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Abstract—As technology develops, more human-made devices
are able to make use of Internet to communicate with each other,
thus enabling the Internet of Things (IoT) era to emerge. The
amount of data IoT entities generate can overwhelm computer
infrastructures not prepared for such data deluge and consequent
need for more CPU power. Cloud computing offers a solution
at infrastructure level that alleviates such a problem by offering
highly scalable computing platforms that can be configured on de-
mand to meet constant changes of applications requirements in a
pay-per-use mode. Current approaches enabling IoT applications
are domain-specific or focus only on interaction with sensors, thus
they cannot be easily ported to other domains nor provide means
of interactions with data sources other than sensors. To address
this issue, in this paper we introduce a data-centric framework
for development of IoT applications executed in clouds. The
framework handles connection to data sources, data filtering,
and utilization of cloud resources including provisioning, load
balancing, and scheduling, enabling developers to focus on the
application logic and therefore facilitating the development of IoT
applications. We present a prototype application executing on
AWS, built on top of the Aneka Cloud Application Platform and
present experiments demonstrating the use of our framework for
building an application capable of processing input from different
sources and analysing them using easy-to-use APIs provided by
Aneka.

I. INTRODUCTION

We are witnessing the rise of new data intensive technolo-
gies, such as Internet of Things (IoT), that give raise to the
“Big Data” problem. This is because, as technology develops,
human-made devices such as sensors, surveillance cameras,
and scientific instruments are continually generating huge
amounts of data, and making sense of all this data is becoming
harder. To make things worse, the nature of this machine-
generated data is changing substantially, and nowadays most
of the generated data is unstructured or semi-structured, what
causes previous techniques for storing and processing the data
obsolete.

To counter this, technologies such as NOSQL databases
and the MapReduce programming model started being heavily
utilized in what is called “Big Data analytics”. Although
these technologies provide the tools necessary for processing
huge amounts of data, the amount of data generate can still

overwhelm storage systems and applications trying to make
use of them. Furthermore, in some situations like surveillance
and disaster detection and prevention, the applications need
to operate under strict deadlines so the output information
can be used by response teams to optimize their work, what
in turn imposes a massive burden over the computational
infrastructures that need to cope with this data and processing
power requirements.

Cloud computing [1], by offering distributed computational
resources as utilities with a pay-as-you-go model and with
Quality of Service (QoS) assurance via Service Level Agree-
ments (SLAs), offers a solution at the infrastructure level that
can support processing large volumes of data by means of high
scalability and elasticity of computing resources. It enables
solutions to be built on top of highly scalable computing
platforms that can be configured on demand to meet constant
changes of applications requirements in a pay-per-use mode,
reducing the investment necessary to build applications.

To address this issue, in this paper we introduce a cloud-
based framework for development and deployment of IoT ap-
plications. The framework enables IoT application developers
to focus on the application logic, while the framework handles
not only connection to data sources and query and filtering, but
also utilization of cloud resources including provisioning, load
balancing, and scheduling. The proposed framework facilitates
data acquisition and sharing, while allowing sophisticated
analytic methods to be applied on the data. Since there is
plenty of existing cloud solutions that can handle the latter
aspects, we developed a prototype that focuses on the former
aspects. To this end, we built our prototype on top of the
Aneka Cloud Application Platform [2], which manages all the
aspects related to interaction with the cloud platform. This
facilitates the development of IoT applications and reduces
the development time of such applications, contributing for the
establishment of the streaming computing paradigm and cloud
computing as key enablers of solutions for Big Data analytics
and other complex problems. Furthermore, our integrated and
modular solution can be easily extended to support other data
sources and different analytic algorithms.



II. RELATED WORK

Frameworks for facilitating interaction between applica-
tions and cloud computing infrastructures have been proposed
for many domain-specific scenarios, such as e-Learning [3],
Massively Multiplayer Online Games [4], emergency call
centers [5], agriculture and forestry [6], urban traffic control
systems and vehicular clouds [7], [8], and tailing disposal
from mining [9]. However, these existing frameworks lack the
seamless access to multiple data sources that is addressed by
our approach in order to meet the demand of emerging com-
plex applications such as disaster management and prediction,
social media, and environment monitoring.

Substantial effort towards IoT application development in
clouds has been carried out so far. Alam et al. [10] and Zhu et
al. [11] concurrently and independently proposed frameworks
focusing in aggregating sensors in the context of cloud-enabled
IoT. Li et al. [12] proposed a Platform as a Service (PaaS)
solution for deployment of IoT applications. The solution is
multi-tenant and focuses on the support for such tenants, as
well as managing and metering the utilization of the platform
by different tenants.

