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A B S T R A C T

In recent years, the landscape of computing paradigms has witnessed a gradual yet remarkable shift from
monolithic computing to distributed and decentralized paradigms such as Internet of Things (IoT), Edge,
Fog, Cloud, and Serverless. The frontiers of these computing technologies have been boosted by shift from
manually encoded algorithms to Artificial Intelligence (AI)-driven autonomous systems for optimum and
reliable management of distributed computing resources. Prior work focuses on improving existing systems
using AI across a wide range of domains, such as efficient resource provisioning, application deployment,
task placement, and service management. This survey reviews the evolution of data-driven AI-augmented
technologies and their impact on computing systems. We demystify new techniques and draw key insights in
Edge, Fog and Cloud resource management-related uses of AI methods and also look at how AI can innovate
traditional applications for enhanced Quality of Service (QoS) in the presence of a continuum of resources. We
present the latest trends and impact areas such as optimizing AI models that are deployed on or for computing
systems. We layout a roadmap for future research directions in areas such as resource management for QoS
optimization and service reliability. Finally, we discuss blue-sky ideas and envision this work as an anchor
point for future research on AI-driven computing systems.
1. Introduction

In the past decade, the evolution of our digital lives has accelerated
across multiple facets, including efficient computation (Gill et al.,
2019), communication (Shi et al., 2020) and transportation (Nguyen
et al., 2021), making our lives simpler and more convenient. This
evolution has been driven by several factors such as the rising concern
for climate change and sustainable computing (Tuli et al., 2021b), the
expected end of Moore’s law for silicon-based compute systems (Theis
and Wong, 2017) and the recent lifestyle-changing pandemics (Ndi-
aye et al., 2020) to name a few. With changing user demands and
application scenarios, novel techniques are required to fuel further
growth for high fidelity and scalable computation. There are two
trends at the center of this growth: Artificial Intelligence (AI) and
the Internet of Things (IoT). In the context of resource management,
the field of AI aims to build intelligent entities that automate the
process of dynamically making various design decisions for industrial
computational deployment. The shift from relying on hand-encoded
algorithms and human domain experts to AI or Machine Learning (ML)
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agents has enabled computation on scale and facilitated servicing the
computational needs of the rising world population (Gill et al., 2019).
The other field, IoT, promises ubiquitous connectivity across various
computational and networking devices using the Internet. It presents
a broad spectrum of computational resources, ranging from resource-
limited devices at the Edge of the network (Mao et al., 2017) to the
heavy physical or virtual machines in the Cloud (Tuli et al., 2019b),
all connected to the users via gateway devices. Fog computing devices
connect Edge and Cloud resources, giving rise to a paradigm that
holistically considers the entire continuum of resources from Edge to
the Cloud, often referred to as Fog Continuum (Bittencourt et al., 2018).

The convergence of AI and Fog Continuum, presents a massive op-
portunity for research and enterprise. Technological research organiza-
tions, such as Gartner, predict that in the coming years, AI-augmented
computing will be at the forefront of technical advancements in In-
ternet and Communication Technologies (ICT) (Costello, 2019). When
deploying AI-based applications on Fog continuum or leveraging AI
to manage running applications, novel resource management issues
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Fig. 1. AI on and for the Fog continuum.
arise corresponding to the maintenance of optimal Quality of Ser-
vice (QoS). As part of this paper, we explore the latest trends in the
domain of AI-augmented resource management and the challenges it
presents to deliver upon the promise of improving QoS of existing and
next-generation computational infrastructures.

1.1. Motivation of research in AI-based augmentation

A typical Fog environment consists of two computational layers:
broker and worker (see Fig. 1). The worker layer consists of generic
compute nodes that execute incoming applications by processing in-
coming data from the users and return the results via gateway de-
vices (Tuli et al., 2019b) (see nodes in the purple triangle in Fig. 1).
The broker layer consists of compute nodes that monitor and manage
the back-end infrastructure, including the worker nodes (see nodes in
the inverted red triangle in Fig. 1). This includes deciding where to
deploy/place incoming applications as tasks or migrate running tasks
to optimize system performance. This difference in broker and worker
roles are tied closely with the classification of AI based approaches
of AI on and for Fog that we describe later. Recent research in AI
has shown some promise in the direction of improving QoS of Fog
systems, thanks to their higher inference speeds and accuracy compared
to classical techniques (Liang et al., 2020). AI research for Fog systems
has spanned diverse categories including (1) classical AI that covers
informed and uninformed search methods, (2) machine learning that
encompasses unsupervised, supervised and semi-supervised methods,
(3) reinforcement learning that includes tabular and deep reinforce-
ment methods, and (4) deep learning that uses deep neural networks
as function approximators to model complex relationships across data
in Fog systems (Russell and Norvig, 2009; Goodfellow et al., 2016). A
brief taxonomy from Russell and Norvig (2009) is presented in Fig. 2.
We shall leverage this taxonomy in Section 4 to discuss and classify
state-of-the-art AI research for Fog systems.

AI-based augmentation of Fog systems has traditionally been in two
major directions. First, where AI models have replaced conventional
applications, for instance Deep Neural Networks (DNNs) have replaced
prior methods in domains such as traffic surveillance using computer
vision, chat bots using natural language processing and smart homes
using robotics (Shi et al., 2020; Park et al., 2018; Amini et al., 2020),
giving fast, scalable and accurate results. This entails augmenting the
workloads that are run on the Fog worker nodes, and hence we call this
domain AI on Fog. AI on Fog has been a key driving factor many AI
based practical deployments, such as self-driving cars, smart-cities and
automated surveillance systems (Wang et al., 2020f). Second, where
2

the AI models are used to determine optimal workload placement,
service level schedules and fault remediation steps. This augments the
resource management services at the broker layer for decision making,
and hence we call this domain AI for Fog. This domain has been crucial
for efficient resource management for modern distributed services such
as Netflix and cloud platforms (Tuli, 2022; Varghese and Buyya, 2018).
We elucidate the challenges presented by each paradigm below.

AI on Fog. This domain is primarily concerned with the applications
running on the worker layer of a Fog system. As modern applica-
tions have turned heavily dependent on AI-based models, specifically
those that utilize deep learning, we observe that DNNs are becom-
ing the backbone of many industrial tasks and activities (Gill et al.,
2019). As the computational capabilities of devices have improved,
new deep learning models have been proposed to provide improved
performance (Zhu et al., 2018; Li et al., 2019c). Moreover, many recent
DNN models have been incorporated with mobile edge computing
to give low latency services with improved accuracy compared to
shallow networks. Specifically in time-critical complex tasks such as
image segmentation, high frame-rate gaming and traffic surveillance
that require latency in the order of 10–100 milliseconds (Khanna et al.,
2020). The performance of such neural models reflects directly on the
reliability of application domains like self-driving cars, healthcare and
manufacturing (Gill et al., 2019; Kraemer et al., 2017). The integration
of such AI models with various computational systems has led to the
rise of EdgeAI services, i.e, applications that utilize AI to process data
at the edge. To provide high accuracy, neural models are becoming
increasingly demanding in terms of data and compute power, resulting
in many challenging problems. To accommodate these increasing de-
mands, such massive models are often hosted as web services deployed
on the public Cloud (Zhang and Zhang, 2017). On the other hand,
mobile edge devices in typical Fog deployments face severe limitations
in terms of computational and memory resources as they rely on low
power energy sources like batteries, solar, or other energy scavenging
methods (Mao et al., 2016). This is not only because of the requirement
of low cost, but also the need for mobility in such nodes (Khanna
et al., 2020). In such systems, it is possible to handle the processing
limitations of massive AI models by effective preemption and prolonged
job execution. However, memory bottlenecks are much harder to solve
as shown in prior work (Shao and Zhang, 2020b). In a practical dis-
tributed edge environment where storage spaces are typically mapped
to a network-attached-media, a large virtual memory imposes high
network bandwidth overheads that make performing large-scale dis-
tributed computations hard (Laskaridis et al., 2020). Thus, as part of
this paper, we explore various methods developed to efficiently deploy
and manage AI-based applications on Fog infrastructures by possibly
decomposing DNNs and running distributed training and inference (Li

et al., 2020b).
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Table 1
A comparison of our work with existing surveys based on key parameters and domain coverage.

Ref. Fog continuum AI domains Problem copes

IoT Edge Cloud Serverless AI on Fog AI for Fog Deployment Scheduling Maintenance

Yang et al. (2019) ✓ ✓ ✓

Wang et al. (2020c) ✓ ✓ ✓ ✓

Liu et al. (2021a) ✓ ✓ ✓

Murshed et al. (2021) ✓ ✓ ✓ ✓

Varghese and Buyya (2018) ✓ ✓ ✓ ✓

Hasan and Goraya (2018) ✓ ✓ ✓

Zhong et al. (2021) ✓ ✓ ✓ ✓

Singh et al. (2021) ✓ ✓ ✓ ✓ ✓

Nayeri et al. (2021) ✓ ✓ ✓ ✓ ✓ ✓

Mampage et al. (2021) ✓ ✓ ✓ ✓

Duc et al. (2019) ✓ ✓ ✓ ✓ ✓

Deng et al. (2020b) ✓ ✓ ✓ ✓ ✓ ✓

This review ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Fig. 2. A brief taxonomy of AI methods for Fog systems that extends the one proposed
by Russell and Norvig (Russell and Norvig, 2009).

