
Adaptive Threshold-Based Approach for Energy-Efficient
Consolidation of Virtual Machines in Cloud Data Centers

Anton Beloglazov and Rajkumar Buyya
CLOUDS Lab, Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia
{abe, raj}@csse.unimelb.edu.au

ABSTRACT
The rapid growth in demand for computational power driven
by modern service applications combined with the shift to
the Cloud computing model have led to the establishment
of large-scale virtualized data centers. Such data centers
consume enormous amounts of electrical energy resulting in
high operating costs and carbon dioxide emissions. Dynamic
consolidation of virtual machines (VMs) and switching idle
nodes off allow Cloud providers to optimize resource usage
and reduce energy consumption. However, the obligation of
providing high quality of service to customers leads to the
necessity in dealing with the energy-performance trade-off.
We propose a novel technique for dynamic consolidation of
VMs based on adaptive utilization thresholds, which ensures
a high level of meeting the Service Level Agreements (SLA).
We validate the high efficiency of the proposed technique
across different kinds of workloads using workload traces
from more than a thousand PlanetLab servers.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms: Algorithms, Experimentation

Keywords: Green IT, Cloud computing, VM placement

1. INTRODUCTION
The Cloud computing model leverages virtualization of

computing resources allowing customers to provision resources
on-demand on a pay-as-you-go basis [4]. Instead of incur-
ring high upfront costs in purchasing IT infrastructure and
dealing with the maintenance and upgrades of both soft-
ware and hardware, organizations can outsource their com-
putational needs to the Cloud. The proliferation of Cloud
computing has resulted in the establishment of large-scale
data centers containing thousands of computing nodes and
consuming enormous amounts of electrical energy. It has
been estimated that in 2006 the energy consumed by IT in-
frastructure in the US was about 61 billion kWh, leading
to 4.5 billion dollars in electricity costs [3]. Under current
efficiency trends this is likely to double by 2011. The reason

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MGC ’2010, 29 November - 3 December 2010, Bangalore, India.
Copyright 2010 ACM 978-1-4503-0453-5/10/11 ...$10.00.

Power On Power Off

Pool of

physical

computer

nodes

Virtualization layer

(VMMs, local resources managers)

Consumer, scientific and business

applications

Global resource managers

User User User

VM provisioning SLA negotiation Application requests

Virtual

Machines

and

users’

applications

Figure 1: The system view

for this extremely high energy consumption is not just in
the amount of computing resources used and the power in-
efficiency of hardware, but rather lies in the inefficient usage
of these resources. Data collected from more than 5000 pro-
duction servers over a six-month period showed that servers
operate only at 10-50% of their full capacity most of the
time, leading to expenses on over-provisioning, and thus ex-
tra Total Cost of Acquisition (TCA) [1]. Another problem is
the narrow dynamic power range of servers: even completely
idle servers still consume about 70% of their peak power [6].

Virtualization technology allows Cloud providers to ad-
dress the energy inefficiency by creating multiple Virtual
Machine (VMs) instances on a physical server, thus improv-
ing the utilization of resources and increasing the Return On
Investment (ROI). The reduction in energy consumption can
be achieved by switching idle nodes off, thus eliminating the
idle power consumption (Fig. 1). Moreover, by using live
migration the VMs can be dynamically consolidated on the
minimal number of physical nodes according to their current
resource requirements. However, efficient resource manage-
ment in Clouds is not trivial, as modern service applications
often experience highly variable workloads causing dynamic
resource usage patterns. Therefore, aggressive consolidation
of VMs can lead to performance degradation when an appli-
cation encounters an increasing demand resulting in a rise
in the resource usage. Ensuring reliable Quality of Service
(QoS) defined via Service Level Agreements (SLA) is es-
sential for Cloud computing environments; therefore, Cloud
providers have to deal with the energy-performance trade-

off. The focus of this work is on energy and performance effi-
cient resource management strategies that can be applied in
a virtualized data center by a Cloud provider. We propose
a novel approach for dynamic consolidation of VMs, which
is able to reduce energy consumption and maintain the level
of SLA violation in the system at as low as 1%.

