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Abstract
Edge computing decentralizes computing resources, allowing for
novel applications in domains such as the Internet of Things (IoT) in
healthcare and agriculture by reducing latency and improving per-
formance. This decentralization is achieved through the implemen-
tation of microservice architectures, which require low latencies
to meet stringent service level agreements (SLA) such as perfor-
mance, reliability, and availability metrics. While cloud computing
offers the large data storage and computation resources necessary
to handle peak demands, a hybrid cloud and edge environment is re-
quired to ensure SLA compliance. This is achieved by sophisticated
orchestration strategies such as Kubernetes, which help facilitate
resource management. The orchestration strategies alone do not
guarantee SLA adherence due to the inherent delay of scaling re-
sources. Existing auto-scaling algorithms have been proposed to
address these challenges, but they suffer from performance issues
and configuration complexity. In this paper, a novel auto-scaling
algorithm is proposed for SLA-constrained edge computing appli-
cations. This approach combines a Machine Learning (ML) based
proactive auto-scaling algorithm, capable of predicting incoming
resource requests to forecast demand, with a reactive autoscaler
which considers current resource utilization and SLA constraints
for immediate adjustments. The algorithm is integrated into Ku-
bernetes as an extension and its performance is evaluated through
extensive experiments in an edge environment with real applica-
tions. The results demonstrate that existing solutions have an SLA
violation rate of up to 23%, whereas the proposed hybrid solution
outperforms the baselines with an SLA violation rate of only 6%,
ensuring stable SLA compliance across various applications.

CCS Concepts
• Computer systems organization→ Cloud computing; Dis-
tributed architectures.
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1 Introduction
Cloud computing architectures leverage the on-demand accessi-
bility of the Internet. The applications deployed here utilize the
vast resources of the cloud to perform a task and relinquish it once
it is complete for the other sub-modules in the application to re-
quest [22]. In the early days, a singular end-point would be used
to access these services, however nowadays the architecture is a
multi-regional model allowing effortless access from across the
world. The increasing popularity of hand-held devices as well as

home appliances has resulted in data being largely produced at the
edge of the cloud network. Thus, processing this large amount of
data solely on the cloud proved to be an inefficient solution due to
the bandwidth limitations of the network [26] This was resolved
through the use of edge computing architectures.

Edge computing ensures data processing services and resources
exist at the peripheries of the network [2]. The architecture extends
and adapts the computing and networking capabilities of the cloud
to meet real-time, low latency, and high bandwidth requirements
of modern agile businesses.

Edge computing deploys several lightweight computing devices
known as cloudlets to form a “mini-cloud” and places them in
close proximity to the end-user data [12]. This reduces the la-
tency in terms of client-server communication and data processing.
Cloudlets can also be easily scaled depending on the resource re-
quirements per edge architecture. However, due to the dynamic
resource requirements which may fluctuate from time to time, the
resources allocated to cloudlets must be dynamically scaled too.
This dynamic scaling, along with the inherent latency present be-
tween the cloud layer and the edge cloudlets, poses a significant
problem to real-time resource scaling [31].

One method of mitigating this scaling latency is through the use
of microservice applications. By employing a microservice archi-
tecture, the resources in a cloudlet are distributed as a collection
of smaller deployments that are both independent and loosely cou-
pled [32]. This loose coupling ensures that parts of the cloudlet can
be scaled as required, further reducing the time required to scale
resources as compared to scaling the cloudlet monolithically.

The scaling of these microservice resources is done automatically
through a process known as auto-scaling. While most container
orchestration platforms come bundled with default auto-scaling
solutions, and these solutions are sufficient for most applications,
they fall apart when scaling resources for time-sensitive services
processing real-time data. Applications such as the ones used in
healthcare require stringent compliance to service level agreements
(SLA) on metrics such as application latency. This has led to further
research on auto-scaling solutions for edge computing applications.
These primarily fall into two categories:

Reactive auto-scaling solutions attempt to modify the mi-
croservice resource allocation once the required resources exceed
the current allocation. These algorithms are simple to develop and
deploy, however, the time taken to scale resources leads to a degra-
dation of resource availability and violates SLA compliance [19].

Proactive auto-scaling solutions attempt to model resource
allocation over time and effectively predict the resource require-
ments. By doing so, the microservice resources can be scaled in
advance through a process known as “cold starting”. This approach
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removes the latency inherent in scaling resources, however, the
algorithms are extremely complex to develop, train, and tune to
specific edge applications [29].

To tackle these challenges, this paper proposes a hybrid approach
that combines the simplicity of using reactive autoscalers, while
maintaining the resource availability benefits of the proactive au-
toscalers. The algorithm involves a smaller-scale LSTM machine
learning model which can be quickly trained to recognize the key
features of the resource workload over a course of time. The au-
toscaler then uses the predictions from the LSTM model to scale its
resources in advance. A reactive autoscaler is used to maintain the
current resource requirements as the predictive model cannot pro-
vide fine-tuned predictions. The accuracy of the prediction model
is gauged by monitoring the SLA metrics. If it is observed that the
predictive model is performing poorly, the training parameters are
automatically tuned for the next training iteration.

The contributions of this paper are as follows:
• Propose a hybrid auto-scaling method that mitigates the

challenges present in reactive and proactive methods.
• The algorithm is implemented as an extension to Kuber-

netes.
• Deploy this algorithm in a real edge cluster prototype.
• Conduct extensive experiments using realistic daily work-

loads on a prototype microservice application.
• Compare the SLA violations of cutting-edge reactive, proac-

tive, and default container orchestration autoscalers with
the proposed hybrid algorithm.

