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SUMMARY

Task scheduling is a fundamental issue in achieving high efficiency in cloud computing. However, it is a big
challenge for efficient scheduling algorithm design and implementation (as general scheduling problem is
NP-complete). Most existing task-scheduling methods of cloud computing only consider task resource
requirements for CPU and memory, without considering bandwidth requirements. In order to obtain better
performance, in this paper, we propose a bandwidth-aware algorithm for divisible task scheduling in cloud-
computing environments. A nonlinear programming model for the divisible task-scheduling problem under
the bounded multi-port model is presented. By solving this model, the optimized allocation scheme that
determines proper number of tasks assigned to each virtual resource node is obtained. On the basis of the
optimized allocation scheme, a heuristic algorithm for divisible load scheduling, called bandwidth-aware
task-scheduling (BATS) algorithm, is proposed. The performance of algorithm is evaluated using CloudSim
toolkit. Experimental result shows that, comparedwith the fair-based task-scheduling algorithm, the bandwidth-
only task-scheduling algorithm, and the computation-only task-scheduling algorithm, the proposed algorithm
(BATS) has better performance. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Nowadays, popular scientific computing applications that need high-performance computing are
deployed in large-scale networked computing systems such as Grid. However, grid computing is suitable
for specialized application, and grid computing is not available for users all over the world. The new emer-
gence of cloud-computing technologies provides a method to deal with complex applications, which are
the applications of great deal of data and which need high-performance applications. As cloud computing
has the advantage of delivering a flexible, high-performance, pay-as-you-go, on-demand service offered
over the Internet, common users and scientists can use cloud computing to resolve complex applications.
Divisible load applications occur in many scientific and engineering applications. Therefore, this paper
focuses on studying divisible task scheduling of high-performance computing applications [1–4] in the
cloud-computing environment where multiple virtual machines (VMs) can share physical resources
(CPU, memory, and bandwidth) on a single physical host, and multiple VMs can share the bandwidth
of data center by using network virtualization. Cloud computing has been flourishing in past years because
of its ability to provide users with on-demand, flexible, reliable, and low-cost services [5]. Because system
resources are essentially shared by many users and applications, an excellent task-scheduling scheme is
critical to resource utilization and system performance. Many system parameters, such as processor
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power, memory space, and network bandwidth, affect the efficiency of task scheduling. In addition, the
heterogeneity of computing sources in different nodes adds the complexity of task scheduling. Further-
more, frequent data exchange among nodes, hosts, and clusters in data-intensive cloud applications makes
the task-scheduling procedure extremely complicated. Recently, different models and algorithms [1,6–11]
were proposed to deal with task scheduling in a cloud-computing environment. Most of these methods
focus on allocating CPU and memory resources to various cloud-computing tasks, assuming that all phys-
ical nodes and VMs have unlimited network bandwidth.
Wang et al. [6] proposed a multi-dimensional task-scheduling algorithm based on the availability of

CPU, memory, and VMs. This algorithm considers the limitation of both physical and virtual
resources, and allocates resources according to task needs and resource loads. However, this algorithm
did not consider the bandwidth requirements of tasks, nor did it consider the dynamic change of their
resource requirements. In [7], a two-level task-scheduling mechanism based on load balancing of
resources is presented. The first-level scheduling focuses on assigning user applications to VMs by
creating a task description for each VM. Then, at the second level, it allocates proper host resources
to VMs on the basis of certain rules. This two-level scheduling scheme also included a strategy to
migrate VMs among physical hosts on the basis of loads of VMs to achieve load balance. However,
this scheduling algorithm did not consider the impact of network bandwidth and the cost of resource
usage. Grounds et al. [8] proposed a cost-minimizing scheduling algorithm to address the task-scheduling
problem in an application workflow under cloud-computing environment and demonstrated that it
outperforms the proportional least laxity first algorithm [9]. However, both of these algorithms did not
consider the limitation of network bandwidth. In [10], a nonlinear programming model was proposed
to minimize the cost of task execution and data transmission for a data-intensive application workflow.
Experiments with an intrusion-detection application workflow showed that this new model outperformed
Amazon CloudFront’s ‘nearest’ single data source selection approach. Li [11] proposed a task-scheduling
algorithm based on a non-preemptive priority M/G/1 queuing model to meet the QoS requirements of
cloud-computing users. In [1], an on-line dynamic task-scheduling algorithm, scheduling algorithm based
on load-balance and availability fuzzy prediction (SALAF), was proposed on the basis of a two-objective
model and fuzzy prediction method. Experimental results showed that the SALAF algorithm is better
than both min–min algorithm [12] and suffrage algorithm [13]. In [2], a double-fitness genetic algorithm
was proposed for the programming framework of cloud computing. It shortens not only the total task
completion time but also the average completion time. In [3], a performance analysis of cloud-computing
services for the many-task scientific computing is presented. Experimental results indicated that the
computation performance of the tested clouds is low, and the current clouds need an order of magnitude
in performance improvement to be useful to the scientific community.
Nonetheless, these task-scheduling algorithms did not consider the impact of network bandwidth.

