
1

A Deep Recurrent-Reinforcement Learning
Method for Intelligent AutoScaling of Serverless

Functions
Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya

Abstract—Function-as-a-Service (FaaS) introduces a lightweight, function-based cloud execution model that finds its relevance in a
range of applications like IoT-edge data processing and anomaly detection. While cloud service providers (CSPs) offer a near-infinite
function elasticity, these applications often experience fluctuating workloads and stricter performance constraints. A typical CSP
strategy is to empirically determine and adjust desired function instances or resources, known as autoscaling, based on
monitoring-based thresholds such as CPU or memory, to cope with demand and performance. However, threshold configuration either
requires expert knowledge, historical data or a complete view of the environment, making autoscaling a performance bottleneck that
lacks an adaptable solution. Reinforcement learning (RL) algorithms are proven to be beneficial in analysing complex cloud
environments and result in an adaptable policy that maximizes the expected objectives. Most realistic cloud environments usually
involve operational interference and have limited visibility, making them partially observable. A general solution to tackle observability in
highly dynamic settings is to integrate Recurrent units with model-free RL algorithms and model a decision process as a Partially
Observable Markov Decision Process (POMDP). Therefore, in this paper, we investigate model-free Recurrent RL agents for function
autoscaling and compare them against the model-free Proximal Policy Optimisation (PPO) algorithm. We explore the integration of a
Long-Short Term Memory (LSTM) network with the state-of-the-art PPO algorithm to find that under our experimental and evaluation
settings, recurrent policies were able to capture the environment parameters and show promising results for function autoscaling. We
further compare a PPO-based autoscaling agent with commercially used threshold-based function autoscaling and posit that a
LSTM-based autoscaling agent is able to improve throughput by 18%, function execution by 13% and account for 8.4% more function
instances.

Index Terms—Serverless Computing, Function-as-a-Service, AutoScaling, Reinforcement learning, Constraint-awareness
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1 INTRODUCTION

THe growing popularity of event-driven application ar-
chitectures fuel the increased adoption of serverless

computing platforms. Serverless computing introduces a
cloud-native execution model that offloads server gover-
nance tasks to the cloud service provider (CSP) and aims
to reduce operational costs. Serverless features a variety
of attributes like a microservices-inspired architecture, high
elasticity, usage-based resource billing, and zero idle costs.
Function-as-a-Service (FaaS) is a function-based abstraction
of serverless computing that decouples an application into
functions, small pieces of business logic, that execute on a
lightweight virtual machine (VM) or container. These func-
tions generally serve a single purpose, run for a very short
duration, and do not maintain a state to enable faster scaling
[1]. Functions can be associated with multiple event sources
such as HTTP events, database or storage events, and IoT
notifications that execute function handlers or business logic
and respond to incoming workloads.

Serverless, often used interchangeably with FaaS, has
attracted a wide range of application domains such as
IoT services, REST APIs, stream processing, and predic-
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tion services. These applications may have strict availabil-
ity and QoS requirements, i.e., throughput and response
time while having fluctuating resource requirements that
uniquely affect function performance. To address perfor-
mance constraints and handle complex workloads, FaaS
platforms heuristically spin up a new function instance,
i.e., function autoscaling, for each incoming request and
shut down the instance after service [2] to free up re-
sources. However, FaaS offerings such as AWS Lambda,
Azure Functions, Google Cloud Functions, OpenFaaS [3]
and Kubeless [4] may choose to re-use a function instance
or keep the instance running for a limited time to serve
subsequent requests [5]. A recent study [6] asserts that
appropriate resource allocation, i.e., CPU and memory, is
needed to guarantee QoS fulfillment and improve business
value in serverless computing. Autoscaling is the process
of adding or removing function(s) from a platform, as per
the demand, and has a direct correlation with platform
performance. CSPs usually employ general-purpose rule-
based or threshold-based horizontal scaling mechanisms or
utilize a pool of minimum running function(s) [7] [8] to
handle function start-up delays while serving workload.

Autoscaling provides an opportunity for CSPs to op-
timally utilize their resources [9] and share unused re-
sources in a multi-tenant environment. However, config-
uring thresholds involves manual tuning, expert domain
knowledge, and application context that reduces devel-
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opment flexibility and increases management overhead.
Since cloud workloads are highly dynamic and complex,
threshold-based autoscaling solutions lead to challenges like
function cold starts and hysteresis [10], failing to offer per-
formance guarantees. A cold start is a non-negligible func-
tion instantiation delay that is introduced before processing
the request, while hysteresis highlights the temporal depen-
dency of environment states on the past. Therefore, provid-
ing an adaptive, flexible, and online function autoscaling so-
lution is an opportunity to ensure efficient resource manage-
ment with performance trade-offs in serverless computing.
Furthermore, autoscaling approaches employed by existing
FaaS frameworks are excessively dependent on monitoring
solutions. Although researchers in [11] identify metric col-
lection for thresholds as a bottleneck for autoscaling due to
significant collection delay or unreliability, a self-corrective
model is demanded to account for underlying variations.

Autoscaling has been actively investigated in the cloud
computing domain [1] [10] [12] [13] [14], particularly for
VMs, and has periodically highlighted the need for ap-
propriate resource scaling to minimize operational costs
and improve performance. Resource scaling is an NP-hard
problem [9] [14] and necessitates the realization of complex
environmental factors while balancing the system perfor-
mance between QoS and SLAs. In the past, Reinforcement
Learning (RL) algorithms have been applied in the context
of VM autoscaling [9] [10] [11] [15] and have demonstrated
adaptable performance over traditional methods in captur-
ing the workload uncertainty and environment complexity.
But the application of RL for function autoscaling is yet un-
derexplored [15]. RL-based solutions are known to interact
with an environment, perform an action, learn periodically
through feedback, and account for the dynamics of the cloud
environment.