The remainder of the paper is organized as follows. Section 2
discusses related autoscaling strategies, their benefits, and draw-
backs. Section 3 formulates the problem we are attempting to solve,
including SLA and the cold start problem. Section 4 provides an
overview of the new hybrid autoscaler architecture and algorithm
along with an analysis of its computational complexity. Section 5
deals with the experiments conducted to validate the efficacy of the
proposed architecture, with Section 6 discussing the performance
of the architecture. Finally, Section 7 concludes and summarizes
the findings and discusses some of the future enhancements that
could be made to the architecture.

2 Related Work
2.1 Reactive Autoscaling Strategies
Nunes et al. [16] stated that horizontal pod auto-scaling using a
reactive strategy remains the most popular auto-scaling technique,
as well as research topic. These strategies, despite having limitations
such as a reliance on predetermined resource thresholds and a delay
in resource scaling, have been popular in research articles. Dogani et
al. [3] stated that this was due to the simplicity and user-friendliness
in developing them.

Kampars and Pinka [8] proposed a reactive auto-scaling algo-
rithm for edge architectures based on open-source technologies.
The algorithm scales in a non-standard approach, considering real-
time adjustments in the application logic to determine the strategy
of scaling. Zhang et al. [34] presented an algorithm for determining
edge elasticity through container-based auto-scaling, demonstrat-
ing that balancing system stability with decent elasticity required
careful tuning of parameters such as cooldown periods. However

the lack of addressing the cold start problem results in a delay in
scaling resources, violating SLA-compliance.

Phan et al. [18] proposed a reactive auto-scaling solution for
edge deployments for IoT devices which dynamically allocates re-
sources based on incoming traffic. This traffic-aware horizontal pod
autoscaler (THPA) operates on top of the underlying Kubernetes ar-
chitecture. The default Kubernetes horizontal pod autoscaler scales
resources in a round-robin manner, not taking into context which
nodes are receiving the highest resource requests. THPA alleviates
this issue by modelling the resource requests per Kubernetes nodes
and intelligently allocating pods to the nodes with higher number
of requests. The authors demonstrated that this approach provided
a 150% improvement in response time and throughput. However
the algorithm is not SLA compliant due to the delay in scaling
resources in a reactive manner.

2.2 Proactive Autoscaling Strategies
Lorido et al. [13] showed that compared to reactive algorithms,
proactive algorithms achieved better resource allocation once they
had been carefully optimized. Machine learning techniques such
as auto-regressive integrated moving averages (ARIMA) and long
short-term memory (LSTM) have gained popularity in time-series
analysis due to their relative ease of building and efficiency com-
pared to other ML models.

Ju et al. [7] presented a proactive horizontal pod auto-scaling
solution for edge computing paradigms. The algorithm, known as
Proactive Pod Autoscaler (PPA) was designed to predict resource
requests on multiple user-defined metrics, such as CPU request and
I/O traffic requests. The algorithm does not use any specificmachine
learning model for the time-series analysis, instead the model is to
be inputted by the user. This model agnostic architecture allows for
a very high level of customization. However, such customizability
leads to a complex deployment and hyper-parameter tuning process.
This, along with a lack of initial training data causes erroneous
predictions before the model corrects itself.

Meng et al. [14] created a proactive auto-scaling algorithm for
forecasting the Kubernetes CPU usage of containers using a time-
series prediction with ARIMA. The authors demonstrated that such
an architecture reduced the forecast errors to 6.5%, as compared to
the baseline of 17%. However the cost of training this model was
prohibitively high, making it unsuitable for edge deployments.

Imdoukh et al. [6] proposed a proactive auto-scaling solution
using an LSTM model, designed for edge computing architectures.
The algorithm uses an LSTM neural network to predict future net-
work traffic workload to determine the resources to assign to edge
nodes ahead of time (cold-start). The authors demonstrated that
their algorithm was as accurate as existing ARIMA-based proactive
solutions, but significantly reduced the prediction time, as well
as computed the minimum resource allocation required to handle
future workload. However, this algorithm also suffers from the
problems related to a lack of initial training data.

2.3 Hybrid Autoscaling Strategies
All the reactive and proactive approaches have their benefits and
drawbacks. Thus, hybrid solutions which merge multiple auto-
scaling methods were proposed [20]. While hybrid algorithms for



Table 1: Summary of hybrid auto-scaling solutions

Features Hybrid Algorithms Proposed
[33] [11] [21] [1] [28]

Simple deployment ✓ ✓ ✓ ✓ ✓ ✓

Simple parameter tuning ✓ ✓ ✓ ✗ ✗ ✓

Custom metrics ✓ ✗ ✗ ✓ ✓ ✓

Light-weight deployment ✓ ✗ ✓ ✗ ✗ ✓

Edge architecture compliant ✗ ✗ ✗ ✗ ✗ ✓

SLA-compliant ✗ ✗ ✓ ✓ ✓ ✓

Minimizes deployment cost ✗ ✗ ✗ ✗ ✓ ✓

cloud-based deployments exist, integrating them into edge archi-
tectures pose several challenges due to the lower data storage and
computational capacity of the edge layer. Furthermore, extracting
the proactive time-series analysis to the cloud layer poses further
challenges due to the inherent latency present between the two lay-
ers. Table 1 shows an overview of the existing proposals compared
with our solution.