The remainder of the paper is organized as follows. In
Section 2 we discuss the related work followed by the sys-
tem model in Section 3. We present a thorough description
of the proposed approach in Section 4, continuing with an
evaluation in Section 5 and analysis of the obtained exper-
imental results in Section 5.2. We make a conclusion and
discuss possible directions for future research in Section 6.

2. RELATED WORK
Nathuji and Schwan [9] have proposed an architecture of

an energy management system for virtualized data centers,
where resource management is divided into local and global
policies. Consolidation of VMs is handled by global poli-
cies applying live migration to reallocate the VMs. Kusic et
al. [8] have stated the problem of continuous consolidation
as a sequential optimization and addressed it using Lim-
ited Lookahead Control (LLC). The proposed model requires
simulation-based learning, and the execution time reaches
30 minutes even 15 nodes. On the contrary, our approach
is heuristic-based allowing a reasonable performance even
for large-scale. Song et al. [10] have proposed resource allo-
cation to applications according to their priorities in multi-
application virtualized clusters. Unlike our work, it does not
apply migration of VMs to optimize the allocation.

Verma et al. [12] have applied a heuristic for the bin pack-
ing problem to tackle the dynamic placement of applications
in virtualized heterogeneous systems. On the contrary to our
approach, the proposed algorithms do not ensure QoS fulfill-
ment: SLA can be violated due to the workload variability.
Gmach et al. [7] have investigated a threshold-based reactive
approach to dynamic workload consolidation. The proposed
approach is in line with our preliminary work [2]. However,
this approach is not suitable for an IaaS environment serving
different kinds of applications, as the threshold values have
to be tuned for each workload type to allow the consolida-
tion controller to perform efficiently. VMware Distributed
Power Management [13] operates based on the same idea
with the lower and upper utilization thresholds set to 45%
and 81% respectively. However, as it was justified before,
fixed values of the thresholds are not suitable for systems
with dynamic and unpredictable workloads. In our current
work, we propose an approach to set the threshold values dy-
namically, depending on a current set of instantiated VMs
and historical data of the resource usage by each VM.

3. SYSTEM MODEL
In this paper, the target system is an IaaS environment,

represented by a large-scale data center consisting of N het-
erogeneous physical nodes. Each node i is characterized by
the CPU performance defined in Millions Instructions Per
Second (MIPS), amount of RAM, network bandwidth and
disk storage. The type of the environment implies no knowl-
edge of application workloads and time for which VMs are
provisioned. Users submit requests for provisioning of M
heterogeneous VMs characterized by requirements to CPU
performance, RAM, network bandwidth and disk storage.

Physical node 1

VM 1 VM 2 VM M

Local Manager VMM

55

4

Physical node N

VM 1 VM 2 VM M

Local Manager VMM

55

4

Global Manager

2 3 2 3

... ...
5 5

1

Users

...

Figure 2: The system model

The software layer of the system is tiered comprising local
and global managers (Fig. 2). The local managers reside on
each node as a module of the VM monitor (VMM). Their
objective is continuous monitoring of a node’s CPU utiliza-
tion, resizing the VMs according to their resource needs, and
deciding when and which VMs have to be migrated from the
host node (4). The global manager resides on a master node
and collects information from the local managers to main-
tain the overall view of the utilization of resources (2). The
global manager issues commands for the optimization of the
VM placement (3). VMMs perform actual resizing and mi-
gration of VMs as well as changes in power states of nodes
(5). Most of the idle nodes are kept switched off, whereas
some temporary nodes are kept in sleep / hibernate mode
(with less transition time) to allow the system to rapidly
respond to load peaks.

3.1 Power Model
Recent studies [6, 8] show that the power consumption

by servers can be accurately described by a linear relation-
ship between the power consumption and CPU utilization,
even when Dynamic Voltage and Frequency Scaling (DVFS)
is applied. The reason lies in the limited number of states
that can be set to the frequency and voltage of CPU and the
fact that voltage and performance scaling are not applied to
other system components, such as memory and network in-
terface. Moreover, these studies show that on average an idle
server consumes approximately 70% of the power consumed
when it is fully utilized. Therefore, for our experimental
studies we define the power consumption as a function of
the CPU utilization (P (u)) as shown in (1).

