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Abstract 
 

In this paper, we present the design of Aneka, a 

.NET based service-oriented platform for desktop grid 

computing that provides: (i) a configurable service 

container hosting pluggable services for discovering, 

scheduling and balancing various types of workloads 

and (ii) a flexible and extensible framework/API 

supporting various programming models including 

threading, batch processing, MPI and dataflow. Users 

and developers can easily use different programming 

models and the services provided by the container to 

run their applications over desktop Grids managed by 

Aneka. We present the implementation of both the 

essential and advanced services within the platform. 

We evaluate the system with applications using the 

grid task and dataflow models on top of the 

infrastructure and conclude with some future 

directions of the current system. 

 

1. Introduction 
 

The term “desktop grid computing” refers to 

systems that harness the unused CPU cycles of desktop 

Personal Computers (PCs) connected over a corporate 

network or the Internet to accelarate application 

performance. Within an enterprise, desktop grids allow 

an organisation to improve the utilization of its IT 

resources, by allowing it  to harness the power of 

unused PCs for computational tasks without affecting 

productivity of the PC users. While the notion of 

desktop grid computing is well-understood, there are a 

lot of challenges in realising such a system. Some of 

the key issues include: resource management, failure 

management, reliability, application composition, 

scheduling and security [3]. 

Our previous efforts in desktop grid computing 

resulted in Alchemi [6], a Microsoft .NET-based 

framework which provides an object-oriented threading 

API and file-based grid job model to create grid 

applications over various desktop PCs. However, 

Alchemi was limited to a master-slave architecture, and 

lacked the flexibility for efficiently implementing other 

parallel programming models such as message-passing 

and dataflow. We have improved upon Alchemi to 

create a service-oriented, desktop grid system called 

Aneka, also developed on top of the .NET platform. 

This paper describes its design and implementation. 

Aneka was conceived with the aim of providing a 

set of services that make grid construction and 

development of applications as easy as possible without 

sacrificing flexibility, scalability, reliability and 

extensibility. The key features supported by Aneka are: 

• A configurable container enabling pluggable 

services, persistence solutions, security 

implementations, and communication protocols; 

• decentralized architecture peering individual 

nodes; 

• multiple programming models including object-

oriented grid threading programming model (fine-

grained abstraction), file-based grid task model 

(coarse-grained abstraction) for grid-enabling 

legacy applications, and dataflow model for 

coarse-grained data intensive applications; 

• multiple authentication/authorisation mechanisms 

such as role-based security, X.509 certificates/GSI 

proxy and Windows domain-based authentication; 

• multiple persistence options including RDBMS, 

ODBMS and XML or flat files; 

• Web services interface supporting the task model 

for interoperability with custom grid middleware 

(e.g. for creating a global, cross-platform grid 



environment via a resource broker) and non-.NET 

programming languages. 

The rest of the paper is organized as follows: First, 

we discuss related work; we follow this with a 

presentation of the architecture of our Aneka platform 

along with detailed description of its services. Then, 

we present the detailed implementations of the core 

services and discuss the threading, task and dataflow 

application models supported in our system along with 

the performance evaluation of running sample 

applications with different models in our container 

environment. Finally, we conclude the paper with 

future directions. 

 

2. Related Work 
 

The idea of using under-utilized networked PCs for 

performing computational tasks is well-established and 

there are several projects in this area. Some of the more 

well-known ones are the @Home projects 

(SETI@Home[2], Folding@Home[13]), Entropia[3], 

XtremeWeb[5], Alchemi[6] and SZTAKI Desktop 

Grid [7]. The approach followed by SETI@Home and 

other related projects is to dispatch workloads 

consisting of data to be analysed, from a central server 

to millions of clients running on desktops around the 

world, and was specific to the processing of astronomy 

application data. These and similar projects are 

considered as the “first generation” of desktop grids[9]. 

