
The Journal of Systems & Software 184 (2022) 111124

S
N
a

b

c

d

e

f

g

h

i

M
j

Q

(
(
(
(
(

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

HUNTER: AI based holistic resourcemanagement for sustainable cloud
computing✩

Shreshth Tuli a, Sukhpal Singh Gill b,∗, Minxian Xu c, Peter Garraghan d, Rami Bahsoon e,
chahram Dustdar f, Rizos Sakellariou g, Omer Rana h, Rajkumar Buyya i, Giuliano Casale a,
icholas R. Jennings a,j

Department of Computing, Imperial College London, UK
School of Electronic Engineering and Computer Science, Queen Mary University of London, UK
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
School of Computing and Communications, Lancaster University, UK
School of Computer Science, University of Birmingham, UK
Distributed Systems Group, Vienna University of Technology, Austria
Department of Computer Science, University of Manchester, UK
School of Computer Science and Informatics, Cardiff University, UK
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of
elbourne, Australia
Loughborough University, UK

a r t i c l e i n f o

Article history:
Received 3 September 2021
Accepted 11 October 2021
Available online 22 October 2021

Keywords:
Holistic resource management
Energy-efficiency
Cloud computing
Artificial intelligence
Thermal management

a b s t r a c t

The worldwide adoption of cloud data centers (CDCs) has given rise to the ubiquitous demand for
hosting application services on the cloud. Further, contemporary data-intensive industries have seen
a sharp upsurge in the resource requirements of modern applications. This has led to the provisioning
of an increased number of cloud servers, giving rise to higher energy consumption and, consequently,
sustainability concerns. Traditional heuristics and reinforcement learning based algorithms for energy-
efficient cloud resource management address the scalability and adaptability related challenges to
a limited extent. Existing work often fails to capture dependencies across thermal characteristics of
hosts, resource consumption of tasks and the corresponding scheduling decisions. This leads to poor
scalability and an increase in the compute resource requirements, particularly in environments with
non-stationary resource demands. To address these limitations, we propose an artificial intelligence
(AI) based holistic resource management technique for sustainable cloud computing called HUNTER.
The proposed model formulates the goal of optimizing energy efficiency in data centers as a multi-
objective scheduling problem, considering three important models: energy, thermal and cooling.
HUNTER utilizes a Gated Graph Convolution Network as a surrogate model for approximating the
Quality of Service (QoS) for a system state and generating optimal scheduling decisions. Experiments on
simulated and physical cloud environments using the CloudSim toolkit and the COSCO framework show
that HUNTER outperforms state-of-the-art baselines in terms of energy consumption, SLA violation,
scheduling time, cost and temperature by up to 12, 35, 43, 54 and 3 percent respectively.

© 2021 Elsevier Inc. All rights reserved.
✩ Editor: J.C. Duenas.
∗ Correspondence to: School of Electronic Engineering and Computer Science,
ueen Mary University of London, London, E1 4NS, UK.

E-mail addresses: s.tuli20@imperial.ac.uk (S. Tuli), s.s.gill@qmul.ac.uk
S.S. Gill), mx.xu@siat.ac.cn (M. Xu), p.garraghan@lancaster.ac.uk
P. Garraghan), r.bahsoon@cs.bham.ac.uk (R. Bahsoon), dustdar@dsg.tuwien.ac.at
S. Dustdar), rizos@manchester.ac.uk (R. Sakellariou), ranaof@cardiff.ac.uk
O. Rana), rbuyya@unimelb.edu.au (R. Buyya), g.casale@imperial.ac.uk
G. Casale), n.r.jennings@lboro.ac.uk (N.R. Jennings).
ttps://doi.org/10.1016/j.jss.2021.111124
164-1212/© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Cloud computing has proven to be a reliable, cost-effective and
scalable computing service choice to host and deliver software so-
lutions for diverse industrial applications (Berl et al., 2010). Many
businesses have migrated to cloud data centers (CDCs) to take
advantage of on-demand, elastic and scalable resource provision-
ing, saving companies on capital investments and maintenance
of in-house infrastructure (Shuja et al., 2016). The plethora of
deployment choices offered by most cloud providers allows users
to customize resources according to their objectives. However,

https://doi.org/10.1016/j.jss.2021.111124
http://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2021.111124&domain=pdf
mailto:s.tuli20@imperial.ac.uk
mailto:s.s.gill@qmul.ac.uk
mailto:mx.xu@siat.ac.cn
mailto:p.garraghan@lancaster.ac.uk
mailto:r.bahsoon@cs.bham.ac.uk
mailto:dustdar@dsg.tuwien.ac.at
mailto:rizos@manchester.ac.uk
mailto:ranaof@cardiff.ac.uk
mailto:rbuyya@unimelb.edu.au
mailto:g.casale@imperial.ac.uk
mailto:n.r.jennings@lboro.ac.uk
https://doi.org/10.1016/j.jss.2021.111124

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

t
4
r
s
r
t

c
c
h
c
a
i
e
d
s
e
m
h
2
s
c

a
l
t
p
d
a
m
i
o
w
h
n
a
m
e
l
r
j
h
r
c
r
d

he rise of AI and Internet of Things (IoT) applications in Industry
.0 (Chun et al., 2018) has led to an increase in the overall
equirements of cloud resources. In particular, cloud providers,
uch as Amazon, Microsoft and Google, have witnessed heavy
eliance and increase in the number of cloud data centers to fulfill
he increasing demands of users (Wankhede et al., 2020).

A large amount of energy is required to run these cloud data
enters efficiently. Specifically, there is a need to manage the
loud resources effectively to lower the energy consumption and
elp reduce the cost and carbon footprints. This demand often
omes with high energy consumption, a major part of which is
ttributed to the cooling costs (Shuja et al., 2016). The cooling
nfrastructure of a CDC can consume almost the same level of
nergy as the computing nodes themselves (Pakbaznia and Pe-
ram, 2009). Major public cloud providers need to invest in large
cale cooling infrastructures, making it an expensive exercise (Gill
t al., 2019). Producing holistic energy-aware models for resource
anagement, that consider both cooling and computational costs,
as been acknowledged as an important open problem (Gill et al.,
019). Specifically, the research gap presents a need for task
cheduling in CDCs that considers the energy, thermal and cooling
osts as optimization objectives (Shuja et al., 2016).
Challenges. The problem of providing holistic resource man-

gement for sustainable cloud computing is fundamentally chal-
enging because the relationship between energy consumption,
he computational infrastructure and the cooling system is com-
lex. Another challenge is the coordination of the scheduling
ecisions for different tasks that considers both computing power
nd cooling power in tandem. Another factor to consider in
inimizing energy consumption is the reduction in resource

ntensive or thermal hotspots that can degrade the performance
f the system (Gill et al., 2019). Consequently, as non-stationary
orkloads are required to be serviced, the cooling systems and
ence the power and temperature metrics of hosts change dy-
amically (Chaudhry et al., 2015). Furthermore, tasks running in
datacenter may be dependent on one another. This is a com-
on case when jobs are allocated to a cloud environment with
ach job consisting of multiple independent tasks and service
evel agreements (SLAs) being defined for each job. The overall
esponse time and SLA violations would then be defined at the
ob level instead of being measured for each task. Moreover, in
ybrid public–private clouds, the host machines have different
esource capacities in terms of their CPU, RAM, disk and network
apabilities. These issues further complicate scheduling as now a
epresentation of the system also needs to capture the inter task
ependencies and host heterogeneity.
Existing solutions. Over the past few years many resource

management techniques have been proposed that target SLA
compliance and the improvement of Quality of Service (QoS)
(Shuja et al., 2016). Specific solutions that target sustainable
computing, aim at leveraging monitored metrics like energy con-
sumption and temperature of host machines (Shuja et al., 2016).
Only a few solutions also consider the energy and cost impli-
cations of cooling solutions (Gill et al., 2019). Most prior work
presents meta-heuristic algorithms (Gill et al., 2019) and deep
learning techniques (Chaudhry et al., 2015). Most state-of-the-
art models use meta-heuristic approaches like genetic algorithms
or integer linear programming (Gill et al., 2019; Akbari et al.,
2020; MirhoseiniNejad et al., 2021; Sharma and Garg, 2020;
Fareghzadeh et al., 2019). Other recent methods use reinforce-
ment learning (RL), specifically the traditional tabular models like
Q-Learning (Ran et al., 2019; Wang et al., 2021). However, such
meta-heuristic and RL techniques require several exploratory
decisions before updating their models, making it harder to
adapt quickly in highly volatile settings, considering inter-task

dependencies, thermal characteristics or converging quickly to a

2

scheduling decision (Tuli et al., 2021). All such features are crucial
for a holistic solution for sustainable scheduling (Shuja et al.,
2016).

Background and new insights. As is common in most prior
work, modeling the optimization variable, i.e. the scheduling de-
cision, as a placement matrix does not capture the inter-task
dependencies well (Zhao et al., 2021). A better approach is to use
geometric modeling of the scheduling decisions, particularly as
a graph, as it enables structure specific extraction of the system
state information. Recently proposed Artificial Intelligence (AI)
techniques, such as graph neural networks or graph encoders,
capture such geometric data very well (Ruiz et al., 2020; Wu
et al., 2020). One such network, called Gated Graph Convolution
Network (GGCN) enables aggregation of the graph node infor-
mation using convolution operations and message passing (Ruiz
et al., 2020), making it suitable to model distributed computing
network as a graph. This enables a more versatile optimization
approach that also takes into account the task hierarchy and
edge-cloud hierarchy, not considered in most prior work (Tuli
et al., 2021; MirhoseiniNejad et al., 2021). We use a GGCN model
as a surrogate of the QoS objective scores allowing us to swiftly
run placement optimization. Such a surrogate model enables us
to quickly get the QoS score for an input (scheduling decision)
without actually executing it in the physical environment, saving
us time and cost. Such deep surrogate models are commonly used
in the literature (Sharma and Garg, 2020; Wang et al., 2021; Tuli
et al., 2021).

