
Future Generation Computer Systems () –

Contents lists available at SciVerse ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Towards autonomic detection of SLA violations in Cloud infrastructures
Vincent C. Emeakaroha a,∗, Marco A.S. Netto b, Rodrigo N. Calheiros c, Ivona Brandic a, Rajkumar Buyya c,
César A.F. De Rose b

a Vienna University of Technology, Vienna, Austria
b Faculty of Informatics, Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
c CLOUDS Laboratory, Department of Computer Science and Software Engineering, The University of Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 9 November 2010
Received in revised form
28 April 2011
Accepted 11 August 2011
Available online xxxx

Keywords:
Service level agreement
Resource monitoring
SLA violation detection
SLA enactment
Cloud architecture

a b s t r a c t

Cloud computing has become a popular paradigm for implementing scalable computing infrastructures
provided on-demand on a case-by-case basis. Self-manageable Cloud infrastructures are required in order
to comply with users’ requirements defined by Service Level Agreements (SLAs) and to minimize user
interactions with the computing environment. Thus, adequate SLA monitoring strategies and timely
detection of possible SLA violations represent challenging research issues. This paper presents the
Detecting SLA Violation infrastructure (DeSVi) architecture, sensing SLA violations through sophisticated
resource monitoring. Based on the user requests, DeSVi allocates computing resources for a requested
service and arranges its deployment on a virtualized environment. Resources are monitored using a
novel framework capable of mapping low-level resource metrics (e.g., host up and down time) to user-
defined SLAs (e.g., service availability). The detection of possible SLA violations relies on the predefined
service level objectives and utilization of knowledge databases to manage and prevent such violations.
We evaluate the DeSVi architecture using two application scenarios: (i) image rendering applications
based on ray-tracing, and (ii) transactional web applications based on thewell-known TPC-Wbenchmark.
These applications exhibit heterogeneous workloads for investigating optimal monitoring interval of SLA
parameters. The achieved results show that our architecture is able to monitor and detect SLA violations.
The architecture output also provides a guideline on the appropriatemonitoring intervals for applications
depending on their resource consumption behavior.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Cloud computing represents a novel paradigm for the imple-
mentation of scalable computing infrastructures combining con-
cepts from virtualization, distributed application design, Grid, and
enterprise IT management [1–3]. Service provisioning in the Cloud
relies on Service Level Agreements (SLAs) representing a contract
signed between the customer and the service provider including
non-functional requirements of the service specified as Quality of
Service (QoS) [4,5]. SLA considers obligations, service pricing, and
penalties in case of agreement violations.

Flexible and reliable management of SLA agreements is of
paramount importance for both Cloud providers and consumers.
On the one hand, prevention of SLA violations avoids penalties
providers have to pay and on the other hand, based on flexible and
timely reactions to possible SLA violations, user interaction with
the system can be minimized, which enables Cloud computing to
take roots as a flexible and reliable form of on-demand computing.

∗ Corresponding author.
E-mail address: vincent@infosys.tuwien.ac.at (V.C. Emeakaroha).

Although, there is a large body of work considering de-
velopment of flexible and self-manageable Cloud computing
infrastructures [6–8], there is still a lack of adequate monitor-
ing infrastructures able to predict possible SLA violations. Most
of the available monitoring systems rely either on Grid [9,10] or
service-oriented infrastructures [11], which are not directly com-
patible to Clouds due to the difference of resource usage model, or
due to heavily network-oriented monitoring infrastructures [12].
In Grids [13] resources are mostly owned by different individu-
als/enterprises, and in some cases, as desktop Grids for instance,
resources are only available for usage when the owners are not us-
ing them [14]. Therefore, resource availability variesmuch and this
impacts its usage for application provisioning, whereas in Cloud
computing, resources are owned by an enterprise (Cloud provider),
provisioning them to customers in a pay-as-you-gomanner. There-
fore, availability of resources is more stable and resources can be
provisioned on-demand. Hence, themonitoring strategies used for
detection of SLA violations in Grids cannot be directly applied to
Clouds.

Furthermore, another important aspect for the usage of SLAs is
the required elasticity of Cloud infrastructures. Thus, SLAs are not
only used to provide guarantees to end user, they are also used by

0167-739X/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2011.08.018

http://dx.doi.org/10.1016/j.future.2011.08.018
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:vincent@infosys.tuwien.ac.at
http://dx.doi.org/10.1016/j.future.2011.08.018

2 V.C. Emeakaroha et al. / Future Generation Computer Systems () –

providers to efficiently manage Cloud infrastructures, considering
competing priorities like energy efficiency and attainment of
SLA agreements [15,16] while delivering sufficient elasticity.
Moreover, SLAs are also recently used as part of novel Cloud
engineering models like Cloud federation [17,18] where provider
can in- or outsource their infrastructure depending on the
current load. Thus, since SLA parameters are usually defined by
Cloud providers and can comprise various user-defined attributes,
current monitoring infrastructures lack appropriate solutions for
adequate SLA monitoring. The first challenge is to facilitate
mapping of measured metrics by low level tools to application
based SLAs. The second challenge is to determine appropriate
monitoring intervals at the application level keeping the balance
between the early detection of possible SLA violations and system
intrusiveness of the monitoring tools.

In this paper we present the novel concept for mapping low-
level resource metrics to high-level SLAs—LoM2HiS [19], where
system metrics (e.g., system up and down time) are translated to
high-level SLAs (e.g., system availability). Thus, LoM2HiS facilitates
efficient monitoring of Cloud infrastructures and early detection
of possible SLA violations. Furthermore, LoM2HiS framework
enables user-driven mappings between the resource metric and
SLA parameters by utilizing mapping rules defined with Domain
Specific Languages (DSLs). However, determination of optimal
measurement intervals of low-level metrics and their translation
to SLAs is still an open research issue. Shortmeasurement intervals
may negatively affect the overall system performance, whereas
long measurement intervals may cause heavy SLA violations.

In order to assist Cloud providers in detecting SLA violations
through resource monitoring, we developed the DeSVi architec-
ture [20]. This architecture represents a core step towards achiev-
ing flexible and autonomic SLA management. The main compo-
nents of the DeSVi architecture are: (i) the automatic VM deployer,
(ii) application deployer, and (iii) the LoM2HiS framework. Based on
user requests, the automatic VM deployer allocates necessary re-
sources for the requested service and arranges its deployment on a
virtual machine (VM). After service deployment, LoM2HiS frame-
work monitors the VMs and translates the low-level metrics into
high-level SLAs using the specified mapping rules. To realize auto-
nomic SLA management DeSVi utilizes a knowledge database for
the evaluation of the monitored information in order to propose
reactive actions in case of SLA violation situations.

The main contributions of the paper are: (i) definition of the
motivation scenario for the development of the architecture aimed
at detecting SLA violations, (ii) conceptual design of the DeSVi
architecture for the prediction of SLA violations, (iii) discussion
of the implementation choices for the DeSVi, and (iv) extensive
evaluation of the architecture in a real computing infrastructure
using various SLA parameters and two Cloud applications: an
image rendering service based on POV-Ray1 and the TPC-W
transactional web e-Commerce benchmark.2

The rest of this paper is organized as follows: Section 2 presents
the related work. Section 3 presents the architecture for the
autonomic management of Cloud services and the motivating
scenario for the development of the DeSVi architecture. Section 4
introduces the DeSVi architecture. In particular we discuss the
automatic VM deployer, application deployer, and the monitoring
components. Section 5 discusses our implementation choices,
whereas Section 6 discusses experimental evaluation of the DeSVi
architecture. Section 7 presents our conclusions and describes
future work.

1 http://www.povray.org.
2 http://www.tpc.org/tpcw/.

2. Related work

We classify related work into (i) resource monitoring [21,
12,22], (ii) SLA management including violation detection [23–
27], and (iii) mapping techniques of monitored metrics to SLA
parameters [28,11]. Currently, there is little work in the area of
resourcemonitoring, low-levelmetricsmapping, and SLA violation
detection in Cloud computing. Because of that, we look into the
related areas of Grid and Service-Oriented Architecture (SOA)
based systems.

