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Abstract—Contemporary Distributed Computing Systems
(DCS) such as Cloud Data Centers are large scale, complex,
heterogeneous, and distributed across multiple networks and
geographical boundaries. On the other hand, the Internet of
Things (IoT)-driven applications are producing a huge amount
of data that requires real-time processing and fast response.
Managing these resources efficiently to provide reliable services
to end-users or applications is a challenging task. The existing
Resource Management Systems (RMS) rely on either static or
heuristic solutions inadequate for such composite and dynamic
systems. The advent of Artificial Intelligence (AI) due to data
availability and processing capabilities manifested into possi-
bilities of exploring data-driven solutions in RMS tasks that
are adaptive, accurate, and efficient. In this regard, this paper
aims to draw the motivations and necessities for data-driven
solutions in resource management. It identifies the challenges
associated with it and outlines the potential future research
directions detailing where and how to apply the data-driven
techniques in the different RMS tasks. Finally, it provides a
conceptual data-driven RMS model for DCS and presents the
two real-time use cases (GPU frequency scaling and data centre
resource management from Google Cloud and Microsoft Azure)
demonstrating AI-centric approaches’ feasibility.

Index Terms—Distributed Computing, Resource Management,
AI Techniques, Edge Computing, Cloud Computing

I. INTRODUCTION

Internet-based Distributed Computing Systems (DCS) have

become an essential backbone of the modern digital econ-

omy, society, and industrial operations. The emergence of the

Internet of Things (IoT), diverse mobile applications, smart

grids, smart industries, and smart cities has resulted in massive

amounts of data generation. Thus, it has increased the demand

for computing resources [1] to process this data and derive

valuable insights for users and businesses. According to the

report from Norton [2], 21 billion IoT devices will be con-

nected to the internet by 2025, creating substantial economic

opportunities. Computing models such as Cloud and Edge

computing have revolutionised the way services are delivered

and consumed by providing flexible on-demand access to

services with a pay-as-you-go model. Besides, new applica-

tion and execution models like micro-services and serverless

or Function as Service (FaaS) computing [3] are becoming

mainstream that significantly reduces the complexities in the

design and deployment of software components. On the other

hand, this increased connectivity and heterogeneous workloads

demand distinct Quality of Service (QoS) levels to satisfy their

application requirements[4], [5], [6]. These developments have

led to building hyper-scale data centres and complex multi-

tier computing infrastructures that require new innovative ap-

proaches in managing resources efficiently and provide reliable

services. Deployment of 5G and related infrastructures like

dynamic network slicing for high bandwidth, high throughput,

and low latency applications has only increased the challenges.

Resource Management Systems (RMS) in DCS’s are mid-

dleware platforms that perform different tasks such as re-

source provisioning, monitoring, workload scheduling, and

many others. Building an efficient RMS for the present and

imminent distributed systems are challenging due to many

reasons. Significantly, the new class of applications, networks,

and Cyber-Physical-Systems (CPS) such as data centres are

enormously complex and challenging to fine-tune their param-

eters manually. For example, ”Just 10 pieces of equipment,

each with 10 settings, would have 10 to the 10th power, or

10 billion, possible configurations — a set of possibilities far

beyond the ability of anyone to test for real” [7], [8]. The

emerging network technologies, including 5G and satellite

networks, such as Amazon’s Project Kuiper and SpaceX’s

StarLink, have opened up new dimensions [9] and opportu-

nities for developing advanced applications that require high

bandwidth, high availability, and low latency. The availability

of massive data and advancement in computing capabilities

has witnessed the resurgence of Artificial intelligence (AI)

techniques driving innovation across different domains such

as healthcare, autonomous driving, and robotics [9], [10].

Training AI models itself consumes vast resources and is

increasing exponentially and doubling every 3.4 months for the

largest AI models (compared to Moores’ Law’ 2-year doubling

period) [7]. The Cloud and Edge infrastructures deliver re-

sources (compute, network, storage) required to accommodate

these rapid changes across different domains managed by

third-party service providers. These are highly distributed,

large-scale, and contain numerous heterogeneous resources.

Furthermore, they are multi-tenant, with users sharing the

underlying resources with diverse workload characteristics.

Thus, providing the performance requirements in such a shared
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environment and increasing resource utilisation is a critical

problem and challenging for RMS [11].

The existing RMS techniques from operating systems to

large scale DCS’s are predominantly designed and built using

preset threshold-based rules or heuristics. These solutions are

static and often employ reactive solutions [12]; they work well

in the general case but cannot adjust to the dynamic contexts

[13]. Moreover, once deployed, they considerably fail to adapt

and improve themselves in the runtime. In complex dynamic

environments (such as Cloud and Edge), they are incapable

of capturing the infrastructure and workload complexities and

hence fall through. Consequently, the AI-centric approaches

built on actual data and measurements collected from respec-

tive DCS environments are more promising, perform better,

and adapt to dynamic contexts. Unlike heuristics, these are

data-driven models built based on historical data. Accordingly,

AI-centric methods can employ proactive measures by fore-

seeing the potential outcome based on current conditions. For

instance, a static heuristic solution for scaling the resource uses

workload and system load parameters to trigger the scaling

mechanism. However, this reactive scaling diminishes the

users’ experience for a certain period (due to the time required

for system bootup and application trigger). Consequently, an

AI-centric RMS enabled by data-driven Machine Learning

(ML) model can predict the future workload demand and

scale up or scale down the resources beforehand as needed.