AI for Fog. This domain is primarily concerned with resource
management level decision making at the broker layer of a Fog system.
The problem of efficiently managing Fog resources is hard (Tuli et al.,
2022e). One of the challenges we face in such a system is the hetero-
geneity of resources across the Edge and Cloud (Li et al., 2020a; Kaur
et al., 2020; Hosseinalipour et al., 2020). Another challenge in indus-
trial settings is to deliver low latencies for time-critical applications,
for instance, healthcare, robotics and smart-cities. These challenges
are exacerbated by modern-day applications, wherein the workloads
are highly dynamic and host machines having volatile resource ca-
pabilities. Furthermore, as applications become more demanding and
privacy-sensitive, Fog devices have become more prone to breakdowns,
malicious attacks and intrusions (Zhang et al., 2019a). This entails
taking recovery steps required to deal with the diverse effects of
system faults, such as network packet drops, memory errors or disk
failures requiring different remediation steps. So far, the industrial and
research landscape of Fog resource management has been dominated by
heuristics and classical optimization-based methods. Such approaches
have low scheduling times and work well for general cases, but due
to steady-state or stationarity assumptions, they provide poor perfor-
mance in non-stationary heterogeneous environments with dynamic
workloads (Tuli et al., 2022e). To address these challenges, various
AI methods have been recently proposed that utilize adaptive schemes
based on evolutionary methods and reinforcement learning. These
methods adapt to changing scenarios and offer promising avenues for
dynamic optimization (Fox et al., 2019). For accurate and scalable
modeling of the Fog environment, such methods use deep learning-
based local search or learning models with neural networks which
approximate an objective function such as energy consumption or
3

response time (Tuli et al., 2020b; Liu and Wang, 2020; Basu et al.,
2019). However, the most accurate AI methods typically have high
decision times or resource footprints, making it hard to deploy them in
budget or resource-constrained settings. Thus, as part of this paper, we
also explore various advancements in AI methods for efficient resource
management in Fog systems (Li et al., 2020b).

1.2. Our contributions

Our primary focus lies at the intersection of the two fields of AI
and Fog, particularly for resource management decision making to
optimize system performance measured using metrics like systems QoS.
We review a broad range of techniques developed for optimizing QoS
by efficiently deploying AI applications in Fog systems (AI on Fog),
utilizing AI methods for resource management decision making (AI
for Fog), or both of these together. We partition the entire resource
management domain into three scopes based on the decisions we need
to optimize: deployment, scheduling and maintenance.

1. Deployment deals with intelligent resource provisioning and ver-
sioning of workloads on Fog infrastructures to optimize QoS (Tuli,
2022; Calheiros et al., 2014).

2. Scheduling deals with arranging and controlling deployed work-
loads on compute infrastructure for QoS efficient execution (Tuli
et al., 2022e; Kadota et al., 2018; Matrouk and Alatoun, 2021).

3. Maintenance aims at securing, preventing and recovering from
failures the deployed and scheduled workloads in a Fog environ-
ment (Du et al., 2020; Tuli et al., 2022c).

We present a comprehensive literature review of the state-of-the-art
approaches in the above three scopes. We devised a search query based
on the formulated research questions: (edge computing) OR (fog com-
puting) OR (cloud computing) AND (AI) and (resource management)
OR (scheduling) OR (provisioning) OR (fault-tolerance). We classify the
reviewed methods by their essential characteristics and methodologies.
We identify the future directions of AI based augmentation technologies
for Fog platforms.

1.3. Related surveys

As summarized in Table 1, some previous surveys have already
explored the use of AI for enhancing Fog environments; however, they
do not consider the diverse use cases together and cover the complexity
of the domains to a limited extent. The first four surveys cover the
domain of AI on Fog. Yang et al. (2019) introduce and review AI-
based methods for data integrity, specifically utilizing Blockchain and
deep learning technologies. Wang et al. (2020c) present an exhaustive
review of methods for efficient deployment and scheduling of DL-based
applications on Edge infrastructures. They discuss several advance-
ments in Edge hardware for accelerating AI training and inference.
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However, these reviews do not include the specific advancements in
DNN models that focus on deployments in heterogeneous Edge-cloud
infrastructures. Liu et al. (2021a) present several techniques to deploy
massive DNNs in Edge environments, particularly focusing on model
compression and neural architecture search. Here, we also consider the
recent developments in distributed split neural models. Murshed et al.
(2021) consider distributed DNN training and inference for EdgeAI ap-
plications; here, we also cover the impact on the resource management
back-ends in Edge systems.

Furthermore, there have been some recent studies that investigate
the AI for Fog domain. Varghese and Buyya (2018) discuss various
technological advancements in Cloud computing domain that leverage
AI models for task placement and scheduling. Hasan and Goraya
(2018) summarize the research in fault-tolerant Cloud computing us-
ing AI-based methods. These works ignore the effects of merging the
Cloud paradigm with Edge nodes. Zhong et al. (2021) discuss various
methods to schedule workloads in the form of containers in Edge
and Cloud environments. Similar surveys by Singh et al. (2021) and
Nayeri et al. (2021) describe the methods for provisioning nodes and
scheduling tasks in a Fog environment. Duc et al. (2019) discuss similar
methods for reliable resource provisioning in Edge-cloud environments.
Mampage et al. (2021) describe resource management techniques for
serverless computing environments. However, these works consider AI
as black-box models and do not discuss the specific advancements in
the underpinning AI techniques for QoS improvement in the context of
deployment, scheduling or maintenance. Finally, Deng et al. (2020b)
discuss the AI methods for and on Edge platforms, but only in the con-
text of task allocation and AI model compression. They do not discuss
the use of latest technologies such as coupled-simulation (Tuli et al.,
2022e) in solving major challenges faced when utilizing AI models
for efficient resource management. Further, they restrict their descrip-
tions to edge-only environments and do not consider the complete fog
continuum.

This work builds upon the previous surveys to present a holistic
view of how AI models have augmented Fog systems, particularly
focusing on the overlap among AI on Fog and AI for Fog methods.

e emphasize the diversity and complexity of QoS aware resource
anagement schemes in the Fog continuum by categorizing the land-

cape into deployment, scheduling and maintenance related strategies.
nlike previous surveys, we present a classification of AI and fog
ethods that highlights the intersection between data-driven models

nd resource management distributed systems encompassing AI design,
ystem modeling and workload-injection frameworks. Using such a
olistic approach, we consolidate trends to present root-cause issues
hat limit the performance of AI or fog systems and share possible future
irections to tackle them.

.4. Article structure

The rest of the paper is organized as follows: Section 2 reviews the
omputing paradigms of IoT, Edge, Cloud and serverless and how Fog
arnesses them. We describe the various service architectures and elu-
idate the main control knobs and optimization parameters. We discuss
tate-of-the-art AI methods in Section 4. This section presents these
ethods in the scopes of deployment, scheduling and maintenance.
e then perform a detailed trend analysis and methodological overlap

n Section 5. Such trend analysis facilitates in determining root-causes
or current limitations and possible solutions as future directions as
etailed in Section 6. Finally, Section 7 concludes the survey.

. Background

In this section, we present the various computing paradigms that
orm the Fog continuum, service architectures and parameters offered
rom the systems aspect for AI methods to exploit and optimize the
verall QoS.
4

2.1. Related computing paradigms

We now describe the computing paradigms of Cloud, Edge and
serverless. We mention their merits and limitations to motivate the
need for a continuum of resources.

Cloud Computing. The Cloud computing paradigm consists of an
nter-connected and virtualized pool of resources (computing, storage,
etwork, etc.) that can be dynamically provisioned on-demand, as per
ser specifications and with minimal management effort (Buyya et al.,
009) (see top tier in Fig. 1). Cloud resources may be publicly acces-
ible or privately deployed. Traditionally, workloads are run in Cloud
odes as distinct virtual machines (VMs), allowing Cloud providers to
igrate running workloads from one Cloud node to another for load

alancing and tuning various QoS parameters. A significant challenge
n the Cloud paradigm is that Cloud datacenters are located multiple
ops away from the IoT devices, which increases the data transmis-
ion time between the devices and the Cloud instances hosting the
pplications. To overcome these limitations of Cloud computing, a new
aradigm called Edge computing was introduced to meet the service
equirements of large-scale IoT applications.
Edge Computing. Recently, Edge computing (Satyanarayanan,

017) has grown dramatically. The network edge, defined as the com-
utational layer that resides closest to the end-user, is where most data
ources are present. Edge computing follows the data gravity principle,
.e., it moves the computational resources close to the data sources or
he network edge (see bottom tier in Fig. 1). This leads to a multitude
f benefits (Hu et al., 2017). First, it offers low response times, possibly
n milliseconds, crucial for time-critical tasks such as flight control,
ealthcare, autonomous cars and gaming (Li et al., 2019c; Gill et al.,
019). Second, it allows us to build reliable systems where service
esilience is provided at the node level, allowing other compute devices
o act as backups and ameliorating performance degradation by reduc-
ng service downtimes using failover and fallback mechanisms (Bagchi
t al., 2019). A major challenge at the Edge is that devices have limited
omputational capabilities and therefore suffering significantly under
tress. There also exists a vast amount of devices in an IoT system,
iving rise to bandwidth contentions (Belcastro et al., 2021).
Serverless Computing. Serverless computing emerged as a solution

or the complexity of Cloud and Edge computing that hides server usage
nd runs user codes on-demand automatically with high scalability at
he function level, such that the users are only billed for the code
xecution time (Castro et al., 2019). It is agnostic to the specific set of
esources we utilize, Edge or Cloud. Platforms and architectures have
een recently proposed in the literature to extend serverless capabil-
ties to Edge computing (Javadi et al., 2020; Cicconetti et al., 2020).
n serverless, the applications use precisely the amount of resources
eeded at any one point in time and charge accordingly, making the
osts proportional to the exact resource usage (Hendrickson et al.,
016). Even though the tight integration in serverless makes it friendly
or user, it also makes it hard for developers to optimize QoS when
unning serverless applications due to the lack of data management in
erverless. Unlike containers and VMs that allow independent moni-
oring of each running service, serverless frameworks abstract out the
ctive functions in the system, reducing the viability of tuning them for
erformance optimization.