The infrastructure underlying SET@Home was 

generalized to create the Berkeley Open Infrastructure 

for Internet Computing (BOINC)[8]. BOINC allows 

desktop clients to select the project to which they 

wanted to donate idle computing power to and is used 

by many scientific distributed computing projects (e.g. 

climateprediction.net[15], SZTAKI Desktop Grid [7]).  

Entropia[3] and United Devices[4] are similar 

systems in the sense that they create a Windows 

desktop grid environment using an architecture in 

which a central job manager is responsible for 

decomposing the jobs and distributing them to the 

desktop clients. XtremWeb[5] also provides a 

centralized architecture which consists of three entities, 

the coordinator, the worker and the clients to create a 

XtremWeb network. Clients submit tasks to the 

coordinator, along with binaries and optional parameter 

files and retrieve the results for the end user. The 

workers in the network are the software components 

that actually execute and compute the tasks. As 

mentioned previously, Alchemi also follows a master-

slave architecture consisting of managers and executors 

wherein the former can either connect to the executors 

or other managers to create a hierarchical network 

structure. The executor can run in either a dedicated or 

a non-dedicated mode. 

According to Capello[9], these grid systems can be 

categorized as the second generation of desktop grid. 

They are built with a rigid architecture with little or no 

modularity and extensibility; and components such as 

the job scheduler, data management and 

communication protocols are dedicated to the system. 

The execution nodes need to directly communicate 

with a central master node in both the centralized and 

the hierarchical architecture. The major problems with 

this approach are latency, performance bottlenecks, 

single point of vulnerability of the system, and high 

cost of the centralised server. In addition, it lacks the 

capabilities required for advanced applications that 

involve complex dependencies between parallel 

execution units, and the flexibility required for 

implementing various types of widely-employed 

parallel models such as message-passing and dataflow. 

The limitations of the above systems motivate the 

introduction of a new architecture for desktop grid 

computing in which the capabilities required for 

different applications are separated from the message-

passing infrastructure so that the platform is able to 

support different configurations as required. In the 

recent past, the Grid community has standardized on 

the Web Services Resource Framework (WSRF)[16] in 

which the different functionalities offered by a grid 

resource are made available through loosely-coupled, 

stateful service instances hosted in a Web-enabled 

container that provides the basic infrastructure. 

However, WSRF encompasses a lot of standards 

designed for wide-area grid infrastructure.  

This paper therefore, presents the following 

contributions: 

1. The design and implementation of a lightweight, 

service-oriented, desktop computing platform that 
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Figure 1. Aneka Single Node Architecture 



consists of a configurable container hosting 

pluggable services  

2. The use of this platform to realise multiple parallel 

and distributed programming models. This is 

illustrated through two case studies implementing 

task farming and dataflow computing models.  

Aneka’s design makes it very flexible and extensible 

so that multiple application models, security solutions, 

communication protocols and persistence can be 

supported without affecting an existing Aneka 

ecosystem. Therefore, Aneka is an example of the 

“third generation” of desktop grids[9].  

 

3. Architecture Overview 
 

Aneka provides a highly modular architecture, as 

shown in Figure 1. An Aneka node consists of an 

instance of a configurable container that hosts several 

compulsory services and any number of optional 

services. The compulsory services provide functions 

such as security, persistence mechanisms, and 

communication protocols, and are together called as 

the base infrastructure. The optional services include 

specific executors for different types of programming 

models and/or associated schedulers. The following 

sections will give more details about each of these 

components within Aneka. 

 

3.1. Container 
 

The Aneka container is designed as a runtime host 

and coordinator for other components. The container 

uses the Inverse of Control (IoC)[14] concept to inject 

dependencies at runtime. Details of compulsory and 

optional services, security, persistence, and associated 

communication protocols are specified in an XML 

configuration file which is read by the container when 

it is initialized. The main responsibility of the container 

is to initialize the services and present itself as a single 

point for communication to the rest of the system. 

However, to improve the reliability and flexibility of 

the system, neither the container nor the hosted services 

are dependent on each other. This is so that a 

malfunctioning service will not affect the others and/or 

the container. Also, this enables the administrator of an 

Aneka system to easily configure and manage existing 

services or introduce new ones into a container. 