Such techniques are highly valuable for both users to obtain

better QoS and service providers to offer reliable services and

retain their business competency in the market. Moreover,

methods like Reinforcement Learning (RL) [13], [14] can

improve RMS’s decisions and policies by using monitoring

and feedback data in runtime, responding to the current

demand, workload, and underlying system status.

AI-centric RMS in DCS is more feasible now than ever for

multiple reasons. First, AI techniques have matured and have

proven efficient in many critical domains such as computer vi-

sion, natural language processing, healthcare applications, and

autonomous vehicles. Second, most DCS platforms generate

enormous amounts of data currently pushed as logs for de-

bugging purposes or failure-cause explorations. For example,

Cyber-Physical-Systems (CPS) in data centres already have

hundreds of onboard CPU and external sensors monitoring

workload, energy, temperature, and weather parameters. Such

data is useful to build ML models cost-effectively. Finally, the

increasing scale in computing infrastructure and its complexi-

ties require automated resource management systems that can

deliver the decisions based on the data and key-insights from

experience, to which AI models are ideal.

In this regard, this paper makes the following key contri-

butions: (1) presents evolution, and the state-of-the-art RMS

techniques in DCS, (2) enlists the challenges associated with

data-driven RMS methods, (3) identifies the future research

directions and point out the different tasks in which AI-

centric methods can be efficiently applied and benefited from,

(4) proposes a conceptual data-driven RMS model, and (5)

demonstrates two real-time use-cases using data-driven AI

methods (related to energy-efficient GPU clock configurations

and management of resources in data centres).

The rest of the paper is organised as follows. Section II gives

an overview of DCS evolution and state-of-the-art practices in

RMS. Section III identifies the challenges associated with data-

driven methods. Section IV draws Future research directions.

In Section V, a conceptual AI-centric RMS model is presented,

and Section VI demonstrates the feasibility of AI-centric

methods using two real-time use cases. Finally, the conclusion

is drawn in Section VII.

II. DCS EVOLUTION AND THE STATE-OF-THE-ART

An overview of the evolution of primary DCS’s is given

in Figure 1. Early DCS systems are prominently used in

scientific domain applications composed of parallel tasks

(distributed jobs in grid computing) and executed on clusters

or supercomputing systems. The development of technologies

such as service-orientated computing (Web services, REST,

SOAP, etc.), virtualisation, and demand for utility-oriented

services created the current Cloud computing-based data cen-

tres. However, the next decade of DCS’s will be driven by

IoT-based applications and scenarios that need to process the

enormous amount of data and derive meaningful intelligence

and business values from it. These IoT-based applications

consist of numerous sensors and computing nodes distributed

across different network layers from Edge to remote Cloud.

Thus, requiring an autonomic sense-connect-actuate model [1]

where application tasks are composed, deployed, and executed

autonomously—demanding additional machine-to-machine in-

teractions (compared to the current human-to-machine in-

teractions). RMS should autonomously provision resources,

schedule application tasks, and manage their demand for QoS

and low latency.

In parallel to system advancements, application models

have continued to evolve and create new software design

patterns like micro-services and execution models like server-

less or Function as Service (FaaS) computing. To that end,

managing these modern resources and applications requires

intelligent decisions enabled from the AI-centric solutions.

Although AI-centric RMS techniques will be applicable for

all the computing paradigms discussed here, we mainly keep

our discussions and illustrations around the Cloud and Edge

computing paradigms.

With the increased scale and complexities in next-generation

DCSs, traditional static or heuristics solutions are becoming

inadequate. These methods require careful hand pruning and

human intervention to adapt to the dynamic environments [13].

Consequently, AI-centric data-driven solutions are promising,

and there have been many attempts in recent years to address

the resource management problems using the data-driven ML

solutions [12]. For example, Google has achieved a 40%

efficiency in managing its cooling infrastructure using simple

ML techniques and learning from historical data [15]. Many

other methods explored problems such as device placement,

scheduling, and application scaling using data-driven methods

[16], [17]. At the system architecture level, [18] used massive
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Fig. 1: An overview of contemporary DCS evolution (Timeline shows approximate time of the genesis of the system and

evolved as mainstream with some overlapping’s. The points shown for all dimensions are representative but not exhaustive

and only lists the important facets.)

data sets of hardware performance counters and profiles col-

lected from large-scale Google data centre servers and utilised

this data to reason, analyse and mitigate front-end stalls in

warehouse-scale systems. However, data-driven AI solutions

for RMS are in its superficial stage. They require meticulous

attention to address the challenges they pose and simultane-

ously identify potential avenues to incorporate these methods.

