
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A fine-grained task scheduling strategy for resource auto-scaling over
fluctuating data streams

Yinuo Fan a, Dawei Sun a,∗, Minghui Wu a, Shang Gao b, Rajkumar Buyya c
a School of Information Engineering, China University of Geosciences, Beijing, 100083, PR China
b School of Information Technology, Deakin University, Waurn Ponds, Victoria, 3216, Australia
cQuantum Cloud Computing and Distributed Systems (qCLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia

a r t i c l e i n f o

Keywords:
Stream computing systems
Fine-grained scheduling
Resource auto-scaling
Communication cost
Fluctuating data streams

 a b s t r a c t

Resource scaling is crucial for stream computing systems in fluctuating data stream scenarios. Computational
resource utilization fluctuates significantly with changes in data stream rates, often leading to pronounced issues
of resource surplus and scarcity within these systems. Existing research has primarily focused on addressing re-
source insufficiency at runtime; however, effective solutions for handling variable data streams remain limited.
Furthermore, overlooking task communication dependencies during task placement in resource adjustment may
lead to increased communication cost, consequently impairing system performance. To address these challenges,
we propose Ra-Stream, a fine-grained task scheduling strategy for resource auto-scaling over fluctuating data
streams. Ra-Stream not only dynamically adjusts resources to accommodate varying data streams, but also em-
ploys fine-grained scheduling to optimize system performance further. This paper explains Ra-Stream through the
following aspects: (1) Formalization: We formalize the application subgraph partitioning problem, the resource
scaling problem and the task scheduling problem by constructing and analyzing a stream application model,
a communication model, and a resource model. (2) Resource scaling and heuristic partitioning: We propose a
resource scaling algorithm to scale computational resource for adapting to fluctuating data streams. A heuris-
tic subgraph partitioning algorithm is also introduced to minimize communication cost evenly. (3) Fine-grained
task scheduling: We present a fine-grained task scheduling algorithm to minimize computational resource utiliza-
tion while reducing communication cost through thread-level task deployment. (4) Comprehensive evaluation:
We evaluate multiple metrics, including latency, throughput and resource utilization in a real-world distributed
stream computing environment. Experimental results demonstrate that, compared to state-of-the-art approaches,
Ra-Stream reduces system latency by 36.37% to 47.45%, enhances system maximum throughput by 26.2% to
60.55%, and saves 40% to 46.25% in resource utilization.

1. Introduction

Stream computing systems demonstrate exemplary performance in
processing stream applications that demand low latency (on the order
of milliseconds) and high throughput [1], such as traffic monitoring [2],
anomaly detection [3], and Internet of Things [4]. To support the de-
manding requirements of stream applications, many stream processing
systems have emerged such as Apache Flink and Spark Streaming [5].
Among them, Apache Storm is particularly well-suited for time-critical
processing scenarios and has demonstrated extensive applicability in
various fields. In recent years, it has established itself as a mainstream
stream computing framework due to its excellent performance [6].

∗ Corresponding author.
 E-mail addresses: fanyinuocn@email.cugb.edu.cn (Y. Fan), sundaweicn@cugb.edu.cn (D. Sun), wuminghui@email.cugb.edu.cn (M. Wu),
shang.gao@deakin.edu.au (S. Gao), rbuyya@unimelb.edu.au (R. Buyya).

Resource scaling and task scheduling [7,8] are crucial for achiev-
ing low system latency and high system throughput-two key metrics for
evaluating stream computing systems [9]. In real-world application sce-
narios, data stream rates are often not uniformly stable but instead fluc-
tuate over time due to various factors [10]. Static scheduling schemes
struggle to adapt to such fluctuations, especially with respect to re-
source utilization, resulting in two major issues: (1) When data stream
rates are excessively high, the computational load on compute nodes be-
comes overwhelming, increasing latency and potentially causing system
crashes. (2) When data stream rates are persistently low, computational
resources allocated to tasks cannot be dynamically released, leading to
substantial resource wastage.

https://doi.org/10.1016/j.future.2025.108119
Received 24 March 2025; Received in revised form 1 July 2025; Accepted 1 September 2025

Future Generation Computer Systems 175 (2026) 108119

Available online 6 September 2025
0167-739X/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://www.elsevier.com/locate/fgcs
https://www.elsevier.com/locate/fgcs

$G = (V(G), E(G))$

$V(G) = \{v_i | i \in 1, \ldots , n\}$

n

v_{i}

$fun(v_{i})$

$E(G) = \{e_{i,j} | v_i, v_j \in V(G)\}$

$e_{i,j} \in E(G)$

v_i

v_j

G

v_{i}

$V_i(G)$

$v_{i,k} | k \in \{1, \ldots , m\}\}$

m

v_{i}

v_i

$fun(v_{i,1}) = fun(v_{i,2}) = \cdots = fun(v_{i,m})$

v_{i}

v_{j}

$E_{i,j}(G) = \{e_{i,k,~j,l} |k \in \{1, \ldots , m\}$

$l \in \{1, \ldots , s\}\}$

s

v_j

$e_{i,k,~j,l}$

$Tr(v_{i,k},v_{j,l})$

$v_{i,k}$

$v_{j,l}$

$V(G_{WordCount}) = \{v_{1}, v_{2}, v_{3}, v_{4}\}$

$E(G_{WordCount}) = \{e_{1, 2}, e_{2, 3}, e_{3, 4}\}$

$v_{1,1}$

$v_{1,2}$

st

t_o

t_c

E^{Tr}_{st}

\begin {equation}E^{Tr}_{st} = \frac {\int ^{t_c}_{t_o} E^{Tr}_{t}dt - max(E^{Tr}_{t}) - min(E^{Tr}_{t})}{{t_c}-{t_o}}, \label {eq: communication tuple expectation}\end {equation}

E^{Tr}_t

t

$t \in [t_o,t_c]$

$Tr(v_{i,k},v_{j,l})$

st

$v_{i,k}$

$v_{j,l}$

$Tr(v_{i,k},v_{j,l})$

\begin {equation}Tr(v_{i,k},v_{j,l}) = \left \{ \begin {array}{@{}l} 0{\rm {, \ \ \ \ \ \ If \ no \ tuple \ transmission}}\\ {\rm {\quad \ \ \ \ \ between\ }} {v_{i,k}}\ and \ v_{j,l}, \\ {E^{Tr}_{st}}{\rm {,\ Otherwise.}} \end {array} \right . \label {eq: transmission rate conditions}\end {equation}

cn

T_{cn}

cn

st

$U^{c}_{cn,st}$

$v_{i,k}$

cn

st

$num^{v_{i,k}}_{st}$

$v_{i,k}$

st

\begin {equation}R^c_{v_{i,k},st} = \frac {num^{v_{i,k}}_{st}}{\sum _{v_{j,l} \in T_{cn}} num^{v_{j,l}}_{st}} \cdot U^{c}_{cn, st}, \label {eq: cpu utilization of task}\end {equation}

$R^c_{v_{i,k},st}$

$v_{i,k}$

$num^{v_{j,l}}_{st}$

cn

$v_{j,l}$

T_{cn}

cn

st

$v_{i,k}$

cn

st

\begin {equation}R^m_{v_{i,k},{st}} = \frac {num^{v_{i,k}}_{st}}{\sum _{v_{j,l} \in T_{cn}} num^{v_{j,l}}_{st}} \cdot U^m_{cn,{st}}, \label {eq: mem utilization of task}\end {equation}

\begin {equation}R^{io}_{v_{i,k},{st}} = \frac {num^{v_{i,k}}_{st}}{\sum _{v_{j,l} \in T_{cn}} num^{v_{j,l}}_{st}} \cdot U^{io}_{cn,{st}}, \label {eq: I/O utilization of task}\end {equation}

$R^m_{v_{i,k},{st}}$

$R^{io}_{v_{i,k},{st}}$

$v_{i,k}$

cn

$U^m_{cn,{st}}$

$U^{io}_{cn,{st}}$

cn

st

$R_{v_{i,k},st}$

$v_{i,k}$

cn

st

$v_{i,k}$

\begin {equation}R_{v_{i,k},st} = \alpha \cdot R^c_{v_{i,k},{st}} + \beta \cdot R^m_{v_{i,k},{st}} + (1-\alpha -\beta) \cdot R^{io}_{v_{i,k},{st}}, \label {eq: total resource utilization}\end {equation}

$\alpha $

$\beta $

$v_{i,k}$

cn

$\alpha , \beta \in [0,1]$

$\alpha + \beta < 1$

$G = (V(G), E(G))$

n_{cn}

cn

G

k

$k \leq n_{cn}$

G

k

$G = \bigcup _{i=1}^k G^{sub}_i$

G^{sub}_i

$G^{sub}_i \subseteq G$

G^{sub}_{i}

$T(G^{sub}_{i})$

\begin {equation}\begin {cases} T(G) = \bigcup _{i=1}^k T(G^{sub}_i), \\ T(G^{sub}_i) \cap T(G^{sub}_j) = \emptyset , \forall i,j \in [1,k], i \ne j. \end {cases} \label {eq: task set subgraph}\end {equation}

\begin {equation}\begin {cases} E(G^{sub}_i)=\{e_{i,k,~j,l} \in E(G) | v_{i,k},v_{j,l} \in T(G^{sub}_i)\}, \\ E_{cut}(G)=\{e_{i,k,~j,l} \in E(G) | v_{i,k} \in T(G^{sub}_i), v_{j,l} \in T(G^{sub}_j)\}, \end {cases} \label {eq: edge set subgraph}\end {equation}

$E(G^{sub}_i)$

G^{sub}_i

$E_{cut}(G)$

$e_{i,k,~j,l}$

$v_{i,k}$

$v_{j,l}$

\begin {equation}\begin {cases} \text {max } \sum \limits _{i=1}^k W_{int}(G^{sub}_i), \\ \text {min } W_{cut}(G) = \text {min} \sum \limits _{e_{i,k,~j,l} \in E_{cut}(G)} w(e_{i,k,~j,l}), \\ W_{int}(G^{sub}_1) \approx W_{int}(G^{sub}_2) \approx , \dots , \approx W_{int}(G^{sub}_k), \end {cases} \label {eq: subgraph partition target}\end {equation}

$W_{int}(G^{sub}_i)$

G^{sub}_i

$W_{cut}(G)$

$E_{cut}(G)$

$w(e_{i,k,~j,l})$

$e_{i,k,~j,l}$

G

\begin {equation}\begin {cases} R_{G^{sub}_i,st}^c = \sum \limits _{v_{i,k} \in T(G^{sub}_i)} R^c_{v_{i,k},st}, \\ R_{G^{sub}_i,st}^m = \sum \limits _{v_{i,k} \in T(G^{sub}_i)} R^m_{v_{i,k},st}, \\ R_{G^{sub}_i,st}^{io} = \sum \limits _{v_{i,k} \in T(G^{sub}_i)} R^{io}_{v_{i,k},st}, \end {cases} \label {eq: cpu and mem resource of subgraphs}\end {equation}

$R_{G^{sub}_j,st}^c$

$R_{G^{sub}_j,st}^m$

$R_{G^{sub}_j,st}^{io}$

G^{sub}_i

st

G

\begin {equation}\begin {cases} R^c_{G,st} = \sum \limits _{i=1}^k R^c_{G^{sub}_i,st}, \\ R^m_{G,st} = \sum \limits _{i=1}^k R^m_{G^{sub}_i,st}, \\ R^{io}_{G,st} = \sum \limits _{i=1}^k R^{io}_{G^{sub}_i,st}, \end {cases} \label {eq: resource utilization of compute nodes}\end {equation}

$R^c_{G,st}$

$R^m_{G,st}$

$R^{io}_{G,st}$

G

st

m_{cn}

$ON = \{on_i|i\in \{1,2,\ldots ,m_{cn}\}\}$

$IN = \{in_i|i\in \{1,2,\ldots ,n_{cn}-m_{cn}\}\}$

\begin {equation}\begin {cases} A^c_{ON,st} = \sum \limits _{on_i \in ON} A^c_{on_i,st}, \\ A^m_{ON,st} = \sum \limits _{on_i \in ON} A^m_{on_i,st}, \\ A^{io}_{ON,st} = \sum \limits _{on_i \in ON} A^{io}_{on_i,st}, \end {cases} \label {eq: available resource of operational nodes}\end {equation}

