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 a b s t r a c t

Resource scaling is crucial for stream computing systems in fluctuating data stream scenarios. Computational 
resource utilization fluctuates significantly with changes in data stream rates, often leading to pronounced issues 
of resource surplus and scarcity within these systems. Existing research has primarily focused on addressing re-
source insufficiency at runtime; however, effective solutions for handling variable data streams remain limited. 
Furthermore, overlooking task communication dependencies during task placement in resource adjustment may 
lead to increased communication cost, consequently impairing system performance. To address these challenges, 
we propose Ra-Stream, a fine-grained task scheduling strategy for resource auto-scaling over fluctuating data 
streams. Ra-Stream not only dynamically adjusts resources to accommodate varying data streams, but also em-
ploys fine-grained scheduling to optimize system performance further. This paper explains Ra-Stream through the 
following aspects: (1) Formalization: We formalize the application subgraph partitioning problem, the resource 
scaling problem and the task scheduling problem by constructing and analyzing a stream application model, 
a communication model, and a resource model. (2) Resource scaling and heuristic partitioning: We propose a 
resource scaling algorithm to scale computational resource for adapting to fluctuating data streams. A heuris-
tic subgraph partitioning algorithm is also introduced to minimize communication cost evenly. (3) Fine-grained 
task scheduling: We present a fine-grained task scheduling algorithm to minimize computational resource utiliza-
tion while reducing communication cost through thread-level task deployment. (4) Comprehensive evaluation: 
We evaluate multiple metrics, including latency, throughput and resource utilization in a real-world distributed 
stream computing environment. Experimental results demonstrate that, compared to state-of-the-art approaches, 
Ra-Stream reduces system latency by 36.37% to 47.45%, enhances system maximum throughput by 26.2% to 
60.55%, and saves 40% to 46.25% in resource utilization.

1.  Introduction

Stream computing systems demonstrate exemplary performance in 
processing stream applications that demand low latency (on the order 
of milliseconds) and high throughput [1], such as traffic monitoring [2], 
anomaly detection [3], and Internet of Things [4]. To support the de-
manding requirements of stream applications, many stream processing 
systems have emerged such as Apache Flink and Spark Streaming [5]. 
Among them, Apache Storm is particularly well-suited for time-critical 
processing scenarios and has demonstrated extensive applicability in 
various fields. In recent years, it has established itself as a mainstream 
stream computing framework due to its excellent performance [6].
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Resource scaling and task scheduling [7,8] are crucial for achiev-
ing low system latency and high system throughput-two key metrics for 
evaluating stream computing systems [9]. In real-world application sce-
narios, data stream rates are often not uniformly stable but instead fluc-
tuate over time due to various factors [10]. Static scheduling schemes 
struggle to adapt to such fluctuations, especially with respect to re-
source utilization, resulting in two major issues: (1) When data stream 
rates are excessively high, the computational load on compute nodes be-
comes overwhelming, increasing latency and potentially causing system 
crashes. (2) When data stream rates are persistently low, computational 
resources allocated to tasks cannot be dynamically released, leading to 
substantial resource wastage.
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Existing research [11,12] has made progress in mitigating the neg-
ative impacts of fluctuating data streams through optimized scheduling 
strategies. For instance, [13] proposed two resource allocation strate-
gies that utilize greedy algorithms and genetic algorithms, respectively, 
to achieve efficient execution of stream applications. Similarly, [14] in-
troduced a heuristic algorithm, which dynamically reconfigures stream 
applications based on variations in data stream rates and the availabil-
ity of computational resources. However, the magnitude of communica-
tion cost directly impacts system performance, how to minimize com-
munication cost during the resource scaling process remains a critical
challenge.

Modeling stream applications as directed acyclic graphs (DAGs) 
and exploiting task dependencies to optimize system performance is a 
promising approach [15]. For example, [16] utilized a dynamic pro-
gramming algorithm on the critical path of DAG to reduce communi-
cation cost. Similarly, [17] proposed partitioning the DAG into multi-
ple subgraphs based on the communication volume between tasks and 
scheduling at the subgraph level. However, the deployment of tasks 
within a compute node directly influences communication cost, as the 
expenses associated with communication between tasks within the same 
process differ from those between tasks across processes. This is an in-
dispensable factor to consider in task scheduling.

From the preceding analysis, there are three primary challenges in 
task scheduling: (1) How can the scheduling scheme be adjusted to ac-
commodate fluctuating data streams? (2) How can effective resource 
utilization be achieved while ensuring optimal system performance? (3) 
How can task deployment within compute nodes be optimized to mini-
mize communication cost? These challenges have sparked our research 
interest, as we aim to design a scheduling strategy that dynamically mit-
igates the negative impacts of fluctuating data streams while minimizing 
communication costs.

To address these challenges, we propose a fine-grained task schedul-
ing strategy called Ra-Stream, which dynamically scales computational 
resources based on current data stream rate to effectively accommodate 
fluctuating data streams, achieving efficient resource utilization while 
preventing excessive loads on compute nodes. Additionally, Ra-Stream 
minimizes communication cost through fine-grained task deployment, 
further ensuring low-latency processing.

1.1.  Contributions

This paper proposes a fine-grained task scheduling strategy (Ra-
Stream) for resource auto-scaling over fluctuating data streams and im-
proving the resource utilization and latency of distributed stream com-
puting systems. The key contributions are as follows:

(1) Formalization of the problem: We construct and analyze the stream 
application model, communication model, and resource model to 
formalize the application subgraph partition problem, the resource 
scaling problem, and the task scheduling problem.

(2) Resource scaling and heuristic partitioning algorithms: We propose 
a resource scaling algorithm based on our heuristic subgraph par-
titioning algorithm to determine the minimum necessary number 
of compute nodes, achieving efficient resource utilization while ac-
commodating fluctuating data streams.

(3) Fine-grained task scheduling algorithm: We propose a fine-grained 
task scheduling algorithm that minimizes communication cost 
through thread-level task deployment, thereby optimizing overall 
system performance. Additionally, we set two thresholds for com-
pute nodes to avoid underloading or overloading.

(4) Implementation and evaluation: We implement and integrate Ra-
Stream into Apache Storm and evaluate various metrics, including 
system latency, system maximum throughput, and resource utiliza-
tion, in real-world fluctuating data stream scenarios. The experi-
mental results confirm the effectiveness of Ra-Stream.

1.2.  Paper organization

The rest of the paper is organized as follows: Section 2 presents re-
lated work. Section 3 introduces the stream application model, com-
munication model, and resource model. Section 4 provides the problem 
statement, including descriptions of subgraph partitioning, task schedul-
ing, and resource scaling. Section 5 focuses on the system architecture 
and main algorithms of Ra-Stream. Section 6 details the experimental 
environment, parameter setup, and performance evaluation. The con-
clusions and future works are presented in Section 7.

2.  Related work

We review related work in the field of stream computing, which can 
be broadly divided into two main areas: scheduling for stream comput-
ing systems and performance optimization of stream computing systems.

2.1.  Scheduling for stream applications

Achieving excellent system performance in stream applications has 
been the focus of numerous researchers [18], who have devoted sig-
nificant effort to improving scheduling strategies. However, it has been 
demonstrated that the scheduling problem is NP-hard, making it inher-
ently challenging to find an optimal scheduling solution [19,20].

To reduce communication latency, [21] proposed SP-Ant, which 
places high-communication operators on the same compute node using 
a bin-packing algorithm and allocates low-communication operators us-
ing an ant colony optimization algorithm. However, this approach lacks 
consideration for the resource utilization of compute nodes, potentially 
leading to overloads that adversely affect overall system latency.

To optimize load balancing while reducing job execution costs, [22] 
introduced a Cost-Efficient Task Scheduling Algorithm (CETSA) along-
side a Cost-Effective Load Balancing Algorithm (LBA-CE). These algo-
rithms ensure a balanced workload in heterogeneous clusters while
minimizing costs. However, they inadequately consider real-time fluc-
tuations in data stream velocities, which do not align well with the dy-
namic nature of actual data flows.

To address the complexities and unpredictability of dynamic stream-
ing workflow scenarios, [23] proposed a resource scheduling and provi-
sioning method for processing dynamic stream workflows under latency 
constraints. This approach assumes that data communication overhead 
can be ignored; however, in real-world scenarios, communication over-
head is a significant factor that cannot be overlooked.

To optimize resource utilization and enhance task reliability across 
the network, [24] applied a satisfiability modulo theory (SMT) con-
straint solver to determine the optimal processing quality at each node, 
ensuring target system reliability while minimizing resource consump-
tion. However, this work lacks consideration of complex and variable 
application scenarios, limiting its applicability.