Moreover, it is essential to build the general frameworks and

standards to adopt AI solutions in resource management that

are scalable and manageable.

III. CHALLENGES

In this section, we identify and describe the critical issues

associated with the adoption of AI solutions in the resource

management of distributed computing systems.

A. Availability of Data
The quality of data used to train the models determines

the success of machine learning techniques. Also, this data

should be available in large quantities with enough features

covering all the aspects of environments [19], [20]. Within

DCS, multiple challenges exist concerning the availability

of such data. First, currently, different resource abstraction

platforms collect the data at different granularity. The phys-

ical machine-level data from onboard sensors and counters

is gathered and accessed by tools like Intelligent Platform

Management Interface (IPMI), while at a higher abstraction

level, middleware platforms collect data related to work-

load level, user information, and surrounding environmental

conditions (temperature, cooling energy in the data centre).

Also, network elements such as SDN controllers collect data

related to network load, traffic, and routing. Unifying these

data together and preprocessing it in a meaningful way is

a complex and tedious task. The respective tools gather the

data in a different format without common standards be-

tween them. Hence, building data-pipelines combining various

subsystems data is crucial for the flexible adoption of ML
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solutions. Secondly, current monitoring systems collect data

and push them into logging repositories to be used later

for debugging. However, converting this data for ML-ready

requires monotonous data-engineering. Hence, future systems

should be explicitly designed to gather information that can be

directly fed to the ML models with minimal data engineering

and preprocessing effort. Lastly, although several publicly

available datasets provide workload traces, there are hardly any

public datasets available representing various infrastructure,

including physical resource configurations, energy footprints,

and several other important parameters (due to privacy and

NDAs). Therefore, getting access to such data is a challenge

and needs collaborative efforts and data management standards

from the relevant stakeholders. Moreover, requiring standard-

ised data formats and domain-specific frameworks [21].

B. Managing the Deployment of Models

Training ML models and inference in runtime needs an

expensive amount of computational resources. However, one

significant challenge is to manage the life cycle of ML models,

including deciding how much to train, where to deploy the

training modules in multi-tier computing architectures like

Edge/Fog. As resources have limited capabilities at a lower

level and should be allocated to needful applications, if these

scarce resources are predominantly used to train models or run

the RL agents, the latency-sensitive applications will experi-

ence resource starvation. On the other hand, if the models (RL

agents) are trained or deployed in resource enriched cloud, the

latency to push the inference decisions or the runtime feedback

data to edge nodes shoots up, thus creating a delay-bottlenecks

in RMS decisions. Furthermore, ML models tend to learn too

much with the expense of massive computational resources.

Therefore, the innovative solutions are needed to decide how

much learning is sufficient based on specific constraints (re-

source budget, time-budget, etc.) and estimate context-aware

adaptive accuracy thresholds of ML models [22]. To overcome

this, techniques like transfer learning, distributed learning can

be applied to reduce computational demands [20]. In addition,

dedicated CPUs, GPUs, and domain-specific accelerators like

Google TPU, Intel Habana, and FPGAs (Azure) can carry out

the inference.

C. Non-Deterministic Outputs

Unlike statistical models, which are analogous for its de-

terministic outputs, ML models are intrinsically exploratory

and depend on stochasticity for many of its operations, thus

producing the non-deterministic results. For example, the

cognitive neural nets, which are basic building blocks for many

regressions, classification, and Deep Learning (DL) algorithms

primarily rely on the principles of stochasticity for different

operations (stochastic gradient descent, exploration phase in

RL). When run multiple times with the same inputs, they

tend to approximate the results and produce different outputs

[10]. This may pose a severe challenge in the DCS, such

as Edge and Clouds, where strict Service Level Agreements

(SLAs) govern the delivery of services requiring deterministic

results. For example, if a service provider fixes a price based

on certain conditions using ML models, consumers expect

the price to be similar in all the time under similar settings.

However, ML models may have a deviation in pricing due

to stochasticity creating the transparency issues between users

and service providers. Many recent works have focused on this

issue and introduced techniques such as induced constraints

in neural nets to produce the deterministic outputs [23]. Yet,

stochasticity in the ML model is inherent and requires careful

monitoring and control over its output.

D. Black Box Decision Making

The ML models’ decision-making process follows a com-

pletely black-box approach and fails to provide satisfactory

justification for its decisions. The inherent probabilistic ar-

chitectures and enormous complexities within ML models

make it hard to evade the black-box decisions. It becomes

more crucial in an environment such as DCS, where users

expect valid feedback and explanation for any action taken

by the service provider. This is instrumental in building trust

between service providers and consumers. For instance, in

case of a high overload condition, it is usual that service

provider shall preempt few resources from certain users with

the expense of certain SLA violations. However, choosing

which users’ resources should be preempted is crucial in

business-driven environments. This requires simultaneously

providing fair decisions and valid reasons. Many works have

undertaken to build the explanatory ML models (Explainable

AI- XAI) to address this issue [24], [25]. However, solving

this continues to remain a challenging task.