Fu et al. [21] propose GridEye, a service-oriented monitoring
system with flexible architecture that is further equipped with
an algorithm for prediction of the overall resource performance
characteristics. The authors discuss how resources are monitored
with their approach in Grid environment but they consider neither
SLA management nor low-level metric mapping. Gunter et al. [12]
present NetLogger, a distributed monitoring system, which
can monitor and collect information of networks. Applications
invoke NetLogger’s API to survey the overload before and after
some request or operation. However, it monitors only network
resources. Wood et al. [22] developed a system, called Sandpiper,
which automates the process ofmonitoring and detecting hotspots
and remapping/reconfiguring VMs whenever necessary. Their
monitoring system is reminiscent of our in terms of goal: avoid
SLA violation. Similar to our approach, Sandpiper uses thresholds
to check whether SLAs can be violated. However, it differs from
our system by not considering the mapping of low level metrics,
such as CPU and memory, to high-level SLA parameters, such as
response time for SLA enactment.

Boniface et al. [23] discuss dynamic service provisioning using
GRIA SLAs. The authors describe provisioning of services based
on agreed SLAs and the management of the SLAs to avoid
violations. Their approach considers only Grid environments and
not Clouds. Moreover, they do not detail how the low-level
metric are monitored and mapped to high-level SLAs to enforce
the SLA objectives at runtime. Koller and Schubert [24] discuss
autonomous QoS management using a proxy-like approach. Their
implementation is based on WS-Agreement. Thereby, SLAs can
be exploited to define certain QoS parameters that a service
has to maintain during its interaction with a specific customer.
However, their approach is limited to Web services and does not
consider other applications types. Frutos and Kotsiopoulos [25]
discuss the main approach of the EU project BREIN [29] to develop
a framework that extends the characteristics of computational
Grids by driving their usage inside new target areas in the
business domain for advanced SLA management. BREIN applies
SLA management to Grids, whereas we target SLA management
in Clouds. Dobson and Sanchez-Macian [27] present a unified
QoS ontology applicable to QoS-basedWeb services selection, QoS
monitoring, and QoS adaptation. However they do not consider
application deployment and provisioning strategies. Comuzzi
et al. [26] define the process for SLA establishment adopted within
the EU project SLA@SOI framework. The authors propose the
architecture for monitoring SLAs considering two requirements
introduced by SLA establishment: the availability of historical data
for evaluating SLA offers and the assessment of the capability
to monitor the terms in an SLA offer. But they do not consider
monitoring of low-level metrics and mapping them to high-level
SLA parameters for ensuring the SLA objectives.

Rosenberg et al. [28] deal with QoS attributes for Web services.
They identify important QoS attributes and their composition from
resourcemetrics. They presentmapping techniques for composing
QoS attributes from resource metrics to form SLA parameters for
a specific domain. However, they do not deal with monitoring
of resource metrics. D’Ambrogio and Bocciarelli [11] introduce
a model-driven approach for integrating performance prediction

http://www.povray.org
http://www.tpc.org/tpcw/

V.C. Emeakaroha et al. / Future Generation Computer Systems () – 3

Fig. 1. FoSII infrastructure overview.

into service composition processes carried out by BPEL. In their
approach, service SLA parameters are composed from system
metrics using mapping techniques. Nevertheless, they consider
neither resource metric monitoring nor SLA violation detection.

To the best of our knowledge, none of the discussed approaches
deals with mapping of low-level resource metrics to high-level
SLA parameters and SLA violation detection at runtime, which are
desirable features for enforcing SLAs in Cloud-like environments.

3. Background and motivation

The processes of service provisioning based on SLA and efficient
management of resources in an autonomic manner have been
identified asmajor research challenges in Cloud environments [30,
1]. FoSII project (Foundations of Self-governing Infrastructures) is
developing models and concepts for autonomic SLA management
and enforcement in Clouds. FoSII components manage the whole
lifecycle of self-adaptable Cloud services [6] as explained next.

SLA are used to guarantee customers a certain level of quality
for their services. In a situation where this level of quality is not
met, the provider pays penalties for the breach of contract. In
order to save Cloud providers from paying penalties and increase
their profit, providers have to monitor the current status or
resource and check frequently whether the established SLAs are
violated. Thus, in order to facilitate appropriatemonitoring of SLAs
we developed the low level metrics to high level SLA (LoM2HiS
framework) [19] that maps the low-level resource metrics to high-
level SLA parameters and detects SLA violations as well as future
SLA violation threats so as to react before actual SLA violations
occur.

DeSVi architecture utilizes LoM2HiS framework to detect
application SLA objectives violations at runtime and extends
FoSII with application deployment component, virtual machine
configuration and deployer components.

3.1. FoSII infrastructure overview

Fig. 1 depicts the components of the FoSII infrastructure.
There are two core components of the FoSII infrastructure. The
first part comprises the monitoring aspect and it is intended to
provide information to the second part, which comprises the
knowledgemanagement aspect. As shown in Fig. 1, each FoSII service
implements three interfaces: (i) negotiation interface necessary for
the establishment of SLA agreements, (ii) applicationmanagement
interface necessary to start the application, upload data, and
perform similar management actions, and (iii) self-management

interface necessary to devise actions in order to prevent SLA
violations.

The self-management interface shown in Fig. 1 is implemented
by each Cloud service and specifies operations for sensing changes
of the desired state and for reacting to those changes [6]. The host
monitor sensors continuously monitor the infrastructure resource
metrics (input sensor values arrow a in Fig. 1) and provide the
autonomicmanagerwith the current resource status. The run-time
monitor sensors sense future SLA violation threats (input sensor
values arrow b in Fig. 1) based on resource usage experiences and
predefined threat thresholds.

In this paper we give a brief description of the knowledge
management component first, but our focus is on the LoM2HiS
framework since it implements monitoring strategies relevant for
the realization of the DeSVi architecture.

3.2. Knowledge databases

Knowledge management in FoSII is performed based on
knowledge databases and case-based reasoning [31] for proposing
of reactive actions. Case-Based Reasoning (CBR) is the process of
solving problems based on past experience. It tries to solve a case
(a formatted instance of a problem) by looking for similar cases
from the past and reusing the solutions of these cases to solve
the current one. In general a typical CBR cycle consists of the
following phases assuming that a new case has just been received:
(i) retrieving the most similar case or cases to the new one, (ii)
reusing the information and knowledge in the similar case(s) to
solve the problem, (iii) revising the proposed solution, and (iv)
retaining the parts of this experience likely to be useful for future
problem solving.

Considering the SLA depicted in Table 1 and as shown in
Fig. 2, a complete case consists of (a) the application ID being
considered (line 2, Fig. 2); (b) the initial case measured by the
monitoring component and mapped to the SLAs consisting of
the SLA parameter values of the application and global Cloud
information like number of running virtual machines (lines 4–9);
(c) the executed action (line 11); (d) the resulting case measured
some time interval later (lines 13–18) as in (b); and (e) the resulting
utility (line 20).

We distinguish between two working modes of the knowledge
DB: active and passive [31]. In the active mode, system states and
SLA values are periodically stored into the DB. Thus, based on
the observed violations and correlated system states, cases are
obtained as input for the knowledge DB. Furthermore, based on the
utility functions, quality of the reactive actions are evaluated and
threat thresholds are generated.

4 V.C. Emeakaroha et al. / Future Generation Computer Systems () –

Fig. 2. Case-based reasoning example.

Table 1
Sample SLA parameter objectives.

