
Journal of Parallel and Distributed Computing 135 (2020) 177–190

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Profit-aware application placement for integrated Fog–Cloud
computing environments
Redowan Mahmud a,∗, Satish Narayana Srirama b, Kotagiri Ramamohanarao a,
Rajkumar Buyya a

a Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
Melbourne, Australia
b Mobile and Cloud Lab, Institute of Computer Science, University of Tartu, Estonia

a r t i c l e i n f o

Article history:
Received 15 January 2019
Received in revised form13 September 2019
Accepted 1 October 2019
Available online 11 October 2019

Keywords:
Fog–Cloud integration
Internet of Things
Application placement
Profit-awareness
Pricing model

a b s t r a c t

The marketplace for Internet of Things (IoT)-enabled smart systems is rapidly expanding. The inte-
gration of Fog and Cloud paradigm aims at harnessing both edge device and remote datacentre-based
computing resources to meet Quality of Service (QoS) requirements of these smart systems. Due to
lack of instance pricing and revenue maximizing techniques, it becomes difficult for service providers
to make comprehensive profit from such integration. This problem further intensifies when associated
expenses and allowances are charged from the revenue. Conversely, the rigid revenue maximizing
intention of providers affects user’s budget and system’s service quality. To address these issues,
we propose a profit-aware application placement policy for integrated Fog–Cloud environments. It is
formulated using constraint Integer Linear Programming model that simultaneously enhances profit
and ensures QoS during application placement on computing instances. Furthermore, it provides
compensation to users for any violation of Service Level Agreement (SLA) and sets the price of instances
according to their ability of reducing service delivery time. The performance of proposed policy is
evaluated in a simulated Fog–Cloud environment using iFogSim and the results demonstrate that
it outperforms other placement policies in concurrently increasing provider’s profit and user’s QoS
satisfaction rate.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

The Internet of Things (IoT) paradigm interconnects numerous
devices through Internet to collect and share data from physical
environments. By using existing Cloud-centric IoT models, the
computational demand of different IoT-enabled systems such as
smart city and healthcare can be met [15]. However, execution of
their latency-sensitive applications at remote Cloud datacentres
can decrease the service quality and excessive dataflow towards
the datacentres can congest the network [3]. To overcome such
limitations and deal with large number of IoT devices at the edge
network, Fog computing is introduced. The computing compo-
nents within Fog such as Raspberry Pi devices, personal comput-
ers, network routers, switches and micro datacentres, commonly
known as Fog nodes, are heterogeneous and distributed. They
offer infrastructure services to host and develop IoT-applications,
and process data closer to sources [10]. Thus, Fog computing fa-
cilitates reduced application service time and network congestion

∗ Corresponding author.
E-mail address: mahmudm@student.unimelb.edu.au (R. Mahmud).

for different IoT-enabled systems compared to that scenario when
IoT-data is solely processed by remote Cloud datacentres [9,27].

Fog nodes have less computational capabilities than Cloud
datacentres that resist accommodation of every IoT application
at the edge level [29]. Therefore, different Cloud providers such
as Amazon, Microsoft and Google initiate integrating Fog and
Cloud infrastructure to offer extensive placement options for
IoT applications [6]. The inclusion of Fog computing to current
Cloud-centric IoT model is expected to add US$ 203.48 mil-
lion more in their combined marketplace by 2022 [20]. It will
also increase the operational cost in computing environments
for consuming additional energy, deploying Fog infrastructure
and utilizing more network bandwidth [14]. In this case, with-
out revenue maximization, it will be difficult for providers to
make profit from integrated environments. Contrariwise, firm
intention of maximizing revenue often instigates providers to
compromise application Quality of Service (QoS) that increases
Service Level Agreement (SLA) violations. The imprecise price of
Fog instances that is set for revenue maximization can also add
overhead to user’s budget [4]. Hence, it becomes challenging to
enhance provider’s profit in integrated environments as it urges
to make a balance among expectations of users, expenses of

https://doi.org/10.1016/j.jpdc.2019.10.001
0743-7315/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2019.10.001
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2019.10.001&domain=pdf
mailto:mahmudm@student.unimelb.edu.au
https://doi.org/10.1016/j.jpdc.2019.10.001

178 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

providers and performance of Fog–Cloud infrastructure. Failure
to ensure such balance inhibits providers and users to realize the
potential of integrated computation [23].

In integrated environments, placement of applications on suit-
able instances is very crucial to enhance profit of providers and
meet application QoS for users. Although different application
placement policies for Fog computing are proposed prioritizing
deadline, completion time and revenue [13,32,37], it is critical
for these policies to attain the aforementioned objectives indi-
vidually for integrated environment. Diversified affordability level
of users, uneven expenses of operating heterogeneous instances
and commitment of providing compensation to users for ser-
vice failure further intensify the complexity of such application
placement problem [28]. Therefore, it is demanding to develop
an application placement policy for integrated Fog–Cloud com-
puting environments that can comply with their economic and
performance-based attributes simultaneously.

In Internet economics, providers are encouraged to charge
users more for improved services [17]. Since Fog instances up-
grade application service delivery time, it creates a scope for
providers to charge users an extra amount for these instances
on top of their actual Cloud-based price. To users, providers can
advertise this additional charge as the price for extending the
instance from Cloud to Fog infrastructure. However, it should be
justified with the scale of performance improvement and user
budget constraint. It is also required for clarifying the imprecise-
ness of instance pricing and assisting users to identify how much
they need to pay for executing applications in Fog. Additionally, to
attain loyalty, providers can offer compensation to users on SLA
violations. With such instance pricing model and compensation
method, an application placement policy in integrated environ-
ments can boost the revenue and arouse the necessity of meeting
application QoS that will consequently enhance provider’s profit.
However, in existing works such policy has not been explored yet.
Therefore, we propose a profit-aware application placement pol-
icy for integrated Fog–Cloud environments that increases revenue
and reduces their number of failures in meeting application’s
service delivery deadline. It also sets price of Fog instances in
accordance with their capabilities of improving service quality
and provides compensation to users based on SLA violation rate
of computing environments.

The major contributions of this paper are:

• Proposes an application placement policy for integrated
Fog–Cloud environments based on an Integer Linear Pro-
gramming (ILP) model that enhances provider’s profit and
meets application’s QoS simultaneously.
• Presents a pricing model for Fog instances which increases

provider’s revenue by incorporating their Cloud-based pric-
ing with the service delivery time improvement ratio of
applications placed on those instances.
• Develops a user compensation method that supports both

user’s and provider’s interest through inverse relationship
between compensation amount and performance of the
computing environments in observing SLA requirements.
• Demonstrates the performance of proposed policy in en-

hancing profit, satisfying QoS and managing waiting time
via simulation on iFogSim [16] and compares them with the
outcomes of existing policies.

The rest of the paper is organized as follows. Section 2 high-
lights several relevant works form literature. Section 3 provides
the architecture of integrated environments along with revenue
estimation, pricing model and compensation method. The pro-
posed application placement policy and its illustrative example
are presented in Sections 4 and 5 respectively. Section 6 presents
the simulation environment and performance evaluation of the
proposed policy. Finally, Section 7 concludes the paper.

2. Related work

Provider’s profit and cost maintenance have already been
studied extensively in Cloud computing [24,25]. However, Fog
computing is different from Cloud as it is more distributed and
composed of numerous resource-constrained and heterogeneous
Fog nodes. Service expectations of users from Fog-based applica-
tions, their anticipated run-time and budget for execution are also
diversified compared to that of Cloud-based applications. There-
fore, it is very complicated to develop interoperable resource
and application management policies for both Fog and Cloud
computing and tedious to customize any existing Cloud policy
for Fog computing [28]. Nevertheless, there exists several works
that discuss about financial aspects of integrated Fog–Cloud en-
vironments. Nan et al. [32] provided an online solution that
minimizes task completion time and provider’s cost in integrated
environments. It also reduces overall response time by discarding
infeasible applications directly from the queue. In another work,
Deng et al. [12] made trade-off between power consumption and
transmission delay. Their policy solves the placement problem
distributively and allocate resources at the Fog to complement
Cloud for improving performance. Moreover, Pham et al. [36]
did trade-off between execution time and cost of Cloud-based
processing while placing applications in integrated environment.
Their Cost-Makespan-aware placement policy meets application
deadline constraints. Yu at al. [43] also focused on reducing
processing cost in Cloud by placing applications in Fog. Their
policy saves bandwidth cost by serving users with Fog resources
and compensates Fog providers for processing data on behalf of
Cloud.

