
A Particle Swarm Optimization-based Heuristic for Scheduling Workflow
Applications in Cloud Computing Environments

Suraj Pandey1, Linlin Wu1, Siddeswara Mayura Guru2, Rajkumar Buyya1

1Cloud Computing and Distributed Systems Laboratory 2CSIRO Tasmanian ICT Centre
Department of Computer Science and Software Engineering Hobart, Australia

The University of Melbourne, Australia siddeswara.guru@csiro.au
{spandey, linwu, raj}@csse.unimelb.edu.au

Abstract
Cloud computing environments facilitate applications by

providing virtualized resources that can be provisioned dy-
namically. However, users are charged on a pay-per-use
basis. User applications may incur large data retrieval and
execution costs when they are scheduled taking into account
only the ‘execution time’. In addition to optimizing execu-
tion time, the cost arising from data transfers between re-
sources as well as execution costs must also be taken into
account. In this paper, we present a particle swarm op-
timization (PSO) based heuristic to schedule applications
to cloud resources that takes into account both computa-
tion cost and data transmission cost. We experiment with a
workflow application by varying its computation and com-
munication costs. We compare the cost savings when us-
ing PSO and existing ‘Best Resource Selection’ (BRS) algo-
rithm. Our results show that PSO can achieve: a) as much
as 3 times cost savings as compared to BRS, and b) good
distribution of workload onto resources.

1 Introduction
Modern collaborative scientific experiments in domains

such as structural biology, high-energy physics and neuro-
science involve the use of distributed data sources. As a re-
sult, analysis of their datasets is represented and structured
as scientific workflows [7]. These scientific workflows usu-
ally need to process huge amount of data and computation-
ally intensive activities. A scientific workflow management
system [14] is used for managing these scientific experi-
ments by hiding the orchestration and integration details in-
herent while executing workflows on distributed resources
provided by cloud service providers.
Cloud computing is a new paradigm for distributed com-

puting that delivers infrastructure, platform, and software
(application) as services. These services are made available
as subscription-based services in a pay-as-you-go model to
consumers [3, 2]. Cloud computing helps user applications
dynamically provision as many compute resources at spec-

ified locations (currently US east1a-d for Amazon1) as and
when required. Also, applications can choose the storage
locations to host their data (Amazon S32) at global loca-
tions. In order to efficiently and cost effectively schedule
the tasks and data of applications onto these cloud com-
puting environments, application schedulers have different
policies that vary according to the objective function: min-
imize total execution time, minimize total cost to execute,
balance the load on resources used while meeting the dead-
line constraints of the application, and so forth. In this
paper, we focus on minimizing the total execution cost of
applications on these resources provided by Cloud service
providers, such as Amazon and GoGrid3. We achieve this
by using a meta-heuristics method called Particle Swarm
Optimization (PSO).
Particle Swarm Optimization (PSO) is a self-adaptive

global search based optimization technique introduced by
Kennedy and Eberhart [8]. The algorithm is similar to other
population-based algorithms like Genetic algorithms but,
there is no direct re-combination of individuals of the pop-
ulation. Instead, it relies on the social behavior of the parti-
cles. In every generation, each particle adjusts its trajectory
based on its best position (local best) and the position of
the best particle (global best) of the entire population. This
concept increases the stochastic nature of the particle and
converge quickly to a global minima with a reasonable good
solution.
PSO has become popular due to its simplicity and its ef-

fectiveness in wide range of application with low compu-
tational cost. Some of the applications that have used PSO
are: the reactive voltage control problem [23], data mining
[16], chemical engineering [13], pattern recognition [9] and
environmental engineering [10]. The PSO has also been ap-
plied to solve NP-Hard problems like Scheduling [24, 21]
and task allocation [22, 26].

1http://aws.amazon.com
2http://aws.amazon.com/s3/
3http://www.gogrid.com

Our main contributions in this paper are as follows:

• We formulate a model for task-resource mapping to
minimize the overall cost of execution

• We design a heuristic that uses PSO to solve task-
resource mappings based on the proposed model

The rest of the paper is organized as follows: Section 2
presents related work. In Section 3, we describe the task-
resource scheduling problem and its formulation with the
help of an example workflow. In Section 4, we present our
scheduling heuristic that uses PSO and introduce the PSO
algorithm. Section 5 presents an experimental evaluation
of the performance our heuristic. Section 6 concludes the
paper and discusses some future work.