P (u) = k ·Pmax+(1−k)·Pmax ·u = Pmax ·(0.7+0.3·u), (1)

where Pmax is set to 250 W, which is a usual value for mod-
ern computing servers; k is the fraction of power consumed
by an idle server; and u is the CPU utilization. As the uti-
lization of CPU may change over time due to the workload
variability, it is a function of the time: u(t). Therefore, to
define the total energy consumption by a server we use the
model defined in (2).

E =

∫
t

P (u(t)) dt (2)

According to this model, the energy consumption by a
server is determined by the CPU utilization. Therefore, to
reduce the energy consumption, our approach is to improve
the CPU utilization of physical nodes in a data center.

3.2 Cost of VM Live Migration
Live migration of VMs allows transferring VMs between

physical nodes without suspension and with a short down-
time. However, live migration has a negative impact on the
performance of applications running in a VM during a mi-
gration. Voorsluys et al. have performed an experimental

study to investigate the value of this impact and find a way
to model it [14]. They have found that performance degrada-
tion and downtime depend on the application behavior, i.e.
how many memory pages the application updates during its
execution. However, for the class of web-applications the av-
erage performance degradation including the downtime can
be estimated as approximately 10% of the CPU utilization.
This means that each migration may cause some SLA viola-
tion; therefore, it is crucial to minimize the number of VM
migrations. The length of a live migration depends on the
total amount of memory used by the VM and available net-
work bandwidth. Therefore, for our experiments we define
the performance degradation experienced by VM j as in (3).

Udj = 0.1 ·
∫ t0+Tmj

t0

uj(t) dt,

Tmj =
Mj

Bj
,

(3)

where Udj is the total performance degradation by VM j, t0
is the time when the migration starts, Tmj is the time taken
to complete the migration, uj(t) is the CPU utilization by
VM j, Mj is the amount of memory used by VM j, and Bj

is the available network bandwidth.

3.3 SLA Violation Metric
Meeting QoS requirements is extremely important for Cloud

computing environments. QoS requirements are commonly
formalized in the form of SLA, which can be determined
in terms of such characteristics as minimum throughput or
maximum response time delivered by the deployed system.
As these characteristics can vary for different applications,
it is necessary to define a generic metric that can be used
in our simulation experiments to estimate the level to which
the SLA are delivered by the infrastructure. By delivering
the SLA we mean providing the performance requested by
applications inside a VM at any time bounded only by the
parameters of the VM. For our experiments we define the
overall level of SLA violation caused by the system (SLA)
as a fraction of the difference between the requested MIPS
by all the VMs (Urj (t)) and the actually allocated MIPS
(Uaj (t)) relatively to the total requested MIPS over the life-
time of the VMs (4), where M is the number of VMs.

SLA =

∑M
j=1

∫
t
Urj (t)− Uaj (t) dt∑M

j=1

∫
t
Urj (t) dt

(4)

This metric represents the percentage of the CPU per-
formance that has not been allocated when demanded by
applications relatively to the total demand.

4. ALLOCATION POLICIES
The system operation can be divided in two parts: (1)

selection of VMs that have to be migrated to optimize the
allocation; and (2) placement of the VMs selected for migra-
tion and new VMs requested by the users on physical nodes.
We discuss these parts in the following sections.

4.1 VM Selection

4.1.1 Fixed Utilization Thresholds
In our previous work we have proposed four heuristics

for choosing VMs to migrate [2]. The first heuristic, Single
Threshold (ST), is based on the idea of setting an upper uti-
lization threshold for hosts and placing VMs while keeping

the total utilization of the CPU below this threshold. The
aim is to preserve free resources to prevent SLA violation
due to consolidation in cases when the resource demand by
VMs increases. At each time frame all the VMs are reallo-
cated using the Modified Best Fit Decreasing (MBFD) algo-
rithm (Section 4.2) with an additional condition of keeping
the upper utilization threshold not violated. New placement
is achieved by live migration of VMs.