Our contributions. In this work, we significantly extend our
previous work (Gill et al., 2019) by proposing a Holistic resoUrce
maNagemenT technique for Energy-efficient cloud computing
using aRtificial intelligence, called HUNTER. The proposed method
uses a GGCN network as a QoS surrogate to optimize the schedul-
ing decision for a hybrid public–private cloud environment. It
uses performance to power ratio as a heuristic to explore the
scheduling search space that enables to significantly reduce
scheduling time. In our previous work (Gill et al., 2019), we
proposed a holistic management technique for cloud resources
and established a relationship between replication and service
consolidation to improve the energy-efficiency and cut the carbon
footprint. However, our previous work did not deal with het-
erogeneous resources and dynamic workloads. In this work, we
extend existing thermal and energy consumption models to also
include the cooling overheads (Chaudhry et al., 2015). Further,
to prevent excessive scheduling overheads, we use performance
to power ratio as a heuristic to significantly reduce the time to
converge to a scheduling decision (Zhang et al., 2013). To adapt in
volatile scenarios, we periodically adjust the weights of the deep
surrogate model using backpropagation.

The contributions of this research work are summarized as:

• We propose a novel energy-efficient resource management
approach (HUNTER) that uses GGCN as a deep surrogate
model for quick QoS estimation and three sustainability
models, viz, thermal, energy and cooling.
• Extensive experiments on simulated (using the CloudSim

(Calheiros et al., 2011) toolkit) and physical cloud testbeds
(using the COSCO (Tuli et al., 2021) framework) show that
the proposed model outperforms state-of-the-art schedulers
for sustainable computing.
• HUNTER gives the best energy consumption, SLA viola-

tion, cost and temperature by 11.90%, 35.41%, 53.86% and
3.47% respectively. HUNTER achieves this with 42.78% lower
scheduling overheads compared to the best baseline.

The rest of the article is organized as follows. Section 2
overviews the related work. Section 3 presents the HUNTER
scheduler. Performance evaluation is carried out in Section 4 with
additional results and analysis in Section 5. Section 6 concludes
the paper and proposes future work.

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

T
C

o
r
i
o
t
h
m
a
e
2
a

able 1
omparison of HUNTER with related work (✓means that the corresponding feature is present).
Work Holistic Dynamic Technical approach Sustainability models QoS and other optimization parameters

Energy Thermal Cooling Temperature Time SLA violation rate Cost Energy

TOPSIS (Arianyan et al., 2015) ✓ Threshold based ✓ ✓ ✓ ✓
MALE (Liang et al., 2020) ✓ Memory mapping ✓ ✓ ✓ ✓
CRUZE (Gill et al., 2019) ✓ Cuckoo optimization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MITEC (Akbari et al., 2020) ✓ Genetic algorithm ✓ ✓ ✓ ✓
PADQN (Ran et al., 2019) ✓ Deep Q learning ✓ ✓ ✓ ✓
ANN (Sharma and Garg, 2020) ✓ Neural network ✓ ✓ ✓
SDAE-MMQ (Wang et al., 2021) ✓ Autoencoders ✓ ✓ ✓ ✓
HDIC (MirhoseiniNejad et al., 2021) ✓ ✓ NARX network ✓ ✓ ✓ ✓
HUNTER ✓ ✓ Surrogate modeling ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
2. Related work

A significant amount of research has been devoted to the area
f resource management in cloud computing. Table 1 summa-
izes the comparison of HUNTER with existing works based on
mportant key features. Given our scope of holistic management
f resources particularly focusing on sustainability, we classify
he state-of-the-art work into two main categories: (1) meta-
euristic methods (rows 1–3) and (2) reinforcement learning
odels (rows 4–8). The ‘holistic’ column represents whether the
pproach provides an end-to-end solution for scheduling, consid-
ring all parameters for sustainable cloud computing (Gill et al.,
019). The ‘dynamic’ column represents whether the technique
dapts on-the-fly for non-stationary environments.
Meta-Heuristic Methods. Our previous work, CRUZE (Gill

et al., 2019), aimed to reduce the total cloud energy consumption
whilst maximizing reliability of the system. It utilizes efficient
design models with respect to energy, reliability, capacity and
cooling. To generate a scheduling decision, CRUZE uses a Cuckoo
optimization approach. Another work, FECBench (Barve et al.,
2019) provides performance interference prediction models for
services of cloud providers to develop resource management
techniques. The authors have constructed a process pipeline to
construct multi-resource stressors using machine learning. To
minimize prohibitive profiling costs, the authors have explored
multi-dimensional resource metrics with minimal experimen-
tal runs using design of experiments (DoE) that significantly
minimizes prohibitive profile cost. In similar efforts, the MALE
algorithm (Liang et al., 2020) was recently introduced to min-
imize energy consumption in a cloud datacenter by reducing
memory consumption and contention. This is achieved by map-
ping memory requirements of virtual machines to cloud hosts
using a predefined best-fit criteria. Similarly, TOPSIS (Arianyan
et al., 2015) presents a set of heuristics to significantly reduce
energy consumption using thermal features that are recorded
from cooling devices and servers. This approach uses a threshold
based load-balancing technique to prevent thermal hotspots and
minimize failures due to overheating. A similar work, MITEC (Ak-
bari et al., 2020) uses a genetic algorithm to optimize scheduling
decisions and updates the energy and thermal models to tune
the fitness scores for each allocation decision. Other works in this
category propose autonomic cloud resource management mech-
anisms for the execution of batch and interactive workloads by
leveraging the multiple resource layers and host heterogeneity to
reduce energy consumption (Shuvo et al., 2021; Butt et al., 2019;
Kumar and Vivekanandan, 2019). However, most methods in this
category including CRUZE, Ella-W and GRANITE do not adapt in
volatile settings. Still, we include the CRUZE and MITEC methods
as a baseline in our experiments to represent this category.

Reinforcement Learning. In recent years, several machine
learning (ML) based schedulers have been proposed that aim to
optimize energy consumption of CDCs. Reinforcement learning
(RL) is an sub-field within ML that models the system as an
3

interactive environment using QoS parameters to dynamically
modify the scheduling policy (Sutton and Barto, 2018). One of the
most versatile RL techniques is the deep Q learning (DQL). Here,
a deep neural network is used to estimate a long-term reward
(commonly referred to as the Q value) for each state. Many
recent works, for instance PADQN (Ran et al., 2019) and SDAE-
MMQ (Wang et al., 2021), formulate the scheduling problem as a
RL problem and utilize deep Q learning to produce task placement
decisions (Zeng et al., 2019). Here, the decision is modeled as
the state of the RL system with actions as task migration or
allocation decisions. Each action changes the model state and
gives a reward in the form of a QoS score. More advanced DQL
based approaches use sophisticated neural networks to predict
the Q values for each scheduling decision. SDAE-MMQ uses a
stacked denoising autoencoder as a value network and MiniMax-
Q instead of vanilla Q-learning (Wang et al., 2021). Another
work, HDIC (MirhoseiniNejad et al., 2021), uses a nonlinear auto-
regressive network with exogenous inputs (NARX) as a value
network. Advanced neural models typically take a long time to
train and infer Q values for large-scale state inputs. Other works
directly use a deep neural network to produce a task allocation
or migration decision (Witanto et al., 2018). For instance, a recent
ANN approach uses an artificial neural network to produce a
softmax output for each task (Sharma and Garg, 2020). Taking
the argmax for each output gives us the scheduling decision
for each task. The ANN is trained using a supervised learning
framework with actions being rewarded using QoS metrics like
energy consumption and execution time. Such approaches usually
scale well with the number of tasks or hosts in the system, but are
unable to capture inter-task dependencies to efficiently handle
task placement. Moreover, Q-learning based methods are known
to be slow to adapt in volatile settings (Tuli et al., 2021). We use
the PADQN, ANN, SDAE-MMQ and HDIC methods as baselines in
our experiments as these are empirically the best methods this
category.

These approaches focus on particular perspectives of cloud
resources management, e.g. computing or network. Unlike these
works, our approach considers resource management in a holistic
manner by considering energy, thermal and cooling characteris-
tics whilst reducing scheduling and task migration overheads.

3. The HUNTER scheduler

3.1. System model

Fig. 1 shows the system model considered in this work. Moti-
vated from prior work (Madej et al., 2020; Tuli et al., 2021), we
consider the following components of the CDC.

• Cloud Users: The users share workloads as jobs to the CDC
(more details in Section 3.2). The data is collected using IoT
sensors and passed on to the CDC using gateway devices like
smartphones and tablets (Tuli et al., 2021).

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124
Fig. 1. System model of HUNTER.
e
T
t
i
t
i
a
j
j
q
w
t

s
m
a
m
t
a
a

f
v

3

• Cloud Workload Management Portal: A graphical user in-
terface for cloud users to interact with the system for the
submission of workloads along with their SLA and QoS de-
tails.
• Workload Manager: Initially, the workload manager pro-

cesses all the incoming workloads. An admission controller
realizes all workloads as container instances (Gill et al.,
2019; Tuli et al., 2021).
• Cloud Broker: The central cloud server that allocates incom-

ing jobs to various compute resources (cloud worker nodes).
It consists of the following components:

– Service Manager: Contains two elements, SLA and QoS
managers that manage the heterogeneous cloud ser-
vices while processing workloads. The QoS manager
contains the information about QoS requirements for
different workloads, while the SLA manager contains
the information about an agreement signed between a
cloud user and a provider based on QoS requirements.

