comput. Commun., 2015, pp. 136–144.

[15] Q. Zhang, M. F. Zhani, R. Boutaba, and J. L. Hellerstein,
“Harmony: Dynamic heterogeneity-aware resource provisioning
in the cloud,” in Proc. IEEE 33rd Int. Conf. Distrib. Comput. Syst.,
2013, pp. 510–519.

[16] K. V. Vishwanath and N. Nagappan, “Characterizing cloud com-
puting hardware reliability,” in Proc. 1st ACM Symp. Cloud Com-
put., 2010, pp. 193–204.

[17] X. Wu, et al., “NetPilot: Automating datacenter network failure
mitigation,” in Proc. ACM Conf. Special Interest Group Data Com-
mun., 2012, pp. 419–430.

[18] X. Liu, Y. Ma, S. Dong, Y. Liu, T. Xie, and G. Huang, “ReWAP:
Reducing redundant transfers for mobile web browsing via app-
specific resource packaging,” IEEE Trans. Mobile Comput., vol. PP,
no. 99, p. 1, 2016, Doi:10.1109/TMC.2016.2634020.

[19] X. Liu, Y. Ma, Y. Liu, X. Wang, T. Xie, and G. Huang,
“SWAROVsky: Optimizing resource loading for mobile web
browsing,” IEEE Trans. Mobile Comput., vol. PP, no. 99, p. 1, 2016,
Doi:10.1109/TMC.2016.2645563.

[20] W.-L. Yeow, C. Westphal, and U. C. Kozat, “Designing and
embedding reliable virtual infrastructures,” in Proc. ACM Conf.
Special Interest Group Data Commun., 2011, pp. 57–64.

[21] J. Xu, J. Tang, K. Kwiat, W. Zhang, and G. Xue, “Survivable virtual
infrastructure mapping in virtualized data centers,” in Proc. IEEE
5th Int. Conf. Cloud Comput., 2012, pp. 196–203.

[22] P. Bod�ık, I. Menache, M. Chowdhury, P. Mani, D. A. Maltz, and
I. Stoica, “Surviving failures in bandwidth-constrained data-
centers,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2012, pp. 431–442.

[23] Z. Yang, L. Liu, C. Qiao, S. Das, R. Ramesh, and A. Y. Du,
“Availability-aware energy-efficient virtual machine placement,”
in Proc. IEEE Int. Conf. Commun., 2015, pp. 5853–5858.

[24] R. A. da Silva and N. L. Da Fonseca, “Algorithm for the placement
of groups of virtual machines in data centers,” in Proc. IEEE Int.
Conf. Commun., 2015, pp. 6080–6085.

[25] N. G. Duffield, P. Goyal, A. Greenberg, P. Mishra, K. K. Ramak-
rishnan, and J. E. van der Merive, “A flexible model for resource
management in virtual private networks,” in Proc. ACM Conf. Spe-
cial Interest Group Data Commun., 1999, pp. 95–108.

[26] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual net-
work embedding: Substrate support for path splitting and
migration,” in Proc. ACM Conf. Special Interest Group Data Com-
mun., 2008, pp. 17–29.

[27] J. B�ek�esi, G. Galambos, and H. Kellerer, “A 5/4 linear time bin
packing algorithm,” J. Comput. Syst. Sci., vol. 60, no. 1, pp. 145–
160, 2000.

[28] J. Liu, S. Wang, A. Zhou, S. Kumar, F. Yang, and R. Buyya, “Using
proactive fault-tolerance approach to enhance cloud service
reliability.” IEEE Trans. Cloud Comput., vol. PP, no. 99, p. 1, 2016,
Doi:10.1109/TCC.2016.2567392.

[29] D. Du and D. Simon, “Complex system optimization using bioge-
ography-based optimization,” Math. Problems Eng., vol. 2013,
2013, Art. no. 456232.

[30] R. MacArthur and E. Wilson, The Theory of Biogeography. Princeton,
NJ, USA: Princeton University Press, 1967, pp. 19–67.

[31] E. Falkenauer and A. Delchambre, “A genetic algorithm for bin
packing and line balancing,” in Proc. IEEE Int. Conf. Robot. Autom.,
1992, pp. 1186–1192.

[32] J. Kenndy and R. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Netw., 1995, pp. 1942–1948.

[33] H. Ma, S. Ni, and M. Sun, “Equilibrium species counts and migra-
tion model tradeoffs for biogeography-based optimization, in
Proc. IEEE 48th Int. Conf. Decision Control 28th Chinese Control
Conf., 2009, pp. 3306–3310.

[34] D. Simon, M. Ergezer, and D. Du, “Population distributions in
biogeography-based optimization algorithms with elitism,” Proc.
IEEE Int. Conf. Syst. Man Cybern., 2009, pp. 991–996.

[35] A. Zhou, S. Wang, Z. Zheng, C. Hsu, M. Lyu, and F. Yang, “On
cloud service reliability enhancement with optimal resource
usage,” IEEE Trans. Cloud Comput., vol. 4, no. 4, pp. 452–466,
Oct.-Dec. 2014.

