
A Fuzzy-based Auto-scaler for Web Applications
in Cloud Computing Environments

Bingfeng Liu1, Rajkumar Buyya1, and Adel Nadjaran Toosi2

1 School of Computing and Information Systems
The University of Melbourne, Australia

{bingfengl@student, rbuyya@}unimelb.edu.au
2 Faculty of Information Technology, Monash University, Australia

adel.n.toosi@monash.edu

Abstract. Cloud computing provided the elasticity for its users allow-
ing them to add or remove virtual machines depending on the load of
their web applications. However, there is still no ideal auto-scaler which
is both easy to use and sufficiently accurate to make web applications
resilient under the dynamic load. The threshold-based auto-scaling ap-
proaches are among the most popular reactive auto-scaling strategies
due to their high learnability and usability. However, the static threshold
would become undesirable once the workload becomes highly dynamic
and unpredictable. In this paper, we propose a novel fuzzy logic based ap-
proach that automatically and adaptively adjusts thresholds and cluster
size for a web application. The proposed auto-scaler aims at reducing re-
source consumption without violation of Service Level Agreement (SLA).
The performance evaluation is conducted with the real-life Wikipedia
traces in the Amazon Web Services cloud platform. Experimental re-
sults demonstrate that our reactive auto-scaler efficiently reduces cloud
resources usage and minimizes the SLA violations.

1 Introduction

The pay-as-you-go, elasticity, and on-demand nature of cloud resources are among
the main features exhorting web service providers to host their application in
clouds nowadays. Cloud users can rapidly launch Virtual Machines (VMs) for a
particular time frame and only pay for their usage. In other words, they do not
need to spend a significant amount of time and money to buy the actual hard-
ware and pay maintenance fees [2, 5]. Since the rate of web application requests
varies with time, it is often hard to determine the right amount of needed cloud
resources [13]. Manually watching the load of the web-application is both tedious
and resource-wasting led to the birth of auto-scaling. An auto-scaler automati-
cally removes or adds the right amount of resources to optimize the performance
and cost of the web-application.

The auto-scaling methods fall into two main categories: reactive and proactive
approaches [16, 22]. The reactive approaches check if certain metrics (e.g., CPU
utilization) exceed a threshold and provision VMs to meet the demand. The



2

reactive methods only use recently observed metrics to understand the current
state of the cluster and plan scaling decisions. The proactive approaches involve
modeling and predicting the load of the web application based on the patterns of
the historical data using machine learning techniques [16, 22]. However, proactive
approaches are difficult to tune and often do not perform well for highly dynamic
unforeseen workloads. The proactive methods need to continuously update their
model to capture changes in the load patterns to predict future where the growth
of the model complexity might become the burden of cluster resources.

Due to the simplicity and the adequate performance, most companies and
organizations still prefer to use reactive approaches [16, 22]. In line with this
view, we also focus on more commonly accepted reactive approaches in this
paper. However, the problem of reactive approach is that the threshold does not
change according to dynamic workloads and cluster state. Therefore, the näıve
static threshold-based approaches often have oscillation problem where the auto-
scaler frequently keeps changing the number of VMs back and forth to adjust the
cluster size [22]. In this paper, we propose a reactive auto-scaling approach that
aims at building dynamic thresholds to overcome these issues. Our approach
dynamically adjusts thresholds based on the current cluster size and load.

To this end, the fuzzy logic looks very intuitive to use and unlike machine
learning, it does not need historical data and long training time to build the
model. One can set up fuzzy linguistic rules with metrics that are critical to
satisfying the Service Level Agreement (SLA). For example, a rule can be as
simple as “IF cpu load IS low THEN cluster size IS small”. Two fuzzy engines are
proposed in this paper. The first one uses request response time and cluster size
to output the appropriate upper threshold value for the auto-scaler. If the current
response time exceeds the dynamic upper threshold, then the second fuzzy engine
with cluster size and CPU load as inputs comes into play to determine the cluster
size avoiding the violation of the response time constraint required by the SLA.

The evaluation of the proposed auto-scaler is performed via a Wikijector
agent [3] replaying the real-life requests from Wikipedia traces to stress the clus-
ter and monitoring how auto-scaler adjusts the cluster size to handle this stress.
The performance of the proposed approach is compared to both the Amazon Web
Services (AWS)’s auto-scaler and its emulated version. The results demonstrate
that the proposed auto-scaler significantly reduces cost and SLA violations.