– CDC Manager: Continually monitors the resource uti-
lization of all active tasks and hosts in the system.
It also monitors the QoS parameters (including the
energy and thermal characteristics of cloud hosts) and
also performs the task allocation and migration. In this
work, we assume tasks as container instances and task
migration as the transfer and restoration of container
checkpoints.

– Resource Manager: Decides the schedule for each task
in the system. The resource manager includes the
sustainability models for energy, thermal and cooling
parts of the CDC. For resource scheduling, the manager
contains a GGCN based surrogate model that estimates
QoS parameters. It performs training and on-the-fly
tuning of the GGCN model to adapt in non-stationary
settings. This manager also runs an exploration strat-
egy that checks the QoS scores for a set of allocations
and chooses the best one as the scheduling decision
(more details in Section 3.5).

• Cloud Hosts: The cloud broker is connected to a hetero-
geneous set of worker nodes. Some nodes are present in
the same Local Area Network (LAN) as the broker, called
the private cloud. Others are present in a geographically
distant location and connected using a virtual LAN (VLAN).
As is common practice, we assume that private-cloud nodes
are resource constrained but offer low latency services, and
public-cloud nodes have abundant resources but have high

communication latency. r

4

The HUNTER scheduler resides as the Resource manager in the
Cloud Broker, taking tasks as inputs from the Workload Man-
ager (see Fig. 1). HUNTER uses resource metrics from the Re-
source Monitor and executes scheduling decision through Con-
tainer Orchestration (as tasks are realized as containers in our
system).

3.2. Workload model and problem formulation

As common in prior work, we assume that generating schedul-
ing decisions is a discrete-time control problem (Tuli et al., 2021;
Basu et al., 2019). We divide the timeline into equal duration
intervals, with the tth interval denoted as It (starting from i = 0).
We assume a fixed number of host machines and denote the set of
cloud hosts by H . The workloads are in the form of jobs Jt , where
ach job ji ∈ Jt is composed of multiple tasks ji = {t0, . . . , t|ji|}.
here are no precedence constraints among tasks that belong to
he same job, but the QoS metrics are calculated at the job level
nstead of the task level. Thus, it is important to consider inter-
ask dependencies while scheduling. All new jobs created at the
nterval It are denoted as Nt , with all active jobs being denoted
s At . A job is considered to be active if at least one task of that
ob is being executed in the cloud environment. If no task of a job
∈ Nt can be allocated to a cloud node then it is added to a wait
ueue Wt . All created jobs that are not active and are not in the
ait queue are considered to be completed and we can calculate
heir metrics like response time and SLA violation.

We consider the problem of maximizing the QoS objective
core accumulated across all intervals in a bounded time experi-
ent. We denote the QoS score for interval It by Ot and consider
total n intervals in an experiment. We denote the utilization
etrics of all hosts in interval It−1 as Ut . Now using Ut , we need

o predict a scheduling decision St . All tasks for jobs in Nt∪Wt∪At
re called feasible tasks. Thus the problem can be formulated
s:

maximize
St

n∑
t=0

Ot

subject to ∀ t, St : Pt ∪ Qt → H,

∀ t, Pt = set of feasible tasks in Nt ∪Wt ∪ At ,

∀ t,Qt = set of active tasks in the system

(1)

In the rest of the discussion we consider these symbols only
or a single interval and drop the t subscript for notational con-
enience.

.3. Sustainability models

In this work, to decouple the different aspects of sustainable

esource management (Gill et al., 2019), we have designed three

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

d
w
w

3

t
t
e

E

c
t

E

w
t
p
i
s

3

C
r
u
f

T

w
m
(
a
t

m

3

g
W
t
c

ifferent models: energy, thermal and cooling. For completeness,
e reproduce the formulae from our prior work (Gill et al., 2019),
ith necessary adaptations for the new formulation.

.3.1. Energy model
This model is designed to encapsulate all parameters related

o the energy consumption, ranging from compute devices to
he cooling components (MirhoseiniNejad et al., 2020). The total
nergy of a CDC is calculated as

Total = EComputing + ECooling. (2)

The computing system consists of hosts and its energy con-
sumption includes that of the different components like CPU,
RAM, disk, network and peripherals. Thus, EComputing can be de-
fined as

EComputing = EProcessor + EStorage + EMemory + ENetwork + EExtra. (3)

Processor. Here, EProcessor represents the processor’s energy
consumption, which is calculated by adding the idle and dynamic
consumption of all cores. Thus,

EProcessor =
cores∑
r=1

Er
dynamic + Er

idle, (4)

where Er
dynamic and Er

idle are the dynamic and idle energy con-
sumption of the rth core. Here, Edynamic is calculated using

Edynamic =
E linear
dynamic + Enon-linear

dynamic

2
. (5)

E linear
dynamic is calculated as

E linear
dynamic = CV 2f , (6)

where C is CPU capacitance, f is CPU clock frequency, and V is
CPU voltage. Enon-linear

dynamic is calculated using

Enon-linear
dynamic (hj) = µ1 · Uj + µ2 · U2

j , (7)

where µ1 and µ2 are non-linear model parameters and Uj is CPU
utilization of host hj.

Storage. EStorage represents the energy consumption of storage
devices to store data. The data read and write operations account
for the energy consumption in such devices

EStorage = EReadOperation + EWriteOperation + EIdle. (8)

EMemory represents the energy consumption of the main memory
(RAM/DRAM) and cache memory (SRAM), which is calculated
using

EMemory = ESRAM + EDRAM. (9)

Network. ENetwork represents the energy consumption of net-
working equipment such as routers, switches and gateways, LAN
cards, etc., and is calculated as

ENetwork = ERouter + ESwitches + EGateways + ELANcards. (10)

Peripherals. EExtra represents the energy consumption of other
parts, including the current conversion loss and others and is
calculated as

EExtra = Emotherboard +
∑
f∈F

E f
connector (11)

where Emotherboard is energy consumed by motherboard(s) and∑
f∈F E

f
connector is energy consumed by a connector (port) running

at the frequency f, where the set of port frequencies is denoted
by F .
5

Fig. 2. GGCN based surrogate model of HUNTER. The three inputs to the model
and the graph structure are shown in red. Feed-forward and graph convolution
operations are shown in blue and purple respectively. All activations are shown
in green and all data structures are shown in gray. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

3.3.2. Cooling model
In the cooling model, ECooling denotes the energy consumed by

ooling devices to maintain the temperature of a cloud datacen-
er, which is calculated using

Cooling = EAC + ECompressor + EFan + EPump, (12)

here EAC is the energy consumption of the air-conditioner inside
he cloud-datacenter, ECompressor is the energy used by the com-
ressor, EFan is that of the fans attached to the radiators and EPump
s that of the pump within the all-in-one (AIO) water cooling
olution.

.3.3. Thermal model
To design the thermal model, we use the Computer Room Air

onditioning (CRAC) model and RC (where R and C are thermal
esistance (k/w) and heat capacity (j/k) of the host respectively)
sed as a time-constant to estimate the temperature of the CPU
or each host (Tcu) (Gill et al., 2019; Chaudhry et al., 2015). Thus,

cu = PR+ Tempinlet + Tinitial ∗ e−RC , (13)

here the inlet temperature (Tempinlet) is calculated using CRAC
odel (Tcu); the RC model is used to calculate CPU temperature

TCPU); P is the dynamic power of host. Tinital is the initial temper-
ture of the CPU, which is taken as the ambient temperature of
he datacenter (Chaudhry et al., 2015).

The detailed description of the thermal model and the various
etrics is given in our previous works (Gill et al., 2019).

.4. GGCN based surrogate model

As described in Section 1, we model the inputs of our surro-
ate model using a geometric graph representation (see Fig. 2).
e form two graphs D and S. The former represents the inter

ask dependencies and the latter represents the bi-partite graph
orresponding to the scheduling decision. D = (V , E), where V
D D D

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

d

u
j

t
a
c
T
D

s
E
d
t
m
t
U
i
l
s
t
o
b
t
s
g

H

1
s
i
r
a
c
m
a
u
d

c

s
h

T
[

m
e
t
G
t

3

r
s
g
t
t
c
r
c
g
S
s
a
f

N
c
a

c
s
u
i

n

enotes the tasks as nodes and ED denotes the inter-task depen-
dency in terms of the jobs they belong to as undirected edges.
Each task has a feature vector corresponding to the Instructions
per Second (IPS), RAM, Disk and Bandwidth consumption. The
RAM, Disk and Bandwidth consumption also include the read
and write speeds of such tasks. Each edge (tp, tq) in ED is an
nordered pair such that tasks tp and tq belong to the same job
∈ J . S = (VS, ES) is a bi-partite graph with nodes of two types:

tasks and hosts. The edges of the graph (tp, hr) ∈ ES correspond
o the allocation decision of the current state, where task tp is
llocated to host hr . Similar to D, each task has a feature vector
orresponding to the IPS, RAM, Disk and Bandwidth consumption.
he feature vectors of the host machines consist of the IPS, RAM,
isk and Bandwidth consumption and capacities.
To perform graph convolutions, we combine S and D into a

ingle heterogeneous graph, where the edge set now becomes
D ∪ ES , such that each edge now also has an edge type (task
ependence or allocation relation). This hetero-graph is then sent
o the GGCN model to run convolution operations. The GGCN
odel executes convolutions across the edges of the graph where

he convolution operations are weighted using a Gated Recurrent
nit (GRU). The convolution operations allow the model to share
nformation across different tasks and hosts whilst inferring a
atent representation of the scheduling decision. This information
haring helps the downstream operations to explicitly leverage
he inter-task dependencies and the implications of an allocation
r migration decision on host utilization characteristics. The GRU
ased weighting allows the model to be flexible with respect
o the extent to which the feature vectors of hosts and tasks
hould be combined. Formally, the message passing leads to
raph-to-graph updates

r0i = Tanh (W ei + b) ,

xki =
∑
j∈n(i)

W krk−1j ,

rki = GRU
(
rk−1i , xki

)
.