However, tasks scheduled based only on the availability of CPU and memory resources may be delayed
because of insufficient network bandwidth, resulting in waste of CPU and memory resources. With these
task-scheduling algorithms, service providers of the cloud computing often have to upgrade hardware to
meet the demand of network bandwidth. Hardware upgrades cost more to service providers, defeat the
intention of cloud-computing services, and are not scalable [14]. On the other hand, some studies focus
on allocating network bandwidth to meet the task requirements without considering the limitation of
CPU and memory resources. A similar work has been done in heterogeneous computing systems [15].
But it is not for cloud computing. Sonnek et al. [16] presented a decentralized affinity-aware migration
technique that incorporates heterogeneity and dynamism in network topology and job communication
patterns to allocate VMs on the available physical resources. Wang et al. [17] proposed a dynamic task-
scheduling algorithm by solving minimum congestion model to avoid sharing of the same network link
by multiple resources. In [18], a multi-port, bandwidth-bounded model was proposed for task scheduling
on heterogeneous computing platform. However, the authors showed that scheduling divisible load under
the bounded multi-port model is NP-complete even if only CPU and memory resources are considered. As
finding an optimal task schedule for cloud computing with only CPU and memory resources considered is
an NP-complete problem, adding network bandwidth into the mix will further increase the complexity.
In this paper, we propose a nonlinear programming method to solve the bounded multi-port model

and, in turn, design a new task-scheduling algorithm, the bandwidth-aware task-scheduling (BATS)
algorithm, to allocate the proper number of tasks to each VM on the basis of its CPU power, memory
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space, and network bandwidth. In contrast, most existing task-scheduling algorithms for cloud com-
puting only considered the availability of CPU and memory resources in task scheduling. A few of
them, on the other hand, focused on the limitation of network bandwidth in task scheduling. None
of them sought to optimize the utilization of all three system resources.
The rest of this paper is organized as follows. We present the nonlinear programming for solving the

multi-port, bandwidth-bounded model in Section 2 and the BATS algorithm in Section 3. In Section 4,
we discuss the implementation of the BATS algorithm under the CloudSim environment. Then, in
Section 5, we conduct a performance evaluation using the CloudSim toolkit. After discussing the
experimental results, we give our conclusion in Section 6.

2. NONLINEAR PROGRAMMING MODEL FOR TASK SCHEDULING

As shown in Figure 1, assume that a cloud-computing platform is supported by m physical computer
hosts, PH1, . . ., PHm, each of which hosts a set of VMs with the corresponding virtual machine monitor
(VMM). We adapt the bounded bandwidth multi-port communication model that was originally
designed for heterogeneous distributed computing environment [19] to schedule independent tasks
on cloud-computing platforms. In this multi-port cloud-computing task-scheduling model with
bounded bandwidth (as shown in Figure 2), there are n virtual machines p1,p2,. . .,pn with computing
power (time needed to compute a unit task) w1,w2,. . .,wn, and the scheduling node p0 that can serve
any number of VMs simultaneously, and each VM has an incoming bandwidth bi, 1≤ i≤ n. As the
cloud-computing platform itself has a limited network bandwidth, which is shared by all VMs, we
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Figure 1. Framework of task scheduling on the cloud platform.
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Figure 2. Bandwidth-bounded multi-port task-scheduling model in cloud computing.
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can assume that the cloud-computing platform is associated to an outgoing bandwidth B0, as we know
that the dynamic bandwidth allocated for VMs [17,20,21] in cloud computing can improve the performance
of the system. Each VM is allocated a dynamic bandwidth b

0
i ≤ bi, but the total outgoing bandwidth of all

the VMs is not exceeded, that is,
X

b
0
i ≤ B0.