$A^c_{ON,st}$

$A^m_{ON,st}$

$A^{io}_{ON,st}$

$A^c_{on_i,st}$

$A^m_{on_i,st}$

$A^{io}_{on_i,st}$

G

k

k

$f^{de}_{{G^{sub}_i},{cn_j}}$

G^{sub}_i

cn_{j}

\begin {equation}f^{de}_{G^{sub}_i,cn_j} = \left \{ \begin {array}{@{}l} 1{\rm {, \ If \ } } A_{cn_j,st}^c > R^c_{G^{sub}_i,st} {\rm \ and} {\ A_{cn_j,st}^m > R^m_{G^{sub}_i,st},} \\ {0}{\rm {,\ Otherwise.}} \end {array} \right . \label {eq: decision factor}\end {equation}

$i \in \{1, 2, \ldots , k\}$

$j \in \{1, 2, \ldots , n_{cn}\}$

$f^{de}_{G^{sub}_i,cn_j}$

G^{sub}_i

cn_j

$A_{cn_j, st}^c$

$A_{cn_j, st}^m$

cn_j

st

$R_{G^{sub}_i, st}^c$

$R_{G^{sub}_i, st}^m$

G^{sub}_i

st

G^{sub}_i

G^{sub}_i

$f^{fit}_{G^{sub}_i,cn_j}$

G^{sub}_i

cn_j

G^{sub}_i

$f^{fit}_{G^{sub}_i,cn_j}$

\begin {equation}f^{fit}_{G^{sub}_i,cn_j} = f^{de}_{G^{sub}_i,cn_j} \cdot S^{R}_{G^{sub}_i,cn_j}, \label {eq: fitness factor}\end {equation}

$S^{R}_{G^{sub}_i,cn_j}$

cn_j

G^{sub}_i

\begin {align}\label {eq: resource surplus} S^{R}_{G^{sub}_i,cn_j} &= \gamma \cdot (A^c_{cn_j, st} - R^c_{G^{sub}_i, st}) + \delta \cdot (A^m_{cn_j, st} - R^m_{G^{sub}_i, st}) \\ &\quad + (1-\gamma -\delta) \cdot (A^{io}_{cn_j, st} - R^{io}_{G^{sub}_i, st}), \nonumber \end {align}

$\gamma $

$\delta $

$\gamma , \delta \in [0,1]$

$\gamma + \delta < 1$

$\gamma $

$\delta $

$\gamma $

$\delta $

$\gamma $

$\delta $

$k = n$

$\sigma _W$

\begin {equation}\sigma _W = \sqrt {\frac {1}{k} \sum _{i = 1}^k[W_{int}(G^{sub}_i) - \overline {W_{int}(G^{sub})}]^2}, \label {eq: variance}\end {equation}

\begin {equation}\overline {W_{int}(G^{sub})} = \frac {1}{k} \sum _{i=1}^k W_{int}(G^{sub}_i), \label {Xeqn17-17}\end {equation}

$\overline {W_{int}(G^{sub})}$

G

$f(x)$

\begin {equation}f(x) = \epsilon \cdot r + (1-\epsilon) \cdot \sigma _W, \label {eq: objective function}\end {equation}

x

$\epsilon $

r

$\sigma _W$

$\epsilon $

$\epsilon $

G

k

n

$Tr(v_{i,k}, v_{j,l})$

max_iter

T_0

$\zeta $

T_f

X

T_0

$\zeta $

T_f

$\epsilon $

$O(log_{\frac {1}{\zeta }}(\frac {T_0}{T_f}) \cdot m)$

m

p_i

\begin {equation}p_i = \exp ^{(\frac {f(x_i)-f(X)}{T})}, \label {eq: probability of accepting a solution}\end {equation}

$\zeta $

T_f

X

T_{under}

T_{over}

T_{under}

T_{over}

$f^{adj}_{G^{sub}_i}$

G^{sub}_i

$R_{G^{sub}_i}$

\begin {equation}f^{adj}_{G^{sub}_i} = \begin {cases} True, &(R_{G^{sub}_i} < T_{under}) \vee (R_{G^{sub}_i} > T_{over}),\\ False, &T_{under} < R_{G^{sub}_i} < T_{over},\\ \end {cases} \label {eq: adjustment factor for subgraphs}\end {equation}

$T_{under} < R_{G^{sub}_i} < T_{over}$

$R_{G^{sub}_i} < T_{under}$

$R_{G^{sub}_i} > T_{over}$

X

$R_{G^{sub}_i}$

T_{under}

T_{over}

RS

RS

T_{under}

T_{over}

$O(m \cdot logn)$

m

n

X

$v_{i,k}$

$v_{j,l}$

st

\begin {align}&C^{s,st}_{v_{i,k}, v_{j,l}}=Tr(v_{i,k}, v_{j,l}) \cdot (C^{com}_{CN}-C^{com}_{CP}) \cdot st, \label {eq: cost savings-node}\\ &C^{s,st}_{v_{i,k}, v_{j,l}}=Tr(v_{i,k}, v_{j,l}) \cdot C^{com}_{CP} \cdot st, \label {eq: cost savings-process}\end {align}

C^{com}_{CN}

C^{com}_{CP}

RS

CN

$T(G^{sub}_i)$

$Tr(v_{i,k},~v_{j,l})$

SS

G

$O(m \cdot n)$

m

RS

n

https://orcid.org/0000-0003-3137-6257
https://orcid.org/0000-0002-8636-0212
https://orcid.org/0000-0002-2947-7780
mailto:fanyinuocn@email.cugb.edu.cn
mailto:sundaweicn@cugb.edu.cn
mailto:wuminghui@email.cugb.edu.cn
mailto:shang.gao@deakin.edu.au
mailto:rbuyya@unimelb.edu.au
https://doi.org/10.1016/j.future.2025.108119
https://doi.org/10.1016/j.future.2025.108119

Y. Fan et al.

Existing research [11,12] has made progress in mitigating the neg-
ative impacts of fluctuating data streams through optimized scheduling
strategies. For instance, [13] proposed two resource allocation strate-
gies that utilize greedy algorithms and genetic algorithms, respectively,
to achieve efficient execution of stream applications. Similarly, [14] in-
troduced a heuristic algorithm, which dynamically reconfigures stream
applications based on variations in data stream rates and the availabil-
ity of computational resources. However, the magnitude of communica-
tion cost directly impacts system performance, how to minimize com-
munication cost during the resource scaling process remains a critical
challenge.

Modeling stream applications as directed acyclic graphs (DAGs)
and exploiting task dependencies to optimize system performance is a
promising approach [15]. For example, [16] utilized a dynamic pro-
gramming algorithm on the critical path of DAG to reduce communi-
cation cost. Similarly, [17] proposed partitioning the DAG into multi-
ple subgraphs based on the communication volume between tasks and
scheduling at the subgraph level. However, the deployment of tasks
within a compute node directly influences communication cost, as the
expenses associated with communication between tasks within the same
process differ from those between tasks across processes. This is an in-
dispensable factor to consider in task scheduling.

From the preceding analysis, there are three primary challenges in
task scheduling: (1) How can the scheduling scheme be adjusted to ac-
commodate fluctuating data streams? (2) How can effective resource
utilization be achieved while ensuring optimal system performance? (3)
How can task deployment within compute nodes be optimized to mini-
mize communication cost? These challenges have sparked our research
interest, as we aim to design a scheduling strategy that dynamically mit-
igates the negative impacts of fluctuating data streams while minimizing
communication costs.

To address these challenges, we propose a fine-grained task schedul-
ing strategy called Ra-Stream, which dynamically scales computational
resources based on current data stream rate to effectively accommodate
fluctuating data streams, achieving efficient resource utilization while
preventing excessive loads on compute nodes. Additionally, Ra-Stream
minimizes communication cost through fine-grained task deployment,
further ensuring low-latency processing.

1.1. Contributions

This paper proposes a fine-grained task scheduling strategy (Ra-
Stream) for resource auto-scaling over fluctuating data streams and im-
proving the resource utilization and latency of distributed stream com-
puting systems. The key contributions are as follows:

(1) Formalization of the problem: We construct and analyze the stream
application model, communication model, and resource model to
formalize the application subgraph partition problem, the resource
scaling problem, and the task scheduling problem.

(2) Resource scaling and heuristic partitioning algorithms: We propose
a resource scaling algorithm based on our heuristic subgraph par-
titioning algorithm to determine the minimum necessary number
of compute nodes, achieving efficient resource utilization while ac-
commodating fluctuating data streams.

(3) Fine-grained task scheduling algorithm: We propose a fine-grained
task scheduling algorithm that minimizes communication cost
through thread-level task deployment, thereby optimizing overall
system performance. Additionally, we set two thresholds for com-
pute nodes to avoid underloading or overloading.

(4) Implementation and evaluation: We implement and integrate Ra-
Stream into Apache Storm and evaluate various metrics, including
system latency, system maximum throughput, and resource utiliza-
tion, in real-world fluctuating data stream scenarios. The experi-
mental results confirm the effectiveness of Ra-Stream.

1.2. Paper organization

The rest of the paper is organized as follows: Section 2 presents re-
lated work. Section 3 introduces the stream application model, com-
munication model, and resource model. Section 4 provides the problem
statement, including descriptions of subgraph partitioning, task schedul-
ing, and resource scaling. Section 5 focuses on the system architecture
and main algorithms of Ra-Stream. Section 6 details the experimental
environment, parameter setup, and performance evaluation. The con-
clusions and future works are presented in Section 7.

2. Related work

We review related work in the field of stream computing, which can
be broadly divided into two main areas: scheduling for stream comput-
ing systems and performance optimization of stream computing systems.

2.1. Scheduling for stream applications

Achieving excellent system performance in stream applications has
been the focus of numerous researchers [18], who have devoted sig-
nificant effort to improving scheduling strategies. However, it has been
demonstrated that the scheduling problem is NP-hard, making it inher-
ently challenging to find an optimal scheduling solution [19,20].

To reduce communication latency, [21] proposed SP-Ant, which
places high-communication operators on the same compute node using
a bin-packing algorithm and allocates low-communication operators us-
ing an ant colony optimization algorithm. However, this approach lacks
consideration for the resource utilization of compute nodes, potentially
leading to overloads that adversely affect overall system latency.

To optimize load balancing while reducing job execution costs, [22]
introduced a Cost-Efficient Task Scheduling Algorithm (CETSA) along-
side a Cost-Effective Load Balancing Algorithm (LBA-CE). These algo-
rithms ensure a balanced workload in heterogeneous clusters while
minimizing costs. However, they inadequately consider real-time fluc-
tuations in data stream velocities, which do not align well with the dy-
namic nature of actual data flows.

To address the complexities and unpredictability of dynamic stream-
ing workflow scenarios, [23] proposed a resource scheduling and provi-
sioning method for processing dynamic stream workflows under latency
constraints. This approach assumes that data communication overhead
can be ignored; however, in real-world scenarios, communication over-
head is a significant factor that cannot be overlooked.

To optimize resource utilization and enhance task reliability across
the network, [24] applied a satisfiability modulo theory (SMT) con-
straint solver to determine the optimal processing quality at each node,
ensuring target system reliability while minimizing resource consump-
tion. However, this work lacks consideration of complex and variable
application scenarios, limiting its applicability.

To adapt to dynamically changing workloads, [25] proposed
MorphStream, which makes accurate scheduling decisions at runtime
with minimal overhead, resulting in excellent performance improve-
ments. However, this method requires the construction of a task depen-
dency graph and the maintenance of multiple versions of state storage,
which significantly increase memory resource consumption.