2 Background

Cloud providers like AWS offer built-in auto-scaling services to their users for
dynamic auto-scaling of resources used by applications [17]. AWS offers its auto-
scaling service via auto-scaling group and uses Cloud Watch to monitor user-
defined metrics [18]. The user can set alarms on metrics to trigger scaling policies
once they are over certain thresholds. The AWS auto-scaler similar to many other
approaches uses static thresholds and static steps for adding or removing VMs.

Most of the auto-scalers (including our proposed method) adopts Monitoring,
Analyzing, Planning and Execution (MAPE) loop to adjust the size of the cluster



3

to fulfill the SLA requirement [12, 16]. Monitoring is not only necessary for
the decision making of the auto-scaler but also important for evaluating and
improving its performance by logging all the relevant metrics data for offline
analysis. In this work, Ganglia [14] is used for the monitoring purpose. The
Analyzing phase is for making the gathered metrics meaningful and to pass them
as the inputs to the auto-scaler to trigger the scaling policies at the right time.
The Planning phase is a challenging phase in MAPE loop – there is no commonly
agreed way to know how many VMs are needed to avoid over-provisioning or
under-provisioning. The final step which is called Execution is responsible to
perform the actual scaling-in or scaling-out processes according to the decision
of the new cluster size made in the Plannig phase via the cloud provider’s APIs.

3 Related work

There are many reactive auto-scaling approaches proposed in the literature. Lim
et al. [11] focused on using the averaged CPU utilization of VMs to determine
the number of VMs needed to be removed or added. They use a pair of thresh-
old boundaries to make a range but not just a single limit, and then varied the
lower bound of the thresholds to make sure the auto-scaler does not switch the
number of VMs back immediately after changing the values of the thresholds.
Hasan et al. [8] proposed a novel static threshold technique to prevent the oscilla-
tion problem for a short period of fluctuating load. The authors first choose static
upper and lower bound and then select extra sub-upper and sub-lower bound in
between. If the current metrics exceed any of the thresholds for a specific pre-set
duration, the system starts a scaling-out or scaling-in the cluster.

The oscillation problem is a common issue in auto-scaling, and many solutions
have been proposed to address it in the literature. The oscillation problem occurs
when request load changes slightly and triggers the scaling-out process to add
a new VM into the cluster. However, the newly added VM causes a load drop,
and the new cluster size becomes too powerful for the current load which in turn
triggers a scale-in process in a short period. Unlike [8] and [11], our proposed
auto-scaler adaptively updates the upper-threshold based on the cluster size.
The main idea is that a larger cluster has more tolerance to small changes in the
load and upper threshold is set to a higher value.

Frey et al. [7] developed a fuzzy logic auto-scaler to improve Quality of Service
(QoS). The result of the fuzzy auto-scaler shows the technique is effective in
reducing the response time. Their method uses inputs such as ‘high prediction’
(request load) and the ‘slope of the response time’. The high prediction input
helps the cluster perform scaling earlier and the slope of response time helps to
add multiple VMs to reduce the response time. The high prediction input in [7] is
formed based on the knowledge of the application’s history load pattern whereas
the proposed auto-scaler does not assume a priori knowledge of the application.

Lama et al. [10] proposed an adaptive fuzzy system using machine learning
without offline learning. The neural network dynamically generates fuzzy rules,
membership functions and input parameters with online learning algorithms.
Contrary to our approach that focuses on adapting thresholds, they focus on



4

constructing the fuzzy control structure and adapting control parameters using
online learning approaches. In their approach, fuzzy engine has to adapt itself
to changes in the load that takes time and could seriously affect the small web
applications that are growing popularity [16, 22]. Jamshidi et al. [9] also devel-
oped an adaptive Fuzzy logic based auto-scaler with Fuzzy Q-learning method
to modify the fuzzy rules at run time so that defining fuzzy rules are not longer
a manual process. Arabnejad et al. [1] enhanced the output (actions) of the
fuzzy controllers with reinforcement learning. The reinforcement learning uses
the current state of the system, and randomly tries out different actions to set
the actions of the fuzzy controllers. It takes a random approach to explore all the
possible actions until the model cannot improve the overall performance. Müller
et al.[15] built a governance platform to satisfy multiple users’ QoS requirements
where users are routed to different provisioning levels depends on their SLAs.