2 Related Work
Workflow applications are commonly represented as a

directed acyclic graph. Themapping of jobs to the compute-
resources is an NP-complete problem in the general form
[19]. The problem is NP-complete even in two simple
cases: (1) scheduling jobs with uniform weights to an ar-
bitrary number of processors and (2) scheduling jobs with
weights equal to one or two units to two processors [19]. So,
past work have proposed many heuristics based approach to
scheduling workflow applications. Data intensive workflow
applications are a special class of workflows, where the size
and/or quantity of data is large. As a result, the transfer of
data from one compute node to another takes longer time.
This incurs higher transmission and storage cost than com-
puting cost running on these data.
Deelman et al. [5] have done considerable work on

planning, mapping and data-reuse in the area of workflow
scheduling. They have proposed Pegasus [5], which is a
framework that maps complex scientific workflows onto
distributed resources such as the Grid. DAGMan, together
with Pegasus, schedules tasks to Condor system. The Tav-
erna project [12] has developed a tool for the composition
and enactment of bioinformatics workflows for the life sci-
ence community. Other well-known projects on workflow
systems include GridFlow [4], ICENI [6], GridAnt [1], Tri-
ana [18] and Kepler [11]. Most of the past work sched-
ule tasks on resources based on earliest finish time, earliest
starting time or the high processing capabilities. We term
these as “best resource selection” (BRS) approach, where a
resource is selected based on its performance.
Since task scheduling is a NP-Complete problem, Ge-

netic Algorithm (GA) has been used for scheduling work-
flows [25]. However, GA may not be the best approach.
Salman et al. [15] have shown that the performance of PSO
algorithm is faster than GA in solving static task assignment
problem for homogeneous distributed computing systems
based on their test cases. Lei et al. [27] have shown that the
PSO algorithm is able to get better schedule than GA based

on their simulated experiments for Grid computing. In ad-
dition, the results presented by Tasgetiren et al. [17] have
provided evidence that PSO algorithm was able to improve
57 out of 90 best known solutions provided by other well
known algorithms to solve the sequencing problems.
We use PSO as it has a faster convergence rate than GA.

Also, it has fewer primitive mathematical operators than in
GA (e.g. reproduction, crossover, mutation), making appli-
cations less dependent on parameter fine-tuning. Moreover,
using discrete numbers, we can easily correlate particle’s
position to task-resource mappings.

3 Task-Resource Scheduling Problem For-
mulation
The mapping of tasks of an application workflow to dis-

tributed resources can have several objectives. We focus on
minimizing the total cost of computation of an application
workflow.
We denote an application workflow as a Directed

Acyclic Graph (DAG) represented by G=(V, E), where
V ={T1, ..., Tn} is the set of tasks, and E represents the
data dependencies between these tasks, that is, fj,k =
(Tj , Tk) ∈ E is the data produced by Tj and consumed
by Tk. We have a set of storage sites S = {1, ..., i}, a
set of compute sites PC = {1, ..., j}, and a set of tasks
T = {1, ..., k}. We assume the ‘average’ computation time
of a task Tk on a compute resource PCj for a certain size
of input is known. Then, the cost of computation of a task
on a compute host is inversely proportional to the time it
takes for computation on that resource. We also assume
the cost of unit data access di,j from a resource i to a re-
source j is known. The access cost is fixed by the service
provider (e.g. Amazon CloudFront). The transfer cost can
be calculated according to the bandwidth between the sites.
However, we have used the cost for transferring unit data
between sites, per second. We assume that these costs are
non-negative, symmetric, and satisfy the triangle inequality:
that is, di,j = dj,i for all i, j ∈ N , and di,j + dj,k ≥ di,k

for all i, j, k ∈ N .

����

��

��

��

�	
�

�	
�

�	
�

�

�
�

���

��� ��� ���

��� ���

���

�����

���

���

���

Figure 1: An example workflow, compute nodes (PC) & storage
(S).
Figure 1 depicts a workflow structure with five tasks,

which are represented as nodes. The dependencies between

tasks are represented as arrows. This workflow is similar in
structure to our version of the Evolutionary Multi-objective
Optimization (EMO) application [20]. The root task may
have an input file (e.g. f.in) and the last task produces
the output file (e.g. f.out). Each task generates output
data after it has completed (f12, f13, ..., f45). These data
are used by the task’s children, if any. The numeric values
for these data is the edge-weight (ek1,k2) between two tasks
k1 ∈ T and k2 ∈ T . The figure also depicts three compute
resources (PC1, PC2, PC3) interconnected with varying
bandwidth and having its own storage unit (S1, S2, S3).
The goal is to assign the workflow tasks to the compute
resources such that the total cost of computation is mini-
mized.
The problem can be stated as: “Find a task-resource