In this work, we investigate the application of Re-
current Neural Networks (RNN), specifically Long-Short
Term Memory (LSTM) in a model-free Partially Observ-
able Markov Decision Process (POMDP) setting for func-
tion autoscaling. Earlier works [10] [16] [17] [18] employ-
ing RL-based autoscaling generally model decision mak-
ing as Markov Decision Process (MDP) and fall short to
discuss partial observability in realistic environments [19]
[20]. Furthermore, various existing studies discussed in [10]
[16] experiment with RL-based solutions in a simulated
FaaS environment, with the research in [11] criticizing this
methodology. Simulated FaaS frameworks generally sample
factors such as cold start and execution time from profiled
data and are insufficient to capture the variability in real
environments. Therefore, we examine the integration of
LSTM with Proximal Policy Optimization (PPO), a state-of-
the-art RL algorithm, to analyze partial observability and
sequential dependence of autoscaling actions and find a
balance between conflicting CSP and user objectives. We
perform experiments with matrix multiplication function and
compare LSTM-PPO against Deep Recurrent Q-Network
(DRQN) and PPO (clipped objective) to infer that in our
experimental settings, recurrent policies capture the envi-
ronment uncertainty better and showcase promising per-
formance in comparison to PPO and commercially adopted
threshold-based approaches. We make use of OpenAI Sta-
ble Baseline’s [21] standard implementation of the LSTM-

PPO and PPO algorithms, and implement our compatible
OpenFaaS serverless environment following Gymnasium
[22] guidelines.

In summary, the key contributions of our work are:
1) We analyze the characteristics of FaaS environments to

identify and model autoscaling decisions as a POMDP.
We further hypothesise that scaling decisions have a
sequential dependence on interaction history. We pro-
pose a POMDP model that captures function metrics
such as CPU and memory utilization, function replicas,
average execution time and throughput ratio, as partial
observations and formulate the scaling problem.

2) We investigate how function autoscaling works, high-
light the differences between contrasting approaches
and investigate a Deep Recurrent RL (LSTM-PPO) au-
toscaling solution to capture the temporal dependency
of scaling actions and workload complexity. We deploy
the proposed agent to the OpenFaaS framework and
utilise open-source function invocation traces [23] from
a production environment to perform experiments with
a matrix multiplication function.

3) We implement a Gymnasium [22] compatible Open-
FaaS serverless environment to be integrated directly
with the proposed RL agent.

4) We perform our experiments on Melbourne Research
Cloud (MRC) and evaluate the proposed LSTM-PPO
approach against the state-of-the-art PPO algorithm,
commercially offered threshold-based horizontal scal-
ing, OpenFaaS’ request-per-second scaling policy, and
a Deep Recurrent Q-Network i.e., DRQN, to demon-
strate LSTM-PPO’s ability to capture environment un-
certainty for efficient scaling of serverless functions.

The rest of the paper is organised as follows. Section 2
highlights related research studies. In Section 3, we present
the system architecture and formulate the problem state-
ment. Section 4 outlines the proposed agent’s workflow and
describes the implementation hypothesis and assumptions.
In Section 5, we evaluate our technique with the base-
line approaches and highlight training results and discuss
performance. Section 6 concludes the paper and highlights
future research directions.

2 RELATED WORK

In this section, we summarise (see Table 1) existing work
on serverless computing, autoscaling in FaaS, and the appli-
cation of RL in FaaS. We compare existing work based on
their key features and provide a detailed background on the
Deep Recurrent RL (RPPO) algorithm used in designing our
autoscaling policy.

2.1 Serverless Computing and Function-as-a-Service

Serverless computing puts forward a cloud service model
wherein the server management or resource management
responsibility lies with the CSP. In [2], the authors dis-
cuss the potential of this new, less complex computing
model introduced by Amazon in 2014. The study briefly
explains a function-based, serverless commercial offering
of AWS Lambda, i.e., the Function-as-a-Service platform.
It highlights three primary differences between traditional
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TABLE 1: A Summary of Related Works and Their Comparison with Our Proposed Method.
H: Horizontal Scaling, V: Vertical Scaling

Work Type Scaling Technique Objective Environment
[7] FaaS H Threshold-Based CPU Utilisation AWS Lambda
[8] FaaS H Threshold-Based CPU Utilisation Google Cloud Functions
[14] Microservices H,V,Brownout GRU + Q-Learning QoS Testbed
[15] FaaS H Q-Learning QoS OpenFaaS
[16] FaaS H Q-Learning, DQN, DynaQ+ QoS + Budget Simulation, Kubeless
[17] FaaS H Q-Learning QoS Kubeless
[18] FaaS H Q-Learning QoS Knative
[24] FaaS H Bi-LSTM Resource Knative
[25] FaaS H, V Q-Learning QoS + Resource Testbed
[26] FaaS H Kneedle Algorithm QoS + Budget OpenFaaS

Our Method FaaS H LSTM - PPO QoS + Resource OpenFaaS

cloud computing and serverless computing – decoupled
computation and storage, code execution without resource
management, and paying in proportion to the resources
used. The research posits that the serverless or FaaS model
promotes business growth, making the use of the cloud
easier.

Baldini et al. [27] introduce the emerging paradigm of
FaaS as an application development architecture that allows
the execution of a piece of code in the cloud without
control over underlying resources. The research identifies
containers and the emergence of microservices architecture
as the promoter of the FaaS model in serverless. The study
uses FaaS and serverless interchangeably and defines it as a
‘stripped down’ programming model that executes stateless
functions as its deployment unit.