E. Lightweight and Meaningful Semantics

The DCS environment having heterogeneous resources

across the multi-tiers accommodates different application ser-

vices. RMS should interact between different resources, en-

tities, and application services to efficiently manage the re-

sources. However, these requisites semantic models that repre-

sent all these various entities meaningfully. Existing semantic

models are either heavy or inadequate for such complex envi-

ronments. Therefore, lightweight semantic models are needed

to represent the resource, entities, applications, and services

without introducing the overhead [26].

F. Complex Network Architectures, Overlays, Upcoming Fea-
tures

Network architectures across DCS and telecom networks

are evolving rapidly using software-defined infrastructure, hi-

erarchical overlay networks, Network Function Virtualization

(NFV), and Virtual Network Functions (VNF). Commercial

clouds like Amazon, Google, and Microsoft have recently

partnered with telecom operators worldwide to deploy ultra-

low latency infrastructure (AWS Wavelength and Azure Edge

Zone, for example) for emerging 5G networks. The explosion

of data from these 5G deployments and resource provisioning

for high bandwidth, throughput, and low latency response
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through dynamic network slicing requires a complex orches-

tration of network functions [27].

In future DCS, RMS needs to consider these complex

network architectures, the overlap between telecom and pub-

lic/private clouds, and service function orchestration to meet

end-to-end bandwidth, throughput, and latency requirements.

These architectures and implementations, in turn, generate

enormous amounts of data at different levels of the hierarchical

network architecture. As different types of data are generated

in different abstraction levels, standardised well-agreed upon

data formats and models for each aspect needs to be developed.

G. Performance, Efficiency, and Domain Expertise

Many ML algorithms and RL algorithms face performance

issues like a cold-start problem. Specifically, RL algorithms

spend a vast amount of the initial phase in exploration before

reaching its optimal policies creating an inefficient period

where the decisions are suboptimal, even completely random

or incorrect leading to massive SLA violations [20]. RL-

based approaches also face several challenges in the real world

including (1) need for learning on the real system from limited

samples, (2) safety constraints that should never or at least

rarely be violated, (3) need of reward functions that are un-

specified, multi-objective, or risk-sensitive, (4) inference that

must happen in real-time at the control frequency of the system

[28]. In addition, AI models are compute-heavy and designed

with a primary focus on accuracy-optimisation resulting in

a massive amount of energy consumption [7]. Consequently,

new approaches are needed to balance the trade-offs between

accuracy, energy, and performance overhead. Furthermore,

current ML algorithms, including neural network architec-

tures/libraries, are primarily designed to solve computer vision

problems. Adapting them to RMS tasks needs some degree of

transformation of the way input and outputs are interpreted.

Currently, many AI-centric RMS algorithms transform their

problem space and further use simple heuristics to interpret the

result back and apply to the RMS problems. Such complexities

demand expertise from many related domains. Thus, newer

approaches, algorithms, standardised frameworks, and domain-

specific AI frameworks are required to adopt AI in RMS

efficiently.

IV. FUTURE RESEARCH DIRECTIONS

Despite the challenges associated, AI solutions provide

many opportunities to incorporate these techniques into RMS

and benefit from them. In this section, we explore different

avenues where AI techniques can be applied to manage

distributed systems resources.

A. Data-driven Resource Provisioning and Scheduling

Resource provisioning and scheduling are a fundamental

element of an RMS. Usually, resources are virtualised, and

specifically, computing resources are delivered as Virtual ma-

chine (VM) or lightweight containers. The problems related

to provisioning such as estimating the number of resources

required for an application, co-locating workloads based on

their resource consumption behaviours and several others can

be addressed using AI techniques. These techniques can be

extended to special case provisions such as spot instances.

Utilising spot instances for application execution needs careful

estimation of application run time (to avoid the state corruption

or loss of computation if resources are preempted) and ac-

cordingly deciding resource quantity and checkpointing logic.

It may require building prediction models based on previous

execution performance counters or correlating with clusters

based on existing knowledge base [29].

In edge computing environments, RMS should utilise re-

sources from multi-tier infrastructure, and selecting nodes

from different layers also requires intelligence and adaptation

to application demands and infrastructure status. Furthermore,

data-driven AI solutions can be used in scheduling tasks such

as finding an efficient node, VM consolidation, migration, etc.

The prediction models’ historical data and adaptive RL models

can be used to manage dynamic scheduling and resource

provisioning.

B. Managing Elasticity using Predictive Analytics

Elasticity is an essential feature providing flexibility by scal-

ing up or scaling down the resources based on the applications’

QoS requirements and budget constraints. Current approaches

in elasticity are based on the reactive methods where resources

are scaled according to the system load (in terms of the

number of users and input requests). However, such reactive

measures diminish the SLAs due to bootup time and swift

burst loads. In contrast, forecasting the future load based

on the application’s past usage behaviours and proactively

scaling the resources beforehand vastly improves SLAs and

saves costs. Essentially, it needs time series analysis to predict

future load using methods like ARIMA or more advanced

RNN techniques such as LSTM networks that are proven to

be efficient in capturing the temporal behaviours [30]. Such

proactive measures from service providers enable efficient

management of demand response without compromising the

SLAs.