In 2007, one of the first hybrid algorithms for a distributed de-
ployment was proposed by Jing et al. [33]. This algorithm combined
rule-based fuzzy inferencewithmachine learning forecasting for dy-
namic resource allocation. Based on this work, Lama and Zhou [11]
proposed a resource provisioning algorithm for multi-cluster setups
using a hybrid autoscaler comprising of a combination of fixed fuzzy
rule-based logic and a self adaptive algorithm which dynamically
tuned the scaling factor.

Rampérez et al. [21] proposed a hybrid approach called Fore-
casted Load Auto-scaling (FLAS), which combines a predictive
model for forecasting time-series resources, while the reactive
model estimates other high-level metrics. The linear regression
forecaster was however too simplistic to predict complex time-
series. Biswas et al. [1] presented a hybrid algorithm designed for
cloud computing deployments with service level agreements using
an SVM model. Such an SVM-based model is expensive to train
however, making it infeasible to deploy on edge deployments.

Singh et al. [28] proposed another cloud computing based au-
toscaler with SLA-constraints. The robust hybrid autoscaler (RHAS)
was designed particularly for web applications using a modification
of the ARIMA machine learning model (TASM). The technique was
demonstrated to reduce cloud deployment cost and SLA violations.
However, the TASM forecaster was too complex and resource in-
tensive to be deployed on scarce resource paradigms such as the
edge layer. This resource intensiveness increased the training times
drastically, making it infeasible for conforming to SLA constraints
on edge architectures.

The RHAS algorithm by Singh et al. [28] provided the best ap-
proach template for creating a hybrid autoscaler. Therefore, in
implementing the autoscaler presented in this paper, we extended
the generalized architecture of RHAS to streamline both the re-
active and proactive autoscalers, while choosing a more efficient
and cost-effective forecasting model to make it SLA-compliant on
edge architectures, and eliminating the costly and time-consuming
hyper-parameter tuning process.

3 Problem Formulation
Figure 1 shows the edge architecture layout. The cloud layer is
similar to cloud-computing paradigms, wherein it manages the
entire network architecture and stores large scale data. The edge
layer consists of smaller scale user data storage and communication
with user devices. Finally, the device layer consists of all the user
devices that will interact with the edge architecture.

Figure 1: Autoscaling problem overview
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The cloud layer has the most amount of resources allocated to
it, which it requires when managing the entire network, comput-
ing the intensive processing of large-scale data, and coordinating
the resource allocation of the edge layer. Only system-critical ap-
plications such as the controller orchestration control plane are
deployed on this layer. The edge layer has far fewer resources than
the cloud layer, but its proximity to the users results in lower net-
work latency, making it ideal for resource scaling. For this reason,
the edge layer consists of the orchestration tool’s worker nodes
and the microservice which receives and serves user data. These
worker nodes allocate resources to the microservice deployments
dynamically according to user requirements through the process
known as auto-scaling.

3.1 SLA Constraint Definition
Cloud deployments provide several Quality of Service (QoS) metrics
when considering SLA negotiations [25]. These can be broadly clas-
sified into performance metrics (response time, throughput), avail-
ability metrics (abandon rate, use rate), reliability metrics (mean
failure time, mean recovery time), and cost metrics (financial and
energy costs).

For this research, we utilize the performance metric response
time of the user requests as the SLA constraint metric. This met-
ric was chosen due to it being affected the most by intelligently
auto-scaling cloud services. By using this metric, the cloud deploy-
ment guaranteed that all requests would be served under a certain
threshold.

For real-time applications, the auto-scaling should adhere to the
SLA metric as much as possible, and try to minimize the number of
violations. An SLA constraint S𝑐 (𝑡) is defined as a metric value not
exceeding above a threshold Δ agreed by both the cloud provider
and the customer:

S𝑐 (𝑡) > Δ (1)
Following Hussain et al. [5], we consider multiple SLA thresh-

olds for different use cases: Flexible (highest threshold, typical IoT
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applications), Moderate (trade-off for real-time capabilities), and
Strict (lowest threshold for time-critical applications such as medi-
cal surgeries).

3.2 Cold-Start Problem
The auto-scaling will use a resource metric to scale resources up or
down. A problem arises in the time it takes to scale these resources.
This time to increase the number of resource replicas R, which we
define as the cold start time C(𝑡):

C(𝑡) = R𝑑𝑒𝑝𝑙𝑜𝑦 (𝑡) + R𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 (𝑡) (2)

where the cold start time is the summation of the time taken for the
replica to be deployed on the data plane and registered with the con-
trol plane. The replica image download time is typically a one-time
delay due to optimizations done on modern container orchestration
software and can be ignored for SLA latency calculations.

When computing the SLA constraint value for a latency metric,
the SLA latency can be written as the sum of the cold-start time
and the round-trip time taken for the request:

S𝑐 (𝑡) = C(𝑡) + K(𝑡) +
U(𝑡)∑

𝑖 𝑝𝑖
(3)

where K(𝑡) is the constant network latency,U(𝑡) is the maximum
latency of a unitary resource deployment, and

∑
𝑖 𝑝𝑖 is the total pod

count in deployment D. The number of SLA violationsV ∝ C(𝑡)
due to the correlation between cold-start delay and the lack of
available resources [17].