There are M equal-sized independent tasks to be scheduled under the bandwidth-bounded cloud-
computing environment. In order to minimize the total time (T) needed to finish all tasks, the scheduling
node P0 needs to decide how many tasks should be specifically allocated and transferred to each VM.
In order to achieve the optimized task allocation, we formulate a nonlinear programming model for the
task-scheduling problem with the following constraints:

Minimize T
Subject to :

1ð Þ
Xn
i¼1

xi ¼ M

2ð Þ0≤ xi ≤M for 1≤ i≤ n
3ð Þ0≤wi; 0≤ bi for 1≤ i≤ n
4ð Þw0

i ¼ max wi; 1=bið Þ
5ð Þw0

i�xi ≤ T � 1=bi for 1≤ i≤ n; xi ≥ 1

6ð Þ
Xn
i¼1

xi= T � wið Þð Þ≤ B0 for 1≤ i≤ n

7ð ÞM; n; xi are all integers

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

1. Ensures that the total number of tasks executed by all nodes is equal to M, where xi denotes the
number of tasks allocated to node Pi.

2. Ensures that the number of tasks allocated to each of VMs is less than or equal to M.
3. Ensures that each VM node has computing power and bandwidth greater than 0.
4. Ensures that the execution of algorithm will not be misled and will not violate the real situation when

task execution timewi is less than the task transmission time 1/bi. In such case, there will certainly exist
the state that the previous task is already finished; however, the next task is yet to come. When that
happens, VM could do nothing but wait. As such waiting unavoidably exists, the way to handle the
waiting in the model is to append the time difference to execution time. In other words, as the
execution waits until transmission ends, the scheduling strategy regards execution time wi the same
as transmission time 1/bi. The preceding equation is the case when wi is less than 1/ bi; otherwise, that
is, wi is greater than or equal to 1/ bi, the time difference mentioned earlier does not exist, and no
change to wi is needed. On the basis of the earlier discussion, we can reach the following constraint:
If wi is less than 1/bi, then let wi=1/bi; otherwise, wi remains unchanged. Thus, it isw

0
i=max (wi, 1/bi).

5. Ensures that the time of each node Pi spent on computing tasks must be less than or equal to the
total time of finishing all tasks (T) minus the start time of computation (the communication time
of transferring a single task from the scheduling node to the VM node Pi).

6. Ensures that the scheduling node could communicate with multiple nodes simultaneously, and the
sum of bandwidth in transferring tasks must be less than or equal to the upper bound B0, which
means

X
b
0
i≤B0.

When the number of VMs connected to scheduling node is not very large (the variable n is not very
large), the solution to the nonlinear programming model could be obtained in a short period by using
DONLP2 [22] or LINGO [23]. The solution is the optimized task allocation scheme that determines the
proper number of tasks assigned to each virtual resource node. On the basis of the optimized allocation
scheme, we can design a heuristic task-scheduling algorithm.

3. DESIGN OF BATS

On the basis of the earlier discussion, we can easily establish a nonlinear programming model for task
scheduling in bandwidth-bounded cloud computing. By solving the nonlinear programming model, we
can obtain the optimized task allocation scheme, which gives a proper number of tasks on each VM.
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An efficient heuristic algorithm for task scheduling can be built with the optimized task allocation scheme
as heuristic information. We name the heuristic algorithm on the basis of the optimized task allocation
scheme, BATS. In our simulation, we have the concept of Broker, which works on behalf of users; all
the details are related to the VM creation, the VM destruction, and task submission to these VMs. In
CloudSim, Broker is a Java object responsible for accepting user’s requests and creates a schedule for
completing user’s requests. It accepts a list of VMs and a list of cloudlets to be completed from user,
and then it is responsible for binding all cloudlets to these VMs in a certain way and submitting all
cloudlets. Eventually, it will return the result of execution to user when all cloudlets are done. The algo-
rithm is deployed on Broker and works out the optimized task allocation scheme on the basis of information
of VM (computing power and bandwidth) and submits the optimized scheme to the Datacenter, so that the
Datacenter allocates tasks to VMs according to the optimized task allocation scheme. In BATS, if a set of
tasks that represent a divisible load application is submitted to the Datacenter, then obtain computing
power and bandwidth of VMs owned by Broker, obtain information about tasks, build a nonlinear
programming model, and solve the model and obtain the optimized task allocation scheme A that
determines proper number of tasks assigned to each VM. In each iteration, one VM is bound the proper
number of tasks. Then, the Broker sets bandwidth used in task transmission and transfers task on the basis
of the bandwidth. The details of the pseudo code of BATS is depicted as follows:

Procedure BATS ()//scheduling algorithm of Broker
If (Task_Submitted())//if there is a set of tasks submitted

GetVmInfo()//get computing power and bandwidth of VMs owned by Broker
GetTaskInfo()//get information about tasks, including total number and size
Build_Model(model)//build a nonlinear programming model
A=Solve(model)//solve the model and obtain the optimized task allocation scheme A

End If
While (Exist_Idle())//when there is a idle VM in virtual machine list vmlist

vmi=GetNextIdle(vmlist)//get next idle virtual machine vmi from vmlist
Ti=GetTaskNum(A)//get the number of tasks, Ti, allocated to vmi in A
Bind(A, vmi)//bind Ti tasks to vmi
SetBandwidth(vmi, b&prime;i)// set bandwidth used in task transmission: b&prime;i=xi/(T-wi)

End while
Submit ()//concurrently send tasks with new bandwidth

End if

The time complexity of BATS is computed for two phases (solve-time and allocate-time). In the allocate-
time, BATS must allocate tasks to each VM. Thus, the time complexity of the allocate-time phase of the
algorithm is O(n), where n is the number of VMs. In the solve-time phase, it needs to solve the nonlinear
programming model, which is proposed to obtain the proper number of tasks assigned to each VM in
Section 2. The time complexity of the scheduling algorithm directly does not depend on the size of tasks.
Therefore, when we are scheduling a very large number of tasks, the extra time overhead produced by
BATS is insignificant as compared with the time needed to finish the tasks. Furthermore, we observe that
some VMs may be equivalent, in terms of their computing power and bandwidth, and try to exploit this
information to reduce the number of the variable xi and improve the solving of the nonlinear programming
model.We used LINGO to solve the model. The computation time of the solver to reach a solution (for the
situation of 200 VMs and 10,000 tasks) was less than 60 s, which is insignificant as compared with the
task completion time in our experiments.

4. CloudSim-BASED SIMULATION OF BATS

In order to evaluate the proposed model and algorithm, we have simulated the proposed task-scheduling
algorithm, and infrastructure and application scenarios with CloudSim [24]. To implement the algorithm,
we need to overwrite the class DatacenterBroker in CloudSim. Specifically speaking, we need to make
DatacenterBroker have the ability of obtaining computing power and bandwidth of VMs and solve the
nonlinear programming model by using Lingo. The program acquires computing power and bandwidth
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as input parameters, and output the number of tasks allocated to each VM as variables, along with the goal
of minimizing T, which is the total time of finishing all tasks.
On the basis of this implementation, in which Lingo is called by CloudSim to model and solve the

problem, we can extend class DatacenterBroker as follows. Add method bindAll(), it acquires computing
power and bandwidth of all VMs currently owned by the user/broker, and then use Lingo’s Java interface to
construct and solve the nonlinear programmingmodel. In order to implement this process, changes on class
DatacenterBroker in CloudSim are needed. When user submits tasks, DatacenterBroker first obtains para-
meters of VMs currently owned by the Broker, including computing power and communication
bandwidth. DatacenterBroker then passes as input parameters all these information, along with total
number and size of tasks to Lingo, starts Lingo, and blocks until the result of execution is returned from
Lingo. Such result is a set of integers that refer to number of tasks allocated to each VM. Allocating tasks
according to these numbers could result in the minimum total time of execution. At last, we only need to
call the method bindAll() after the submission of user’s task list. The system will automatically generate
the optimized task allocation scheme on the basis of parameters of VMs currently owned by the user and
distribute tasks following the optimal scheme. The extended data center class, myDatacenterBroker, can
be presented as follows:

public class myDatacenterBroker extends DatacenterBroker{
broker.submitCloudletList(cloudletList);
broker.bindAll();
. . .
}