The efficacy of Fog has also been extended to other computing
paradigms. Lin et al. [14] minimized the expenses in Fog assisted
Cyber Physical System (CPS) considering instance deployment,
data uploading and inter-nodal communication cost. To overcome
high complexity, their policy linearizes the cost-minimization
problem then solves it through a two-phase linear program-based
heuristic algorithm. Likewise, Yang et al. [41] explored cost-
efficient service placement and load distribution in Fog enabled
Mobile Cloud Computing (MCC) environments. Their algorithms
make trade-off between the average response delay and the ex-
penses of providers by considering mobility and service access
pattern of users. Yao et al. [42] considered instance deployment
cost and diverse mobility pattern of the users while placing ap-
plications on heterogeneous Fog nodes (Cloudlets). Their greedy
solution, at first, generates candidate set of Cloudlets that meets
user’s requirements, then selects a Cloudlet from the candidate
set to place the applications with minimum deployment cost.
Kiani et al. [21] proposed an auction-based profit maximization
policy for Fog enabled Mobile Edge Computing (MEC) environ-
ment. Their policy is developed on a binary linear programming
model and incorporates a two-time scale technique while allo-
cating both the computing and communications resources to the
mobile users.

In literature, profit and budget-aware resource estimation for
Fog computing are also studied. Fan et al. [13] discussed deadline-
aware application placement that enhances provider’s profit and
user’s QoS satisfaction. It exploits provider’s owned Fog resources
and rented Cloud instances combinedly. Neetu et al. [37] ex-
plored the competition between Fog providers in setting service
price and minimizing their cost through Equilibrium Constraints
model. It aims at enhancing the profit and balancing the ser-
vice requirements between providers and users by facilitating
incentivization. A dynamic resource estimation and pricing policy
for Fog computing was developed by Aazam et al. [1]. While
allocating resources and charging services, their policy considers
user’s behaviour, provider’s profit and category of IoT devices

R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190 179

Table 1
Summary of relevant works.
Work Decentralized Decision Provides Compensation Considers Budget Maintains QoS Enhances Profit Models Price Targets Cost

Fog Cloud

Nan et al. [32] ✓ ✓ ✓ ✓
Deng et al. [12] ✓ ✓ ✓ ✓
Pham et al. [36] ✓ ✓
Yu et al. [43] ✓ ✓ ✓
Lin et al. [14] ✓ ✓ ✓
Yang et al. [41] ✓ ✓
Yao et al. [42] ✓ ✓
Kiani et al. [21] ✓ ✓ ✓
Fan et al. [13] ✓ ✓ ✓ ✓
Neetu et al. [37] ✓ ✓ ✓ ✓ ✓ ✓
Aazam et al. [1] ✓ ✓ ✓ ✓ ✓
Ni et al. [33] ✓ ✓ ✓ ✓
Profit-aware (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 1. Integrated Fog–Cloud environments.

based on their mobility pattern. Ni et al. [33] proposed a resource
provisioning policy for Fog that enables users to meet demand
from a set of reserved resources. It considers cost and deadline
along with user’s affordability and features of Fog nodes during
resource allocation.

Table 1 provides a summary of different application placement
policies that investigate monetary issues and service objectives of
integrated environments. In these works, enhancement of profit
and maintenance of QoS are not simultaneously ensured dur-
ing application placement. They barely apply performance-driven
instance pricing model and compensation method to promote
provider’s revenue and subsidize user’s losses. In comparison, the
proposed policy contains two important features; (a). sets price
of Fog instances based on their competency of improving applica-
tion’s service time and (b). offers compensation according to the
SLA-violation rate of computing environments. Both jointly offer
a systematic way to support user’s and provider’s interests. The
profit-aware application placement problem is also formulated as
a function of application’s service delivery deadline that resists
their QoS degradation. These aspects form the core innovation
part of the policy that helps to overcome the limitation of ex-
isting placement policies. Additionally, the proposed policy deals
with various Fog and Cloud-based costs and works in decentral-
ized manner so that it can be synthesized with distributed Fog
nodes.

3. System design

3.1. Features of integrated Fog–Cloud environments

As a supplement to IoT, Fog computing executes latency-
sensitive applications in proximate of data sources to offer
services in real time. Conversely, as an extension of Cloud com-
puting, Fog conducts IoT-data pre-processing so that communi-
cation and computation overhead from Cloud datacentres can be
reduced. Thus, Fog computing maintains an intermediate layer
between IoT and Cloud computing [32,43]. Based on this concept,
the Computing Platforms for IoT applications are considered to
be expanded across the Fog and Cloud infrastructure of inte-
grated environments. Different providers deploy such platforms
on various locations with their owned physical resources (Fog
nodes and Cloud datacentres), for example, Fig. 1 shows the
Computing Platforms deployed by provider A and B on location
L. At the Fog part of each platform, provider-specific Gateways
are deployed, and their number can be scalable as per the load
of external connections with the platform. When multiple Gate-
ways are associated to a Computing Platform, their operations
are synchronized, and monetary calculations are performed in
collective manner. Within a Fog cluster, the communication is
maintained by faster Constrained Application Protocol and Simple
Network Management Protocol. Since Gateways and Fog clusters
are localized, their data exchange delay is considered negligi-
ble [30]. In Fog clusters, cybersecurity frameworks are used to

180 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

identify and monitor malicious Fog nodes that defend the Fog
part of platforms from uncertain attacks in future [39]. Fog clus-
ters can extend different types of virtualized instances (virtual
machines and containers) from Cloud datacentres for application
execution [34,43]. While making application placement decisions
in Fog infrastructure, the Cloud-based attributes of extended
instances such as their configurations, price and cost model are
used extensively along with other performance parameters [5,38].

Moreover, it is regarded that most of the IoT devices are
cramped of performing large-scale data processing and maintain-
ing direct communication with Cloud because of their resource
scarcity and bandwidth limitations [30]. In such circumstance,
Bottom-up interaction among IoT, Fog and Cloud computing plays
an important role where IoT devices at first communicate with
Fog infrastructure and notify their service requirements. Fog in-
frastructure tries to meet these requirements with its available
resources. If it is infeasible, Fog infrastructure asks Cloud to deal
with the issue [1,36]. To enable such interaction in the devised
integrated environments, IoT devices are configured with the
Gateways of any accessible Computing Platforms and the reliable
links between Fog and Cloud part of Computing Platforms help
the Gateways to reach out Cloud-based services via Fog clusters
on behalf of the IoT devices. However, due to mobility of IoT
devices, their associated Gateway and Computing Platform can
change with the course of time. Therefore, to maintain connec-
tivity and deal with data traffic, related network Service Function
Chains (SFCs) are transferred from one place to another. In in-
tegrated environments, efficient SFC migration approaches are
applied to support this operation with reduced reconfiguration
cost [44].

While configuring an IoT device with a Gateway, the place-
ment request for corresponding application is narrated. A place-
ment request comprises specifications of the application
including its number of instructions, input packet size, data
receiving frequency, expected service delivery time limit and
user’s budget for its execution. However, IoT device and user-
driven contexts can vary from time to time. Therefore, integrated
environments endorse time series analytic frameworks for de-
pendable data extraction so that varying contexts of these entities
can be tracked and placement requests for the applications can
be updated [40]. After assimilation of an application placement
request, the associated Gateway grasps status such as processing
speed, bandwidth, per unit time costs and price of available
instances [1]. Based on these parameters, the Gateway finds
suitable placement option for the application. If any instance
satisfies minimum resource requirements of an application, its
deployment time on that instance becomes trivial [31].

Unremitting application placement requests received by a
Gateway can intensify its management overhead. Therefore, Gate-
ways conduct placement of applications after a certain interval,
for example 0.100 s. It helps to manage the overhead of Gate-
ways, simplifies their synchronization with a Computing Platform
and resists unnecessary reporting. However, it can increase re-
source wastage and redundancy to some extent. Their effect
can be mitigated by setting the interval between two placement
rounds to a minimum value or dynamically tuning it according
to the average run-time of applications. In devised integrated
environment, providers can follow any of these approaches so
that placement round intervals neither burden the Gateways nor
decrease resource utilization [26]. Within this interval, Gateways
receive new placement requests and instances execute the appli-
cations placed at previous round. Before initiating a placement
round k, available instances Ck and requested applications Rk for
that round are identified. Later, the Gateway estimates profit
of the platform provider for executing each application. During
placement, a single instance can host at most one application.

A placement request is successful if the application is mapped
to a computing instance, and its service is ensured to be deliv-
ered within the deadline. For kth placement round, the set of
successful applications is noted as Rχk . If an application is not
scheduled in a placement round, it is considered for scheduling
in the next round along with newly received placement requests.
This process continues unless the application is placed, or its
estimated service delivery time surpasses the deadline. During
a billing period, a Gateway can run numerous placement rounds
targeting the Computing Platform. However, after a billing period,
compensation for users based on the SLA violation rate of corre-
sponding platform is determined and total profit of its provider
is calculated. Relevant notations for these calculations are shown
in Table 2.