Kubernetes is a cluster manager for containerized applications (e.g. appli-
cations run in docker). Kubernetes currently (at the time of writing this pa-
per) supports horizontal auto-scaling for pods, a group of containers deployed
together on the same host. The auto-scaling algorithm is used to keep CPU
utilization at a target level. The algorithm determines the number of pods by
dividing the sum of CPU utilization in the pods by the target CPU utilization.
In cloud environment, users provision cloud resource in form of of VMs. Thus,
our work focuses on auto-scaling of VMs. However, our method can be used
along with container cluster management for the management of web applica-
tion micro services. Baresi et al. [4] enhanced their framework to be able to
deploy multi-tier applications with Docker containers. The framework performs
resource management with control theory to satisfy SLA (response time) and
use cloud resources (CPU cores) effectively.

In web applications, the correlation of CPU utilization and response time
might not be strong. The trigger should be driven by the response time since it
is possible that the SLA is well satisfied while the CPU utilization triggers un-
necessary scaling. The service-time-related metrics of the application are better
than the metrics which only show the state of the VMs [16]. This is also why
[11], [8], [7] and [10] tend to use response time to benchmark their auto-scaler.

Contrary to our approach, most of the auto-scaling studies only focus on
the Analysis part of the MAPE loop; they do not mention much about the
planning phase and how many VMs should be added or removed if the threshold
is triggered (including [11] [8] [7] [10]). The time taken to start new VM is usually
around several minutes [12], so näıvely launching a single VM once at a time
might not be feasible to solve the under-provisioning issue [16].

4 Fuzzy Auto-scaler

In this section, we propose our fuzzy logic-based approach for auto-scaling of
web applications. First, we identify inputs and metrics that are relevant to the
auto-scaling. Then, we discuss the importance of dynamically adapting the upper
threshold. Finally, we propose our algorithm to set the right size for the cluster.



5

Table 1: Request Details for Figure 1
Request Url Response Request

Body Size (Byte) Type

1 index.php?action=raw&title=Cliff Clavin 6867 Text
2 index.php/Main Page 13397 Text
3 index.php/Bufotenin 30930 Text
4 index.php/List of dog breeds 65521 Text
5 skins/common/ajax.js?99 5320 Javascrpit

4.1 Input Selection

The most important aim of autoscaling is to maintain the response time below a
certain level to provide a satisfactory experience to users. Therefore, the use of
the response time as an input to the auto-scaler is highly desired. The response
time alone does not provide us information regarding how many more VMs are
needed to avoid SLA violations. The näıve approach is to launch a small static
number of VMs to see if the response time is lowered to the desired range.
However, the time of booting up and configuring the newly launched VMs is
often too long that would lead to SLA violation. The long booting time of VMs
forces the auto-scaler to make the best decision with a minimal number of trials.

CPU utilization can be used to determine the cluster size. However, the
problem with CPU utilization is that it does not reflect the actual overall load
of the VMs accurately. For example, consider a web-application like Mediawiki,
which is I/O intensive rather than CPU intensive. The use of CPU is low during
the I/O processes hence a delusion of the low CPU utilization happens, while
the load of the VM would be high. In addition, the maximum CPU utilization
of a single core VM only goes up to 100%, so it is hardly useful to determine
how many more VMs are needed.

Service rate, the rate at which requests are processed, also sounds relevant to
determine the cluster size. The tools like ‘Jmeter’3 or ‘Ab’4 can be used to flood
the VMs to profile the maximum number of requests that can be processed by
a VM. This number can be used to set up the optimal number of required VMs.
However, the service rate is highly dependent on the complexity of the request’s
response body. Table 1 shows a group of 5 Mediawiki requests with various
response body sizes and request types. Figure 1 shows that the larger response
body size (Table 1), the smaller service rate (Request 1 to 4). However, the size of
the response body is not the only factor which could affect the service rate. The
request 5 has similar response body size to request 1 but the maximum number
of processed requests per second is much higher. The reason is that Request 5 is a
JavaScript file, so it needs lower computations and I/O operations to produce the
response and hence has lower complexity than request 1. It is hard to define the
complexity of the request since the content of the page varies greatly. Therefore,
the use of service rate to determine the cluster size is not effective if the request
received by the VM has a huge difference to the requests used for profiling.