C. Energy Efficiency and Carbon footprint Management

One of the major challenges of computing in recent years

has been energy consumption. Increasing reliance on com-

puting resources has created enormous energy, economic and

environmental issues. It is estimated that by 2025, data centres

itself would consume around 20% of global electricity and

emit up to 5% of the world’s carbon emissions [31]. Energy

efficiency can be achieved across the computing stack from

managing hardware circuits to data centre level workload man-

agement. Recent studies have shown promising results of AI

techniques in device energy-optimised frequency management

[29], intelligent and energy-efficient workload management

(scheduling, consolidation), reducing cooling energy by fine-

tuning cooling parameters [15], [32], and executing appli-

cations within power budgets [12], etc. In addition, it can

also be effectively used in minimising the carbon-footprints

by forecasting renewable energy and shifting the workloads
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across clouds accordingly. Each of these subproblems can be

addressed by using a combination of predictive and RL models

based on application scenarios and requirements.

D. Security and Privacy Management

As cybersystems have become sophisticated and widely

interconnected, preserving the privacy of data and securing

resources from external threats has become quintessential.

Dealing with security has the implications far beyond re-

source management, including privacy-preserving and com-

plying with the respective jurisdiction’s rules. For instance,

RMS with user-level schedulers can classify input records

and process records with privacy sensitivity within local re-

source environments (e.g., private cloud) and others on public

clouds. One such work is carried out by the University of

Washington [33] wherein a deep learning method is used to

classify medical records into sensitive and nonsensitive based

on data privacy. They created a user-level scheduler for the

Aneka Cloud application platform and able to process sensitive

medical records on their private cloud and nonsensitive records

on Amazon AWS EC2 public cloud.

If resources are maliciously compromised, RMS should

adapt to the requirements of the security concerns. There has

been widespread use of ML algorithms in many aspects of

security management. It includes AI-based Intruder Detection

Systems (IDS) to prevent unauthorized access, anomaly de-

tection [34], [35] to identify the deviations in the application/

resource behaviors. AI techniques, including Artificial Neural

Networks (ANNs), ensemble learning, Bayesian networks,

association rules, and several classification techniques like

SVM, can be effectively utilised to address these security-

related problems [36]. They can also be predominantly used

in preventing Denial-of-service attacks (DDoS) by analysing

traffic patterns and filtering suspected traffic, hence, preventing

the system failures [37]. Such measures vastly help to manage

the resources securely and thus increasing the reliability of the

system.

E. Managing Cloud Economics

Cloud economics is a complex problem and requires vast

domain knowledge and expertise to price services adequately.

It is also essential for consumers to easily understand pricing

models and estimate the cost for their deployments. Current

pricing models largely depend on subscription types, e.g.,

reserved, on-demand, or spot instances. The pricing for these

subscription models is driven by standard economic principles

like auction mechanisms, cost-benefit analysis, profit, revenue

maximisation, etc. These pricing problems are solved using

techniques like Operation Research (OR) or stochastic game

theory approaches [38]. However, such methods are mostly

inflexible, and they either overprice the services or results in

loss of revenues for cloud service providers. In this regard.

ML models can forecast resource demand, and accordingly,

excessive resources can be pooled in the open market for

consumers. In addition, pricing can be more dynamic based on

this forecasted demand response that benefits both consumers

and service providers.

F. Generating the Large-scale Data Sets

Machine learning models require large amounts of training

data for improved accuracy. However, access to large scale

data is limited due to privacy and lack of capabilities to

generate a large quantity of data from infrastructure. To

that end, AI models itself can be used to create large-scale

synthetic datasets that closely depict the real-world datasets.

For instance, given a small quantity of data as input, Genera-

tive Adversarial Networks (GANs) can be used to produce

large-scale data [39]. Such methods are highly feasible in

generating time-series data of DCS infrastructure. Moreover,

these methods can also be leveraged to produce datasets from

the incomplete datasets adequately. Such large-scale data sets

are necessary to train efficient predictive models and bootstrap

the RL agents to achieve a reasonable efficiency in its policies.

G. Future System Architectures

Cloud services have recently undergone a shift from mono-

lithic applications to microservices, with hundreds or thou-

sands of loosely-coupled microservices comprising the end-

to-end application. In [4], the authors explore the implica-

tions of these microservices on hardware and system ar-

chitectures, bottlenecks therein, and lessons for future data

centre server design. Microservices affect the computation to

communication ratio, as communication dominates, and the

amount of computation per microservice decreases. Similarly,

microservices require revisiting whether big or small servers

are preferable. In [18], the authors use an always-on, fleet-

wide monitoring system, to track front-end stalls, I-cache

and D-cache miss (as cloud microservices do not lend them

amenable to cache locality unlike traditional workloads) across

hundreds and thousands of servers across Google’s warehouse-

scale computers. The enormous amounts of data generated

and analysed help provide valuable feedback for the design of

next-generation servers. Similarly, deep learning can be used

to diagnose unpredictable performance in cloud systems. Data

from such systems can thus be invaluable for the hardware

and system architectures of future DCS.