To adapt to dynamically changing workloads, [25] proposed 
MorphStream, which makes accurate scheduling decisions at runtime 
with minimal overhead, resulting in excellent performance improve-
ments. However, this method requires the construction of a task depen-
dency graph and the maintenance of multiple versions of state storage, 
which significantly increase memory resource consumption.

To achieve optimal performance by minimizing computational bot-
tlenecks at the edge computing environments, [26] proposed a frame-
work called Beaver for strategic placement of stream operators. While 
Beaver addresses variations in network latency and bandwidth, further 
improvements can be made in dynamically adjusting compute resource 
allocation to address fluctuating stream rates.

Similarly, [27] formulated an optimization strategy to reduce net-
work latency in distributed environments using a broad spectrum of 
computational resources. However, it does not account for dynamic scal-
ing based on stream variability.
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Table 1 
Comparison of Ra-Stream and related work.

Related work  Aspects
 Scheduling object  Load balancing  Communication cost  Resource scaling

 SP-Ant [21]  Task × ✓ ×
 CETSA & LBA-CE [22]  Task ✓ ✓ ×
 VM provisioner [23]  Task × × ✓

 SMT [24]  Resource × × ✓

 MorphStream [25]  Resource × × ✓

 Beaver [26]  Resource × ✓ ✓

 Ra-Stream (Ours)  Resource, Task ✓ ✓ ✓

In summary, these methods have substantially improved scheduling 
in stream computing systems. However, most of them fail to consider 
system performance optimization from multiple dimensions. For clarity 
and conciseness, a comparison of our work with the relevant studies is 
summarized in Table 1.

2.2.  Optimization for stream computing systems

To improve the performance of stream computing systems, extensive 
work has focused on optimization through various approaches, includ-
ing large parameter tuning [28] and tuple scheduling [29]. Below, we 
introduce and analyze several noteworthy works.

To mitigate the high resource costs associated with automatic tuning 
process, [28] introduced a general and efficient Spark tuning frame-
work. This framework utilizes Bayesian optimization (BO) to tackle 
the generalized tuning problem involving multiple objectives and con-
straints. By tuning parameters according to the actual periodic execution 
of each job, the framework allows for online evaluation and parameter 
optimization.

To address the imbalance of workloads among downstream tasks, 
[29] proposed POTUS, a predictive online tuple scheduling strategy that 
directs data stream in a distributed manner to reduce response time in 
stream processing. Similarly, [30] introduced a popularity-aware differ-
entiated distributed stream processing system called Pstream. Pstream 
employs a novel lightweight probabilistic counting scheme to iden-
tify hot keys in dynamic real-time stream. This approach effectively 
adapts to changes in dynamic popularity within high-velocity streams.
Additionally, [31] developed Hone, a tuple scheduler that uses the
online maximum backlog first (LBF) algorithm to minimize the maxi-
mum queue backlog across all tasks, thereby improving processing effi-
ciency.

To reduce recovery time from system failures, [32] proposed A-FP4S, 
an adaptive fragments-based parallel state recovery mechanism. This 
mechanism divides each node’s local state into multiple segments, which 
are periodically stored across neighboring nodes. During a failure, differ-
ent sets of available segments are used to parallelize the reconstruction 
of the lost state. This approach offers significant scalability for managing 
lost states and can tolerate multiple node failures.

In summary, these works have made significant contributions to 
stream processing optimization. Our work focuses on optimizing stream 
computing systems through resource scaling and task scheduling, while 
topics such as parameter tuning, tuple scheduling, and state manage-
ment fall outside the scope of this study.

3.  System model

We formalize the resource scaling problem in distributed stream 
computing systems by defining the stream application model, resource 
model, and communication model. For clarity, we summarize the main 
notations used throughout the paper in Table 2.

3.1.  Stream application model

The functionality of a stream application is typically defined by users 
through a logical topology [33]. This logical topology can be described 
as a Directed Acyclic Graph (DAG) [34], denoted as 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)).

Here, 𝑉 (𝐺) = {𝑣𝑖|𝑖 ∈ 1,… , 𝑛} is a finite set of 𝑛 vertices. Each vertex 
𝑣𝑖 represents a specific function 𝑓𝑢𝑛(𝑣𝑖), and the function of each vertex 
is set by users.

𝐸(𝐺) = {𝑒𝑖,𝑗 |𝑣𝑖, 𝑣𝑗 ∈ 𝑉 (𝐺)} is a finite set of directed edges. An edge 
𝑒𝑖,𝑗 ∈ 𝐸(𝐺) indicates a data stream flowing from the upstream vertex 𝑣𝑖
to the downstream vertex 𝑣𝑗 .

Before processing the stream application 𝐺, users can specify the 
number of tasks for each vertex 𝑣𝑖, denoted as 𝑉𝑖(𝐺) = {𝑣𝑖,𝑘|𝑘 ∈
{1,… , 𝑚}}, where 𝑚 is the number of tasks for 𝑣𝑖. All tasks of vertex 
𝑣𝑖 share the same function, i.e., 𝑓𝑢𝑛(𝑣𝑖,1) = 𝑓𝑢𝑛(𝑣𝑖,2) = ⋯ = 𝑓𝑢𝑛(𝑣𝑖,𝑚).

The edges connecting tasks of upstream vertex 𝑣𝑖 to tasks of down-
stream vertex 𝑣𝑗 are represented as 𝐸𝑖,𝑗 (𝐺) = {𝑒𝑖,𝑘, 𝑗,𝑙|𝑘 ∈ {1,… , 𝑚}, 𝑙 ∈
{1,… , 𝑠}}, where 𝑠 is the number of tasks for 𝑣𝑗 . The weight of edge 
𝑒𝑖,𝑘, 𝑗,𝑙 is denoted as 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), indicating the tuple transmission rate 
between task 𝑣𝑖,𝑘 and task 𝑣𝑗,𝑙.

For clarity, we illustrate the logical topology of the commonly 
used WordCount stream application in Figs. 1 and 2. As shown in 
Fig. 1, the logical topology of WordCount consists of four vertices, 
represented as 𝑉 (𝐺𝑊 𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡) = {𝑣1, 𝑣2, 𝑣3, 𝑣4}, and three directed edges, 
𝐸(𝐺𝑊 𝑜𝑟𝑑𝐶𝑜𝑢𝑛𝑡) = {𝑒1,2, 𝑒2,3, 𝑒3,4}. The three edges represent the flow of 
data tuples within the topology. Following the data flow direction, the 
four vertices perform the following functions: “reading data tuples”, 
“splitting sentences into words”, “counting words”, and “outputting re-
sults”. In Fig. 2, the numbers of tasks for each vertex are 2, 3, 3 and 2, 

Fig. 1. Logical topology of WordCount.

Fig. 2. Task topology of WordCount.
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Table 2 
Main notations used in the paper.
 Notation  Description  Notation  Description
𝐺  DAG of a stream application 𝑅𝑣𝑖,𝑘 ,𝑠𝑡  Resource utilization of task 𝑣𝑖,𝑘 in 𝑠𝑡
𝑣𝑖,𝑘  Task 𝑘 of vertex 𝑖 𝑝𝑖  Acceptance probability of scheme 𝑥𝑖
𝑒𝑖,𝑘, 𝑗,𝑙  Edge from task 𝑣𝑖,𝑘 to task 𝑣𝑗,𝑙 𝐸𝑐𝑢𝑡(𝐺)  Set of cut edges in 𝐺
𝑐𝑛  Compute node 𝐺𝑠𝑢𝑏

𝑖  Subgraph 𝑖 of 𝐺
𝑠𝑡  Statistical time frame 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖 )  Set of internal edges in 𝐺𝑠𝑢𝑏
𝑖

𝑇 𝑟(𝑣𝑖,𝑘 , 𝑣𝑗,𝑙)  Tuple transmission rate between tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙 𝑊𝑐𝑢𝑡(𝐺)  Sum of cut edges’ weights
𝐸𝑇 𝑟

𝑠𝑡  Average tuple transmission rate in 𝑠𝑡 𝑅𝑐
𝐺𝑠𝑢𝑏

𝑖
 CPU requirement of subgraph 𝐺𝑠𝑢𝑏

𝑖

𝑛𝑢𝑚𝑣𝑖,𝑘
𝑠𝑡  Number of tuples processed by 𝑣𝑖,𝑘 in 𝑠𝑡 𝑅𝑚

𝐺𝑠𝑢𝑏
𝑖

 Memory requirement of subgraph 𝐺𝑠𝑢𝑏
𝑖

𝑅𝑖𝑜
𝐺𝑠𝑢𝑏

𝑖
 I/O requirement of subgraph 𝐺𝑠𝑢𝑏

𝑖 𝑈 𝑐
𝑐𝑛,𝑠𝑡  CPU utilization of 𝑐𝑛 in 𝑠𝑡

𝑈𝑚
𝑐𝑛,𝑠𝑡  Memory utilization of 𝑐𝑛 in 𝑠𝑡 𝑈 𝑖𝑜

𝑐𝑛,𝑠𝑡  I/O utilization of 𝑐𝑛 in 𝑠𝑡
𝜎𝑊  Variance of internal weight sums of subgraphs 𝑟  Ratio of 𝑊𝑐𝑢𝑡(𝐺) to the total weights of 𝐺

respectively. Tasks for the same vertex, for example, 𝑣1,1 and 𝑣1,2, share 
an identical function.