3 http://jmeter.apache.org/
4 https://httpd.apache.org/docs/2.4/programs/ab.html



6

Fig. 1: Jmeter load test with different requests

4.1.1 Metrics Correlations with Response time We conduct a load test
to see how the changes in the metrics are correlated. Wikijector is used to send
requests from Wikipedia trace files to the load balancer instance. We apply a
simple scaling out rule that only adds one new VM each time the response time
is over the static upper threshold. According to the test, Table 2 shows Pearson
and Spearman Rho correlation value of each metric to request response time.
Results demonstrate that the CPU load has the highest Pearson and Spearman
Rho correlation value to the response time. Thus it could be a potentially useful
metric for determining the cluster size. While CPU utilization reflects the CPU
usage, the CPU load metric can give us the actual demand of the computer’s
resources (not only CPU). Unlike CPU utilization, CPU load can go beyond
100%. The analogy between CPU utilization and load is the high way traffic.
CPU utilization is how often the freeway has cars running on it, whereas CPU
load is how many cars are both running on and waiting to enter the freeway [21].

Table 2: Metrics correlations with Response Time (P-value represents the sig-
nificance of the correlation)

Metric Pearson value p-value Spearman value p-value

CPU load last minute 0.42 0.00 0.92 0.00
CPU System 0.11 0.12 0.80 0.00

CPU User 0.08 0.30 0.80 0.00
CPU IO Wait 0.26 0.00 -0.08 0.25

Memory cached -0.24 0.00 -0.25 0.00
Number of Request per second -0.28 0.00 0.27 0.00

4.2 Dynamic upper threshold

The main idea behind the fuzzy rules for the dynamic upper threshold is that
when the cluster size is large (e.g. 100 web-servers running), then a moderate
change of the load will only fluctuate the response time in a small amount so the
fuzzy engine should output a higher upper threshold of response time. Whereas,
when there is only one running instance, the cluster is very likely to violate the
SLA (large fluctuation) with even a small amount of request load increase. In
this case, the threshold should be more sensitive (lower). Therefore, the inputs
of the fuzzy engine are chosen as the current normalized response time, a ratio
to the maximum allowed response time in SLA, and the normalized cluster size,
a ratio to the maximum cluster size.



7

4.3 Dynamic cluster size

In an ideal situation, a fully utilized single CPU core VM has CPU load at 100%,
and all CPU load beyond 100% means the VM is overloaded. Note that, 100%
CPU load only means that the VM is fully loaded, but it can still provide a
decent response time. In a single core computer like t2.micro, the 100% of the
CPU load indicates that the computational resource is fully utilized and if the
value is 200%, it indicates that we need one more instance to handle the load.

The scaling-in approach used in the proposed auto-scaler is conservative but
dynamic. We scan through all launched VMs and stop all the VMs which have
CPU load below a certain threshold (e.g., 50%) instead of pre-defining the num-
ber of VMs to scale-in. Since, a single type of instance is used in our approach,
thus the total CPU load of the cluster not overloading VMs is calculated by:

TotalCPULoadNotOverloading = MaxNo.ofInstance× 100% (1)

The cluster stress value is the ratio of the average CPU overload value (CPU load
beyond 100%) to the summation of the CPU load of a cluster without overloads
(equal and below 100% CPU load) and is calculated as:

ClusterStress =
AverageCPUoverload

TotalCPULoadNotOverloading
(2)

For example, if we have 2 VMs and they have CPU load of 150% and 200%
respectively, the average CPU overload value will be (150+200)/2 - 100% =
75%. If we only allow a maximum of 5 VMs in the cluster, then we will have
total CPU load without overloading VMs of 500% (5 * 100%). Therefore, the
cluster stress is equal to 75/500 = 0.15. The cluster stress represents how huge
the average CPU overload is with respect to the total CPU load that the cluster
can accommodate without overloading VMs.

For scaling out, we use the cluster stress value and the normalized current
cluster size as inputs to the fuzzy engine. We use these inputs to calculate the
needed number of VMs. Since the user’s budget is often limited, a maximum
number of VMs is set for the cluster. The output of the fuzzy engine, NewClus-
terPower, is the ratio of the cluster size to the maximum value. Based on this
ratio, the new number of VMs is calculated as:

dNewClusterPower ×MaxNumberOfV irtualMachinese (3)

The correlation between CPU load metric and response time is not 100%, so
the average CPU overload value cannot be fully trusted to perform scaling out.
Therefore, the output of the cluster size fuzzy engine for scaling out should
consider the current cluster size. The fuzzy engine acts conservatively by adding
less number of VMs determined from the average CPU overload value when the
cluster size is small and also when the cluster size is near the maximum.