Nastic et al. [13] proposed PatRICIA, a framework for
deployment of IoT applications that provides its own pro-
gramming model for development of IoT applications to be
deployed in the cloud. It differs from our work mainly on
the abstractions offered for application developers. Whereas
we focus in conventional object-oriented programming con-
structs, PatRICIA proposes new abstractions that belong to
the proposed concept of Intent-based programming.

Parwekar [14] discussed the importance of identity detection
devices in IoT and proposed a service layer to demonstrate
how a sample tag-based acquisition service can be defined in
the cloud. A simple architecture for integrating machine to
machine (M2M) platform, network, and data layers has also
been proposed, but the architecture fails to comprehensively
address details and requirements of implementing the proposed
integration method.

All these works focus mainly in supporting processing of
data derived from sensors, ignoring the issue of supporting the
execution of general applications accessing other streaming
data sources such as social networks, microblogs, databases,
and websites, which are supported by our proposed approach.

III. APPLICATION SCENARIO AND SYSTEM
REQUIREMENTS

The target application scenario of our framework is IoT ap-
plications hosted in cloud environments. From the perspective
of a user of our framework willing to deploy its application,
the framework can be seen as a PaaS resource, because it
enables users to focus on their applications (in this case,
IoT applications) while ignoring details about the underlying
infrastructure actually supporting the application.

The framework provides interfaces to enable the easy ex-
traction of data from data sources to be delivered for applica-
tions. Examples of possible data sources for the applications
include sensors and sensor networks; surveillance cameras;

application logs; social media; microblogs; cloud storage; and
NOSQL and relational databases. It is the users’ responsibility
to write the business logic of the application, i.e., the code
that processes the data from data sources and produces the
expected output to users. The framework does not enforce any
specific programming paradigm (MapReduce, workflow, BoT,
etc.); therefore, users are free to adopt the paradigm that is
more suitable for their applications.

In order to support the above scenario, the following re-
quirements were identified:

• Programming paradigm-independent API;
• Support for multiple types of data sources, potentially

supporting data of different nature (structured, unstruc-
tured, streaming, video, and so on);

• Support for many users, with performance isolation be-
tween them, thus ensuring framework scalability;

• Security and confidentiality, as data accessed, or opera-
tion performed by users may be sensitive;

• Support for many types of infrastructure resources, in-
cluding public clouds, private clouds, LANs, supercom-
puters, and grids;

• Fault tolerance via replication of components;
• QoS assurance via intense monitoring of framework

components and applications;
• Extensibility, so new types of data sources and program-

ming paradigms, yet to be developed, could be integrated
in the future;

• Complete isolation between user executing the applica-
tion and the underlying cloud resources processing the
user application;

• Automatic and transparent (to users) selection of cloud
providers and instance types for automatic resource scal-
ing; and

• High utilization and load balance of cloud resources in
order to optimize the cost for use of cloud resources.

Based on the above requirements, we developed a general
architecture for development and deployment of IoT applica-
tions in clouds, which is detailed in the next section.

IV. FRAMEWORK COMPONENTS

Figure 1 depicts the overall architecture of the framework. It
is composed of three main components: Application Manager,
Cloud Manager, and Data Source Manager. Each of these
elements can run in a single cloud resource or they can
be decoupled and executed in different cloud resources. In
particular, the Data Source Managers should preferably run
closely to the data sources, in order to reduce network delays.
Similarly, Data Source Filters should run preferentially in
the same cloud infrastructure than the corresponding data
sources in order to reduce latency and data transfer costs.
Other elements can be deployed based on location of users
and availability of cloud resources.

1) Application Composer: The Application Composer is
the entry point for users submitting applications for execu-
tion in the framework. Through an API, it enables users to
select one particular programming model to be used for the



Fig. 1. Framework architecture.

application logic and to tailor the application for the selected
programming model. The APIs also enable users to describe
how the data being received from multiple data sources will
be used by the application.

The framework is more suitable for execution of loosely-
coupled applications, which include widely adopted applica-
tion models such as Parameter Sweep, Bag-of-Tasks, Work-
flows, and MapReduce. Nevertheless, transactional applica-
tions composed of a high number of requests that require some
transactional processing to be performed, such as multi-tier
web applications, are also supported by the framework.