(14)

ere, W , b are parameters of the feed-forward layer within the
GGCN network, ei is the feature-vector (described previously) of
a node i ∈ VD ∪ VS in the heterogeneous graph and k varies from

to p. Also, the messages for task i are aggregated over one-
tep connected neighbors n(i) over the p convolutions, resulting
n an embedding rpi for each task node in the graph. The stacked
epresentation for all tasks is represented as rp. Convolutions
cross these edge types help as the dependence of task utilization
haracteristics with the allocated hosts is the maximum and
uch lower for hosts on which the task is not allocated. This
llows the scheduling decision to properly manage task and hosts
tilization characteristics while also considering the changing
emands of tasks. We generate the graph encoding eS by passing

rp through a feed-forward layer as

eS = FeedForward(rp). (15)

We also capture the thermal-characteristics of the host ma-
hines in terms of their current temperatures (Tcu) and the power
to load profile1 (see Fig. 3 for a sample performance to power
profile). We model the thermal profile and current temperature
of all hosts as vectors (Temp) and pass through a FeedForward
network

eT = ReLU(FeedForward(ReLU(FeedForward(Temp)))). (16)

We then use Bahdanau style self-attention (Bahdanau et al.,
2015) to generate an estimate of the QoS objective. This allows

1 We use Standard Performance Evaluation Corporation (SPEC) power con-
umption models to generate power to load performance curves of our cloud
osts. URL: https://www.spec.org/power_ssj2008/.
 M

6

Fig. 3. A sample power to load curve for a cloud server. Reproduced with
permission. Source: SPEC benchmark power profile repository https://www.spec.
org/power_ssj2008/results/res2021q2/power_ssj2008-20210528-01098.html.

the model to focus only on those hosts that can potentially
become thermal hotspots.

Ô = Sigmoid(FeedForward(eS · Softmax(eT))). (17)

he sigmoid operator allows us to generate an output within
0, 1] to allow training with normalized QoS scores. The GGCN
odel is agnostic to the QoS objective in general; however, in our
xperiments we use energy, temperature and SLA violation rates
o train and fine-tune the model (see Section 3.5). To train the
GCN model, we use the Mean-Square-Error (MSE) loss between
he predicted and ground-truth QoS scores.

.5. Using GGCN model for scheduling

We now present the modus operandi of the proposed HUNTER
esource scheduling technique using the GGCN network as a
urrogate model (summarized in Algorithm 1). Fig. 4 shows a
raphical representation of the HUNTER scheduler. The input for
he scheduler is the resource utilization metrics of the hosts and
asks that need to be allocated or migrated and the thermal
haracteristics of the cloud hosts. These are obtained from the
esource monitoring and the thermal management services in the
loud broker (see Fig. 1). These metrics are then combined to
enerate the S and D graphs and the T vector as described in
ection 3.4. The allocation in the S graph is obtained from the
cheduling decision of the previous interval for It such that t > 0
nd a random allocation otherwise (line 2 in Algorithm 1). Thus,
rom the input [S,D, T] we obtain an estimate of the QoS score
Ô. Now to generate a scheduling decision, we choose subsets of
all tasks and hosts, each of size K . We sort the tasks based on the
power consumption of their hosts, breaking ties using the CPU
utilization and consider top K such tasks (line 4 in Algorithm 1).
ow, for each such high energy-resource consumption task, we
hoose a target host where it can be migrated. To do this, we sort
ll hosts in terms of the performance to power ratio and choose the

bottom K hosts (line 5 in Algorithm 1). Now, we consider all K×K
ombinations and choose the host h that maximizes the objective
core estimate obtained from the surrogate model. We denote the
pdated S graph with task-host allocation (t, h) by S(t, h) (line 7
n Algorithm 1).

To choose the value of the K parameter, we leverage the
etwork transfer constraints. Consider the router bandwidth (in

B/s) in a CDC to be denoted by B and the size of a scheduling

https://www.spec.org/power_ssj2008/
https://www.spec.org/power_ssj2008/results/res2021q2/power_ssj2008-20210528-01098.html
https://www.spec.org/power_ssj2008/results/res2021q2/power_ssj2008-20210528-01098.html

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

o

K

I
t
m

w
a
o
e
i

t
t
a
o
7
c

Fig. 4. Graphical representation of the GGCN model.
w
c
f
c
e
t
w
u
s
a
o
c
i

a
c
|

K
o
C
O
a
i
t
t

4

c
M

Algorithm 1 HUNTER Scheduler
Require:

Pre-trained GGCN model f
Convergence threshold ϵ

Consideration parameter K ; Learning rate γ

1: procedure HUNTER(s)
2: S,D, T ← ResourceMonitor()
3: Ô← f ([S,D, T])
4: Tasks← get top K tasks based on power consumption
5: Hosts ← get bottom K hosts based on performance to

power ratio
6: for (t ∈ Tasks) do
7: host← argmaxh∈Hosts f ([S(t, h),D, T])
8: if (allocation of t to h is feasible)
9: Allocate or migrate t to h.

10: else
11: Add t to wait queue.
12: end if
13: end for
14: O = 1− (α · AEC + β · AT + γ · SLAV)
15: Datapoint← ([S,D, T],O)
16: Backpropagate f using Datapoint and MSE loss
17: end procedure

interval (in seconds) by IS . Also, let us denote the minimum size
f a container in the CDC in MB by SC . Then we define

=
B× IS
SC

. (18)

ntuitively, this denotes the upper-bound of the number of tasks
hat can be migrated in the scheduling interval. If we try to
igrate more than K tasks in any decision, the tasks would

take more than IS seconds, rendering the migration useless as
new decisions are taken every IS seconds. For a typical setting
ith bandwidth of 100-MB/s, scheduling interval of 300-seconds
nd container size of 3000-MB, K = 10 allowing us to check
nly 100 task-to-host allocations. This can be significantly more
fficient than checking all task-host combinations, which may be
n thousands.

The motivation behind using the performance-to-power ratio
o sort hosts is as follows. Consider the sample performance
o power ratio profile shown in Fig. 3. This ratio indicates the
mount of CPU computational performance we get for each watt
f power consumed. It is apparent that this ratio is highest for
0% CPU load and reduces for higher or lower CPU loads. Most
loud servers have similar trends in their power profiles, with
7

a sweet spot around 70%–80%. Higher CPU load can be easily
avoided by capping the constraint checker in the scheduler to
not allocate tasks to host with 80% CPU load. However, choosing
the optimal target host for lower CPU loads is challenging due
to the heterogeneity of the host power profiles. This key insight
of using the performance-to-power ratio allows us to minimize
the number of migrations as well as the time to explore different
scheduling options.

Further, to adapt in volatile settings, at every scheduling in-
terval we train the neural approximator using back-propagation.
To do this, we obtain the latest QoS objective score from the
QoS manager of the cloud broker and fine-tune the weights of
the GGCN model by back-propagating the MSE loss between the
predicted and true QoS scores. The ground-truth QoS score is
obtained as (lines 14–16 in Algorithm 1)

O = 1− (α · AEC + β · AT + γ · SLAV), (19)

here AEC , AT and SLAV denote the average normalized energy
onsumption, average normalized temperature and SLA violation
or the leaving tasks in the previous interval. Here, α, β, γ are
onvex-combination weights. To minimize the metrics of en-
rgy, temperature and SLA violations, we maximize O. Continuous
raining of the model allows it to quickly adapt to dynamic
orkloads and also consider changing scheduling decisions and
se these as well to consider task migrations and allocations. As
hown in line 8 in Algorithm 1, for each container, we check if
llocation to the host corresponding to the maximum QoS score
f the GGCN model is feasible, if yes we allocate/migrate the
ontainer to this host else add it to the wait queue to be processed
n the next interval.

Computational Complexity. Assuming that the inference of
deep neural network is an O(1) operation, we provide the

omputational complexity in the Big-O notation. Assume p =
P ∪ Q | active tasks and q = |H| hosts in the system. Selecting
≤ q hosts and tasks from these sets based on the previ-

usly described metric is an O(q log K) and O(p log K) operation.
hecking all K × K task to host allocations is a O(K 2) operation.
verall, the computational complexity of checking the various
llocation choices is O(K 2

+ q log K + p log K) = O(p + q) as K
s a fixed constant (hyperparameter). This is significantly better
han checking all possible task-host combinations, viz, O(pq) in
he typical case where p > q.

. Performance evaluation

We now describe how we evaluate the HUNTER scheduler and
ompare it against the state-of-the-art baselines: PADQN, CRUZE,
ITEC, ANN, SDAE-MMQ and HDIC as described in Section 2.