.2. Shift to fog continuum

There are typically several resource-constrained edge nodes in
lose proximity to the users and resource-abundant cloud nodes that
re at multi-hop distance. This imposes the challenge of managing
he resource-latency trade-off between edge and cloud layers, which
og continuum aims to address. None of the previously mentioned
aradigms are ideal for building a generic computational platform for
he end-users. The high latency of Cloud nodes, the unreliability of
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Table 2
The importance level of performance parameters in different industries.

Industry Resp. Time Cost Energy Accuracy Reliability

Agriculture Medium High Medium Medium High
Healthcare High Medium Medium High High
Construction Low High Low Medium Low
Food Medium High Medium Medium Medium
Transport High Low Medium High High
Textile Low High Medium Medium High
Gaming High Low Low Medium Medium
Aviation High Low High High High
Smart Cities Medium Medium High High High

Edge devices, and the limited exposure of the resource management
level controls offered by serverless frameworks motivate researchers
to leverage all these paradigms in tandem, giving rise to the Fog
continuum.

Fog Continuum. Fog is a parallel and distributed computing
paradigm introduced by CISCO in 2012 as an interface between the
Cloud and Edge computing systems to support latency-critical and
resource-hungry application services by providing an interface between
the computation and storage offered by Cloud and Edge (Bonomi et al.,
2012). Fog introduces a hierarchical architecture with an intermediate
layer between end-users and Cloud datacenters which utilizes compu-
tational, storage, and networking resources that reside within the path
connecting users to the Cloud (Mahmud et al., 2018). These resources
known as Fog nodes include gateways, switches, routers, nano dat-
acenters, Cloudlets, etc. Unlike traditional fog or mist platforms, fog
continuum is an umbrella term that includes edge only, cloud only and
hybrid edge-fog-cloud resources. As Fog resources are distributed, het-
erogeneous, and resource-constrained compared to Cloud data centers,
efficient resource provisioning and application placement algorithms
are vital for harvesting the full potential of the Fog continuum.

2.3. Services

We now describe the various architectures utilized by the Fog
continuum to service user requests. Each service architecture imposes
disparate set of constraints on and the control surface expose to the un-
derlying resource management techniques, possibly utilizing AI models.

Infrastructure-as-a-Service (IaaS). IaaS provides physical or vir-
tual hardware resources (i.e., compute, storage, network infrastructure,
etc.) on a pay-for-what-you-use basis. This eliminates the need for the
initial investment in hardware and provides users with an easy and con-
venient way to remotely access, monitor, and configure infrastructure
as a service (Soualhia et al., 2019; Gill et al., 2019). IaaS gives AI-
based resource managers control over provisioning, scaling of hardware
resources, and deploying software on available hardware resources to
maintain required levels of QoS for their deployed applications without
having the responsibility of managing and controlling the underlying
infrastructure.

Platform-as-a-Service (PaaS). PaaS provides consumers with a
development and execution environment that consists of a set of tools
to create and deploy their own applications (Varghese and Buyya,
2018; Buyya et al., 2009; Zhang et al., 2015). This service simplifies
application deployment by providing only platform level controls and
hiding infrastructure level controls from the user. However, PaaS allows
underpinning AI-based resource management solutions to control the
applications and configurations of the platform that hosts the applica-
tions. A specific type of PaaS, Machine Learning-as-a-Service (MLaaS),
presents ML technologies such as Deep Learning require large-scale
computation power to be viable. MLaaS abstracts out the deployment
aspects and is used to describe Fog systems that provide out-of-the-
box support for enabling ML technologies such as data pre-processing,
model training and inference. Such systems aim to provide ease of use
5

to users who are looking to develop and deploy their own machine
learning applications efficiently.

Software-as-a-Service (SaaS). SaaS provides the highest level of
bstraction by providing consumers with the capability to use applica-
ions running within Fog or Cloud resources that the service provider
anages (Gill et al., 2019; Buyya et al., 2009; Varghese and Buyya,
018). This only provides AI resource managers with limited capabil-
ty to control certain application configurations. This is because the
nderlying architecture and application capabilities are controlled and
anaged by the service provider.

.4. Optimization parameters

We now describe the various Quality of Service (QoS) parameters of
Fog system that we expect an AI-based resource manager to optimize

or ideal system performance.
Response Time. This parameter indicates the service delivery time.

ithin distributed Fog environments, the response time of a service
epends on multiple parameters such as data transmission time, prop-
gation time, processing time, and service deployment time (Mah-
ud et al., 2020a). Thus, Fog resource provisioning and application

cheduling consider the response time as a vital parameter for utilizing
istributed and heterogeneous Fog resources, along with remote Cloud
atacenters to prioritize applications/services with stringent latency re-
uirements for placement within Fog environments. In Cloud and Edge
nvironments, consumers and providers negotiate these QoS parame-
ers to establish a Service Level Agreement (SLA) (Buyya et al., 2009).
LAs are critical in deadline-oriented tasks such as flight management
ystems, self-driving car networks and gaming. As IoT applications are
eterogeneous in their characteristics (e.g., time-sensitive healthcare
pplications, data-intensive surveillance applications, etc.), QoS-aware
cheduling mechanisms are necessary to utilize resource-constrained
evices.
Cost. The cost of using Cloud and Edge environments depends

n the type of service used by the consumer and the pricing model
i.e., on-demand, reserved or spot pricing) employed by the service

provider. Cloud allows potential cost savings in case of computation on
large-scale. Due to the limited computation capacity of the Fog nodes,
novel pricing models are introduced for Fog environments (Mahmud
et al., 2020b). Thus, Fog application placement aims to reach a tradeoff
between cost and response time, to minimize the cost of deployment
while satisfying deadline requirements of the applications (Deng et al.,
2020a).

Energy. IoT is highly scalable, with a large number of sensors
generating a significant amount of data for processing. This results
in higher energy consumption and carbon footprint in Cloud data-
centers during data transmitting and processing (Oma et al., 2018).
Fog continuum, with its distributed architecture, has the potential to
achieve higher energy efficiency by relying on low-power edge nodes
when possible (Gill et al., 2019; Mahmud et al., 2020a), but is limited
by the energy and computation capacity of the Fog nodes (Mahmud
et al., 2020a). This motivates resource provisioning and application
placement algorithms to reach a tradeoff between time and energy in an
IaaS or PaaS platform (Ghanavati et al., 2020). When utilizing resource-
heavy AI models for resource provisioning in broker nodes, the brokers
themselves can lead to high energy consumption. This makes it crucial
to develop AI methods that are energy efficient also in terms of their
inference.

Reliability. Reliability of Fog systems is quantitatively defined as
a probability measure of how frequently a system delivers the services
it has been designed for. Edge and Fog nodes are prone to different
types of failures, including hardware failures, software failures, net-
work failures and resource overflow (Bagchi et al., 2019). Dynamic
issues such as battery constraints, connection fluctuations, resource
availability, and mobility problems can contribute to the complexity

of the reliability of such systems (Carvalho et al., 2021). These failures
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are likely to be more frequent in Edge and Fog servers due to their geo-
graphical dispersion, distributed deployment, and lack of maintenance
and support from providers. Even a small failure probability per node
is cascaded by the presence of a large number of interconnected nodes.
Therefore, reliable Fog systems must be implemented that has a low
failure rate, and when it does fail, it recovers quickly.

Accuracy. We use accuracy as a general term to highlight the per-
formance of an AIaaS/MLaaS service in terms of the closeness of model
output to the true or expected outputs. This can include classification
performance, detection accuracy or prediction error. Several metrics
exist in literature to measure the performance of an AI model, such as
precision, recall, F1 score, confusion matrix and area under the receiver
operating characteristic (AUROC). When deploying AI-based workloads
on Fog systems, it is crucial that the choice of AI models is based on the
accuracy specifications from the user. Some application use-cases, such
as healthcare, require extremely accurate results. On the other hand,
other scenarios, for instance autonomous systems, need near real-time
inference. AI models have distinct performance and inference times.

2.5. Synergy with industrial IoT/industry 5.0 applications

Growth in adoption of various technologies including Industrial
Internet of Things (IIoT), Industry 5.0 and aforementioned computing
systems has been unprecedented in recent years and as a result several
industries are utilizing these technologies to improve their productivity
and services (Liu et al., 2017a). We now provide a brief overview for
some important industrial applications under the umbrella terms of
Industry 5.0 and how they relate to performance parameters including
response time, cost, energy, accuracy and reliability when they adopt
Cloud, Fog and Edge platforms. We consider energy as an indicator
of the carbon footprint of the different services. The overview of
this analysis is presented in Table 2 where the importance level of
parameters are classify as high, medium, and low.