As mentioned earlier, the following method bindAdd() is added into class myDatacenterBroker.
This method calls Lingo to solve the model and obtains the optimized task allocation scheme, then
allocates tasks to VMs according to the optimized scheme.

public void bindAll(){
. . .
/*create object of lingoSolver which implements communication between CloudSim and
Lingo*/
lingoSolver ls = new lingoSolver();
/*pass parameters, start solving and get the result*/
double[] res = ls.Solve(num_vm,M,B,length, mips, bandwidth);
. . .
/*get the optimized allocation scheme*/
for(int v=0;v<x.length;v++)

x[v]=res[v+1];
. . .
/*implement the allocation scheme by binding tasks to specific VM*/
int count=0;
for(int i=0;i<num_vm;i++){

for(int b=count;b<count+lets[i];b++){
this.getCloudletList().get(b).setVmId(i);

}
count+=lets[i];

}
. . .
}

To manage the communication between CloudSim and Lingo, class lingoSolver is added. The main
method of this class is Solve(int N,int M,int B,long length,double[] mips,long[] bw). It obtains informa-
tion needed for decision making of scheduling. Such information refers to computing power, communi-
cation bandwidth, size, and total number of tasks. The Solve() method as well creates and initializes
necessary environment for calling Lingo. Then the method passes parameters to Lingo and obtains the
optimized task allocation scheme. The LSsetPointerLng method of Lingo is used to write input parameter
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and retrieve optimized scheme from Lingo. We use this function to pass parameters of VMs to Lingo and
use its built-in language for solving.

public class lingoSolver{
. . .

/*Solve method gets parameters and passes to Lingo, then waits for result of computation;
N is the number of physical machine, M is the number of virtual machine, B is the upper bound for

bandwidth, length is the size of each cloudlet, mips is the computing capability requested by each virtual
machine, bw is the bandwidth requested by each virtual machine. */
public double[] Solve(int N,int M,int B,long length,double[] mips,long[] bw){
. . .
/*pass basic information to Lingo, including number and size of tasks*/
nErr = lng.LSsetPointerLng( pnLngEnv, DATA, nPointersNow);
/*pass computing power to Lingo*/
int[] nPointersNow=new int[1];
nErr = lng.LSsetPointerLng( pnLngEnv, mips, nPointersNow); . . .
/*pass bandwidth to Lingo*/
nErr = lng.LSsetPointerLng( pnLngEnv, bandwidth, nPointersNow); . . .
/*obtain the task allocation scheme and store it in array x*/
nErr = lng.LSsetPointerLng( pnLngEnv, x, nPointersNow); . . .
/*get the minimum value of T which is the total time needed to finish all tasks*/
nErr = lng.LSsetPointerLng( pnLngEnv, T, nPointersNow); . . .
}
}

Class lingoSolver calls Lingo to build and solve the model through script. Thus, we need to make a
file using Lingo’s built-in language to solve the problem and build the model with specific objective
function:

!constraint 1;
s1 =@sum(xx(i):x);
s1 =M;
!constraint 2,7;
@for(xx(i):@gin(x(i)));
!constraint 4;
@for(mmips(i):nmips(i)=@smin(mips(i),bw(i)));
!constraint 5;
@for(bbw(i):Dat(3)/nmips(i)*x(i)<=T-Dat(3)/bw(i));
!constraint 6;
@for(bbw(i):nbw(i) = L*x(i)/(T-L/mips(i)));
s2 =@sum(nnbw(i):nbw);
s2<=B0;
!objective function;
min = T;

5. PERFORMANCE EVALUATION

5.1. Experiments and results

We compared BATSwith three other algorithms: FBTS, COTS, and BOTS.We conducted experiments with
four scheduling algorithms under the same condition and compare the performance of the four algorithms.
Among the four algorithms, FBTS [24,25] is the one that does not consider the difference of computing power
and bandwidth between different VMs. In such case, the system evenly allocates tasks to eachVM, regardless
of its computing power and bandwidth. The algorithm COTS [1,26] only takes into account the computing
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power but does not consider the influence of bandwidth and allocate tasks entirely depending on computing
power. Similarly, BOTS [27,26] only takes into account bandwidth when scheduling tasks.
In order to analyze the performance of the algorithm in different scale experiments, we simulated three

cloud-computing infrastructure scenarios, with CloudSim. The first two scenarios have five VMs and 25
VMs, respectively, and the last scenario has 200 VMs, each with a heterogeneous computing power and
bandwidth. The application simulated in our experiments embodies a divisible workload model [18,28]
whose task sizes are equal. We conducted the task-scheduling experiments for computing a large set of
equal-sized independent tasks, which is similar to the work in [19,29], on the three infrastructure scenarios.