SLA parameter Value

Incoming bandwidth (IB) >10Mbit/s
Outgoing bandwidth (OB) >12Mbit/s
Storage (St) >1024 GB
Availability (Av) ≥99%

However, definition of the measurement intervals in the
active mode is far from trivial. An important parameter to be
considered is the period on which resource metrics and SLA
parameters are evaluated (e.g. every two seconds or every two
minutes). Too frequent measurement intervals may negatively
affect the overall system performance, whereas too infrequent
measurement intervals may cause heavy SLA violations. Even
though the knowledge database component is essential for the
achievement of autonomic and self-management behavior in the
FoSII infrastructure, it does not relate directly to the architectural
components described in this paper, and so it is not discussed
further.

3.3. LoM2HiS framework overview

The LoM2HiS framework comprises two core components,
namely host monitor and run-time monitor. The former is respon-
sible for monitoring low-level resource metrics, whereas the latter
is responsible for metric mapping and SLA violation monitoring.
In order to explain our mapping approach we consider the Service
Level Objectives (SLOs) shown in Table 1, including incoming band-
width, outgoing bandwidth, storage, and availability.

As shown in Fig. 1, we distinguish between host monitor and
run-time monitor. Resources are monitored by the host monitor
using arbitrary monitoring tools such as Gmond from Ganglia
project [32]. Low level resourcemetrics include downtime, uptime,
and available storage. Based on the predefined mapping rules
stored in a database, monitored metrics are periodically mapped
to the high level SLA parameters. These mapping ideas are similar
to those in Grids where workflow processes are mapped to Grid
service in order to ensure their quality of service [33]. An example
of an SLA parameter is service availability Av, (as shown in Table 1),
which is calculated using the resource metrics downtime and
uptime as defined by the following mapping rule:

Av =

1 −

downtime
uptime + downtime

∗ 100. (1)

Fig. 3. Overview of the DeSVi architecture and component’s interaction.

The mapping rules are defined by the provider using appropri-
ate Domain Specific Languages (DSLs). DSLs are special-purpose
languages that can be tailored to a specific problem domain. SLA
parameters are specified based on the type of application in ques-
tion. There are different types of applications that can be grouped
into domains based on the composition of their SLA parameters.
Thus, the use of DSL to describe the mapping rules. These rules
are used to compose, aggregate, or convert the low-levelmetrics to
form the high-level SLA parameter includingmappings at different
complexity levels, e.g., 1 : n or n : m. The concept of detecting fu-
ture SLA violation threats is designed by defining amore restrictive
threshold than the SLA violation threshold known as threat thresh-
old. Thus, calculated SLA values are compared with the predefined
threat threshold in order to react before SLA violations happen. The
generation of threat thresholds, described in Section 3.2, is part of
our ongoing work and includes sophisticated methods for system
state management.

As described in a previous work [19], we designed and
implemented a communicationmodel for the LoM2HiS framework
based on the Java Messaging Service (JMS) API [34], which is a Java
Message Oriented Middleware API for sending messages between
two or more clients. We use Apache ActiveMQ [35] as a JMS
provider that manages sessions and queues.

Having discussed the FoSII infrastructure, we now present in
the next section the DeSVi architecture, which extends the FoSII
infrastructure with two new components.

4. DeSVi architecture

This section describes in detail the Detecting SLA Violation
infrastructure-DeSVi architecture, its components, and how the
components interact with one another (Fig. 3). The proposed ar-
chitecture is designed to handle the complete service provisioning
management lifecycle in Cloud environments. The service provi-
sioning lifecycle includes activities such as service deployment, re-
source allocation to tasks, resource monitoring, and SLA violation
detection.

The topmost layer represents the users (customers) who
place service provisioning request through a defined application
interface (step 1 in Fig. 3) to the Cloud provider. The provider
handles the user service request based on the negotiated and
agreed SLAs with the user. The application deployer, which is
located on the same layer of the run-time monitor, allocates
necessary VM resources for the requested service and arranges
its deployment on the Cloud environment (step 2). VMs are

V.C. Emeakaroha et al. / Future Generation Computer Systems () – 5

Fig. 4. Application deployer.

not the only type of resources in a Cloud environment but
we do emphasize them in this work because it is essential
to our approach. The deployment of VMs and environmental
configurations are performed by AEF (Automated Emulation
Framework) [8] (step 3). The host monitor observes the metrics of
the resource pool comprising virtual machines and physical hosts
(step 4). The relation between the resource metrics (monitored by
the host monitor) and SLAs (monitored by the run-time monitor)
is managed by the LoM2HiS framework.

The arrow termed Failover presented in Fig. 3 indicates
redundancy in the monitoring mechanism. The host monitor is
designed to usemonitoring agents asmentioned previously, which
are embedded in each node in the resource pool to monitor
the metrics of the node. Such monitoring agents broadcast their
monitored values to the other agents in the same resource pool,
creating the possibility of accessing the whole resource pool status
from any node in the pool. The metric broadcasting mechanism
is configurable and can be deactivated if necessary but it can
obviate the problem of a bottleneck master node for accessing the
monitored metrics of the resource pool.

The DeSVi architecture is designed to monitor and detect SLA
violation in a single Cloud data center. To be able to manage
a Cloud environment with multiple data centers, we intend to
apply a decentralization approach where the proposed system
will be installed on each data center. The LoM2HiS component
in our system is already designed with a scalable communication
mechanism, which can be easily utilized to allow communication
between data centers. In the following sections we explain all
components of our system in detail.

4.1. Application deployer

The application deployer is responsible for managing the
execution of user applications; similar to brokers in the Grid
literature [36–38]. However, compared to brokers, the application
deployer has more knowledge and control of the application tasks,
being able to perform application-level scheduling, for example,
for parameter sweeping executions [39]. It provides an application
interface to the users and simplifies the processes of transferring
application input data to each VM, starting the execution, and
collecting the results from the VMs to the front-end node. The
mapping of application tasks to VMs is performed by a scheduler
located in the application deployer. After deploying application on
the VMs, the application deployer stores the VM IDs, which is used
by the monitoring component to identify the VMs to monitor.

Fig. 4 illustrates the main modules of the application deployer.
The task generator integrated with the application interface
receives from the user the application and its parameters, and at
the same time the VM deployer generates a machine file based on
user requirements (step 1). The scheduler uses thismachine file and
a list of all tasks (step 2) to map tasks to VMs (step 3). Each VM
contains an executor, which requests tasks from the task manager

Fig. 5. AEF framework.

whenever executors are idle and there are tasks to be executed,
thus allowing a dynamic load balancing (step 4). The task manager
is also responsible for triggering the task executions on VMs (step
5) and collecting the results when tasks complete.

4.2. Automated Emulation Framework

The Automated Emulation Framework (AEF) was originally
conceived for automated configuration and execution of emulation
experiments [8]. Nevertheless, it can also be used to set up
arbitrary virtual environments by not activating the emulated
wide-area network support. In the latter case AEF works as
a virtualized infrastructure manager, similar to tools such as
OpenNebula [40], Oracle VMManager [41], and OpenPEX [42].

Fig. 5 depicts the architecture of the AEF framework. AEF
input consists of two configuration files providing XML description
of both the physical and virtual infrastructures. Using this
information, AEF maps VMs to physical hosts. AEF supports
different algorithms for VM mapping. The algorithm used in this
work tries to reduce the number of hosts used by consolidating
VMs as long as one host has enough resources to host several VMs.
At the end of the mapping process, the resulting mapping is sent
to the deployer, which creates VMs in the hosts accordingly.

If network configuration is required in the environment (e.g. to
create virtual networks), the Network Manager component of
AEF performs this activity. Execution of the applications may be
triggered either by the user, in case of interactive applications,
or directly by AEF in case of non-interactive applications. In the
experiments presented in this paper we opted for the former
approach where the execution is triggered by the application
deployer. VMs can be accessed via cluster front-end and then users
can log in the machine and interact with the application.