The Agriculture industry widely uses various sensors for monitoring
humidity, temperature, soil moisture to better control and maintain
the plants and trees in the large scale agricultural fields (Misra et al.,
2020). Important performance parameters for Fog systems would be
cost and reliability as they have direct impact on the final cost and the
quality of the harvest. System response time, accuracy and energy are
in the medium level of importance. Healthcare leads to the adoption of
various sensors for patient monitoring and providing real-time feedback
to the patient and caregivers (Kumari et al., 2018). Healthcare systems
need low response time with high accuracy and reliability as they
need to provide real-time response. The Construction industry aims
to keep tracking of the projects, and site safety. The most important
metric is cost which is the main decision point for the adoption of
such systems in the construction industry (Abioye et al., 2021). Food
industry has widely adopted IIoT, Cloud and AI in different stages
including production, transport, storage and consumption which led to
the proposing of ‘‘Internet of Food’’ (Boulos et al., 2015). The potential
Fog system for this industry should be very cost effective to minimize
the overall cost of the food. The Transport industry aim to make travel
more efficient by utilizing a large number of IIoT sensors, especially
by the advent of autonomous vehicles (Nikitas et al., 2020). Here,
reliability, accuracy and response time are the most important metrics
for self-driving cars. The Textile industry uses Fog continuum in smart
textile for cost effective and reliable system to curtail supply chain
costs. The Gaming industry is the growing entertainment industries,
the quality of user experience is highly dependent on low latency and
reliable response to the users. The Aviation industry is now leading to
the new evolutionary era called Aviation 5.0 impacting manufacturing,
through aircraft operation and air traffic management. Reliability is the
key importance metrics for such a system. This development of Smart
cities spans from intelligent traffic management to trash collection and
air quality control. The main performance metrics for such a system
are energy, accuracy and reliability. An overview of highly important
6

Fig. 3. Critical performance metrics of Fog continuum in Industry 5.0 applications.

performance metrics for Fog continuum systems adopted in industrial
applications is illustrated in Fig. 3, which indicated reliability is the
most common metrics in these applications. The rest of the discussion
considers all mentioned metrics used to measure the performance of AI
based resource management solutions. However, the specific choice of
metrics is subject to the application use-case and deployment scenario
as mentioned above.

3. AI integration in systems

Considering the background discussion in Section 2, we have estab-
lished the control surface provided by Edge and Cloud paradigms for
resource management. We also present the parameters optimized by AI
models to generate management decisions in Fog systems. This needs
extensive integration between the Fog systems and AI methods. To this
end, a plethora of approaches have been developed, both at simulation
and deployment levels, which provide an interface between the two
technologies. We discuss these interfacing technologies in this section.

3.1. Simulators and frameworks for fog research

We first discuss the tools that allow modeling and testing of Fog
systems.

3.1.1. Simulated platforms
A simulated platform enables researchers to test their methods

at scale quickly. However, as simulators are approximations of the
physical systems, they may provide noisy results or deviate from ob-
servations.

Popular Fog simulators, such as iFogSim, provide a modular, event-
driven simulation platform, created on top of CloudSim, a widely
used simulator for Cloud environment simulations (Gupta et al., 2017;
Calheiros et al., 2011). iFogSim enables simulation of distributed and
heterogeneous Fog nodes and scheduling of IoT based application work-
flows. Prior work (Shahidinejad and Ghobaei-Arani, 2021; Suryade-
vara, 2021; Etemadi et al., 2021; Tuli et al., 2020b) uses this simulator
to analyze a wide range of scheduling algorithms such as evolution-
ary algorithms, machine learning, deep learning and reinforcement
learning algorithms. Another CloudSim based simulator, IoTSim-Edge,
allows users to test IoT infrastructure and framework by providing
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a testbed for deploying IoT Edge devices as a simulation in a single
application (Jha et al., 2020). IoTSim-Edge also separates the broker
and worker layers by explicitly defining an Edge Broker that acts as a
simulated Fog device that manages Edge resources, and an Edge Device
as simulated worker nodes. Similarly, PureEdgeSim (Mechalikh et al.,
2019b) takes an edge focused control of Fog systems, particularly used
for disease diagnosis (Javaid et al., 2021) and fuzzy tree based decision
making (Mechalikh et al., 2019a). Others, like SimEdgeIntel, provides
cross-platform and cross-language support, thus enabling easy integra-
tion of machine learning-based resource management policies (Wang
et al., 2021a). It supports mobility modeling, network configuration
and implementation of multiple handover mechanisms. A similar sim-
ulator, Deep FogSim, is designed to support large-scale evaluations of
the delay-energy performance of Conditional Neural Networks (CDNNs)
within Fog environments (Scarpiniti et al., 2021). It provides a software
platform to model computing and network aspects of Fog environments
and simulates the performance of the inference phase of CDNNs on top
of Edge or Cloud nodes.

ECSim++ is a simulator (Nguyen and Huh, 2018) that extends
the OMNetpp++ (Varga, 2010), which presents capabilities of power
control and cache management, making it more realistic than other
simulated devices. RelIoT This is a reliability simulator for IoT-based
Fog systems (Ergun et al., 2020) and presents metrics such as power
consumption, execution time, breakdown time and network charac-
teristics such as throughput, delay, network and jitter. Unlike other
simulators, it offers several combinations of reliability metrics to mea-
sure the fault resilience of a Fog system. Yet Another Fog Simulator
(YAFS) (Lera et al., 2019) is a simulator that allows users to monitor
network topologies, device resources and network resources. Unlike
other simulators, it includes network path routing and user or device
level movement as part of the control knobs it offers. A serverless
simulator, SimFaaS (Mahmoudi and Khazaei, 2021) acts as a plat-
form with serverless functionalities. It contains out-of-the-box support
for simulating essential serverless properties such as cold/warm starts
and auto-scaling. It supports the stateless/function based programming
paradigm and has been demonstrated to effectively simulate real usage
scenarios (Mahmoudi and Khazaei, 2021). However, it still lacks sup-
port for simulating heterogeneous systems, node failures and large-scale
deployments.

Apart from the above simulators, there are also simulators such
as EmuFog (Mayer et al., 2017), FogTorch (Brogi and Forti, 2017),
igHouse (Meisner et al., 2012) and Sim4DEL (Liu et al., 2021b).
hey are all simulators that focus on other aspects of Cloud systems
uch Fog topologies, storage and sensor infrastructures, accurate de-
ice simulations, streaming systems and federated deep Edge learning.
here are also two Cloud-based Fog and Edge device simulators: Azure
oT (Stackowiak, 2019) and AWS IoT device simulator (AWS, 2021).
hese focus on simulating large-scale IoT systems with support for
imulating thousands of devices, serverless functions within Cloud VMs
nd integrating live sensors and actuators. As such, these two can be
sed since they provide support using their large pool of back-end
loud resources.

.1.2. Physical platforms
For credible AI-augmented Fog research, testing developed solu-

ions on emulators that duplicate industrial deployment scenarios on
hysical platforms is increasingly important.
OpenStack is an open-source platform developed by Rackspace Inc.

nd NASA, originally developed for Cloud environment, but later also
xtended to support Edge devices, thanks to its modularized APIs (Se-
raoui et al., 2012). OpenStack has custom hypervisor drivers that can
upport a variety of virtualization technologies such as KVM, QEMU,
ML, Xen, VMware, Docker and many more, making it very versatile
ption for Edge virtualization. Other platforms, such as KubeEdge
Wang et al., 2020d) and OpenEdge (OpenEdge, 2021), are based
7

n Kubernetes virtualization technology (Kristiani et al., 2018). They
rovide functionalities for efficient communication between Edge and
loud as well deployment of various AI-based applications (Wang et al.,
020d). They also contain APIs that control assignment of device
esources to different workloads, which allows for efficient use of
esources for the already resource-constrained Edge devices.

Another framework, FogBus, facilitates IoT-Fog-Cloud integration
o run multiple applications using platform-independent interfaces pro-
ided by the platform (Tuli et al., 2019b) by following master-worker
opology where master nodes known as Fog Brokers are responsible for
elegating data processing tasks to the worker Fog nodes. Similarly,
iF i.e., Elastic Intelligent Fog, An et al. (2019) is a framework that
upports AI-based service migration, predictive network resource allo-
ation and predictive QoS-aware orchestration along with support for
istributed AI. A recent framework, COSCO, i.e., Co-Simulation based
ontainer Orchestration (COSCO) (Tuli et al., 2022e), is a framework
hat presents AI-based resource management modules to not only uti-
ize the workload resource utilization characteristics, but also simulated
haracteristics at a future state of the system. The interleaved execution
f AI models and coupled simulation (referred to as co-simulation in
iterature) enables long-term optimization (Tuli et al., 2022b) and quick
daptation in volatile system settings (Tuli et al., 2022a,c).

.2. AI benchmarks for fog systems

For research related to AI on Fog, several workload like benchmarks
ave been utilized to test the efficacy of Fog systems, such as Rasp-
erry Pi clusters, when dealing with AI-based applications. These are
ummarized in Table 3.

A popular Fog benchmark, DeFog (McChesney et al., 2019),1 con-
ists of six real-time heterogeneous workloads: Yolo, Pocketspinx, Ae-
eas, FogLamp, iPokeMon and RealFD. Yolo uses Convolution Neural
etwork (CNN) for object classification in images. Pocketsphinx is
Natural Language Processing (NLP) based speech-to-text synthesis

ngine that utilizes an AI-based search strategy. Aeneas is a text and
udio synchronization tool that utilizes text to speech tools with AI-
ased search for minimizing speech deviation metrics. iPokeMon is an
daptation of the game Pokemon Go with simulated players and service
equests for network testing in Fog. FogLamp is an application that uses
ggregated sensor data and simulated data retrieval requests to test the
torage bandwidth of Fog devices. RealFD uses computer vision for face
etection in video streams. Other benchmarks, such as AIoTBench (Luo
t al., 2018)2 and EdgeAIBench (Hao et al., 2018),3 are AI-based Edge
omputing based benchmark suites that consist of various real-world
omputer vision application instances. The former consists of CNN neu-
al networks for image classification. These include three typical heavy-
eight networks: ResNet18, ResNet34, ResNext32 × 4d, as well as four

ight-weight networks: SqueezeNet, GoogleNet, MobileNetV2, MnasNet.
he latter includes applications such as ICU patient monitoring and
eart failure prediction using attention-based LSTMs, surveillance cam-
ra video face-detection using CNN networks and road-sign detection
or autonomous vehicles using CNNs.