3.2. Gross profit estimation for providers

Before placing an application r ∈ Rk on instance c ∈ Ck, Gross
profit erc of provider for executing the application is estimated.
Usually, Gross profit is calculated by deducting the cost of pro-
duction from the revenue [22]. Here, the revenue refers to the
service charge of instance that is collected by provider from user
to execute the application. Conversely, the cost of production is
the operating cost of instance that is paid by provider to oth-
ers for application execution. For Gross profit estimation, input
packet size lr and number of instructions in the application sr are
extracted from the placement request. Processing speed µc and
network bandwidth λc of the instance are also considered. Input
processing time tprc and input propagation time tnrc are calculated
for the application using Eqs. (1) and (2);

tprc =
sr

µc , (1)

tnrc =
lr

λc
. (2)

If the instance is deployed in Cloud part, service charge of the
instance for executing the application depends on its per unit
time price ωc and the summation of input processing time tprc and
input propagation time tnrc . Its operating cost also relies on tprc and
tnrc along with its per unit time processing cost αc and networking
cost βc . In αc and βc , providers encapsulate certain portion of var-
ious expenses such as deployment, migration, energy and security
management costs separately. The Gross profit for executing the
application in Cloud-based instance is estimated using Eq. (3);

erc∈Cloud = ω
c(tprc + tnrc)− (tprcα

c
+ tnrcβ

c). (3)

However, if the instance resides in Fog part, input propaga-
tion time tnrc becomes negligible. Therefore, its impact on service
charge and operational cost are omitted while estimating the
Gross profit. To align with the characteristics of Internet econ-
omy [17], providers can also charge users ϵc price per unit time
on top of ωc for ensuring improved service through Fog-based
placement of applications. It is usually advertised to users as the
price for extending the instance from Cloud to Fog. Hence, the
Gross profit for application execution on Fog-based instance is
estimated by Eq. (4);

erc∈Fog = tprc(ω
c
+ ϵc)− tprcα

c . (4)

Combining Eqs. (3) and (4), a general narration of Gross profit for
executing an application is shown in Eq. (5);

erc = (tprc + ηc t
n
rc){ω

c
+ (1− ηc)ϵc} − (tprcα

c
+ ηc tnrcβ

c). (5)

Here, the binary variable ηc tracks whether the instance is de-
ployed in Cloud or extended to Fog part of the Computing Plat-
form. Based on Eq. (5), Gross profit of provider per placement

R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190 181

Table 2
Notations.
Symbol Definition

K Total number of placement rounds per billing period on a Computing Platform.
Υ Total Gross profit of providers from a Computing Platform per billing period.
Ik Gross profit of providers from a Computing Platform during kth placement round.
Ck Set of all computational instances during kth placement round on a Computing Platform.
Rk Set of all requested applications during kth placement round on a Computing Platform.
Rχk Set of successful applications during kth placement round on a Computing Platform. Rχk ⊆ Rk .
erc Estimated Gross profit for executing the application r ∈ Rk on instance c ∈ Ck .
mr

c Profit Merit (PM) of an application r ∈ Rk on any instance c ∈ Ck .
lr Input packet size for the application r ∈ Rk .
sr Number of instructions in the application r ∈ Rk .
zr Minimum resources required for hosting the application r ∈ Rk , z ∈ {processing cores, memory}.
ψ r Users budget for executing the application r ∈ Rk .
δr User expected service delivery time limit for the application r ∈ Rk .
ξ r Latency sensitivity index for the application r ∈ Rk .
µc Processing speed of a computing instance c ∈ Ck .
λc Network bandwidth of a computing instance c ∈ Ck .
Z c Available resources on a computing instance c ∈ Ck , Z ∈ {processing cores, memory}.
ωc Cloud-based price of a computing instance c ∈ Ck for per unit time.
αc Cost of computing instance c ∈ Ck for processing resource consumption per unit time.
βc Cost of computing instance c ∈ Ck for network resource consumption per unit time.
ϵc Additional price of a computing instance c ∈ Ck for per unit time.
τ ra Arrival time stamp of placement request for application r ∈ Rk .
τ rϑ Placement time stamp of application r ∈ Rk .
τ Current time stamp.
P Net profit for the provider per billing period.
ρ Compensation given for SLA violation per billing period on a Computing Platform.
Φ Set of all requested applications per billing period on a Computing Platform. Rk ⊂ Φ

φ Set of all QoS-satisfied applications per billing period on a Computing Platform. Rχk ⊂ φ
ϕ Set of all SLA-violated applications per billing period on a Computing Platform.
tprc Input processing time on computing instance c ∈ Ck for application r ∈ Rk .
tnrc Input propagation time to computing instance c ∈ Ck for application r ∈ Rk .
trc Total time required to complete the execution of application r ∈ Rk on instance c ∈ Ck .
υrc Performance improvement grade of application r ∈ Rk for extending instance c ∈ Ck form Cloud to Fog.
Ωrc Service charge to users for executing the application r ∈ Rk on instance c ∈ Ck .
Γrc Operational cost of providers for executing the application r ∈ Rk on instance c ∈ Ck .
ηc ∈ {0, 1} Equals to 1 if computing instance c ∈ Ck is running in remote Cloud, 0 otherwise.
xrc ∈ {0, 1} Equals to 1 if the application r ∈ Rk is mapped to c ∈ Ck , 0 otherwise.

round and per billing period from a Computing Platform in re-
spect of a Gateway is given by Eqs. (6) and (7);

Ik =
∑
r∈Rχk

erc, (6)

Υ =

K∑
k=1

Ik. (7)

3.3. Pricing model for Fog instances

To increase provider’s Gross profit from Fog-based placement
of applications in integrated environment, the following condi-
tion needs to be satisfied;

erc∈Fog > erc∈Cloud.

One of the possible ways to satisfy this condition is to raise
provider’s revenue from the Fog instance. It can be achieved by
setting a higher ϵc value while charging users for the instance.
Providers can set this value as per their interest with no guar-
antee of user acceptance. To attain user’s acknowledgement, ϵc
should reflect the value of improving performance for placing
applications on Fog instances. Therefore, in defining ϵc , the per-
formance improvement grade υrc of application r ∈ Rk is used
that denotes per unit time improvement in service delivery of the
application for extending its assigned instance c ∈ Ck from Cloud
datacentre to Fog cluster.

When instance c remains in Cloud, service delivery time of ap-
plication r is the summation of input processing time tprc and input
propagation time tnrc . However, if the instance is extended to Fog,
service delivery time of application r becomes dependent to input

processing time tprc and its rough improvement is equivalent to
tnrc compared to Cloud-based placement. Hence, the performance
improvement grade υrc of application r can be narrated as Eq. (8);

υrc =
tnrc
tprc
. (8)

Moreover, providers save a larger portion of networking cost
when the application is executed in Fog [10]. It is also ob-
served in assessing the value of ϵc . Considering performance
improvement and cost saving attributes, to boost the revenue
from Fog-based application placement, providers should set the
value of ϵc satisfying the following condition;

ϵc > υrc(ωc
− βc).

This condition can also be certified with the help of Eqs. (3) and
(4). In proposed profit-aware application placement policy, it is
applied by adding of a very small charge ∂ per unit time, for
example, 0.005 $/s, with ϵc as shown in Eq. (9);

ϵc = υrc(ωc
− βc)+ ∂. (9)

3.4. Compensation method and net profit Calculation

SLA of an application r ∈ Rk violates when the Comput-
ing Platform fails to assist it in meeting the service delivery
deadline [31]. This deadline is determined by adding the user’s
expected service delivery time limit δr with the request’s arrival
time stamp τ ra . If service of the application is delivered within
deadline, its QoS to users is satisfied. In a Computing Platform, per
billing period users are only charged for the set of QoS satisfied
applications φ and compensated for the set of SLA-violated appli-
cations ϕ. The compensation is given as a percentage of average

182 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

Gross profit of providers that is accumulated from QoS-satisfied
applications [11]. It is calculated using the ratio of SLA-violated
and total number of requested applications |Φ| per billing period;
where |Φ| = |φ| + |ϕ|. Hence, the total amount of compensation
ρ given by the provider is shown in Eq. (10);

ρ = |ϕ| ×
Υ

|φ|
×
|ϕ|

|Φ|
. (10)

This compensation method works as per the performance of
Computing Platform. If the Computing Platform assists to increase
the number of QoS satisfied applications, the total compensa-
tion reduces. Conversely, if its performance degrades, increased
amount of compensation helps to retain the user’s loyalty. This
inverse relationship balances the financial support of Computing
Platform for both users and providers [8]