3.3 Optimization Problem
From Equation 3, it is clear that lim∑

𝑖 𝑝𝑖→∞
U(𝑡 )∑
𝑖 𝑝𝑖

= 0. This in-
centivizes ignoring intelligent auto-scaling and simply allocating
maximum pods. However, most cloud providers allocate a cost for
each resource assignment:

𝑐𝑜𝑠𝑡 = 𝛼 ×
∑︁
𝑖

𝑝𝑖 (4)

where 𝛼 is the unitary resource cost. The auto-scaling optimization
problem P can be formed:

P = 𝑥 × S𝑐 (𝑡) + 𝑦 × 𝑐𝑜𝑠𝑡 (5)

The objective is to minimize both latency and cost. For this research,
we configure 𝑥 = 𝑦 = 0.5, implying both are equally important.
Maximizing resources in D while limiting cost below a threshold
to reduce SLA constraint metric is akin to the famous Knapsack
Problem [9]. This problem is proven to be NP-Hard, and as such no
known algorithm can determine the best value in polynomial time.
However, an approximation close to this best value can be com-
puted in polynomial time through reactive rule-based or proactive
machine-learning techniques.

4 Proposed Hybrid Autoscaler
4.1 Architecture Overview
An overview of the hybrid autoscaler architecture is shown in Fig-
ure 2. The overall architecture is formulated using a hierarchical
model. The edge node consists of three main sections. The first is
the reactive auto-scaling subsystem, which has the resource provi-
sioning module, and the configuration which dictates the cooldown
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Prometheus
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Model

Data
Pre-processor

Microservice Deployment

metrics
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Cloud

Edge

Figure 2: Proposed hybrid architecture overview

logic for scaling up and down. As Zhang et al. [34] demonstrated,
the microservice system stability is directly related to the careful
selection of cool-down parameters.

The second subsystem is the proactive autoscaler. From a high-
level perspective, there are three main components. The resource
provisioning module is similar to that of the reactive autoscaler,
however, it also consists of a forecaster using a deep-learning-based
machine learning model, and a data pre-processing algorithm. The
data pre-processing algorithm removes any noise present in the
time series data, and smoothens the data curves, making it easier
for the forecaster to make predictions in a low-cost manner.

Finally, the auto-scaling controller determineswhich auto-scaling
logic will be applied to the replicas, and also keeps track of any SLA
violations. It hosts the time-series metric data and has a feedback
loop with the proactive autoscaler. If it detects SLA violations dur-
ing a configured time window, it automatically adjusts the hyper-
parameters of the proactive forecaster. Such a heuristic method
eliminates the complex hyper-parameter tuning process seen in
most proactive models.

4.2 Scheduler Algorithm
At a high level, a container orchestration’s default horizontal pod
autoscaler operates on the ratio between the current and desired
metric values:

𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = ⌈𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ×
𝑚𝑒𝑡𝑟𝑖𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑
⌉ (6)

The autoscaler controller consists of a scheduling logic mod-
ule which handles when to switch between proactive and reactive
auto-scaling. Algorithm 1 explains this logic. The autoscaler com-
putes two replica values, one for the proactive forecaster which
determines the replicas after T seconds, and one for the reactive
forecaster for current requirements. If the forecasted requirement
is higher than current, the scheduler outputs the forecaster replica
count as desired replicas. Otherwise, the reactive replica count is
used.

4.3 Reactive Resource Provisioning
The reactive autoscaler subsystem is responsible for determining
whether auto-scaling should proceed based on given configuration.
The reactive algorithm’s resource provisioning is built on top of
the default horizontal pod autoscaler deployed by Kubernetes. The



Algorithm 1 Hybrid Scheduler Algorithm
Input: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝑚𝑒𝑡𝑟𝑖𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ,𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ,𝑚𝑒𝑡𝑟𝑖𝑐 𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡

Output: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑑𝑒𝑠𝑖𝑟𝑒𝑑
1: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ← ⌈𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ×

𝑚𝑒𝑡𝑟𝑖𝑐𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡

𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑
⌉

2: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 ← ⌈𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡 × 𝑚𝑒𝑡𝑟𝑖𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑

⌉
3: if 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡 > 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒 then
4: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ← 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡

5: else
6: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑑𝑒𝑠𝑖𝑟𝑒𝑑 ← 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒

7: end if
8: return 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑠𝑑𝑒𝑠𝑖𝑟𝑒𝑑

autoscaler is modified such that it has cooldown parameters set to a
moderate value to ensure adaptability to SLA-constrained scenarios
while maintaining system stability.

There are three important parameters key to controlling hor-
izontal pod scaling: “tolerance”, “scale up cooldown”, and “scale
down cooldown”. The tolerance informs the autoscaler when to
skip calculating new replicas:

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 =

����𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −𝑚𝑒𝑡𝑟𝑖𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝑚𝑒𝑡𝑟𝑖𝑐𝑑𝑒𝑠𝑖𝑟𝑒𝑑

���� (7)

By default, if tolerance is below 0.1, autoscaling is skipped. The scale-
up and scale-down cooldowns control how quickly auto-scaling
occurs. For the proposed autoscaler, both cooldowns are modified
to 15 seconds to ensure moderate cooldown values for best system
stability and SLA compliance.

4.4 Data Pre-Processor
To speed up the forecast process and reduce resource requirements,
the time-series data is pre-processed to smoothen it. This makes
it easier for the deep learning model to extract patterns, reduces
training and validation loss, and reduces the length of the train-
ing window data sequence the LSTM requires. The smoothing is
achieved using the Savitzky-Golay filter [23], which takes 𝑁 points
in a given time-series, with a filter width𝑤 , and calculates a poly-
nomial average of order 𝑜 [24]. The resulting data has considerably
less deviations between consecutive points and is devoid of noise.

