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Abstract

In this paper, we propose a taxonomy that character-
izes and classifies different components of autonomic
application management in Grids. We also survey sev-
eral representative Grid systems developed by various
projects world-wide to demonstrate the comprehensive-
ness of the taxonomy. The taxonomy not only high-
lights the similarities and differences of state-of-the-art
technologies utilized in autonomic application manage-
ment from the perspective of Grid computing, but also
identifies the areas that require further research initia-
tives.

1 Introduction

Due to the establishment of Grid as a distributed
and collaborative resource sharing environment, many
of the large-scale scientific applications, such as work-
flows are currently executed in Grids. Thus, applica-
tion management has emerged as one of the most im-
portant Grid services in past few years. An Application
Management System (AMS) is generally employed to
define, manage, and execute these scientific applica-
tions in Grid resources. However, the increasing scale
complexity, heterogeneity, and dynamism of Grid envi-
ronment that includes networks, resources, and appli-
cations have made such application management sys-
tems brittle, unmanageable, and insecure.

Autonomic Computing (AC) [21] is an emerg-
ing area of research for developing large-scale, self-
managing, complex distributed system. The vision of
AC is to apply the principles of self-regulation and com-
plexity hiding for designing complex computer-based
systems. Thus AC provides a holistic approach for the
development of systems/applications that can adapt

themselves to meet requirements of performance, fault
tolerance, reliability, security, Quality of Service (QoS)
etc. without manual intervention. An autonomic Grid
system leverages the concept of AC and is able to ef-
ficiently define, manage, and execute applications in
heterogeneous and dynamic Grid environment by con-
tinuously adapting itself to the current state of the sys-
tem.

This paper aims to survey the existing Grid sys-
tems that support autonomic application management.
We classify these systems with respect to different
aspects of autonomic application management, such
as application composition, scheduling, monitoring,
coordinating, and failure handling as well as how
the self-management properties (self-configuring, self-
optimizing, self-healing, and self-protecting) have been
implemented or incorporated in these systems.

The rest of the paper is arranged as follows. Section
2 presents the taxonomy that categorizes autonomic
application management with respect to key features
of AC. In Section 3, we map the proposed taxonomy
onto selected Grid systems. We conclude the paper in
Section 4.

2 Taxonomy

The taxonomy categorizes and classifies the ap-
proaches of autonomic application management in the
context of computational Grids with respect to the key
features of AC. It consists of six elements of autonomic
application management: (1) application composition,
(2) application scheduling, (3) coordination, (4) mon-
itoring, (5) self-* property, and (6) system character-
istics (see Fig. 1). In this section, we discuss each ele-
ment and its classification in detail.
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Figure 1: Taxonomy of autonomic application management for Grid computing.
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2.1 Application Composition

The applications executed in a distributed comput-
ing environment, such as Grids are generally computa-
tion or data intensive and users can experience better
performance if they are able to execute these applica-
tions in parallel. In order to facilitate autonomic ap-
plication management, the applications are needed to
be composed dynamically based on the system config-
uration and users’ requirements.

2.1.1 Application Type

An application is composed of multiple tasks, where a
task is a set of instructions that can be executed on
a single processing element of a computing resource.
Based on the dependency or relationship among these
tasks, Grid applications can be divided into three
types: Bag-of-task (BOT), Message Passing Interface
(MPI), and Workflow.

A BOT application [10] consists of multiple in-
dependent tasks with no communication among each
other. The final result or output of executing the BOT
application is achieved once all these tasks are com-
pleted. On the other hand, MPI applications [20] are
composed of multiple tasks, where inter-task commu-
nication is developed with Message Passing Interface
(MPI). Since the tasks in most MPI applications need
to communicate with each other during execution, the
necessary processing elements are required to be avail-
able at the same time to minimize application comple-
tion time.

Finally, a workflow application can be modeled as a
Directed Acyclic Graph (DAG), where the tasks in the
workflow are represented as nodes in the graph, and
the dependencies among the tasks are represented as
the directed arcs among the nodes [25]. In a workflow,
a task that does not have any parent task is called entry
task, and a task that does not have any child task is
called exit task. A child task can not be executed until
all of its parent tasks are completed. The output of
a workflow application is achieved when the exit tasks
finish execution.