3.2.  Communication model

During the execution of a stream application, tuples are transferred 
between vertices and, more specifically, between the tasks of those ver-
tices, which constitutes communication. Once tasks are scheduled on 
the compute cluster, the resulting communication cost can be cate-
gorized into three types: inter-thread, inter-process and inter-compute 
node. Among them, inter-compute node communication incurs the high-
est cost, inter-process communication incurs moderate cost, and inter-
thread communication incurs the lowest cost.

Due to the fluctuation of stream rates, the communication traffic at 
any given time point is inherently random, which makes it unsuitable for 
generalizability in practice. To address this, we calculate the mathemat-
ical expectation of tuples transmitted between two communicating tasks 
over a statistical time frame 𝑠𝑡 spanning from onset time 𝑡𝑜 to completion 
time 𝑡𝑐 . Denoted as 𝐸𝑇 𝑟

𝑠𝑡 , this expectation value represents the average 
transmission rate and mitigates the impact of abrupt fluctuations in data 
streams at specific time points, as expressed in Eq.  (1):

𝐸𝑇 𝑟
𝑠𝑡 =

∫ 𝑡𝑐
𝑡𝑜

𝐸𝑇 𝑟
𝑡 𝑑𝑡 − 𝑚𝑎𝑥(𝐸𝑇 𝑟

𝑡 ) − 𝑚𝑖𝑛(𝐸𝑇 𝑟
𝑡 )

𝑡𝑐 − 𝑡𝑜
, (1)

where 𝐸𝑇 𝑟
𝑡  is the tuple transmission at time 𝑡, and 𝑡 ∈ [𝑡𝑜, 𝑡𝑐 ].

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) is the average tuple transmission rate in 𝑠𝑡 from the task 
𝑣𝑖,𝑘 to the task 𝑣𝑗,𝑙, it serves as a key input to the subgraph partition-
ing and scheduling algorithms and directly influences the optimization 
objective by quantifying the communication cost associated with sepa-
rating interdependent tasks. 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) satisfies Eq. (2):

𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) =

⎧

⎪

⎨

⎪

⎩

0, If no tuple transmission
between 𝑣𝑖,𝑘 𝑎𝑛𝑑 𝑣𝑗,𝑙 ,

𝐸𝑇 𝑟
𝑠𝑡 , Otherwise.

(2)

3.3.  Resource model

The resources of compute nodes can be measured across various di-
mensions, such as CPU, memory, and I/O [35]. Based on our previ-
ous benchmarking experiments, we have observed that CPU, memory 
and I/O overutilization become bottlenecks in system operation. Conse-
quently, this paper explicitly addresses the resource utilization of CPU, 
memory, and I/O in compute nodes.

A compute node can execute multiple tasks concurrently. Let the set 
of all tasks running on a compute node 𝑐𝑛 be denoted as 𝑇𝑐𝑛, and the 
CPU utilization of 𝑐𝑛 within a statistical time frame 𝑠𝑡 as 𝑈 𝑐

𝑐𝑛,𝑠𝑡.
The number of tuples processed by task 𝑣𝑖,𝑘 running on 𝑐𝑛 in 𝑠𝑡 is 

represented by 𝑛𝑢𝑚𝑣𝑖,𝑘
𝑠𝑡 .

The CPU utilization of task 𝑣𝑖,𝑘 in 𝑠𝑡 can then be calculated by Eq. (3):

𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈 𝑐
𝑐𝑛,𝑠𝑡, (3)

where 𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

 represents the CPU utilization of 𝑣𝑖,𝑘, 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡  denotes the 

number of tuples processed by 𝑐𝑛, and 𝑣𝑗,𝑙 is a task within 𝑇𝑐𝑛 on node 
𝑐𝑛 in 𝑠𝑡.

Similarly, the memory utilization and I/O utilization of task 𝑣𝑖,𝑘 run-
ning on 𝑐𝑛 in 𝑠𝑡 can be obtained by Eqs. (4) and (5), respectively:

𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈𝑚
𝑐𝑛,𝑠𝑡, (4)

𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

=
𝑛𝑢𝑚𝑣𝑖,𝑘

𝑠𝑡
∑

𝑣𝑗,𝑙∈𝑇𝑐𝑛 𝑛𝑢𝑚
𝑣𝑗,𝑙
𝑠𝑡

⋅ 𝑈 𝑖𝑜
𝑐𝑛,𝑠𝑡, (5)

where 𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

 and 𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

 are the memory utilization and I/O utilization of 
𝑣𝑖,𝑘 on 𝑐𝑛, respectively. 𝑈𝑚

𝑐𝑛,𝑠𝑡 and 𝑈 𝑖𝑜
𝑐𝑛,𝑠𝑡 represent the memory utilization 

and I/O utilization of 𝑐𝑛 in 𝑠𝑡, respectively.
The total resource utilization 𝑅𝑣𝑖,𝑘 ,𝑠𝑡 by task 𝑣𝑖,𝑘 running on 𝑐𝑛 in 𝑠𝑡

can then be calculated using a weighted combination of task 𝑣𝑖,𝑘’s CPU, 
memory and I/O utilization, as shown in Eq. (6):

𝑅𝑣𝑖,𝑘 ,𝑠𝑡 = 𝛼 ⋅ 𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

+ 𝛽 ⋅ 𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

+ (1 − 𝛼 − 𝛽) ⋅ 𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

, (6)

where 𝛼 and 𝛽 are weighted factors that determine the relative impor-
tance of CPU, memory and I/O utilization for task 𝑣𝑖,𝑘 running on 𝑐𝑛, 
𝛼, 𝛽 ∈ [0, 1] and 𝛼 + 𝛽 < 1.

4.  Problem statement

We formalize the scheduling-related problems in the context of fluc-
tuating data streams, including subgraph partitioning, resource scaling, 
and task scheduling.

4.1.  Subgraph partitioning

The subgraph partitioning problem [36] can be described as fol-
lows: a user submits a stream application 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) to a com-
pute cluster consisting of 𝑛𝑐𝑛 available compute nodes 𝑐𝑛. If 𝐺 requires 
𝑘 compute nodes to run, where 𝑘 ≤ 𝑛𝑐𝑛, then 𝐺 should be partitioned 
into 𝑘 subgraphs. The subgraph partitioning problem is formalized as: 
𝐺 =

⋃𝑘
𝑖=1 𝐺

𝑠𝑢𝑏
𝑖 , where 𝐺𝑠𝑢𝑏

𝑖  represents a subgraph and 𝐺𝑠𝑢𝑏
𝑖 ⊆ 𝐺.

The set of tasks in a subgraph 𝐺𝑠𝑢𝑏
𝑖  is denoted as 𝑇 (𝐺𝑠𝑢𝑏

𝑖 ), and the 
relationships among the task sets are represented by Eq. (7):
{

𝑇 (𝐺) =
⋃𝑘

𝑖=1 𝑇 (𝐺
𝑠𝑢𝑏
𝑖 ),

𝑇 (𝐺𝑠𝑢𝑏
𝑖 ) ∩ 𝑇 (𝐺𝑠𝑢𝑏

𝑗 ) = ∅,∀𝑖, 𝑗 ∈ [1, 𝑘], 𝑖 ≠ 𝑗.
(7)
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Fig. 3. Example of imbalanced graph partitioning scheme.

The subgraph partitioning also generates internal edges within sub-
graphs and cut edges connecting subgraphs. These relationships are de-
scribed by Eq. (8):
{

𝐸(𝐺𝑠𝑢𝑏
𝑖 ) = {𝑒𝑖,𝑘, 𝑗,𝑙 ∈ 𝐸(𝐺)|𝑣𝑖,𝑘, 𝑣𝑗,𝑙 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑖 )},
𝐸𝑐𝑢𝑡(𝐺) = {𝑒𝑖,𝑘, 𝑗,𝑙 ∈ 𝐸(𝐺)|𝑣𝑖,𝑘 ∈ 𝑇 (𝐺𝑠𝑢𝑏

𝑖 ), 𝑣𝑗,𝑙 ∈ 𝑇 (𝐺𝑠𝑢𝑏
𝑗 )},

(8)

where 𝐸(𝐺𝑠𝑢𝑏
𝑖 ) represents the set of internal edges within 𝐺𝑠𝑢𝑏

𝑖 , 𝐸𝑐𝑢𝑡(𝐺)
denotes the set of cut edges connecting subgraphs, and 𝑒𝑖,𝑘, 𝑗,𝑙 is the edge 
connecting tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙.