To achieve optimal performance by minimizing computational bot-
tlenecks at the edge computing environments, [26] proposed a frame-
work called Beaver for strategic placement of stream operators. While
Beaver addresses variations in network latency and bandwidth, further
improvements can be made in dynamically adjusting compute resource
allocation to address fluctuating stream rates.

Similarly, [27] formulated an optimization strategy to reduce net-
work latency in distributed environments using a broad spectrum of
computational resources. However, it does not account for dynamic scal-
ing based on stream variability.

Future Generation Computer Systems 175 (2026) 108119

2

Y. Fan et al.

Table 1
Comparison of Ra-Stream and related work.

Related work Aspects
 Scheduling object Load balancing Communication cost Resource scaling

 SP-Ant [21] Task × ✓ ×
 CETSA & LBA-CE [22] Task ✓ ✓ ×
 VM provisioner [23] Task × × ✓

 SMT [24] Resource × × ✓

 MorphStream [25] Resource × × ✓

 Beaver [26] Resource × ✓ ✓

 Ra-Stream (Ours) Resource, Task ✓ ✓ ✓

In summary, these methods have substantially improved scheduling
in stream computing systems. However, most of them fail to consider
system performance optimization from multiple dimensions. For clarity
and conciseness, a comparison of our work with the relevant studies is
summarized in Table 1.

2.2. Optimization for stream computing systems

To improve the performance of stream computing systems, extensive
work has focused on optimization through various approaches, includ-
ing large parameter tuning [28] and tuple scheduling [29]. Below, we
introduce and analyze several noteworthy works.

To mitigate the high resource costs associated with automatic tuning
process, [28] introduced a general and efficient Spark tuning frame-
work. This framework utilizes Bayesian optimization (BO) to tackle
the generalized tuning problem involving multiple objectives and con-
straints. By tuning parameters according to the actual periodic execution
of each job, the framework allows for online evaluation and parameter
optimization.

To address the imbalance of workloads among downstream tasks,
[29] proposed POTUS, a predictive online tuple scheduling strategy that
directs data stream in a distributed manner to reduce response time in
stream processing. Similarly, [30] introduced a popularity-aware differ-
entiated distributed stream processing system called Pstream. Pstream
employs a novel lightweight probabilistic counting scheme to iden-
tify hot keys in dynamic real-time stream. This approach effectively
adapts to changes in dynamic popularity within high-velocity streams.
Additionally, [31] developed Hone, a tuple scheduler that uses the
online maximum backlog first (LBF) algorithm to minimize the maxi-
mum queue backlog across all tasks, thereby improving processing effi-
ciency.

To reduce recovery time from system failures, [32] proposed A-FP4S,
an adaptive fragments-based parallel state recovery mechanism. This
mechanism divides each node’s local state into multiple segments, which
are periodically stored across neighboring nodes. During a failure, differ-
ent sets of available segments are used to parallelize the reconstruction
of the lost state. This approach offers significant scalability for managing
lost states and can tolerate multiple node failures.

In summary, these works have made significant contributions to
stream processing optimization. Our work focuses on optimizing stream
computing systems through resource scaling and task scheduling, while
topics such as parameter tuning, tuple scheduling, and state manage-
ment fall outside the scope of this study.

3. System model

We formalize the resource scaling problem in distributed stream
computing systems by defining the stream application model, resource
model, and communication model. For clarity, we summarize the main
notations used throughout the paper in Table 2.

3.1. Stream application model

The functionality of a stream application is typically defined by users
through a logical topology [33]. This logical topology can be described
as a Directed Acyclic Graph (DAG) [34], denoted as 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)).

Here, 𝑉 (𝐺) = {𝑣𝑖|𝑖 ∈ 1,… , 𝑛} is a finite set of 𝑛 vertices. Each vertex
𝑣𝑖 represents a specific function 𝑓𝑢𝑛(𝑣𝑖), and the function of each vertex
is set by users.

𝐸(𝐺) = {𝑒𝑖,𝑗 |𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝐺)} is a finite set of directed edges. An edge
𝑒𝑖,𝑗 ∈ 𝐸(𝐺) indicates a data stream flowing from the upstream vertex 𝑣𝑖
to the downstream vertex 𝑣𝑗 .

Before processing the stream application 𝐺, users can specify the
number of tasks for each vertex 𝑣𝑖, denoted as 𝑉𝑖(𝐺) = {𝑣𝑖,𝑘|𝑘 ∈
{1,… , 𝑚}}, where 𝑚 is the number of tasks for 𝑣𝑖. All tasks of vertex
𝑣𝑖 share the same function, i.e., 𝑓𝑢𝑛(𝑣𝑖,1) = 𝑓𝑢𝑛(𝑣𝑖,2) = ⋯ = 𝑓𝑢𝑛(𝑣𝑖,𝑚).

The edges connecting tasks of upstream vertex 𝑣𝑖 to tasks of down-
stream vertex 𝑣𝑗 are represented as 𝐸𝑖,𝑗 (𝐺) = {𝑒𝑖,𝑘, 𝑗,𝑙|𝑘 ∈ {1,… , 𝑚}, 𝑙 ∈
{1,… , 𝑠}}, where 𝑠 is the number of tasks for 𝑣𝑗 . The weight of edge
𝑒𝑖,𝑘, 𝑗,𝑙 is denoted as 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), indicating the tuple transmission rate
between task 𝑣𝑖,𝑘 and task 𝑣𝑗,𝑙.

For clarity, we illustrate the logical topology of the commonly
used WordCount stream application in Figs. 1 and 2. As shown in
Fig. 1, the logical topology of WordCount consists of four vertices,
represented as 𝑉 (𝐺𝑊 𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, and three directed edges,
𝐸(𝐺𝑊 𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡) = {𝑒1,2, 𝑒2,3, 𝑒3,4}. The three edges represent the flow of
data tuples within the topology. Following the data flow direction, the
four vertices perform the following functions: “reading data tuples”,
“splitting sentences into words”, “counting words”, and “outputting re-
sults”. In Fig. 2, the numbers of tasks for each vertex are 2, 3, 3 and 2,

Fig. 1. Logical topology of WordCount.

Fig. 2. Task topology of WordCount.

Future Generation Computer Systems 175 (2026) 108119

3

Y. Fan et al.

Table 2
Main notations used in the paper.
 Notation Description Notation Description
𝐺 DAG of a stream application 𝑅𝑣𝑖,𝑘 ,𝑠𝑡 Resource utilization of task 𝑣𝑖,𝑘 in 𝑠𝑡
𝑣𝑖,𝑘 Task 𝑘 of vertex 𝑖 𝑝𝑖 Acceptance probability of scheme 𝑥𝑖
𝑒𝑖,𝑘, 𝑗,𝑙 Edge from task 𝑣𝑖,𝑘 to task 𝑣𝑗,𝑙 𝐸𝑐𝑢𝑡(𝐺) Set of cut edges in 𝐺
𝑐𝑛 Compute node 𝐺𝑠𝑢𝑏

𝑖 Subgraph 𝑖 of 𝐺
𝑠𝑡 Statistical time frame 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖) Set of internal edges in 𝐺𝑠𝑢𝑏
𝑖

𝑇 𝑟(𝑣𝑖,𝑘 , 𝑣𝑗,𝑙) Tuple transmission rate between tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙 𝑊𝑐𝑢𝑡(𝐺) Sum of cut edges’ weights
𝐸𝑇 𝑟

𝑠𝑡 Average tuple transmission rate in 𝑠𝑡 𝑅𝑐
𝐺𝑠𝑢𝑏

𝑖
 CPU requirement of subgraph 𝐺𝑠𝑢𝑏

𝑖

𝑛𝑢𝑚𝑣𝑖,𝑘
𝑠𝑡 Number of tuples processed by 𝑣𝑖,𝑘 in 𝑠𝑡 𝑅𝑚

𝐺𝑠𝑢𝑏
𝑖

 Memory requirement of subgraph 𝐺𝑠𝑢𝑏
𝑖

𝑅𝑖𝑜
𝐺𝑠𝑢𝑏

𝑖
 I/O requirement of subgraph 𝐺𝑠𝑢𝑏

𝑖 𝑈 𝑐
𝑐𝑛,𝑠𝑡 CPU utilization of 𝑐𝑛 in 𝑠𝑡

𝑈𝑚
𝑐𝑛,𝑠𝑡 Memory utilization of 𝑐𝑛 in 𝑠𝑡 𝑈 𝑖𝑜

𝑐𝑛,𝑠𝑡 I/O utilization of 𝑐𝑛 in 𝑠𝑡
𝜎𝑊 Variance of internal weight sums of subgraphs 𝑟 Ratio of 𝑊𝑐𝑢𝑡(𝐺) to the total weights of 𝐺

respectively. Tasks for the same vertex, for example, 𝑣1,1 and 𝑣1,2, share
an identical function.

3.2. Communication model

During the execution of a stream application, tuples are transferred
between vertices and, more specifically, between the tasks of those ver-
tices, which constitutes communication. Once tasks are scheduled on
the compute cluster, the resulting communication cost can be cate-
gorized into three types: inter-thread, inter-process and inter-compute
node. Among them, inter-compute node communication incurs the high-
est cost, inter-process communication incurs moderate cost, and inter-
thread communication incurs the lowest cost.

Due to the fluctuation of stream rates, the communication traffic at
any given time point is inherently random, which makes it unsuitable for
generalizability in practice. To address this, we calculate the mathemat-
ical expectation of tuples transmitted between two communicating tasks
over a statistical time frame 𝑠𝑡 spanning from onset time 𝑡𝑜 to completion
time 𝑡𝑐 . Denoted as 𝐸𝑇 𝑟

𝑠𝑡 , this expectation value represents the average
transmission rate and mitigates the impact of abrupt fluctuations in data
streams at specific time points, as expressed in Eq. (1):

𝐸𝑇 𝑟
𝑠𝑡 =

∫ 𝑡𝑐
𝑡𝑜

𝐸𝑇 𝑟
𝑡 𝑑𝑡 − 𝑚𝑎𝑥(𝐸𝑇 𝑟

𝑡) − 𝑚𝑖𝑛(𝐸𝑇 𝑟
𝑡)

𝑡𝑐 − 𝑡𝑜
, (1)

where 𝐸𝑇 𝑟
𝑡 is the tuple transmission at time 𝑡, and 𝑡 ∈ [𝑡𝑜, 𝑡𝑐].

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) is the average tuple transmission rate in 𝑠𝑡 from the task
𝑣𝑖,𝑘 to the task 𝑣𝑗,𝑙, it serves as a key input to the subgraph partition-
ing and scheduling algorithms and directly influences the optimization
objective by quantifying the communication cost associated with sepa-
rating interdependent tasks. 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) satisfies Eq. (2):

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) =

⎧

⎪

⎨

⎪

⎩

0, If no tuple transmission
between 𝑣𝑖,𝑘 𝑎𝑛𝑑 𝑣𝑗,𝑙 ,

𝐸𝑇 𝑟
𝑠𝑡 , Otherwise.

(2)

3.3. Resource model

The resources of compute nodes can be measured across various di-
mensions, such as CPU, memory, and I/O [35]. Based on our previ-
ous benchmarking experiments, we have observed that CPU, memory
and I/O overutilization become bottlenecks in system operation. Conse-
quently, this paper explicitly addresses the resource utilization of CPU,
memory, and I/O in compute nodes.

A compute node can execute multiple tasks concurrently. Let the set
of all tasks running on a compute node 𝑐𝑛 be denoted as 𝑇𝑐𝑛, and the
CPU utilization of 𝑐𝑛 within a statistical time frame 𝑠𝑡 as 𝑈 𝑐

𝑐𝑛,𝑠𝑡.
The number of tuples processed by task 𝑣𝑖,𝑘 running on 𝑐𝑛 in 𝑠𝑡 is

represented by 𝑛𝑢𝑚𝑣𝑖,𝑘
𝑠𝑡 .