The other three heuristics are based on the idea of setting
upper and lower utilization thresholds for hosts and keeping
the total utilization of the CPU by all the VMs between
these thresholds. If the CPU utilization of a host falls below
the lower threshold, all VMs have to be migrated from this
host and the host has to be switched off in order to eliminate
the idle power consumption. If the utilization exceeds the
upper threshold, some VMs have to be migrated from the
host to reduce the utilization in order to prevent potential
SLA violation. We have proposed three policies for choosing
VMs that have to be migrated from an over-utilized host.

1. Minimization of Migrations (MM) – migrate the
least number of VMs to minimize migration overhead

2. Highest Potential Growth (HPG) – migrate VMs
that have the lowest usage of CPU relatively to re-
quested in order to minimize total potential increase
of the utilization and SLA violation

3. Random Choice (RC) – choose the necessary num-
ber of VMs randomly

4.1.2 Dynamic Utilization Thresholds
As mentioned earlier, fixed values for the thresholds are

unsuitable for an environment with dynamic and unpre-
dictable workloads, in which different types of applications
can share a physical resource. The system should be able
to automatically adjust its behavior depending on the work-
load patterns exhibited by the applications. Therefore, we
propose a novel technique for auto-adjustment of the uti-
lization thresholds based on a statistical analysis of the his-
torical data collected during the lifetime of VMs.

First of all, we assume that the CPU utilization created
by each VM can be described by a random variable (uj) with
a particular distribution, which persists at least over some
recent period of time. In this case, the CPU utilization of a
host can be represented by a random variable (Ui), which is a
sum of utilizations by m VMs allocated to this host. We as-
sume that as the distributions created by different VMs are
different, the distribution of the host’s utilization is approx-
imately normal and can be modeled by the t-distribution.
We cannot predict the CPU utilization of a physical node
in the future; however, we can calculate characteristics of
the distribution over some recent period of time, such as the
sample mean (Ui) and standard deviation (sUi) as in (5).

Ui =

m∑
j=1

uj , sUi =

√√√√ m∑
j=1

s2uj
(5)

The advantage of collecting the data for each VM sepa-
rately and then using the summation is that a VM is mi-
grated together with the data of its resource usage and the
data will be actual even after a VM migration. Using this
information and the inverse cumulative probability function
for the t-distribution (tinvn(P)), it is possible to find out an
interval of the CPU utilization, which will be reached with

a low probability (e.g. 5%). We can set the upper utiliza-
tion threshold (Tui) for each host i preserving this amount
of spare CPU capacity defined by the lower (Pul) and up-
per (Puu) limits of the probability interval as shown in (6),
where n is the number of data points collected, and n − 1
represents the degrees of freedom for the t-distribution.

Tui = 1− ((tinvn−1(Puu) · sUi + Ui)

− (tinvn−1(Pul) · sUi + Ui))
(6)

The lower threshold is calculated in a similar way; how-
ever, the difference is that a single value is obtained for
all the hosts in the system. The idea is to determine the
hosts that have lower utilizations relatively to the average
value across all the nodes. To tackle the case when all the
hosts have low CPU utilizations, we introduce a limit (Ul)
to cap the decrease of the lower utilization threshold. In
our previous work [2] we have found the value Ul = 30% to
be effective for the lower threshold. We calculate the lower
threshold (Tl) as shown in (7).

U =
1

N

N∑
i=1

Ui, sU =
1

N

√√√√ N∑
i=1

(Ui − U)2,

Tl =

{
U − tinvn−1(Pl) · sU , if < Ul,

Ul, otherwise.

(7)

The reallocation algorithm using the dynamic thresholds
(DT) is presented in Alg. 1. For the DT algorithm we apply
the MM policy for VM selection, as in our previous work
it has shown the superiority over the alternatives [2]. The
complexity of the algorithm is proportional to the sum of
the number of non over-utilized host plus the product of
the number of over-utilized hosts and the number of VMs
allocated to these over-utilized hosts.