2.1.2 Application Domain

Grids offer a way to solve challenging problems by pro-
viding a massive computational resource sharing envi-
ronment of large-scale, heterogeneous, and distributed
IT resources.With the advent of Grid technologies, sci-
entists, and engineers are building more and more com-
plex applications to manage and process large scale ex-
periments. These applications are spanned across three
domains: scientific, business, and social.

Many scientific (also known as e-Science and e-
Research) applications, such as Bioinformatics, Drug
discovery, Data mining, High-energy physics, Astron-
omy and Neuroscience have been benefited with the
emergence of Grids. Enabling Grids for E-sciencE
(EGEE) [18] is considered as one of the biggest initia-

tives taken by European Union to utilize Grid technolo-
gies for scientific applications. Likewise, Business Ex-
periments in GRID (BEinGRID) [1] is also the largest
project for facilitating business applications, such as
Business process modeling, Financial modeling, and
forecasting using Grid solutions. Recently, the emer-
gence and upward growth of various social applications,
such as Social networking have been widely recognized,
and the scalability of distributed computing environ-
ment is being leveraged for the better performance of
these type of applications.

2.1.3 Application Definition

In general, users can define applications using defini-
tion languages or tools. In terms of definition language,
markup language, such as Extensible Markup Lan-
guage (XML) [3] is widely used specially for workflow
specification as it facilitates information description in
a nested structure. Therefore, many XML-based appli-
cation definition languages have been adopted in Grids.
Some of these languages, such as WSDL [4], BPEL
[17] have been standardized by the industry and re-
search community (i.e. W3C [5]), whereas some of
them are customized (i.e. xWFL [34], AGWL [12])
according to the requirements of the system.

Although language-based definition of applications
is convenient for expert users, it requires users to mem-
orize a lot of language-specific syntax. Thus, the gen-
eral users prefer to use Graphical User Interface (GUI)
based tools for application definition, where the appli-
cation composition is better visualized. However, this
graphical representation is later converted into other
forms for further manipulation.

2.1.4 Data Requirements

Managing applications in Grids also needs to han-
dle different types of data, such as input data, back-
end databases, intermediate data products, and out-
put data. Many Bioinformatics applications often have
small input and output data but rely on massive back-
end databases that are queried as part of task exe-
cution. On the other hand, some Astronomy applica-
tions generate huge output data that are feed into other
applications for further processing. Some applications
also need the data to be streamed between the tasks
for efficient execution.

Thus, the data requirements of an application can be
categorized into two types: light and heavy. If an appli-
cation needs huge amount of data as input or generates
massive intermediate or output data products then its
data requirement is considered as Heavy. These ap-
plications are generally known as data-intensive appli-
cations. Whereas, if the application is computation-
intensive, it does not need much data to be handled,
and its data requirement is considered as Light.
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2.2 Application Scheduling

Effective scheduling is a key concern for the execu-
tion of performance driven Grid applications. Schedul-
ing is a process of finding the efficient mapping of tasks
in an application to the suitable resources so that the
execution can be completed with the satisfaction of ob-
jective functions, such as execution time minimization
as specified by Grid users.

2.2.1 Scheduling Architecture

The architecture of scheduling infrastructure is very
important with regards to scalability, autonomy, and
performance of the system [16]. It can be divided into
three categories: centralized, hierarchical, and decen-
tralized.

In centralized scheduling architecture [34], schedul-
ing decisions are made by a central controller for all
the tasks in an application. The scheduler maintains
all information about the applications and keeps track
of all available resources in the system. Centralized
scheduling organization is simple to implement, easy
to deploy, and presents few management hassles. How-
ever, it is not scalable with respect to the number of
tasks and Grid resources.

For hierarchical scheduling, there is a central man-
ager and multiple lower-level schedulers. This central
manager is responsible for handling the complete exe-
cution of an application and assigning the individual
tasks of this application to the low-level schedulers.
Whereas, each lower-level scheduler is responsible for
mapping the individual tasks onto Grid resources. The
main advantage of using hierarchical architecture is
that different scheduling policies can be deployed at
central manager and lower-level schedulers [16]. How-
ever, the failure of the central manager results in entire
system failure.