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

4

l
2
t
e
F
p
c

W
a
m
l
t
i
a
s
B

4

a
C
A
w
g
n
e
v
u
A
a
t

f
e
t
c
p
a
c
t
c
r
t
a
T
B
w
i
c
o

4

t
i
W
m
c
a
{

l
s
a
a
m
w
1

4

l

4

w
s
a
S
g
a
i
H
t
S
n
t
F
t
c
o
s

.1. Evaluation setup

We have tested our proposed approach in both real and simu-
ated cloud environments using the COSCO framework (Tuli et al.,
021) and the CloudSim toolkit (Calheiros et al., 2011). We keep
he size of the scheduling interval as 5 min or 300 s and run our
xperiments for 100 scheduling intervals to generate QoS results.
or statistical significance, we average over 5 runs. The first is a
hysical setup where we have used 10 Azure VMs in a distributed
loud setup as described below.

• Private Cloud. 6 Azure machines, four of type B2s (dual-
core CPU with 4 GB RAM) and two of type B4 ms (quad-core
with 16 GB RAM). They were instantiated in the London, UK
Azure datacenter.
• Public Cloud. 4 Azure machines, two of type B4 ms (quad-

core with 16 GB RAM) and two of type B8 ms (octa-core
with 32 GB RAM). They were instantiated in the Virginia,
USA Azure datacenter.

e also tested on a simulated platform with 5 times the instances
s described above to give a total of 50 hosts. The former allows
ore accurate testing of our approach while the latter allows

arge-scale experimentation. We use the SPEC power benchmarks
o determine the energy consumption of the datacenters as done
n prior work (Tuli et al., 2021). We used the R and C values in (13)
s 0.5 and 0.03 based on prior work (Wolf, 2016). We followed the
ame implementation details as in prior work (Tuli et al., 2021;
asu et al., 2019; Alwasel et al., 2020).

.2. Workloads

For our physical experiments we use the DeFog benchmarking
pplications for their diverse and non-stationary workloads (Mc-
hesney et al., 2019). DeFog consists of various compute intensive
I applications like Yolo, PocketSphinx and Aeneas. The include
orkloads in the form of object detection in images, natural lan-
uage processing, audio-text synchronization and speech recog-
ition. We encapsulate these workloads as Docker containers to
xecute in our cloud servers. At the start of each scheduling inter-
al we create Poisson(λ) jobs with λ = 1.2. The jobs are sampled
niformly from the three applications of Yolo, PocketSphinx and
eneas. We divide the input batch of each job into 3 to 5 parts
nd send them to separate containers (each container acts as a
ask).

In our simulated setup, we use the popular dynamic traces
rom the BitBrain dataset to emulate a large-scale execution (Shen
t al., 2015). The dataset consists of performance metrics of more
han a thousand hosts in a heterogeneous CDC. These traces are
ollected from the Alibaba distributed datacenter, which is very
opular for providing services to perform business computations
nd manage hosting of industrial applications. Insurers (Aegon),
redit card operators (ICS) and many major banks (ING) are
he main customers of this datacenter. Further, various financial
omputing applications (e.g. Algorithmics and Towers Watson)
elated to credit worthiness domain are hosted here. Moreover,
races are divided into two categories: Rnd and fastStorage. To
llow diverse workloads, we use both traces in our experiments.
hese traces consist of time-series models of CPU, RAM, Disk and
andwidth utilization characteristics. As in the physical setup,
e create jobs using the Poisson(5) distribution with each job

s sampled uniformly at random from the Rnd and fastStorage
ategories and has 3 to 5 tasks. The λ parameter is chosen based
n prior work (Tuli et al., 2021).
8

.3. Model training

The GGCN model takes as an input, the utilization matrix of
he active tasks and the capacity matrix of the target hosts. This
ncludes the metrics like CPU, RAM, Disk and Network Bandwidth.
e also include the SLA deadline as part of the task utilization
atrix. To train the model we first run a random scheduler to
over as much of the state space as possible. We run this for
1000 scheduling intervals and create a dataset of the form

([S,D, T],O)}.
Details for Reproducibility: We pass the input through a 4

ayer GGCN model with 64 nodes each and initialize the hidden
tate of the GRU by a zero vector. We use AdamW optimizer with
learning rate of 10−4 to train our model and use early-stopping
s our convergence criterion (Loshchilov and Hutter, 2018). All
odel training and experiments were performed on a system
ith configuration: Intel i7-10700K CPU, 64GB RAM, Nvidia GTX
060 and Windows 11 OS.

.4. Evaluation metrics

To compare the proposed HUNTER method against the base-
ine methods, we use the following metrics:

• Energy consumption given as Etotal in (2).
• SLA Violations which is given as∑

i SLAVi∑
i ji

,

where SLAVi is the 1 if SLA of job ji is violated else 0.
• Average Response Time which is the mean response time for

all completed jobs in an experiment
• Datacenter Temperature given by (13).
• Cost is given by Time × Price. We use the Microsoft Azure

pricing calculator to obtain the cost of execution per hour
(in US Dollars) https://azure.microsoft.com/en-gb/pricing/
calculator/.
• Fairness is given by the Jain’s fairness index (Tuli et al.,

2021).
• Scheduling Time is the average time to generate a scheduling

decision.
• Wait Time is given as the average time a job spends in the

waiting queue.
• Migration Time is the average time a task spends in container

migration.

.5. QoS Results

Figs. 5 and 6 show the QoS parameters on the COSCO frame-
ork and CloudSim simulator respectively. Figs. 5(a) and 6(a)
how the energy consumption in a scheduling interval aver-
ged over the number of tasks. Among the baselines, HDIC and
DAE-MMQ provide the most energy efficient policies. As we
o from 10 to 50 hosts, the gaps in the energy consumption
mong schedulers increase, showing how robust the models are
n minimizing energy consumption in large-scale setups. Overall,
UNTER gives the lowest energy consumption, reducing by up
o 11.90% compared to the best baselines (HDIC in physical and
DAE-MMQ in simulated testbeds). This is because of the high
umber of tasks that complete execution in case of HUNTER and
he use of the performance-to-power ratio (Figs. 5(g) and 6(g)).
igs. 5(b) and 6(b) show that HUNTER gives the lowest average
emperature for both setups, giving a reduction of up to 3.47%
ompared to the best baselines, ∼3 ◦C (HDIC). This is because
f the thermal-aware attention operation in the GGCN based
urrogate model that allows HUNTER to emphasize scheduling

https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/calculator/

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

f
a
m
w
h
u
p
t
a
t
w
c
s
s
b
p
t
Q
s
F
m
u
h
s
b
t
l

Fig. 5. Comparison of HUNTER against baselines on physical setup with 10 hosts.
or hosts that could act as thermal hostpots. Figs. 5(c), 5(d), 6(d)
nd 6(d) show the CPU and RAM utilization of all models. All
odels have similar resource utilization metrics, with some cases
here the RAM consumption in the HUNTER approach is quite
igh. Checking the execution traces in case of the HUNTER sched-
ler shows that this is due to the strict load-balancing rules to
refer keeping the number of containers in hosts to maintain
he highest performance to load. Migrations based on such an
pproach can, in rare cases, lead to slight resource contention at
he cost of minimizing energy or temperature. This is primarily
hen there are sudden spikes in task resource demands, having a
ascading effect on other tasks running in the same host. Avoiding
uch cases is left as part of the future work. Figs. 6(e) and 11(d)
how that the proposed approach is able to reduce SLA violations
y up to 35.41% compared to the best baselines (HDIC). This is
rimarily due to the accurate QoS objective prediction, allowing
he model to minimize the SLA violation rates by checking the
oS estimate for several placement choices. Figs. 5(f) and 6(f)
how that all models have comparable fairness index values.
igs. 6(h) and 11(e) show the average cost per task for each
odel. The HUNTER method has the lowest average cost giving
p to 53.86% compared to the best baseline (SDAE-MMQ). PADQN
as very high cost due to the excessive migration overheads as
hown by Figs. 5(k), 5(l), 6(k), 6(l). HUNTER like many other
aselines has low wait times (Figs. 5(j) and 6(j)). Compared to
he best baselines (HDIC and SDAE-MMQ), HUNTER has 42.78%
ower scheduling time (Figs. 5(i) and 6(i)).
9

5. Analyses

5.1. Sensitivity analysis

We now show how various models scale with the number of
workloads. The results in the previous section were time bound,
i.e., for 100 scheduling intervals. Now we show how the QoS
parameters vary with the number of workloads (see Figs. 7 and
8). Figs. 7(a) and 8(a) show the variation in the consumption of
energy with increasing number of jobs. HUNTER consumes up to
19.8% less as compared to best baseline models (HDIC and SDAE-
MMQ). Overall, the rise in energy consumption with number of
jobs for HUNTER is not as high as other baseline methods. This
is because HUNTER uses the performance to power profiles of
cloud hosts to maintain optimal performance while minimizing
energy consumption. Figs. 7(b) and 8(b) show the change in
the temperature with the variation of job quantity. The value of
temperature in HUNTER is 5.5% less than CRUZE because HUNTER
uses CRAC-based cooling management (Chaudhry et al., 2015)
that avoids overloading and underloading of resources and can
switch off idle resources automatically. Figs. 7(c) and 8(c) show
the change in the SLA violation rate with the variation of number
of jobs. The value of SLA violation rate in HUNTER is up to 42.12%
lower as compared to the HDIC baseline. Figs. 7(d) and 8(d) show
the change in the cost with the variation job count. HUNTER
gives up to 63.75% less cost as compared to CRUZE and SDAE-
MMQ. This is primarily due to the optimal performance to load
management in the HUNTER scheduler. Figs. 7(e) and 8(e) show

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124
Fig. 6. Comparison of HUNTER against baselines on simulator with 50 hosts.
Fig. 7. Sensitivity analysis of HUNTER and baselines with increasing number of workloads on physical setup with 10 hosts.
Fig. 8. Sensitivity analysis of HUNTER and baselines with increasing number of workloads on simulated setup with 50 hosts.
10

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

t
i
t
c
H
t
t

5

f
F
t
a
e
a
t
s
t
e
a
r
t
o
e
d
S
w

5

H
d
t
i

Fig. 9. Comparison of QoS metrics using the HUNTER scheduler on simulated and physical platforms.
Fig. 10. Coefficient of Variance for various metrics on the simulated platform.
he distribution of the scheduling time with the job count. There
s a sharp increase in PADQN model as DQN scales poorly with
ime (Tuli et al., 2021). HUNTER has a higher scheduling time
ompared to the heuristic based baselines: CRUZE and MITEC.
owever, compared to the best baselines in terms of energy,
emperature and cost, i.e., SDAE-MMQ and HDIC, HUNTER has up
o 56.12% lower scheduling times.