Algorithm 1: Dynamic Thresholds (DT)

1 Input: hostList, vmList Output: migrationList
2 vmList.sortDecreasingUtilization()
3 foreach h in hostList do
4 hUtil ← h.util()
5 bestFitUtil ← MAX
6 while hUtil > h.upThresh() do
7 foreach vm in vmList do
8 if vm.util() > hUtil − h.upThresh() then
9 t ← vm.util() − hUtil + h.upThresh()

10 if t < bestFitUtil then
11 bestFitUtil ← t
12 bestFitVm ← vm

13 else
14 if bestFitUtil = MAX then
15 bestFitVm ← vm
16 break

17 hUtil ← hUtil − bestFitVm.util()
18 migrationList.add(bestFitVm)
19 vmList.remove(vm)

20 if hUtil < lowThresh() then
21 migrationList.add(h.getVmList())
22 vmList.remove(h.getVmList())

23 return migrationList

4.2 VM Placement
The VM placement can be seen as a bin packing problem

with variable bin sizes and prices, where bins represent the

physical nodes; items are the VMs that have to be allocated;
bin sizes are the available CPU capacities of the nodes; and
prices correspond to the power consumption by the nodes.
As the bin packing problem is NP-hard, to solve it we apply
a modification of the Best Fit Decreasing (BFD) algorithm
that is shown to use no more than 11/9 · OPT + 1 bins
(where OPT is the number of bins provided by the optimal
solution) [15]. In our modification (MBFD) we sort all the
VMs in the decreasing order of current CPU utilizations and
allocate each VM to a host that provides the least increase of
the power consumption caused by the allocation. This allows
the leveraging the nodes heterogeneity by choosing the most
power-efficient ones first. The pseudo-code for the algorithm
is presented in Alg. 2. The complexity of the algorithm is
n ·m, where n is the number of nodes and m is the number
of VMs that have to be allocated.

Algorithm 2: Modified Best Fit Decreasing (MBFD)

1 Input: hostList, vmList Output: allocation of VMs
2 vmList.sortDecreasingUtilization()
3 foreach vm in vmList do
4 minPower ← MAX
5 allocatedHost ← NULL
6 foreach host in hostList do
7 if host has enough resource for vm then
8 power ← estimatePower(host, vm)

9 if power < minPower then
10 allocatedHost ← host
11 minPower ← power

12 if allocatedHost 6= NULL then
13 allocate vm to allocatedHost

14 return allocation

5. EVALUATION
As the target system is a generic Cloud computing envi-

ronment, it is essential to evaluate it on a large-scale vir-
tualized data center infrastructure. However, it is difficult
to conduct large-scale experiments on a real infrastructure,
especially when it is necessary to reproduce the experiment
with the same conditions to compare different algorithms.
Therefore, a simulation has been chosen as a way to evalu-
ate the proposed algorithms.

The CloudSim toolkit 2.0 [5] has been chosen as a sim-
ulation platform, as it is a modern simulation framework
aimed at Cloud computing environments. In contrast to al-
ternative simulation toolkits (e.g. SimGrid, GangSim), it
allows the modeling of virtualized environments, supporting
on-demand resource provisioning, and their management. It
has been extended in order to enable power-aware simula-
tions and dynamic workloads, as the core framework does
not provide these capabilities. The implemented extensions
have been included in the 2.0 version of the CloudSim toolkit.

5.1 Workload Data
To make a simulation-based evaluation applicable, it is

important to conduct experiments using workload traces
from a real system. For our experiments we have used data
provided as a part of the CoMon project, a monitoring in-
frastructure for PlanetLab (http://comon.cs.princeton.edu).
We have used the data of the CPU utilization by more than
a thousand servers located at more than 500 places around
the world. The data have been collected each five minutes
during the period from the 10th to 19th of May 2010. Ad-

Table 1: DT-99-98-99.9 against DT-90-90-95

Parameters Energy SLA viol. VM migr.

99-98-99.9 1204 kWh 0.96% 20577
90-90-95 1154 kWh 1.47% 37758

Difference 50 kWh -0.51% -17180

ditional values for each second have been generated using
linear interpolation. The data confirm the statement made
in the beginning: the average CPU utilization is below 50%.
The mean CPU utilization is 36.44% with 95% Confidence
Interval (CI): (36.40%, 36.47%).