In contrast, decentralized scheduler organization
[27] negates the limitations of centralized or hierarchi-
cal organization with respect to fault-tolerance, scal-
ability, and autonomy (facilitating domain specific re-
source allocation policies). This approach scales well
since it limits the number of tasks managed by one
scheduler. However, this approach raises some chal-
lenges in the domain of distributed information man-
agement, system-wide coordination, security, and re-
source provider’s policy heterogeneity.

2.2.2 Scheduling Objective

The application schedulers generate the mapping of
tasks to resources based on some particular objectives.
Usually, the schedulers employ an objective function
that takes into account the necessary objectives and en-
deavour to maximize the output. The most commonly
used scheduling objectives in a Grid environment are
utility, reputation, optimization, and load balancing.

Utility is a measure of relative satisfaction. In a
utility driven approach, the users or service consumers

prefer to execute their applications within certain bud-
get and deadline, whereas the resource providers tend
to maximize their profits. Reputation refers to the per-
formance of computing resources in terms of successful
task execution and trustworthiness. Optimization is re-
lated to the improvement of performance with regards
to application completion time or resource utilization.
Load balancing is also a measure of performance, where
the workload on the resources is distributed in such a
way so that any specific resource is not overloaded.

2.2.3 Scheduling Decision

An application scheduler uses a specific scheduling
strategy for mapping the tasks in an application to
suitable Grid resources in order to satisfy user re-
quirements. However, the majority of these scheduling
strategies are static in nature [32]. They produce a
good schedule given the current state of Grid resources
and do not take into account changes in resource avail-
ability.

On the other hand, dynamic scheduling [24] is done
on-the-fly considering the current state of the system.
It is adaptive in nature and able to generate efficient
schedules, which eventually minimizes the application
completion time as well as improves the performance
of the system.

2.2.4 Scheduler Integration

The scheduler component in a Grid system provides
the service of generating execution schedules that map
the tasks in an application onto distributed comput-
ing resources considering their availability and user’s
requirements. It also keeps track of the status of the
tasks being executed in these Grid resources.

The application scheduler can be deployed in a Grid
environment as a scheduling or brokering service to be
consumed by the Grid users utilizing the principles of
Service-oriented Architecture (SOA). In this case, the
scheduler component is deployed separately in a server,
and the users submit their applications to this service
[33], where the individual task scheduling and submis-
sion are managed by the scheduler. On the other hand,
scheduler can also be combined or integrated into the
system at user’s side so that the users are not required
to connect another service for the scheduling purpose.

2.3 Coordination

The effectiveness of autonomic application manage-
ment in a distributed computing environment also de-
pends on the level of coordination among the auto-
nomic elements, such as application scheduler or re-
source broker, local resource management system, and
resource information service. Lack of coordination
among these components may result in communication
overhead, which eventually degrades performance of
the system. In general, the process of coordination with
respect to application scheduling and resource manage-
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ment in Grids, involves dynamic information exchange
between various entities in the system.

2.3.1 Decision Making

In a distributed computing environment, the auto-
nomic components communicate or interact with each
other for the purpose of individual or system-wide de-
cision making (e.g. overlay construction, task schedul-
ing, and load balancing). The process of decision mak-
ing can be divided into two categories: cooperative and
non-cooperative.

In the non-cooperative decision making scheme, ap-
plication schedulers perform scheduling related activi-
ties independent of the other schedulers in the system.
For example, Condor-G [14] resource brokering sys-
tem performs non-cooperative scheduling by directly
submitting jobs to the condor pools without taking
into account their load and utilization status. This
approach exacerbates the performance of the system
due to load balancing and utilization problems.

In contrast, cooperative decision making approach
[23] negotiates resource conditions with the local site
managers in the system, if not, with the other applica-
tion level schedulers. Thus, it is not only able to avoid
the potential resource contention problem but also dis-
tribute the workload evenly over the entire system.

2.3.2 Coordination Mechanism

Realizing effective coordination among the dynamic
and distributed autonomous entities requires robust co-
ordination mechanism and negotiation policies. Three
types of coordination mechanisms are well adopted in
Grids: market based coordination, group based coor-
dination and coordination space based coordination.