Optionally, the Application Composer also allows users to
give hints on the granularity of the application. For example,
in case of BoT applications, a hint on the maximum number
of tasks to be created can be supplied. Although this requires
a lower level knowledge about the application and the un-
derlying system, it also enables a better performance to be
obtained for application execution. This is because knowledge
on parameters such as the I/O-computation ratio may cause the
application to reach a performance optimal for a given number
of tasks and performance degradation after a certain number
of tasks. If this is known beforehand, application execution
can be optimized.

The Application Monitor, after a certain amount of time
monitoring the application execution, could eventually detect
that the number of tasks is not optimal because of rates of
I/O and CPU processing. Nevertheless, a previous knowledge
on the issue enables the application to run at an optimum rate
since its start, whereas reactive correction requires some time
until it can be effectively applied.

2) Scheduler: The Scheduler module is responsible for
planning the execution of non-transactional tasks. It deter-
mines the placement of tasks that compose one application
as well as the execution order of the tasks. The latter is
performed not only in the context of a single application, but
also on the context of previous applications whose tasks are
already scheduled but not yet executed. Another responsibility

of this module regards the admission control of new requests
for execution of non-transactional applications, depending on
the deadline set for the application, availability of resources for
execution, and deadlines of running applications, the module
can opt for rejecting the new request.

3) Load Balancer: The Load Balancer component is re-
sponsible for keeping the load of machines processing trans-
actional applications balanced through an appropriate routing
of new requests to the most suitable machine. This component
can be seen as the counterpart of the Scheduler acting for web
requests arriving to the system. Similar to the Scheduler, the
Load Balancer also rejects requests and issues a warning to the
Provisioner when QoS for new requests cannot be guaranteed.

4) Application Monitor: The Application Monitor is re-
sponsible for keeping track of resource utilization and exe-
cution time of the tasks and requests submitted to the system.
Relevant performance data is delivered to appropriate modules
in order to enable scaling actions on the system. For example,
task execution times are delivered to the Scheduler so, based
on the tasks deadlines, actions can be taken. For the Load
Balancer, aggregated metrics, such as response time of the
90th percentile, are reported, as this are typically the metrics
of interest for performance evaluation of transactional requests.

5) Provisioner: The Provisioner is responsible for trans-
forming a request for resources received from the Application
Manager into actual allocation of cloud resources. This is
performed with consideration of multiple sources of informa-
tion, as follows: (i) warnings from Load Balancer and/or the
Scheduler that new requests are being rejected because of lack
of resources; (ii) response time of requests, execution time of
tasks, and deadline violations, obtained from the Application
Monitor; (iii) performance metrics and utilization rate of cloud
resources obtained from the Cloud Monitor. Based on the
above information, decision is made on whether to maintain
the current amount of resources, scaling down, or scaling up
cloud resources.

Activities performed by the Provisioner include selection of



cloud providers to provide the required resources; selection
of specific resources from the selected provider; allocation
of selected resources on the selected provider; and resource
decommission.

To avoid underperformance of accepted application re-
quests, a timeout mechanism has to be in place, so in case
no response is obtained from the provider after a given time,
alternative solutions can be sought by the module. Similarly,
if the provider is unable to provide the required resources with
the required performance, alternatives are explored.

6) Cloud Monitor: The Cloud Monitor is responsible for
keeping track of the status and performance of allocated cloud
resources, as well as observed utilization of such resources.
This information is used to update the Provisioner about
performance so that it can decide to allocate further resources
or to migrate resources to another provider if performance is
not satisfactory.

A. Data Source Manager

The Data Source Manager is the component that acts as the
interface between the framework and the multiple sources of
data for applications. It contains components that can interact
with different sources, and can “understand” the data that
is received from such sources. It also contains components
that can perform queries and filter data from data sources so
only data of interest for each user is delivered to the user’s
application.

1) Structured Data Source Manager: The Structured Data
Source Manager is the interface between the framework and
relational databases (and other sources of structured data,
such as some types of cloud storage). It can handle con-
nection/disconnection with the data source (in case of data
streaming sources) and submit queries and retrieve results for
related data sources.

2) Unstructured Data Source Manager: The Unstructured
Data Source Manager links the framework with external enti-
ties that generate unstructured data, such as microblogs data
or time-series data aggregated from a thermal sensor. For each
different type of sensors and instruments, this components is
able to connect and disconnect to it, and interpret the incoming
data so framework-level filters are applied in order to eliminate
meaningless information before user-specific filters (detailed
later on this section) are applied.