Since the inception of serverless computing, there have
been many commercial and open-source offerings such as
AWS Lambda, Microsoft Azure Functions, Google Cloud
Functions, Fission, and OpenWhisk. These platforms rep-
resent FaaS as an emerging technology, but Hellerstein et al.
[28] put together gaps that furnish serverless as a bad fit
for cloud innovations. The authors criticize the current de-
velopments of cloud computing and state that the potential
of cloud resources is yet to be harnessed. On the contrary,
the researchers in [29] argue that the serverless offerings are
economical and affordable as they remove the responsibility
of resource management and complexity of deployments
from consumers. They discuss the opportunities offered
by multiple FaaS offerings and give an overview of other
existing challenges, and indicate potential approaches for
future work.

In an article by Microsoft [30], Rosenbaum estimates that
there will be nearly 500 million new applications in the
subsequent five years, and it would be difficult for the cur-
rent development models to support such large expansions.
FaaS is designed to increase development agility, reduce
the cost of ownership, and decrease overheads related to
servers and other cloud resources. The term ’serverless’ has
been in the industry since the introduction of Backend-
as-a-Service (BaaS). Despite the serverless benefits, FaaS
experiences a few challenges, categorized as system-level,
and programming and DevOps challenges [2] [27] [30].
The former identifies the cost of services, security, resource
limits, and cold start while scaling, and the latter focuses
on tools and IDEs, deployment, statelessness, and code
granularity in the serverless model.

2.2 AutoScaling in Function-as-a-Service

Resource elasticity, analogously used with autoscaling, is
a vital proposition of cloud computing that enables large-
scale execution of a variety of applications. A recent survey
[9] discusses the relevance of cloud resource elasticity for
the Infrastructure-as-a-service (IaaS) model to express that
autoscaling and pay-as-you-go billing enables infrastructure
adjustments based on workload variation while complying
with SLAs. On this basis, the study identifies that au-
toscaling addresses a set of associated challenges, namely,
scaling and scheduling which are generally NP-hard prob-
lems. Additionally, the research explores the possibility of
RL algorithms for autoscaling to approach the complexity
and variability of cloud environments and workloads. It
is emphasized that utilization of such RL algorithms for
scaling purposes can help the service providers to come up
with a more transparent, dynamic, and adaptable policy.

Straesser et al. [11] conduct experiments related to cloud
autoscaling and assert autoscaling to be an important as-
pect of computing for its effects on operational costs and
QoS. The authors define scaling as a task of dynamically
provisioning resources under a varying load and necessi-
tates the automation of processes for highly complex cloud
workloads. They discuss that commercial solutions usually
operate with user-defined rules and threshold heuristics,
and state that an optimal autoscaler is expected to minimize
operational cost and SLA violations.

In addition to workload variability, QoS sensitivity is
also identified as an enabler for increased operational costs
and resource wastage. A microservices-focused autoscaling
scheme is introduced in [14] where a trade-off between hor-
izontal, vertical, and a self-adaptable brownout technique
is determined based on the infrastructure and workload
conditions. The researchers exploit Gated-Recurrent Units
(GRUs) for workload prediction and utilize Q-learning for
making trade-off updates and scaling decisions. The study
asserts that workload prediction is an important factor for
autoscaling and acknowledges resource allocation to be an
NP-hard problem with multi-dimensional objectives of QoS
and SLAs.

In the context of FaaS autoscaling, work in [18] ex-
periments with the concurrency-level setting of Knative, a
Kubernetes-based serverless framework, and identify that
function concurrency settings have varying effects on la-
tency and throughput of function. Therefore, they utilize
the Q-learning algorithm to configure functions with op-
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timal concurrency levels to further improve performance.
Another work [17] presents preliminary results of applying
Q-learning to FaaS for predicting the optimal number of
function instances to reduce the cold start problem. They
utilize the function resource metrics and performance met-
rics and apply them to discrete state and action spaces for
adding or removing the function replicas, with threshold-
based rewards, to eventually improve function throughput.

Similarly, studies like [16] [24] [25] emphasize addressing
the dynamicity, agility, and performance guarantees of FaaS
by employing RL-based autoscaling solutions. The work
in [16] follows a monitoring-based scaling pattern and ex-
plores algorithms like Q-learning, DynaQ+, and Deep QL,
partially in simulation and practical settings, to reasonably
utilize resources and balance between budget and QoS.
They aid the agent’s training process by sampling simu-
lation data based on probability distribution and running
parallel agents to speed up the learning process. The work
in [24], discusses the concurrency level in the Knative
framework and asserts that identifying appropriate thresh-
olds is challenging, requires expert knowledge, and has
varying effects on performance. Therefore, to efficiently use
the function resources and improve performance, authors
profile different concurrency levels for best performance
and propose an adaptive, Bi-Long Short Term Memory (Bi-
LSTM) model for workload prediction and determine the
number of function replicas using identified concurrency
levels. Another study [25] focuses on function response time
and states that threshold-based scaling cannot devise a bal-
ance between resource efficiency and QoS. Therefore, the au-
thors explore Q-learning to propose adaptive horizontal and
vertical scaling techniques by profiling different resource
allocation schemes and their corresponding performance.
Their proposed state space considers resource requests and
limits, along with the availability of GPU components, to
model rewards as the divergence from agreed SLO levels.
Taking a different approach, the researchers in [15] utilize
Q-learning in the context of Kubernetes-based serverless
frameworks and propose a resource-based scaling mecha-
nism to adjust function CPU utilization threshold to reduce
response time SLA violations. Taking a different approach,
[26] proposes an online application profiling technique that
identifies a knee point and adjusts resources until the point
those changes reflect in performance gain using the Kneedle
algorithm in conjunction with binary search. Further, a sur-
vey [10] summarises autoscaling techniques for serverless
computing under different categories like rule-based, AI-
based, analytical model, control theory-based, application
profiling, and hybrid technique and envisions new direc-
tions like energy-driven and anomaly-aware serverless au-
toscaling.