mapping instance M , such that when estimating the total
cost incurred using each compute resource PCj , the high-
est cost among all the compute resources is minimized.”
Let Cexe(M)j be the total cost of all the tasks assigned

to a compute resource PCj (Eq. 1). This value is computed
by adding all the node weights (the cost of execution of a
task k on compute resource j) of all tasks assigned to each
resource in the mapping M . Let Ctx(M)j be the total ac-
cess cost (including transfer cost) between tasks assigned
to a compute resource PCj and those that are not assigned
to that resource in the mapping M (Eq. 2). This value is
the product of the output file size (given by the edge weight
ek1,k2) from a task k1 ∈ k to task k2 ∈ k and the cost
of communication from the resource where k1 is mapped
(M(k1)) to another resource where k2 is mapped (M(k2)).
The average cost of communication of unit data between
two resources is given by dM(k1),M(k2). The cost of com-
munication is applicable only when two tasks have file de-
pendency between them, that is when ek1,k2 > 0. For two
or more tasks executing on the same resource, the commu-
nication cost is zero.

Cexe(M)j =
∑

k

wkj ∀M(k) = j (1)

Ctx(M)j =
∑

k1∈T

∑

k2∈T

dM(k1),M(k2)ek1,k2

∀M(k1) = j and M(k2) �= j (2)

Ctotal(M)j = Cexe(M)j + Ctx(M)j (3)

Cost(M) = max(Ctotal(M)j) ∀j ∈ P (4)

Minimize(Cost(M) ∀M) (5)

Equation 4 ensures that all the tasks are not mapped to
a single compute resource. Initial cost maximization will
distribute tasks to all resources. Subsequent minimization
of the overall cost (Equation 5) ensures that the total cost is
minimal even after initial distribution. For a given assign-
ment M , the total cost Ctotal(M)j for a compute resource
PCj is the sum of execution cost and access cost (Eq. 3).

When estimating the total cost for all the resources, the
largest cost for all the resources is minimized (Eq. 5). This
indirectly ensures that the tasks are not mapped to a single
resources and there will be a distribution of cost among the
resources.

4 Scheduling based on Particle Swarm Opti-
mization
In this section, we present a scheduling heuristic for dy-

namically scheduling workflow applications. The heuris-
tic optimizes the cost of task-resource mapping based on
the solution given by particle swarm optimization tech-
nique. The optimization process uses two components: a)
the scheduling heuristic as listed in Algorithm 1, and b) the
PSO steps for task-resource mapping optimization as listed
in Algorithm 2. First, we will give a brief description of
PSO algorithm.

vk+1
i = ωvk

i + c1rand1 × (pbesti − xk
i) +

c2rand2 × (gbest − xk
i), (6)

xk+1
i = xk

i + vk+1
i , (7)

where:
vk

i velocity of particle i at iteration k

vk+1
i velocity of particle i at iteration k + 1

ω inertia weight
cj acceleration coefficients; j = 1, 2
randi random number between 0 and 1; i = 1, 2
xk

i current position of particle i at iteration k
pbesti best position of particle i
gbest position of best particle in a population
xk+1

i position of the particle i at iteration k + 1.

4.1 Particle Swarm Optimization

Particle SwarmOptimisation (PSO) is a swarm-based in-
telligence algorithm [8] influenced by the social behavior of
animals such as a flock of birds finding a food source or a
school of fish protecting themselves from a predator. A par-
ticle in PSO is analogous to a bird or fish flying through a
search (problem) space. The movement of each particle is
co-ordinated by a velocity which has both magnitude and
direction. Each particle position at any instance of time is
influenced by its best position and the position of the best
particle in a problem space. The performance of a particle
is measured by a fitness value, which is problem specific.
The PSO algorithm is similar to other evolutionary algo-

rithms. In PSO, the population is the number of particles
in a problem space. Particles are initialized randomly. Each
particle will have a fitness value, which will be evaluated by
a fitness function to be optimized in each generation. Each
particle knows its best position pbest and the best position
so far among the entire group of particles gbest. The pbest
of a particle is the best result (fitness value) so far reached

by the particle, whereas gbest is the best particle in terms of
fitness in an entire population. In each generation the veloc-
ity and the position of particles will be updated as in Eq 6
and 7, respectively.
PSO algorithm provide a mapping of all the tasks to a

set of given resources based on the model described in Sec-
tion 3.