Experiment 1

Computing power and bandwidth of five VMs are as shown in Table 1. Each of these values is
randomly selected from 1000, 2000, 3000, 4000, 5000, and 6000. This implies that computing power
and bandwidth of all VMs are in the same order of magnitude.
One hundred tasks, the size of each task is 60,000 MIs [24], are scheduled in this experiment. By

specifically putting the aforementioned data into the four algorithms, we obtained Figure 3 showing
the total time needed to complete all tasks by the four algorithms.
In this experiment, the time needed for BATS to finish all tasks is 710 s, time needed for FBTS is

1260 s, the time needed for COTS is 1260 s, and the time needed for BOTS is 810 s. As the new algorithm
allocates tasks according to the computing power and bandwidth of VMs, specifically compared with
other three algorithms, it saves 43.65%, 43.65%, and 12.35% of time.

Experiment 2

In this experiment, we created 25 VMs, each with a heterogeneous computing and bandwidth. One thousand
tasks were submitted to Datacenter and scheduled respectively using the four algorithms. The total times
needed in the four algorithms are put into comparison. The extra cost brought by BATS is also computed.
Computing power and bandwidth of 25 VMs are as shown in Table 2. Each of these values is

randomly selected from 1000, 2000, 3000, 4000, 5000, and 6000. This implies that computing power
and bandwidth of all VMs are in the same order of magnitude.
The size of task is 60,000MIs. By specifically putting the aforementioned data into the four algorithms,

we can obtain Figure 4 showing total time needed to complete all tasks by the four algorithms.

Table I. VMs’ resource settings.

Virtual machine Computing power (MIPS) Bandwidth (Mbps)

VM#1 3000 3000
VM#2 1000 1000
VM#3 1000 4000
VM#4 3000 6000
VM#5 2000 1000
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Figure 3. Total time needed to complete all tasks by the four algorithms.
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In this experiment, the time needed for new algorithm BATS to finish all tasks is 872 s, the time
needed for CloudSim’s default algorithm FBTS is 2403 s, the time needed for COTS is 2520 s, and
the time needed for BOTS is 3790 s. Specifically compared with other three algorithms, new algorithm
saves 63.63%, 65.32%, and 76.94% of time.

Experiment 3

The two experiments above work on 5 VMs and 25 VMs respectively, yet a much larger number of VMs
and tasks are generally involved in practical use. Therefore, to further verify our algorithm and analyze its
time complexity, we need to experiment with larger scale of input data, for it is more realistic.
In this experiment, we created a Cloud-based data center that has 200 VMs, each with a heterogeneous

computing and bandwidth. Ten thousand tasks were submitted to Datacenter and scheduled respectively
using the four algorithms. The total times needed in the four algorithms are put into comparison. The extra
cost brought by BATS is also computed.
Computing power and bandwidth of 200 VMs are as shown in Figure 5. Each of these values is

randomly selected from 1000, 2000, 3000, 4000, 5000, and 6000. This implies that some VMs may
be equivalent, in terms of their computing power and bandwidth. We observe that there are about
30 different types of VMs.
The size of task is also 60,000MIs. By specifically putting aforementioned data into the four algorithms,

we can obtain Figure 5 showing total time needed to complete all tasks by the four algorithms.
In this experiment, the time needed for new algorithm BATS to finish all tasks is 2056 s, the time

needed for CloudSim’s default algorithm FBTS is 3247 s, the time needed for COTS is 3318 s, and
the time needed for BOTS is 4642 s. Specifically compared with other three algorithms, new algorithm
saves 36.68%, 38.03%, and 55.71% of time.

Table II. VMs’ resource settings.