After determining the compensation, Net profit P of provider
from the Computing Platform for a billing period is assessed.
Net profit is calculated by deducting the non-operational cost
from the total Gross profit [22]. Here, the non-operational cost of
providers refers to the amount of compensation that is repaid to
the users. Repaying the compensation ρ by applying Eq. (11), the
residual portion of Gross profit Υ per billing period is regarded
as the provider’s Net profit P;

P = Υ − ρ. (11)

4. Profit-aware application placement

4.1. Problem formulation

According to Eq. (11), provider’s Net profit P from a Computing
Platform enhances if the Gross profit Υ per billing period in-
creases and the amount of compensation ρ decreases. To support
these conditions during placement rounds, the proposed Profit-
aware Application Placement policy prioritizes each application
r ∈ Rk in terms of estimated Gross profit erc for execution on
any instance c ∈ Ck and latency sensitivity index ξ r . On current
time stamp τ , ξ r refers to the remaining time from application’s
service delivery deadline as shown in Eq. (12);

ξ r = τ ra + δ
r
− τ . (12)

In the proposed policy, based on erc and ξ r , Profit Merit (PM) mr
c

of application r ∈ Rk is calculated using Eq. (13);

mr
c =

erc
ξ r
. (13)

On an instance c ∈ Ck, if the estimated Gross profit erc remains
same ∀r ∈ Rk, the application having stringent deadline will
have the higher PM value. Conversely, if two applications have
identical latency sensitivity index, the application estimating el-
evated Gross profit for execution will have the higher PM value.
According to these two cases, in other scenarios, the PM value of
an application r on any instance c signifies the relative weight
of estimated Gross profit for execution and latency sensitivity
index. Additionally, latency sensitivity index ξ r of an application
decreases with the course of time. As a result, if an application is
placed at kth round, its PM value on particular instance increases
by k + 1th round. Based on these features of PM, the objective
function of profit-aware application placement for any placement
round k is formulated as Eq. (14), where a binary decision xrc
helps to identify optimal mapping of an application r ∈ Rk to
an instance c ∈ Ck;

max
∑
r∈Rk

xrcmr
c . (14)

subject to,∑
xrc ≤ 1; ∀r ∈ Rk. (15)

xrczr ≤ Z c
; ∀r ∈ Rk,∀Z,∀z. (16)

(tprc + ηc t
n
rc) ≤ ξ

r
; ∀r ∈ Rk. (17)

Ωrc ≤ ψ
r
; ∀r ∈ Rk, (18)

where,

Ωrc = (tprc + ηc t
n
rc){ω

c
+ (1− ηc)ϵc}. (19)

Eq. (14) is a constrained ILP model that maximizes the total PM
of applications during kth placement round and Eqs. (15)–(18)
specify its constraints. This objective function is required to solve
at the beginning of each placement round. It can be solved with
any ILP solver such as SCIP [2]. The constraints of Eq. (14) are
discussed in the following subsections.

4.1.1. Placement constraint
To deliver uninterrupted services, an application r ∈ Rk re-

quires exclusive access to the assigned instance c ∈ Ck. The
constraint presented in Eq. (15) supports this condition by com-
pelling a computing instance to host at most one application per
placement round.

4.1.2. Resource constraint
A computing instance c ∈ Ck can host the application r ∈

Rk, if its available resources Z c such as processing cores and
memory meet minimum resource requirements zc of the appli-
cation. Eq. (16) enforces this constraint signifying that minimum
resources to host an application is always available on its assigned
computing instance.

4.1.3. QoS constraint
Placement of the application r ∈ Rk on an instance c ∈ Ck will

not be successful unless its QoS satisfaction is ensured. QoS of
the application is satisfied when the propagation and processing
of input data are completed within the remaining time from
service delivery deadline. Eq. (17) imposes this constraint to the
proposed application placement policy.

4.1.4. Budget constraint
Total service charge Ωrc of executing the application in r ∈

Rk on an instance c ∈ Ck should be within the affordability of
the user. If user’s budget is not sufficient compared to the total
service charge, execution of that application will trigger negative
gearing for the provider. Eq. (18) defines this constraint during
application placement.

4.2. Enhancement of profit

Complexity of solving the optimization problem noted in
Eq. (14) using an ILP solver is very high. Through this method, it is
not feasible to identify the application-instance mapping within
stringent time frame for profit-aware application placement [7].
Therefore, a heuristic-method to solve the placement problem is
proposed. The heuristic is immanent in the EnhanceProfit proce-
dure presented in Algorithm 1. It identifies the best-fit solution
in terms of Profit Merit (PM) for placing applications to instances.
Details of the EnhanceProfit procedure is described as follows.

To determine the application-instance mapping for the kth
placement round, EnhanceProfit procedure takes the current time
stamp τ , set of available instances Ck and set of requested ap-
plications Rk as arguments. While identifying the mapping, at
first Fog-based instances and later, the Cloud-based instances are
considered. As shown in Algorithm 1, EnhanceProfit procedure
consists of 4 steps:

(1) For each instance c ∈ Ck, firstly, it is checked whether
the instance has already been allocated to any application or not
(line 2–3). If the instance is not allocated, two variables Mc and

R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190 183

Algorithm 1 Profit enhancement algorithm
1: procedure EnhanceProfit(τ , Ck, Rk)
2: for c := Ck do
3: if !c.allocated then
4: Mc ←−∞

5: Xc ← null
6: for r := Rk do
7: if !r.placed then
8: tprc ← sr

µc

9: tnrc ←
lr
λc

10: υrc ←
tnrc
tprc

11: ξ r ← τ ra + δ
r
− τ

12: trc ← tprc + ηc tnrc
13: Ωrc ← trc [ωc

+ (1− ηc){υrc (ωc
− βc)+ ∂}]

14: Γrc ← tprcαc
+ ηc tnrcβ

c

15: erc ← Ωrc − Γrc

16: mr
c ←

erc
ξ r

17: if zr ≤ Z c then
18: if trc ≤ ξ r then
19: if Ωrc ≤ ψ

r then
20: if Mc < mr

c then
21: Mc ← mr

c
22: Xc ← r
23: if Xc ̸= null then
24: c.assignedApplication← Xc
25: Xc .placed← true
26: c.allocated← true
27: τ

Xc
ϑ ← τ

28: φ.add(Xc)

Xc are initialized (line 4–5). Mc tracks the maximum PM value
associate with the instance c and Xc stores the application which
is responsible for the value in Mc .

(2) For the instance c , the placement request of each applica-
tion r ∈ Rk is exploited (line 6). If the application has not been
placed yet (line 7), the following parameters are determined for
its placement in respect of instance c.
i. input data processing time tprc through Eq. (1) (line 8).
ii. input data propagation time tnrc applying Eq. (2) (line 9).
iii. performance improvement grade υrc by Eq. (8) (line 10).
iv. latency sensitivity index ξ r according to Eq. (12) (line 11).
v. required time trc to complete the application execution based
on tprc and tnrc(line 12) .
vi. service charge Ωrc for users to execute the application using
Eq. (19) (line 13). The value of ϵc is derived from Eq. (9).
vii. operational cost Γrc for executing the application considering
its input data propagation time tnrc and processing time tprc along
with per unit time networking cost βc and processing cost αc

(line 14).
viii. Gross profit erc for application execution by deducting opera-
tional cost Γrc from service charge Ωrc (line 15).
ix. PM mr

c by applying Eq. (13) (line 16).
(3) Based on the calculation of step 2, resource, QoS and

budget constraint for the placement are explored (line 17–19).
The estimated mr

c is also compared with Mc provided that the
constraints are satisfied (line 20). If mr

c is higher than Mc , then
Mc is updated with the value of mr

c and Xc is set to r (line 21–
22). The intuition for performing these operations is to select
an application r for placing on instance c which meets all the
imposed constraints and has the maximum relative weight of es-
timated Gross Profit and latency sensitivity index on c . It not only
increases the proportion of Gross Profit for executing application
r on instance c but also reduces the scope of SLA violation for r .
Consequently, it enhances the Net profit of providers.

Fig. 2. Illustrative integrated Fog–Cloud environments.

Table 3
Parameters of computing instances.
Instances λc (KB/s) µc (TI/s) ωc ($/s) αc ($/s) βc ($/s)

ins#1 840.00 190.00 0.0380 0.0085 0.0065
ins#2 824.00 167.00 0.0364 0.0064 0.0050
ins#3 820.00 162.00 0.0360 0.0060 0.0047
ins#4 845.00 193.00 0.0386 0.0088 0.0068

(4) If Xc refers to any application (line 23), that application
is assigned to instance c (line 24). To ensure the placement
constraint, Xc .placed and c.allocated are set true (line 25–26). The
placement time τ Xcϑ of Xc is also set to current time stamp τ and Xc
is added to the set of QoS satisfied application placement requests
φ (line 27–28).