4.3. Monitoring

Monitoring in DeSVi is performed by the LoM2HiS framework,
whose architecture is presented in Fig. 6. The run-time monitor
is designed to monitor the services based on the negotiated and
agreed SLAs. After agreeing on SLA terms, the service provider
creates mapping rules for the LoM2HiS mappings (step 1 in Fig. 2)
using Domain Specific Languages (DSLs) to define specific rules
for different application domains. An example rule is presented in
Eq. (1). Once the customer requests the provisioning of an agreed
service (step 2), the run-time monitor loads the service SLA from
the agreed SLA repository (step 3). Service provisioning is based
on the infrastructure resources, which represent the hosts and
network resources in a data center for hosting Cloud services.
The resource metrics are measured by monitoring agents, and the
measured raw metrics are accessed by the host monitor (step
4). The host monitor extracts metric-value pairs from the raw
metrics and transmits them periodically to the run-time monitor
(step 5) and to the knowledge component (step 6) using our novel
communication model as presented in [19].

6 V.C. Emeakaroha et al. / Future Generation Computer Systems () –

Fig. 6. LoM2HiS framework.

Upon receipt of the measured metrics, the run-time monitor
maps the low-level metrics based on predefined mapping rules to
form an equivalence of the agreed SLA objectives. The resulting
mapping is stored in the mappedmetric repository (step 7), which
also contains the predefined mapping rules. The run-time monitor
uses the mapped values to monitor the status of the deployed
services. In case future SLA violation threats occur, it notifies
(step 8) the knowledge component for preventative actions.
The knowledge component also receives the predefined threat
thresholds (step 8) for possible adjustments due to environmental
changes at run-time. This component works out an appropriate
preventative action to avert future SLA violation threats based on
the resource status (step 6) and defined rules. Finally, knowledge
component’s decisions (e.g. assign more CPU to a virtual host) are
executed on the infrastructure resources (step 9).

5. Implementation issues

In this section,we describe the implementation choices for each
DeSVi component. The implementation of the DeSVi components
targets the fulfillment of some fundamental Cloud requirements
such as scalability, efficiency, and reliability. To achieve these
goals, we incorporated, whenever possible, well-established and
tested open source tools in the implementation. Results presented
in Section 6 where obtained with utilization of the components
presented in this section.

5.1. Application deployer

The application deployer is written in Java and has as input
a machine file (in plain ASCII format), which contains the list of
hostnames or IPs of the VMs allocated to the user application and a
task generator Java class to split the work to be done into a lists of
tasks. For a rendering application, for instance, such a class includes
a list of frames and the command to render them. The division of
tasks per VM is performed by the application deployer’s scheduler
as described in Section 4.1.

The application deployer uses scp, a standard tool for copying
files amongmultiplemachines, in order to transfer the application-
related files from the front-end node to VMs responsible for
executing tasks. The ssh command is responsible for triggering an
executor on each VM specified in the machine file. Each executor
requests tasks to be executed from the task manager. During the
user application execution, the application deployer generates log
files with the time required to execute each task. After tasks
executions are completed, the results are transferred back to
the front-end node via scp. This model was chosen because it
provides a reliable mechanism for file transferring (scp) together
with persistent logging information that does not depend on a
DBMS to archive results. The overall result of the approach is a

reliable and lightweight mechanism for managing tasks that has
an insignificant overhead on the platform, what is a requirement
of a system aiming at managing QoS of resources.

5.2. Virtual machine deployer and configurator

The automated emulation framework used to deploy and
configure the virtual machines is implemented in Java. The
framework inputs are XML files describing the characteristics of
both, the required virtual machines and the cluster. Once these
files are parsed, theMapper componentmaps the virtual machines
to cluster nodes. During this stage, AEF ensures that the resources
required by all virtual machines assigned to a cluster node do not
exceed the node’s available resources.

Once the mapping is finished, the resulting configuration is
applied in the cluster by the VM deployer component. Here, a
parallel standalone deployer, which is part of the AEF core, is
used. This parallel deployer module does not require external
tools or systems for its operation, and it works as follows. First,
a base image file of the virtual machines is copied, via scp, to
each cluster node (as determined by the Mapper) simultaneously.
This image contains all the software and configuration required by
the application. After the base image is copied to each physical
machine, it is replicated there to achieve the number of virtual
images intended to be deployed on this specific physical machine.
This step is also carried out simultaneously on each physical
machine.

The replicated images are configuredwith VM-specific settings,
such as hostname and static IP address. Finally, virtual machines
are simultaneously created on each host from each image file
replicated in the previous step. Furthermore, the deployer checks
if an image is already present in a host before performing the
transfer. Thus, if the image is already present in the host, the
transfer process is skipped in such a host, saving bandwidth for
the transfer of images in other hosts. Moreover, if the replicated
VM images on each host are newer than the base image in use,
the replication process is skipped. AEF was used because it is
lightweight and supports deployment of systems based on Xen
with negligible overhead. Moreover, its parallel transfer of VMs
and selective replication of images reduces the amount of time
required for building and deployment of the virtual environment.

5.3. LoM2HiS components

The host monitor implementation uses the standalone Gmond
module from the Ganglia open source project [32] as monitoring
agent, as it is a widely used, open source monitoring software. We
use it to monitor the low-level resource metrics. The monitored
metric results are presented in an XML file and written to a
predefined network socket. With our implemented Java routine,

V.C. Emeakaroha et al. / Future Generation Computer Systems () – 7

Table 2
Cloud environment resource setup composed of 36 virtual machines.

Machine type = physical machine
OS CPU Cores Memory Storage
OVM Server AMD Opteron 2 GHZ 2 8 GB 250 GB

Machine type = virtual machine
Linux/Ubuntu AMD Opteron 2 GHZ 1 1024 MB 5 GB

the host monitor listens to this network socket where Gmond
writes the XML file containing the monitored metrics to access
them. Furthermore, we implemented an XML parser using the
well-knownopen source SAXAPI [43] to parse the XML file in order
to extract themetric-value pairs. These metric-value pairs are sent
to the run-time monitor using our implemented communication
model.

Our communication model exploits the capabilities of the
Java Messaging Service API, which is a Java message oriented
middleware for sending message between two or more clients. In
order to use JMS, there is a need for a JMS provider that is capable of
managing the sessions and queues. We used the well-established
open source Apache ActiveMQ [35] for this purpose.

The run-time monitor implementation passes the received
metric-value pairs into ESPER engine [44], which provides a filter
to remove identical monitored values so that only changed values
between measurements are delivered for further processing. This
strategy drastically reduces the number of messages processed in
the run-time monitor. The received metric-value pairs are stored
in MySQL DB from where the mapping routine accesses them
and applies the appropriate mappings. The agreed service SLA is
also stored in the same DB accessible to the run-time monitor.
Furthermore, we implemented a Java routine that checks for SLA
violations by comparing themapped SLA against the agreed service
level objectives.

6. Evaluation

This section discusses the evaluation of our approach using
two use-case scenarios. The use-case scenarios represent the
most dominant application domains provisioned in Clouds today,
namely (i) high performance computing applications, which
include image processing and scientific simulations; and (ii)
transactional applications, which include web applications, social
network sites, and media sites. The first use-case scenario
comprises three types of ray-tracing applications based on POV-
Ray, and the second one comprises executions of TPC-W, which
is a well-known web application benchmark that simulates a
web server for on-line shopping. The goal of our evaluation is to
determine the efficiency of the proposed architecture in detecting
SLA violations at runtime and, based on its output, suggest optimal
measurement intervals for monitoring applications considering
the application resource consumption behavior.

Section 6.1 describes the experimental environment setup.
Next, Section 6.2 presents the definition of a cost function, which is
used to analyze the achieved results of the two use-case scenarios.
Sections 6.3 and 6.4 respectively discuss the two experimental use-
case scenarios including their achieved results, the results analysis
and the derived conclusions of the results.

6.1. Experimental environment

Our basic Cloud experimental testbed is shown in Table 2. The
table shows the resource capacities of the physical and the virtual
machines being used in our experimental testbed. We use Xen
virtualization technology in the testbed, preciselywe run Xen 3.4.0
on top of Oracle Virtual Machine (OVM) server.