 

3.2. Base Infrastructure 
 

The base infrastructure for the runtime framework 

provides message dispatching, security, 

communication, logging, network membership, and 

persistence functions that are then used by the hosted 

services. However, it is possible to substitute different 

implementations of these functions as per requirements 

of the services. For example, users can choose either a 

light- weight security mechanism such as role-based or 

a certificate-based security such as X.509 certificate by 

modifying the configuration file, and the runtime 

system will automatically inject them on-demand by the 

services. In a similar manner, the system can support 

different persistence mechanisms such as memory, file 

or database backends. A message dispatcher acting as a 

front controller enables node to node service 

communication. Every request from the client or other 

nodes to the container is treated as a message, and is 

identified and dispatched through the message 

dispatcher component. The communication mechanism 
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Figure 2. Application running in Aneka environment 



used by the message dispatcher can also be configured 

to use socket, .NET remoting or web services. 

 

3.3. Services 
 

The services provide the core functionality of the 

distributed computing environment, while the 

infrastructural concerns are handled by the runtime 

framework. This model is similar to a web-server or 

application-server where the user hosts custom services 

/ modules that run in a managed container. For 

enabling a distributed computing environment on top of 

the container, various services such as resource 

information indexes, execution services, scheduling 

and resource allocation, and storage services would be 

necessary. The only mandatory service that a container 

needs to host is the Membership Catalogue, which 

maintains network connectivity between the nodes.The 

services themselves are independent of each other in a 

container and only interact with other services on the 

network, or the local node through known interfaces.  

Figure 4 shows the interaction between different 

components within the Aneka environment. A client 

program first searches, through the index nodes in the 

Aneka network, for available Aneka nodes where the 

appropriate scheduling service is deployed. Once a 

scheduler is discovered, the client program will submit 

its work along with its credentials. The scheduling 

service will authenticate the client’s request, and 

discover appropriate executors for executing the 

client’s program, using the index nodes. Once suitable 

executors are found, the jobs will be dispatched to 

those nodes and executed. A service on the scheduler 

node will monitor the executions, collect the results and 

send them to the client once the executions are 

completed. The messages exchanged between client, 

schedulers and executors contains information about 

the security token, source and destination URLs, the 

name of the service that actually handles the message, 

and any required application data. The services will 

never communicate with each other and exchange the 

messages between themselves directly, all the messages 

are dispatched and handled through the 

MessageDispatcher deployed in each container. 

 

3.4. Node Arrangement 
 

The network architecture is dependent on the 

interactions among the services, as each Container has 

the ability to directly communicate with any other 

Container reachable on the network. Each Aneka node 

in the network takes on a role depending on the 

services deployed within its container. For example, a 

node can be a pure indexing server if only the indexing 

services (Membership Catalog) are installed in the 

container; nodes with scheduler services 

(ThreadScheduler, DataflowScheduler) can be pure 

scheduler nodes that clients submit their jobs to; nodes 

with execution services (ThreadExecutor, 

DataflowExecutor) can be solely concerned with 

completing the required computation. A node can also 

host multiple services, and be both a scheduler and 

executor at the same time. As can be seen in Fig 3, 

where different types of Aneka nodes are configured to 

create a network in which each node works as a peer, a 

request from the end user can potentially spread to 

every node with the appropriate functions. In this case, 

as there is no central manager to manage other 

executors, the request will be filtered by each node 

which will decide whether to handle or to ignore the 

request.  

 

4. Implementation of Multiple Application 

Models on Aneka 
 

Aneka runtime is implemented by leveraging 

Microsoft .NET platform and using the IoC 

implementation in the Spring .NET framework [12]. 

We chose Microsoft .NET on account of its ubiquity on 

Windows desktops and the potential of running Aneka 
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Figure 3. A Sample Aneka configuration 
 



on Unix-class operating systems through the .NET-

compliant Mono platform[1]. The multiple application 

models are implemented as extended services on top of 

the runtime framework. The following sections explain 

the implementation of two known distributed 

programming models on top of Aneka, and also how 

the users configure and deploy an Aneka node. 