[36] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provi-
sioning algorithms,” Softw.: Practice Experience, vol. 41, no. 1,
pp. 23–50, 2011.

[37] A. Beloglazov and R. Buyya, “Optimal online deterministic algo-
rithms and adaptive heuristics for energy and performance effi-
cient dynamic consolidation of virtual machines in cloud data
centers,” Concurrency Computation: Practice Experience, vol. 24, no.
13, pp. 1397–1420, 2012.

[38] S. K. Garg and R. Buyya, “An environment for modeling and sim-
ulation of message-passing parallel applications for cloud
computing,” Softw.: Practice Experience, vol. 43, no. 11, pp. 1359–
1375, 2013.

[39] J. Lee, et al., “Application-driven bandwidth guarantees in data-
centers,” in Proc. ACM Conf. Special Interest Group Data Commun.,
2014, pp. 467–478.

[40] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker, “Map-
reduce-merge: Simplified relational data processing on large
clusters,” in Proc. ACM Int. Conf. Special Interest Group Manage.
Data, 2007, pp. 1029–1040.

[41] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, “Particle swarm
optimization for energy-aware virtual machine placement optimi-
zation in virtualized data centers,” in Proc. IEEE Int. Conf. Parallel
Distrib. Syst., 2013, pp. 102–109.

[42] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Proc. IEEE/ACM Int.
Conf. Green Comput. Commun., 2010, pp. 179–188.

[43] J. Zhang, F. Ren, and C. Lin, “Delay guaranteed live migration of
virtual machines,” in Proc. IEEE Int. Conf. Comput. Commun., 2014,
pp. 574–582.

[44] K. Ye, X. Jiang, R. Ma, and F. Yan, “Vc-migration: Live migration
of virtual clusters in the cloud,” in Proc. ACM/IEEE 13th Int. Conf.
Grid Comput., 2012, pp. 209–218.

Jialei Liu received the ME degree in computer
science and technology from Henan Polytechnic
University, in 2008. He is working toward the PhD
degree at the State Key Laboratory of Networking
and Switching Technology, Beijing University of
Posts and Telecommunications. His research
interests include cloud computing and service
reliability.

Shangguang Wang received the PhD degree
from Beijing University of Posts and Telecommuni-
cations, in 2011. He is an associate professor at
the State Key Laboratory of Networking and
Switching Technology (BUPT). He has published
more than 100 papers, and played a key role at
many international conferences, such as general
chair and PC chair. His research interests include
service computing, cloud computing, and mobile
edge computing. He is a senior member of the
IEEE, and the editor-in-chief of the International
Journal ofWebScience.

LIU ET AL.: AVAILABILITY-AWARE VIRTUAL CLUSTER ALLOCATION IN BANDWIDTH-CONSTRAINED DATACENTERS 435

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 

http://www.emersonnetworkpower.com/en-US/Resources/ Market/Data-Center/Latest-Thinking/Ponemon/Documents/ 2016-Cost-of-Data-Center-Outages-FINAL-2.pdf
http://www.emersonnetworkpower.com/en-US/Resources/ Market/Data-Center/Latest-Thinking/Ponemon/Documents/ 2016-Cost-of-Data-Center-Outages-FINAL-2.pdf
http://www.emersonnetworkpower.com/en-US/Resources/ Market/Data-Center/Latest-Thinking/Ponemon/Documents/ 2016-Cost-of-Data-Center-Outages-FINAL-2.pdf


Ao Zhou received the PhD degree in computer
science from Beijing University of Posts and Tele-
communications of China, in 2015. She is an
assistant professor at the State Key Laboratory
of Networking and Switching Technology, Beijing
University of Posts and Telecommunications. Her
research interests include cloud computing and
service reliability

Rajkumar Buyya is professor of computer sci-
ence and software engineering, Future fellow of
the Australian Research Council, and Director of
the Cloud Computing and Distributed Systems
(CLOUDS) Laboratory at the University of Mel-
bourne, Australia. He also serves as the founding
CEO of Manjrasoft Pty Ltd., a spin-off company of
the university, commercializing its innovations in
Grid and Cloud Computing. He has authored/co-
authored more than 450 publications. He is one of
the most highly cited authors in computer science

and software engineering worldwide. Microsoft Academic Search Index
ranked he as one of the Top 5 Authors during the last 10 years (2001-2012)
and #1 in the world during the last 5 years (2007-2012) in the area of Dis-
tributed and Parallel Computing. For further information on Dr. Buyya,
please visit: http://www.buyya.com. He is a Fellow of IEEE

Fangchun Yang received thePhD degree in com-
munications and electronic systems from the Bei-
jing University of Posts and Telecommunication, in
1990. He is currently professor with the Beijing Uni-
versity of Posts and Telecommunication, China.
He has published six books and more than 80
papers. His current research interests include net-
work intelligence, service computing, communica-
tions software, soft-switching technology, and
network security. He is a fellow of the IET.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

436 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 13, NO. 3, MAY/JUNE 2020

Authorized licensed use limited to: University of Melbourne. Downloaded on June 13,2020 at 02:05:37 UTC from IEEE Xplore.  Restrictions apply. 

http://www.buyya.com


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