4.4 The proposed Auto-scaling Algorithm

Algorithm 1 shows the overview of how adaptive response time threshold and
dynamic cluster size work together to perform auto-scaling. Two fuzzy engines



8

Fig. 2: Fuzzy engines for setting upper-threshold and adding new virtual ma-
chines

are developed: upperThresholdFuzzy and clusterSizeFuzzy. Both of them use the
Mamdani fuzzy inference system and the defuzzification method of the centroid
of the area to produce the crisp output value. All the membership functions for
mapping input values (all of them are from 0 to 1) to fuzzy sets are Gaussian
membership functions as shown in Figure 2. Sample fuzzy rules used in our fuzzy
engines are specified in Tables 4 and 3.

Table 3: Partial add Virtual Machines
fuzzy rules

ClusterPower ClusterStress NewClusterPower

VeryLow VeryLow VeryLow
VeryLow Low Low

Low VeryHigh Moderate
Moderate Moderate High

High High VeryHigh
VeryHigh VeryHigh VeryHigh

Table 4: Partial Upper threshold
fuzzy rules

ClusterPower ResponseTime UpperThreshold

VeryLow VeryLow VeryHigh
VeryLow Low VeryLow

Low Moderate Low
Moderate VeryHigh VeryLow

High High High
VeryHigh VeryHigh High

The algorithm first gathers the current average response time (RTime), CPU
Loads (curLoad) and the cluster size (CSize) from the load balancer instance
(Line 3). After gathering all metrics needed, the current response time and the
current cluster size are used by the upperThresholdFuzzy engine to set the upper-
threshold (Line 4). If the current response time breaches the adaptive upper
threshold twice consecutively (Lines 5 and 6), the clusterSizeFuzzy engine is
called (Line 7) to determine the new cluster size. For each scaling out or in, the
warmUpTime is set to a certain value (e.g., 30 seconds) which means we do not
allow any scaling policies to be executed in this period. The reason for setting
warmUpTime is that the newly launched VM normally has an unstable metrics



9

due to the operating system’s bootstrapping and all the configurations for the
applications. For scaling in, we loop through each running VM and check if their
CPU load is under idleLoad value, e.g. 50% (Line 17) and if the same VM CPU
load is under idleLoad twice consecutively (Line 19), it will be stopped and the
warmUpTime is reset. The scaling in/out loop is executed periodically, e.g. every
5 seconds (Line 27), that is because checking the metrics too frequently adds
pressure to VMs, and often many metrics do not have high-resolution updates.

Algorithm 1 Fuzzy Auto-scaler

Require: idleLoad, checkTime, consecutiveOverThreshold, warmUpTime
1: procedure StartScaling
2: while true do
3: RTime, CSize, curLoad← AllLaunchedInstances.getStats()
4: upperThreshold← upperThresholdFuzzy(RTime, CSize)
5: if RTime > upperThreshold then
6: if consecutiveOverThreshold == true and warmUpTime <= 0 then
7: newClusterSize← clusterSizeFuzzy(curLoad,CSize)
8: scalingUp(newClusterSize)
9: Set warmUpTime
10: consecutiveOverThreshold← false
11: else
12: consecutiveOverThreshold← true
13: else
14: consecutiveOverThreshold← false

15: if warmUpTime <= 0 then
16: for Instance in AllLaunchedInstances do
17: if Instance.load < idleLoad then
18: Instance.consecutiveBelowThreshold+ = 1
19: if consecutiveBelowThreshold == 2 then
20: Instance.stop()
21: Set warmUpTime

22: if warmUpTime! = 0 then
23: setConsecutiveBelowThresholdToZero(AllLaunchedInstances)

24: else
25: setConsecutiveBelowThresholdToZero(AllLaunchedInstances)

26: sleep(checkTime)
27: warmUpTime− = checkTime

5 System Prototype

The instances used in this system are all t2.micro since it offers the free-tier
policy (no costs of using VMs) and also keeps the system homogeneous, which
lowers the system overheads for evaluating the fuzzy auto-scaler (Figure 3).