Algorithm 1 Scheduling heuristic.

1: Calculate average computation cost of all tasks in all
compute resources

2: Calculate average cost of (communication/size of data)
between resources

3: Set task node weight wkj as average computation cost
4: Set edge weight ek1,k2 as size of file transferred be-
tween tasks

5: Compute PSO({ti}) /* a set of all tasks i ∈ k*/
6: repeat
7: for all “ready” tasks {ti} ∈ T do
8: Assign tasks {ti} to resources {pj} according
to the solution provided by PSO

9: end for
10: Dispatch all the mapped tasks
11: Wait for polling time
12: Update the ready task list
13: Update the average cost of communication between

resources according to the current network load
14: Compute PSO({ti})
15: until there are unscheduled tasks

Scheduling Heuristic: We calculate the average com-
putation cost (assigned as node weight in Figure 1) of all
tasks on all the compute resources. This cost can be calcu-
lated for any application by executing each task of an appli-
cation on a series of known resources. It is represented as
TP matrix in Table 1. As the computation cost is inversely
proportional to the computation time, the cost is higher for
those resources that complete the task quicker. Similarly,
we store the average value of communication cost between
resources per unit data, represented by PP matrix in Table 1,
described later in the paper. The cost of communication is
inversely proportional to the time taken. We also assume we
know the size of input and output data of each task (assigned
as edge weight ek1,k2 in Figure 1). In addition, we con-
sider this cost is for the transfer per second (unlike Amazon
CloudFront which does not specify time for transferring).
The initial step is to compute the mapping of all tasks

in the workflow, irrespective of their dependencies (Com-
pute PSO(ti)). This mapping optimizes the overall cost of
computing the workflow application. To validate the depen-
dencies between the tasks, the algorithm assigns the “ready”
tasks to resources according to the mapping given by PSO.
By “ready” tasks, we mean those tasks whose parents have
completed execution and have provided the files necessary

for the tasks’ execution. After dispatching the tasks to re-
sources for execution, the scheduler waits for polling time.
This time is for acquiring the status of tasks, which is mid-
dleware dependent. Depending on the number of tasks com-
pleted, the ready list is updated, which will now contain the
tasks whose parents have completed execution. We then
update the average values for communication between re-
sources according to the current network load. As the com-
munication costs would have changed, we recompute the
PSO mappings. Also, when remote resource management
systems are not able to assign task to resources according
to our mappings due to resource unavailability, the recom-
putation of PSO makes the heuristic dynamically balances
other tasks’ mappings (online scheduling). Based on the re-
computed PSO mappings, we assign the ready tasks to the
compute resources. These steps are repeated until all the
tasks in the workflow are scheduled.

Algorithm 2 PSO algorithm.

1: Set particle dimension as equal to the size of ready tasks
in {ti} ∈ T

2: Initialize particles position randomly from PC =
1, ..., j and velocity vi randomly.

3: For each particle, calculate its fitness value as in Equa-
tion 4.

4: If the fitness value is better than the previous best pbest,
set the current fitness value as the new pbest.

5: After Steps 3 and 4 for all particles, select the best par-
ticle as gbest.

6: For all particles, calculate velocity using Equation 6
and update their positions using Equation 7.

7: If the stopping criteria or maximum iteration is not sat-
isfied, repeat from Step 3.

The algorithm is dynamic (online) as it updates the com-
munication costs (based on average communication time
between resources) in every scheduling loop. It also recom-
putes the task-resourcemapping so that it optimizes the cost
of computation, based on the current network and resource
conditions.

PSO: The steps in the PSO algorithm are listed in Al-
gorithm 2. The algorithm starts with random initialization
of particle’s position and velocity. In this problem, the par-
ticles are the task to be assigned and the dimension of the
particles are the number of tasks in a workflow.
The value assigned to a each dimension of a particles are

the computing resources indices. Thus the particle represent
a mapping of resource to a task. In our workflow (depicted
in Figure 1) each particle is 5-D because of 5 tasks and the
content of each dimension of the particles is the compute re-
source assigned to that task. For example a sample particle
could be represented as depicted in Figure 2.
The evaluation of each particle is perform by the fitness

function given in Eq. 5. The particles calculate their veloc-
ity using Eq. 6 and update their position according to Eq. 7.
The evaluation is carried out until the specified number of
iterations (user-specified stopping criteria).