These proposals are complementary yet contrasting to
each other either in optimization objectives, profiled metrics,
or scaling policy. Some fail to address the performance
dependency on complex workloads, while few rely on pre-
configured thresholds [7] [8] that require expert knowl-
edge and application insights. Few studies focusing on
workload prediction assume a fully observable environment
and miss out on the temporal dependency of environment
states where scaling decisions have been taken. Contra-
dictory to these proposals, we examine a Deep Recurrent

RL-based autoscaling solution, particularly LSTM-PPO, to
hypothesize that FaaS environments are highly dynamic,
partially observable with complex workloads, and that scal-
ing decisions are influenced by environment uncertainty.
We model function autoscaling as a partially observable
Markov decision process (POMDP) and utilize monitoring
metrics like average CPU and memory utilization, function
resource requests, average execution time, and throughput
ratio to discover an optimal scaling policy. Our proposed
RL-based autoscaling agent interacts with the FaaS environ-
ment, waits for a sampling period [11] to receive delayed
rewards, and feeds the observed environment state to the
recurrent actor-critic model. Although a few studies [14]
[24] have utilized recurrent networks like LSTM or GRU for
workload prediction in serverless context but do not address
the temporal relationship between scaling actions and their
effect on environment state. Further, we take inspiration
from [20] [31] [32] where recurrent models have been uti-
lized to analyze the inter-dependence of environment states
and retain useful information to learn optimal policies.

3 SYSTEM ARCHITECTURE AND PROBLEM FOR-
MULATION

3.1 System Architecture

The main components of our autoscaling solution are the
Prometheus monitoring service and the DRL agent, which
are shown in Fig. 1. For the serverless environment, we
deploy OpenFaaS [3], a Kubernetes-based FaaS framework,
over a multi-node MicroK8s [33] cluster, a production
Kubernetes distribution. OpenFaaS includes a Gateway
deployment to expose function performance metrics and
Prometheus is configured to periodically scrape function
metrics such as execution time, replica count, and through-
put ratio. OpenFaaS also packs an alertmanager that periodi-
cally watches for pre-configured request-per-second scaling
threshold to provide horizontal scaling capabilities. The
monitoring service further scrapes resource metrics from
the Kubernetes API Server, Kubelet, and Node exporters
that are utilized by our DRL agent for observation collec-
tion at every sampling window. The DRL agent utilizes
the standard Stable Baseline3 (SB3) [21] implementation of
LSTM-PPO 1 and models the FaaS environment following
Gymnasium [22] guidelines, for the POMDP model to be
directly used by SB3 algorithms. Additionally, we imple-
ment our own version of DRQN 1 using PyTorch [34] [35]
for evaluation. We also deploy an HTTP-request generator
tool to simulate online user behavior to train and evaluate
our DRL autoscaling agent.

3.2 Problem Formulation

Existing FaaS platforms generally exercise threshold-based
scaling when a monitored metric exceeds the configured
maximum or minimum. Autoscaling of resources is con-
sidered a classic automatic control problem and commonly
abstracted as a MAPE (map-analyse-plan-execute) control
loop [1]. At every sampling interval, the monitoring control
loop collects the relevant metrics and may decide to scale

1. https://github.com/Cloudslab/DRe-SCale
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Fig. 1: System Architecture

based on the analyzed observation. Autoscaling is a se-
quential process with non-deterministic results in a partially
observable environment that is conditioned on historical in-
teractions, therefore, we design FaaS autoscaling as a model-
free POMDP. POMDPs are a mathematical model and an
extension of Markov Decision Processes (MDP) that account
for uncertainty while maximising a given objective.

3.2.1 Model-Free POMDP

In a real-world scenario, it is hard to perceive the com-
plete state of the surrounding environment and a MDP
rarely holds true [19]. Instead, a POMDP better encapsulates
environmental characteristics from incomplete or partial
information about said environment. Formally, a POMDP
model is defined as a 6-tuple (S,A,O, T, Z,R) where: S
denotes the set of all possible environment states, A denotes
the set of all actions, O denotes the set of all observations
that an agent can perceive, T and Z represent the transition
probability function and observation probability function,
respectively, and R denotes the reward function. Conceptu-
ally, the agent observes itself in some environment state st,
hidden due to partial observability at each sampling interval
t and maintains a belief bt, an estimate of its current state,
to select an action at and transition to a new state ŝt. The
agent perceives the state information through observation
ot and utilises the transition and observation probability
function to update the state estimates. After transitioning

to a new state ŝt, the agent receives reward rt that helps in
maximising the objective.

Since probability functions are difficult to model in
complex FaaS environments and states cannot be perfectly
represented to capture the estimates of belief or hidden
states [20], we define the autoscaling problem as model-
free POMDP. Model-free POMDP attempts to maximise the
cumulative reward without explicitly modelling the transi-
tion or observation probabilities. Further, it needs function
approximation techniques like neural networks, specifically
recurrent neural networks (RNN), to capture the uncertainty
and temporal dependency. Therefore, we define the POMDP
observations as a tuple of (O,A,R) and utilise recurrency to
model and infer transition probabilities, observation proba-
bilities and hidden states to fulfil the conflicting objectives
of resource utilisation, operational cost and QoS objectives.