We have in total nine physical machines and, based on the
resource capacities presented in Table 2, we host 4 VMs on each
physical machine. AEF deploys the VMs onto the physical hosts,
thus creating a virtualized Cloud environment with up to 36
computing nodes capable of provisioning resources to applications
and one front-end node responsible for management activities.

The front-end node serves as the control entity. It runs the
automated emulation framework, the application deployer, and
the LoM2HiS framework, which are the core components of the
DeSVi architecture. The first two components are the supporting
blocks of the experiments, whereas the third component is
the main responsible for the results obtained in this section.
Nevertheless, their integration is required in order to enable the
experiments. We use this virtualized environment to evaluate the
two use-case scenarios presented in the rest of this section.

6.2. Cost function definition

To suggest an optimal measurement interval for detecting ap-
plications’ SLA objectives violations at runtime, we discuss the fol-
lowing two determining factors (i) cost of making measurements;
and (ii) the cost of missing SLA violations. The acceptable trade-off
between these two factors defines the optimal measurement in-
terval.

Using these two factors and other parameters we define a
cost function (C) based on which we can derive an optimal
measurement interval. The ideas of defining this cost functions are
derived from utility functions discussed by Lee et al. [45]. Eq. (2)
presents the cost function.

C = µ ∗ Cm +

ψϵ{cpu,memory,storage}

α (ψ) ∗ Cv (2)

where µ is the number of measurements, Cm is the cost of
measurement, α (ψ) is the number of undetected SLA violations,
and Cv is the cost of missing an SLA violation. The number of
undetected SLA violations are determined based on the results
of the reference measurement interval, which is assumed to be
an interval capturing all the violations of an application SLA
objectives.

This cost function now forms the basis for analyzing the
achieved results of our two use-case scenarios in the later sections.
Regarding the two determining factors, we explain for each use-
case scenario how we obtained these cost values.

6.3. Image rendering application use-case

We developed an image rendering application based on the
Persistence of Vision Raytracer (POV-Ray), which is a ray tracing
program available for several computing platforms. In order
to achieve heterogeneous load in this use-case scenario, we
experiment with three POV-Ray workloads, each one with a
different characteristic of time for rendering frames, as described
below and illustrated in Figs. 7 and 8:

• Fish: rotation of a fish on water. Time for rendering frames is
variable.

• Box: approximation of a camera to an open box with objects
inside. Time for rendering frames increases during execution.

• Vase: rotation of a vase with mirrors around. Time for
processing different frames is constant.
Three SLA documents are specified for the three POV-Ray

applications. The SLA documents specify the level of Quality of
Service (QoS) that should be guaranteed for each application
during its execution. Table 3 presents the SLA objective thresholds
for each of the applications. It should be noted that we are not
addressing the issues of SLA definition and formalization, rather

8 V.C. Emeakaroha et al. / Future Generation Computer Systems () –

(a) Fish. (b) Box. (c) Vase.

Fig. 7. Example of images for each of the three animations.

(a) Fish. (b) Box. (c) Vase.

Fig. 8. Behavior of execution time for each POV-Ray application.

Table 3
SLA objective thresholds for the three POV-Ray applications.

SLA parameter Fish Box Vase

CPU 98.5% 97.5% 99.3%
Memory 1.28 GB 1.32 GB 1.31 GB
Storage 2.16 GB 2.169 GB 2.157 GB

we specify SLA parameters relevant to the Cloud provider in order
to manage the users’ applications. These SLA objective thresholds
are defined based on historical data and experiences with these
specific type of applications in terms of resource consumption [46].
With the historical data, the Cloud provider can determine the
amount and type of resources the application requires. Thus,
the provider can make better resource provisioning plan for the
applications.

Based on these SLA objective thresholds, the applications are
monitored to detect SLA violations. These violations may happen
either because of unforeseen resource consumptions or because
SLAs are negotiated per application and not per allocated VM
considering the fact that the service provider may provision
different application requests on the same VM.

Fig. 9 presents the evaluation configurations for the POV-Ray
applications. We instantiate 36 virtual machines that execute
POV-Ray frames submitted via application deployer. The virtual
machines are continuously monitored by Gmond. Thus, LoM2HiS
has access to resource utilization during execution of the
applications. Similarly, information about the time taken to render
each frame in each virtual machine is also available to LoM2HiS.
This information is generated by the application itself and is sent
to a locationwhere LoM2HiS can read it. As described in Fig. 9, users
supply the QoS requirements in terms of SLOs (step 1 in Fig. 9). At
the same time the imageswith the POV-Ray applications and input
data (frames) can be uploaded to the front-end node. Based on
the current system status, SLA negotiator establishes an SLA with
the user. Description of the negotiation process and components
is out of scope of this paper and is discussed by Brandic [6].

Table 4
Measurement intervals.

Intervals 10 s 15 s 20 s 25 s 30 s 60 s 120 s
Nr. of measurements 180 120 90 72 60 30 15

Thereafter, VM deployer starts configuration and allocation of the
required VMs whereas application deployer maps the tasks to the
appropriate VMs (step 3). In step 4 the application execution is
triggered.

6.3.1. Image rendering application use-case results
We defined and used seven measurement intervals to monitor

the POV-Ray applications during their executions. Table 4 shows
the measurement intervals and the number of measurements
made in each interval. The applications run for about 30 min for
each measurement interval.

The 10 s measurement interval is a reference interval meaning
the current interval used by the provider to monitor application
executions on the Cloud resources. Its results show the present
situation of the Cloud provider.

Fig. 10 presents the achieved results of the three POV-
Ray applications with varying characteristics in terms of frame
rendering as explained in Section 6.3. We use the 36 virtual
machines in our testbed to simultaneously execute the POV-Ray
frames. The load-balancer integrated in the application deployer
ensures that the frame executions are balanced among the virtual
machines.

The LoM2HiS framework monitors the resource usage of each
virtual machine to determine if the SLA objectives are met and
reports violations otherwise. Since the load-balancer balances the
execution of frames among the virtual machines, we plot in Fig. 10
the average numbers of violations encountered in the testbed for
each application with eachmeasurement interval. We analyze and
interpret these results in the next section.

V.C. Emeakaroha et al. / Future Generation Computer Systems () – 9

Fig. 9. POV-Ray evaluation configuration.

(a) Fish. (b) Box. (c) Vase.

Fig. 10. POV-Ray experimentation results.

Fig. 11. Intrusiveness test results.

6.3.2. Image rendering application use-case results analysis
POV-Ray results presented in Fig. 10 show that as the

measurement interval increases, the number of detected SLA
violation decreases. This effect is straightforward because with
larger measurement interval the system misses detection of some
SLA violations. The figures also reflect the resource consumption
behavior of the POV-Ray applications.

We carried out an intrusiveness test in our testbed to find out
the processing overhead of ameasurement. Thiswill determine the
cost of taking measurements. Measurement processing includes
monitoring of all the virtual machines, processing of monitored
data, mapping of low-level metrics to high-level SLA, and
evaluation of SLA objectives. Fig. 11 presents the achieved result.

Fig. 11 shows the amount of overhead found in the system and
how they decrease as the measurement intervals increases. This
means high cost for measurements with small intervals and low
cost for measurement with larger intervals.

The cost of missing SLA violation detection is an economic
factor, which depends on the SLA penalty cost agreed for the
specific application and the effects the violation will have to the
provider for example in terms of reputation or trust issues.

By applying the cost function presented in Section 6.2 to the
achieved results of Fig. 10, with a measurement cost of $0.6 and

missing violation cost of $0.25, we achieve the monitoring costs
presented in Fig. 12. These cost values are example values for
our experimental setup. They neither represents nor suggests any
standard values. The approach used here is derived from the cost
function approaches presented in literature [47,48].