The CPU utilization of task 𝑣𝑖,𝑘 in 𝑠𝑡 can then be calculated by Eq. (3):

𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈 𝑐
𝑐𝑛,𝑠𝑡, (3)

where 𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

 represents the CPU utilization of 𝑣𝑖,𝑘, 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡 denotes the

number of tuples processed by 𝑐𝑛, and 𝑣𝑗,𝑙 is a task within 𝑇𝑐𝑛 on node
𝑐𝑛 in 𝑠𝑡.

Similarly, the memory utilization and I/O utilization of task 𝑣𝑖,𝑘 run-
ning on 𝑐𝑛 in 𝑠𝑡 can be obtained by Eqs. (4) and (5), respectively:

𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈𝑚
𝑐𝑛,𝑠𝑡, (4)

𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈 𝑖𝑜
𝑐𝑛,𝑠𝑡, (5)

where 𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

 and 𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

 are the memory utilization and I/O utilization of
𝑣𝑖,𝑘 on 𝑐𝑛, respectively. 𝑈𝑚

𝑐𝑛,𝑠𝑡 and 𝑈 𝑖𝑜
𝑐𝑛,𝑠𝑡 represent the memory utilization

and I/O utilization of 𝑐𝑛 in 𝑠𝑡, respectively.
The total resource utilization 𝑅𝑣𝑖,𝑘 ,𝑠𝑡 by task 𝑣𝑖,𝑘 running on 𝑐𝑛 in 𝑠𝑡

can then be calculated using a weighted combination of task 𝑣𝑖,𝑘’s CPU,
memory and I/O utilization, as shown in Eq. (6):

𝑅𝑣𝑖,𝑘 ,𝑠𝑡 = 𝛼 ⋅ 𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

+ 𝛽 ⋅ 𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

+ (1 − 𝛼 − 𝛽) ⋅ 𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

, (6)

where 𝛼 and 𝛽 are weighted factors that determine the relative impor-
tance of CPU, memory and I/O utilization for task 𝑣𝑖,𝑘 running on 𝑐𝑛,
𝛼, 𝛽 ∈ [0, 1] and 𝛼 + 𝛽 < 1.

4. Problem statement

We formalize the scheduling-related problems in the context of fluc-
tuating data streams, including subgraph partitioning, resource scaling,
and task scheduling.

4.1. Subgraph partitioning

The subgraph partitioning problem [36] can be described as fol-
lows: a user submits a stream application 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) to a com-
pute cluster consisting of 𝑛𝑐𝑛 available compute nodes 𝑐𝑛. If 𝐺 requires
𝑘 compute nodes to run, where 𝑘 ≤ 𝑛𝑐𝑛, then 𝐺 should be partitioned
into 𝑘 subgraphs. The subgraph partitioning problem is formalized as:
𝐺 =

⋃𝑘
𝑖=1 𝐺

𝑠𝑢𝑏
𝑖 , where 𝐺𝑠𝑢𝑏

𝑖 represents a subgraph and 𝐺𝑠𝑢𝑏
𝑖 ⊆ 𝐺.

The set of tasks in a subgraph 𝐺𝑠𝑢𝑏
𝑖 is denoted as 𝑇 (𝐺𝑠𝑢𝑏

𝑖), and the
relationships among the task sets are represented by Eq. (7):
{

𝑇 (𝐺) =
⋃𝑘

𝑖=1 𝑇 (𝐺
𝑠𝑢𝑏
𝑖),

𝑇 (𝐺𝑠𝑢𝑏
𝑖) ∩ 𝑇 (𝐺𝑠𝑢𝑏

𝑗) = ∅,∀𝑖, 𝑗 ∈ [1, 𝑘], 𝑖 ≠ 𝑗.
(7)

Future Generation Computer Systems 175 (2026) 108119

4

Y. Fan et al.

Fig. 3. Example of imbalanced graph partitioning scheme.

The subgraph partitioning also generates internal edges within sub-
graphs and cut edges connecting subgraphs. These relationships are de-
scribed by Eq. (8):
{

𝐸(𝐺𝑠𝑢𝑏
𝑖) = {𝑒𝑖,𝑘, 𝑗,𝑙 ∈ 𝐸(𝐺)|𝑣𝑖,𝑘, 𝑣𝑗,𝑙 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑖)},
𝐸𝑐𝑢𝑡(𝐺) = {𝑒𝑖,𝑘, 𝑗,𝑙 ∈ 𝐸(𝐺)|𝑣𝑖,𝑘 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑖), 𝑣𝑗,𝑙 ∈ 𝑇 (𝐺𝑠𝑢𝑏
𝑗)},

(8)

where 𝐸(𝐺𝑠𝑢𝑏
𝑖) represents the set of internal edges within 𝐺𝑠𝑢𝑏

𝑖 , 𝐸𝑐𝑢𝑡(𝐺)
denotes the set of cut edges connecting subgraphs, and 𝑒𝑖,𝑘, 𝑗,𝑙 is the edge
connecting tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙.

The objective of graph partitioning is to minimize the weights of
cut edges between different subgraphs while maximizing the weights of
internal edges within subgraphs. Minimizing the weights of cut edges
alone may result in an imbalanced partitioning scheme. For instance,
Fig. 3 shows a scheme where one subgraph contains two tasks, while
another contains six tasks, leading to an imbalance.

To achieve a balanced subgraph partitioning scheme, we aim to max-
imize the sum of the internal edge weights for each subgraph while keep-
ing these sums nearly equal, all while minimizing the total weight of the
cut edges. This is formalized in Eq. (9):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
𝑘
∑

𝑖=1
𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖),

min 𝑊𝑐𝑢𝑡(𝐺) = min
∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸𝑐𝑢𝑡(𝐺)
𝑤(𝑒𝑖,𝑘, 𝑗,𝑙),

𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
1) ≈ 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

2) ≈,… ,≈ 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
𝑘),

(9)

where 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
𝑖) is the sum of internal edge weights within 𝐺𝑠𝑢𝑏

𝑖 , 𝑊𝑐𝑢𝑡(𝐺)
is the sum of weights of cut edges 𝐸𝑐𝑢𝑡(𝐺), and 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙) is the weight
of edge 𝑒𝑖,𝑘, 𝑗,𝑙.

Fig. 4 illustrates a stream application 𝐺 partitioned into four sub-
graphs. The objective of subgraph partitioning is to maximize and
equalize the internal communication traffic within each subgraph while
minimizing inter-subgraph communication. The subsequent section dis-
cusses the resource consumption problem related to these subgraphs.

4.2. Resource scaling

Computational resources are not infinite, making it essential to use
them efficiently. In real-world applications, we need to consider the re-
source scaling problem during the scheduling process. Resource scal-
ing refers to the process of configuring computational resources based

Fig. 4. Example of balanced graph partitioning scheme.

on the current data stream rate, aiming to effectively prevent perfor-
mance degradation due to insufficient resources while minimizing re-
source waste. A critical consideration before scheduling stream applica-
tions to the cluster is ensuring that no individual compute node becomes
overloaded, while simultaneously minimizing resource wastage within
those nodes.

In the context of subgraphs partitioning, we need to consider the
resource requirements of each subgraph to prevent resource overload
when scheduling subgraph tasks to compute nodes. The resource de-
mand for each subgraph can be determined by aggregating the resource
requirements of all tasks within that subgraph, as described by Eq. (10):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖)

𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

,

𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖)

𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

,

𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖)

𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

,

(10)

where 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

, 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

 and 𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

 represent the average CPU, memory
and I/O resource demands of subgraph 𝐺𝑠𝑢𝑏

𝑖 in statistical time frame 𝑠𝑡,
respectively.

After the subgraph is scheduled to a compute node, that node may
still have sufficient resources to run additional subgraphs. To ensure
efficient utilization of computational resources, we calculate the CPU,
memory and I/O resource requirements of the stream application 𝐺, as
described by Eq. (11):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅𝑐
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

𝑅𝑚
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

𝑅𝑖𝑜
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

(11)

where 𝑅𝑐
𝐺,𝑠𝑡, 𝑅𝑚

𝐺,𝑠𝑡 and 𝑅𝑖𝑜
𝐺,𝑠𝑡 are the average CPU, memory and I/O re-

source requirements of the stream application 𝐺 in 𝑠𝑡, respectively.
Subsequently, we choose some compute nodes (𝑚𝑐𝑛) to serve as our

operational nodes, indicated by 𝑂𝑁 = {𝑜𝑛𝑖|𝑖 ∈ {1, 2,… , 𝑚𝑐𝑛}}, while the
other nodes are considered idle nodes, represented by 𝐼𝑁 = {𝑖𝑛𝑖|𝑖 ∈
{1, 2,… , 𝑛𝑐𝑛 − 𝑚𝑐𝑛}}. The available computational resources of these op-
erational nodes must exceed the resource requirements of subgraphs.
The available computational resources of these operational nodes can
be calculated by Eq. (12):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑐
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑐
𝑜𝑛𝑖 ,𝑠𝑡

,

𝐴𝑚
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑚
𝑜𝑛𝑖 ,𝑠𝑡

,

𝐴𝑖𝑜
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑖𝑜
𝑜𝑛𝑖 ,𝑠𝑡

,

(12)

where 𝐴𝑐
𝑂𝑁,𝑠𝑡, 𝐴𝑚

𝑂𝑁,𝑠𝑡 and 𝐴𝑖𝑜
𝑂𝑁,𝑠𝑡 are the available CPU, memory and I/O

resources of operational nodes, respectively. 𝐴𝑐
𝑜𝑛𝑖 ,𝑠𝑡

, 𝐴𝑚
𝑜𝑛𝑖 ,𝑠𝑡

 and 𝐴𝑖𝑜
𝑜𝑛𝑖 ,𝑠𝑡

 are
the available CPU, memory and I/O resources of an individual opera-
tional node.

As shown in Fig. 5, resource scaling consists of two operations: re-
source shrink and resource extend. As the data stream rate decreases,
the computational resources required for running a stream application
are reduced, enabling us to achieve similar system performance with
fewer compute nodes. On the other hand, when the stream rate in-
creases, the required resources grow, necessitating the deployment of
additional compute nodes to sustain optimal system performance.

4.3. Task scheduling

After a stream application 𝐺 is partitioned into 𝑘 subgraphs, the sub-
sequent task scheduling problem involves selecting 𝑘 compute nodes

Future Generation Computer Systems 175 (2026) 108119

5

Y. Fan et al.

Fig. 5. Example of resource scaling.

from the available compute nodes and assigning the subgraphs to these
nodes. A compute node may run multiple subgraphs; however, each sub-
graph can only be assigned to a single compute node. We denote 𝑓 𝑑𝑒

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

as the decision factor for mapping a subgraph 𝐺𝑠𝑢𝑏
𝑖 to a compute node

𝑐𝑛𝑗 . It can be calculated by Eq. (13):

𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

=

{

1, If 𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

> 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

and 𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

> 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

0, Otherwise.
(13)

where 𝑖 ∈ {1, 2,… , 𝑘}, and 𝑗 ∈ {1, 2,… , 𝑛𝑐𝑛}. 𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 determines
whether subgraph 𝐺𝑠𝑢𝑏

𝑖 can be assigned to compute node 𝑐𝑛𝑗 . 𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

 and
𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

 are the available CPU and memory resources of compute node 𝑐𝑛𝑗
in statistical time frame 𝑠𝑡, respectively. 𝑅𝑐

𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

 and 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

 represent the
CPU and memory resource requirements of 𝐺𝑠𝑢𝑏

𝑖 in 𝑠𝑡.
Since multiple compute nodes may satisfy the resource requirements

of 𝐺𝑠𝑢𝑏
𝑖 , it is essential to identify the most suitable compute node for

Fig. 6. Example of task scheduling at subgraph level.

scheduling 𝐺𝑠𝑢𝑏
𝑖 . For this purpose, we use 𝑓𝑓𝑖𝑡

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 as the fitness factor
for scheduling subgraph 𝐺𝑠𝑢𝑏

𝑖 to compute node 𝑐𝑛𝑗 . Subgraph 𝐺𝑠𝑢𝑏
𝑖 will

be scheduled to the compute node with the highest 𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

, calculated
by Eq. (14):
𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

= 𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

⋅ 𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

, (14)

where 𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 represents the resource surplus of 𝑐𝑛𝑗 after scheduling
𝐺𝑠𝑢𝑏
𝑖 to it. The resource surplus is calculated by Eq. (15):

𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

= 𝛾 ⋅ (𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

) + 𝛿 ⋅ (𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

) (15)

+ (1 − 𝛾 − 𝛿) ⋅ (𝐴𝑖𝑜
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

),

where 𝛾 and 𝛿 are the weights used to balance CPU, memory and I/O re-
sources, 𝛾, 𝛿 ∈ [0, 1] and 𝛾 + 𝛿 < 1. The values of 𝛾 and 𝛿 are determined
based on resource usage characteristics. For example, if CPU is a bot-
tleneck while memory and I/O are sufficient, 𝛾 can be set to 1 and 𝛿 to
0. Conversely, if memory becomes more constrained, 𝛾 should decrease
and 𝛿 should increase accordingly.