The HAproxy instance (load balancer instance) receives all the HTTP re-
quests from the users first; then it evenly distributes them to each Mediawiki-
server instance. The HAproxy instance also hosts the master node of the Ganglia
monitoring system which is used to gather all the instances’ current performance
metrics (e.g. CPU load). Since all the requests go through the HAproxy instance
first, the HTTP request related metrics like request response time could be re-
trieved from the HAproxy. The fuzzy auto-scaler communicates to the HAproxy
instance to gather metrics of all the AWS t2.micro instances and processes them
locally to decide on whether to perform scaling process and to determine the
suitable size of the current Mediawiki-server cluster needed to satisfy the SLA.
The orchestration of the Mediawiki web-application cluster is controlled by the



10

Fig. 3: System architecture diagram

fuzzy auto-scaler instance which uses Python Boto3 (AWS SDK for Python [19])
library to manipulate the AWS cloud resources. The Fuzzy auto-scaler instance
starts or stops VMs based on the metrics retrieved from the HAproxy instance.
The automation process of configuring different instances are done with Ansi-
ble [6] tool which is also executed in a Fuzzy auto-scaler instance.

6 Performance Evaluation

6.1 Experimental Setup

Each experiment is carried out for 30 minutes and is repeated for three times. We
report the best result obtained by each auto-scaler. The AWS t2.micro instances
used for the experiments have only 30 CPU credits with 1 point per minute for
the full power CPU usage. Once the CPU credits are exhausted the VM will
be restricted to a baseline (10% CPU utilization) [20]. The trace files used in
the experiments to evaluate the auto-scaler are all produced from the Wikipedia
workload trace file. The ‘shape’ of the original trace is preserved while the time
dimension is scaled down to 30 minutes.

The AWS emulated auto-scaler is a copied version of the AWS auto-scaling
policy which uses Ganglia instead of AWS CloudWatch for monitoring. The
reason for adding it is that the AWS native auto-scaler does not offer fine grain
control and monitoring data for validating scaling policies.

In experiments, we have a maximum limit of 10 t2.micro instances, and
the desired response time is set to 200ms for the SLA. For the AWS native
and emulated auto-scalers, the upper threshold is 100ms (static), and the fuzzy
auto-scaler uses the adaptive upper-threshold from the fuzzy engine. Since AWS
native auto-scaler cannot read individual VM’s metric to stop a VM, we set
a lower threshold of 70% CPU load (average of all launched VMs) for both
AWS native and emulated auto-scalers, while the fuzzy auto-scaler has a lower
threshold of 50% for each VM. We also deliberately use a cluster size of two VMs
at the beginning of the experiment to show the differences of each auto-scalers.
Thus, there will be many SLA violations at the begining.



11

(a) Two full day trace of
Wikipedia

(b) The one day trace of
Wikipedia

Fig. 4: The trace files used in the experiments, both of them are 30 minutes long

6.2 Experimental Results

The trace file used in experiments (Figure 4a) is extracted from the two day
Wikipedia trace and is scaled down into 30 minutes. Figure 5 shows the CDF
(Cumulative Distribution Function) of the average response time below 200ms
for all auto-scalers. The fuzzy auto-scaler preforms about 8.94% better than
the AWS emulated auto-scaler (adding one VM each scaling out) and 16.28%
better than the AWS native auto-scaler. The cost of each auto-scaler can be
calculated from the area under the step-curve in ‘Number of Instance vs Time’
scatter graph. The cost of the AWS native one is the lowest since it often under-
provisions resources. The cost of the fuzzy auto-scaler is similar to the AWS
emulated auto-scaler, but the fuzzy auto-scaler provides better results in terms
of keeping the response time under 200ms.

The number of instances versus time scatter graphs show that the fuzzy auto-
scaler performs a lower number of scaling out actions to reach the desired cluster
size, whereas AWS native auto-scaler and emulated auto-scaler with adding one
VM require more time to do the same. The amazon emulated auto-scaler with
adding two VMs options is the fastest in this regards. However, it causes the
unnecessary cost to provide the same performance. Therefore, adding multiple
VMs during the scaling-out is very important to process the web request load.
However, the lack of prediction ability of the fuzzy auto-scaler leads in several
trials to gradually reach the desired cluster size. The initial cluster size is small,
so it can quickly get flooded with requests and metrics raise up to the maxi-
mum. Hence using metric values is not reliable to determine the actual request
load. Thus, the method of measuring the current request load needs further
investigations.