 

4.1. Task Farming Model 
 

A task is a single unit of work processed in a node. 

It is independent from other tasks that may be executed 

on the same or any other node at the same time. It is 

also atomic, in the sense that it either executes 

successfully or fails to produce any meaningful result.  

The task model involves the following components: 

the client, the scheduler and the executor. The task 

object is serialised and submitted by the client to the 

scheduler. The task scheduler is implemented as a 

service hosted in the Aneka container, and 

continuously listens for messages for requests such as 

task submission, query, and abort. Once a task 

submission is received, it is queued in its database. The 

scheduler thread picks up queued tasks and maps them 

to available resources based on various parameters 

including priorities, user QoS requirements, load and 

so on. These parameters and scheduling policy is 

pluggable and can be replaced with custom policies. 

The task scheduler keeps track of the queued and 

running tasks and information about the perceived 

performance of the task executor nodes it is able to find 

in the network, by communicating with the membership 

service.   

The task executor is also implemented as a service 

hosted in a container, and its main job is to listen for 

task assignments from the scheduler. When the 

executor receives a task, it unpacks the task object and 

its dependencies, creates a separate security context for 

the task to run, and launched the task. This allows the 

task to run in a sandboxed application domain separate 

from the main domain in which the container runs. The 

executor supports multi-core and multi-CPU scenarios 

by accepting as many tasks to run in parallel as there 

are free CPUs / cores. Once a task is complete, it 

notifies and sends the results back to the scheduler. The 

executor can accept tasks from any scheduler in the 

network.  

In order to enable the interoperability with custom 

grid middleware and the creation of a global, cross-

platform grid environment, a web services interface 

that provides the job management and monitoring 

functionalities has been implemented on top of the task 

model.  

4.2. Dataflow Programming Model 
 

Dataflow programming model abstracts the process 

of computation as a dataflow graph consisting of 

vertices and directed edges. The vertex embodies two 

entities: the data created during the computation or the 

initial input data if it is the first vertex, and the 

execution module to generate the corresponding vertex 

data. The directed edge connects vertices, which 

indicates the dependency relationship between vertices.  

The dataflow programming model consists of two 

key components, the scheduler and the worker. The 

scheduler is responsible for monitoring the status of 

each worker, dispatching ready tasks to suitable 

workers and tracking the progress of each job 

according to the data dependency graph. It is 

implemented as a set of three key services:  

• Registry service: maintains the location 

information for available vertex data. In particular, 

it maintains a list of indices for each available 

vertex data. 

• Dataflow Graph service: maintains the data 

dependency graph for each job, keeps track of the 

availability of vertices and explores ready tasks. 

When it finds ready tasks, it will notify the 

scheduler component. 

• Scheduling service: dispatches ready tasks to 

suitable workers for executing. For each task, the 

master notifies workers of inputs & initiates the 

associated execution module to generate the output 

data. 

The worker works in a peer to peer fashion. To 

cooperate with the scheduler (which acts as the master), 

each worker has two functions: executing upon 

requests from master and storing the vertex data. 

Therefore, the worker is implemented as two services:  

• Executor service: receives execution requests from 

the master, fetches input from the storage 

component, stores output to the storage component 

and notifies master about the availability of the 

output data for a vertex. 

• Storage service: is responsible for managing and 

holding data generated by executors and providing 

it upon requests. To handle failures, the storage 

component can keep data persistently locally or 

replicate some vertices on remote side to improve 

the reliability and availability. 

To improve the scalability of the system, workers 

transfer vertex data in a P2P manner between 

themselves. Whenever the executor service receives an 

executing request from the master node, it sends a fetch 

request to the local storage service. If there is one local 

copy for the requested data, the storage service will 



fetch the data from remote worker according to the 

location specified in the executing request. When all 

the input data is available on the worker node, the 

executor service creates an instance for the execution 

module based on the serialized object from the master, 

initialises it with the input vertices and starts the 

execution. After the computation finishes, the executor 

service saves the result vertex into local storage and 

notify the registry service. The storage service keeps 

hot vertex data in memory while holding cold data on 

the disk. The vertex data will be dumped to disk 

asynchronously to reduce memory space if necessary. 