It should be noted about the results of Fig. 12 that the reference
measurement is assumed to capture all SLA violations for each
application, thus it only incursmeasurement cost. From the figures,
it can be noticed on the one hand that the lower the number of
measurements, the smaller themeasurement cost and on the other
hand, the higher the number of undetected SLA violations, the
higher the cost of missing violations. This implies that to keep the
detection cost low, the number of undetected SLA violations must
be low.

Considering the total cost of monitoring the fish POV-Ray
application in Fig. 12(a), it can be seen that the reference
measurement is not the cheapest although it does not incur any
cost of missing SLA violation detection. In this case the 60 s
interval is the cheapest and in our opinion the most suited
measurement interval for this application. In the case of box
POV-Ray application the total cost of monitoring, as depicted
graphically in Fig. 12(b), indicates that the lowest cost is incurred
with the 25 s measurement interval. Thus we conclude that this
interval is best suited for this application. Also from Fig. 12(c), it
is clear that the reference measurement by far is not the optimal
measurement interval for the vase POV-Ray application. Thus, from
the experiments the 30-s measurement interval is considered best
suited for this application group.

Based on our experiments, it is observed that there is no best
suited measurement interval for all applications. Depending on
how steady the resource consumption is, the monitoring infras-
tructure requires different measurement intervals. Notwithstand-
ing, definition of these intervals is important to allow estimation of
impact of missed violations in applications. Note that the architec-
ture can be configured toworkwith different intervals. In this case,
specification of the measurement frequencies depends on policies
agreed by customer and Cloud providers.

10 V.C. Emeakaroha et al. / Future Generation Computer Systems () –

(a) Fish. (b) Box.

(c) Vase.

Fig. 12. POV-Ray application cost relations.

Fig. 13. Web application evaluation configuration.

6.4. Web application use-case

As a web application, we performed experiments using the Java
implementation3 of the TPC-W Benchmark [49]. This application
simulates the activities of a business oriented transactional
web server. The workload used in the server exercises system
components related to several issues commonly found in web
environments, such as multiple on-line browser sessions, dynamic
page generation with database access and update, transaction
integrity, and simultaneous execution of multiple transaction
types.

We configured TPC-W to run on the 36 VMs in our setup
environment. One VM is used as the server and the other 35 VMs

3 http://tpcw.deadpixel.de/.

Table 5
TPC-W experimentation results.

Intervals 5 s 10 s 15 s 20 s 30 s
Nr. of measurements 84 42 28 21 14

Nr. of CPU violations detected 77 26 14 12 7
Nr. of Memory violations detected 75 41 26 19 12

are used as clients as shown in Fig. 13. The clients generate requests
that are handled on the server. We use the LoM2HiS framework to
monitor the server and to detect SLA violations.

The quality of service requirement of the web application
depends on the amount of available CPU and memory resources.
Thus, we define two SLA objectives for these resource parameters
to ensure the performance of the application during its execution.
The values of the SLA objectives are learned based on historical
data and sample runs to examine the behavior of the application
in terms of resource consumptions. For the CPU, we set a 10%
threshold and for memory we set a 12% threshold. Utilization
of resources above these thresholds indicates an SLA violation
situation.

6.4.1. Web application use-case results
The resource usage of the web application server in processing

the requests generated by the clients is monitored by the LoM2HiS
framework in order to detect and report the SLA violations. Like
in the case of POV-Ray application, we experiment here with five
measurement intervals to monitor the SLAs during the application
execution. The web application is allowed to run for a total length
of seven minutes. In this case, small measurement intervals are
chosen considering the fact that web application behavior can
change drastically within a period of seconds. Table 5 presents the
achieved results.

Table 5 shows the number of measurements made with each
interval and the number of SLA violations detected for the CPU

http://tpcw.deadpixel.de/

V.C. Emeakaroha et al. / Future Generation Computer Systems () – 11

Fig. 14. Web application cost relations.

and memory resources. Based on these results, we apply our cost
function in the next section (result analysis) to determine the
optimal measurement interval.

6.4.2. Web application use-case results analysis
As presented in Table 5, the number of SLA violations detected

decreases as the measurement interval time grows. This is
an expected logical behavior. Therefore, to find the optimal
measurement interval we apply the cost function of Eq. (2) on the
achieved results.

In this use-case scenario, the cost of measurement is low
considering the experimental setup shown in Fig. 13. With the
setup, the processing of client requests are performed on the
TPC-W server, thus only this server is monitored to detect SLA
violations. Therefore, there is a low overhead in monitoring this
single machine. On the other side, the cost of missing SLA violation
is high because the web application performance degrades very
fast once the SLA objectives are violated, which can frustrate a
customer waiting for a response of the application. e.g., waiting for
a browser to load.

On the basis that the cost of measurement is low and the cost
of missing SLA violation detection is high, we use $0.15 as the
measurement cost and $0.30 as the cost of missing violation. Note
that we use the 5 s measurement interval as a reference interval,
whichmeans that it detects all SLA violation and acts as the current
default measurement interval. Thus, it incurs only measurement
cost and no cost for missing SLA violation detection. When these
values are applied in the cost function, results depicted in Fig. 14
are achieved.

The results show the total cost incurred by each of the
measurement intervals. The cost ofmissing SLA violation detection
increases as the measurement interval increases. This is caused
by the fact that the larger the measurement interval, the lower
the number of measurements made and the higher the number
of missed SLA violations. Failure to detect SLA violations means
costly SLA penalties for the provider and poor performance of the
application.

Therefore, from our experiments we could not find a larger
better measurement interval than the 5 s reference measurement
interval, what confirms our assumptions that web applications
are highly sensitive and should be monitored at small interval to
ensure their quality of service. Furthermore, there can be a surge
in clients request of a web application within short period of time,
thus the monitoring mechanism should be able to detect such
situations.

The whole set of experiments presented in this section clearly
demonstrate the need for fine-tuning of monitoring systems to
the specific requirements of Cloud applications. However, different
applications have needs for different measurement intervals, and
even though some applications aremore stable than other in terms

of resource requirements, definingmethods for finding the optimal
measurement interval of each application is a non-trivial problem,
and an interesting research topic that we plan to address in the
future.

7. Conclusion and future work

Flexible and reliable management of SLA agreements repre-
sents an open research issue in Cloud computing. Advantages of
flexible and reliable Cloud infrastructures are manifold. For ex-
ample, prevention of SLA violations avoids unnecessary penalties
providers have to pay in case of violations.Moreover, based on flex-
ible and timely reactions to possible SLA violations, interactions
with users can be minimized. In this paper we presented DeSVi—
the novel architecture for monitoring and detecting SLA violations
in Cloud computing infrastructures. The main components of our
architecture are the automatic VM deployer, responsible for the al-
location of resources and formapping of tasks, application deployer,
responsible for the execution of user applications, and LoM2HiS
framework, which monitors the execution of the applications and
translates low-level metrics into high-level SLAs.

We evaluated our system using two use-case scenarios
consisting of an image rendering application and a transactional
application. In the first use-case scenario we use a heterogeneous
workload of three POV-Ray applications. From our experiments
with these applications, we observed that there is no particular
optimal suited measurement interval for all applications. It is
easier to identify the intervals for applications with steady
resource consumption, such as the ‘vase’ POV-Ray animation.
However, applicationswith variable resource consumption require
dynamic measurement intervals.

The experiments of the second use-case scenario useworkloads
generated by the TPC-W benchmark. Based on the experimental
results, we noticed that smaller measurement intervals are
preferable than larger ones for this application domain due to their
sensitive nature and failure intolerance.

The currently proposed system is capable of monitoring a
single Cloud data center. In the future, we will extend it with
the capability to manage a Cloud environment with multiple data
centers. Thus, we will apply a decentralization approach whereby
the proposed system is installed on each data center. The scalable
communication mechanism realized in LoM2HiS framework will
be used to allow communication between data centers.