H. Other Avenues

Along with the aforementioned directions, AI-centric solu-

tions can be applied to several other RMS tasks, including op-

timising the heuristics itself [19], network optimisations (e.g.,

TCP window size, SDN routing optimisation problems), and

storage infrastructure management [20]. Moreover, learning-

based systems can be extended across different computing sys-

tem stack, from lower abstraction levels, including hardware

design, compiler optimisations, operating system policies, to a

higher level interconnected distributed system platforms[13].

V. CONCEPTUAL MODEL FOR AI-CENTRIC RMS

In the AI-centric RMS (Resource Management Systems)

system, models need to be trained and deployed for the infer-

ence used by the RMS for different tasks. However, integrating
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data-driven models into DCS platforms in a scalable and

generic manner is challenging and is still at a conception stage.

In this regard, as shown in Figure 2, we provide a high-level

architectural model for such data-driven RMS. The essential

elements of this system are explained below. It consists of

three entities:

Users/ Applications: Users requiring computing resources or

services interact with the middleware using APIs or interfaces.

AI-centric RMS Middleware: This is responsible for per-

forming different tasks related to managing user requests and

underlying infrastructure. The AI-centric RMS tasks contin-

uously interact with the data-driven models for accurate and

efficient decisions. The RMS needs to perform various tasks,

including provisioning the resources, scheduling them on ap-

propriate nodes, monitoring in runtime, dynamic optimisations

like migrations, and consolidations [12] to avoid the potential

SLA violations. Traditionally, these tasks are done using the

algorithms implemented within the RMS system that would

execute the policies based on the heuristics or threshold-based

policies. However, in this AI-centric RMS, the individual RMS

operations are aided with inputs from the data-driven models.

The data-driven AI models are broadly categorised into two

types, (1) predictive models and (2) adaptive RL models. In

the former, models are trained offline using supervised or

unsupervised ML algorithms utilising historical data collected

from the DCS environment that includes features from re-

sources, entities, and application services. This data is stored in

databases, and data-engineering is done, such as preprocessing,

cleaning, normalising, to suit AI models’ requirements. Thus,

this offline training can be done on remote cloud nodes to

benefit from the specialised, powerful computing resources.

The trained models can be deployed on specialised inference

devices like Google Edge TPU and Intel Habana. Choosing

the optimal place and deciding where to deploy these ML

models depends on where the RMS engine is deployed in the

environment, and this is itself a challenging research topic that

should be addressed as described in Section III-B.

In the latter case, runtime adaptive models such as Re-

inforcement Learning (RL) that continue to improve their

policies based on agents’ interactions and system feedback. It

requires both initial learning and runtime policy improvement

methods that need to be updated after every episode (certain

time reaching to terminal state). The RMS operations can

interact with both the predictive and RL-based data-driven

models using the RESTful APIs in runtime [12].

DCS Infrastructure: The computing infrastructure comprises

heterogeneous resources, including sensors, gateway servers,

edge data centres, and remote clouds. Therefore, adopting

the data-driven AI-centric RMS models needs a significant

change in the way current RMS systems are designed and

implemented, as well as monitoring agents, interfaces, and

deployment policies that can be easily integrated into existing

environments.

Fig. 2: Conceptual Data-Driven RMS Model

Fig. 3: System Model

VI. DEMONSTRATION CASE STUDIES

In this section, we present two use cases that have ap-

plied AI techniques to two different problems: (1) data-

driven configuration of device frequencies for energy-efficient

workload scheduling in cloud GPUs, (2) data center resource

management using ML models.

A. Data-Driven GPU Clock Configuration and Deadline-
aware Scheduling

Graphics Processing Units (GPUs) have become the de-

facto computing platform for advanced compute-intensive

applications such as video processing and autonomous cars.

Additionally, ML models are massively reliant on the GPUs

for training due to their efficient SIMD architectures that are

highly suitable for parallel computations. However, the energy

consumption of GPUs is a critical problem. Dynamic Voltage

Frequency Scaling (DVFS) is a widely used technique to

reduce the dynamic power of GPUs. Yet, configuring the op-

timal clock frequency for essential performance requirements

is a non-trivial task due to the complex nonlinear relationship

between the application’s runtime performance characteristics,

energy, and execution time. It becomes even more challenging

when different applications behave distinctively with similar

clock settings. Simple analytical solutions and standard GPU

frequency scaling heuristics fail to capture these intricacies and
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(a) Energy prediction

(b) Time prediction

Fig. 4: Performance of different models for energy and

execution time prediction (lower RMSE value is preferred)

scale the frequencies appropriately. In this regard, we propose

a data-driven frequency scaling technique by predicting the

power and execution time of a given application over different

clock settings. Furthermore, using this frequency scaling by

prediction models, we present a deadline-aware application

scheduling algorithm to reduce energy consumption while

simultaneously meeting their deadlines.