One of the requirements to the system is the indepen-
dence of the workload type, which means that the system
should operate effectively under different and mixed work-
loads. Therefore, we have split the data into 10 categories
by the mean value of the CPU utilization each containing
single-day workload data for 500 randomly chosen servers.

5.2 Experimental Results
We have simulated a data center that comprises 1500 het-

erogeneous physical nodes. Each node is modeled to have
one CPU core with performance equivalent to 2000, 2500,
3000 or 3500 Million Instructions Per Second (MIPS), 16 GB
of RAM, 10 GB/s network bandwidth and 1 TB of storage.
Power consumption by the hosts is defined by the model
described in Section 3.1. According to this model, a host
consumes from 175 W with 0% CPU utilization up to 250
W with 100% CPU utilization. Each VM requires one CPU
core with maximum of 1000, 2000, 2500 or 3250 MIPS, 1
GB of RAM, 100 Mb/s network bandwidth and 1 GB of
storage. However, during the lifetime VMs may use less re-
sources creating the opportunity for dynamic consolidation.
The CPU MIPS ratings are equivalent to Amazon EC2 in-
stance types. The users submit requests for provisioning of
500 heterogeneous VMs. Each VM is randomly assigned a
workload trace from one of the servers from the workload
data described in Section 5.1. Initially, VMs are allocated
according to their parameters assuming 100% utilization.

The simulations have been run on 10 hours of each work-
load category to determine the algorithm that delivers the
best energy consumption, SLA violation and number of VM
migrations over different workload types. The optimization
algorithms have been run each minute of the simulation
time. We have run the experiments varying three param-
eters of the dynamic thresholds: Pl – the probability for the
lower threshold from 90% to 99%; Pul – the lower bound of
the probability interval for the upper threshold from 90% to
98%; and Puu – the upper bound of the probability interval
for the upper threshold from 95% to 99.9%.

First, we need to determine the best parameters for the
DT algorithm and then compare it with the alternatives.
The results for the energy consumption and SLA violation
have not passed the normality test with the P-value < 0.01.
Therefore, we have used the non-parametric Friedman test.
For both the energy consumption and SLA violation the P-
value < 0.001, meaning that there is a statistically significant
difference between the results produced by the DT algorithm
with different parameters. The distributions of the differ-
ences are approximately normal; therefore, we have used the
paired T-test to compare parameters that provides the least
energy consumption (DT-90-90-95) and the least SLA vio-
lation and number of VM migration (DT-99-98-99.9). The

Table 2: DT-99-98-99.9 against the other algorithms

Algorithm Energy SLA viol. VM migr.

DT-99-98-99.9 1204 kWh 0.96% 20,577
MM-20-60 1218 kWh 3.15% 100,339
MM-30-70 1158 kWh 3.73% 101,661
MM-45-81 1046 kWh 5.88% 125,199
ST-50 1180 kWh 3.60% 270,766
ST-60 866 kWh 5.8% 319,991
DVFS 1847 kWh – –
NPA 8975 kWh – –

P-values for the energy consumption, SLA violation and VM
migrations are 0.047, 0.005 and 0.001 respectively, which
means that there is a statistically significant difference for
all the characteristics. The detailed results are presented in
Table 1. We have chosen DT-99-98-99.9 as it provides signif-
icantly lower SLA violation level and fewer VM migrations
with the comparable with DT-90-90-95 energy consumption.

The energy consumption, SLA violation and migrations
data for DT-99-98-99.9 and the other algorithms, including
DVFS and the Non-Power Aware policy (NPA), meet the
assumptions for the ANOVA test: normal distribution of the
standardized residuals and equal variances. The P-values for
all three comparisons using the two-way ANOVA test are <
0.001, which means that there is a statistically significant
difference between the results produced by the algorithms.
The results are presented in Table 2 and Fig. 3 (a, c, e).