Based on our investigation of optimal measurement intervals,
we will incorporate into DeSVi a knowledge database to propose
reactive actions to prevent or correct the SLA violation situations.
Knowledge of optimal measurement intervals allows best reactive
actions, which contributes to our vision of flexible and reliable on-
demand computing via fully autonomic Cloud infrastructures.

Acknowledgments

This work is supported by the Vienna Science and Technology
Fund (WWTF) under grant agreement ICT08-018 Foundations of
Self-governing ICT Infrastructures (FoSII) and Australian Research
Council. This paper is a substantially extended version of a
CloudComp 2010 paper [20]. The experiments were performed in
the High Performance Computing Lab at Catholic University of Rio
Grande do Sul (LAD-PUCRS) Brazil.

References

[1] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud computing and
emerging IT platforms: vision, hype, and reality for delivering computing as
the 5th utility, Future Generation Computer Systems 25 (6) (2009) 599–616.

[2] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, L. Llorente, R. Montero,
Y.Wolfsthal, E. Elmroth, J. Caceres,M. Ben-Yehuda,W. Emmerich, F. Galan, The
RESERVOIR model and architecture for open federated cloud computing, IBM
Journal of Research and Development 53 (4) (2009) Paper 4.

12 V.C. Emeakaroha et al. / Future Generation Computer Systems () –

[3] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff,
D. Zagorodnov, The Eucalyptus open-source cloud-computing system, in:
Proceedings of the 9th International Symposium on Cluster Computing and
the Grid, CCGRID’09, 2009.

[4] P. Balakrishnan, T.S. Somasundaram, SLA enabled CARE resource broker,
Future Generation Computer Systems 27 (3) (2011) 265–279.

[5] A. Litke, K. Konstanteli, V. Andronikou, S. Chatzis, T. Varvarigou, Managing
service level agreement contracts in OGSA-based grids, Future Generation
Computer Systems 24 (4) (2008) 245–258.

[6] I. Brandic, Towards self-manageable cloud services, in: Proceedings of the 33rd
Annual IEEE International Computer Software and Applications Conference,
COMPSAC’09, 2009.

[7] FoSII, Foundations of self-governing infrastructures, http://www.infosys.
tuwien.ac.at/linksites/FOSII/index.html.

[8] R.N. Calheiros, R. Buyya, C.A.F. De Rose, Building an automated and self-
configurable emulation testbed for grid applications, Software: Practice and
Experience 40 (5) (2010) 405–429.

[9] W.-C. Chung, R.-S. Chang, A new mechanism for resource monitoring in grid
computing, Future Generation Computer Systems 25 (1) (2009) 1–7.

[10] S. Reyes, C. Muoz-Caro, A. Nio, R. Sirvent, R. Badia, Monitoring and steering
grid applications with grid superscalar, Future Generation Computer Systems
26 (4) (2010) 645–653.

[11] A. D’Ambrogio, P. Bocciarelli, A model-driven approach to describe and
predict the performance of composite services, in: Proceedings of the 6th
International Workshop on Software and Performance, WOSP’07, 2007.

[12] D. Gunter, B. Tierney, B. Crowley, M. Holding, J. Lee, Netlogger: a toolkit
for distributed system performance analysis, in: Proceedings of the 8th
International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, MASCOTS’00, 2000.

[13] D. Kondo, G. Fedak, F. Cappello, A.A. Chien, H. Casanova, Characterizing
resource availability in enterprise desktop grids, Future Generation Computer
Systems 23 (7) (2007) 888–903.

[14] C. Li, L. Li, Competitive proportional resource allocation policy for computa-
tional grid, Future Generation Computer Systems 20 (6) (2004) 1041–1054.

[15] J.L. Berral, I. Goiri, R. Nou, F. Juliá, J. Guitart, R. Gavaldá, J. Torres, Towards
energy-aware scheduling in data centers using machine learning, in: 1st
International Conference on Energy-Efficiency Computing and Networking,
Passau, Germany, 2010.

[16] A. Beloglazov, R. Buyya, Energy efficient resource management in virtualized
cloud data centers, in: Proceedings of the 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, CCGRID’10, IEEE Computer
Society, Washington, DC, USA, 2010, pp. 826–831.

[17] A. Celesti, F. Tusa, M. Villari, A. Puliafito, How to enhance cloud architectures
to enable cross-federation, in: IEEE 3rd International Conference on Cloud
Computing, CLOUD, 2010, pp. 337–345.

[18] A. Celesti, F. Tusa, M. Villari, A. Puliafito, Three-phase cross-cloud federation
model: the cloud sso authentication, in: Second International Conference on
Advances in Future Internet, AFIN, 2010, pp. 94–101.

[19] V.C. Emeakaroha, I. Brandic, M. Maurer, S. Dustdar, Low level metrics to
high level SLAs — LoM2HiS framework: bridging the gap between monitored
metrics and SLA parameters in cloud environments, in: Proceedings of the
High Performance Computing and Simulation Conference HPCS’10, 2010.

[20] V.C. Emeakaroha, R.N. Calheiros, M.A.S. Netto, I. Brandic, C.A.F. De Rose,
DeSVi: an architecture for detecting SLA violations in cloud computing
infrastructures, in: Proceedings of the 2nd International ICST Conference on
Cloud Computing, CloudComp’10, 2010.

[21] W. Fu, Q. Huang, GridEye: a service-oriented grid monitoring system with
improved forecasting algorithm, in: Proceedings of the 5th International
Conference on Grid and Cooperative Computing Workshops GCCW’06, 2006.

[22] T. Wood, P.J. Shenoy, A. Venkataramani, M.S. Yousif, Sandpiper: black-box and
gray-box resource management for virtual machines, Computer Networks 53
(17) (2009) 2923–2938.

[23] M. Boniface, S.C. Phillips, A. Sanchez-Macian, M. Surridge, Dynamic service
provisioning using GRIA SLAs, in: Proceedings of the 5th International
Workshops on Service-Oriented Computing, ICSOC’07, 2007.

[24] B. Koller, L. Schubert, Towards autonomous SLA management using a proxy-
like approach, Multiagent Grid Systems 3 (3) (2007) 313–325.

[25] H.M. Frutos, I. Kotsiopoulos, BREIN: business objective driven reliable and
intelligent grids for real business, International Journal of Interoperability in
Business Information Systems 3 (1) (2009) 39–42.

[26] M. Comuzzi, C. Kotsokalis, G. Spanoudkis, R. Yahyapour, Establishing and
monitoring SLAs in complex service based systems, in: Proceedings of the 7th
International Conference on Web Services, ICWS’09, 2009.

[27] G. Dobson, A. Sanchez-Macian, Towards unified QoS/SLA ontologies, in:
Proceedings of the 2006 IEEE Services Computing Workshops, SCW’06, 2006.

[28] F. Rosenberg, C. Platzer, S. Dustdar, Bootstrapping performance and depend-
ability attributes of web services, in: Proceedings of the 4th International Con-
ference on Web Services, ICWS’06, 2006.

[29] Brein, Business objective driven reliable and intelligent grids for real business.
http://www.eu-brein.com/.

[30] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Computer
36 (1) (2003) 41–50.

[31] M. Maurer, I. Brandic, V.C. Emeakaroha, S. Dustdar, Towards knowledge
management in self-adaptable clouds, in: Proceedings of the 4th International
Workshop of Software Engineering for Adaptive Service-Oriented Systems,
SEASS’10, 2010.

[32] M.L.Massie, B.N. Chun, D.E. Culler, The Ganglia distributedmonitoring system:
design, implementation and experience, Parallel Computing 30 (7) (2004)
817–840.

[33] D. Kyriazis, K. Tserpes, A. Menychtas, A. Litke, T. Varvarigou, An innovative
workflow mapping mechanism for grids in the frame of quality of service,
Future Generation Computer Systems 24 (6) (2008) 498–511.