An example of subgraph scheduling is shown in Fig. 6. As previously
mentioned, multiple compute nodes may satisfy the resource require-
ments of a subgraph, and the compute node with the highest fitness
factor is selected.

5. Ra-Stream: architecture and algorithms

Based on the theoretical analysis presented earlier, we propose a
fine-grained task scheduling strategy for resource auto-scaling called
Ra-Stream, implemented on the Apache Storm platform. In this section,
we provide an overview of the strategy, including its system architec-
ture and the algorithms used for subgraph partitioning, resource scal-
ing, and task scheduling. Since Apache Storm, Apache Flink, and Spark
Streaming all utilize a master-slave architectural design, and rely on
dynamic task allocation across distributed compute nodes, our schedul-
ing strategy is theoretically applicable to the other two stream process-
ing platforms.

Although some components of Ra-Stream employ standard tech-
niques, our innovation lies in the introduction of a novel subgraph par-
titioning component that achieves a balanced communication-intensive
subgraph partitioning. Furthermore, to address the issues of resource

Future Generation Computer Systems 175 (2026) 108119

6

Y. Fan et al.

overload and waste caused by fluctuations in data stream rates, we pro-
pose an innovative resource scaling algorithm that automatically adjusts
computational resources based on current data stream rates, ensuring
efficient utilization and conservation of computational resources. These
methods provide a new approach to scheduling strategies in distributed
stream computing systems.

5.1. System architecture

As shown in Fig. 7, the architecture of Ra-Stream consists of four
main components: Scheduling trigger, Subgraph partition, Resource
scaling, and Data monitor.

Scheduling trigger reads the current operational status of the
stream application from the Database and determines whether to trigger
a new scheduling event.

Subgraph partition divides the stream application into multiple bal-
anced communication-intensive subgraphs according to the communi-
cation relationships among tasks in the stream application.

Resource scaling adjusts the subgraph partitioning results to deter-
mine the minimum number of compute nodes required, ensuring that no
compute node is overloaded or resources are wasted after scheduling.

Data monitor is responsible for the real-time collection of resource
utilization data from all compute nodes, as well as the resource require-
ments of tasks, data stream rates, and the volume of data transferred
between tasks.

The Scheduler deploys tasks onto compute nodes in a fine-grained
manner to minimize communication cost.

5.2. Subgraph partitioning

The objective of subgraph partitioning is to divide the stream ap-
plication into multiple balanced communication-intensive subgraphs.
Inspired by the principles of the simulated annealing algorithm [37],
known for its effectiveness in global optimization, we develop a intelli-
gent subgraph partitioning algorithm.

Given that it is not possible to determining the minimum number
of compute nodes required to execute the stream application before

Fig. 7. Ra-Stream’s architecture.

scheduling it to the cluster, we set the number of subgraphs to be equal
to the number of compute nodes in the cluster, that is, 𝑘 = 𝑛. To achieve
balanced subgraphs (refer to Eq. (9)), we incorporate the variance of the
internal weight sums of the subgraphs, 𝜎𝑊 , into our objective function,
as shown in Eq. (16):

𝜎𝑊 =

√

√

√

√
1
𝑘

𝑘
∑

𝑖=1
[𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖) −𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏)]2, (16)

subject to:

𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏) = 1
𝑘

𝑘
∑

𝑖=1
𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖), (17)

where 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏) is the average weight of all subgraphs.
Due to the variations in data stream rates, edge weights differ, mak-

ing it impractical to rely solely on absolute values in the objective func-
tion. Instead, we use the ratio of cut edge weights to the total weights
of edges in 𝐺, as illustrated in Eq. (18):

𝑟 =
𝑊𝑐𝑢𝑡(𝐺)

𝑊𝑐𝑢𝑡(𝐺) +𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏)
=

∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸𝑐𝑢𝑡(𝐺) 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙)
∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸(𝐺) 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙)
, (18)

By combining Eqs. (16) and (18), we obtain our objective function
𝑓 (𝑥), described in Eq. (19):
𝑓 (𝑥) = 𝜖 ⋅ 𝑟 + (1 − 𝜖) ⋅ 𝜎𝑊 , (19)

where 𝑥 is the current subgraph partitioning scheme, 𝜖 is the weight
factor that combines the ratio of cut edge weights 𝑟 and the variance
of internal weight sums of the subgraphs 𝜎𝑊 . In extreme cases, if the
tuple transmission rates between tasks in the stream application are all
equal, there will be no unbalanced subgraph partitioning schemes, and
thus 𝜖 should be set to 1. Conversely, the value of 𝜖 should decrease as
the differences in tuple transmission rates between tasks increase. After
defining the objective function, we outline the algorithmic workflow for
the initial subgraph partitioning phase in Algorithm 1.

Algorithm 1: Subgraph partitioning.
Input: 𝐺, 𝑘, 𝑛, 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑇0, 𝜁 , 𝑇𝑓 .
Output: Subgraph partitioning scheme 𝑋.

1 𝑘 ← 𝑛;
2 Initialize partition 𝐺 to 𝑘 subgraphs and denote as 𝑥0;
3 𝑋 ← 𝑥0;
4 Calculate 𝑓 (𝑥0) according to Eq. (19) and denote as 𝑓 (𝑋);
5 Initialize current temperature 𝑇 ← 𝑇0;
6 Set the current iteration count 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 0;
7 while 𝑇 > 𝑇𝑓 do
8 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 < max_𝑖𝑡𝑒𝑟 do
9 Generate a neighboring solution 𝑥𝑖 by moving a

random task to a different subgraph;
10 Calculate the 𝑓 (𝑥𝑖) according to Eq. (19);
11 if 𝑓 (𝑥𝑖) ≤ 𝑓 (𝑋) then
12 𝑋 ← 𝑥𝑖;
13 end
14 else
15 Accept 𝑥𝑖 with probability 𝑝𝑖 according to Eq. (20);
16 end
17 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 + 1;
18 end
19 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 0; 𝑇 ← 𝜁 ⋅ 𝑇 ;
20 end
21 return 𝑋.

The input to Algorithm 1 includes the stream application 𝐺, the
number of subgraphs 𝑘, the number of compute nodes 𝑛, tuple trans-
mission rate between tasks 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), maximum number of iterations

Future Generation Computer Systems 175 (2026) 108119

7

Y. Fan et al.

𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, initial temperature 𝑇0, cooling rate 𝜁 , and final temperature
𝑇𝑓 . The output is a balanced communication-intensive subgraph par-
titioning scheme 𝑋. Steps 1 to 6 prepare the algorithm for execution.
Steps 8 to 17 form the inner loop, where new solutions are generated,
the objective function is calculated, and the solution is accepted or re-
jected. Steps 7 to 20 form the outer loop, representing the cooling phase.
The current temperature is set to start from the initial temperature 𝑇0,
and is repeatedly multiplied with the cooling rate 𝜁 until the current
temperature is less than or equal to the final temperature 𝑇𝑓 . In steps 4
and 10, user can choose the value of 𝜖 in Eq. (19). The time complexity
of Algorithm 1 is 𝑂(𝑙𝑜𝑔 1

𝜁
(𝑇0𝑇𝑓

) ⋅ 𝑚), where 𝑚 is the maximum number of
iterations.

As Algorithm 1 operates, new subgraph partitioning schemes are pro-
gressively explored in the neighborhood of the current scheme. Each
new scheme is evaluated against the current one using Eq. (19), and
based on the Metropolis acceptance criterion, inferior subgraph schemes
are accepted with a probability 𝑝𝑖, calculated using Eq. (20):

𝑝𝑖 = exp(
𝑓 (𝑥𝑖)−𝑓 (𝑋)

𝑇), (20)

At high initial temperatures, inferior schemes are accepted with higher
probability, promoting extensive exploration of the solution space and
mitigating the risk of local convergence. As the temperature gradually
decreases according to the cooling rate 𝜁 , the probability of accepting
poorer inferior schemes diminishes, and the search increasingly focuses
on the neighborhoods of better partitioning solutions. Ultimately, as the
temperature approaches the final value 𝑇𝑓 , the algorithm converges near
the globally optimal subgraph partitioning scheme 𝑋.

5.3. Resource scaling

To facilitate efficient utilization of computational resources, we eval-
uate the resource demands of subgraphs prior to task scheduling. This al-
lows for the selection of compute nodes that satisfy these requirements,
ensuring high system performance at minimal resource cost. For this
purpose, we define two thresholds for each compute node: the under-
load threshold 𝑇𝑢𝑛𝑑𝑒𝑟 and the overload threshold 𝑇𝑜𝑣𝑒𝑟. We aim to achieve
a balanced state where, after scheduling subgraphs to compute nodes,
the resource utilization of each node lies within the range 𝑇𝑢𝑛𝑑𝑒𝑟 and
𝑇𝑜𝑣𝑒𝑟. To identify the subgraphs requiring adjustment, we introduce a
Boolean factor 𝑓 𝑎𝑑𝑗

𝐺𝑠𝑢𝑏
𝑖
, which determines whether a subgraph 𝐺𝑠𝑢𝑏

𝑖 needs
adjustment according to its resource requirement 𝑅𝐺𝑠𝑢𝑏

𝑖
. This is defined

in Eq. (21):

𝑓 𝑎𝑑𝑗
𝐺𝑠𝑢𝑏
𝑖

=

⎧

⎪

⎨

⎪

⎩

𝑇 𝑟𝑢𝑒, (𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑢𝑛𝑑𝑒𝑟) ∨ (𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟),

𝐹 𝑎𝑙𝑠𝑒, 𝑇𝑢𝑛𝑑𝑒𝑟 < 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑜𝑣𝑒𝑟,
(21)

when 𝑇𝑢𝑛𝑑𝑒𝑟 < 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑜𝑣𝑒𝑟, the subgraph can be directly scheduled to a
compute node. However, when 𝑅𝐺𝑠𝑢𝑏

𝑖
< 𝑇𝑢𝑛𝑑𝑒𝑟 or 𝑅𝐺𝑠𝑢𝑏

𝑖
> 𝑇𝑜𝑣𝑒𝑟, the sub-

graph needs to be adjusted before scheduling. The resource scaling pro-
cess is outlined in Algorithm 2.

The input to Algorithm 2 includes the subgraph partitioning scheme
𝑋, resource requirements of subgraphs 𝑅𝐺𝑠𝑢𝑏

𝑖
, and the thresholds 𝑇𝑢𝑛𝑑𝑒𝑟

and 𝑇𝑜𝑣𝑒𝑟. The output is the resource scaling scheme 𝑅𝑆, comprising
adjusted subgraphs. The number of subgraphs in 𝑅𝑆 indicates the min-
imum required compute nodes. Steps 4 to 18 handle adjustments for
subgraphs with resource requirement below 𝑇𝑢𝑛𝑑𝑒𝑟, including subgraph
merging (Steps 6-10) and inter-subgraph task adjustment (Steps 13-15).
Steps 22-27 handle the adjustment of subgraphs whose resource de-
mands exceed 𝑇𝑜𝑣𝑒𝑟 through inter-subgraph task adjustment. The time
complexity of Algorithm 2 is 𝑂(𝑚 ⋅ 𝑙𝑜𝑔𝑛), where 𝑚 is the number of tasks
in a subgraph and 𝑛 is the number of subgraphs in 𝑋.