3.2.2 Deep Recurrent-Reinforcement Learning
A possible solution to learning effective policies in a model-
free POMDP is the application of model-free RL algorithms.
Here, the agent directly interacts with the environment and
does not explicitly model the transition or observation prob-
abilities. Vanilla RL algorithms like Q-learning and DQN
have no mechanism to determine underlying state [20] and
speculates that fed observation is a complete representa-
tion of the environment. To capture sequential or tempo-
ral dependencies, often recurrent units are integrated with
vanilla RL approaches, known as Recurrent Reinforcement
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TABLE 2: Notations

Symbol Definition
fl Function for training {matmul}.
S State space for POMDP agent.
A Action space for POMDP agent.
O Observation space for POMDP agent.
T, Z Transition and Observation probability func-

tions.
R Reward function for POMDP agent.
N Maximum number of function replicas possible

(function quota).
nmin Minimum number of function replicas.
Q Maximum requests possible in a sampling win-

dow.
t sampling window.
nt All available functions during t.
τt Average execution time of nt functions.
c Average CPU utilisation of nt functions.
cmax Maximum CPU utilisation of a function.
mt Average memory utilisation of nt functions.
mmax Maximum memory utilisation of a function.
ϕt Throughput of function.
qt Requests during t.
k Scaling limits.
st Environment state at t.
bt Belief state for POMDP agent.
ot Environment observation tuple

(τt, ϕt, qt, nt, ct,mt) ∈ O at t.
at Agent action ∈ {−k, . . . ,+k} at t.
rt Reward for action at ∈ R at t.
rmin Negative immediate reward (-100).
α, β, γ Objective weight parameters.

Learning (RRL) [36]. Prior studies [20], [31] [32], [37] [38],
have introduced and applied RRL approaches to a variety of
application domains such as T-maze task, financial trading,
network resource allocation and Atari games, to address
sequential nature and partial observability of environment,
i.e., a non-Markovian or POMDP setting. In RRL, an agent
follows the basic principle of performing an action in the
environment, establishing its state and receiving feedback
to improve the policy, but, additionally employs RNN
units/cells to model uncertainty. Theoretically, POMDP has
an underlying dynamics of MDP with an additional con-
straint of state uncertainty or observability that makes the
process non-Markovian. Therefore, we define the core RL
components as observation O, action A, reward R (guiding
signals) and FaaS environment.

We model the observation space as ot =
(τt, ϕt, qt, nt, ct,mt) ∈ O where τt is average execution time
of nt available function replicas with ct average CPU and
mt average memory utilisation, while successfully serving
ϕt proportion of qt requests in the sampling window t.
The agent adjusts the number of function instances in the
upcoming sampling window t+ 1 using suitable actions in
an attempt to maximise the reward. Therefore, we define
scaling action at as the number of function instances, k, to
add or remove and represent it as at ∈ A = {−k, · · · + k}
such that nmin ≤ (nt−1 + at) ≤ N , where N is function
quota. This estimate helps the agent to control the degree of
exploration by maintaining replication within quota N .

The objective of the DRL agent is to learn an optimal
scaling policy, and therefore, we structure the rewards rt
∈ R over monitored metrics - ct average CPU utilisation,
mt average memory utilisation, ϕt successful proportion of
total requests and number of available function replicas nt.
Our proposed agent does not work towards achieving a

specific threshold. Instead, it learns to maximise the returns,
i.e., improve resource utilisation, throughput and econom-
ically scaling function replicas. After performing an action
at, the agent receives a delayed reward rt at every sampling
window t and updates its network parameters.

RL application for model-free POMDP does not explic-
itly estimate the probabilities, instead, RNNs are incorpo-
rated to analyse environment uncertainties and model time-
varying patterns [36] [38]. The structure of RNNs is made-
up of highly-dimensional hidden states that act as network
memory and enables it to remember complex sequential
data. These networks map an input sequence to output and
consist of three units - input, recurrent and output unit,
serving towards memory goal.

4 LSTM-PPO BASED AUTOSCALING APPROACH

As discussed in section 3.2, we introduce recurrency to
handle system dynamics, complex workloads, and hidden
correlation of components based on POMDP model in
autoscaling tasks. We select Proximal Policy Optimisation
(PPO), a popular state-of-the-art on-policy RL algorithm for
autoscaling agents. While model-free off-policy algorithms
such as Deep Q-Network (DQN), Deep Deterministic Policy
Gradient (DDPG) have been studied with recurrent units
[20] [32], we explore a model-free on-policy PPO in our
setting due to its ease of implementation, greater stability
during learning, better performance across different envi-
ronments [39] and support for discrete actions while pro-
viding better convergence [21]. Although on-policy methods
are known to be sample inefficient and computationally ex-
pensive, our agent continuously collects samples for timely
policy updates. Also, off-policy algorithms tend to be harder
to tune than on-policy because of significant bias from old
data and Schulman at el. [40] suggests that PPO is less
sensitive to hyperparameters than other algorithms. PPO
has found its application in domains like robotics, finance
and autonomous vehicles, and takes advantage of the Actor-
Critic method to learn optimal policy estimations. However,
for partial observability or temporal dependence, general
RL algorithms struggle to capture underlying correlations
and patterns effectively. Therefore, we utilise RNN units,
specifically LSTM, to address partial observability in the
FaaS environment and improve the agent’s decision-making
capabilities. This integration is expected to enhance PPO’s
ability to capture historical data and make informed de-
cisions while improving its policy via new and previous
experiences.

The core component of the proposed autoscaling so-
lution is the integration of recurrent units with a fully-
connected multi-layer perceptron (MLP) that takes into
environment observation and maintains a hidden internal
state to retain relevant information. The LSTM layer is
incorporated into both actor and critic networks to retain in-
formation i.e., the output of the LSTM layer is fed into fully-
connected MLP layers, where the actor (policy network)
is responsible for learning an action selection policy and
the critic network serves as a guiding measure to improve
actor’s decision. The network parameters are updated as
per PPO clipped surrogate objective function [41] (Eq. 1)
which helps the agent balance its degree of exploration



7

Fig. 2: DRL agent structure for Autoscaling

and knowledge exploitation. It further improves network
sample efficiency and conserves large policy updates.