Table 5 shows results summary. Compared to AWS native auto-scaler, AWS
emulated auto-scalers with adding one and two VM(s) each scaling out and fuzzy
auto-scaler generate 7.88%, 28.43% and 17.17% higher cost respectively. How-
ever, with 1% increase in SLA satisfaction, the fuzzy auto-scaler only requires
1.05% (17.17/16.28) increase in cost while AWS eumulated auto-sacalers with
adding one and two VM(s) each scaling out need 1.17% (7.88/6.74) and 1.46%
(28.43/19.53) increase in cloud resource usage respectively. The fuzzy auto-scaler
use resources more efficiently to provide better SLA satisfaction. The AWS na-



12

Fig. 5: Resource usage and average response time for different auto-scalers

tive auto-scaler and AWS emulated auto-scaler adding one VM each scaling out
have overall lower cost than fuzzy auto-scaler. However, they cause more SLA
violations by under-provisioning resources.

Table 5: Experimental results summary

% of Requests The Area Under the Graph
Auto-scaler with Response Time Under 200ms or Cost

(Improvment to AWS Native) (Improvment to AWS Native)

Fuzzy Auto Scaler 87.97 (16.28%) 12781.00 (17.17%)

AWS emulated 80.75 (6.74%) 11768.00 (7.88%)
(adding 1 VM)
AWS emulated 90.43 (19.53%) 14009.50 (28.43%)
(adding 2 VMs)

AWS native 75.65 (0%) 10908.00 (0%)

6.3 Dynamic scaling-out evaluation

Figure 5 shows the downside of using a static number to perform scaling out.
The AWS emulated auto-scaler (adding 2 VMs each scaling out) reached the
maximum number of 10 VMs whereas in the same experiment only the maximum
of 9 VMs used by fuzzy auto-scaler without violating the upper threshold. This



13

Fig. 6: The adaptive upper threshold experiment result

happens due to the lack of ability to dynamically adjusting the added number of
VMs in the cluster size. Even though AWS emulated auto-scaler (adding 2 VMs
each scaling out) has a better result of not violating the SLA (90.43%), but it
also uses the resource less efficiently compared to the fuzzy auto-scaler in order
to reach this result. With respect to the AWS native auto-scaler, AWS emulated
auto-scaler (adding 2 VMs each scaling out) needs 1.46% more resources to
achieve 1% increase of the response time under 200ms while fuzzy auto-scaler
only needs 1.05%.

6.4 Adaptive upper-threshold evaluation

In order to evaluate the impact of an adaptive upper threshold, we use Amazon
emulated Auto-scaler with and without the adaptive upper threshold fuzzy en-
gine. The static threshold is set to 100ms for the one without the fuzzy engine.
The change in the request rate of the trace shown in Figure 4a is considerably
quick which decreases the chance of observation of adaptive upper-threshold
benefits. Thus, a 30 minute version of the one day trace file is made (Figure 4b).

As shown in Figure 6, the adaptive upper threshold keeps the cluster at the
size of 7 longer than non-adaptive threshold AWS emulated auto-scaler that
leads to 0.33% cost saving. The percentage of response time under 200ms is
close in this case while AWS emulated with adaptive threshold has 91.74%,
and the non-adaptive upper threshold one has 90.14% which shows 1.78%
improvement. Due to the restriction of the experiment time, the cost saving is
not clearly observable, but we expect that the dynamic adaptive upper threshold
utilizes cloud resources more efficiently in a long run since small load fluctuation
is typical in a long-running web application.

It is worth mentioning that the load prediction can enhance the number of
trials to reach the desired number of virtual machines quicker when encountering
the seasonal loads. The experiment results also shows that the response time is
decreased while adding more Mediawiki instances so that in our experiments the
single MySql database instance in not a bottleneck for the Mediawiki cluster
performance.



14 REFERENCES

7 Conclusions and Future Work

In summary, a dynamic upper-threshold auto-scaler for the web application is
proposed in this paper. We designed and presented two fuzzy engines to dy-
namically adjust upper threshold and cluster size respectively. The fuzzy logic
approach increases the percentage of the service rate within the SLA target
by 16.28% in comparison to AWS native auto-scaler. The experimental results
suggest that threshold and the added number of VMs should be dynamically
selected since the static values are not always right choices for all cluster sizes.

The creation of the optimal auto-scaler is far from trivial. In the future,
we will explore techniques to determine the best candidate VMs for scaling-in.
Scaling-in is riskier than scaling-out, as over-provisioning only costs money, but
under-provisioning means losing customers. The auto-scaling of session-based
web applications, where users have sticky sessions needs more attention since
it requires session migration. It will be interesting to perform a more in-depth
investigation of the correlation between proposed metrics which allows us to
design more efficient auto-scalers. In the future, we will also try to implement
different auto-scaling methods and benchmark them against our fuzzy auto-
scaler with different workloads.