For each placement round of a billing period, EnhanceProfit
procedure is required to be executed. However, from lines 2 to
28 in Algorithm 1, there are O(|Ck| · |Rk|) iterations, where |Ck|

is the number of available computing instance and |Rk| denotes
the number of received application placement requests during
kth placement round. Therefore, while identifying application-
instance mapping per placement round, Algorithm 1 functions
with polynomial time complexity. Theoretically, it also takes less
amount of time to operate than ILP solvers. In addition, the pro-
posed heuristic-method simultaneously enhances the Net profit
of providers, ensures the QoS satisfaction of applications and
meets the budget constraint of users which makes the method
more effective for profit-aware application placement.

5. Illustrative example

To numerically illustrate the basic steps of proposed profit-
aware application placement policy, we have considered an in-
tegrated Fog–Cloud environment as depicted in Fig. 2.

Here, the Computing Platform offers 4 instances: two in-
stances (ins#1, ins#2) are extended from Cloud to Fog part and
two instances (ins#3, ins#4) remain at Cloud part. Configuration
of the instances are summarized in Table 3. Here, Kilo byte per
second (KB/s) and Thousand instruction per second (TI/s) refers
to the unit of network bandwidth and processing speed for the
instances respectively.

At time τ = 0.0 second, the Gateway g starts receiving place-
ment requests and the placement round interval is set to 0.100 s.
Thus, the first placement round occurs at τ = 0.100 second.
Details of requested applications before the first placement round
are given in Table 4.

For the first placement round, entries of Tables 3 and 4 are
denoted as C1 and R1, and as part of EnhanceProfit procedure, the
input data processing time tprc and propagation time tnrc , ∀r ∈ R1
on each c ∈ C1 are determined. The value of tprc and tnrc for this

184 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

Table 4
Parameters of applications.
Requests lr (KB) sr (TI) ψ r ($) δr (sec) τ ra

app#1 110.00 27.00 0.9054 0.5838 0.0170
app#2 80.00 23.00 0.8062 0.5115 0.0190
app#3 140.00 30.00 0.8915 0.6115 0.0330
app#4 90.00 26.00 0.9797 0.6075 0.0340
app#5 100.00 28.00 0.8384 0.6719 0.0360
app#6 130.00 21.00 0.9210 0.5448 0.0410

Table 5
Input data processing and propagation time.
Input data processing time tprc
Instances → ins#1 ins#2 ins#3 ins#4
Applications ↓

app#1 0.1421 0.1617 0.1667 0.1399
app#2 0.1211 0.1377 0.1420 0.1192
app#3 0.1579 0.1796 0.1852 0.1554
app#4 0.1368 0.1557 0.1605 0.1347
app#5 0.1474 0.1677 0.1728 0.1451
app#6 0.1105 0.1257 0.1296 0.1088

Input data propagation time tnrc
Instances → ins#1 ins#2 ins#3 ins#4
Applications ↓

app#1 0.1310 0.1335 0.1341 0.1302
app#2 0.0952 0.0971 0.0976 0.0947
app#3 0.1667 0.1699 0.1707 0.1657
app#4 0.1071 0.1092 0.1098 0.1065
app#5 0.1190 0.1214 0.1220 0.1183
app#6 0.1548 0.1578 0.1585 0.1538

Table 6
Performance improvement grade υrc for Fog instances.
Instances → ins#1 ins#2
Applications ↓

app#1 0.9215 0.8257
app#2 0.7867 0.7049
app#3 1.0556 0.9458
app#4 0.7830 0.7015
app#5 0.8078 0.7238
app#6 1.4002 1.2546

round are shown in Table 5. Later, ∀r ∈ R1, the performance
improvement grade υrc are determined. They are figured out in
respect of ins#1 and ins#2 those are extended from Cloud to
Fog part of the platform. Since ins#3 and ins#4, remain in Cloud
part, according to the proposed policy, performance improvement
grade of applications regarding them are irrelevant. Moreover, ex-
ecution service chargeΩrc and operational cost Γrc of applications
on each c ∈ C1 are estimated. Here, ∂ is set to 0.005 $/s. These
estimations are presented in Tables 6 and 7. Additionally, the PM
values of each r ∈ R1 on different c ∈ C1 are calculated and they
are listed in Table 8.

The proposed policy selects that instance for placing an appli-
cation which ensures maximum PM value (in red colour on Ta-
ble 8) for the application satisfying all constraints. The placement
map for the first round is shown in Table 9.

In this example, the second placement round is supposed to
occur at τ = 0.200 second. Since all instances were busy on
that time in executing previously placed applications, the second
round occurs at τ = 0.300 second. By this time all instances
become available for C2 and due to not receiving new requests,
R2 encapsulates only app#4 and app#5. The PM values of each
r ∈ R2 on ∀c ∈ C2 are shown in Table 10. According to them, the
placement map for the second round is shown in Table 11.

The illustrative example shows that the PM value of applica-
tions waiting for longer period of time gradually increases. How-
ever, the aforementioned operations for each placement round

Table 7
Total service charge and operational cost.
Total service charge Ωrc

Instances → ins#1 ins#2 ins#3 ins#4
Applications ↓

app#1 0.0102 0.0109 0.0108 0.0104
app#2 0.0082 0.0088 0.0086 0.0083
app#3 0.0120 0.0128 0.0128 0.0124
app#4 0.0093 0.0099 0.0097 0.0093
app#5 0.0101 0.0108 0.0106 0.0102
app#6 0.0096 0.0102 0.0104 0.0101

Total operational cost Γrc

Instances → ins#1 ins#2 ins#3 ins#4
Applications ↓

app#1 0.0012 0.0010 0.0016 0.0021
app#2 0.0010 0.0009 0.0013 0.0017
app#3 0.0013 0.0011 0.0019 0.0025
app#4 0.0012 0.0010 0.0015 0.0019
app#5 0.0013 0.0011 0.0016 0.0021
app#6 0.0009 0.0008 0.0015 0.0020

Table 8
PM of applications for first placement round.

Table 9
Placement map for first round.
Instances Applications

ins#1 app#3
ins#2 app#1
ins#3 app#6
ins#4 app#2

Table 10
PM of applications for second placement round.

Table 11
Placement map for second round.
Instances Applications

ins#1 app#4
ins#2 app#5

are conducted on Gateway g of the Computing Platform. We
implement Gateway g with Intel(R) Core(TM)2 Duo CPU E6550 @
2.33 GHz 2 GB DDR2 RAM. On this configuration, Gateway g takes
0.008 s on average to identify placement map for each round.

6. Performance evaluation

In this section, performance of the proposed profit-aware
application placement policy is compared with the basic concept
of Completion time [32], Deadline [13] and Revenue-prioritized
placement policies [37]. In Deadline-prioritized placement pol-
icy, deadline-critical applications are placed on computationally
powerful instances in higher precedence whereas in Revenue-
prioritized placement policy, it is done for economically beneficial

R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190 185

Table 12
Simulation attributes.
Parameter Numerical specification

Simulation duration 500 s
Interval between placement rounds 0.020–0.180 s
Total number of instances 50
Frequency of request arrival 10–50 applications/s

Instance:
Network bandwidth 700–1000 KBPS
Processing speed 120–220 TIPS
Price 0.025–0.06 $/s
Cost of processing 0.005–0.01 $/s
Cost of networking 0.002–0.007 $/s

Application:
Input packet size 80–140 KB
Number of instructions 20–30 TI
User’s budget 0.80–1.00 $ per application
Service delivery time limit 0.500–0.700 s

applications. Alternatively, through Completion time-prioritized
placement policy, applications are placed on those instances
which collectively ensure minimized application execution time.
The profit-aware application placement problem for the proposed
policy is also solved by following two approaches; in Optimized
Profit-aware placement, the gateway runs SCIP [2] to find solution
for Eq. (14), and in Heuristic Profit-aware placement the gateway
executes EnhanceProfit procedure from Algorithm 1 to identify
application-instance map during each placement round.

6.1. Simulation environment

The experiments for performance evaluation of proposed pol-
icy are conducted in a simulated Fog–Cloud environment using
iFogSim [16]. Instances of this environment are containerized and
their specifications such as network bandwidth, processing speed
and expenses are extracted from real-world references [35]. Since
the instances offer short-term services, their per unit time price
is comparatively higher than the instances provisioned for long-
term services [19]. Additionally, to model the placement requests,
synthetic workload is used since real-world workload for large
number of different IoT applications are not currently available.
The arrival pattern of these requests is Poisson distributed and
their parametric standards are congruent with the configuration
of instances. Numerical values of simulation attributes are de-
termined from their given range in Table 12 through discrete
uniform distribution.

6.2. Performance metrics

In experiments, the following metrics are used to evaluate the
performance of proposed application placement policy.