The worker schedules the executing and network traffic 

of multiple tasks as a pipeline to optimize the 

performance 

 

4.3. Configuration and Deployment 
 

The Aneka container provides a unified 

environment for configuration and deployment of 

services. All services are able to use the configuration 

APIs which store per-user, per-host settings in a simple 

XML file for each service. This way the settings and 

preferences for each service are separated from each 

other, and also allow for customised settings for each 

user. The deployment of services is a simple operation 

involving modification of the application configuration 

file, and adding in entries for the new service to be 

included in the container’s service dictionary. 

 

5. Experimental Evaluation 
 

We have conducted two sets of experiments: the 

first examined the performance of a single container, 

and the second evaluated case studies of applications 

using Aneka’s task farming and dataflow programming 

models to execute over a distributed system. 

 

5.1. Performance Results of Single Container 
 

The Aneka container is the interface to the rest of 

the distributed system. That is, it sends and receives all 

messages on behalf of the services hosted within it. In 

the following experiments, we will evaluate whether 

this aspect of design has an impact on the performance 

and scalability of the system. In particular, we will 

measure the impact of number of services, number of 

connected clients, and the size and volume of messages 

on the performance of the container. All the 

experiments were performed using a single Aneka 

container running on a PC with an Intel Pentium4 3 

GHz CPU, 1 GB of RAM and with Windows XP as the 

operating system.    

In the first experiment, we measured the variation in 

startup time of a container with respect to the number 

of services that are hosted inside it. We evaluated this 

with two types of services, viz., stateful and stateless. A 

stateless service is similar to a Web server where the 

service does not track the state of the client. A stateful 

service on the other hand tracks requests and connects 

to the database to store the state of the request. A 

stateful service also runs in a separate thread. We 

performed the experiment by starting 1 to 1000 

 

 
Figure 4. Effect of number of services on 

startup time 

 
Figure 5. Effect of message size on throughput 

 
Figure 6.  Effect of number of clients on 

response time 



services of each type and measuring the time required 

for initialising the container. 

Figure 4 shows the results of our evaluations. 

Stateless services do not request any resources and 

therefore, the time measured here is that required for 

starting up the container alone. This, as can be seen 

from the graph, is constant for any number of stateless 

services. However, the time increases exponentially if 

the services are stateful. This can, of course, be 

attributed to the more resource-intensive nature of 

these services. The curve is uniformly exponential in 

this case as the same service was started multiple times. 

However, this may not be true always as different 

stateful services could affect the startup times in 

different ways by requiring different amounts of 

resources. It can also be seen that, in this case, the 

effects of stateful services become significant only 

when their number exceeds 300. 

As discussed in previous sections, the Aneka 

container is designed as a lightweight hosting 

mechanism that provides the bare minimum 

functionality to the hosted services to create a desktop 

grid. Figure 3 shows an expected deployment where an 

Aneka node will offer specific functionality enabled by 

a small number of specialized services that are likely to 

be stateful. The above results show that the container 

does not impact start-up performance in such cases. 

The second experiment measures effect of the size 

and number of messages on the throughput of the 

Aneka container. The container was initialized with an 

echo service with a constant time for processing a 

single message. We then send 10000 messages to the 

container with sizes varying from 0.1 to 100000 KB 

and measure the aggregate response time. The results, 

as shown in Figure 5, are predictable with the message 

handling rate (number of messages per sec) decreasing 

uniformly as the size of the message increases. 

However, the amount of data processes becomes 

almost constant after a message size of 100 KB. This is 

because of the configuration of the underlying 100 

Mbps network to the container and is not due to the 

container itself. It can be inferred from the results that 

Aneka is suitable for embarrassingly parallel 

applications such as those following master-worker 

model of computation where the communication occurs 

only at the end of task execution, and for message-

passing applications where the message size is less than 

100 KB. However, it may not be suitable for Data Grid 

applications that require constant access to large 

amounts of data.   