According to the results, DT-99-98-99.9 provides a similar
level of the energy consumption with substantially reduced
SLA violation and VM migrations in comparison to other
migration-aware algorithms, including the fixed threshold
values introduced by VMware (45%, 81%). Over the 10 cat-
egories of the workload DT-99-98-99.9 ensures less than 1%
of the SLA violation. We have also run the experiments
using the daily data and mixed workloads. The results for
all the migration-aware algorithms averaged over 10 days are
presented in Fig. 3 (b, d, f). These results resemble the supe-
riority of the DT-99-98-99.9 algorithm over the alternatives
in terms of the SLA violation level and number VM migra-
tions with approximately the same energy consumption.

6. CONCLUSION AND FUTURE WORK
To maximize their ROI Cloud providers have to apply

energy-efficient resource management strategies, such as dy-
namic consolidation of VMs and switching idle servers off.
However, such consolidation is not trivial, as it can result
in violation of the SLA negotiated with customers. In this
paper we have proposed a novel technique for the energy-
efficient threshold-based dynamic consolidation of VMs with
auto-adjustment of the threshold values. We have evaluated
the proposed algorithms through extensive simulations on
a large-scale experimental setup using workload traces from
more than a thousand PlanetLab nodes. The experimen-
tal results show that the proposed technique outperforms
other migration-aware policies in terms of the level of SLA
violation (< 1%) and number of VM migrations, while pro-
viding a similar level of energy consumption. Moreover, the
behavior of the proposed DT algorithm can be adjusted by
changing its parameters: SLA can be relaxed leading to fur-
ther reduction in energy consumption.

For the future work, we propose to investigate the focus-
ing on multi-core CPU architectures, as well as consideration
of multiple system resources, such as memory and network

S
T
-7
0

S
T
-5
0

R
C
-4
5-
8
1

R
C
-3
0-
7
0

R
C
-2
0-
6
0

M
M
-4
5-
8
1

M
M
-3
0-
7
0

M
M
-2
0-
6
0

H
P
G
-4
5-
8
1

H
P
G
-3
0-
7
0

H
P
G
-2
0-
6
0

D
T
-9
9
-9
8-
99
.9

2500

2000

1500

1000

500

0

Policy

E
n
e
rg
y
 c
o
n
s
u
m
p
ti
o
n
,
k
W
h

100%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Workload

(a) Energy consumption (categories)

S
T
-7
0

S
T
-5
0

R
C
-4
5
-8
1

R
C
-3
0
-7
0

R
C
-2
0
-6
0

M
M
-4
5
-8
1

M
M
-3
0
-7
0

M
M
-2
0
-6
0

H
P
G
-4
5
-8
1

H
P
G
-3
0
-7
0

H
P
G
-2
0
-6
0

D
T
-9
9
-9
8
-9
9
.9

1500

1250

1000

750

500

Policy

E
n
e
rg
y
 c
o
n
s
u
m
p
ti
o
n
,
k
W
h

(b) Energy consumption (daily)

S
T
-7
0

S
T
-5
0

R
C
-4
5-
8
1

R
C
-3
0-
7
0

R
C
-2
0-
6
0

M
M
-4
5-
8
1

M
M
-3
0-
7
0

M
M
-2
0-
6
0

H
P
G
-4
5-
8
1

H
P
G
-3
0-
7
0

H
P
G
-2
0-
6
0

D
T
-9
9
-9
8-
99
.9

10

8

6

4

2

0

Policy

S
L
A
 v
io
la
ti
o
n
,
%

100%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Workload

(c) SLA violation (categories)

S
T
-7
0

S
T
-5
0

R
C
-4
5
-8
1

R
C
-3
0
-7
0

R
C
-2
0
-6
0

M
M
-4
5
-8
1

M
M
-3
0
-7
0

M
M
-2
0
-6
0

H
P
G
-4
5
-8
1

H
P
G
-3
0
-7
0

H
P
G
-2
0
-6
0

D
T
-9
9
-9
8
-9
9
.9

10

8

6

4

2

0

Policy

S
L
A
 v
io
la
ti
o
n
,
%

(d) SLA violation (daily)

S
T
-7
0

S
T
-5
0

R
C
-4
5-
8
1

R
C
-3
0-
7
0

R
C
-2
0-
6
0

M
M
-4
5-
8
1

M
M
-3
0-
7
0

M
M
-2
0-
6
0

H
P
G
-4
5-
8
1

H
P
G
-3
0-
7
0

H
P
G
-2
0-
6
0

D
T
-9
9
-9
8-
99
.9

400

300

200

100

0

Policy

V
M
 m
ig
ra
ti
o
n
s
,
x
1
0
0
0

100%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Workload

(e) VM migrations (categories)