4.5 Proactive Forecaster
Several time series forecaster algorithms exist, with LSTM and
ARIMA being prominent ones. Siami-Namini et al. [27] demon-
strated that LSTM implementations outperformed ARIMA, reduc-
ing error rates by over 80%. Furthermore, the number of training
“epochs” did not need to be set to a high value; setting significantly
higher values degraded performance due to over-fitting. LSTM
works well due to “rolling updates” on the model—weights are only
set once when deployed, then always updated on every training
call.

Algorithm 2 shows the forecaster implementation. The autoscaler
controller implements a control loop every P seconds requesting
the latest prediction. The forecaster pre-processes data to remove
noise, performs training with configured hyper-parameters, com-
putes validation loss, and accepts this model if it has lower valida-
tion loss than previous iterations. Finally, the model predicts future
metrics and returns them to the controller.

Algorithm 2 Proactive Forecaster Algorithm
Input: 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 ≥ 0, 𝑒𝑝𝑜𝑐ℎ𝑠 ≤ 100, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ≤ 1

Output:𝑚𝑒𝑡𝑟𝑖𝑐 𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡

1: 𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 ← 𝑙𝑠𝑡𝑚.𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 ( )
2: 𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠 ← 𝑔𝑒𝑡_𝑙𝑎𝑡𝑒𝑠𝑡_𝑑𝑎𝑡𝑎 ( )
3: 𝑙𝑠𝑡𝑚_𝑖𝑛𝑝𝑢𝑡 ← 𝑔𝑒𝑡_𝑖𝑛𝑝𝑢𝑡 (𝑡𝑖𝑚𝑒_𝑠𝑒𝑟𝑖𝑒𝑠, 𝑙𝑜𝑜𝑘𝑏𝑎𝑐𝑘 )
4: 𝑙𝑠𝑡𝑚_𝑖𝑛𝑝𝑢𝑡 ← 𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠_𝑑𝑎𝑡𝑎 (𝑙𝑠𝑡𝑚_𝑖𝑛𝑝𝑢𝑡 )
5: 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙 ← 𝑡𝑟𝑎𝑖𝑛 (𝑙𝑠𝑡𝑚_𝑖𝑛𝑝𝑢𝑡, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 )
6: if 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠 (𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙 ) < 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑠𝑠 (𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 )

then
7: 𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 ← 𝑛𝑒𝑤_𝑚𝑜𝑑𝑒𝑙

8: end if
9: 𝑚𝑒𝑡𝑟𝑖𝑐 𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡 ← 𝑙𝑠𝑡𝑚_𝑚𝑜𝑑𝑒𝑙 .𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑙𝑠𝑡𝑚_𝑖𝑛𝑝𝑢𝑡 )
10: return𝑚𝑒𝑡𝑟𝑖𝑐 𝑓 𝑜𝑟𝑒𝑐𝑎𝑠𝑡

Table 2: Proactive forecaster layer configuration

Layer Details Output Shape Parameters

LSTM1 (10, 50) 10,400
Dropout1 (10, 50) 0
LSTM2 (10, 50) 20,200
Dropout2 (10, 50) 0
LSTM3 (50) 20,200
Dense1 (540) 27,540

Total 78,340

The proactive forecaster is a deep-learning model configured
with multi-step forecast output. The model consists of three LSTM
layers, alternated with two dropout layers (to prevent over-fitting),
and a final densely connected neural-network generating the fore-
caster output. The output is 540 data points (approximately 24 hours
of workload), so the forecaster only needs to run once daily, vastly
reducing total training time.

Default hyper-parameters are: learning rate = 0.005, epochs =
75, batch size = 100, with Adam optimizer [10]. An “early-stop”
function halts training if loss does not decrease for 10 consecu-
tive epochs. The model training, validation, and error comparison
takes approximately 3 minutes, after which the model predicts the
subsequent day’s forecast in under 10 seconds.

4.6 SLA-based Heuristic Feedback
The autoscaler controller constantly checks for SLA violations us-
ing a control loop. Typically, SLA checks are done for a sufficiently
lengthy period such as one day. If an SLA violation is found, it is con-
cluded that the application was unable to autoscale quickly enough
to avoid the cold start problem. This could be due to insufficient
training data or conservative hyper-parameter selections.

To temporarily boost learning, the controller decreases the learn-
ing rate (to increase probability of escaping local minima), increases
batch size (to reduce under-fitting), and increases epochs (to re-
duce loss). All parameters have thresholds to prevent over-fitting
or infeasibly lengthy training times. Algorithm 3 shows this imple-
mentation.

If the feedback control loop discovers no SLA-violations during
a time-period, it concludes that the LSTM has sufficiently learned
the primary characteristics. The “rolling-updates” feature of LSTM
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Algorithm 3 SLA-based Heuristic Feedback
Input: V, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑒𝑝𝑜𝑐ℎ𝑠

Output: ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠𝑚𝑜𝑑𝑖𝑓 𝑖𝑒𝑑

1: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑟𝑎𝑡𝑒 ← 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒
2: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑏𝑎𝑡𝑐ℎ ← 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒
3: 𝑖𝑛𝑖𝑡𝑖𝑎𝑙_𝑒𝑝𝑜𝑐ℎ𝑠 ← 𝑒𝑝𝑜𝑐ℎ𝑠

4: if V > 0 then
5: 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ← min(𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 + 10, 200)
6: 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 ← max(𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒 − 0.0005, 0.002)
7: 𝑒𝑝𝑜𝑐ℎ𝑠 ← min(𝑒𝑝𝑜𝑐ℎ𝑠 + 5, 100)
8: else
9: Reset to initial values
10: end if
11: return (𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔_𝑟𝑎𝑡𝑒,𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑒𝑝𝑜𝑐ℎ𝑠 )

allows safely resetting hyper-parameters while preserving learning
and weights of previous training rounds.