.2. Comparison between simulated and physical setups

We now compare the QoS metrics for the HUNTER approach
or the simulated (CloudSim) and physical setups (COSCO) (see
ig. 9). Clearly, all QoS parameters increase with the rise of
he number of jobs. Figs. 9(a), 9(b), 9(c), 9(d) and 9(e) show
performance comparison of simulated and physical setup for
nergy consumption, host temperature, SLA violation rate, cost
nd scheduling time. Naturally, we get higher energy consump-
ion, SLA violation rates and scheduling times for the simulated
etup as there are five times the number of hosts in that of
he physical setup. COSCO allows us to conduct more accurate
xperiments which give us less noisy fine-tuning as the model
dapts to volatile workloads. This describes why the average
ise in the temperature with the number of jobs is lower for
he physical setup. Moreover, due to the imprecise computation
f the resource utilization metrics for the tasks and hosts, the
xperiments of CloudSim simulator gives results that have high
eviation from the ones conducted on the physical platform.
calability wise we are able to show that HUNTER is able to scale
ell when the number of workloads or host machines is large.

.3. Analysis of model training and inference times

Table 2 compares the training and inference times of the
UNTER approach with the baseline methods. CRUZE and MITEC
o not have any training overheads as they run online without
raining any AI model or neural network. We also test the train-
ng time for the GGCN model. Compared to various other prior
11
Table 2
Comparison of training and inference times (in seconds) between
HUNTER and baseline methods on simulated setup with 50 hosts.
Model Training time Inference time

HUNTER 908± 12 0.88± 0.13
HDIC 1193± 68 1.12± 0.28
SDAE-MMQ 2058± 102 1.17± 0.05
ANN 102± 4 0.20± 0.01
MITEC – 0.19± 0.03
CRUZE – 0.01± 0.01
PADQN 340± 81 0.23± 0.02

works which rely on deep reinforcement learning (HDIC, SDAE-
MMQ, ANN and PADQN) that take up to 2058 ± 102 seconds,
HUNTER takes only 908 ± 12 seconds to train its model, giving
a training overhead reduction of 55.87% compared to SDAE-MMQ
and 23.88% compared to HDIC. This is negligible compare to the
discrete time interval of 300 seconds used in our orchestration
controllers and hence it is feasible to adopt the HUNTER approach
in dynamically changing environments.

When comparing the inference times, the best baselines (HDIC
and SDAE-MMQ) have a relatively high inference times of up to
1.17 s. HUNTER gives a scheduling time of 0.88 s, 24.78% lower
than these baselines.

5.4. Statistical analysis

The Coefficient of Variation (CoV) is used to analyze statistical
significance of the experiments as it measures the distribution of
the QoS metrics around the mean-value. Moreover, CoV gives an
overall analysis of HUNTER’s robustness to environment volatility.
Figs. 10(a), 10(b), 10(c), 10(d) and 10(e) show the CoV of energy
consumption, temperature, SLA violation rate, execution cost and
scheduling time with the increase in number of jobs. The range
of CoV is (0.2–0.89%) for energy consumption, (0.42–1.1%) for
SLA violation rate, (1.5–2.1%) for cost, (0.5–3.1%) for scheduling
time and (1%–6%) for temperature. HUNTER has comparatively

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

o
t
e
G
m
t
v

6

N
t
u
a
m
b
a
s
a
g
s
t
E
s
F
e
s
o

Fig. 11. Ablation Analysis of different model components of HUNTER for the simulated setup with 50 hosts. The bar graphs show absolute values. The line graphs
show the performance relative to HUNTER.
M
W

G
e
–

low CoV indicates that the model is able to handle dynamic
workloads well and is robust enough to handle environment
non-stationarity (Gill et al., 2019).

5.5. Ablation analysis

To study the relative importance of each component of the
model, we exclude every major one and observe how it affects
the performance of the scheduler. An overview of this abla-
tion analysis is given in Fig. 11. First, we consider the HUNTER
scheduler without the top-K heuristic and check all task-to-host
allocations (w/o Heuristic model). Clearly, this gives a much higher
scheduling time (Fig. 11(f)) and has worse effect on the other QoS
metrics due to its high overheads. Second, we consider a model
without the thermal-aware attention, i.e., we only use GGCN part
f the deep surrogate model (w/o Attn model). Here we see that
he average temperature increases significantly, also impacting
nergy and cost. The other model we consider is replacing the
GCN network with a completely feed-forward one (w/o GGCN
odel). Here we see a significant increase in the MSE predic-

ion error (Fig. 11(a)) leading to higher temperature, cost, SLA
iolations and energy consumption.

. Conclusions and future work

In this paper, we have proposed a Gated Graph Convolution
etwork (GGCN) based holistic resource management scheduling
echnique called HUNTER. Our scheduler enables energy-efficient
tilization of cloud servers and reduces thermal hotspots. HUNTER
chieves this by adding cooling specific energy and temperature
odels, unseen in previous approaches. Further, using a GGCN
ased deep surrogate model allows HUNTER to quickly gener-
te QoS estimates, avoiding significant costs in testing various
cheduling decisions. HUNTER uses performance to power ratio
s a heuristic to effectively balance the load on cloud hosts,
iving maximum compute power while reducing energy con-
umption. This heuristic also allows HUNTER to quickly explore
he scheduling search space and quickly converge to a decision.
xtensive experiments on both physical and simulated testbeds
how that HUNTER outperforms baselines in most QoS metrics.
urthermore, the small values of the coefficient of variation of
nergy and temperature indicate that HUNTER is efficient in re-
ource management while handling dynamic workloads. HUNTER
ptimizes five key performance parameters, viz, temperature, en-

ergy consumption, cost, SLA violation and time. The experiments
demonstrate that the HUNTER performs better than existing
AI based (HDIC, SDAE-MMQ, ANN and PADQN) and heuristic
algorithm (CRUZE and MITEC) based resource schedulers.

This work can be extended by factoring in parameters that re-
late to scalability, security and reliability and their energy ramifi-
cations. Future work may also consider how cooling management
12
can be further enhanced by capturing domain specific tactics for
cooling; IoT and Fog/Edge computing reliant domains such as
agriculture, healthcare and smart homes are among the candidate
application domains to consider. Currently, HUNTER only decides
the appropriate placement decisions for tasks; however it can be
extended to also decide the AC or fan settings in the cases of
deadline constrained or bursty workloads. Finally, HUNTER can
use the concept of serverless edge computing to effectively scale
applications.

Software availability

The code is available at https://github.com/imperial-qore/CO
SCO/tree/ggcn. The Docker images used in the experiments are
available at https://hub.docker.com/u/shreshthtuli.

CRediT authorship contribution statement

Shreshth Tuli: Conceptualization, Data curation, Investigation,
ethodology, Software, Visualization, Validation, Formal analysis,
riting – original draft. Sukhpal Singh Gill: Conceptualization,

Data curation, Investigation, Methodology, Software, Visualiza-
tion, Validation, Formal analysis, Writing – original draft.Minxian
Xu: Investigation, Methodology, Writing – review & editing. Peter
arraghan: Conceptualization, Data curation, Writing – review &
diting. Rami Bahsoon: Investigation, Methodology and Writing
review & editing. Schahram Dustdar: Formal analysis and Writ-

ing – review & editing. Rizos Sakellariou:Methodology and Writ-
ing – review & editing. Omer Rana: Visualization and Writing –
review & editing. Rajkumar Buyya: Conceptualization, Writing –
review & editing and Supervision. Giuliano Casale: Supervision,
Visualization, Writing – review & editing. Nicholas R. Jennings:
Conceptualization, Writing – original draft, Supervision, Writing
– review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://hub.docker.com/u/shreshthtuli

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

A

a
s
N
t
M
s

R

A

A

A

B

B

B

B

B

C

C

C

F

G

K

L

L

M

M

cknowledgments

Shreshth Tuli is supported by the President’s Ph.D. Scholarship
t the Imperial College London. This research work is partially
upported by the EPSRC Research Grant (EP/V007092/1), National
atural Science Foundation of China (62102408) and SIAT Innova-
ion Program for Excellent Young Researchers. The authors thank
uhammad Hassaan Anwar for his suggestions at the initial
tages of this work.

eferences

kbari, A., Khonsari, A., Ghoreyshi, S.M., 2020. Thermal-aware virtual machine
allocation for heterogeneous cloud data centers. Energies 13 (11), 2880.