Algorithm 2: Resource scaling.
Input: 𝑋, 𝑅𝐺𝑠𝑢𝑏

𝑖
, 𝑇𝑢𝑛𝑑𝑒𝑟, 𝑇𝑜𝑣𝑒𝑟.

Output: Resource scaling scheme 𝑅𝑆.
1 Sort the subgraphs in 𝑋 in ascending order based on their

resource requirements;
2 while 𝑋 ≠ ∅ do

/* If target subgraph’s resource requirement is
less than underload threshold. */

3 if 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑢𝑛𝑑𝑒𝑟 then
4 𝐺𝑠𝑢𝑏

𝑚𝑎𝑡𝑐ℎ ← ∅;
5 Identify a matched subgraph 𝐺𝑠𝑢𝑏

𝑗 for merging via
binary search;

6 𝐺𝑠𝑢𝑏
𝑚𝑎𝑡𝑐ℎ ← 𝐺𝑠𝑢𝑏

𝑗 ;
/* If merging candidate is found, merge it

with the target. */
7 if 𝐺𝑠𝑢𝑏

𝑚𝑎𝑡𝑐ℎ ≠ ∅ then
8 𝐺𝑠𝑢𝑏

𝑡𝑒𝑚𝑝 ← 𝐺𝑠𝑢𝑏
𝑖 + 𝐺𝑠𝑢𝑏

𝑗 ;
9 Put 𝐺𝑠𝑢𝑏

𝑡𝑒𝑚𝑝 into 𝑅𝑆;
10 Remove 𝐺𝑠𝑢𝑏

𝑖 and 𝐺𝑠𝑢𝑏
𝑗 from 𝑋;

11 end
/* If no merging candidate is found, find a

task-adjusting candidate and move its task
into the target. */

12 else
13 while 𝑅𝐺𝑠𝑢𝑏

𝑖
< 𝑇𝑢𝑛𝑑𝑒𝑟 do

14 Identify a matched subgraph 𝐺𝑠𝑢𝑏
𝑗 for task

adjusting via binary search;
15 Select task 𝑣𝑖,𝑘 with minimal impact on the

weight of 𝐺𝑠𝑢𝑏
𝑗 ;

16 Put 𝑣𝑖,𝑘 into 𝐺𝑠𝑢𝑏
𝑖 from 𝐺𝑠𝑢𝑏

𝑗 ;
17 end
18 Put 𝐺𝑠𝑢𝑏

𝑖 into 𝑅𝑆;
19 Remove 𝐺𝑠𝑢𝑏

𝑖 from 𝑋;
20 end
21 end

/* If target subgraph’s resource requirement is
greater than overload threshold */

22 else if 𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟 then
23 while 𝑅𝐺𝑠𝑢𝑏

𝑖
> 𝑇𝑜𝑣𝑒𝑟 do

24 Identify a matched subgraph 𝐺𝑠𝑢𝑏
𝑗 for task

adjusting via binary search;
25 Identify task 𝑣𝑖,𝑘 with minimal impact on the

weight of 𝐺𝑠𝑢𝑏
𝑖 ;

26 Put 𝑣𝑖,𝑘 into 𝐺𝑠𝑢𝑏
𝑗 from 𝐺𝑠𝑢𝑏

𝑖 ;
27 end
28 Put 𝐺𝑠𝑢𝑏

𝑖 into 𝑅𝑆;
29 Remove 𝐺𝑠𝑢𝑏

𝑖 from 𝑋;
30 else
31 Put 𝐺𝑠𝑢𝑏

𝑖 into 𝑅𝑆;
32 end
33 end
34 return 𝑅𝑆.

5.4. Fine-grained task scheduling

As described in Section 3.2, when we schedule the task set to com-
pute nodes at the subgraph level, inter-node communication is effec-
tively converted into intra-node communication to reduce communi-
cation costs. However, within a subgraph, the communication traffic
between tasks may vary, leading to the presence of communication-
intensive task pairs. To address this, our scheduling algorithm consists

Future Generation Computer Systems 175 (2026) 108119

8

Y. Fan et al.

of two components: scheduling subgraphs to compute nodes (coarse-
grained) and scheduling tasks within the processes of compute nodes
(fine-grained). Communication-intensive task pairs within a subgraph
are allocated to the same process on a compute node to further mini-
mize communication costs.

For tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙, the communication cost within a process is
negligible compared to costs between nodes or processes. Therefore, we
set intra-process communication cost to 0. To quantify the cost benefits
of co-locating communication-intensive tasks, we define the cost sav-
ings from transforming inter-node to intra-node communication over a
statistical time frame 𝑠𝑡 using Eq. (22), and from inter-process to intra-
process using Eq. (23):
𝐶𝑠,𝑠𝑡
𝑣𝑖,𝑘 ,𝑣𝑗,𝑙

= 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) ⋅ (𝐶𝑐𝑜𝑚
𝐶𝑁 − 𝐶𝑐𝑜𝑚

𝐶𝑃) ⋅ 𝑠𝑡, (22)

𝐶𝑠,𝑠𝑡
𝑣𝑖,𝑘 ,𝑣𝑗,𝑙

= 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) ⋅ 𝐶𝑐𝑜𝑚
𝐶𝑃 ⋅ 𝑠𝑡, (23)

where 𝐶𝑐𝑜𝑚
𝐶𝑁 and 𝐶𝑐𝑜𝑚

𝐶𝑃 represent the per-tuple communication costs across
nodes and across processes, respectively.

Before scheduling subgraphs to compute nodes, it is essential to
consider the available computational resources of the current compute
nodes. As previously mentioned, multiple compute nodes may satisfy
the resource requirement of a subgraph. To handle this, we select com-
pute nodes based on Eq. (14), ensuring that the selected compute node
retains sufficient available resources to handle sudden increases in re-
source requirement caused by spikes in data streams. The detailed steps
of our scheduling algorithm are outlined in Algorithm 3.

Algorithm 3: Fine-grained task scheduling.
Input: 𝑅𝑆, 𝐶𝑁 , 𝑇 (𝐺𝑠𝑢𝑏

𝑖), 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙).
Output: Scheduling scheme 𝑆𝑆.

1 for 𝐺𝑠𝑢𝑏
𝑖 in 𝑅𝑆 do

2 Find compute nodes that satisfy the resource requirement
𝑅𝐺𝑠𝑢𝑏

𝑖
 of subgraph 𝐺𝑠𝑢𝑏

𝑖 according to Eq. (13);
3 Calculate 𝑓𝑓𝑖𝑡

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 for these compute nodes based on Eq.
(14);

4 Schedule 𝐺𝑠𝑢𝑏
𝑖 to the compute node with highest value of

𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

;

5 while the number of tasks in 𝑇 (𝐺𝑠𝑢𝑏
𝑖) > 1 do

6 Place the task pair (𝑣𝑖,𝑘, 𝑣𝑗,𝑙) with the highest
𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) in the same process;

7 Remove 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙 from 𝑇 (𝐺𝑠𝑢𝑏
𝑖);

8 end
9 Remove 𝐺𝑠𝑢𝑏

𝑖 from 𝑅𝑆;
10 end
11 return 𝑆𝑆.

The input to Algorithm 3 includes the resource scaling 𝑅𝑆, com-
pute node set 𝐶𝑁 , task set within each subgraph 𝑇 (𝐺𝑠𝑢𝑏

𝑖), and the tuple
communication rate between tasks 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙). The output is the fine-
grained task scheduling scheme 𝑆𝑆 for application 𝐺. Steps 2 to 4 de-
scribe the coarse-grained scheduling process, which involves scheduling
tasks to compute nodes. Steps 6 to 7 describe the fine-grained scheduling
process, which involves placing communication-intensive task pairs in
the same process. The time complexity of Algorithm 3 is 𝑂(𝑚 ⋅ 𝑛), where
𝑚 is the number of subgraphs in 𝑅𝑆 and 𝑛 is the number of tasks within
a subgraph.

5.5. System implementation

The time complexity analysis for each algorithm shows that the over-
head introduced by Ra-Stream remains within tolerable limits. While
the Ra-Stream modules do introduce some time overhead, the impact
is minimal and does not degrade system performance. These modules

are designed to optimize system performance, and their effectiveness is
validated through the experiments in Section 6.

Ra-Stream primarily utilizes Storm’s built-in interfaces, IMetric
and IMetricConsumer, to track and collect runtime information.
This includes communication traffic between tasks in the stream
application, resource loads on compute nodes, and available com-
putational resources. The resource load on compute nodes can be
monitored using Linux system interface commands. Ra-Stream’s
scheduler is implemented via Storm’s built-in interface, IScheduler.

6. Performance evaluation

According to [38], we evaluate the proposed Ra-Stream in a real-
world distributed computing environment. First, we present our ex-
perimental setup and parameter configurations. Next, we outline the
datasets and stream applications used for testing. Finally, we provide a
thorough analysis of the results.

6.1. Experimental setup

Our distributed compute cluster consists of 15 machines, including 1
management node and 14 compute nodes. Each compute node is pow-
ered by an Intel(R) Xeon(R) X5650 CPU (dual-core, 2.4GHz), equipped
with 2 GB of RAM, and a 100Mbps Ethernet interface card. The manage-
ment node is responsible for running Nimbus and Zookeeper to maintain
the overall operation of the cluster, while the compute nodes run Super-
visor to handle stream applications. Each compute node is configured
to deploy a maximum of two Workers, with each Worker running up to
two tasks. For clarity, we exhibit the software configurations in Table 3,
and the parameter configuration of Ra-Stream in Table 4.

During the experiment, we use the public dataset Alibaba Tianchi
[39] as the data source for the real-time word counting application
(WordCount application), and use the public dataset provided by Back-
blaze [40] as the data source for the DEBS 2024 Grand Challenge:
Telemetry data for hard drive failure prediction and predictive main-
tenance [41]. The topologies of the two applications are illustrated in
Figs. 2 and 8, respectively.

In the DEBS 2024 topology (Fig. 8), ‘Data Source’ acts as the Spout,
sending real-time data downstream. ‘Data Filter’ removes invalid or in-
complete data. ‘Event Detection’ identifies specific event patterns. ‘Ag-
gregation’ computes real-time statistics using a sliding window, and the
aggregated results are stored in the database by ‘Data Storage’. ‘Anomaly
Detection’ identifies anomalies in the data stream and sends these events
to ‘Alert System’. Finally, ‘Alert System’ generates alert notifications and
disseminates them through a message queue. State migration is involved

Table 3
Software configuration of experimental envi-
ronment.

 Software Version
 OS Ubuntu 20.04 64 bit
 Apache Storm Apache-storm-2.1.0
 JDK jdk-8u171-linux-x64
 Apache Zookeeper Apache-Zookeeper-3.5.7
 Python Python 3.8.3
 MySQL MySQL-8.0.40
 Apache Kafka kafka-2.12-3.0.0

Table 4
Ra-Stream’s parameter configuration.
 Parameter Value Parameter Value
𝛼 0.50 𝛽 0.35
𝜖 0.70 𝜁 0.99
𝛾 0.50 𝛿 0.35
𝑇𝑢𝑛𝑑𝑒𝑟 0.60 𝑇𝑜𝑣𝑒𝑟 0.75

Future Generation Computer Systems 175 (2026) 108119

9

Y. Fan et al.

Fig. 8. Topology of DEBS 2024.

Fig. 9. System latency of WordCount under stable stream rates.

during the task scheduling [42]. In this experiment, we employ Storm’s
check-point mechanism for state management [43].