The last experiment determines the response time of 

the container with respect to number of clients 

connecting to it. We performed this experiment by 

keeping the total number of received messages constant 

at 10,000, but increased the number of threads sending 

the messages, thereby emulating simultaneous 

connections from multiple clients. It can be seen from 

the results shown in Figure 6 that the average response 

time per message increases steeply when the numbers 

of clients exceed 400. Even so, the response time per 

message is within 20 ms for up to 1000 concurrent 

clients. Currently, every message is synchronised which 

means it is a blocking call on the container, and 

therefore performance for large number of clients is 

affected. 

 

5.2. Case Study 
 

We illustrate the versatility of Aneka through case 

studies involving two distributed applications that were 

implemented using two different programming models 

on top of the same infrastructure. The first application 

predicted the secondary structure of a protein given its 

sequence, using Support Vector Machines-based 

classification algorithms[17]. This was implemented 

using the independent task programming model. The 

other application performed matrix multiplication and 

was implemented using the dataflow programming 

model presented in the previous section. These 

applications were evaluated on a testbed consisting of 

32 PCs located in a student laboratory; each of which 

were similar to the PC on which the container was 

tested. These PCs were connected through a 100 Mbps 

network. 

The structure prediction application was executed as 

a master-worker application across the testbed. Each 

executor (or worker) node runs an instance of 

BLAST[18] for each protein sequence, the results of 

which are then input to a set of classifiers that attempts 

to predict the secondary structure. The result of this 

 
Figure 7. Execution time vs. No. of nodes for 

Protein Sequence Analysis 



process is returned to the master process. Each instance 

of the application accessed a 2.8 GB-sized database 

which, in this case, was replicated across all the nodes. 

The evaluation was carried out using 64 protein 

sequences at a time, with varying number of worker 

nodes. The results of the experiment are shown in 

Figure 7. The execution time decreases logarithmically 

until the number of nodes reaches 16 after which there 

is no more gain in performance to be derived from 

increased parallelization.  

The block-based square matrix multiplication 

experiment was evaluated with two 8000 x 8000 

matrices over a varying number of nodes up to a 

maximum of 30 nodes. The matrix was partitioned into 

256 square blocks where each block was around 977 

KB. On the whole, the experiment used 488 MB of 

data as input and generated a result of size 244 MB. 

The results of the experiment are shown in Figure 8. 

There are 2 main factors that determine the execution 

time of the matrix multiplication: the distribution of 

blocks between the executors (or workers) and the 

overhead introduced by the transmission of 

intermediate results between the executors. The 

network overhead is measured here as the ratio of the 

time taken for communication to the time taken for 

computation. As can be seen from Figure 8, for larger 

number of executors, while the speedup improves, the 

network overhead is also substantially increased. The 

speedup line starts diverging from the ideal when the 

network overhead increases to more than 10 % of the 

execution time. 

 

6. Conclusion and Future Work 
 

This paper presented the design, implementation 

and evaluation of Aneka, a new service-oriented 

enterprise grid computing framework. Aneka improves 

over existing desktop grid implementations with fixed 

capabilities, by using a container in which services can 

be added to augment the capabilities of the node. We 

have demonstrated the flexibility of Aneka through 

case studies using two different programming models 

executed on top of the same desktop grid. Besides 

these two models, the threading programming model 

derived from Alchemi, and a limited subset of MPI, are 

also supported in Aneka.  

From the results, it can be seen that while the 

container is lightweight in itself, there is scope for 

improving message handling at the container level and 

the response time for a large number of clients. The 

system needs to provide facilities for asynchronous 

message passing. In the future, we plan to evaluate the 

design using a larger testbed that spans wide-area 

networks. We also plan to add peer-to-peer indexing 

service so that applications can create custom overlays 

on top of the Aneka infrastructure.  
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