lwasel, K., Jha, D.N., Hernandez, E., Puthal, D., Barika, M., Varghese, B., Garg, S.K.,
James, P., Zomaya, A., Morgan, G., et al., 2020. IoTSim-SDWAN: A simulation
framework for interconnecting distributed datacenters over software-defined
wide area network. J. Parallel Distrib. Comput. 143, 17–35.

rianyan, E., Taheri, H., Sharifian, S., 2015. Novel energy and SLA efficient
resource management heuristics for consolidation of virtual machines in
cloud data centers. Comput. Electr. Eng. 47, 222–240.

ahdanau, D., Cho, K.H., Bengio, Y., 2015. Neural machine translation by jointly
learning to align and translate. In: 3rd International Conference on Learning
Representations, ICLR 2015.

arve, Y.D., Shekhar, S., Chhokra, A., Khare, S., Bhattacharjee, A., Kang, Z., Sun, H.,
Gokhale, A., 2019. FECBench: A holistic interference-aware approach for
application performance modeling. In: 2019 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, pp. 211–221.

asu, D., Wang, X., Hong, Y., Chen, H., Bressan, S., 2019. Learn-as-you-go with
megh: Efficient live migration of virtual machines. IEEE Trans. Parallel Distrib.
Syst. 30 (8), 1786–1801.

erl, A., Gelenbe, E., Di Girolamo, M., Giuliani, G., De Meer, H., Dang, M.Q.,
Pentikousis, K., 2010. Energy-efficient cloud computing. Comput. J. 53 (7),
1045–1051.

utt, A.A., Khan, S., Ashfaq, T., Javaid, S., Sattar, N.A., Javaid, N., 2019. A cloud and
fog based architecture for energy management of smart city by using meta-
heuristic techniques. In: 2019 15th International Wireless Communications
& Mobile Computing Conference (IWCMC). IEEE, pp. 1588–1593.

alheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R., 2011.
Cloudsim: a toolkit for modeling and simulation of cloud computing envi-
ronments and evaluation of resource provisioning algorithms. Softw. - Pract.
Exp. 41 (1), 23–50.

haudhry, M.T., Ling, T.C., Manzoor, A., Hussain, S.A., Kim, J., 2015. Thermal-
aware scheduling in green data centers. ACM Comput. Surv. 47 (3),
1–48.

hun, K.W., Kim, H., Lee, K., 2018. A study on research trends of technologies for
industry 4.0; 3D printing, artificial intelligence, big data, cloud computing,
and internet of things. In: Advanced Multimedia and Ubiquitous Engineering.
Springer, pp. 397–403.

areghzadeh, N., Seyyedi, M.A., Mohsenzadeh, M., 2019. Toward holistic perfor-
mance management in clouds: taxonomy, challenges and opportunities. J.
Supercomput. 75 (1), 272–313.

ill, S.S., Garraghan, P., Stankovski, V., Casale, G., Thulasiram, R.K., Ghosh, S.K.,
Ramamohanarao, K., Buyya, R., 2019. Holistic resource management for
sustainable and reliable cloud computing: An innovative solution to global
challenge. J. Syst. Softw. 155, 104–129.

umar, G.G., Vivekanandan, P., 2019. Energy efficient scheduling for cloud
data centers using heuristic based migration. Cluster Comput. 22 (6),
14073–14080.

iang, B., Dong, X., Wang, Y., Zhang, X., 2020. Memory-aware resource manage-
ment algorithm for low-energy cloud data centers. Future Gener. Comput.
Syst. 113, 329–342.

oshchilov, I., Hutter, F., 2018. Decoupled weight decay regularization. In:
International Conference on Learning Representations.

adej, A., Wang, N., Athanasopoulos, N., Ranjan, R., Varghese, B., 2020. Priority-
based fair scheduling in edge computing. In: 2020 IEEE 4th International
Conference on Fog and Edge Computing (ICFEC). IEEE, pp. 39–48.

cChesney, J., Wang, N., Tanwer, A., de Lara, E., Varghese, B., 2019. Defog: fog
computing benchmarks. In: Proceedings of the 4th ACM/IEEE Symposium on

Edge Computing, pp. 47–58.

13
MirhoseiniNejad, S., Badawy, G., Down, D.G., 2021. Holistic thermal-aware
workload management and infrastructure control for heterogeneous data
centers using machine learning. Future Gener. Comput. Syst. 118, 208–218.

MirhoseiniNejad, S., Moazamigoodarzi, H., Badawy, G., Down, D.G., 2020. Joint
data center cooling and workload management: A thermal-aware approach.
Future Gener. Comput. Syst. 104, 174–186.

Pakbaznia, E., Pedram, M., 2009. Minimizing data center cooling and server
power costs. In: Proceedings of the 2009 ACM/IEEE International Symposium
on Low Power Electronics and Design, pp. 145–150.

Ran, Y., Hu, H., Zhou, X., Wen, Y., 2019. DeepEE: Joint optimization of job
scheduling and cooling control for data center energy efficiency using deep
reinforcement learning. In: 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS). IEEE.

Ruiz, L., Gama, F., Ribeiro, A., 2020. Gated graph recurrent neural networks. IEEE
Trans. Signal Process. 68, 6303–6318.

Sharma, M., Garg, R., 2020. An artificial neural network based approach for
energy efficient task scheduling in cloud data centers. Sustain. Comput.:
Inform. Syst. 26, 100373.

Shen, S., Van Beek, V., Iosup, A., 2015. Statistical characterization of business-
critical workloads hosted in cloud datacenters. In: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. IEEE, pp.
465–474.

Shuja, J., Gani, A., Shamshirband, S., Ahmad, R.W., Bilal, K., 2016. Sustainable
cloud data centers: a survey of enabling techniques and technologies. Renew.
Sustain. Energy Rev. 62, 195–214.

Shuvo, M.S.A., Munna, M.A.R., Sarker, S., Adhikary, T., Razzaque, M.A., Has-
san, M.M., Aloi, G., Fortino, G., 2021. Energy-efficient scheduling of small
cells in 5G: A meta-heuristic approach. J. Netw. Comput. Appl. 178, 102986.

Sutton, R.S., Barto, A.G., 2018. Reinforcement Learning: An Introduction. MIT
Press.

Tuli, S., Poojara, S., Srirama, S.N., Casale, G., Jennings, N., 2021. COSCO: Container
orchestration using co-simulation and gradient based optimization for fog
computing environments. IEEE Trans. Parallel Distrib. Syst..

Wang, B., Liu, F., Lin, W., 2021. Energy-efficient VM scheduling based on deep
reinforcement learning. Future Gener. Comput. Syst..

Wankhede, P., Talati, M., Chinchamalatpure, R., 2020. Comparative study of cloud
platforms-microsoft azure, google cloud platform and amazon EC2. J. Res.
Eng. Appl. Sci..

Witanto, J.N., Lim, H., Atiquzzaman, M., 2018. Adaptive selection of dynamic
VM consolidation algorithm using neural network for cloud resource
management. Future Gener. Comput. Syst. 87, 35–42.

Wolf, M., 2016. The Physics of Computing. Elsevier.
Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Philip, S.Y., 2020. A comprehensive

survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32
(1), 4–24.

Zeng, D., Gu, L., Pan, S., Cai, J., Guo, S., 2019. Resource management at the
network edge: A deep reinforcement learning approach. IEEE Netw. 33 (3),
26–33.

Zhang, Y., Wang, X., Liu, X., Liu, Y., Zhuang, Ł., Zhao, F., 2013. Towards better
cpu power management on multicore smartphones. In: Proceedings of the
Workshop on Power-Aware Computing and Systems, pp. 1–5.

Zhao, Z., Verma, G., Rao, C., Swami, A., Segarra, S., 2021. Distributed scheduling
using graph neural networks. In: ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.
4720–4724.

Shreshth Tuli is a President’s Ph.D. Scholar at the
Department of Computing, Imperial College London,
UK. Prior to this he was an undergraduate student at
the Department of Computer Science and Engineering
at Indian Institute of Technology - Delhi, India. He has
worked as a visiting research fellow at the CLOUDS
Laboratory, School of Computing and Information Sys-
tems, the University of Melbourne, Australia. He is
a national level Kishore Vaigyanik Protsahan Yojana
(KVPY) scholarship holder from the Government of
India for excellence in science and innovation. His

research interests include IoT, Fog Computing and Deep Learning.

http://refhub.elsevier.com/S0164-1212(21)00221-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb1
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb2
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb3
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb5
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb6
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb7
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb8
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb9
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb10
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb11
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb12
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb13
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb14
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb15
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb17
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb19
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb20
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb22
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb23
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb24
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb25
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb26
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb27
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb28
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb29
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb30
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb31
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb32
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb33
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb34
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb35
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37
http://refhub.elsevier.com/S0164-1212(21)00221-1/sb37

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

i
h

I
S
c
o
T
m

d
l
I
(
h

V
U
E
S
i
F
o
E

Sukhpal Singh Gill is a Lecturer (Assistant Professor)
in Cloud Computing at School of Electronic Engineer-
ing and Computer Science, Queen Mary University of
London, UK. Prior to this, Dr. Gill has held positions
as a Research Associate at the School of Computing
and Communications, Lancaster University, UK and also
as a Postdoctoral Research Fellow at CLOUDS Labora-
tory, The University of Melbourne, Australia. Dr. Gill
is serving as an Associate Editor in ETT Wiley and
IET Networks Journal. His research interests include
Cloud Computing, Fog Computing, Software Engineer-

ng, Internet of Things and Healthcare. For further information, please visit
ttp://www.ssgill.me.