6.2. System latency

System latency is defined as the time elapsed from the moment a
tuple enters the system until it is fully processed. We assess the system
latency of Ra-Stream under varying data stream rates and compare it
with the state-of-the-art solutions, EvenScheduler [44] and SP-Ant [21].
EvenScheduler is the default scheduler in Storm and has been widely ref-
erenced in prior studies as a baseline [26,27,31]. SP-Ant, a recent and
open-source scheduling framework, reduces communication overhead
and achieves competitive system performance by dynamically adjusting
operator assignments based on the computational capabilities of com-
pute nodes.

Under a stable data stream rate of 3000 tuples/s, Ra-Stream demon-
strates significantly lower system latency compared to the other two so-
lutions. As shown in Fig. 9, the average system latencies of WordCount
are 5.26 ms, 7.81 ms and 11.57 ms for Ra-Stream, SP-Ant and Even-
Scheduler, respectively. SP-Ant places communication-intensive tasks
on the same computation node without considering the resource utiliza-
tion of that node, resulting in node overload and consequently higher
system latency.

Similarly, under the same stable data rate, Fig. 10 shows the aver-
age system latency of DEBS 2024 application. EvenScheduler and SP-Ant
yield latency of 20.01 ms and 15.80 ms, respectively, while Ra-Stream
achieves an average system latency of only 10.61 ms. Ra-Stream demon-
strates greater stability compared to the apparent latency fluctuations
observed with EvenScheduler and SP-Ant. This improved stability is at-

Fig. 10. System latency of DEBS 2024 under stable stream rates.

Fig. 11. System latency of WordCount under increasing stream rates.

tributed to Ra-Stream’s ability to prevent compute node overloads, en-
suring that each task has sufficient resources to process tuples.

Under increasing data stream rates, Ra-Stream consistently demon-
strates reduced system latency compared to SP-Ant and EvenScheduler.
We set an initial data stream rate of 1000 tuples/s. After system metrics
such as latency stabilize, we collect performance data for 10 min. The
data stream rate is then increased in 1000 tuples/s increments, with sta-
bilization and data collection occurring at each step, up to 5000 tuples/s.
As shown in Figs. 11 and 12, the average system latencies of WordCount
and DEBS 2024 increase for all solutions as the data stream rate grows.
However, Ra-Stream experiences a smaller increase in latency compared
to SP-Ant and EvenScheduler, maintaining a performance advantage.

In summary, Ra-Stream demonstrates excellent system latency,
whether the data stream rate is stable or increasing. This is be-
cause Ra-Stream effectively prevents overload situations in the cluster’s
compute nodes, guaranteeing that each task in the stream application
has ample computational resources to steadily process tuples. In addi-
tion, Ra-Stream minimizes communication costs between tasks, further
reducing system latency.

6.3. System throughput

Maximum system throughput is defined as the highest data stream
rate that a system can steadily process without failure. In stream com-
puting systems, if any task within the stream application fails as the
data stream rate increases, the corresponding data stream rate is identi-
fied as the system’s maximum throughput. To determine the maximum

Future Generation Computer Systems 175 (2026) 108119

10

Y. Fan et al.

Fig. 12. System latency of DEBS 2024 under increasing stream rates.

Fig. 13. Maximum throughput of WordCount and DEBS 2024 under Ra-Stream,
SP-Ant and EvenScheduler.

throughput for Ra-Stream, SP-Ant, and EvenScheduler, we deploy them
on our cluster and run stream applications under incremental data rates.
For fairness, the computational resource configurations, datasets, and
stream applications used are kept identical across all experiments.

Under an increasing data stream rate with increments of 500 tu-
ples/s, Ra-Stream demonstrates a higher maximum throughput than
the others. As shown in Fig. 13, for WordCount and DEBS 2024, Ra-
Stream achieves maximum throughputs of 14,500 tuples/s and 12,000
tuples/s, respectively. These values represent a significant improvement
over EvenScheduler and SP-Ant.

The superior performance of Ra-Stream is attributed to its ability
to automatically configure the scheduling scheme for tasks based on
the current data stream rate, thereby preventing task failures caused by
insufficient computational resources. Before generating the scheduling
scheme, Ra-Stream systematically adjusts tasks among subgraphs. This
approach ensures that, once tasks are scheduled to compute nodes at the
subgraph level, each task is allocated sufficient resources to execute.

6.4. Resource utilization

Resource utilization refers to the proportion of utilized resources rel-
ative to the total resources at runtime. The focus on runtime resource uti-
lization for stream applications is a prevalent topic in current research.
For example, one key consideration is how to achieve optimal system
performance with a reduced number of compute nodes. However, the
number of compute nodes used does not directly reflect the resource
utilization within an individual compute node. For instance, excessively

Fig. 14. Number of compute nodes utilized in WordCount and DEBS 2024 under
stable stream rates.

Fig. 15. Number of compute nodes utilized in WordCount under fluctuating
stream rates.

low resource utilization in a compute node indicates significant resource
wastage, which is clearly undesirable. To address this, we employ two
metrics to assess Ra-Stream’s resource utilization: the number of com-
pute nodes used within the cluster and the average resource utilization
within compute nodes. The average resource utilization consists of CPU,
memory and I/O resources, which can be calculated by Eq. (6).

Under a stable data stream rate of 3000 tuples/s, Ra-Stream can ad-
just the number of compute nodes to adapt to the data rate. As shown
in Fig. 14, for the two stream applications, WordCount and DEBS 2024,
Ra-Stream utilizes 7 and 8 compute nodes, respectively. These figures
are significantly fewer than the number of compute nodes utilized by
SP-Ant and EvenScheduler.

Under fluctuating data stream rates, Ra-Stream automatically adjusts
the utilization of compute nodes to accommodate current data stream
conditions. To simulate real-world fluctuating workloads, we define a
time-varying data stream profile. For example, the data stream rate in-
creases from 1800 tuples/s to 3000 tuples/s at 60 s, and decreases from
2700 tuples/s to 2000 tuples/s at 330 s. This enables the observation
of Ra-Stream’s dynamic resource scaling and performance adaptabil-
ity under fluctuating load conditions. In our experiment, the peak data
stream rate is set to 4500 tuples/s at 210 s. As shown in Figs. 15 and
16, Ra-Stream dynamically adjusts the number of compute nodes for
both WordCount and DEBS 2024 applications in response to changing
data rates. Initially, Ra-Stream’s number of compute nodes matches that
of EvenScheduler. Subsequently, Ra-Stream generates a new scheduling
plan suitable for the current data rate 1800 tuples/s at runtime 30s,

Future Generation Computer Systems 175 (2026) 108119

11

Y. Fan et al.

Fig. 16. Number of compute nodes utilized in DEBS 2024 under fluctuating
stream rates.

Fig. 17. Average resource utilization in WordCount under fluctuating stream
rates.

adjusting the node number (from 14 to 5 in WordCount and from 14 to
7 in DEBS 2024).

Throughout the runtime, Ra-Stream continues to adapt to the fluc-
tuating streams. For example, when the data rate increases from 3000
tuples/s to 4500 tuples/s at runtime 210s, Ra-Stream scales up the node
number (from 7 to 10 in WordCount, and from 8 to 11 in DEBS 2024)
to ensure stable system operation. Conversely, when the rate decreases
from 4500 tuples/s to 2700 tuples/s at runtime 270s, Ra-Stream reduces
the node number (from 10 to 7 in WordCount, and from 11 to 8 in DEBS
2024), optimizing resource utilization.

Under fluctuating data stream rates, Ra-Stream also achieves more
efficient average resource utilization. As shown in Figs. 17 and 18,
whether running WordCount or DEBS 2024, Ra-Stream consistently
achieves higher and more stable resource utilization compared to SP-
Ant and EvenScheduler. In contrast, SP-Ant and EvenScheduler exhibit
inefficient resource utilization, which fluctuates with changes in data
rates, leading to wasted resources.

In summary, Ra-Stream not only scales compute node resources au-
tomatically in response to data stream fluctuations, ensuring the stable
operation of stream applications with a minimum number of nodes, but
also achieves more efficient average resource utilization, greatly reduc-
ing resource waste. Ra-Stream demonstrates a substantial improvement
in resource utilization.

7. Conclusion and future work

In scenarios involving fluctuating data streams, minimizing sys-
tem latency, reducing resource costs, and ensuring efficient resource

Fig. 18. Average resource utilization in DEBS 2024 under fluctuating stream
rates.

utilization are critical challenges in current stream computing research.
Achieving these objectives requires a scheduling strategy capable of
sensing changes in data flow rates and accounting for the dependen-
cies among tasks within stream applications. Such a strategy should au-
tomatically adjust computational resources in response to variations in
data streams, while minimizing communication costs through effective
task deployment.

To meet these requirements, this paper proposes a task scheduling
strategy with automated resource scaling designed to handle fluctuating
data streams. Ra-Stream achieves strong system performance in fluctu-
ating data stream scenarios with reduced resource costs. Compared to
state-of-the-art approaches, Ra-Stream reduced system latency by ap-
proximately 36.37% to 47.45%, increased system maximum through-
put by around 26.2% to 60.55%, and saves approximately 40% to
46.25% in resource utilization. Despite these advantages, there re-
main areas for further enhancement, including support for greater task
parallelism, integration of energy-aware scheduling for reduced power
consumption, and improved scalability across other stream processing
frameworks.

In the future, we aim to further explore the following areas:

(1) Task parallelism: Investigating the parallelism of tasks within stream
applications to further reduce system latency.

(2) Energy consumption: Integrating energy consumption metrics of
compute clusters to achieve additional economic and environmen-
tal benefits.

CRediT authorship contribution statement

Yinuo Fan: Conceptualization, Methodology, Validation, Writing –
original draft; Dawei Sun: Methodology, Writing – review & editing,
Funding acquisition; Minghui Wu: Validation, Writing – review & edit-
ing; Shang Gao: Formal analysis, Investigation, Writing – review & edit-
ing; Rajkumar Buyya: Methodology, Writing – review & editing.

Data availability

Data will be made available on request.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Future Generation Computer Systems 175 (2026) 108119

12

Y. Fan et al.

Acknowledgement

This work is supported by the National Natural Science Foundation
of China under Grant No. 62372419; the Fundamental Research Funds
for the Central Universities under Grant No. 265QZ2021001.

References

[1] M. Fragkoulis, P. Carbone, V. Kalavri, A. Katsifodimos, A survey on the evolution of
stream processing systems, The VLDB J. 33 (2) (2024) 507–541.

[2] Z. Wen, R. Yang, B. Qian, Y. Xuan, L. Lu, Z. Wang, H. Peng, J. Xu, A.Y. Zomaya,
R. Ranjan, JANUS: latency-aware traffic scheduling for IoT data streaming in edge
environments, IEEE Trans. Serv. Comput. 16 (6) (2023) 4302–4316.

[3] B. Pishgoo, A.A. Azirani, B. Raahemi, A hybrid distributed batch-stream processing
approach for anomaly detection, Inf. Sci. 543 (2021) 309–327.

[4] Y. Sasaki, A survey on IoT big data analytic systems: current and future, IEEE Inter-
net Things J. 9 (2) (2021) 1024–1036.

[5] S. Zhang, J. Soto, V. Markl, A survey on transactional stream processing, The VLDB
J. 33 (2) (2024) 451–479.

[6] M.D. de Assuncao, A. da Silva Veith, R. Buyya, Distributed data stream processing
and edge computing: a survey on resource elasticity and future directions, J. Netw.
Comput. Appl. 103 (2018) 1–17.

[7] X. Liu, R. Buyya, Resource management and scheduling in distributed stream pro-
cessing systems: a taxonomy, review, and future directions, ACM Comput. Surv.
(CSUR) 53 (3) (2020) 1–41.

[8] N. Tantalaki, S. Souravlas, M. Roumeliotis, A review on big data real-time stream
processing and its scheduling techniques, Int. J. Parallel Emergent Distrib. Syst. 35
(5) (2020) 571–601.

[9] G. Van Dongen, D. Van den Poel, Evaluation of stream processing frameworks, IEEE
Trans. Parallel Distrib. Syst. 31 (8) (2020) 1845–1858.