Market based mechanism views computational
Grids as virtual marketplace in which economic enti-
ties interact with each other through buying and sell-
ing computing or storage resources. Typically, this
coordination mechanism is used to facilitate efficient
resource allocation. One of the common approaches
to achieve market based coordination is to establish
agreements between the participating entities through
negotiations. Negotiation among all the participants
can be done based on well-known agent coordination
mechanism called contract net protocol [30] where,
the resource provider works as a manager that exports
its local resources to the outside contractors or resource
brokers and is responsible for decision regarding admis-
sion control based on negotiated Service Level Agree-
ments (SLA).

In collaborative Grid environment, resource sharing
is often coordinated by forming groups (e.g. Virtual
Organization (VO) [13]) of participating entities with
similar interests. In Grids, VO refers to a dynamic
set of individuals and institutions defined around a set
of resource-sharing rules and conditions. The users
and resource providers in a VO share some commonal-

ity among them, including common concerns, require-
ments, and goals. However, the VOs may vary in size,
scope, duration, sociology, and structure. Thus, inter-
VO resource sharing in Grids is achieved through the
establishment of SLA among the participating VOs.

Decentralized coordination space [19] provides a
global virtual shared space for the autonomic elements
in Grids. This space can be concurrently and asso-
ciatively accessed by all participants in the system,
and the access is independent of the actual physical
or topological proximity of the hosts. New generation
DHT-based routing algorithms [31][28] form the basis
for organizing the coordination space. The application
schedulers post their resource demands by submitting
a Resource Claim object into the coordination space,
while resource providers update the resource informa-
tion by submitting a Resource Ticket object. If there
is a match between these objects, then the correspond-
ing entities communicate with each other in order to
satisfy their interests.

2.3.3 Communication Protocol

The interaction among the autonomic components is
coordinated by utilizing some particular communica-
tion protocols that can be divided into two types: One-
to-one and One-to-many. Communication protocols
based on one-to-all broadcast are simple but very ex-
pensive in terms of number of messages and network
bandwidth usage. This overhead can be drastically re-
duced by adopting one-to-one negotiation among the
resource providers and consumers through establish-
ment of SLA.

2.4 Monitoring

Monitoring in Grids involves capturing information
regarding the environment (e.g. number of active re-
sources, queue size, processor load) that are significant
to maintain the self-* properties of the system. This in-
formation or monitoring data is utilized by the MAPE-
K autonomic loop, and the necessary changes are ac-
cordingly executed by the autonomic manager through
effectors. The sensing components of an autonomic el-
ement in Grids require appropriate monitoring data to
recognize failure or suboptimal performance of any re-
source or service.

2.4.1 Execution Monitoring

Once an application is scheduled and the tasks in
that application are submitted to corresponding Grid
resources for execution, the scheduler needs to peri-
odically monitor the execution status (e.g. queued,
started, finished, and failed) of these tasks so that it
can efficiently mange the unexpected events, such as
failure. We identify two types of execution monitoring
in Grids: active and passive.

The concept of active and passive monitoring of task
execution in Grids is derived from the push-pull proto-
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col [29], widely used in the research area of computer
network. In active monitoring, information related to
task execution is created by engineering the software at
some levels, for example, modifying and adding code to
implementation of the application or the operating sys-
tem to capture function or system calls so that the ap-
plication itself can report monitoring data periodically
(pulling). Moreover, the request for transferring status
information is often initiated by the receiver or client
in active monitoring strategy. For instance, the appli-
cation scheduler can send an isAlive probe to the Grid
resources currently executing its application for detect-
ing the availability (e.g. online) of these resources at
that time.

In contrast, passive monitoring technique captures
status information at the resource or server side by the
local monitoring service and reports monitoring data to
the user or scheduler side periodically (pushing). For
example, a resource provider in Grids can periodically
inform the status of its system, such as current load to
the interested application schedulers according to the
requirements specified in the agreement between them.

2.4.2 Status Monitoring

The autonomic elements in Grids needs to monitor the
relevant system properties (i.e. system health) to op-
timize its operating condition and facilitate efficient
decision making. System health data relates to run-
time system information, such as memory consump-
tion, CPU utilization, and network usage. The process
of collecting system related information is straightfor-
ward, and most of the operating systems provide a set
of commands (e.g. top and vmstat in Linux) or tools
to perform this operation.

In addition, the autonomic element also needs to
monitor the performance parameters of its operation,
such as SLA violation if it incorporates market based
mechanisms to interact with other autonomic elements
in the system. To this end, it periodically measures the
performance metrics (e.g. service uptime) with regards
to the SLA and takes necessary steps to prevent the
violation of agreement.