Minxian Xu is currently an assistant professor at
Shenzhen Institutes of Advanced Technology, Chinese
Academy of Sciences. He received the B.Sc. degree
and the M.Sc. degree, both in software engineering
from University of Electronic Science and Technology
of China. He obtained his Ph.D. degree from the Uni-
versity of Melbourne in 2019. His research interests
include resource scheduling and optimization in cloud
computing. He has coauthored 20+ peer-reviewed pa-
pers published in prominent international journals
and conferences, such as ACM Computing Surveys,

EEE Transactions on Sustainable Computing, IEEE Transactions on Automation
cience and Engineering, Journal of Parallel and Distributed Computing, Con-
urrency and Computation: Practice and Experience, International Conference
n Service-Oriented Computing. His Ph.D. Thesis was awarded the 2019 IEEE
CSC Outstanding Ph.D. Dissertation Award. More information can be found at:
inxianxu.info.

Peter Garraghan is a Reader and EPSRC Fellow in Dis-
tributed Systems. His research expertise is empirically
studying and designing high performance, resilient, and
sustainable distributed systems at scale (Cloud com-
puting, Machine Learning systems, Datacentres, core
network infrastructure) in the face of societal and
environmental change. His research places strong em-
phasis on conducting analysis, design, and evaluation
via experimentation on systems both in laboratory and
production. Peter has published over 50 articles, has
industrial experience building large-scale production

istributed systems, and has worked and collaborated internationally with the
ikes of Alibaba Group, Microsoft, BT, STFC, CONACYT, and the UK datacenter and
oT industry. He is the recipient of the prestigious EPSRC Early-career Fellowship
2021–2025), and his research on sustainable computing and future AI systems
as featured in the media including the BBC and the Daily Mail.

Rami Bahsoon is a Reader at the School of Com-
puter Science, University of Birmingham, UK. Bahsoon’s
research is in the area of software architecture,
cloud and services software engineering, self-aware
software architectures, self-adaptive and managed soft-
ware engineering, economics-driven software engineer-
ing and technical debt management in software. He
co-edited four books on Software Architecture, includ-
ing Economics-Driven Software Architecture; Software
Architecture for Big Data and the Cloud; Aligning En-
terprise, System, and Software Architecture. He was a

isiting Scientist at the Software Engineering Institute (SEI), Carnegie Mellon
niversity, USA (June–August 2018) and was the 2018 Melbourne School of
ngineering (MSE) Visiting Fellow of The School of Computing and Information
ystems, the University of Melbourne (August to Nov 2018). He holds a Ph.D.
n Software Engineering from University College London (2006) and was MBA
ellow in Technology at London Business School (2003–2005). He is a fellow
f the Royal Society of Arts and Associate Editor of IEEE Software - Software
conomies.
14
Schahram Dustdar is Full Professor of Computer Sci-
ence heading the Research Division of Distributed
Systems at the TU Wien, Austria. He holds sev-
eral honorary positions: University of California (USC)
Los Angeles; Monash University in Melbourne, Shang-
hai University, Macquarie University in Sydney, and
University of Groningen (RuG), The Netherlands (2004–
2010). From Dec 2016 until Jan 2017 he was a Visiting
Professor at the University of Sevilla, Spain and from
January until June 2017 he was a Visiting Professor at
UC Berkeley, USA. From 1999–2007 he worked as the

co-founder and chief scientist of Caramba Labs Software AG in Vienna (acquired
by Engineering NetWorld AG), a venture capital co-funded software company
focused on software for collaborative processes in teams. Caramba Labs was
nominated for several (international and national) awards: World Technology
Award in the category of Software (2001); Top-Startup companies in Austria
(Cap Gemini Ernst & Young) (2002); MERCUR Innovation award of the Austrian
Chamber of Commerce (2002). He is founding co-Editor-in-Chief of the new
ACM Transactions on Internet of Things (ACM TIoT) as well as Editor-in-Chief of
Computing (Springer). He is an Associate Editor of IEEE Transactions on Services
Computing, IEEE Transactions on Cloud Computing, ACM Transactions on the
Web, and ACM Transactions on Internet Technology, as well as on the editorial
board of IEEE Internet Computing and IEEE Computer. Dustdar is recipient of
the ACM Distinguished Scientist award (2009), the IBM Faculty Award (2012),
an elected member of the Academia Europaea: The Academy of Europe, where
he is chairman of the Informatics Section, as well as an IEEE Fellow (2016).

Rizos Sakellariou obtained his Ph.D. from the Univer-
sity of Manchester in 1997. Since then he held positions
with Rice University and the University of Cyprus,
while currently he is with the University of Manchester
leading a laboratory that carries out research in High-
Performance, Parallel and Distributed systems, which
over the last 10 years has hosted more than 30 doctoral
students, researchers and long-term visitors. Rizos has
carried out research on a number of topics related to
parallel and distributed computing, with an emphasis
on problems stemming from efficient resource utiliza-

tion and workload allocation and scheduling issues. He has published over
140 research papers, His research has been supported by several UK and EU
projects and has been on the Program Committee of over 150 conferences and
workshops. He values collaboration and a strong work ethic.

Omer Rana is a Professor of Performance Engineering
in School of Computer Science & Informatics at Cardiff
University and Deputy Director of the Welsh e-Science
Centre. He holds a Ph.D. from Imperial College. His
research interests extend to three main areas within
computer science: problem solving environments, high
performance agent systems and novel algorithms for
data analysis and management. Moreover, he leads
the Complex Systems research group in the School
of Computer Science & Informatics and is director of
the ‘‘Internet of Things’’ Lab, at Cardiff University. He

has published over 310 papers in peer-reviewed international conferences and
journals. He serves on the Editorial Board of IEEE Transactions on Parallel
and Distributed Systems, ACM Transactions on Internet Technology, and ACM
Transactions on Autonomous and Adaptive Systems. He has served as a Co-Editor
for a number of journals, including Concurrency: Practice and Experience (John
Wiley), IEEE Transactions on System, Man, and Cybernetics: Systems, and IEEE
Transactions on Cloud Computing.

Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and
Distributed Systems (CLOUDS) Laboratory at the Uni-
versity of Melbourne, Australia. He is also serving as
the founding CEO of Manjrasoft, a spin-off company
of the University, commercializing its innovations in
Cloud Computing. He has authored over 850 publica-
tions and seven text books including ‘‘Mastering Cloud
Computing’’ published by McGraw Hill, China Machine
Press, and Morgan Kaufmann for Indian, Chinese and
international markets respectively. He is one of the

highly cited authors in computer science and software engineering worldwide
(h-index=149, g-index=322, 118,400+ citations). ‘‘A Scientometric Analysis of
Cloud Computing Literature’’ by German scientists ranked Dr. Buyya as the
World’s Top-Cited (#1) Author and the World’s Most-Productive (#1) Author
in Cloud Computing. Dr. Buyya has led the establishment and development of

http://www.ssgill.me
http://www.minxianxu.info

S. Tuli, S.S. Gill, M. Xu et al. The Journal of Systems & Software 184 (2022) 111124

k
T
T
r
C
E
s
w
p

a
b
T

ey community activities, including serving as foundation Chair of the IEEE
echnical Committee on Scalable Computing and five IEEE/ACM conferences.
hese contributions and international research leadership of Dr. Buyya are
ecognized through the award of ‘‘2009 IEEE Medal for Excellence in Scalable
omputing’’ from the IEEE Computer Society TCSC. He served as the founding
ditor-in-Chief of the IEEE Transactions on Cloud Computing. He is currently
erving as Co-Editor-in-Chief of Journal of Software: Practice and Experience,
hich was established 50+ years ago. For further information on Dr. Buyya,
lease visit his cyberhome: www.buyya.com.

Giuliano Casale joined the Department of Computing
at Imperial College London in 2010, where he is cur-
rently a Reader. Previously, he worked as a research
scientist and consultant in the capacity planning in-
dustry. He teaches and does research in performance
engineering and cloud computing, topics on which he
has published more than 100 refereed papers. He has
served on the technical program committee of over 80
conferences and workshops and as co-chair for several
conferences in the area of performance and reliabil-
ity engineering, such as ACM SIGMETRICS/Performance

nd IEEE/IFIP DSN. His research work has received multiple awards, recently the
est paper award at ACM SIGMETRICS. He serves on the editorial boards of IEEE
NSM and ACM TOMPECS and as current chair of ACM SIGMETRICS.
15
Nicholas R. Jennings is the Vice-Chancellor and
President of Loughborough University. He is an
internationally-recognised authority in the areas of AI,
autonomous systems, cyber-security and agent-based
computing. He is a member of the UK government’s
AI Council, the governing body of the Engineering
and Physical Sciences Research Council, and chair of
the Royal Academy of Engineering’s Policy Committee.
Before Imperial, he was the UK’s first Regius Professor
of Computer Science (a post bestowed by the monarch
to recognize exceptionally high quality research) and

the UK Government’s first Chief Scientific Advisor for National Security.

http://www.buyya.com

	HUNTER: AI based holistic resource management for sustainable cloud computing
	Introduction
	Related work
	The HUNTER scheduler
	System model
	Workload model and problem formulation
	Sustainability models
	Energy model
	Cooling model
	Thermal model

	GGCN based surrogate model
	Using GGCN model for scheduling

	Performance evaluation
	Evaluation setup
	Workloads
	Model training
	Evaluation metrics
	QoS Results

	Analyses
	Sensitivity analysis
	Comparison between simulated and physical setups
	Analysis of model training and inference times
	Statistical analysis
	Ablation analysis

	Conclusions and future work
	Software Availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