[10] M. Barika, S. Garg, A.Y. Zomaya, R. Ranjan, Online scheduling technique to handle
data velocity changes in stream workflows, IEEE Trans. Parallel Distrib. Syst. 32 (8)
(2021) 2115–2130.

[11] S. Gurusamy, R. Selvaraj, Resource allocation with efficient task scheduling in cloud
computing using hierarchical auto-associative polynomial convolutional neural net-
work, Expert Syst. Appl. 249 (2024) 123554.

[12] S. Wang, G.-s. Zeng, Two-stage scheduling for a fluctuant big data stream on het-
erogeneous servers with multicores in a data center, Cluster Comput. 27 (2) (2024)
1581–1597.

[13] M. Barika, S. Garg, A. Chan, R.N. Calheiros, Scheduling algorithms for efficient ex-
ecution of stream workflow applications in multicloud environments, IEEE Trans.
Serv. Comput. 15 (02) (2022) 860–875.

[14] P. Ntumba, N. Georgantas, V. Christophides, Adaptive scheduling of continuous op-
erators for IoT edge analytics, Future Gener. Comput. Syst. 158 (2024) 277–293.

[15] X. Fu, B. Tang, F. Guo, L. Kang, Priority and dependency-based DAG tasks offloading
in fog/edge collaborative environment, in: 2021 IEEE 24th International Conference
on Computer Supported Cooperative Work in Design (CSCWD), 2021, pp. 440–445.

[16] A. Al-Sinayyid, M. Zhu, Job scheduler for streaming applications in heterogeneous
distributed processing systems, J. Supercomput. 76 (12) (2020) 9609–9628.

[17] L. Eskandari, J. Mair, Z. Huang, D. Eyers, I-Scheduler: iterative scheduling for
distributed stream processing systems, Future Gener. Comput. Syst. 117 (2021)
219–233.

[18] H. Jin, F. Chen, S. Wu, Y. Yao, Z. Liu, L. Gu, Y. Zhou, Towards low-latency batched
stream processing by pre-scheduling, IEEE Trans. Parallel Distrib. Syst. 30 (3) (2018)
710–722.

[19] H. Röger, R. Mayer, A comprehensive survey on parallelization and elasticity in
stream processing, ACM Comput. Surv. (CSUR) 52 (2) (2019) 1–37.

[20] M. Mortazavi-Dehkordi, K. Zamanifar, Efficient deadline-aware scheduling for the
analysis of big data streams in public cloud, Cluster Comput. 23 (1) (2020) 241–263.

[21] M. Farrokh, H. Hadian, M. Sharifi, A. Jafari, SP-ant: an ant colony optimization
based operator scheduler for high performance distributed stream processing on
heterogeneous clusters, Expert Syst. Appl. 191 (2022) 116322.

[22] H. Li, J. Xia, W. Luo, H. Fang, Cost-efficient scheduling of streaming applications in
apache flink on cloud, IEEE Trans. Big Data 9 (4) (2022) 1086–1101.

[23] A. Brown, S. Garg, J. Montgomery, K.C. Ujjwal, Resource scheduling and provision-
ing for processing of dynamic stream workflows under latency constraints, Future
Gener. Comput. Syst. 131 (2022) 166–182.

[24] A. Momtaz, R. Medhat, B. Bonakdarpour, Resource optimization of stream process-
ing in layered internet of things, in: 2023 42nd International Symposium on Reliable
Distributed Systems (SRDS), 2023, pp. 221–231.

[25] Y. Mao, J. Zhao, S. Zhang, H. Liu, V. Markl, Morphstream: adaptive scheduling for
scalable transactional stream processing on multicores, Proc. ACM Manage. Data 1
(1) (2023) 1–26.

[26] P. Kang, S.U. Khan, X. Zhou, P. Lama, High-throughput real-time edge stream
processing with topology-aware resource matching, in: 2024 IEEE 24th Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid), IEEE, 2024,
pp. 385–394.

[27] R. Ecker, V. Karagiannis, M. Sober, S. Schulte, Latency-aware placement of stream
processing operators in modern-day stream processing frameworks, J. Parallel Dis-
trib. Comput. 199 (2025) 105041.

[28] Y. Li, H. Jiang, Y. Shen, Y. Fang, X. Yang, D. Huang, X. Zhang, W. Zhang, C. Zhang,
P. Chen, et al., Towards general and efficient online tuning for spark, Proc. VLDB
Endow. 16 (12) (2023) 3570–3583.

[29] X. Huang, Z. Shao, Y. Yang, POTUS: predictive online tuple scheduling for data
stream processing systems, IEEE Trans. Cloud Comput. 10 (4) (2020) 2863–2875.

[30] H. Chen, F. Zhang, H. Jin, PStream: a popularity-aware differentiated distributed
stream processing system, IEEE Trans. Comput. 70 (10) (2020) 1582–1597.

[31] W. Li, D. Liu, K. Chen, K. Li, H. Qi, Hone: mitigating stragglers in distributed
stream processing with tuple scheduling, IEEE Trans. Parallel Distrib. Syst.
32 (08) (2021) 2021–2034.

[32] H. Xu, P. Liu, S.T. Ahmed, D. Da Silva, L. Hu, Adaptive fragment-based parallel
state recovery for stream processing systems, IEEE Trans. Parallel Distrib. Syst. 34
(8) (2023) 2464–2478.

[33] Y. Wang, Z. Tari, X. Huang, A.Y. Zomaya, A network-aware and partition-based
resource management scheme for data stream processing, in: Proceedings of the
48th International Conference on Parallel Processing, 2019, pp. 1–10.

[34] R. Pathan, P. Voudouris, P. Stenström, Scheduling parallel real-time recurrent tasks
on multicore platforms, IEEE Trans. Parallel Distrib. Syst. 29 (4) (2017) 915–928.

[35] H. Li, J. Wu, Z. Jiang, X. Li, X. Wei, Task allocation for stream processing with recov-
ery latency guarantee, in: 2017 IEEE International Conference on Cluster Computing
(CLUSTER), 2017, pp. 379–383.

[36] J. Jiang, Z. Zhang, B. Cui, Y. Tong, N. Xu, StroMAX: partitioning-based scheduler for
real-time stream processing system, in: Database Systems for Advanced Applications:
22nd International Conference, DASFAA 2017, Suzhou, China, March 27-30, 2017,
Proceedings, Part II 22, 2017, pp. 269–288.

[37] A.G. Nikolaev, S.H. Jacobson, Simulated annealing, Handb. metaheuristics 146
(2010) 1–39. https://doi.org/10.1007/978-1-4419-1665-5_1

[38] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen, V. Markl, Bench-
marking distributed stream data processing systems, in: 2018 IEEE 34th Interna-
tional Conference on Data Engineering (ICDE), 2018, pp. 1507–1518.

[39] Aliyun, 2021, https://tianchi.aliyun.com/dataset/.
[40] Hard drive test data, 2025, https://www.backblaze.com/cloud-storage/resources/

hard-drive-test-data.
[41] L. De Martini, J. Tahir, C. Doblander, S. Frischbier, A. Margara, The DEBS 2024

grand challenge: telemetry data for hard drive failure prediction, in: Proceedings
of the 18th ACM International Conference on Distributed and Event-based Systems,
2024, pp. 223–228.

[42] B. Del Monte, S. Zeuch, T. Rabl, V. Markl, Rethinking stateful stream processing
RDMA, in: Proceedings of the 2022 International Conference on Management of
Data, 2022, pp. 1078–1092.

[43] Y. Zhuang, X. Wei, H. Li, M. Hou, Y. Wang, Reducing fault-tolerant overhead for
distributed stream processing with approximate backup, in: 2020 29th International
Conference on Computer Communications and Networks (ICCCN), 2020, pp. 1–9.

[44] EvenScheduler. https://github.com/apache/storm/blob/v2.1.0/storm-server/src/
main/java/org/apache/storm/scheduler/EvenScheduler.java.

Yinuo Fan is a postgraduate student at the School of Informa-
tion Engineering, China University of Geosciences, Beijing,
China. He received his Bachelor Degree from North China
University of Science and Technology, Tangshan, China in
2023. His research interests include big data stream comput-
ing, distributed systems, and reinforcement learning.

Dawei Sun is a Professor in the School of Information Engi-
neering, China University of Geosciences, Beijing, PR China.
He received his PhD degree in computer science from North-
eastern University, China in 2012, and conducted the Post-
doctoral research in the department of computer science and
technology at Tsinghua University, China in 2015. His cur-
rent research interests include big data computing, cloud
computing and distributed systems. In these areas, he has au-
thored over 100 journal and conference papers.

Minghui Wu is a PhD student at the School of Informa-
tion Engineering, China University of Geosciences, Beijing,
China. He received his Bachelor Degree in Network Engineer-
ing from Zhengzhou University of Aeronautics, Zhengzhou,
China in 2020. His research interests include big data stream
computing, distributed systems, and blockchain.

Future Generation Computer Systems 175 (2026) 108119

13

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100012226
https://doi.org/10.13039/501100012226
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0001
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0002
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0003
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0004
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0005
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0006
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0007
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0008
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0008
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0008
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0009
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0009
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0010
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0011
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0012
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0013
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0014
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0015
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0016
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0017
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0018
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0019
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0019
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0020
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0020
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0021
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0022
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0023
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0024
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0025
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0026
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0027
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0028
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0029
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0029
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0030
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0031
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0032
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0033
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0034
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0034
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0035
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0035
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0035
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0036
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0036
https://doi.org/10.1007/978-1-4419-1665-5_1
https://doi.org/10.1007/978-1-4419-1665-5_1
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0038
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0038
https://tianchi.aliyun.com/dataset/
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
https://www.backblaze.com/cloud-storage/resources/hard-drive-test-data
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0039
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0040
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0041
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0041
http://refhub.elsevier.com/S0167-739X(25)00413-3/sbref0041
https://github.com/apache/storm/blob/v2.1.0/storm-server/src/main/java/org/apache/storm/scheduler/EvenScheduler.java
https://github.com/apache/storm/blob/v2.1.0/storm-server/src/main/java/org/apache/storm/scheduler/EvenScheduler.java

Y. Fan et al.

Shang Gao received her PhD degree in computer science
from Northeastern University, China in 2000. She is currently
a Senior Lecturer in the School of Information Technology,
Deakin University, Geelong, Australia. Her current research
interests include distributed system, cloud computing and cy-
ber security.

Rajkumar Buyya is a Redmond Barry Distinguished Profes-
sor and Director of the Quantum Cloud Computing and Dis-
tributed Systems (qCLOUDS) Laboratory at the University of
Melbourne, Australia. He is also serving as the founding CEO
of Manjrasoft, a spin-off company of the University, com-
mercializing its innovations in Cloud Computing. He has au-
thored over 850 publications and four textbooks. He is one
of the highly cited authors in computer science and software
engineering worldwide (h-index 173 with 160,500+ cita-
tions). He is among the world’ s top 2 most influential sci-
entists in distributed computing in terms of both single-year
impact and career-long impact based on a composite indica-
tor of Scopus citation database. He served as the founding

Editor-in-Chief (EiC) of IEEE Transactions on Cloud Computing and now serving as EiC of
Journal of Software: Practice and Experience.

Future Generation Computer Systems 175 (2026) 108119

14

	A fine-grained task scheduling strategy for resource auto-scaling over fluctuating data streams
	1 Introduction
	1.1 Contributions
	1.2 Paper organization

	2 Related work
	2.1 Scheduling for stream applications
	2.2 Optimization for stream computing systems

	3 System model
	3.1 Stream application model
	3.2 Communication model
	3.3 Resource model

	4 Problem statement
	4.1 Subgraph partitioning
	4.2 Resource scaling
	4.3 Task scheduling

	5 Ra-Stream: architecture and algorithms
	5.1 System architecture
	5.2 Subgraph partitioning
	5.3 Resource scaling
	5.4 Fine-grained task scheduling
	5.5 System implementation

	6 Performance evaluation
	6.1 Experimental setup
	6.2 System latency
	6.3 System throughput
	6.4 Resource utilization

	7 Conclusion and future work