3) Structured/Unstructured Data Source Filter: The Struc-
tured Data Source Filter accepts queries applied by users and
applies them on the data being received from the Structured
Data Source Manager, while the Unstructured Data Source
Filter applies user-defined filtering rules to the unstructured
data sources that the user is registered to. Given that one
user can be registered to receive data from multiple structured
data sources, this component also consolidates the information
before applying the query. The resulting, “filtered” data is
then delivered to the user application via specific API calls. In
order to achieve an acceptable performance for this operation,
queries run on separate resources than the rest of the frame-
work, so more resources for query processing can be added

if more user-specific queries are necessary (i.e., if more users
submitted applications with customized queries).

V. PROTOTYPE DESIGN AND DEVELOPMENT

In the previous sections, we discussed requirements of
a framework for development and deployment of IoT ap-
plications in clouds. The discussion did not focus on any
particular technologies that could be employed for achieving
the framework goals. Thus, as previously stated, the frame-
work could be built from scratch, by reusing one or more
existing technologies, where each technology performs some
activities, or by reusing technologies to some goals and writing
functionalities for other tasks.

Since many of the framework requirements are already met
by the Aneka Cloud Application Platform [2], we designed
the framework to take advantage of the existing modules and
functionalities of Aneka, and focused on the new features and
modules required for enabling execution of IoT applications
in clouds. Aneka, as a PaaS middleware, enables users to
write applications in many programming models, some built-
in in the platform, and others defined by the users. The
underlying infrastructure is composed of any computational
resource that supports the .NET framework (or its Open Source
implementation Mono).

A. Aneka Integration

Following the architecture introduced on Figure 1, the Ap-
plication Manager and Cloud Manager are replaced by native
features of Aneka. Thus, features that needed to be developed
and/or integrated concerned application development and data
source management. A high-level view of the architecture of
the prototype is depicted in Figure 2.

Regarding application development, Aneka also offers op-
tions for developers to integrate their own application models.
Prior to our contribution, three major types of applications
were supported by Aneka, namely MapReduce, Task, and
Thread. Thus, to enable IoT application development, we
implemented a new programming model for Aneka, called IoT
model. This model is built on top of the existing Aneka Task
model, which enables users to execute arbitrary applications on
the Aneka platform. Hence, we implemented low level man-
agement of data and data source management, and provided
an API that application developers use to access such features.

We also implemented the integration of data sources with
the entry-point for the user’s application logic. Internally,
the supplied application logic, along with the logic for data
source management, is encapsulated as a task that is executed
by the platform, thus it leverages the capabilities of Aneka
regarding load balancing, scheduling algorithms, and dynamic
provisioning.

Regarding data source management, the requirements of the
proposed framework demand the use of a lightweight protocol
as a means of communication between different available data
sources and the Aneka platform. MQ Telemetry Transport
(MQTT)1 is a lightweight protocol originally developed by

1http://mqtt.org/



Fig. 2. High-level architecture of the prototype implemented on top of Aneka.

IBM for unreliable networks with low-bandwidth and devices
with memory constraints. Since this protocol is based on the
publish/subscribe model and is also vastly used in the context
of IoT, we adopted this protocol in our framework.

In our proposed prototype, every data source is created by
extending a base class that handles communication between
the data source and Aneka using the MQTT protocol. Since
this protocol uses a publish/subscribe model, we defined a set
of suitable event-oriented API functions to simplify application
development using Aneka. Any defined data source in Aneka
connects to a MQTT broker that is specified using an IP
address. The broker is responsible for registering data sources
using the MQTT protocol and assigning unique identifiers for
them. The broker also manages topics and requests corre-
sponding to the MQTT standard. A topic is a hierarchical
data structure defined in MQTT that allows the publishers
to specify exactly in which topic their published data should
reside and consequently, any subscriber who has subscribed to
that specific topic, or pool of topics, will receive the message
when it is received by the broker entity.

B. API Features

In order to write an IoT application, the only action required
from developers is the creation of a class implementing the
required logic. The class implementing the logic extends
IoTEntity, so the framework is aware that this class im-
plements the logic to be deployed and scaled in the cloud.
For example, an application that receives streaming data from
Twitter can be written as:

01 class TwitterStream extends IoTEntity
02 {

03 public override void Start(string[] topics,
IoTQoS QoS)

04 {
05 base.ConnectAndRegister(topics, QoS);
06 }
07 }

The particular task logic is written in the Start() method
(Line 3). Initially, the developer connects to the data sources
to be used (Line 5). The QoS parameter is used by the MQTT
protocol for prioritizing messages received by broker. This
allows developers to establish the priority on which data from
different sources should be given when the data is sent to the

application. It also allows developers to prioritize applications
registering with the broker.