The objective of graph partitioning is to minimize the weights of 
cut edges between different subgraphs while maximizing the weights of 
internal edges within subgraphs. Minimizing the weights of cut edges 
alone may result in an imbalanced partitioning scheme. For instance, 
Fig. 3 shows a scheme where one subgraph contains two tasks, while 
another contains six tasks, leading to an imbalance.

To achieve a balanced subgraph partitioning scheme, we aim to max-
imize the sum of the internal edge weights for each subgraph while keep-
ing these sums nearly equal, all while minimizing the total weight of the 
cut edges. This is formalized in Eq. (9):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

max 
𝑘
∑

𝑖=1
𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖 ),

min 𝑊𝑐𝑢𝑡(𝐺) = min
∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸𝑐𝑢𝑡(𝐺)
𝑤(𝑒𝑖,𝑘, 𝑗,𝑙),

𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
1 ) ≈ 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

2 ) ≈,… ,≈ 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
𝑘 ),

(9)

where 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏
𝑖 ) is the sum of internal edge weights within 𝐺𝑠𝑢𝑏

𝑖 , 𝑊𝑐𝑢𝑡(𝐺)
is the sum of weights of cut edges 𝐸𝑐𝑢𝑡(𝐺), and 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙) is the weight 
of edge 𝑒𝑖,𝑘, 𝑗,𝑙.

Fig. 4 illustrates a stream application 𝐺 partitioned into four sub-
graphs. The objective of subgraph partitioning is to maximize and 
equalize the internal communication traffic within each subgraph while 
minimizing inter-subgraph communication. The subsequent section dis-
cusses the resource consumption problem related to these subgraphs.

4.2.  Resource scaling

Computational resources are not infinite, making it essential to use 
them efficiently. In real-world applications, we need to consider the re-
source scaling problem during the scheduling process. Resource scal-
ing refers to the process of configuring computational resources based 

Fig. 4. Example of balanced graph partitioning scheme.

on the current data stream rate, aiming to effectively prevent perfor-
mance degradation due to insufficient resources while minimizing re-
source waste. A critical consideration before scheduling stream applica-
tions to the cluster is ensuring that no individual compute node becomes 
overloaded, while simultaneously minimizing resource wastage within 
those nodes.

In the context of subgraphs partitioning, we need to consider the 
resource requirements of each subgraph to prevent resource overload 
when scheduling subgraph tasks to compute nodes. The resource de-
mand for each subgraph can be determined by aggregating the resource 
requirements of all tasks within that subgraph, as described by Eq. (10):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖 )

𝑅𝑐
𝑣𝑖,𝑘 ,𝑠𝑡

,

𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖 )

𝑅𝑚
𝑣𝑖,𝑘 ,𝑠𝑡

,

𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

=
∑

𝑣𝑖,𝑘∈𝑇 (𝐺𝑠𝑢𝑏
𝑖 )

𝑅𝑖𝑜
𝑣𝑖,𝑘 ,𝑠𝑡

,

(10)

where 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

, 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

 and 𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑗 ,𝑠𝑡

 represent the average CPU, memory 
and I/O resource demands of subgraph 𝐺𝑠𝑢𝑏

𝑖  in statistical time frame 𝑠𝑡, 
respectively.

After the subgraph is scheduled to a compute node, that node may 
still have sufficient resources to run additional subgraphs. To ensure 
efficient utilization of computational resources, we calculate the CPU, 
memory and I/O resource requirements of the stream application 𝐺, as 
described by Eq. (11):
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑅𝑐
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

𝑅𝑚
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

𝑅𝑖𝑜
𝐺,𝑠𝑡 =

𝑘
∑

𝑖=1
𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

(11)

where 𝑅𝑐
𝐺,𝑠𝑡, 𝑅𝑚

𝐺,𝑠𝑡 and 𝑅𝑖𝑜
𝐺,𝑠𝑡 are the average CPU, memory and I/O re-

source requirements of the stream application 𝐺 in 𝑠𝑡, respectively.
Subsequently, we choose some compute nodes (𝑚𝑐𝑛) to serve as our 

operational nodes, indicated by 𝑂𝑁 = {𝑜𝑛𝑖|𝑖 ∈ {1, 2,… , 𝑚𝑐𝑛}}, while the 
other nodes are considered idle nodes, represented by 𝐼𝑁 = {𝑖𝑛𝑖|𝑖 ∈
{1, 2,… , 𝑛𝑐𝑛 − 𝑚𝑐𝑛}}. The available computational resources of these op-
erational nodes must exceed the resource requirements of subgraphs. 
The available computational resources of these operational nodes can 
be calculated by Eq. (12):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐴𝑐
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑐
𝑜𝑛𝑖 ,𝑠𝑡

,

𝐴𝑚
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑚
𝑜𝑛𝑖 ,𝑠𝑡

,

𝐴𝑖𝑜
𝑂𝑁,𝑠𝑡 =

∑

𝑜𝑛𝑖∈𝑂𝑁
𝐴𝑖𝑜
𝑜𝑛𝑖 ,𝑠𝑡

,

(12)

where 𝐴𝑐
𝑂𝑁,𝑠𝑡, 𝐴𝑚

𝑂𝑁,𝑠𝑡 and 𝐴𝑖𝑜
𝑂𝑁,𝑠𝑡 are the available CPU, memory and I/O 

resources of operational nodes, respectively. 𝐴𝑐
𝑜𝑛𝑖 ,𝑠𝑡

, 𝐴𝑚
𝑜𝑛𝑖 ,𝑠𝑡

 and 𝐴𝑖𝑜
𝑜𝑛𝑖 ,𝑠𝑡

 are 
the available CPU, memory and I/O resources of an individual opera-
tional node.

As shown in Fig. 5, resource scaling consists of two operations: re-
source shrink and resource extend. As the data stream rate decreases, 
the computational resources required for running a stream application 
are reduced, enabling us to achieve similar system performance with 
fewer compute nodes. On the other hand, when the stream rate in-
creases, the required resources grow, necessitating the deployment of 
additional compute nodes to sustain optimal system performance.

4.3.  Task scheduling

After a stream application 𝐺 is partitioned into 𝑘 subgraphs, the sub-
sequent task scheduling problem involves selecting 𝑘 compute nodes 
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Fig. 5. Example of resource scaling.

from the available compute nodes and assigning the subgraphs to these 
nodes. A compute node may run multiple subgraphs; however, each sub-
graph can only be assigned to a single compute node. We denote 𝑓 𝑑𝑒

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

as the decision factor for mapping a subgraph 𝐺𝑠𝑢𝑏
𝑖  to a compute node 

𝑐𝑛𝑗 . It can be calculated by Eq. (13):

𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

=

{

1, If 𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

> 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

and 𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

> 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

,

0, Otherwise.
(13)

where 𝑖 ∈ {1, 2,… , 𝑘}, and 𝑗 ∈ {1, 2,… , 𝑛𝑐𝑛}. 𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 determines 
whether subgraph 𝐺𝑠𝑢𝑏

𝑖  can be assigned to compute node 𝑐𝑛𝑗 . 𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

 and 
𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

 are the available CPU and memory resources of compute node 𝑐𝑛𝑗
in statistical time frame 𝑠𝑡, respectively. 𝑅𝑐

𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

 and 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

 represent the 
CPU and memory resource requirements of 𝐺𝑠𝑢𝑏

𝑖  in 𝑠𝑡.
Since multiple compute nodes may satisfy the resource requirements 

of 𝐺𝑠𝑢𝑏
𝑖 , it is essential to identify the most suitable compute node for 

Fig. 6. Example of task scheduling at subgraph level.

scheduling 𝐺𝑠𝑢𝑏
𝑖 . For this purpose, we use 𝑓𝑓𝑖𝑡

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 as the fitness factor 
for scheduling subgraph 𝐺𝑠𝑢𝑏

𝑖  to compute node 𝑐𝑛𝑗 . Subgraph 𝐺𝑠𝑢𝑏
𝑖  will 

be scheduled to the compute node with the highest 𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

, calculated 
by Eq. (14):
𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

= 𝑓 𝑑𝑒
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

⋅ 𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

, (14)

where 𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 represents the resource surplus of 𝑐𝑛𝑗 after scheduling 
𝐺𝑠𝑢𝑏
𝑖  to it. The resource surplus is calculated by Eq. (15):

𝑆𝑅
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

= 𝛾 ⋅ (𝐴𝑐
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑐
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

) + 𝛿 ⋅ (𝐴𝑚
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑚
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

) (15)

+ (1 − 𝛾 − 𝛿) ⋅ (𝐴𝑖𝑜
𝑐𝑛𝑗 ,𝑠𝑡

− 𝑅𝑖𝑜
𝐺𝑠𝑢𝑏
𝑖 ,𝑠𝑡

),

where 𝛾 and 𝛿 are the weights used to balance CPU, memory and I/O re-
sources, 𝛾, 𝛿 ∈ [0, 1] and 𝛾 + 𝛿 < 1. The values of 𝛾 and 𝛿 are determined 
based on resource usage characteristics. For example, if CPU is a bot-
tleneck while memory and I/O are sufficient, 𝛾 can be set to 1 and 𝛿 to 
0. Conversely, if memory becomes more constrained, 𝛾 should decrease 
and 𝛿 should increase accordingly.