Another AI benchmarking suite, AIBench (Gao et al., 2018),4 in-
ludes a wide variety of AI applications including image classifica-
ions using CNNs, image generation using Generative Adversarial Net-
orks (GANs), text-to-text translation using recurrent neural networks

RNNs), speech-to-text using Gated Recurrent Units (GRUs) and LSTMs,
ecommendation system using collaborative filtering and spatial image
ransformations using Transformer neural networks. EdgeBench (Das

1 DeFog: https://github.com/qub-blesson/DeFog.
2 AIoTBench: https://www.benchcouncil.org/aibench/aiotbench/index.

tml.
3 EdgeAIBench: https://www.benchcouncil.org/aibench/edge-aibench/

ndex.html.
4
 AIBench: http://www.benchcouncil.org/AIBench/index.

https://github.com/qub-blesson/DeFog
https://www.benchcouncil.org/aibench/aiotbench/index.html
https://www.benchcouncil.org/aibench/aiotbench/index.html
https://www.benchcouncil.org/aibench/edge-aibench/index.html
https://www.benchcouncil.org/aibench/edge-aibench/index.html
http://www.benchcouncil.org/AIBench/index
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Table 3
Comparison of AI based benchmarks for Fog systems in terms of workload coverage.
Benchmark AI AI Robotics Vision/ NLP/ Trans- GANs

Search Filtering CNN RNNs formers

DeFog (McChesney et al., 2019) ✓ ✓

AIoTBench (Luo et al., 2018) ✓

AIBench (Gao et al., 2018) ✓ ✓ ✓ ✓ ✓

EdgeAIBench (Hao et al., 2018) ✓ ✓

EdgeBench (Das et al., 2018) ✓ ✓

IoTBench (Celik et al., 2018) ✓ ✓
2

3

et al., 2018)5 includes audio to text translation using AI search and
object recognition using CNNs. IoTBench (Celik et al., 2018) consists
of multiple AI models run simultaneously under the same input work-
loads. It includes applications for image classification using CNNs and
robotics workloads related to Simultaneous Localization and Mapping
(SLAM) of robot environments.

Apart from the above mentioned benchmarks, several execution
traces are used by state-of-the-art AI augmentation techniques as
datasets for simulation based testing. Bitbrain consists of traces of
resource utilization metrics from 1750 VMs running on BitBrain dis-
tributed datacenter (Shen et al., 2015). Azure2017 and Azure2019
are collected from Microsoft Azure public Cloud platform and are
representative workload traces across thirty consecutive days (Cortez
et al., 2017). Google Cluster is another dataset of CPU and mem-
ry utilization traces of multiple nodes in a high-performance clus-
er in Google Cloud Platform (Reiss et al., 2011). Server Machine
ataset (SMD) (Su et al., 2019) is a five-week long dataset of re-

ource utilizations of 28 machines from a compute cluster. Other
equest trace datasets include HDFS (HDFS, 2021), MHealth (MHealth,
021), PlanetLab (PlanetLab, 2021), Wikimedia (Wikimedia, 2021),
ikeshare (Bikeshare, 2021), Shakespeare (Shakespeare, 2021), SETI
Javadi et al., 2009), Crawdad (Piorkowski et al., 2009), Traffic
Sivanathan et al., 2018), T-Drive (Yuan et al., 2010), Tutoring (Mete-
ier et al., 2019), WfCommons (Coleman et al., 2021) and Yahoo
ebscope (Yahoo Webscope, 2021).

.3. AI modeling and engineering

Now that we have described the various simulation and emulation
latforms for Fog systems, AI toolkits and benchmarking suites, we
lucidate the challenges faced while training or running inference using
n AI model. Model training is a highly resource-intensive task due
o the large number of parameters in modern AI and Deep Learning
odels, and traditionally requires the use of high-performance clusters,
raphical Processing Units (GPUs) or Tensor Processing Units (TPUs).
s such, given that Edge devices usually contain limited resources, the

raining overheads are significant and can take significantly longer time
ompared to Cloud nodes. Additionally, the hardware resources for
dge devices are used by other applications in parallel to the training
rocess, giving rise to frequent resource contentions. Furthermore,
nlike traditional clusters, Cloud engineers have little to no control over
he availability of the Edge devices, making training a challenging task.

Currently, two mainstream methods of model development and
raining exist: Centralized and Federated Learning (FL) (Lim et al.,
020). In a centralized learning system, the AI model, typically a DNN,
ith the training dataset is kept in a single resource-intensive machine
ith the training framework updating the parameter updates iteratively
ntil convergence to minimize a developer-defined loss function (Lim
t al., 2020). In a federated learning setup, the model to be trained
s sent to multiple Edge devices that contain a subset of the training
ata. The model is trained locally using the local hardware and the
arameter updates are iteratively aggregated into a global copy of the
odel. Centralized learning requires a high-end system, but does not

5 EdgeBench: https://github.com/akaanirban/edgebench.
8

lead to high bandwidth use as in FL. Federated learning requires nodes
to synchronize models iteratively that can lead to network contentions
and increased wait times. However, as only the parameter updates are
shared across the nodes and not the local data, it ensures data privacy.

4. State of the art methods

Given the optimization parameters in Fog systems, infrastructure
level constraints offered by the simulator/frameworks, we now review
the state-of-the-art methods for the three aspects resource management:
provisioning, scheduling and maintenance to optimize the QoS metrics
including response time, cost, energy, accuracy and resiliency.

4.1. Interface between AI and fog

Data sources and inputs for AI models. For any resource man-
agement system in the Cloud, for instance, an AI model, this paradigm
provides multi-modal data sources to analyze the system. Traditionally,
these include workload resource utilization traces in the form of a
fraction of CPU, RAM, Disk and Network bandwidth utilization and host
resource capacities in the form of instruction per second (IPS), available
RAM and Disk space and parameters of the network interface (Tuli
et al., 2022e; Mao et al., 2016; Jalali et al., 2019; Basu et al., 2019;
Tuli et al., 2021b). Other parameters include gateway bandwidths,
geographical location of users and Fog nodes (Lera et al., 2019),
communication latencies and mobility characteristics (Ye et al., 2018).

Control Knobs and outputs of AI models. We categorize the
state-of-the-art approaches for AI-augmented Fog continuum as per the
decisions they aim to optimize.

1. Deployment: This deals with the initial decisions of how to effi-
ciently execute resource-intensive AI applications on constrained
Fog systems. In AI on Fog, this concerns with appropriate methods
to deploy resource-intensive AI/ML models on constrained nodes.
This entails deciding the appropriate strategy to compress AI models
without compromising on performance. We discuss this aspect in
Section 4.2.1. In AI for Fog, this concerns the efficient allocation
of resources for the input workloads. This includes the provisioning
of resources, i.e., allocation of new and deallocation of existing Fog
devices. We discuss this aspect in Section 4.2.2.

. Scheduling: This deals with scheduling the deployed workloads on
existing Fog infrastructure. This concerns with optimal placement
of tasks on Fog nodes to optimize system QoS. As we consider a
dynamic setting, our scheduling decisions also include task migra-
tion decisions, viz, the relocation of one or a group of tasks from
one node to another, allowing the system to adapt to changes in the
environments, workloads or user demands. In AI on Fog setups, if the
incoming workloads have tasks that impose precedence constraints,
such as different layers of a neural network, we categorize these as
workflows and discuss relevant methods in Section 4.3.2. Schedulers
for independent tasks are discussed in Section 4.3.1.

. Maintenance: Even though there are several methods based on re-
dundancy that have been proposed for Cloud computing systems
(Sharma et al., 2016), these techniques cannot be directly applied
to Fog systems due to resource limitations. This means that Fog
servers may have less capability to use redundancy techniques

https://github.com/akaanirban/edgebench
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Table 4
Summary of state-of-the-art methods for AI augmented deployment. Color scheme as per Table 7.