However, the monitoring service often suffers from
the dilemma of deciding on how frequently and how
much monitoring data should be collected to facilitate
efficient decision making. Thus, dynamic and proactive
monitoring approaches are essential in order to achieve
autonomicity. For example, QMON [7] is an auto-
nomic monitoring service that adapts its monitoring
frequency and data volumes for minimizing the over-
head of continuous monitoring, while maximizing the
utility of the performance data.

2.4.3 Directory Service

The directory service provides information about the
available resources in the Grid and their status, such
as host name, memory size, and processor load. The

application schedulers or resource brokers rely on this
information for efficiently mapping the tasks in an ap-
plication to the available resources. Based on the un-
derlying structure, two types of directory services are
available in Grids: centralized and decentralized.

In a centralized directory service (e.g. Grid Market
Directory (GMD) [35]), monitoring data are stored in
a centralized repository. Current studies have shown
that [36] existing centralized model for resource direc-
tory services do not scale well as the number of users,
brokers, and resource providers increase in the system
and vulnerable to single point of failure. Whereas, de-
centralized information service distributes the process
of resource discovery and indexing over the participat-
ing Grid sites so that load is balanced, and if one site
is failed, another site can take over its responsibility
autonomously.

2.5 Self-* Properties

The evaluation of an autonomic system depends on
to what extent it adopts or implements the self-* prop-
erties. Generally, its very difficult for a system to fully
implement all the self-* properties, and in many cases
it becomes redundant. Thus, most of the autonomic
systems focus on some particular properties based on
their requirements and goals.

2.5.1 Self-configuring

Self-configuration refers to the ability to adapt to
changes in the system. In regards to autonomic appli-
cation management, the system can demonstrate self-
configuration property by automatically installing the
software components when it detects that some pre-
requisite components are outdated or missing. This
ensures the timely update of the system without hu-
man intervention. In addition, the system can also
reconfigure itself in the event of dynamic and changing
condition.

2.5.2 Self-optimizing

Self-optimization refers to the ability to improve per-
formance of the system through continuous optimiza-
tion. In Grids, the application management systems
can use dynamic scheduling techniques for mapping ap-
plication tasks to Grid resources in order to implement
the self-optimizing property. The dynamic scheduling
approach proactively monitors the status of the Grid
resources and schedules tasks according to the current
condition of the computational environment by dy-
namic policies, such as rescheduling. Another continu-
ous optimization strategy can be utilization of adaptive
streaming technique for data intensive applications [8].

2.5.3 Self-healing

Self-healing refers to the ability to discover, diagnose,
and recover from faults. Thus, the self-healing property
enables a distributed computing system to be fault-
tolerant by avoiding or minimizing the effects of exe-
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cution failures. In a Grid environment, task execution
failure can happen for various reasons: (i) the sud-
den changes in the execution environment configura-
tion, (ii) no availability of required services or software
components, (iii) overloaded resource conditions, (iv)
system running out of memory, and (v) network fail-
ures. In order to efficiently handle these failures, an
autonomic system can adopt some preemptive policies,
such as Failure prediction, Check-pointing, and Repli-
cation.

Failure prediction techniques [22] are used to pre-
dict the availability of the Grid-wide resources contin-
uously over certain period of time. Using these pre-
dictions, application schedulers can plan the mapping
of tasks to the resources considering their future avail-
ability in order to avoid possible task failures. The
check-pointing technique [2] transfers the failed tasks
transparently to other resources so that the task can
continue its execution from the point of failure. The
replication technique [6] executes the same task simul-
taneously on multiple Grid resources to increase the
probability of successful task execution.

2.5.4 Self-protecting

Self-protecting refers to the ability to anticipate and
protect against threats or intrusions. This property
makes an autonomic system capable of detecting and
protecting itself from malicious attacks so as to main-
tain overall system security and integrity.

Self-protecting application management can be
achieved by implementing some proactive policies at
both resource and user sides, such as providing accu-
rate warning about potential malicious attack, taking
networked resources offline if any anomaly is detected
and shutting down the system if any hazardous event
occurs that can possibly damage the system.