��� ��� ��� ��� ���

��	
� ��	
� ��	
� ��	
� ��	
�

Figure 2: A sample particle for the workflow shown in Figure 1 .

5 Experimental Evaluation

In this section, we present the metric of comparison, the
experiment setup and the results.

5.1 Performance metric

As a measure of performance, we used cost for complete
execution of application as a metric. We computed the total
cost of execution of a workflow using two heuristics: PSO
based cost optimization (Algorithm 1), and best resource
selection (based on minimum completion time by selecting
a resource with maximum cost).

5.2 Data and Implementation

Table 1: The TP-matrix, PP-matrix and DS-matrix. The values
shown are an example of 1 instance of the experiment run.

TP [5 × 3] =

2
666664

PC1 PC2 PC3
T1 1.23 1.12 1.15
T2 1.17 1.17 1.28
T3 1.13 1.11 1.11
T4 1.26 1.12 1.14
T5 1.19 1.14 1.22

3
777775

TP [i, j] = Cost of execution of Ti at PCj

(EC2 price of resources for High CPU instance)
(Example matrix values are in the range $1.1 − $1.28/hr)

PP [3× 3] =

2
664

PC1 PC2 PC3
PC1 0 0.17 0.21
PC2 0.17 0 0.22
PC3 0.21 0.22 0

3
775

PP [i, j] = Cost of communication between PCi &PCj

(V alues in $/MB/second)

DST2,T3,T4 [2 × 2] =

2
4

totaldata
i/p 10
o/p 10

3
5

DST5[2 × 2] =

2
4

totaldata
i/p 30
o/p 60

3
5

row1 = i/p data size(MB), row2 = o/p data size(MB)

We have used three matrices that store the values for:
a) average computation cost of each task on each re-
source (TP-matrix), b) average communication cost per unit
data between compute resources (PP-matrix), and c) in-

put/output Data Size of each task (DS-matrix), as depicted
in Table 1.
The values for PP-matrix resemble the cost of unit data

transfer between resources given by Amazon CloudFront 4.
We assume PC1 to be in US, PC2 in Hong Kong (HK) and
PC3 in Japan (JP), respectively. We randomly choose the
values in the matrix for every repeated experiment, but keep
these values constant during the PSO iterations.
The values for TP-matrix varies for two classes of exper-

iments. While varying the size of data, we choose the TP-
matrix values to resemble the Evolutionary Multi-objective
Optimization (EMO) [20] application. While varying the
processing cost, we use the Amazon EC2’s5 pricing policy
for different classes of virtual machine instances. E.g. if we
were to use small+medium instances of Linux machines in
both US and Europe, the TP-matrix would have values be-
tween $0.1-$0.3/hr, assuming all the tasks complete within
1 hour.
As each task has its own DS-matrix, the sum of all the

values in the matrix varies according to the size of data we
experiment (64-1024MB). The total data is divided among
tasks such that if x is the output data size of T 1, then tasks
T 2, T 3, &T 4 each receive x data as input and produce x
data as output. Finally, task T 5 consumes 3x data and pro-
duces 6x data.
We used the JSwarm6 package to conduct our simulation

experiments in PSO. Table 2 gives the experimental setup of
the PSO algorithm. The number of executions represent the
number of independent experiments done in order to calcu-
late the Confidence Interval (CI) of the results.

Table 2: The values for PSO optimization

Number of particles = 25
Number of iterations = 45
Number of executions = 30

5.3 Experiments and Results

We evaluated the scheduling heuristic using the work-
flow depicted in Figure 1. Each task in the workflow has
input and output files of varying sizes. Also, the execution
cost of each task varies among all the compute resources
used (in our case PC1 − PC3). We analyze the perfor-
mance of our heuristic by varying each of these in turn.
We plot the graphs by averaging the results obtained

after 30 independent executions. In every execution, the
x-axis parameters such as total data size (e.g. 1024MB),
range of computation cost (e.g. 1.1-1.3 $/hour) remain un-
changed, while the particle’s velocity and position change.
The graphs also depict the value of the plotted points to-
gether with the CI (represented as “+/-” value).