An example of subgraph scheduling is shown in Fig. 6. As previously 
mentioned, multiple compute nodes may satisfy the resource require-
ments of a subgraph, and the compute node with the highest fitness 
factor is selected.

5.  Ra-Stream: architecture and algorithms

Based on the theoretical analysis presented earlier, we propose a 
fine-grained task scheduling strategy for resource auto-scaling called 
Ra-Stream, implemented on the Apache Storm platform. In this section, 
we provide an overview of the strategy, including its system architec-
ture and the algorithms used for subgraph partitioning, resource scal-
ing, and task scheduling. Since Apache Storm, Apache Flink, and Spark 
Streaming all utilize a master-slave architectural design, and rely on
dynamic task allocation across distributed compute nodes, our schedul-
ing strategy is theoretically applicable to the other two stream process-
ing platforms.

Although some components of Ra-Stream employ standard tech-
niques, our innovation lies in the introduction of a novel subgraph par-
titioning component that achieves a balanced communication-intensive 
subgraph partitioning. Furthermore, to address the issues of resource 
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overload and waste caused by fluctuations in data stream rates, we pro-
pose an innovative resource scaling algorithm that automatically adjusts 
computational resources based on current data stream rates, ensuring 
efficient utilization and conservation of computational resources. These 
methods provide a new approach to scheduling strategies in distributed 
stream computing systems.

5.1.  System architecture

As shown in Fig. 7, the architecture of Ra-Stream consists of four 
main components: Scheduling trigger, Subgraph partition, Resource 
scaling, and Data monitor.

Scheduling trigger reads the current operational status of the 
stream application from the Database and determines whether to trigger 
a new scheduling event.

Subgraph partition divides the stream application into multiple bal-
anced communication-intensive subgraphs according to the communi-
cation relationships among tasks in the stream application.

Resource scaling adjusts the subgraph partitioning results to deter-
mine the minimum number of compute nodes required, ensuring that no 
compute node is overloaded or resources are wasted after scheduling.

Data monitor is responsible for the real-time collection of resource 
utilization data from all compute nodes, as well as the resource require-
ments of tasks, data stream rates, and the volume of data transferred 
between tasks.

The Scheduler deploys tasks onto compute nodes in a fine-grained 
manner to minimize communication cost.

5.2.  Subgraph partitioning

The objective of subgraph partitioning is to divide the stream ap-
plication into multiple balanced communication-intensive subgraphs. 
Inspired by the principles of the simulated annealing algorithm [37], 
known for its effectiveness in global optimization, we develop a intelli-
gent subgraph partitioning algorithm.

Given that it is not possible to determining the minimum number 
of compute nodes required to execute the stream application before 

Fig. 7. Ra-Stream’s architecture.

scheduling it to the cluster, we set the number of subgraphs to be equal 
to the number of compute nodes in the cluster, that is, 𝑘 = 𝑛. To achieve 
balanced subgraphs (refer to Eq. (9)), we incorporate the variance of the 
internal weight sums of the subgraphs, 𝜎𝑊 , into our objective function, 
as shown in Eq. (16):

𝜎𝑊 =

√

√

√

√
1
𝑘

𝑘
∑

𝑖=1
[𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖 ) −𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏)]2, (16)

subject to:

𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏) = 1
𝑘

𝑘
∑

𝑖=1
𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏

𝑖 ), (17)

where 𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏) is the average weight of all subgraphs.
Due to the variations in data stream rates, edge weights differ, mak-

ing it impractical to rely solely on absolute values in the objective func-
tion. Instead, we use the ratio of cut edge weights to the total weights 
of edges in 𝐺, as illustrated in Eq. (18): 

𝑟 =
𝑊𝑐𝑢𝑡(𝐺)

𝑊𝑐𝑢𝑡(𝐺) +𝑊𝑖𝑛𝑡(𝐺𝑠𝑢𝑏)
=

∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸𝑐𝑢𝑡(𝐺) 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙)
∑

𝑒𝑖,𝑘, 𝑗,𝑙∈𝐸(𝐺) 𝑤(𝑒𝑖,𝑘, 𝑗,𝑙)
, (18)

By combining Eqs. (16) and (18), we obtain our objective function 
𝑓 (𝑥), described in Eq. (19):
𝑓 (𝑥) = 𝜖 ⋅ 𝑟 + (1 − 𝜖) ⋅ 𝜎𝑊 , (19)

where 𝑥 is the current subgraph partitioning scheme, 𝜖 is the weight 
factor that combines the ratio of cut edge weights 𝑟 and the variance 
of internal weight sums of the subgraphs 𝜎𝑊 . In extreme cases, if the 
tuple transmission rates between tasks in the stream application are all 
equal, there will be no unbalanced subgraph partitioning schemes, and 
thus 𝜖 should be set to 1. Conversely, the value of 𝜖 should decrease as 
the differences in tuple transmission rates between tasks increase. After 
defining the objective function, we outline the algorithmic workflow for 
the initial subgraph partitioning phase in Algorithm 1. 

Algorithm 1: Subgraph partitioning.
Input: 𝐺, 𝑘, 𝑛, 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, 𝑇0, 𝜁 , 𝑇𝑓 .
Output: Subgraph partitioning scheme 𝑋.

1 𝑘 ← 𝑛;
2 Initialize partition 𝐺 to 𝑘 subgraphs and denote as 𝑥0;
3 𝑋 ← 𝑥0;
4 Calculate 𝑓 (𝑥0) according to Eq. (19) and denote as 𝑓 (𝑋);
5 Initialize current temperature 𝑇 ← 𝑇0;
6 Set the current iteration count 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 0;
7 while 𝑇 > 𝑇𝑓  do
8 while 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 < max_𝑖𝑡𝑒𝑟 do
9 Generate a neighboring solution 𝑥𝑖 by moving a 

random task to a different subgraph;
10 Calculate the 𝑓 (𝑥𝑖) according to Eq. (19);
11 if 𝑓 (𝑥𝑖) ≤ 𝑓 (𝑋) then
12 𝑋 ← 𝑥𝑖;
13 end 
14 else
15 Accept 𝑥𝑖 with probability 𝑝𝑖 according to Eq. (20);
16 end 
17 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 + 1;
18 end 
19 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑖𝑡𝑒𝑟 ← 0; 𝑇 ← 𝜁 ⋅ 𝑇 ;
20 end 
21 return 𝑋. 

The input to Algorithm 1 includes the stream application 𝐺, the 
number of subgraphs 𝑘, the number of compute nodes 𝑛, tuple trans-
mission rate between tasks 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙), maximum number of iterations 
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𝑚𝑎𝑥_𝑖𝑡𝑒𝑟, initial temperature 𝑇0, cooling rate 𝜁 , and final temperature 
𝑇𝑓 . The output is a balanced communication-intensive subgraph par-
titioning scheme 𝑋. Steps 1 to 6 prepare the algorithm for execution. 
Steps 8 to 17 form the inner loop, where new solutions are generated, 
the objective function is calculated, and the solution is accepted or re-
jected. Steps 7 to 20 form the outer loop, representing the cooling phase. 
The current temperature is set to start from the initial temperature 𝑇0, 
and is repeatedly multiplied with the cooling rate 𝜁 until the current 
temperature is less than or equal to the final temperature 𝑇𝑓 . In steps 4 
and 10, user can choose the value of 𝜖 in Eq. (19). The time complexity 
of Algorithm 1 is 𝑂(𝑙𝑜𝑔 1

𝜁
( 𝑇0𝑇𝑓

) ⋅ 𝑚), where 𝑚 is the maximum number of 
iterations.