References

[1] Hamid Arabnejad et al. “A comparison of reinforcement learning tech-
niques for fuzzy cloud auto-scaling”. In: Cluster, Cloud and Grid Com-
puting (CCGRID), 2017 17th IEEE/ACM International Symposium on.
IEEE. 2017, pp. 64–73.

[2] Michael Armbrust et al. “A view of cloud computing”. In: Communications
of the ACM 53.4 (2010), pp. 50–58.

[3] Erik-Jan van Baaren. “Wikibench: A distributed, wikipedia based web
application benchmark”. In: Master’s thesis, VU University Amsterdam
(2009).

[4] Luciano Baresi et al. “A discrete-time feedback controller for container-
ized cloud applications”. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM.
2016, pp. 217–228.

[5] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms:
Vision, hype, and reality for delivering computing as the 5th utility”. In:
Future Generation computer systems 25.6 (2009), pp. 599–616.

[6] Michael DeHaan. Ansible. 2018. url: https://www.ansible.com/ (visited
on 02/28/2018).

[7] Stefan Frey et al. “Cloud QoS scaling by fuzzy logic”. In: Proceedings of
2014 IEEE International Conference on Cloud Engineering (IC2E). IEEE.
2014, pp. 343–348.

[8] Masum Z Hasan et al. “Integrated and autonomic cloud resource scal-
ing”. In: Proceedings of 2012 IEEE Network Operations and Management
Symposium (NOMS). IEEE. 2012, pp. 1327–1334.



REFERENCES 15

[9] Pooyan Jamshidi, Claus Pahl, and Nabor C Mendonça. “Managing uncer-
tainty in autonomic cloud elasticity controllers”. In: IEEE Cloud Comput-
ing 3 (2016), pp. 50–60.

[10] Palden Lama and Xiaobo Zhou. “Autonomic provisioning with self-adaptive
neural fuzzy control for end-to-end delay guarantee”. In: Proceedings of
2010 IEEE International Symposium on Modeling, Analysis & Simulation
of Computer and Telecommunication Systems (MASCOTS). IEEE. 2010,
pp. 151–160.

[11] Harold C Lim, Shivnath Babu, and Jeffrey S Chase. “Automated control
for elastic storage”. In: Proceedings of the 7th international conference on
Autonomic computing. ACM. 2010, pp. 1–10.

[12] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. “A review
of auto-scaling techniques for elastic applications in cloud environments”.
In: Journal of Grid Computing 12.4 (2014), pp. 559–592.

[13] Tania Lorido-Botrán, José Miguel-Alonso, and Jose Antonio Lozano. “Auto-
scaling techniques for elastic applications in cloud environments”. In: De-
partment of Computer Architecture and Technology, University of Basque
Country, Tech. Rep. EHU-KAT-IK-09-12 (2012).

[14] Matt Massie et al. Monitoring with Ganglia: Tracking Dynamic Host and
Application Metrics at Scale. ” O’Reilly Media, Inc.”, 2012.

[15] Carlos Müller et al. “An elasticity-aware governance platform for cloud
service delivery”. In: Services Computing (SCC), 2016 IEEE International
Conference on. IEEE. 2016, pp. 74–81.

[16] Chenhao Qu, Rodrigo N Calheiros, and Rajkumar Buyya. “Auto-scaling
web applications in clouds: a taxonomy and survey”. In: In: ACM Com-
puting Survey (2018) (2016).

[17] Amazon Web Services. Amazon Web Services (AWS) - Cloud Computing
Services. 2018. url: https://aws.amazon.com/ (visited on 02/28/2018).

[18] Amazon Web Services. AWS Auto Scaling. 2018. url: https://aws.

amazon.com/autoscaling/ (visited on 02/28/2018).
[19] Amazon Web Services. AWS SDK for Python (Boto3). 2018. url: https:

//aws.amazon.com/sdk-for-python/ (visited on 02/28/2018).
[20] Amazon Web Services. CPU Credits and Baseline Performance. 2018. url:

https : / / docs . aws . amazon . com / AWSEC2 / latest / UserGuide / t2 -

credits-baseline-concepts.html (visited on 02/28/2018).
[21] Ray Walker. “Examining load average”. In: Linux Journal 2006.152 (2006),

p. 5.
[22] Lenar Yazdanov. “Towards auto-scaling in the cloud: online resource allo-

cation techniques”. PhD thesis. Dissertation, Dresden, Technische Univer-
sität Dresden, 2016.