One technique for enabling self-protection is to uti-
lize distributed trust management system. A relevant
distributed trust mechanism is PeerReview [11]. These
distributed trust management systems determine ma-
licious participants through behavioral auditing. An
auditor node A checks if it agrees with the past ac-
tions of an auditee node B. In case of disagreement, A
broadcasts an accusation of B. Interested third party
nodes verify evidence, and take punitive action against
the auditor or the auditee.

Another approach to protect the system from ma-
licious attacks is to leverage intrusion detection tech-
niques [15], where the system performs online monitor-
ing and analyzes the attacks/intrusions. Then a model
is devised and trained using the past data that is used
to successfully and efficiently detect future attacks.

2.6 System Characteristics

Due to its inherent nature, a distributed system
possesses some characteristics, such as decentraliza-
tion, heterogeneity, complexity and reliability. These

characteristics not only enforce challenges for design-
ing the system but also make the system useful to the
users. The more a system becomes complex or volatile,
the more it needs to incorporate autonomic computing
principles in order to avoid performance degradation
and user satisfaction. Whereas, increasing the scala-
bility of a system facilitates itself to adopt autonomic
features gracefully.

2.6.1 Complexity

According to the definition of Buyya et al. [9], a Grid
is a type of parallel and distributed system that en-
ables the sharing, selection, and aggregation of geo-
graphically distributed autonomous resources dynami-
cally at runtime depending on their availability, capa-
bility, performance, cost, and users’ quality-of-service
requirements. These resources are heterogeneous and
fault-prone as well as may be administered by differ-
ent organizations. Thus, Grid systems are complex by
their characteristics.

However, as the complexity of a system increases, it
becomes brittle and unmanageable. In that case, the
system needs to be more autonomous so that it can
handle the consequences of complexity without human
intervention. For instance, the complexity of a decen-
tralized Grid system is much higher than a centralized
Grid system because of the interaction and coordina-
tion of the large number of decentralized components.

2.6.2 Scalability

Scalability of a distributed system is considered as the
ability for the system to easily expand or contract its
resource pool to accommodate heavier or lighter loads.
In other words, scalability is the ease with which a
system can be modified, added or removed in order to
accommodate varying workload.

If a system is highly scalable, its performance should
not dramatically deteriorate as the system size in-
creases. In general, decentralized or peer-to-peer Grid
systems [26] are scalable in nature, whereas the cen-
tralized Grid systems are least scalable as there exists
a single point of control.

2.6.3 Volatility

Volatile refers to changing or changeable. Thus, volatil-
ity of a distributed system can be defined as the like-
lihood that the status of the system or its components
to be altered due to the heterogeneous and dynamic
behaviour of the environment, such as configuration
change, resource failure, and load variation. If the con-
dition of the system changes frequently over short pe-
riod of time, it has high volatility. If the system status
almost never changes, it has low volatility. In general,
Grid systems are volatile in nature due to the underly-
ing characteristics.
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Table 1: Summary of Grid projects
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rescheduling 

Dynamic 

rescheduling 

Dynamic 

rescheduling 

Self-healing Failure 

detection 

Failure detection/ 

Check-pointing 

N.A. Failure 

detection 

Failure 

detection 

Failure detection Failure 

detection/ 

Check-pointing 

Failure 

detection 

Failure 

detection/ 

Check-pointing 

Self-protecting N.A. Authentication 

detection 

Security policy N.A. N.A. N.A. Authentication 

detection 

N.A. N.A. 

System 

characteristics 

Scalability High  Medium High Low Low Low Low Low High 

Complexity High  Medium High Low Medium Medium Medium Medium High 

Volatility High Medium High Medium Medium Medium Medium Medium High 

3 Survey of Grid Systems

This section provides a detailed survey of selected
existing Grid systems and mapping of the taxonomy
proposed in previous section onto these systems. A
comparison of various Grid systems and their catego-
rization based on the taxonomy is shown in Table 1.

4 Conclusion

A taxonomy for autonomic application management
in Grids has been presented in this paper. The tax-
onomy focuses on various aspects of autonomic ap-
plication management, such as application composi-
tion, scheduling, monitoring, coordinating, and fail-
ure handling as well as system characteristics and self-
management properties. In addition, we also survey
some representative Grid systems and classify them
into different categories using the taxonomy. Thus, this
paper facilitates to understand the key features for au-
tonomic application management and identify the pos-
sible future enhancements.
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