As Algorithm 1 operates, new subgraph partitioning schemes are pro-
gressively explored in the neighborhood of the current scheme. Each 
new scheme is evaluated against the current one using Eq. (19), and 
based on the Metropolis acceptance criterion, inferior subgraph schemes 
are accepted with a probability 𝑝𝑖, calculated using Eq. (20):

𝑝𝑖 = exp(
𝑓 (𝑥𝑖 )−𝑓 (𝑋)

𝑇 ), (20)

At high initial temperatures, inferior schemes are accepted with higher 
probability, promoting extensive exploration of the solution space and 
mitigating the risk of local convergence. As the temperature gradually 
decreases according to the cooling rate 𝜁 , the probability of accepting 
poorer inferior schemes diminishes, and the search increasingly focuses 
on the neighborhoods of better partitioning solutions. Ultimately, as the 
temperature approaches the final value 𝑇𝑓 , the algorithm converges near 
the globally optimal subgraph partitioning scheme 𝑋.

5.3.  Resource scaling

To facilitate efficient utilization of computational resources, we eval-
uate the resource demands of subgraphs prior to task scheduling. This al-
lows for the selection of compute nodes that satisfy these requirements, 
ensuring high system performance at minimal resource cost. For this 
purpose, we define two thresholds for each compute node: the under-
load threshold 𝑇𝑢𝑛𝑑𝑒𝑟 and the overload threshold 𝑇𝑜𝑣𝑒𝑟. We aim to achieve 
a balanced state where, after scheduling subgraphs to compute nodes, 
the resource utilization of each node lies within the range 𝑇𝑢𝑛𝑑𝑒𝑟 and 
𝑇𝑜𝑣𝑒𝑟. To identify the subgraphs requiring adjustment, we introduce a 
Boolean factor 𝑓 𝑎𝑑𝑗

𝐺𝑠𝑢𝑏
𝑖
, which determines whether a subgraph 𝐺𝑠𝑢𝑏

𝑖  needs 
adjustment according to its resource requirement 𝑅𝐺𝑠𝑢𝑏

𝑖
. This is defined 

in Eq. (21):

𝑓 𝑎𝑑𝑗
𝐺𝑠𝑢𝑏
𝑖

=

⎧

⎪

⎨

⎪

⎩

𝑇 𝑟𝑢𝑒, (𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑢𝑛𝑑𝑒𝑟) ∨ (𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟),

𝐹 𝑎𝑙𝑠𝑒, 𝑇𝑢𝑛𝑑𝑒𝑟 < 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑜𝑣𝑒𝑟,
(21)

when 𝑇𝑢𝑛𝑑𝑒𝑟 < 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑜𝑣𝑒𝑟, the subgraph can be directly scheduled to a 
compute node. However, when 𝑅𝐺𝑠𝑢𝑏

𝑖
< 𝑇𝑢𝑛𝑑𝑒𝑟 or 𝑅𝐺𝑠𝑢𝑏

𝑖
> 𝑇𝑜𝑣𝑒𝑟, the sub-

graph needs to be adjusted before scheduling. The resource scaling pro-
cess is outlined in Algorithm 2. 

The input to Algorithm 2 includes the subgraph partitioning scheme 
𝑋, resource requirements of subgraphs 𝑅𝐺𝑠𝑢𝑏

𝑖
, and the thresholds 𝑇𝑢𝑛𝑑𝑒𝑟

and 𝑇𝑜𝑣𝑒𝑟. The output is the resource scaling scheme 𝑅𝑆, comprising 
adjusted subgraphs. The number of subgraphs in 𝑅𝑆 indicates the min-
imum required compute nodes. Steps 4 to 18 handle adjustments for 
subgraphs with resource requirement below 𝑇𝑢𝑛𝑑𝑒𝑟, including subgraph 
merging (Steps 6-10) and inter-subgraph task adjustment (Steps 13-15). 
Steps 22-27 handle the adjustment of subgraphs whose resource de-
mands exceed 𝑇𝑜𝑣𝑒𝑟 through inter-subgraph task adjustment. The time 
complexity of Algorithm 2 is 𝑂(𝑚 ⋅ 𝑙𝑜𝑔𝑛), where 𝑚 is the number of tasks 
in a subgraph and 𝑛 is the number of subgraphs in 𝑋.

Algorithm 2: Resource scaling.
Input: 𝑋, 𝑅𝐺𝑠𝑢𝑏

𝑖
, 𝑇𝑢𝑛𝑑𝑒𝑟, 𝑇𝑜𝑣𝑒𝑟.

Output: Resource scaling scheme 𝑅𝑆.
1 Sort the subgraphs in 𝑋 in ascending order based on their 

resource requirements;
2 while 𝑋 ≠ ∅ do

/* If target subgraph’s resource requirement is 
less than underload threshold.  */

3 if 𝑅𝐺𝑠𝑢𝑏
𝑖

< 𝑇𝑢𝑛𝑑𝑒𝑟 then
4 𝐺𝑠𝑢𝑏

𝑚𝑎𝑡𝑐ℎ ← ∅;
5 Identify a matched subgraph 𝐺𝑠𝑢𝑏

𝑗  for merging via 
binary search;

6 𝐺𝑠𝑢𝑏
𝑚𝑎𝑡𝑐ℎ ← 𝐺𝑠𝑢𝑏

𝑗 ;
/* If merging candidate is found, merge it 

with the target.  */
7 if 𝐺𝑠𝑢𝑏

𝑚𝑎𝑡𝑐ℎ ≠ ∅ then
8 𝐺𝑠𝑢𝑏

𝑡𝑒𝑚𝑝 ← 𝐺𝑠𝑢𝑏
𝑖 + 𝐺𝑠𝑢𝑏

𝑗 ;
9 Put 𝐺𝑠𝑢𝑏

𝑡𝑒𝑚𝑝 into 𝑅𝑆;
10 Remove 𝐺𝑠𝑢𝑏

𝑖  and 𝐺𝑠𝑢𝑏
𝑗  from 𝑋;

11 end 
/* If no merging candidate is found, find a 

task-adjusting candidate and move its task 
into the target.  */

12 else
13 while 𝑅𝐺𝑠𝑢𝑏

𝑖
< 𝑇𝑢𝑛𝑑𝑒𝑟 do

14 Identify a matched subgraph 𝐺𝑠𝑢𝑏
𝑗  for task 

adjusting via binary search;
15 Select task 𝑣𝑖,𝑘 with minimal impact on the 

weight of 𝐺𝑠𝑢𝑏
𝑗 ;

16 Put 𝑣𝑖,𝑘 into 𝐺𝑠𝑢𝑏
𝑖  from 𝐺𝑠𝑢𝑏

𝑗 ;
17 end 
18 Put 𝐺𝑠𝑢𝑏

𝑖  into 𝑅𝑆;
19 Remove 𝐺𝑠𝑢𝑏

𝑖  from 𝑋;
20 end 
21 end 

/* If target subgraph’s resource requirement is 
greater than overload threshold  */

22 else if 𝑅𝐺𝑠𝑢𝑏
𝑖

> 𝑇𝑜𝑣𝑒𝑟 then
23 while 𝑅𝐺𝑠𝑢𝑏

𝑖
> 𝑇𝑜𝑣𝑒𝑟 do

24 Identify a matched subgraph 𝐺𝑠𝑢𝑏
𝑗  for task 

adjusting via binary search;
25 Identify task 𝑣𝑖,𝑘 with minimal impact on the 

weight of 𝐺𝑠𝑢𝑏
𝑖 ;

26 Put 𝑣𝑖,𝑘 into 𝐺𝑠𝑢𝑏
𝑗  from 𝐺𝑠𝑢𝑏

𝑖 ;
27 end 
28 Put 𝐺𝑠𝑢𝑏

𝑖  into 𝑅𝑆;
29 Remove 𝐺𝑠𝑢𝑏

𝑖  from 𝑋;
30 else
31 Put 𝐺𝑠𝑢𝑏

𝑖  into 𝑅𝑆;
32 end 
33 end 
34 return 𝑅𝑆. 

5.4.  Fine-grained task scheduling

As described in Section 3.2, when we schedule the task set to com-
pute nodes at the subgraph level, inter-node communication is effec-
tively converted into intra-node communication to reduce communi-
cation costs. However, within a subgraph, the communication traffic 
between tasks may vary, leading to the presence of communication-
intensive task pairs. To address this, our scheduling algorithm consists 
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of two components: scheduling subgraphs to compute nodes (coarse-
grained) and scheduling tasks within the processes of compute nodes 
(fine-grained). Communication-intensive task pairs within a subgraph 
are allocated to the same process on a compute node to further mini-
mize communication costs.