4http://aws.amazon.com/cloudfront/
5http://aws.amazon.com/ec2/
6http://jswarm-pso.sourceforge.net/

5.3.1 Variation in Total Data Size of a Workflow

We varied the size of total data processed by the workflow
in the range 64-1024MB. By varying the data size, we com-
pared the variance in total cost of execution and the distri-
bution of workload on resources, for the two algorithms as
depicted in Figure 3 and Figure 4, respectively. We fixed the
compute resource cost in the range 1.1−1.3$/hr for the ex-
periments in the sub-section 5.3.1 and sub-section 5.3.3.

Figure 3: Comparison of total cost between PSO based resource
selection and best resource selection algorithms when varying total
data size of a workflow.

Total Cost of Execution: Figure 3 plots the total cost of
computation of the workflow (in the log scale) with the in-
crease in the total data processed by the workflow. The
graph also plots 95% Confidence Interval (CI) for each data
point.
The cost obtained by PSO based task-resource map-

ping increases much slower than the BRS algorithm. PSO
achieves at least three times lower cost for 1024MB of to-
tal data processed than the BRS algorithm. Also, the value
of CI in cost given by PSO algorithm is +/- 8.24, which is
much lower as compared to the BRS algorithm (+/- 253.04),
for 1024 MB of data processed by the workflow.
The main reason for PSO to perform better than the ‘best

resource’ selection is the way it takes into account commu-
nication costs of all the tasks, including dependencies be-
tween them. When calculating the cost of execution of a
child task on a resource, it adds the data transfer cost for
transferring the output from its parent tasks’ execution node
to that node. This calculation is done for all the tasks in the
workflow to find the near optimal scheduling of task to re-
sources. However, the BRS algorithm calculates the cost for
a single task at a time, which does not take into account the
mapping of other tasks in the workflow. This results in PSO
based algorithm giving lower cost of execution as compared

to BRS based algorithm.

Figure 4: Distribution of workflow tasks on available processors.

Distribution of Load: We calculated the distribution of
workflow tasks onto available resources for various size of
total data processed, depicted in Figure 4. This evaluation is
necessary as algorithms may choose to submit all the tasks
to few resources to avoid communication between resources
as the size of data increases, thus minimizing communica-
tion cost to zero. In our formulation, equation 4 restricts all
tasks being mapped to the same resource, so that tasks can
execute in parallel for increased time-efficiency. In Figure
4, The X-axis represents the total size of data processed by
the workflow and the Y-axis the average number of tasks
(expressed as percentage) executed by a compute resource
for various size of data.
The figure shows that PSO distributes tasks to resources

according to the size of data. When the total size of data is
small (for 64-126 MB), PSO distributed tasks proportion-
ally to all the resources (PC1 − PC3). However, when
the size of data increased to (and over) 256MB, more tasks
were allocated to PC1 and PC3.
As the cost of compute resources was fixed for this

part of experiment, the BRS algorithm does not vary task-
resource mapping. Also, it is indifferent to the size of data.
Hence, BRS’s load distribution is a straight line as depicted
in Figure 4, with PC1, PC2 and PC3 receiving 20%, 40%
and 40% of the total tasks, respectively.
The distribution of tasks to all the available resources

in proportion to their usage costs, ensured that hotspots (re-
source overloading) were avoided. Our heuristic could min-
imize the total cost of execution and balance the load on
available resources.

5.3.2 Variation in Compute Resource Cost

We experimented the performance of PSO by varying the
cost of computation of all compute resources. This variation

is practically justifiable as different Cloud service providers
(e.g. Amazon, GOGRID) can have varying pricing policies
depending on the type and capabilities of their resources
(virtual machines).

Figure 5 depicts the change in total cost of computa-
tion of applications for different range of compute resource
prices (price range are similar to Amazon EC2 instances in
US and Europe combined). The plotted values are an aver-
age of 30 executions. We use curve fitting to plot the lines
along the points to show the trend: rise in cost in compari-
son to rise in compute resource cost for the two algorithms.
The workflow processed a total of 128MB of data.

Clearly, PSO based mapping has much lower cost (at
least 10 times) and CI values (lower than 0.3) as compared
to that given BRS based mapping. In addition, the slope of
the trend line shows that PSO based mapping increases the
cost linearly, whereas BRS increases exponentially.