Decision type Category Ref. Method Infra. Benchmark Framework/Simulator Merits Limitations

DNN deployment

AutoML Xia et al. (2019), Li et al.
(2019c) and Zhao et al.
(2021)

Policy gradient learning E AIoTBench F: Custom Fast execution Generalizability

Model pruning
Jiang et al. (2019b) and Liu
et al. (2017b)

Search E+C AIoTBench F: Custom Cost efficient Accuracy

Shao and Zhang (2020a), Yu
et al. (2020) and Huang
et al. (2020c)

Neural design E+C AIoTBench – Generalizable Overhead

Zhou et al. (2021) Search E+C AIoTBench F: Custom Cost efficient Overhead

Gradient pruning Sattler et al. (2019) and Luo
et al. (2021b)

Search E AIBench F: Custom Low overhead Accuracy

Reisizadeh et al. (2020),
Hamer et al. (2020) and
Tran et al. (2019)

Neural design E+C Shakespeare S:Custom Low overhead Accuracy

Low precision Coelho et al. (2021) and
Jain et al. (2018)

Neural design E+C – – Generalizable Scalability

Lane et al. (2016) and Imani
et al. (2019)

Search E+C AIBench* F: Custom Memory efficient Generalizability

Layer splitting &
Early exits

Kang et al. (2017) and
Zhang et al. (2021b)

Search E+C AIBench* S: Bighouse Energy efficient Generalizability

Callegaro et al. (2020) Linear programming E – – Fast execution Scalability
Matsubara et al. (2019),
Teerapittayanon et al. (2017)
and Goli et al. (2020)

Neural design E+C AIBench* – Low overhead Accuracy

Yu et al. (2021) Policy gradient learning C AIBench* F: AWS IoT Memory efficient Generalizability

Splitting
Kaplunovich and Yesha
(2020)

Search C AIBench* F: AWS IoT Generalizable Overhead

Chen et al. (2018), Huang
et al. (2020d) and Kim et al.
(2017)

Neural design E+C AIoTBench* F: Custom High accuracy Generalizability

Tuli (2022) DQN + Multi armed bandits E+C AIoTBench* F: COSCO High QoS Overhead

Resource provisioning

Demand prediction

Hyndman and
Athanasopoulos (2018)

Linear regression E+C – S: Custom Fast execution Accuracy

Zhu et al. (2016) Support vector regression C Google Cluster S: Custom Memory efficient Scalability
Chen and Wang (2018), Luo
et al. (2020) and Luo et al.
(2021a)

Gaussian process regression E+C Azure2017/19 S: Custom High accuracy Scalability

Taylor and Letham (2018) Modular regression E+C – – Scalable Accuracy
Singh et al. (2019) and
Calheiros et al. (2014)

ARIMA C Wikimedia S: Custom High accuracy Scalability

Xu et al. (2020a) Decision regression tree E Bikeshare – Fast execution Only univariate
Bega et al. (2019) and Jeddi
and Sharifian (2019)

CNN E+C Custom – High accuracy Interpretability

Ouhame et al. (2021) and
Yazdanian and Sharifian
(2021)

LSTM C Custom S: Custom High accuracy Interpretability

Decision optimization

Aliyu et al. (2020) Ant colony optimization E+C Bitbrain S: Cloudsim High util. ratio Scalability
Luo et al. (2020) and Luo
et al. (2021a)

Bayesian optimization E+C Azure2017/19 S: Custom High util. ratio Scalability

Zhu et al. (2016) and Chen
et al. (2020b)

Particle swarm optimization C Google cluster S: Custom Memory efficient Scalability

Asghari et al. (2021) Genetic algorithm C – S: Cloudsim High util. ratio Execution time

Hybrid provisioning

Wilder et al. (2019) Deep surrogate optimization E+C Yahoo Webscope S: Custom Cost efficient Generalizability
Stuckey et al. (2020) DNN + Dynamic Prog. E+C – – High util. ratio Scalability
Levy et al. (2020) FCN + Multi armed bandits C Custom F: Kafka Fast & Scalable Exposure bias
Chen et al. (2019) FCN + Monte Carlo tree search C – – High QoS Execution time
Xu et al. (2020b), Bitsakos
et al. (2018) and Sami et al.
(2021)

Deep Q learning E+C Google Cluster S: Custom Scalable Interpretability

Xu et al. (2020c), Chen
et al. (2020a) and Chen
et al. (2021)

Policy gradient learning E+C – S: iFogSim Low energy Scalability
i
i
g
Z
a
t

a

like replication (Shivakumar, 2015). This leads to higher response
times and SLA violations that can lead to significant financial
losses (Nicoletti, 2013). Thus, it is critical to develop a mechanism
for the maintenance of Fog environments. This deals with detect-
ing faults/anomalies in real-time, discussed in Section 4.4.1. Also,
we consider works that develop appropriate proactive or reactive
recovery mechanisms to prevent service downtime. They are either
related to load-balancing methods that aim at preventing faults or
scaling the Fog infrastructure (see Section 4.4.2).

Most data-driven methods achieve local optimum. However, some
approaches are developed to avoid getting stuck in such local op-
tima (Loshchilov and Hutter, 2016), although they do not guarantee
achieving global optima. We now describe how data-driven AI methods
can be used to solve the deployment, scheduling and maintenance
challenges in fog continuum.

We now move to the three aspects of AI augmented resource man-
agement introduced in Section 1.2. We consider works that leverage
either a physical framework or a simulated environment.

4.2. AI augmented deployment

A summary of all AI augmented deployment methods is presented
9

in Table 4. Here, a benchmark corresponds to the workloads used to i
train and test the presented methods. Infra. column represents whether
the methods utilize Edge (E) or Cloud (C) or both (E+C). Asterisk
with framework/simulator means that the respective papers utilize a
modified version of the base platforms.

4.2.1. AI augmented DNN deployment
Running training or inference procedures for AI/ML models is com-

putationally expensive. Given that Edge devices tend to have limited
compute resources that are usually shared across multiple running
applications, it is essential to develop resource-efficient training and
inference mechanisms to ensure short training times and resource load.
Several solutions have been proposed in the past to address this.

AutoML. For instance, several AutoML (automated machine learn-
ng) techniques run search in the space of neural network models,
.e., NAS, to find out the optimal DNN model to execute a task in a
iven system (Xia et al., 2019; Zhou et al., 2019; Li et al., 2019c;
hao et al., 2021). These methods can be run to find the optimal DNN
rchitecture for a given set of constraints such as training or inference
imes, memory footprint, computational requirements, etc.
Model Pruning. Another direction is to take existing AI models

nd prune their parameters to reduce overall local training cost, for
nstance, PruneFL (Jiang et al., 2019b). Model pruning is a commonly
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used strategy in ML that intelligently cuts away parts of the model ar-
chitecture without compromising the quality of model inference (Shao
and Zhang, 2020a; Yu et al., 2020; Huang et al., 2020c). Compared
to AutoML, by pruning out parts of the model, the computational
resources required to train or run inference on the model are reduced,
making it more amenable to Edge and Fog systems. Similar model
pruning works are dependent on the DNN design. For instance, Gener-
ative Optimization Networks (GON) (Tuli et al., 2021c) are generative
models inspired by GANs that use two neural networks in tandem:
generator and discriminator. Unlike GANs, GONs do not use the gen-
erator and create new samples only using the discriminator network.
Other examples include SlimGAN (Hou et al., 2021), Gradient Origin
Networks (Bond-Taylor and Willcocks, 2021) and similar GAN slim-
ming techniques (Wang et al., 2020a). Similar works exist that perform
model pruning for other DNN types, for instance, CNNs (Liu et al.,
2017b). Pruning reduces both the memory and compute requirements
of models. Similarly methods like BBNet utilize multiple techniques
together, such as model pruning and data compression (Zhou et al.,
2021). BBNet decides the optimal pruning and compression parameters
using local search-based techniques.

Gradient Pruning. In FL systems, all worker nodes need to send
radient updates of their models over the network, which generally
ranslates to up to gigabytes of data depending on the size of the model.
o avoid bandwidth contentions, several works discuss solutions to
rune the gradient updates improving memory and network efficiency
n federated setups (Yang et al., 2020a). Some approaches, such as
parse Ternary Compression (STC) (Sattler et al., 2019) and Deep
radient Compression (DGC) (Luo et al., 2021b), employ compression
echanisms to reduce the communication bandwidth required for dis-

ributed training or inference. Other methods, like FedPaq (Reisizadeh
t al., 2020), perform periodic aggregation and quantization to reduce
ommunication frequency. A similar approach, CMFL (Luping et al.,
019), intelligently decides which model updates give the maximum
oost in performance and only sends the top-performing gradient up-
ates. Another work, FedBoost (Hamer et al., 2020), uses ensemble
raining to boost model training efficiency and offload only a small part
f the ensemble to the Edge devices with predefined intervals to reduce
ommunication overheads. Another work, FEDL (Tran et al., 2019), the-
retically demonstrates the relationship between convergence rate and
nergy consumption of an FL system and formulates the computation
nd communication models as a non-convex optimization program to
ptimize the distribution of federated networks and outperformed other
earning methods.
Low-Precision. Energy efficiency is also one of the major concerns

hen designing efficient ML training algorithms due to FL parties
enerally being battery-powered devices. Deep learning is inherently
ery power-consuming due to the large amounts of computation that
eed to be performed. As such, there has been a relatively large amount
f work in energy efficiency by discrete quantization and using low-
recision hardware architectures (Coelho et al., 2021; Gong et al.,
019; Jain et al., 2018; Langroudi et al., 2019b,a). This not only
educes the computational overheads, but also gives significant gains in
erms of memory and energy footprints (Gong et al., 2019; Tuli et al.,
021c). The level of precision cannot be changed dynamically at test
ime as changing precision requires re-training the models. Thus, these
ecisions either need to be performed at the setup time or multiple
odels need to be trained of different precision levels, at the cost of
igher training time, to provide control to the resource manager to
radeoff between accuracy and memory footprint. Other optimization
ethods, such as DeepX (Lane et al., 2016), focus on the develop-
ent of deep learning models on mobile devices by runtime control

f the memory to reduce the layer-wise operations, such that only
he most important operations use larger bytes. Further, it efficiently
dentifies unit blocks of a DNN architecture and allocates them to
ocal or remote memory caches depending on the access frequency,
10

mproving memory footprint. A similar method, FloatPIM (Imani et al., e
2019) provides an interface between software and hardware by using
Processing in-memory (PIM) to reduce memory usage.