For tasks 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙, the communication cost within a process is 
negligible compared to costs between nodes or processes. Therefore, we 
set intra-process communication cost to 0. To quantify the cost benefits 
of co-locating communication-intensive tasks, we define the cost sav-
ings from transforming inter-node to intra-node communication over a 
statistical time frame 𝑠𝑡 using Eq. (22), and from inter-process to intra-
process using Eq. (23):
𝐶𝑠,𝑠𝑡
𝑣𝑖,𝑘 ,𝑣𝑗,𝑙

= 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) ⋅ (𝐶𝑐𝑜𝑚
𝐶𝑁 − 𝐶𝑐𝑜𝑚

𝐶𝑃 ) ⋅ 𝑠𝑡, (22)

𝐶𝑠,𝑠𝑡
𝑣𝑖,𝑘 ,𝑣𝑗,𝑙

= 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) ⋅ 𝐶𝑐𝑜𝑚
𝐶𝑃 ⋅ 𝑠𝑡, (23)

where 𝐶𝑐𝑜𝑚
𝐶𝑁  and 𝐶𝑐𝑜𝑚

𝐶𝑃  represent the per-tuple communication costs across 
nodes and across processes, respectively.

Before scheduling subgraphs to compute nodes, it is essential to 
consider the available computational resources of the current compute 
nodes. As previously mentioned, multiple compute nodes may satisfy 
the resource requirement of a subgraph. To handle this, we select com-
pute nodes based on Eq. (14), ensuring that the selected compute node 
retains sufficient available resources to handle sudden increases in re-
source requirement caused by spikes in data streams. The detailed steps 
of our scheduling algorithm are outlined in Algorithm 3. 

Algorithm 3: Fine-grained task scheduling.
Input: 𝑅𝑆, 𝐶𝑁 , 𝑇 (𝐺𝑠𝑢𝑏

𝑖 ), 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙).
Output: Scheduling scheme 𝑆𝑆.

1 for 𝐺𝑠𝑢𝑏
𝑖  in 𝑅𝑆 do

2 Find compute nodes that satisfy the resource requirement 
𝑅𝐺𝑠𝑢𝑏

𝑖
 of subgraph 𝐺𝑠𝑢𝑏

𝑖  according to Eq. (13);
3 Calculate 𝑓𝑓𝑖𝑡

𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

 for these compute nodes based on Eq. 
(14);

4 Schedule 𝐺𝑠𝑢𝑏
𝑖  to the compute node with highest value of 

𝑓𝑓𝑖𝑡
𝐺𝑠𝑢𝑏
𝑖 ,𝑐𝑛𝑗

;

5 while the number of tasks in 𝑇 (𝐺𝑠𝑢𝑏
𝑖 ) > 1 do

6 Place the task pair (𝑣𝑖,𝑘, 𝑣𝑗,𝑙) with the highest 
𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙) in the same process;

7 Remove 𝑣𝑖,𝑘 and 𝑣𝑗,𝑙 from 𝑇 (𝐺𝑠𝑢𝑏
𝑖 );

8 end 
9 Remove 𝐺𝑠𝑢𝑏

𝑖  from 𝑅𝑆;
10 end 
11 return 𝑆𝑆. 

The input to Algorithm 3 includes the resource scaling 𝑅𝑆, com-
pute node set 𝐶𝑁 , task set within each subgraph 𝑇 (𝐺𝑠𝑢𝑏

𝑖 ), and the tuple 
communication rate between tasks 𝑇 𝑟(𝑣𝑖,𝑘, 𝑣𝑗,𝑙). The output is the fine-
grained task scheduling scheme 𝑆𝑆 for application 𝐺. Steps 2 to 4 de-
scribe the coarse-grained scheduling process, which involves scheduling 
tasks to compute nodes. Steps 6 to 7 describe the fine-grained scheduling 
process, which involves placing communication-intensive task pairs in 
the same process. The time complexity of Algorithm 3 is 𝑂(𝑚 ⋅ 𝑛), where 
𝑚 is the number of subgraphs in 𝑅𝑆 and 𝑛 is the number of tasks within 
a subgraph.

5.5.  System implementation

The time complexity analysis for each algorithm shows that the over-
head introduced by Ra-Stream remains within tolerable limits. While 
the Ra-Stream modules do introduce some time overhead, the impact 
is minimal and does not degrade system performance. These modules 

are designed to optimize system performance, and their effectiveness is 
validated through the experiments in Section 6.

Ra-Stream primarily utilizes Storm’s built-in interfaces, IMetric
and IMetricConsumer, to track and collect runtime information. 
This includes communication traffic between tasks in the stream 
application, resource loads on compute nodes, and available com-
putational resources. The resource load on compute nodes can be 
monitored using Linux system interface commands. Ra-Stream’s 
scheduler is implemented via Storm’s built-in interface, IScheduler.

6.  Performance evaluation

According to [38], we evaluate the proposed Ra-Stream in a real-
world distributed computing environment. First, we present our ex-
perimental setup and parameter configurations. Next, we outline the 
datasets and stream applications used for testing. Finally, we provide a 
thorough analysis of the results.

6.1.  Experimental setup

Our distributed compute cluster consists of 15 machines, including 1 
management node and 14 compute nodes. Each compute node is pow-
ered by an Intel(R) Xeon(R) X5650 CPU (dual-core, 2.4GHz), equipped 
with 2 GB of RAM, and a 100Mbps Ethernet interface card. The manage-
ment node is responsible for running Nimbus and Zookeeper to maintain 
the overall operation of the cluster, while the compute nodes run Super-
visor to handle stream applications. Each compute node is configured 
to deploy a maximum of two Workers, with each Worker running up to 
two tasks. For clarity, we exhibit the software configurations in Table 3, 
and the parameter configuration of Ra-Stream in Table 4.

During the experiment, we use the public dataset Alibaba Tianchi 
[39] as the data source for the real-time word counting application 
(WordCount application), and use the public dataset provided by Back-
blaze [40] as the data source for the DEBS 2024 Grand Challenge: 
Telemetry data for hard drive failure prediction and predictive main-
tenance [41]. The topologies of the two applications are illustrated in 
Figs. 2 and 8, respectively.

In the DEBS 2024 topology (Fig. 8), ‘Data Source’ acts as the Spout, 
sending real-time data downstream. ‘Data Filter’ removes invalid or in-
complete data. ‘Event Detection’ identifies specific event patterns. ‘Ag-
gregation’ computes real-time statistics using a sliding window, and the 
aggregated results are stored in the database by ‘Data Storage’. ‘Anomaly 
Detection’ identifies anomalies in the data stream and sends these events 
to ‘Alert System’. Finally, ‘Alert System’ generates alert notifications and 
disseminates them through a message queue. State migration is involved 

Table 3 
Software configuration of experimental envi-
ronment.

 Software  Version
 OS  Ubuntu 20.04 64 bit
 Apache Storm  Apache-storm-2.1.0
 JDK  jdk-8u171-linux-x64
 Apache Zookeeper  Apache-Zookeeper-3.5.7
 Python  Python 3.8.3
 MySQL  MySQL-8.0.40
 Apache Kafka  kafka-2.12-3.0.0

Table 4 
Ra-Stream’s parameter configuration.
 Parameter  Value  Parameter  Value
𝛼  0.50 𝛽  0.35
𝜖  0.70 𝜁  0.99
𝛾  0.50 𝛿  0.35
𝑇𝑢𝑛𝑑𝑒𝑟  0.60 𝑇𝑜𝑣𝑒𝑟  0.75
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Fig. 8. Topology of DEBS 2024.

Fig. 9. System latency of WordCount under stable stream rates.

during the task scheduling [42]. In this experiment, we employ Storm’s 
check-point mechanism for state management [43].

6.2.  System latency

System latency is defined as the time elapsed from the moment a 
tuple enters the system until it is fully processed. We assess the system 
latency of Ra-Stream under varying data stream rates and compare it 
with the state-of-the-art solutions, EvenScheduler [44] and SP-Ant [21]. 
EvenScheduler is the default scheduler in Storm and has been widely ref-
erenced in prior studies as a baseline [26,27,31]. SP-Ant, a recent and 
open-source scheduling framework, reduces communication overhead 
and achieves competitive system performance by dynamically adjusting 
operator assignments based on the computational capabilities of com-
pute nodes.

Under a stable data stream rate of 3000 tuples/s, Ra-Stream demon-
strates significantly lower system latency compared to the other two so-
lutions. As shown in Fig. 9, the average system latencies of WordCount 
are 5.26 ms, 7.81 ms and 11.57 ms for Ra-Stream, SP-Ant and Even-
Scheduler, respectively. SP-Ant places communication-intensive tasks 
on the same computation node without considering the resource utiliza-
tion of that node, resulting in node overload and consequently higher 
system latency.