LCLIP (θ) = Ê≈

[
min

(
rt(θ)Ât, clip (r̂t(θ), 1− ϵ, 1 + ϵ) Ât

)]
(1)

r̂t(θ) =
πθ(at|ot)
πθold(at|t)

(2)

rt =

{
α.ϕ2

t − β.(nt − nmin)
2 + γ.(ct +mt) ; 1 ≤ at + nt−1 < N

rmin ; otherwise
(3)

The proposed autoscaling technique has two phases: an
agent training phase and a testing phase. Fig. 2 demon-
strates the agent training workflow. The environment setup
process precedes the agent training, where the agent inter-
acts with the environment and obtains information. After
initial setup, the agent is trained for multiple episodes of
sampling windows, where it assesses the function demand
qt over individual sampling window t and ascertains ap-
propriate scaling action. During a sampling window t, the
agent collects the environment observation ot and samples
an action at according to LSTM-PPO policy. If the agent per-
forms an invalid action, it is awarded an immediate negative
reward rmin, else the agent obtains a delayed reward rt (Eq.
3), for sampling window t, calculated using the relevant
monitored metrics (3.2). This reward helps the agent in
action quality assessment, transition to a new state and
has significant effects on the function’s performance. These
rewards are essential for improving the agent’s decision-
making capability. The critic network estimates the agent
state and helps update the network parameters. The agent

continues to analyse the demand over multiple sampling
windows, repeating the interaction process and accumulat-
ing the relevant information in recurrent cells for learning.
Once the agent is trained for sufficient episodes and rewards
appear to converge, we evaluate the agent in the testing
phase.

In the testing phase, the agent is evaluated for its learnt
policies. It collects current environment observation, sam-
ples the action through actor policy and scales the functions
accordingly. We hypothesised the relationship between QoS
and resource utilisation and deduce that appropriately scal-
ing the functions improve throughput, resource utilisation
and reduce operational costs (number of function replicas
used).

5 PERFORMANCE EVALUATION

In this section, we provide the experimental setup and
parameters, and perform an analysis of our agent compared
to other complementary solutions.

5.1 System Setup

We set up our experimental multi-node cluster, as discussed
in Section 3, using NeCTAR (Australian National Research
Cloud Infrastructure) services on the Melbourne Research
Cloud. It includes a combination of 2 nodes with 12/48,
1 node with 16/64, 1 node with 8/32 and 1 node with
4/16 vCPU/GB-RAM configurations. We deploy OpenFaaS
along with Prometheus service on MicroK8s (v1.27.2), how-
ever, we used Gateway v0.26.3 due to scaling limitations in
the latest version and remove its alert manager component
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TABLE 3: Parameters for System Setup

Parameter Name Value
MicroK8s version v1.27.2
OpenFaaS Gateway version v0.26.3
Nodes 5
OS Ubuntu 18.04 LTS
vCPU 4,8,12,16
RAM 16,32,64,48 GB
Workload Matrix Multiplication (m×m)
m 10(small), 100(medium), 1000(large)
CPU, memory, timeout 150 millicore, 256 MB, 10 seconds

to disable rps-based scaling. The system setup parameters
are listed in Table 3.

As FaaS is beneficial for short-running, single-purpose
functions that require few resources, we consider ma-
trix multiplication function with three different input sizes
small,medium, large-(10, 100, 1000) and configure it with
150/256 millicore/MB resources approximately as AWS
Lambda offering and a maximum timeout of 10 seconds.
Additionally, we generate the user workload using the
Hey [42] load generator tool, a lightweight load generator
written in Go language. For the workload we leverage an
open-sourced, 14-day function trace [23] by Azure functions,
Fig. 3, that largely represents an invocation behaviour of a
production-ready application function running on a server-
less platform. Although it appears stationary due to its
repetitive nature, it is representative of real cloud invocation
patterns with relevant variations for scaling decisions. Since
the Poisson distribution has been shown to approximately
sample online user behaviour, request inter-arrival times
are sampled from it. Prometheus service is configured with
relevant discovery and target points to regularly scrape
metrics from OpenFaaS gateway, function instances and
Kubernetes API server.

As discussed in Sec. 4, the agent assesses the function
demand during a sampling window of 30 seconds for a
single episode of 5 minutes. Based on the deployed infras-
tructure capacity, we fix the maximum function instances
as 24 in isolation, to reduce the performance interference.
Since frequent scaling can result in resource thrashing, we
explore scaling actions within a range of 2 instances, i.e.,
at ∈ {−2,−1, 0, 1, 2}, avoiding resource wastage during
acquisition and release of function instances. Further, the
observation space is composed of the throughput ratio ϕt

∈ [0, 100]%, number of function instances nt ∈ [1, 24] and
resource utilisation (CPU, ct and memory, mt) ∈ [0, 2]∗100%
that contributes towards over-burdened CPU and out-of-
memory scenarios. The LSTM-based PPO agent takes ad-
vantage of a single LSTM layer of 256 units and is integrated
with both Actor and Critic networks with identical network
architectures having 2 fully connected MLP layers of 64
neurons each, i.e., in[64,64] and out[64,64].