The framework is responsible for determining how many
data sources are available and, based on the specified QoS,
decides the number of tasks to be created task. Data sources
are balanced between the task instances. The continuing mon-
itoring ensures that if the number of tasks is not enough to
meet QoS, new instances are executed on new VMs and the
data sources are redistributed among the new tasks. Similarly,
if there are an excessive number of tasks, some of the VMs
running the task are terminated and the data sources are
assigned to the remaining tasks.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed
framework, we performed experiments deploying the proto-
type described in the previous section on a public cloud
provider (Amazon AWS on Sydney, Australia). The testbed
is composed of five virtual machines of type t2.small (1
vCPU and 2 GB of RAM on an Intel Xeon 2.5 GHz CPU)
running Windows Server 2012. One of the VMs served as
Aneka master, coordinating the execution of the application
and scheduling tasks, and the other four VMs were configured
to play the role of Aneka workers. As a broker implementing
the MQTT protocol, we used Mosquitto2, an open source
tool that contains a Python API that we used to integrate the
message broker with our test application.

Our application performs sentiment analysis on streaming
data received from Twitter using a Raspberry PI3 tweet har-
vester bot. We used Raspberry PI to demonstrate how different
data formats originating from sensor devices to social media
streams can be easily mapped, converted and processed using
our framework. In this scenario, Aneka serves as a message
subscriber with the Mosquitto broker and, after receiving tweet
events, creates a task and the sends it to the master node for
scheduling and execution on Aneka workers. The application
logic required for running the experiments on this section was
written with 67 lines of code. 16 of these lines concerned
connecting to the data source, querying the data, and sending
it to the main application. The sentiment analysis application
itself was written with 51 lines of code.

2http://mosquitto.org/
3http://www.raspberrypi.org



Fig. 3. Results of sentiment analysis of tweets from the biggest capital cities
of Australia.

To demonstrate the application in action, we executed the
application to compute the sentiment analysis of the six biggest
capital cities of Australia. We used 20,000 tweets from each
city obtained via the Twitter API on August 15, 2014. The
score of each valid word in a tweet is fetch from the AFINN4

word list. The total weight of each tweet is the sum of weights
for each word in that tweet. If a tweet’s total weight is bigger
than 1, it is considered a positive tweet and if the total weight
is smaller than -1, it is considered a negative tweet. Figure 3
shows the number of positive and negative tweets obtained for
the studied capital cities (presented in their respective states
on the map). It shows that, when neutral ones are disregarded,
Brisbane, Adelaide, and Perth are the cities with the biggest
number of positive tweets, while Australia’s biggest cities—
Melbourne and Sydney—have the smallest balances in favor
of positive tweets.

One main feature of our framework is the ability to quickly
and easily change the programming paradigm used for pro-
cessing the data. To demonstrate this capability, instead of
streaming harvested tweets, we use a micro-batch model to
process our data. To properly implement this, arriving tweets
are received and buffered by the broker and a task is created
when the number of harvested tweets reaches a threshold, in
our case 100. Considering the facts that tweets are very small
in size and performing sentiment analysis on them requires low
computational power, results show that overall execution time
when using micro-batch approach is lower than corresponding
time when using streaming approach. The difference is relative
to number of workers and their computational power in terms
of CPU frequency and amount of RAM.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Current approaches integrating IoT applications and cloud
computing are either manual or semi-automatic, and require
software developers to understand the underlying computing
and data infrastructures. This consumes valuable time and

4http://www2.compute.dtu.dk/∼faan/data/AFINN.zip

energy from developers, as it derails them from the focus
on the application logic. To alleviate such a burden from
developers, we proposed a framework for development of
IoT applications executed in clouds. The framework handles
all the aspects of interaction between the application, cloud,
and data sources. We detailed the framework requirements,
its components, and API. We presented a prototype executing
on AWS and built on top of the Aneka Cloud Application
Platform and presented experiments demonstrating the use of
our proposed framework.

As future work, we plan to develop efficient and scalable
algorithms for each of the activities performed by the frame-
work. This includes data filtering, provisioning (including
algorithms for resource selection), and scheduling. Algorithms
supporting interactions with Inter-clouds (what may include
resource negotiation) will also be researched, along with
energy-efficient algorithms for interaction with private clouds.
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