1. Percentage of QoS-satisfied applications: The percentage of
QoS satisfied applications φ℘ is calculated as the ratio between
number of QoS-satisfied applications |φ| and total number of
requested application |Φ| per billing period using Eq. (20);

φ℘ =
|φ|

|Φ|
× 100%. (20)

The higher percentage denotes the improved performance of
integrated environment.

2. Average waiting time of applications: Waiting time of an
application is defined as the interval between its requesting and
placement time. The average waiting time ¯τw of QoS-satisfied
applications per billing period is calculated using Eq. (21);

¯τw =
1
|φ|

∑
∀r∈φ

τ rϑ − τ
r
a . (21)

The lower the waiting time signifies the higher the performance
of integrated environment.

3. Total Gross profit of providers from a Computing Platform: Per
billing period, this metric is calculated using Eq. (7). The increased
total Gross profit refers to higher balance between service charge
and operational cost. It also reflects the efficiency of providers in
setting price of the instances.

4. Net profit of providers from a Computing Platform: This metric
is calculated by Eq. (11) after each billing period. Enhanced Net
profit signifies improved performance of the platform in reducing
SLA violation and compensation.

Besides, Percentage of compensation to Gross profit is calculated
in the experiments by Eq. (22);

ρ℘ =
ρ

Υ
× 100%. (22)

Proportional relation between ρ℘ and the rate of SLA violation
helps to support financial aspects of both users and providers.
Moreover, Average application completion time and Average service
charge for Fog and Cloud instances are analysed during experi-
ments to demonstrate the improvement in application’s service
delivery and justify the applicability of proposed pricing model.
Average time to identify placement map is also used as an per-
formance metric. Reduced time to identify the placement map
denotes the higher feasibility of applying corresponding approach
for solving the placement problem.

The aforementioned performance metrics can have a sig-
nificant impact on any real-world IoT-enabled system. For ex-
ample, a remote health management system can request an
integrated computing environment to place various IoT appli-
cations for measuring heartbeat, determining oxygen saturation
level, monitoring electrocardiogram pattern and analysing sleep
apnea data of different patients [28]. In such circumstance, high
percentage of QoS satisfied applications is required for ensuring
that the computing environment can offer services for most of
the requested applications within their deadline. Similarly, the
computing environment should guarantee lower waiting time for
all applications so that their execution can initiate in quicker
time. Both will help the IoT-enabled system to deal with emer-
gency situations of critical patients. However, the computing
environment would need to manage the applications for remote
health management system in such a way that can maximize
Gross and Net profit of providers. Otherwise, the computing envi-
ronment will be beneficial only for the IoT-system operators and
patients, and there will be no financial support for the providers.
Apart from these issues, the high percentage of compensation
for increased number of SLA violations will assist the computing
environment to attain loyalty of other IoT-enabled systems that
can eventually work in favour of the providers.

6.3. Experimental results

The experiments for performance evaluation are conducted
by varying the number of requested applications, the number
of instances, the percentage of Fog instances and the interval
between placement rounds separately. For each variation of these
parameters, simulation is run for 500 s and the performance
metrics are calculated only when the simulation is over. For
simplicity, results of all homogeneous variations for a specific
metric are combined in a single two-dimensional graph. These
graphs are described in the following subsections.

6.3.1. Impact of varying number of applications
Due to receiving placement requests at higher frequency com-

pared to the available rate of instances, the percentage of QoS sat-
isfied applications decreases (Fig. 3.a). In Profit-aware application

186 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

Fig. 3. Impact of varying number of applications on (a) Percentage of QoS satisfaction (b) Waiting time (c) Gross profit (d) Net Profit.

placement, this down trend is slower and closer to the Deadline-
prioritized placement policy. The proposed policy schedules ap-
plications in precedence of their service delivery deadline. It
raises the QoS satisfaction percentage compared to the Com-
pletion time and the Revenue-prioritized application placement
where priority of applications largely depends on their program
size and prospect of earning revenue. Moreover, average wait-
ing time of placed applications prolongs as the number of re-
quested application increases (Fig. 3.b). In this experiment, the
proposed policy performs better than the Deadline-prioritized
and the Revenue-prioritized policy since it increases the PM value
of applications per placement round. However, it awaits latency-
tolerant and less economical applications for a longer period
of time. Conversely, the Completion time-prioritized placement
policy releases instances quickly that consequently helps to place
more applications in next rounds and reduces their waiting time.

Since Net profit is accumulated from Gross profit, it always
remains greater than Net profit. However, the instance pricing
model of the proposed policy helps providers to increase rev-
enue from Fog-based placement of applications that consequently
boosts their Gross profit. Hence, the amount of Gross profit with
the increasing of applications becomes higher for the proposed
policy compared to Completion time and Deadline-prioritized
placement policy (Fig. 3.c). Moreover, the proposed policy ensures
QoS satisfaction for significant percentage of applications that
resists SLA violations and assists providers to pay less compen-
sation. For this reason, provider’s Net profit elevates at higher
rate in favour of the proposed policy compared to others as
the number of applications increases (Fig. 3.d). Lower mount of
Gross profit also results in reduced Net profit for Completion
time and Deadline-prioritized placement policy. Nevertheless, the
Revenue-prioritized placement policy performs almost similar to
the proposed policy in increasing provider’s Gross profit. Since

the percentage of SLA violation rises for the Revenue-prioritized
placement policy with the increasing of applications, it leads
provider’s to pay high compensation. Therefore, despite of ele-
vating Gross profit, it offers less Net profit than the proposed
policy.

The impact of varying number of requested applications on
different performance metrics signify that placement request re-
ceiving frequency of a Computing Platform should be congruent
with the availability rate of instances. It helps to maintain ac-
ceptable level of provider’s profit and waiting time of applications
with higher QoS satisfaction of users.

6.3.2. Impact of varying percentage of fog instances
In a Computing Platform, if the percentage of Fog instances

rises, the percentage of QoS satisfied application increases
(Fig. 4.a). The higher number of Fog instances assist more appli-
cations to reduce their input propagation delay and to meet QoS.
Besides, for explicitly dealing with application’s service delivery
deadline, the proposed and the Deadline-prioritized placement
policy performs better in this case compared to the others.

Similarly, as the number of Fog instances increases, average
waiting time of applications increases (Fig. 4.b). Due to charging
additional price for using Fog instances, Cloud instances remain as
the only option to place low-budget applications. When the num-
ber of Cloud instances becomes less, these applications wait for a
longer period of time. In this case, compared to other policies, the
Completion time-prioritized placement policy performs better as
it releases all kinds of instances quickly. Moreover, increased
number of Fog instances elevates both Gross and Net profit for
providers (Fig. 4.c and 4.d). In these experiments, for concurrently
maximizing revenue and reducing SLA violations, the proposed
policy performs better than others.

R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190 187

Fig. 4. Impact of varying percentage of Fog instances on (a) Percentage of QoS satisfaction (b) Waiting time (c) Gross profit (d) Net profit.

However, results of the aforementioned experiments signify
that a balanced ratio of Fog and Cloud instances assists both profit
enhancement and waiting time management.

6.3.3. Impact of varying placement round interval
As the interval between two placement rounds increases, the

percentage of QoS satisfaction decreases and waiting time of
applications increases (Fig. 5.a and 5.b). This interval halts place-
ment of applications even when the instances are already avail-
able and resists applications to meet service delivery deadline.
However, for considering deadline during application placement,
the proposed policy performs better in this experiment than
others specially in terms of QoS satisfaction. Moreover, lower QoS
satisfaction occurred form increased placement round interval
decrease both Gross and Net profit of providers from a Computing
Platform (Fig. 5.c and 5.d). Since the proposed policy offers com-
pensation as a variable percentage of provider’s total Gross profit,
it ensures moderate Net profit despite of higher SLA violation
than others.

Outcomes of these experiments recommend tuning the place-
ment round interval in such way that neither creates overhead on
gateway by invoking placement process frequently nor degrades
the percentage of QoS satisfied requests.

6.3.4. Feasibility of placement problem solving approaches
In aforementioned results, the Optimized Profit-aware place-

ment performs slightly better than the Heuristic Profit-aware
placement. However, as the number of requested applications
increases or the number of instances increases, or both happens
due to increasing the placement round interval, the Optimized
Profit-aware placement takes longer period of time to identify the
application-instance map than the heuristic approach (Fig. 6.a, 6.b
and 6.c). Thus, the Optimized Profit-aware placement increases

overhead on gateways and degrades their performance. Since the
outcomes of both Optimized and Heuristic Profit-aware place-
ment do not vary significantly, for in-time performance, it is
feasible to apply the heuristic approach instead of the optimized
one to implement the proposed policy.