4.7 Complexity Analysis
Assuming the hybrid autoscalerH takes time-series data of length
N , stored in an array data structure, and LSTM weights as a two-
dimensional matrix of size 𝐴 × 𝐵:

Space Complexity: The time-series array has complexity𝑂 (𝑁 )
and weights are 𝑂 (𝑁 2). Thus:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑠𝑝𝑎𝑐𝑒 (H) =𝑂 (𝑁 2) (8)

Time Complexity: The reactive autoscaler and controller only
compute tolerance values—constant operations:𝑂 (1). For the proac-
tive autoscaler, the LSTM internally computes matrix multiplica-
tions. For dimensions𝑚 and 𝑛:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑡𝑖𝑚𝑒 (𝑝𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒) =𝑂 (𝑚 × (𝑚 + 𝑛 + 1)) =𝑂 (𝑁 2) (9)

For 𝜏 training epochs (a constant), the final complexity remains
𝑂 (𝑁 2). Combining all components:

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦𝑡𝑖𝑚𝑒 (H) =𝑂 (1) +𝑂 (1) +𝑂 (𝑁 2) =𝑂 (𝑁 2) (10)

The hybrid algorithm performs in polynomial time complexity,
providing an approximation for the NP-Hard optimization problem.

5 Experimental Setup
5.1 Cluster Configuration
For the underlying virtual machine (VM) setup, servers in a private
cloud were leveraged. The setup consisted of 6 VMs, using a total of
24 CPU cores and 80GB of memory. These servers were separated
into a cloud and an edge layer. The servers on the cloud layer have
substantially higher CPU cores and memory compared to the edge
layer, to simulate resource scarcity in the edge layer. The cloud layer
also contained a 200GB persistent storage volume for Prometheus
data, while the edge layer stored time series in RAM. A simulated
latency was added between inter-layer communication to mimic
perceived distance between edge nodes and data centers.

Each server uses Ubuntu 22.04. Kubernetes v1.28.2 is used as
the container orchestration technology. CRI-O was installed as the
container runtime, and Flannel for inter-pod communication. A
bare-metal Kubernetes implementation was used for maximum
flexibility, with the control plane on the cloud layer and data plane
on the edge layer.

Table 3: Cluster architectural layout

Node Layer CPU Memory

Control-Plane-K8s Cloud 8 cores 32GB
Control-Plane-DB Cloud 8 cores 32GB
Data-Plane-1 Edge 2 cores 4GB
Data-Plane-2 Edge 2 cores 4GB
Data-Plane-3 Edge 2 cores 4GB
Data-Plane-4 Edge 2 cores 4GB

5.2 Benchmark Application
DeathStarBench [4], a social network microservice implementation,
was deployed for conducting benchmarks on edge architectures
with SLA constraints. The application mimics a typical large-scale
social network supporting common actions: registering and login,
creating user posts, reading timelines, receiving follower recom-
mendations, following/unfollowing users, and searching.

The end-to-end service uses HTTP requests processed by NG-
INX load balancer, which communicates with microservices in the
logic layer for composing and displaying user and timeline posts.
The logic layer handles posts containing text, links, and media. Re-
sults are stored using memcached for caching and MongoDB for
persistent storage.

Based on the wrk2 benchmark, two APIs were identified for
testing. One was a GET call to user’s home timeline (home-timeline-
service), and the otherwas a POST request for creating posts (compose-
post-service). These were identified as bottlenecks through Jaeger
tracing, making them prime targets for auto-scaling.

5.3 Workload Generation
The social media deployment comes with an HTTP workload gener-
ator, wrk2, which creates realistic simulation of typical daily work-
load. A typical IoT application in the edge has a semi-predictable
workload pattern. Tadakamalla and Menascé [30] demonstrated
through a survey that IoT application workloads can be well ap-
proximated using a lognormal distribution, and daily routines of
users greatly affect workload patterns.

The workload assumes peaks in morning and evening, moderate
usage during afternoon, and lowest at night. The workload simula-
tor was modified to introduce randomness to mimic realistic weekly
workloads, varying on occasions such as weekends and holidays. A
total of approximately 2,550,000 requests were sent over five days
per experiment.

5.4 Baseline Algorithms
Three baseline algorithms were chosen for comparison, all auto-
scaling at the same CPU threshold:

(1) Default Kubernetes HPA: No modifications—scale-up
cooldown is 0 seconds, scale-down is 300 seconds. No knowl-
edge of workload distribution or SLA violations on edge
nodes.

(2) Traffic Aware HPA (THPA) [18]: Computes ratio of work-
loads on different edge nodes with deployment pods, scaling
resources in commensurate proportion.



Table 4: Experimental SLA constraints

SLA Type GET latency (ms) POST latency (ms)

Flexible 150 1000
Moderate 125 900
Strict 100 800
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Figure 3: Default Kubernetes autoscaler latency for GET re-
quests

(3) Proactive PodAutoscaler (PPA) [7]: Uses an LSTMmodel
similar to our hybrid autoscaler but without pre-processing,
dealingwithmore complex time-series data, requiring deeper
architecture. The LSTM continuously loops through time-
series data and saves forecast results. An update loop up-
dates the model using latest forecasts. Hyper-parameters
are carefully tuned but no SLA feedback is provided.

5.5 SLA Thresholds
According to Nilsson and Yngwe [15], user experience is negatively
affected by higher API latency. Their research found three latency
brackets: ≤100ms (instantaneous), ≤1 second (slight delay), and
>10 seconds (user loses focus). Based on this, we defined three SLA
categories (Table 4).