5.2 Experiments

Function autoscaling is a continuous and non-episodic pro-
cess, however, we set an episode based on the default scal-
ing window of 5 minutes by Kubernetes’ horizontal scaling
mechanism. To demonstrate the effectiveness of recurrency
in autoscaling tasks, we chose a workload with varying
resource requirements at different sampling windows. After
careful consideration of network parameters and sensitivity
analysis, listed in Table 4, the DRL agent is trained for

Fig. 3: Workload for Matrix Multiplication function
TABLE 4: RL Environment and Network Parameters

Parameter Value
N 24
t 30 seconds
τt (0 - 10) seconds
ϕt (0 - 100) %
qt {0,. . . ,Q} requests
nt {1,. . . ,N} functions
ct (0 - 2) *100%
mt (0 - 2) *100%
at {-2, -1, 0, +1, +2 }
LSTM Network Layer 1(256 cells)
Actor Network Layer 1(64 cells), Layer 2(64 cells)
Critic Network Layer 1(64 cells), Layer 2(64 cells)

more than 500 episodes to determine a scaling policy to
maximise the throughput while using minimal resources.
The agent is expected to retain workload information and
perform in accordance with the received feedback. Further,
the agent is evaluated against a state-of-the-art, PPO-based
autoscaling agent, with the same the Actor/Critic network
architecture, (Table 4) as the RPPO agent, i.e., having 2
MLP layers with 64 neurons each. In addition to it, we
evaluate a DRQN agent that integrates a LSTM layer (256
cells) with regular off-policy Deep Q-Network (DQN), and
has 2 MLP layers with 128 neurons, each for target network
and q-network. Fig. 4 shows the training results of these
competing approaches in terms of mean episodic rewards.
The rewards are given as per Eq. 3, and it is evident that
the mean episodic reward for PPO (60190) begins to dimin-
ish after 400 episodes as compared to LSTM-PPO(RPPO)
(60540) agent. Additionally, a similar pattern is visible for
the throughput of RPPO and PPO approaches, Fig. 4(b)
where PPO struggles to keep a higher success rate by
provisioning more functions. Also, we observe that mean
episodic reward for the DRQN (59564) approaches that of
RPPO while exploring the search space and gradually serves
more workload successfully, Fig. 4(e), but closely tailing
the trend of other approaches, Fig. 4(b). As mentioned in
section 5, matrix multiplication is performed for three input
sizes - small,medium, large and similar input randomness
is followed for competing approaches that are evident in
execution time ( 3.7 and 4 seconds) of successful requests in
Fig. 4(c), (d) and (e).

We evaluate the agents for 200 sampling windows and
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(a) (b) (c)

(d) (e)

Fig. 4: (a) Mean episodic reward, (b) Throughput, (c) Throughput vs Execution time - PPO, (d) Throughput vs Execution
time - RPPO and (e) Throughput vs Execution time - DRQN

present the results in Fig. 5. Out of the 200 sampling win-
dows, RPPO based autoscaling agent performed 18% better
in terms of throughput, while having an average of 85%
mean success ratio as compared to 67% of the PPO agent.
On the other hand, the DRQN agent fell short to serve
22% of the workload with a mean success rate of 66% as
compared to RPPO agent. In serving the evaluated work-
load, the RPPO agent utilised at least 8.4% more resources
than the PPO agent and improved average execution time
(seconds) by 13%, while it utilised at least 8% more resources
than DRQN and slightly improved the average execution
time (seconds) by 2.6%. Although the DRQN agent tries to
capture sequential dependency of the workload, we suspect
it fails to explore the search space and only exploits minimal
replica count. Hence, as evident in Fig. 5(d), the DRQN
agent keeps utilising lesser function resources. This agent
behaviour is in-line with training results where it could
serve better with less requests, thus receiving higher reward
for that sampling window and eventually, accumulating
higher episodic reward and throughput percentage.

We also assess the effectiveness of our approach against
a default commercial scaling policy, CPU threshold-based
horizontal scaling. Kubernetes-based serverless platforms
like OpenFaaS [3] and Kubeless [4] can leverage underlying
resource-based scaling, known as horizontal pod autoscal-
ing (HPA) implemented as a control loop that checks for
target metrics to adjust the function replicas. HPA has a pre-
configured query period of 15 seconds to control deploy-
ment based on target metrics like average CPU utilization.
Therefore, the HPA controller fetches the specific metrics
from the underlying API and empirically calculates the
number of desired functions. However, the controller is
unaware of workload demand and only scales after a 15-
second metric collection window. The expected threshold
for function average CPU utilisation is set to be 75% with
maximum scaling up to 24 instances. Therefore, whenever

the average CPU utilisation of a function exceeds the fixed
threshold, new function instances are provisioned. Also,
HPA has a 5-minute down-scaling window during which
resources are bound to function irrespective of incoming
demand, representing potential resource wastage. Similarly,
we compare our scaling methods with another metric-based
autoscaling supported by OpenFaaS based on request-per-
second processed. It is also implemented as a control loop
and watches for processed requests per second (rps) and
raises an alert if rps is above 5 for 10 seconds (default).
Therefore, it is worthwhile to analyse the performance of
the DRL-based agent against HPA that reserves enough
resources for either idle time or low resource utilisation.

The results for both threshold-based scaling are pre-
sented in Fig. 6, and both approaches struggle to keep up
with the incoming workload. The rps could only manage
to serve 50% of incoming load at any sampling window
while only using a single instance. This happens as a single
request takes approximately 4 seconds to process, and rps
never goes beyond the set threshold, failing the majority
of requests. On the other hand, HPA could serve 80% of
incoming load on average, but fluctuates due to its set
cooldown period. Although HPA tries to scale its resources
to 5 replicas, its performance is degraded by 35% against
RPPO and similarly, rps degrades throughput performance
by 58%.

5.3 Discussion
Autoscaling is an essential feature of cloud computing and
has been identified as a potential research gap in server-
less computing models. As compared to service-oriented
architectures where the services are always running, FaaS
functions run for shorter duration and release resources, if
unwanted. Hence, an adaptive scaling solution is critical in
handling complex workloads for these small and ephemeral
functions. Thus, we investigate a DRL-based autoscaling
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(a) (b) (c)

(d) (e)

Fig. 5: (a) Throughput vs Execution time - PPO, (b) Throughput vs Execution time - RPPO, (c) Throughput vs Execution
time - DRQN, (d) Function Replicas and Execution time, and (e) Throughput Comparison

(a) (b)

Fig. 6: (a) Throughput - HPA vs RPS, (b) Replica use - HPA vs RPS

agent, LSTM-PPO, to work in complex FaaS settings and
utilise relevant environmental information to learn optimal
scaling policies. We train and evaluate the proposed solution
against a state-of-the-art on-policy PPO approach, alongside
commercial default, and infer that LSTM-PPO is able to
capture environment dynamics better and shows promising
results. Although, we argue that real-time systems are hard
to model and transparent to a certain degree and that RL
approaches can analyse these uncertainties better. There are
certain points to remember associated with the appropriate-
ness and application of RL methods to real systems.