6.3.5. Justification for compensation and instance pricing
The proposed policy facilitates compensation according to

the performance of Computing Platform. It ensures high com-
pensation for higher percentage of SLA violation and vice versa
(Fig. 7.a). Conversely, in fixed rate compensation method (10% of
total revenue), the percentage of compensation to Gross profit
remain static despite of performance improvement or degrada-
tion [18]. As a result, the Computing Platform fails to show its
financial support to both providers and users. Besides, in such
method, the distribution of compensation amount is uniform
among the affected users on different SLA violation rate. There-
fore, the variable rate compensation method of the proposed
policy is more conducive to build a financially supportive com-
puting environments for both users and providers than the fixed
rate compensation method.

Moreover, it is already proven that Fog-based placement of
an application deliver services in reduced time compared to its
Cloud-based placement. It happens due to less or negligible in-
put propagation delay while executing an application in Fog
instance. The experiment result shown in Fig. 7.b also certifies
this fact with almost 55% improved completion time of appli-
cations for their Fog-based placement in context of the devised
computing environment and proposed placement policy. For this
experiment, a candidate set of applications is placed through the
proposed policy on fixed number of Fog and Cloud instances sep-
arately. Identical configuration is maintained for each instances
and workload of the applications are kept unchanged during

188 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

Fig. 5. Impact of varying placement round interval on (a) Percentage of QoS satisfaction (b) Waiting time (c) Gross profit (d) Net Profit.

Fig. 6. Required time to find placement map varying (a) Number of requests (b) Number of instances (c) Placement round interval.

Fig. 7. Comparison between (a) Fixed and variable compensation rate (b) Average application completion time (c) Average charge for Fog and Cloud instances.

R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190 189

the experiment. Thus, its fairness and validity are ensured. On
same experimental setup, it is also observed that Fog instances
charge additional 20% on average in contrast to Cloud instances
(Fig. 7.c), which is quite less compared to the scale of performance
improvement. Hence, it is realized that instance pricing model
applied in the policy is justified and reflects an acceptable value
for improving performance.

7. Conclusions and future work

A profit-aware application placement policy for integrated
Fog–Cloud environments is proposed in this work. The policy si-
multaneously increases provider’s Gross and Net profit by placing
applications on suitable instances without violating their deadline
constraint. It incorporates a pricing model that tunes the service
charge of Fog instances according to their capability of reducing
application service delivery time. The policy follows a compensa-
tion method to mitigate the effect of SLA violation on users. The
compensation method depends on the performance of computing
environments and supportive for both providers and users. The
proposed policy can identify application-instance map by using
any ILP solver or best-fit heuristic approach. To demonstrate the
efficacy of proposed policy, we applied the heuristic approach
in an iFogSim-simulated environment and compared its perfor-
mance with several existing application placement policies. The
experimental results show improvements in Gross and Net profit,
waiting time and QoS satisfaction rate for the proposed policy.
They also manifested that heuristic implementation of the policy
finds closer to optimal solution within minimal time, and pricing
of the Fog instances are justified to their performance.

Since Fog computing is a very recent inclusion in computing
paradigms, there exists many research challenges including Fog
resource management and their resiliency and security main-
tenance. In this work, we mainly focused on profit-aware ap-
plication placement in Fog computing that enhances provider’s
profit and meets application QoS simultaneously through efficient
management of Fog instances. However, vulnerable security mea-
sures within Fog computing can degrade the efficiency of any Fog
resource management policies significantly. Therefore, we plan
to extend this work in future incorporating multi-dimensional
security aspects so that provider’s profit can remain in acceptable
level even after any anomaly happens. We will also explicitly ex-
plore the expenses for ensuring security in Fog while calculating
provider’s profit and dynamically determine the placement round
interval for IoT applications.

Declaration of competing interest

No author associated with this paper has disclosed any po-
tential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements
refer to https://doi.org/10.1016/j.jpdc.2019.10.001.

References

[1] M. Aazam, E.-N. Huh, Fog computing micro datacenter based dynamic
resource estimation and pricing model for IoT, in: Advanced Informa-
tion Networking and Applications, AINA, 2015 IEEE 29th International
Conference on, IEEE, 2015, pp. 687–694.

[2] T. Achterberg, SCIP: solving constraint integer programs, Math. Program.
Comput. 1 (1) (2009) 1–41.

[3] M. Afrin, M.R. Mahmud, M.A. Razzaque, Real time detection of speed
breakers and warning system for on-road drivers, in: Proc. of the IEEE
International WIE Conference on Electrical and Computer Engineering,
WIECON-ECE, 2015, pp. 495–498.

[4] M. Afrin, M.A. Razzaque, I. Anjum, M.M. Hassan, A. Alamri, Tradeoff
between user quality-of-experience and service provider profit in 5G cloud
radio access network, Sustainability 9 (11) (2017) 2127.

[5] M. Al-khafajiy, T. Baker, H. Al-Libawy, A. Waraich, C. Chalmers, O. Alfandi,
Fog computing framework for Internet of Things applications, in: 2018
11th International Conference on Developments in ESystems Engineering,
DeSE, IEEE, 2018, pp. 71–77.

[6] I.F. All, The big three make a play for the fog, 2018, https://www.iotforall.
com/big-three-make-play-fog/ [Online]. (Accessed 06-October-2018).

[7] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,
M. Protasi, Complexity and Approximation: Combinatorial Optimization
Problems and their Approximability Properties, Springer Science & Business
Media, 2012.

[8] K. Barbosa, A. Bucione, A.P. Souza, Performance-based compensation vs.
guaranteed compensation: contractual incentives and performance in the
Brazilian banking industry, Econ. Apl. 18 (1) (2014) 5–33.

[9] L.F. Bittencourt, J. Diaz-Montes, R. Buyya, O.F. Rana, M. Parashar, Mobility-
aware application scheduling in fog computing, IEEE Cloud Comput. 4 (2)
(2017) 26–35.

[10] F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog computing and its role in the
Internet of Things, in: Proc. of the First Edition of the MCC Workshop on
Mobile Cloud Computing, in: MCC ’12, ACM, 2012, pp. 13–16.

[11] A.T. Coughlan, K. Joseph, 26 sales force compensation: research insights
and research potential, Edward Elgar Publishing, 2012.

[12] R. Deng, R. Lu, C. Lai, T.H. Luan, H. Liang, Optimal workload allocation in
Fog-Cloud computing toward balanced delay and power consumption, IEEE
Internet Things J. 3 (6) (2016) 1171–1181.

[13] J. Fan, X. Wei, T. Wang, T. Lan, S. Subramaniam, Deadline-aware task
scheduling in a tiered IoT infrastructure, in: GLOBECOM 2017-2017 IEEE
Global Communications Conference, IEEE, 2017, pp. 1–7.

[14] L. Gu, D. Zeng, S. Guo, A. Barnawi, Y. Xiang, Cost efficient resource
management in fog computing supported medical cyber-physical system,
IEEE Trans. Emerg. Top. Comput. 5 (1) (2017) 108–119.

[15] J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami, Internet of Things (IoT): A
vision, architectural elements, and future directions, Future Gener. Comput.
Syst. 29 (7) (2013) 1645–1660.

[16] H. Gupta, A. Vahid Dastjerdi, S.K. Ghosh, R. Buyya, Ifogsim: A toolkit
for modeling and simulation of resource management techniques in the
Internet of Things, edge and fog computing environments, Softw. - Pract.
Exp. 47 (9) (2017) 1275–1296.

[17] L. He, J. Walrand, Pricing and revenue sharing strategies for internet service
providers, in: Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, Vol. 1, IEEE, 2005, pp. 205–216.

[18] N. Hogue, Service Level Agreements with Penalty Clause, South Carolina
State Documents Depository, South Carolina State Library, 2009.

[19] Z. Hoque, Handbook of Cost and Management Accounting, Spiramus Press
Ltd, 2005.

[20] F.M. Insights, Fog computing market: Global industry analysis and opportu-
nity assessment 2017-2027, 2017, https://www.futuremarketinsights.com/
reports/fog-computingmarket [Online]. (Accessed 23-June-2018).

[21] A. Kiani, N. Ansari, Toward hierarchical mobile edge computing: An
auction-based profit maximization approach, IEEE Internet Things J. 4 (6)
(2017) 2082–2091.

[22] B.K. Kwok, Accounting Irregularities in Financial Statements: A Definitive
Guide for Litigators, Auditors and Fraud Investigators, Routledge, 2017.

[23] Y. Lin, H. Shen, CloudFog: Leveraging fog to extend cloud gaming for thin-
client MMOG with high quality of service, IEEE Trans. Parallel Distrib. Syst.
28 (2) (2017) 431–445.

[24] C. Liu, K. Li, K. Li, Minimal cost server configuration for meeting time-
varying resource demands in cloud centers, IEEE Trans. Parallel Distrib.
Syst. 29 (11) (2018) 2503–2513.