Layer Splitting and Early-Exits. For typical DNNs, it is possible to
run inference without performing operations across all layers. Methods,
such as Neurosurgeon (Kang et al., 2017) and DeepSlicing (Zhang
et al., 2021b), decide the optimal layer partitions of a neural network
using grid-search at run time to maximize system QoS. Others, like
SplitComp (Callegaro et al., 2020) model the problem of deciding the
optimal splitting strategy as a Markov Process and leverage Linear
Programming to converge to the optimal splitting strategy. Further, to
reach the best tradeoff between model accuracy and processing delay,
many early-exit strategies have been proposed where the inference is
performed only through a few layers instead of the entire DNN and
do not use the complete DNN (Li et al., 2019c; Pacheco et al., 2021;
Wang et al., 2019a). Most work in this category aims at segregating
these network splits into different devices based on their computational
performance (Matsubara et al., 2019; Teerapittayanon et al., 2017; Goli
et al., 2020; Zhang et al., 2021b; Kang et al., 2017). Thus, fast and
localized inference using shallow portions of DL models can allow quick
inference, possibly at the cost of poorer resulting accuracy. This gives a
tradeoff between result fidelity and response time. Several works have
been proposed to leverage this tradeoff for multi-objective optimiza-
tion, especially to reduce the frequency of SLA violations (Tuli et al.,
2019a; Yang et al., 2020b). Other recent methods aim at exploiting the
resource heterogeneity in the same network layer by splitting and plac-
ing DNNs based on user demands and host capabilities (Gunasekaran
et al., 2020). Such methods can split DNNs and choose from different
architectural choices to reach the maximum accuracy while agreeing
to the latency constraints. Other works aim at accelerating the model
run-times by appropriate scheduling of a variety of DNN models on
Edge-clusters (Liang et al., 2020). Another method, Gillis, uses a hybrid
model, wherein it employs either model-compression or layer-splitting
based on the application SLA demands (Yu et al., 2021). The decision is
taken using a reinforcement-learning model which continuously adapts
in dynamic scenarios. It is a serverless-based model serving system
that automatically partitions a large model across multiple serverless
functions for faster inference and reduced memory footprint per func-
tion. The Gillis method employs two model partitioning algorithms that
respectively achieve latency optimal serving and cost-optimal serving
with SLA compliance. However, this method cannot jointly optimize
both latency and SLA. Moreover, it does not consider the mobility of
devices or users and hence is ineffective in efficiently managing large
DNNs in mobile Edge computing environments.

Splitting. Two types of splitting strategies exist: data splitting and
emantic model splitting. Data splitting splits the input data batch
cross multiple instances of the neural networks for parallel inference.
ata splitting allows reducing the response time of inference over input
ata, at the cost of higher network overheads (Kaplunovich and Yesha,
020). Semantic model splitting divides the network weights into a
ierarchy of multiple groups that use a different set of features. Here,
he neural network is split based on the data semantics, producing a
ree structured model that has no connection among branches of the
ree, allowing parallelization of input analysis (Kim et al., 2017). Due to
imited information sharing among the neural network fragments, the
emantic splitting scheme gives lower accuracy in general compared
o unsplit networks. Semantic splitting requires a separate training
rocedure where publicly available pre-trained models cannot be used.
his is because a pre-trained standard neural network can be split layer-
ise without affecting output semantics. For semantic splitting, we
ould need to first split the neural network based on data semantics
nd re-train the model. However, semantic splitting provides parallel
ask processing and hence lower inference times, more suitable for
ission-critical tasks like healthcare and surveillance. Examples of such
ethods include ThriftyEdge (Chen et al., 2018), CLIO (Huang et al.,
020d), SplitPlace (Tuli, 2022) and SplitNet (Kim et al., 2017; Ushakov

t al., 2018).
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TinyML. This is a paradigm where the objective is to run com-
plex deep learning models within resource constrained embedded de-
vices (Ray, 2021). Although many of the above approaches have high
overlap with the methods considered in the scope of TinyML, we
specifically discuss the advances in computational algorithms to aug-
ment resource management in fog environments. For instance, hyper-
dimensional computing (HDC) is an approach that consumes much
lower energy compared to conventional methods. Here the tensors of
DNNs are mapped to higher dimensional tensors (Ge and Parhi, 2020).
Another approach to improve the memory footprint and minimize the
read/write latencies is swapping (Miao and Lin, 2021) where DNN
models are efficiently swapped between the on-chip memory of the
microcontroller and external flash memory. Another recent approach
is attention condenser that is an auxiliary neural network that learns
self-attention to condense the size of the input (Wong et al., 2020).

4.2.2. AI augmented resource provisioning
Systematic resource provisioning is central to cost and resource-

efficient computation in Fog systems. Bootstrapping resources, such as
Cloud VMs or Edge nodes is time-consuming for latency-critical tasks;
a key challenge is to predict future workload demands to provision
resources to optimize QoS. Resource management is a key aspect of re-
source provisioning, which instantiates and deallocates resources based
on dynamic workload demands. Most prior work aims to automate
resource provisioning to optimize various performance measures such
as energy consumption, cost, and task response time (Tuli et al., 2021b;
Levy et al., 2020). However, this problem is challenging due to the
non-stationary utilization characteristics of most workloads (Ebadifard
and Babamir, 2021), requiring methods to dynamically adapt their
provisioning policies. Most dynamic resource provisioning methods
decouple the provisioning problem into two stages: demand prediction
and decision optimization (Luo et al., 2020). This is commonly referred
to as the predict+optimize framework in literature. Thus, we divide prior
pproaches based on their decision type.
Demand Prediction. Methods that forecast demands at a future

state of a Fog system need data corresponding to historical workload
demands on the same system. Several methods have been proposed
that leverage a forecasting model. For instance, a class of methods
utilize regression models such as Linear Regression (LR) (Hyndman and
Athanasopoulos, 2018), Support Vector Regression (SVR) (Zhu et al.,
2016), Gaussian Process Regression (Chen and Wang, 2018; Luo et al.,
2020, 2021a) or modular regression (Prophet) (Taylor and Letham,
2018). Others utilize auto-regressive models such as AutoARIMA (Singh
et al., 2019; Calheiros et al., 2014) or other ML models like Regression
Tree (RT) (Xu et al., 2020a), time series decomposition (TSDec) (Hyn-
dman and Athanasopoulos, 2018) or unobserved component model
(UCM) (Durbin and Koopman, 2012) based forecasting. Recent works
utilize DNNs to perform forecasting, for instance, using LSTM neural
networks (Ouhame et al., 2021), CNNs (Bega et al., 2019), convolu-
tional wavelet neural networks (Jeddi and Sharifian, 2019) or LSTM
based GANs (Yazdanian and Sharifian, 2021). DNN based demand
prediction models are known to outperform classical AI or regression
based approaches (Yazdanian and Sharifian, 2021; Jeddi and Sharifian,
2019).

Decision Optimization. Using a demand prediction model, several
previous works optimize the provisioning decision to minimize execu-
tion costs or maximize the utilization ratio. Conventional methods often
use evolutionary search strategies such as Ant Colony Optimization
(ACO) (Aliyu et al., 2020), which has been shown to exhibit state-
of-the-art QoS scores in recent work (Luo et al., 2021a). Others use
Bayesian Optimization (BO) (Luo et al., 2020, 2021a), Particle Swarm
Optimization (PSO) (Zhu et al., 2016; Chen et al., 2020b) or Genetic
Algorithms (Asghari et al., 2021). Among the different approaches,
ACO and PSO are appropriate for static scenarios, whereas GA and
BO are more suitable for highly dynamic settings (Tuli et al., 2022e;
11

Asghari et al., 2021). a
Hybrid Provisioning. Other methods, such as Decision-NN, com-
bine the prediction and optimization steps by modifying the loss func-
tion to train neural networks in conjunction with the optimization
algorithm (Wilder et al., 2019). This method uses a neural network
as a surrogate model to directly predict optimization objectives and
uses the concept of neural network inversion, wherein the method
evaluates gradients of the objective function with respect to inputs
and runs optimization in the input space. However, continuous re-
laxation of the discrete optimization problem used in this work has
been shown to adversely impact performance (Luo et al., 2020). A
similar method, Semi-Direct, utilizes dynamic programming to find the
optimal provisioning decision (Stuckey et al., 2020), but offers limited
scalability with workload size. Similarly, Narya (Levy et al., 2020) is
built for mitigating VM interruptions in Cloud machines, but can be
straightforwardly extended to resource provisioning. It uses a neural
network as a surrogate model with a multi-armed bandit model to
decide provisioning actions. However, it faces the problem of exposure
bias, i.e., the neural model is biased to the trends in the training data
and is unable to forecast in unseen cases.