6 Performance Evaluation
Two independent experiments were conducted to validate the hy-
brid autoscaler performance. The social media application was first
tested using GET requests to autoscale home-timeline-service. Then,
a more demanding workload was applied using POST requests for
compose-post-service. Both experiments used the workload genera-
tion algorithm over five days.

6.1 Request Latency Analysis
6.1.1 Default Kubernetes Autoscaler Baseline. Figure 3 shows the
default Kubernetes HPA results for GET requests. The autoscaler
was merely a primitive reactive implementation with no knowledge
of which edge nodes experienced heavy traffic. Thus, it blindly
assigned pods in a round-robin manner. Additionally, the autoscaler
required significant time to register new pods, falling victim to the
cold start problem. This results in significant latency spikes before
resources are adjusted. The latency exceeded 300ms at some points,
significantly large enough to degrade user experience. By the fifth
day, cumulative average latency was nearly 50ms.

0 500 1,000 1,500 2,000
0

500

1,000

1,500

Time (data points)

La
te
nc
y
(m

s)

Latency Cumulative Avg

Figure 4: Default Kubernetes autoscaler latency for POST
requests
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Figure 5: THPA reactive autoscaler latency for GET requests

For POST requests (Figure 4), the shortcomings were exposed
even more by increased demands. During daily workload spikes,
the autoscaler regularly breached 1000ms, with values peaking at
almost 1450ms—more than 45% above threshold. Furthermore, the
average latency hovered around 400ms throughout. Investigation
revealed three issues: (1) cold start problem adding constant latency,
(2) avalanche effect from resources not being available timely, caus-
ing connections to be dropped and 60-second timeouts, and (3)
uneven distribution of requests due to round-robin scheduling.

6.1.2 Reactive THPA Autoscaler Baseline. Unlike the default au-
toscaler, THPA keeps track of which edge nodes receive significant
requests and assigns pods accordingly. This resulted in significantly
improved latency for GET requests (Figure 5). While still suffering
from cold start, the more intelligent resource assignment resulted in
fewer availability issues. However, the SLA threshold of 150ms was
still regularly breached, though breaches never exceeded 200ms.
The average latency was 25-30ms.

For POST requests (Figure 6), the request-aware architecture
eliminated dropped request issues. The avalanche effect was some-
what mitigated. However, cold start still caused spikes above SLA
threshold on multiple occasions, with latency nearly hitting 1400ms
before correcting. Cumulative average latency was around 200ms—
substantially lower than default.

6.1.3 Proactive PPA Autoscaler Baseline. The PPA algorithm at-
tempts to predict workload before it is requested, eliminating cold
start in ideal conditions. However, experiments showed otherwise.
Because the autoscaler was purely proactive, it requires a deep
LSTM model with several layers and large training epochs. This
deep model took more than 50 minutes to properly train for 24-hour
predictions due to edge architecture’s lack of resources.
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Figure 6: THPA reactive autoscaler latency for POST requests
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Figure 7: PPA proactive autoscaler latency for GET requests
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Figure 8: PPA proactive autoscaler latency for POST requests

Figure 7 shows GET request results. Initially, latency continu-
ally spiked causing many SLA violations—more than the reactive
autoscaler. However, after several days of training, rolling updates
stabilized the latency. SLA violations were not as severe as default
baseline but comparatively greater than reactive, exceeding 200ms
for several minutes daily. Average latency approached 50ms.

For POST requests (Figure 8), latency initially spiked above
1200ms before stabilizing, with one more spike on the last day.
The first spike occurred due to insufficient training data—the com-
plex LSTM without pre-processing made it difficult to correctly
predict data curves early. This resolved as more data was added,
but a threshold was reached where data was so large that forecast-
ing took significantly longer, causing the final day spike. Average
latency was around 200ms.

6.1.4 Proposed Hybrid Autoscaler. Finally, with baselines estab-
lished, the hybrid algorithm was tested. This approach mitigates
issues seen in both reactive and proactive approaches. The au-
toscaler is extremely lightweight and easy to configure since no

0 500 1,000 1,500 2,000
0

50

100

150

200

Time (data points)

La
te
nc
y
(m

s)

Latency Cumulative Avg

Figure 9: Hybrid autoscaler latency for GET requests
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Figure 10: Hybrid autoscaler latency for POST requests

hyper-parameter tuning is required. The proactive forecaster accu-
rately predicts the beginning of workload spikes, eliminating cold
start. The forecaster cannot accurately predict middle and end of
daily workloads, but this is not an issue since the reactive algorithm
handles these, ensuring SLA compliance.

Figure 9 shows the GET request results. No SLA violations oc-
curred during the five-day workload. The controller did not in-
tervene in LSTM training or modify forecaster hyper-parameters.
Average latency was around 30ms, similar to THPA reactive imple-
mentation. This performance was a significant improvement over
baseline algorithms.

Figure 10 shows POST request results. Only one SLA violation oc-
curred on the first day due to lack of training data causing erroneous
prediction. However, the reactive subsystem took over and scaled
resources accordingly, so the threshold was only breached slightly
(peaking at ∼1020ms). After this violation, the controller deduced
that training needed kick-starting through hyper-parameter tuning.
New hyper-parameter values were provided in the next training
cycle, and no violations occurred the next day. The controller then
reset hyper-parameters to speed up training, and even though la-
tency approached 990ms on the third day, no further violations
occurred. Average latency was below 200ms.