[34] JMS, Java messaging service, http://java.sun.com/products/jms/.
[35] ActiveMQ, Messaging and integration pattern provider. http://activemq.

apache.org/.
[36] E. Elmroth, J. Tordsson, A grid resource broker supporting advance reservations

and benchmark-based resource selection, in: Proceedings of theWorkshop on
State-of-the-art in Scientific Computing, PARA’04, 2004.

[37] D. Abramson, R. Buyya, J. Giddy, A computational economy for grid computing
and its implementation in the Nimrod-G resource broker, Future Generation
Computer Systems 18 (8) (2002) 1061–1074.

[38] K. Krauter, R. Buyya, M. Maheswaran, A taxonomy and survey of grid resource
management systems for distributed computing, Software: Practice and
Experience 32 (2) (2002) 135–164.

[39] H. Casanova, G. Obertelli, F. Berman, R. Wolski, The AppLeS parameter
sweep template: user-level middleware for the Grid, in: Proceedings of the
Supercomputing, SC’00, 2000.

[40] B. Sotomayor, R.S. Montero, I.M. Llorente, I. Foster, Virtual infrastructure
management in private and hybrid clouds, IEEE Internet Computing 13 (5)
(2009) 14–22.

[41] Oracle, Oracle virtualization. http://www.oracle.com/technologies/
virtualization.

[42] S. Venugopal, J. Broberg, R. Buyya, OpenPEX: an open provisioning and exe-
cution system for virtual machines, in: Proceedings of the 17th International
Conference on Advanced Computing and Communications, ADCOM’09, 2009.

[43] SAX, Simple API for XML. http://sax.sourceforge.net/.
[44] ESPER, Event stream processing. http://esper.codehaus.org/.
[45] K. Lee, N.W. Paton, R. Sakellariou, A.A.F. Alvaro, Utility driven adaptive

worklow execution, in: Proceedings of the 9th International Symposium on
Cluster Computing and the Grid, CCGrid’09, 2009.

[46] S. Seneviratne, D.C. Levy, Task profiling model for load profile prediction,
Future Generation Computer Systems 27 (3) (2011) 245–255.

[47] C.B. Lee, A. Snavely, On the user-scheduler dialogue: studies of user-
provided runtime estimates and utility functions, International Journal of High
Performance Computer Applications 20 (4) (2006) 495–506.

[48] C.S. Yeo, R. Buyya, Pricing for utility-driven resource management and
allocation in clusters, International Journal of High Performance Computer
Applications 21 (4) (2007) 405–418.

[49] D. Menascé, TPC-W: a benchmark for e-commerce, IEEE Internet Computing 6
(3) (2002) 83–87.

Vincent C. Emeakaroha (M.Sc. B.Sc.) is a Research Assis-
tant at the Distributed Systems Group, Information Sys-
tems Institute, ViennaUniversity of Technology (TUWien).
He received Bachelor’s degree in Computer Engineering
in 2006 and gained double Master’s in Software Engi-
neering & Internet Computing in 2008 and in Computer
Science Management in 2009 all at Vienna University
of Technology. He is currently involved in the Austrian
national FoSII (Foundations of Self-governing ICT Infras-
tructures) project funded by the Vienna Science and Tech-
nology Fund (WWTF) while pursuing his Ph.D. studies. His

research areas of interest include Cloud computing, autonomic computing, energy
efficiency in Cloud, SLA and QoS management.

Marco A.S. Netto received his Ph.D. in Computer Science
from the University of Melbourne, Australia (2010), and
Bachelor’s (2002) andMaster’s degree (2004) in Computer
Science, both from the Pontifical Catholic University
of Rio Grande do Sul (PUCRS), Brazil. He has been
working with resource management and job scheduling
for high performance computing environments since
2000. Marco’s current research effort is on performance
evaluation of systems on virtualized environments and
SLA management policies.

http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.infosys.tuwien.ac.at/linksites/FOSII/index.html
http://www.eu-brein.com/
http://java.sun.com/products/jms/
http://activemq.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/
http://activemq.apache.org/
http://www.oracle.com/technologies/virtualization
http://www.oracle.com/technologies/virtualization
http://www.oracle.com/technologies/virtualization
http://www.oracle.com/technologies/virtualization
http://www.oracle.com/technologies/virtualization
http://www.oracle.com/technologies/virtualization
http://sax.sourceforge.net/
http://esper.codehaus.org/

V.C. Emeakaroha et al. / Future Generation Computer Systems () – 13

Rodrigo N. Calheiros is a Research Fellow in the
Cloud Computing and Distributed Systems Laboratory
(CLOUDS Lab) in the Dept. of Computer Science and
Software Engineering, University of Melbourne, Australia.
He completed his Ph.D. degree in Computer Science in
2010 at PUCRS, Brazil, and his M.Sc. degree in 2006 at
the same University. His research interests include Cloud
Computing and simulation and emulation of distributed
systems, with emphasis in Grids and Clouds.

Ivona Brandic is Assistant Professor at the Distributed
Systems Group, Information Systems Institute, Vienna
University of Technology (TU Wien). Prior to that, she
was Assistant Professor at the Department of Scientific
Computing, Vienna University. She received her Ph.D.
degree from Vienna University of Technology in 2007.
From 2003 to 2007 she participated in the special
research project AURORA (AdvancedModels, Applications
and Software Systems for High Performance Computing)
and the European Union’s GEMSS (Grid-Enabled Medical
Simulation Services) project. She is involved in the

European Union’s SCube project and she is leading the Austrian national FoSII
(Foundations of Selfgoverning ICT Infrastructures) project funded by the Vienna
Science and Technology Fund (WWTF). She is Management Committee member of
the European Commission’s COST Action on Energy Efficient Large Scale Distributed
Systems. From June–August 2008 she was visiting researcher at the University
of Melbourne. Her interests comprise SLA and QoS management, service-oriented
architectures, autonomic computing, workflow management, and large scale
distributed systems (Cloud, Grid, and Cluster).

Rajkumar Buyya is Professor of Computer Science and
Software Engineering; and Director of the Cloud Comput-
ing and Distributed Systems (CLOUDS) Laboratory at the
University ofMelbourne, Australia. He is also serving as the
founding CEO of Manjrasoft Pty Ltd., a spin-off company
of the University, commercializing its innovations in Grid
and Cloud Computing. He received B.E and M.E in Com-
puter Science and Engineering fromMysore and Bangalore
Universities in 1992 and 1995 respectively; and Doctor of
Philosophy (Ph.D.) in Computer Science and Software En-
gineering from Monash University, Melbourne, Australia

in 2002. He received the Chris Wallace Award for Outstanding Research Con-
tribution 2008 from the Computing Research and Education Association of Aus-
tralasia, CORE, which is an association of university departments of computer
science in Australia and New Zealand. Dr. Buyya recently received the ‘‘2009
IEEE Medal for Excellence in Scalable Computing’’ for pioneering the economic
paradigm for utility-oriented distributed computing platforms such as Grids and
Clouds.

César A.F. De Rose is an Associate Professor in the Com-
puter Science Department at the Pontifical Catholic Uni-
versity of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.
His primary research interests are parallel and distributed
computing and parallel architectures. He is currently con-
ducting research on a variety of topics applied to clus-
ters and Grids, including resource management, resource
monitoring, distributed allocation strategies and virtual-
ization. Dr. De Rose received his doctoral degree in Com-
puter Science from the University Karlsruhe, Germany,
in 1998.

	Towards autonomic detection of SLA violations in Cloud infrastructures
	Introduction
	Related work
	Background and motivation
	FoSII infrastructure overview
	Knowledge databases
	LoM2HiS framework overview

	DeSVi architecture
	Application deployer
	Automated Emulation Framework
	Monitoring

	Implementation issues
	Application deployer
	Virtual machine deployer and configurator
	LoM2HiS components

	Evaluation
	Experimental environment
	Cost function definition
	Image rendering application use-case
	Image rendering application use-case results
	Image rendering application use-case results analysis

	Web application use-case
	Web application use-case results
	Web application use-case results analysis

	Conclusion and future work
	Acknowledgments
	References