The high-level overview of the system is given in Fig. 3. It

is broadly classified into two parts, predictive modelling, and

data-driven scheduler. In the first part, we collect the training

data that consists of three parts, profiling information, energy-

time measurements, and respective frequency configurations.

We then predict two entities for a given application and fre-

quency configuration, i.e., energy consumption and execution

time. Subsequently, in the second part, the new applications

arrive with the dead-line requirements and minimal profiling

data from a default clock frequency execution. The scheduler

finds correlated application data using the clustering technique,

and this data is used for predicting the energy and execution

time over all frequencies. Finally, based on the deadline

requirements and energy efficiency, the scheduler scales the

frequencies and executes the applications. We use twelve

applications for evaluation from two standard GPU bench-

marking suites, Rodinia and Polybench. The training data

is generated from profiling the applications using nvprof, a

standard profiling tool from NVIDIA. We collected around

120 key features representing key architectural, power, and

performance counters. To build the predictive models, we ex-

plored several regression-based ML models, including Linear

Regression (LR), lasso-linear regression (Lasso), and Sup-

port Vector Regression (SVR). Also, ensemble-based gradient

boosting techniques, extreme Gradient Boosting (XGBoost),

Fig. 5: Average energy consumption of applications

Fig. 6: Average total energy consumption of GPU

and CatBoost. The goal is to build energy and execution time

prediction models for each GPU device to assist the frequency

configuration.

We conduct extensive experiments on NVIDIA GPUs

(TESLA P100). The experiment results have shown that our

prediction models with CatBoost have high accuracy with the

average Root Mean Square Error (RMSE) values of 0.38 and

0.05 for energy and time prediction, respectively (Figure 4a,

Figure 4b). Also, the scheduling algorithm consumes 15.07%

less energy (Figure 6) as compared to the baseline policies (de-

fault and max clock) while meeting the application deadlines

as our approach can scale the frequencies that have energy-

efficient settings (Figure 7) also able to meet performance

requirements. More details on prediction-models, scheduling

Fig. 7: Frequency Scaling by different policies

8



Fig. 8: Normalised application completion time compared to

deadline

algorithms, and implementation can be found in [29].

B. Industrial (Google Cloud and Microsoft Azure) Data Cen-
ter Management

Data centres are the backbone infrastructures of cloud

computing today. A data centre is a complex Cyber-Physical-

System (CPS) consists of numerous elements. It houses thou-

sands of rack-mounted physical servers, networking equip-

ment, sensors monitoring server, and room temperature, a

cooling system to maintain acceptable room temperature, and

many facility-related subsystems. The data centre is one of the

highest power density CPS of up to 20 kW per rack, dissipating

an enormous amount of heat. This poses a serious challenge

to manage resources energy efficiently and provide reliable

services to users. Optimising data centre operation requires

tuning the hundreds of parameters belonging to different

subsystems where heuristics or static solutions fail to yield

a better result. Moreover, even a 1% improvement in data

centre efficiency leads to savings in millions of dollars over a

year and also helps to reduce the carbon footprints. Therefore,

optimising these data centres using potential AI techniques is

of great importance. Accordingly, we discuss two real-time

AI-based RMS systems built by researchers at Google and

Microsoft Azure Cloud.

ML-centric cloud [12] is an ML-based RMS system at

an inception stage from the Microsoft Azure cloud. They

built Resource Control (RC)—a general ML and prediction

serving system that provides the insights of workload and

infrastructure for re-source manager of Azure compute fabric.

The input data collected from the virtual machine and physical

servers. The models are trained using a gradient boosting tree

and trained to predict the different outcomes for user’s VMs

such as average CPU utilisation, deployment size, lifetime,

and blackout time. The Azure resource manager interacts with

these models in runtime. For instance, the scheduler queries

for virtual machine lifetime, and based on the predicted value;

the appropriate decision is taken to increase infrastructure

efficiency. Applying these models to several other resource

management tasks is under consideration, including power

management inside Azure infrastructure.

Similarly, Google has also applied ML techniques to opti-

mise the efficiency of their data centres. Specifically, they have

used ML models to change the different knobs of the cooling

system, thus saving a significant amount of energy [15]. The

ML models are built using simple neural networks and trained

to improve the PUEs (Pow-er Usage Effectiveness), a standard

metric to measure the data centre efficiency. The input features

include total IT workload level, network load, parameters

affecting the cooling system like outside temperature, wind

speed, number of active chillers, and others. The cooling

subsystems are configured according to the predictions, and

results have shown that the 40% savings are achieved in

terms of energy consumption. Therefore, the brief uses cases

presented here strongly attest to the feasibility of AI-centric

solutions in different aspects of resource management of

distributed systems.