Similarly, under the same stable data rate, Fig. 10 shows the aver-
age system latency of DEBS 2024 application. EvenScheduler and SP-Ant 
yield latency of 20.01 ms and 15.80 ms, respectively, while Ra-Stream 
achieves an average system latency of only 10.61 ms. Ra-Stream demon-
strates greater stability compared to the apparent latency fluctuations 
observed with EvenScheduler and SP-Ant. This improved stability is at-

Fig. 10. System latency of DEBS 2024 under stable stream rates.

Fig. 11. System latency of WordCount under increasing stream rates.

tributed to Ra-Stream’s ability to prevent compute node overloads, en-
suring that each task has sufficient resources to process tuples.

Under increasing data stream rates, Ra-Stream consistently demon-
strates reduced system latency compared to SP-Ant and EvenScheduler. 
We set an initial data stream rate of 1000 tuples/s. After system metrics 
such as latency stabilize, we collect performance data for 10 min. The 
data stream rate is then increased in 1000 tuples/s increments, with sta-
bilization and data collection occurring at each step, up to 5000 tuples/s. 
As shown in Figs. 11 and 12, the average system latencies of WordCount 
and DEBS 2024 increase for all solutions as the data stream rate grows. 
However, Ra-Stream experiences a smaller increase in latency compared 
to SP-Ant and EvenScheduler, maintaining a performance advantage.

In summary, Ra-Stream demonstrates excellent system latency, 
whether the data stream rate is stable or increasing. This is be-
cause Ra-Stream effectively prevents overload situations in the cluster’s
compute nodes, guaranteeing that each task in the stream application 
has ample computational resources to steadily process tuples. In addi-
tion, Ra-Stream minimizes communication costs between tasks, further 
reducing system latency.

6.3.  System throughput

Maximum system throughput is defined as the highest data stream 
rate that a system can steadily process without failure. In stream com-
puting systems, if any task within the stream application fails as the 
data stream rate increases, the corresponding data stream rate is identi-
fied as the system’s maximum throughput. To determine the maximum 
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Fig. 12. System latency of DEBS 2024 under increasing stream rates.

Fig. 13. Maximum throughput of WordCount and DEBS 2024 under Ra-Stream, 
SP-Ant and EvenScheduler.

throughput for Ra-Stream, SP-Ant, and EvenScheduler, we deploy them 
on our cluster and run stream applications under incremental data rates. 
For fairness, the computational resource configurations, datasets, and 
stream applications used are kept identical across all experiments.

Under an increasing data stream rate with increments of 500 tu-
ples/s, Ra-Stream demonstrates a higher maximum throughput than 
the others. As shown in Fig. 13, for WordCount and DEBS 2024, Ra-
Stream achieves maximum throughputs of 14,500 tuples/s and 12,000 
tuples/s, respectively. These values represent a significant improvement 
over EvenScheduler and SP-Ant.

The superior performance of Ra-Stream is attributed to its ability 
to automatically configure the scheduling scheme for tasks based on 
the current data stream rate, thereby preventing task failures caused by 
insufficient computational resources. Before generating the scheduling 
scheme, Ra-Stream systematically adjusts tasks among subgraphs. This 
approach ensures that, once tasks are scheduled to compute nodes at the 
subgraph level, each task is allocated sufficient resources to execute.

6.4.  Resource utilization

Resource utilization refers to the proportion of utilized resources rel-
ative to the total resources at runtime. The focus on runtime resource uti-
lization for stream applications is a prevalent topic in current research. 
For example, one key consideration is how to achieve optimal system 
performance with a reduced number of compute nodes. However, the 
number of compute nodes used does not directly reflect the resource 
utilization within an individual compute node. For instance, excessively 

Fig. 14. Number of compute nodes utilized in WordCount and DEBS 2024 under 
stable stream rates.

Fig. 15. Number of compute nodes utilized in WordCount under fluctuating 
stream rates.

low resource utilization in a compute node indicates significant resource 
wastage, which is clearly undesirable. To address this, we employ two 
metrics to assess Ra-Stream’s resource utilization: the number of com-
pute nodes used within the cluster and the average resource utilization 
within compute nodes. The average resource utilization consists of CPU, 
memory and I/O resources, which can be calculated by Eq. (6).

Under a stable data stream rate of 3000 tuples/s, Ra-Stream can ad-
just the number of compute nodes to adapt to the data rate. As shown 
in Fig. 14, for the two stream applications, WordCount and DEBS 2024, 
Ra-Stream utilizes 7 and 8 compute nodes, respectively. These figures 
are significantly fewer than the number of compute nodes utilized by 
SP-Ant and EvenScheduler.

Under fluctuating data stream rates, Ra-Stream automatically adjusts 
the utilization of compute nodes to accommodate current data stream 
conditions. To simulate real-world fluctuating workloads, we define a 
time-varying data stream profile. For example, the data stream rate in-
creases from 1800 tuples/s to 3000 tuples/s at 60 s, and decreases from 
2700 tuples/s to 2000 tuples/s at 330 s. This enables the observation 
of Ra-Stream’s dynamic resource scaling and performance adaptabil-
ity under fluctuating load conditions. In our experiment, the peak data 
stream rate is set to 4500 tuples/s at 210 s. As shown in Figs. 15 and 
16, Ra-Stream dynamically adjusts the number of compute nodes for 
both WordCount and DEBS 2024 applications in response to changing 
data rates. Initially, Ra-Stream’s number of compute nodes matches that 
of EvenScheduler. Subsequently, Ra-Stream generates a new scheduling 
plan suitable for the current data rate 1800 tuples/s at runtime 30s,
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Fig. 16. Number of compute nodes utilized in DEBS 2024 under fluctuating 
stream rates.

Fig. 17. Average resource utilization in WordCount under fluctuating stream 
rates.

adjusting the node number (from 14 to 5 in WordCount and from 14 to 
7 in DEBS 2024).

Throughout the runtime, Ra-Stream continues to adapt to the fluc-
tuating streams. For example, when the data rate increases from 3000 
tuples/s to 4500 tuples/s at runtime 210s, Ra-Stream scales up the node 
number (from 7 to 10 in WordCount, and from 8 to 11 in DEBS 2024) 
to ensure stable system operation. Conversely, when the rate decreases 
from 4500 tuples/s to 2700 tuples/s at runtime 270s, Ra-Stream reduces 
the node number (from 10 to 7 in WordCount, and from 11 to 8 in DEBS 
2024), optimizing resource utilization.

Under fluctuating data stream rates, Ra-Stream also achieves more 
efficient average resource utilization. As shown in Figs. 17 and 18, 
whether running WordCount or DEBS 2024, Ra-Stream consistently 
achieves higher and more stable resource utilization compared to SP-
Ant and EvenScheduler. In contrast, SP-Ant and EvenScheduler exhibit 
inefficient resource utilization, which fluctuates with changes in data 
rates, leading to wasted resources.

In summary, Ra-Stream not only scales compute node resources au-
tomatically in response to data stream fluctuations, ensuring the stable 
operation of stream applications with a minimum number of nodes, but 
also achieves more efficient average resource utilization, greatly reduc-
ing resource waste. Ra-Stream demonstrates a substantial improvement 
in resource utilization.

7.  Conclusion and future work

In scenarios involving fluctuating data streams, minimizing sys-
tem latency, reducing resource costs, and ensuring efficient resource

Fig. 18. Average resource utilization in DEBS 2024 under fluctuating stream 
rates.

utilization are critical challenges in current stream computing research. 
Achieving these objectives requires a scheduling strategy capable of 
sensing changes in data flow rates and accounting for the dependen-
cies among tasks within stream applications. Such a strategy should au-
tomatically adjust computational resources in response to variations in 
data streams, while minimizing communication costs through effective 
task deployment.

To meet these requirements, this paper proposes a task scheduling 
strategy with automated resource scaling designed to handle fluctuating 
data streams. Ra-Stream achieves strong system performance in fluctu-
ating data stream scenarios with reduced resource costs. Compared to 
state-of-the-art approaches, Ra-Stream reduced system latency by ap-
proximately 36.37% to 47.45%, increased system maximum through-
put by around 26.2% to 60.55%, and saves approximately 40% to 
46.25% in resource utilization. Despite these advantages, there re-
main areas for further enhancement, including support for greater task 
parallelism, integration of energy-aware scheduling for reduced power 
consumption, and improved scalability across other stream processing 
frameworks.

In the future, we aim to further explore the following areas:

(1) Task parallelism: Investigating the parallelism of tasks within stream 
applications to further reduce system latency.

(2) Energy consumption: Integrating energy consumption metrics of 
compute clusters to achieve additional economic and environmen-
tal benefits.
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