We model function autoscaling in FaaS as a model-free
POMDP and leverage monitoring tools, like Prometheus, to
collect the function-related metrics and apply model-free RL
methods to learn the scaling policy. In general, RL algo-
rithms are expensive in terms of data, resource and time,
where an agent interacts with the modelled environment

and acquire relevant information over multiple episodes
that signify a higher degree of exploration. Although, as
showcased through results, the proposed RL approach
took more than 500 episodes (>6000 sampling windows)
to slightly improve the performance over baselines, RL
methods in real-time systems are considerably expensive
following stringent optimization goals.

The current training time has an episode of 5 minutes
that consists of 10 iteration windows or epochs of 30 seconds
each, where a decision to scale is taken by the agent and
feedback is calculated for learning. This duration of an
episode is chosen keeping in mind the minimum resource
scaling and cooldown time of Kubernetes-based serverless
platforms and an industry insight [11] for taking scaling
actions in production environments. In addition to these
settings, an agent training could further be affected by the
invocation pattern and set of actions to be explored. In
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the current work, the agent explores 5 discrete actions that
follow a conservative approach to avoid resource thrashing
while scaling function instances. In a particular state, an
agent could take all the possible actions from the action
space and would be penalised for an infeasible action. This
static behaviour of action modelling elongates the training
process since the agent explores infeasible actions in a state
and only learns from negative experience. To overcome
this, an action masking technique could be integrated that
prevents the agent to take certain infeasible actions in par-
ticular states, based on defined rules like the total number of
function instances to remain within function limits. There-
fore, different functions do not necessarily show similar
behaviour for training and realised quality of results under
similar settings.

The proposed DRL method is a composition of
two different neural network techniques, recurrent and
fully-connected layers, and these models are known to
be sensitive to respective hyper-parameters or appli-
cation/workload context. Therefore, configuring hyper-
parameters can also be an intensive task in real-world set-
tings. Additionally, the proposed agent analyzes individual
workload demand for a particular function, the learning
cannot be generalized to other functions with different
resource requirement profiles and therefore requires indi-
vidual training models to be commissioned. However, tech-
niques like transfer learning or categorising functions with
similar resource and workload profile to use a trained agent
as a starting point could be explored. Moreover, these agents
could be deployed in similar fashion to tools like AWS
Compute Optimiser [43] to gradually obtain experiences
and build models with high confidence, from real-time data
before making any recommendation/autonomous decision.

Furthermore, the agent is trained for a limited number
of episodes, approximately 500 episodes and evaluated, but
the chances of exploring are limited. Therefore, the agent
expects to be guided by its actor-critic network policies in
making informed decisions. Additionally, the agent utilizes
resource-based metrics that affect the cold starts, so the
availability of relevant tools and techniques to collect instan-
taneous metrics is essential [11] in reducing the observation
uncertainty. Also, the respective platform implementation,
such as metric collection frequency, function concurrency
policy, and request queuing, can extend support to the
analyses. Hence, based on performance evaluation results
and discussion, we can adequately conclude that the pro-
posed LSTM-PPO agent successfully performs at par with
competing policies for given workload and experimental
settings.

6 CONCLUSIONS AND FUTURE WORK

The FaaS model executes the piece of code inside a con-
tainer, known as a function and prepares new function
containers on demand. FaaS platforms usually support
threshold-based autoscaling mechanisms like CPU utilisa-
tion to cope with incoming demand and heuristically create
more functions. These methods do not consider any sys-
tem complexity or workload characteristics for scaling and
therefore result in sub-optimal scaling policies. Therefore,
an adaptive autoscaling mechanism is required to analyse

the workload and system uncertainty to optimally scale
resources while improving system throughput.

In this work, we investigated a recurrent RL approach for
function autoscaling and presented results against a state-of-
the-art PPO algorithm and commercially applied threshold-
based autoscaling. We perform our analyses for matrix mul-
tiplication function and utilise an open-source function trace
by Azure [23]. The experimental multi-node cluster was set
up on the MicroK8s distribution and took advantage of the
OpenFaaS serverless framework. We presented evidence of
modelling real-time FaaS environments as partially observ-
able and application of recurrent networks to model-free
RL algorithms to maximise the objective. We evaluate our
proposed technique after training of more than 500 episodes
and successfully validate our hypothesis that recurrent tech-
niques capture the system dynamicity and uncertainty to
give better autoscaling policies. In our evaluation setting,
experiments show that RPPO improved system throughput
by 18%, 22%, 35% and 58% in comparison to PPO, DRQN,
HPA and rps scaling policy, respectively.

As part of future work, we will extend our analysis
to different functions and workload types to examine the
effect of POMDP modelling. We further plan to experiment
with other on-policy and off-policy RL methods like TD3, to
expedite the learning process due to their sample efficiency.
The proposed methods are dependent on the metric collec-
tion process for observing system states which can act as
bottlenecks and single points of failure [11]. Therefore, we
plan to investigate distributed metric collection and agent
learning to avoid single-point-failure and improve learning
and sample efficiency for estimating optimal function au-
toscaling policies.

Software Availability: Our environment setup code and
algorithms we implemented for OpenFaaS can be accessed
from: https://github.com/Cloudslab/DRe-SCale
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