VII. CONCLUSIONS

Future distributed computing platforms will be massively

complex, large scale, and heterogeneous, enabling the devel-

opment of highly connected resource-intensive business, sci-

entific, and personal applications. Managing resources in such

infrastructure require data-driven AI approaches that derive

key insights from the data, learn from the environments, and

take resource management decisions accordingly. In this paper,

we have discussed the challenges associated with the adoption

of AI-centric solutions in RMS. We identified the potential

future directions describing different RMS tasks where we can

apply AI techniques. Moreover, we presented the conceptual

AI-centric RMS model. Finally, we demonstrated the two

use-cases of AI-Centric solutions in resource management of

distributed systems.

The state-of-the-art rule-based or heuristics resource man-

agement solutions have become inadequate in modern dis-

tributed computing platforms. The RMS policies need to

deal with massive scale, heterogeneity, and varying workload

requirements. As a result, we believe that AI techniques

and tools can be widely utilised in numerous RMS tasks,

including monitoring, resource provisioning, scheduling, and

many others. Such approaches are highly adaptive and better

suited to deal with the resource management complexities,

enabling optimised resource management from processor to

middleware platforms, and application management.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] Norton, “The future of iot: 10 predictions about the internet of
things,” https://us.norton.com/internetsecurity-iot-5-predictions-for-the-
future-of-iot.html, 2019.

[3] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research Advances
in Cloud Computing. Springer, 2017, pp. 1–20.

[4] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson et al., “An open-source benchmark suite
for microservices and their hardware-software implications for cloud
& edge systems,” in Proceedings of the 24th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2019, pp. 3–18.

[5] A. V. Dastjerdi and R. Buyya, “Fog computing: Helping the internet
of things realize its potential,” Computer, vol. 49, no. 8, pp. 112–116,
2016.

9



[6] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, I. Stoica et al., “Above the clouds: A berkeley
view of cloud computing,” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, vol. 28, no. 13, p.
2009, 2009.

[7] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai,” arXiv
preprint arXiv:1907.10597, 2019.

[8] D. Amodei and D. Hernandez, “Ai and compute,”
https://blog.openai.com/ai-and-compute, 2018.

[9] G. Giambene, S. Kota, and P. Pillai, “Satellite-5g integration: A network
perspective,” IEEE Network, vol. 32, no. 5, pp. 25–31, 2018.

[10] S. Russell and P. Norvig, Artificial intelligence: a modern approach.
Prentice Hall, 2002.

[11] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan,
B. Varghese, E. Gelenbe, B. Javadi, L. M. Vaquero, M. A. Netto et al.,
“A manifesto for future generation cloud computing: Research directions
for the next decade,” ACM Computing Surveys (CSUR), vol. 51, no. 5,
pp. 1–38, 2018.

[12] R. Bianchini, M. Fontoura, E. Cortez, A. Bonde, A. Muzio, A.-M.
Constantin, T. Moscibroda, G. Magalhaes, G. Bablani, and M. Russi-
novich, “Toward ml-centric cloud platforms,” Communications of the
ACM, vol. 63, no. 2, pp. 50–59, 2020.

[13] J. Dean, “Machine learning for systems and systems for machine
learning,” in Presentation at 2017 Conference on Neural Information
Processing Systems, 2017.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[15] J. Gao, “Machine learning applications for data center optimization,”
2014.

[16] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in Proceedings of the 34th
International Conference on Machine Learning. JMLR. org, 2017, pp.
2430–2439.

[17] S. Tuli, S. Ilager, K. Ramamohanarao, and R. Buyya, “Dynamic schedul-
ing for stochastic edge-cloud computing environments using a3c learning
and residual recurrent neural networks,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[18] G. Ayers, N. P. Nagendra, D. I. August, H. K. Cho, S. Kanev,
C. Kozyrakis, T. Krishnamurthy, H. Litz, T. Moseley, and P. Ran-
ganathan, “Asmdb: understanding and mitigating front-end stalls in
warehouse-scale computers,” in Proceedings of the 46th International
Symposium on Computer Architecture, 2019, pp. 462–473.

[19] C. Cummins, P. Petoumenos, Z. Wang, and H. Leather, “End-to-end
deep learning of optimization heuristics,” in Proceedings of the 26th
International Conference on Parallel Architectures and Compilation
Techniques (PACT). IEEE, 2017, pp. 219–232.

[20] I. A. Cano, “Optimizing distributed systems using machine learning,”
Ph.D. dissertation, University of Washington, Seattle, USA, 2019.

[21] I. Portugal, P. Alencar, and D. Cowan, “A survey on domain-
specific languages for machine learning in big data,” arXiv preprint
arXiv:1602.07637, 2016.

[22] A. Toma, J. Wenner, J. E. Lenssen, and J.-J. Chen, “Adaptive quality
optimization of computer vision tasks in resource-constrained devices
using edge computing,” in Proceedings of the 19th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGRID),
2019, pp. 469–477.

[23] J. Y. Lee, S. V. Mehta, M. Wick, J.-B. Tristan, and J. Carbonell,
“Gradient-based inference for networks with output constraints,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 4147–4154.

[24] A. B. Arrieta, N. Dı́az-Rodrı́guez, J. Del Ser, A. Bennetot, S. Tabik,
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