Figure 5: Comparison of total cost between PSO based resource
selection and best resource selection algorithms when varying
computation cost of all the resources (for 128MB of data).

The reason for PSO’s improvement over BRS is due to
PSO’s ability to find a near optimal solutions for mapping
all tasks in the workflow to the given set of compute re-
sources. The linear increase in PSO’s cost also suggest that
it takes both computation and communication cost into ac-
count. However, BRS simply maps a task to the resource
that has minimum completion time (a resource with higher
frequency, lower load and thus having higher cost). As the
resource costs increase, the use of BRS leads to more costs
due to the affinity towards better resource, irrespective to
the size of data. Whereas, PSO minimizes the maximum
total cost of assigning all tasks to resources.

5.3.3 Convergence of PSO

Figure 6 plots the convergence of total cost computed by
PSO over the number of iterations for different sizes of to-
tal data processed by the workflow in Figure 1. Initially, the
particles are randomly initialized. Therefore, the inital total
cost is always high. This initial cost corresponds to the 0th

iteration. As the algorithm progresses, the convergence is
drastic and it finds a global minima very quickly. The num-
ber of iterations needed for the convergence is seen to be
20-30, for our application environment.

Figure 6: The trend of convergence of PSO with the number of
iterations for different size of data.

6 Conclusions and Future Work
In this work, we presented a scheduling heuristic based

on Particle Swarm Optimization (PSO).We used the heuris-
tic to minimize the total cost of execution of application
workflows on Cloud computing environments. We ob-
tained total cost of execution by varying the communica-
tion cost between resources and the execution cost of com-
pute resources. We compared the results obtained by our
heuristic against “Best Resource Selection” (BRS) heuris-
tic. We found that PSO based task-resource mapping can
achieve at least three times cost savings as compared to BRS
based mapping for our application workflow. In addition,
PSO balances the load on compute resources by distribut-
ing tasks to available resources. The heuristic we proposed
is generic as it can be used for any number of tasks and re-
sources by simply increasing the dimension of the particles
and the number of resources, respectively.
As part of our future work, we would like to integrate

PSO based heuristic into our workflow management sys-
tem to schedule workflows of real applications such as brain
imaging analysis [14], EMO [20], and others.

Acknowledgments
This work is partially supported through Australian Re-

search Council (ARC) Discovery Project grant. Some val-
ues in our experiments were obtained from Amazon Cloud
Services (EC2, CloudFront and S3) pricing policies. We
would like to thankWilliam Voorsluys for his comments on
the experiments and results.
Siddeswara would like to acknowledge the CSIRO ICT

Centre Post-Doctoral Fellow capability development fund
for the support.

References
[1] K. Amin, G. von Laszewski, M. Hategan, N. J. Zaluzec,

S. Hampton, and A. Rossi. Gridant: A client-controllable
grid work.ow system. In HICSS ’04: Proceedings of the
Proceedings of the 37th Annual Hawaii International Con-
ference on System Sciences (HICSS’04) - Track 7, 2004.

[2] M. Armbrust, A. Fox, R. Grifth, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. Above the clouds: A berkeley view of
cloud computing. Technical report, University of Califor-
nia at Berkeley, February 2009.

[3] R. Buyya, S. Pandey, and C. Vecchiola. Cloudbus toolkit
for market-oriented cloud computing. In CloudCom ’09:
Proceedings of the 1st International Conference on Cloud
Computing, volume 5931 of LNCS, pages 24–44. Springer,
Germany, December 2009.

[4] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd. Gridflow:
Workflow management for grid computing. In CCGRID
’03: Proceedings of the 3rd International Symposium on
Cluster Computing and the Grid, pages 198–205, Washing-
ton, DC, USA, 2003.

[5] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil,
C. Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good,
A. Laity, J. C. Jacob, and D. S. Katz. Pegasus: A framework
for mapping complex scientific workflows onto distributed
systems. Sci. Program., 13(3):219–237, 2005.

[6] N. Furmento, W. Lee, A. Mayer, S. Newhouse, and J. Dar-
lington. Iceni: an open grid service architecture imple-
mented with jini. In Supercomputing ’02: Proceedings of
the 2002 ACM/IEEE conference on Supercomputing, 2002.

[7] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox,
D. Gannon, C. Goble, M. Livny, L. Moreau, and J. My-
ers. Examining the challenges of scientific workflows. Com-
puter, 40(12), 2007.