[25] C. Liu, K. Li, C. Xu, K. Li, Strategy configurations of multiple users
competition for cloud service reservation, IEEE Trans. Parallel Distrib. Syst.
27 (2) (2015) 508–520.

[26] R. Mahmud, M. Afrin, M.A. Razzaque, M.M. Hassan, A. Alelaiwi, M. Al-
rubaian, Maximizing quality of experience through context-aware mobile
application scheduling in cloudlet infrastructure, Softw. - Pract. Exp. 46
(11) (2016) 1525–1545, spe.2392.

[27] R. Mahmud, R. Buyya, Modelling and simulation of fog and edge com-
puting environments using iFogSim toolkit, in: Fog and Edge Computing:
Principles and Paradigms, John Wiley & Sons, Inc. Hoboken, NJ, USA, 2019,
pp. 1–35.

[28] R. Mahmud, F.L. Koch, R. Buyya, Cloud-fog interoperability in IoT-enabled
healthcare solutions, in: Proceedings of the 19th International Conference
on Distributed Computing and Networking, ICDCN ’18, ACM, New York,
NY, USA, 2018, pp. 32:1–32:10.

[29] R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy, survey and
future directions, in: Internet of Everything, Springer, 2018, pp. 103–130.

[30] R. Mahmud, K. Ramamohanarao, R. Buyya, Latency-aware application
module management for fog computing environments, ACM Trans. Internet
Technol. 19 (1) (2018) 9.

[31] R. Mahmud, S.N. Srirama, K. Ramamohanarao, R. Buyya, Quality of
experience (QoE)-aware placement of applications in Fog computing
environments, J. Parallel Distrib. Comput. 132 (2019) 190–203.

https://doi.org/10.1016/j.jpdc.2019.10.001
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb1
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb2
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb4
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb5
https://www.iotforall.com/big-three-make-play-fog/
https://www.iotforall.com/big-three-make-play-fog/
https://www.iotforall.com/big-three-make-play-fog/
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb7
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb8
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb9
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb10
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb11
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb12
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb13
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb14
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb15
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb16
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb17
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb18
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb19
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb19
https://www.futuremarketinsights.com/reports/fog-computingmarket
https://www.futuremarketinsights.com/reports/fog-computingmarket
https://www.futuremarketinsights.com/reports/fog-computingmarket
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb21
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb22
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb23
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb24
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb25
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb25
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb25
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb25
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb25
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb26
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb27
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb28
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb29
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb30
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb31
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb31

190 R. Mahmud, S.N. Srirama, K. Ramamohanarao et al. / Journal of Parallel and Distributed Computing 135 (2020) 177–190

[32] Y. Nan, W. Li, W. Bao, F.C. Delicato, P.F. Pires, A.Y. Zomaya, A dynamic
tradeoff data processing framework for delay-sensitive applications in
cloud of things systems, J. Parallel Distrib. Comput. 112 (2018) 53–66.

[33] L. Ni, J. Zhang, C. Jiang, C. Yan, K. Yu, Resource allocation strategy in fog
computing based on priced timed petri nets, IEEE Internet Things J. 4 (5)
(2017) 1216–1228.

[34] O. Osanaiye, S. Chen, Z. Yan, R. Lu, K.-K.R. Choo, M. Dlodlo, From cloud to
fog computing: A review and a conceptual live VM migration framework,
IEEE Access 5 (2017) 8284–8300.

[35] C. Pahl, S. Helmer, L. Miori, J. Sanin, B. Lee, A container-based edge cloud
paas architecture based on raspberry pi clusters, in: Future Internet of
Things and Cloud Workshops, FiCloudW, IEEE International Conference on,
IEEE, 2016, pp. 117–124.

[36] X.-Q. Pham, N.D. Man, N.D.T. Tri, N.Q. Thai, E.-N. Huh, A cost-and
performance-effective approach for task scheduling based on collaboration
between cloud and fog computing, Int. J. Distrib. Sens. Netw. 13 (11)
(2017).

[37] N. Raveendran, H. Zhang, Z. Zheng, L. Song, Z. Han, Large-scale fog comput-
ing optimization using equilibrium problem with equilibrium constraints,
in: GLOBECOM 2017-2017 IEEE Global Communications Conference, IEEE,
2017, pp. 1–6.

[38] D. Rosário, M. Schimuneck, J. Camargo, J. Nobre, C. Both, J. Rochol, M.
Gerla, Service migration from cloud to multi-tier fog nodes for multimedia
dissemination with QoE support, Sensors 18 (2) (2018) 329.

[39] A.S. Sohal, R. Sandhu, S.K. Sood, V. Chang, A cybersecurity framework
to identify malicious edge device in fog computing and cloud-of-things
environments, Comput. Secur. 74 (2018) 340–354.

[40] C. Wang, Y. Zhu, W. Shi, V. Chang, P. Vijayakumar, B. Liu, Y. Mao, J. Wang,
Y. Fan, A dependable time series analytic framework for cyber-physical
systems of IoT-based smart grid, ACM Trans. Cyber-Phys. Syst. 3 (1) (2018)
7.

[41] L. Yang, J. Cao, G. Liang, X. Han, Cost aware service placement and load
dispatching in mobile cloud systems, IEEE Trans. Comput. 65 (5) (2016)
1440–1452.

[42] H. Yao, C. Bai, M. Xiong, D. Zeng, Z. Fu, Heterogeneous cloudlet deployment
and user-cloudlet association toward cost effective fog computing, Concurr.
Comput.: Pract. Exper. 29 (16) (2017).

[43] L. Yu, T. Jiang, Y. Zou, Fog-assisted operational cost reduction for cloud
data centers, IEEE Access 5 (2017) 13578–13586.

[44] D. Zhao, G. Sun, D. Liao, S. Xu, V. Chang, Mobile-aware service function
chain migration in cloud–fog computing, Future Gener. Comput. Syst. 96
(2019) 591–604.

Redowan Mahmud is a Ph.D. student at the Cloud
Computing and Distributed Systems (CLOUDS) Lab-
oratory, Department of Computing and Information
Systems, the University of Melbourne, Australia and
awarded Melbourne International Research Scholarship
(MIRS) for supporting his studies. He received B.Sc.
degree in 2015 from Department of Computer Science
and Engineering, University of Dhaka, Bangladesh. His
research interests include Internet of Things, Fog and
Mobile Cloud Computing.

Satish Narayana Srirama is a Research Professor and
the head of the Mobile and Cloud Lab at the Institute
of Computer Science, University of Tartu, Estonia. He
received PhD in computer science from RWTH Aachen
University, Germany, in 2008. His research focuses on
cloud computing, mobile cloud, Internet of Things, fog
computing, migrating scientific and enterprise applica-
tions to the cloud and large scale data analytics on the
cloud. He is an Editor of Wiley Software: Practice and
Experience.

Kotagiri Ramamohanarao received Ph.D. from Monash
University. He was awarded the Alexander von Hum-
boldt Fellowship. He has been at the University of
Melbourne since 1980 and was appointed as a profes-
sor in computer science in 1989. He was the Head of
Computer Science and Software Engineering and Head
of the School of Electrical Engineering and Computer
Science, University of Melbourne. He is on the edito-
rial boards for Universal Computer Science and Data
Mining, IEETKDE and VLDB Journal.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory, University of
Melbourne. He is one of the highly cited authors in
computer science and software engineering. Microsoft
Academic Search Index ranked him as the world’s top
author in distributed and parallel computing during
2007–2012. He was founding Editor of the IEEE Trans-
action on Cloud Computing and is an Editor of Wiley
Software: Practice and Experience.

http://refhub.elsevier.com/S0743-7315(19)30034-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb32
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb33
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb34
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb35
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb36
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb37
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb38
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb38
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb38
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb38
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb38
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb39
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb39
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb39
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb39
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb39
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb40
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb41
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb41
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb41
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb41
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb41
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb42
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb42
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb42
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb42
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb42
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb43
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb43
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb43
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb44
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb44
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb44
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb44
http://refhub.elsevier.com/S0743-7315(19)30034-6/sb44

	Profit-aware application placement for integrated Fog–Cloud computing environments
	Introduction
	Related work
	System design
	Features of integrated Fog–Cloud environments
	Gross profit estimation for providers
	Pricing model for Fog instances
	Compensation method and net profit Calculation

	Profit-aware application placement
	Problem formulation
	Placement constraint
	Resource constraint
	QoS constraint
	Budget constraint

	Enhancement of profit

	Illustrative example
	Performance evaluation
	Simulation environment
	Performance metrics
	Experimental results
	Impact of varying number of applications
	Impact of varying percentage of fog instances
	Impact of varying placement round interval
	Feasibility of placement problem solving approaches
	Justification for compensation and instance pricing

	Conclusions and future work
	Declaration of competing interest
	References