S
T
-7
0

S
T
-5
0

R
C
-4
5
-8
1

R
C
-3
0
-7
0

R
C
-2
0
-6
0

M
M
-4
5
-8
1

M
M
-3
0
-7
0

M
M
-2
0
-6
0

H
P
G
-4
5
-8
1

H
P
G
-3
0
-7
0

H
P
G
-2
0
-6
0

D
T
-9
9
-9
8
-9
9
.9

400

300

200

100

0

Policy

V
M
 m
ig
ra
ti
o
n
s
,
x
1
0
0
0

(f) VM migrations (daily)

Figure 3: Experimental results

interface, as these resources also significantly contribute to
the overall energy consumption. In order to evaluate the
proposed system in a real Cloud infrastructure, we plan to
implement it by extending a real-world Cloud platform, such
as Aneka [11]. Besides the reduction in infrastructure and
on-going operating costs, this work also has social signifi-
cance as it decreases carbon dioxide footprints and energy
consumption by modern IT infrastructures.

7. REFERENCES
[1] L. A. Barroso and U. Holzle. The case for energy-proportional

computing. Computer, pages 33–37, 2007.

[2] A. Beloglazov and R. Buyya. Energy effcient allocation of
virtual machines in cloud data centers. In Proc. of the 10th
IEEE/ACM Intl. Symp. on Cluster, Cloud and Grid
Computing (CCGrid 2010), 2010.

[3] R. Brown et al. Report to congress on server and data center
energy efficiency: Public law 109-431. Lawrence Berkeley
National Laboratory, 2008.

[4] R. Buyya et al. Market-oriented cloud computing: Vision, hype,
and reality for delivering it services as computing utilities. In
Proc. of the 10th IEEE Intl. Conf. on High Performance
Computing and Communications (HPCC’08), 2008.

[5] R. N. Calheiros et al. CloudSim: a toolkit for modeling and
simulation of cloud computing environments and evaluation of
resource provisioning algorithms. Software: Practice and
Experience, Wiley Press, NY, USA, 2010.

[6] X. Fan et al. Power provisioning for a warehouse-sized
computer. In Proc. of the 34th Annual Intl. Symp. on
Computer Architecture, pages 13–23, 2007.

[7] D. Gmach et al. Resource pool management: Reactive versus
proactive or letŠs be friends. Computer Networks, 2009.

[8] D. Kusic et al. Power and performance management of
virtualized computing environments via lookahead control.
Cluster Computing, 12(1):1–15, 2009.

[9] R. Nathuji and K. Schwan. Virtualpower: Coordinated power
management in virtualized enterprise systems. ACM SIGOPS
Operating Systems Review, 41(6):265–278, 2007.

[10] Y. Song et al. Multi-Tiered On-Demand resource scheduling for
VM-Based data center. In Proc. of the 2009 9th IEEE/ACM
Intl. Symp. on Cluster Computing, pages 148–155, 2009.

[11] C. Vecchiola et al. Aneka: a software platform for .NET-based
cloud computing. High Performance & Large Scale Comp.,
Advances in Parallel Computing, pages 267–295, 2009.

[12] A. Verma et al. pMapper: power and migration cost aware
application placement in virtualized systems. In Proc. of the
9th ACM/IFIP/USENIX Intl. Conf. on Middleware, pages
243–264, 2008.

[13] VMware Inc. VMware distributed power management concepts
and use, 2010.

[14] W. Voorsluys et al. Cost of virtual machine live migration in
clouds: A performance evaluation. In Proc. of the 1st Intl.
Conf. on Cloud Computing, pages 254–265, 2009.

[15] M. Yue. A simple proof of the inequality FFD (L)< 11/9 OPT
(L)+ 1,for all l for the FFD bin-packing algorithm. Acta
Mathematicae Applicatae Sinica, 7(4):321–331, 1991.