[8] J. Kennedy and R. Eberhart. Particle swarm optimization.
In IEEE International Conference on Neural Networks, vol-
ume 4, pages 1942–1948, 1995.

[9] J. Louchet, M. Guyon, M. J. Lesot, and A. Boumaza. Dy-
namic flies: a new pattern recognition tool applied to stereo
sequence processing. Pattern Recognition Letters, 23(1-
3):335–345, 2002.

[10] W. Z. Lu, H.-Y. Fan, A. Y. T. Leung, and J. C. K. Wong.
Analysis of pollutant levels in central hong kong applying
neural network method with particle swarm optimization.
Environmental Monitoring and Assessment, 79(3):217–230,
Nov 2002.

[11] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific work-
flow management and the kepler system: Research arti-
cles. Concurrency and Computation: Practice & Experi-
ence, 18(10):1039–1065, 2006.

[12] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger,
M. Greenwood, T. Carver, K. Glover, M. R. Pocock,
A. Wipat, and P. Li. Taverna: a tool for the composition
and enactment of bioinformatics workflows. Bioinformat-
ics, 20(17):3045–3054, November 2004.

[13] C. u. O. Ourique, E. C. J. Biscaia, and J. C. Pinto. The
use of particle swarm optimization for dynamical analysis in
chemical processes. Computers and Chemical Engineering,
26(12):1783–1793, 2002.

[14] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. Dob-
son, and K. Chiu. A grid workflow environment for brain
imaging analysis on distributed systems. Concurrency and
Computation: Practice & Experience, 21(16):2118–2139,
November 2009.

[15] A. Salman. Particle swarm optimization for task assignment
problem. Microprocessors and Microsystems, 26(8):363–
371, November 2002.

[16] T. Sousa, A. Silva, and A. Neves. Particle swarm based data
mining algorithms for classification tasks. Parallel Comput-
ing, 30(5-6):767–783, 2004.

[17] M. F. Tasgetiren, Y.-C. Liang, M. Sevkli, and G. Gencyil-
maz. A particle swarm optimization algorithm for makespan
and total flowtimeminimization in the permutation flowshop
sequencing problem. European Journal of Operational Re-
search, 177(3):1930–1947, March 2007.

[18] I. Taylor, I. Wang, M. Shields, and S. Majithia. Dis-
tributed computing with Triana on the grid: Research arti-
cles. Concurrency and Computation: Practice & Experi-
ence, 17(9):1197–1214, 2005.

[19] J. D. Ullman. Np-complete scheduling problems. J. Comput.
Syst. Sci., 10(3), 1975.

[20] C. Vecchiola, M. Kirley, and R. Buyya. Multi-objective
problem solving with offspring on enterprise clouds. Pro-
ceedings of the 10th International Conference on High-
Performance Computing in Asia-Pacific Region (HPC Asia
2009), pages 132–139, March 2009.

[21] K. Veeramachaneni and L. A. Osadciw. Optimal scheduling
in sensor networks using swarm intelligence. 2004.

[22] P.-Y. Yin, S.-S. Yu, and Y.-T. Wang. A hybrid particle
swarm optimisation algorithm for optimal task assignment
in distributed systems. Computer Standards and Interfaces,
28(4):441–450, 2006.

[23] H. Yoshida, K. Kawata, Y. Fukuyama, and Y. Nakanishi. A
particle swarm optimization for reactive power and voltage
control considering voltage stability. In the International
Conference on Intelligent System Application to Power Sys-
tem, pages 117–121, 1999.

[24] B. Yu, X. Yuan, and J. Wang. Short-term hydro-thermal
scheduling using particle swarm optimisation method. En-
ergy Conversion and Management, 48(7):1902–1908, 2007.

[25] J. Yu, R. Buyya, and K. Ramamohanarao. Workflow
Scheduling Algorithms for Grid Computing, volume 146,
pages 173–214. Springer Heidelberg, 2008.

[26] A. E. M. Zavala, A. H. Aguirre, E. R. Villa Diharce, and
S. B. Rionda. Constrained optimisation with an improved
particle swarm optimisation algorithm. Intl. Journal of In-
telligent Computing and Cyvernetics, 1(3):425–453, 2008.

[27] L. Zhang, Y. Chen, R. Sun, S. Jing, and B. Yang. A task
scheduling algorithm based on pso for grid computing. In-
ternational Journal of Computational Intelligence Research,
4(1), 2008.