Virtual
machine

Computing power
(MIPS)

Bandwidth
(Mbps)

Virtual
machine

Computing power
(MIPS)

Bandwidth
(Mbps)

VM#1 4000 1000 VM#14 3000 2000
VM#2 2000 3000 VM#15 3000 6000
VM#3 4000 5000 VM#16 6000 4000
VM#4 5000 6000 VM#17 1000 4000
VM#5 4000 4000 VM#18 3000 3000
VM#6 1000 2000 VM#19 6000 6000
VM#7 3000 5000 VM#20 3000 5000
VM#8 1000 2000 VM#21 5000 6000
VM#9 5000 3000 VM#22 3000 1000
VM#10 3000 5000 VM#23 3000 6000
VM#11 6000 3000 VM#24 4000 3000
VM#12 5000 4000 VM#25 2000 1000
VM#13 1000 6000
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Figure 4. Total time needed to complete all tasks by the four algorithms.
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5.2. Analysis on cost of BATS

From the aforementioned experiments, we can see that task allocation scheme generated by BATS
efficiently reduces time needed to finish tasks. However, as BATS needs to build and solve the nonlinear
programming model to find optimized task allocation scheme, it brings extra cost of time. We used Lingo
to solve the model. In the first two experiments, 100 tasks are allocated on five VMs, about 1 s extra time
is brought by BATS. However, as the total time of finishing all tasks is greatly reduced, the overall
performance is still efficiently improved. In the third experiment, 10,000 tasks were allocated to
200 VMs, the extra time overhead produced by BATS is about 60 s, which is insignificant as compared
with the time needed to finish the tasks in our experiments. By cutting the time of executing tasks, BATS
brings a large improvement on performance. Although new overhead is generated, BATS could still
acquire the minimum duration of executing tasks.

5.3. Discussion

From the experimental results discussed earlier, we can reach the conclusion that the proposed
algorithm BATS is better than the other three. The more different the capability of VMs is, the more
time new algorithm saves. It is because when the difference between VMs is huge, and if tasks are still
allocated evenly, although the VMs with better performance could finish work very soon, the other VMs
with lower computing and communication speed would still run for a longer time. Thus, the former will be
idle until the latter finishes working. That results in waste of computing resource. Similar problem exists in
the other two algorithms. To COTS, as bandwidth is ignored, if the communication speed is less than
computation speed, then there will be the status in which the previous task is finished, but the next
one has not yet come. The VM will have to wait in this case. To BOTS, it is highly possible that the
communication finishes very soon, but tasks have to be put into the waiting list for the sake of the low
computation speed. The new algorithm BOTS tries to ensure that every VM keeps working during the
entire scheduling, and it, at the same time, reduces waiting as much as possible, especially when the
performance gap between VMs is huge. It greatly improves utilization ratio of computing resource.
To sum up, currently, many general methods do not take into account the difference on performance of

VMs, and allocate tasks to each VM evenly. This impedes the advancement of system performance.
Particularly, when the difference of VM is remarkable, such allocation strategy causes a large waste
of computing resource. The improved method introduces VMs computing power and bandwidth into
scheduling, and model the problem as a nonlinear programming problem. By finding and applying the
optimized allocation scheme, the new algorithm BATS improves utilization ratio of computing resource
and reduces execution time. When BATS is used for scheduling high-performance computing applica-
tions in the cloud data center, it can improve the efficiency of task scheduling and resource utilization.
Thus, this algorithm can help the cloud data center to save cost and to increase revenue.

6. CONCLUSIONS AND FUTURE WORK

In this work, we focus on divisible load applications, where an application load can be divided into a
number of tasks that can be processed independently in parallel [18,28]. In order to obtain minimum
execution time, we modeled the scheduling problem as a nonlinear programming model. The model
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Figure 5. Total time needed to complete all tasks by the four algorithms.
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can optimize divisible task allocation on the basis of task resource requirements for computation and
communication. Using Lingo to solve the model, we can obtain the optimized task allocation scheme.
We also designed a heuristic algorithm for divisible task scheduling (BATS) on the basis of the scheme
and implemented it with CloudSim. Results of experiment show that compared with FBTS, COTS, and
BOTS, BATS can achieve a better performance. The algorithm BATS is ideal for the task scheduling
in bandwidth-bounded cloud-computing environments.
As a future work, we plan to extend our model to a situation that there are multiple data centers. In

addition, the recent studies have revealed that data centers consume an unprecedented amount of electrical
power; hence, we aim to improve task-scheduling optimization and make optimization policy to optimize
not only the efficiency but also the energy. We also plan to implement our algorithm in the Xen VMM.
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