The hybrid approach nearly eliminated the cold start problem
very early in the experiment. Initial forecasting difficulties were
quickly resolved by the controller’s corrective instructions. All
this was done with no user intervention, making the autoscaler
extremely autonomous. The algorithm completed training within a
few minutes, allowing quick resource registration. CPU utilization
never exceeded 100%, so no user requests were dropped, allowing
full system availability.
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Figure 11: CPU workload distribution for POST requests
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Figure 12: SLA violation rates for GET requests

6.2 CPUWorkload Distribution
The distribution of CPU workload across deployment pods is an-
other important metric. The goal is to maximize deployment re-
sources while minimizing costs. Ideally, the distributed workload
should hover at A2 where A is the autoscaler threshold. When
workload approaches A, not enough pods are deployed, causing
queued or dropped requests. When workload tends towards 0, too
many pods have been assigned, increasing costs with low latency
reduction returns.

Figure 11 shows average CPU utilization for all algorithms. For
GET requests (threshold 50%, ideal 25%), Default achieved ∼35%,
PPA ∼33%, THPA ∼30%, and Hybrid ∼26%. For POST requests
(threshold 60%, ideal 30%), Default peaked at 70% before stabilizing
at 50% (with uneven distribution), PPA at ∼45%, THPA at ∼42%, and
Hybrid at ∼35%—closest to optimal in both cases.

6.3 SLA Violation Rates
As demonstrated above, the hybrid autoscaler performed signifi-
cantly better than baselines with flexible SLA thresholds. For thor-
ough demonstration, all algorithms were tested on moderate and
strict thresholds. The workload was run for five days, with auto-
scaling performed only for the last two days to ensure best possible
results regardless of training data length.

6.3.1 GET Request SLA Violations. Figure 12 and Table 5 show SLA
violations for GET requests across all threshold categories.

For the flexible category, Default performed worst (5.55%), PPA
achieved 2.36% (increased due to training model complexity), THPA
performed well (1.25%), and Hybrid achieved 0%—qualifying for
“highly available” SLA deployment.

Table 5: SLA violation counts for GET requests

Algorithm Flexible Moderate Strict

Total Requests 2,550,000 1,220,000 1,220,000

Default 141,525 106,628 180,560
THPA 31,875 94,672 155,672
PPA 60,180 35,502 66,002
Hybrid 0 5,124 20,252
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Figure 13: SLA violation rates for POST requests

Table 6: SLA violation counts for POST requests

Algorithm Flexible Moderate Strict

Total Requests 2,550,000 1,220,000 1,220,000

Default 92,055 150,060 273,036
THPA 14,280 116,876 229,360
PPA 15,555 88,084 121,268
Hybrid 3,315 40,748 66,002

The moderate threshold proved far more difficult. Default and
THPA showed similarly poor results (8.74% and 7.76% respectively),
demonstrating the importance ofmitigating cold start. PPA achieved
2.91%, while Hybrid still achieved best results with only 0.42% vio-
lations (initial violations quickly counteracted by hyper-parameter
tuning).

For the strict threshold, Default and reactive autoscalers per-
formed poorly (14.8% and 12.76%). PPA clearly showed cold start
importance with only 5.41%. Hybrid performed substantially better
with only 1.66%.

6.3.2 POST Request SLA Violations. Figure 13 and Table 6 show
SLA violations for POST requests.

For the flexible category, Default was worst (3.61%, including
dropped requests). Reactive and proactive performed similarly
(0.56% and 0.61%)—the lenient threshold means proactive cannot dis-
play cold start mitigation benefits. Hybrid achieved 0.13%, resulting
in approximately 99.9% availability (near “high availability”).

The moderate threshold proved far more difficult. Default failed
for 12.3% of requests. Proactive demonstrated cold start importance,
achieving 7.22% vs 9.58% for reactive. Hybrid achieved only 3.34%.

For the strict threshold, Default was unable to cope (22.38%).
Proactive outperformed reactive (9.94% vs 18.8%), clearly showing
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cold start importance. Hybrid performed significantly better with
only 5.41%.

Over all experiments and thresholds, the hybrid approach served
a minimum of 94.5% of requests in SLA-compliant manner (worst
case), and 100% in best case. The algorithm displayed robustness
and adaptability while requiring little to no user customization.

7 Conclusions and Future Work
This paper provides a novel, lightweight, and SLA-compliant ap-
proach to autoscale resources on a microservice deployed on an
edge architecture. The autoscaler architecture is constructed us-
ing open source subsystems, implementing a hybrid approach that
combines reactive and proactive auto-scaling to address the cold
start problem while maintaining simplicity.

The contributions include: (1) identifying major bottlenecks of
auto-scaling on edge deployment compared to cloud architecture,
(2) designing a novel hybrid auto-scaling architecture specifically
for edge paradigms, and (3) streamlining the forecaster to run on
resource-limited edge deployments cost-effectively.

The autoscaler was tested on a production-ready social network
microservice deployment, and results compared with cutting-edge
autoscalers. The proposed autoscaler achieved a maximum SLA
violation rate of 5.41%, compared to 18.8–22.38% for state-of-the-art
autoscalers. Tests further demonstrated that the autoscaler signifi-
cantly reduced SLA violations while keeping deployment costs low
by assigning resources to maintain utilized resources at approxi-
mately half of the configured auto-scaling threshold.

Current limitations include single-metric SLA constraints and
horizontal-only scaling. Future directions include: multi-variate
forecasting (CPU + memory), vertical pod auto-scaling integra-
tion, multi-SLA constraint support with weighted importance, and
cluster-level auto-scaling for edge node management.
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