Reactive Provisioning. Recently, RL based methods have been
roposed for reactive provisioning. For instance, Intelligent Resource
llocation Framework (iRAF) (Chen et al., 2019) solves the complex
esource allocation problem for the collaborative mobile Edge com-
uting (CoMEC) network using Deep Reinforcement Learning (DRL)
ith a multi-task objective formulation. It makes resource allocation
ecisions based on network states and other task characteristics such as
he computing capability of devices, network quality, resource utiliza-
ion, and latency requirements. iRAF automatically takes into account
he network environment and makes resource allocation decisions to
aximize the performance over latency and power consumption. It
ses self-play training where the agent becomes its own teacher and
earns over time in a self-supervised learning manner. Specifically, it
ses a fully connected network (FCN) with Monte Carlo Tree Search
MCTS) to optimize the provisioning decision. Some other works, such
s DDRM (Chen et al., 2020a), focus on the integration of IoT and
ndustrial manufacturing systems (IIoT). The authors argue that due
o the limitation of computing capacity and battery, computation-
ntensive tasks need to be executed in the mobile Edge computing
MEC) server. Another similar work (Baek and Kaddoum, 2020) focuses
n optimizing the Fog nodes by selecting the suitable nodes and proper
esource management while guaranteeing the QoS requirements of the
sers. It designs a joint task offloading and resource allocation control
or heterogeneous service tasks in multi-fog nodes systems. It applies a
eep recurrent Q-network (DRQN) approach to approximate the opti-
al value functions and applies an adjusted exploration-exploitation
ethod to make the optimization process more efficient. Similarly,
eCARL (Xu et al., 2020b) focuses on Cloud Radio Access Networks
CRANs). It proposes a resource allocation scheme in CRANs to improve
he objective of power consumption and SLA violations of wireless
sers over a long time period. To do this, it uses DRL to solve a
ustom convex optimization problem and apply a Deep Neural Network
DNN) to approximate the action-value function. It uses two DRL
gents: ReCARL-Basic (requiring limited training) and ReCARL-Hybrid
requiring deep learning training). It has been evaluated via extensive
imulation to demonstrate that ReCARL achieves significant power
avings in highly dynamic settings while meeting user SLA demands.
imilarly, Deep Elastic Resource Provisioning (DERP) (Bitsakos et al.,
018) uses Deep-Q learning to optimize provisioning decisions with
tilization ratio as a reward for the DRL agent. Unlike Q-learning
ased agents that utilize a neural network to predict the expected
eward for each action (Sami et al., 2021), recent methods also use
eural networks to approximate the optimal policy. Such approaches
re called policy gradient methods and include (Xu et al., 2020c; Chen
t al., 2021). The state-of-the-art policy gradient methods outperform
raditional reinforcement learning (Q learning) and Monte Carlo based

pproaches (Xu et al., 2020c; Chen et al., 2021).
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Table 5
Summary of state-of-the-art methods for AI augmented scheduling. Color scheme as per Table 7.

Decision type Category Ref. Method Infra. Benchmark Framework/Simulator Merits Limitations

Bag-of-Tasks scheduling

Maxweight scheduling Krishnasamy et al.
(2018)

Maxweight E+C – S: Custom Fast execution Resp. Time

Liu et al. (2020) Maxweight E+C Tutoring S: Custom Fast execution Resp. Time

Surrogate modeling

Jiang et al. (2019a) DNN + Linear programming E – S: Custom Energy efficient Accuracy
Han et al. (2018) DNN + GA E+C – – Generalizable Overhead
Tuli et al. (2020a) GMM + GA E+C Bitbrain S: iFogSim Fast execution Overhead
Tuli et al. (2022e) DNN + Gradient Opt. E+C DeFog F: COSCO High QoS Interpretability
Tuli et al. (2021b) GNN + Gradient Opt. C DeFog F: COSCO High QoS Exposure bias

Stochastic modeling

Jamshidi and Casale
(2016) and Bui et al.
(2017)

Gaussian process regression C Google Cluster S: Custom Fast execution Overhead

Panda et al. (2015) and
Jawad et al. (2018)

Robust Search C Custom – Energy efficient Overhead

Alelaiwi (2019) DBN + Search E+C – S: Custom Fast execution Accuracy
Tuli et al. (2022a) NPN + Gradient Opt. E+C DeFog F: COSCO High QoS Interpretability

Reinforcement learning

Tang et al. (2018) and
Li et al. (2019b)

Deep Q learning E+C Crawdad S: Cloudsim Generalizable Scalability

Wang et al. (2021b) Minimax Q learning C Traffic S: Clousim Generalizable Scalability
Sheng et al. (2021) Policy gradient learning E – S: Custom High QoS Adaptability
Tuli et al. (2020b) and
Cheng et al. (2021)

Policy gradient learning E Bitbrain S: iFogSim High QoS Adaptability

Co-Simulation Tuli et al. (2022e) and
Tuli et al. (2022a)

FCN + Co-Simulation E+C DeFog F: COSCO Generalizable Overhead

Workflow Scheduling

Meta-heuristic methods
Wang et al. (2020e) Particle swarm optimization C WfCommons F: AWS IoT Generalizable Low QoS
Huang et al. (2020a) Ant colony optimization E+C WfCommons F: AWS IoT Generalizable Low QoS
Ghanavati et al. (2020) Ant mating optimization E+C WfCommons S: Custom Energy efficient Overhead

Surrogate optimization
Ismayilov and Topcuoglu
(2020)

DNN + GA C WfCommons – Generalizable Overhead

Pham and Fahringer
(2020)

DNN + GA C WfCommons S: Cloudsim Cost efficient Overhead

Tuli et al. (2022b) DNN + Gradient Opt. E+C WfCommons F: COSCO High QoS Interpretability

Game theory Wang et al. (2020b) Attack-Defense Model C WfCommons F: Openstack Cost efficient Overhead

Reinforcement learning

Wang et al. (2019b) Deep Q learning C WfCommons F: AWS IoT Generalizable Scalability
Kaur et al. (2020) Deep Q learning C WfCommons S: Clousim* Generalizable Scalability
Ghosal et al. (2020) Policy gradient learning E+C – – High QoS Adaptability
Hu et al. (2019) Policy gradient learning C WfCommons F: Custom High QoS Adaptability

Other
Feng et al. (2019) LSTM E+C Custom – Generalizable Scalability
Wang et al. (2020f) Support vector regression E – S: Custom Fast execution Scalability
Alsurdeh et al. (2021) Gradient descent search E+C Custom S: CloudSim High QoS Overhead
4.3. AI augmented scheduling

A summary of recent AI-augmented scheduling methods is presented
in Table 5.

4.3.1. AI augmented scheduling of bag-of-tasks
QoS-aware placement of IoT applications requires reaching a trade-

off among multiple conflicting QoS parameters such as response time,
cost and energy. In the bag-of-task workload model, each task can be
independently scheduled.

MaxWeight-Scheduling. Over the years, many scheduling
approaches have turned to utilize MaxWeight based techniques due to
its theoretical guarantees and the ability to reduce the frequency of
resource contention (Liu et al., 2020; Krishnasamy et al., 2018). For in-
stance, the pessimistic-optimistic online dispatch approach, POND, is a
variant of the MaxWeight approach (Liu et al., 2020). POND formulates
the scheduling problem as a constrained optimization objective with
unknown dispatch, arrival and reward distributions, such that each Fog
node has a virtual queue to track violation counts. It uses an Upper-
Confidence Bound (UCB) based exploration strategy (Auer et al., 2002)
with the final decisions being made with the MaxWeight weights as
the expected reward value of each scheduling decision. However, prior
work has demonstrated that MaxWeight policies suffer from instability
in dynamic workloads, high delays and inefficiency in modeling large-
scale Fog networks (Bae et al., 2019; van de Ven et al., 2009, 2013).
MaxWeight schedulers are also known to have high wait times due to
their inability to adapt to volatile workload settings (Tuli et al., 2022e).

Surrogate Modeling. Most classical research in this area employs
meta-heuristic algorithms with a DNN or regression model as a surro-
gate that approximates QoS of a given system state. This is due to their
generic formulation and ease of implementation. For instance, prior
works have shown that evolutionary-based methods, and generally
gradient-free approaches, perform well in dynamic scenarios (Wang
et al., 2019c; Han et al., 2018; Wang et al., 2020g; Tuli et al., 2020a).
Some works use a combination of a DNN surrogate, and classical
12

optimization techniques such as mixed-integer linear programming
(MILP) (Jiang et al., 2019a). Evolutionary approaches such as genetic
algorithms (GA) lie in the domain of gradient-free optimization meth-
ods. The GA method schedules workloads using a neural model to
approximate the objective value and a genetic algorithm to reach the
optimal decision (Han et al., 2018). Such methods use either analyt-
ical models (Wang et al., 2019c), Gaussian Mixture Model (GMM) or
polynomial approximators (Tuli et al., 2020a) or neural networks (Han
et al., 2018) to predict system QoS for a given scheduling decision
and input Fog state. Typically, such approaches run a search scheme
with non-local jumps, due to cross-over and mutation-like operations,
to converge towards an optimum. However, gradient-free methods are
known to take much longer to converge (Bogolubsky et al., 2016) and
are not as scalable (Rios and Sahinidis, 2013) as gradient-based meth-
ods. Moreover, non-local jumps can significantly change the scheduling
decision, leading to a high number of preemptive task migrations. This
entails checkpointing the running task, migrating it to another Fog
node and resuming its execution on the new node (Engelmann et al.,
2009). This can give rise to high migration overheads, subsequently
increasing the average task response times and SLA violation rates.
Furthermore, prior work also establishes that neural approximators
can precisely model the gradients of the objective function with re-
spect to input using back-propagation (Nguyen-Thien and Tran-Cong,
1999). Now, although such works use these gradients with respect
to input for solving differential equations, they can also be applied
for gradient-based optimizations. However, even with the advantages
of scalability and quick convergence to optima, few prior works use
gradient-based methods as neural approximators are not consistent
with the convexity/concavity requirements of such methods (Nandi
et al., 2001). This problem is alleviated by momentum and annealing
in schedulers like GOBI and GOSH (Tuli et al., 2022e,a). Such methods
take the scheduling decision and state of the Fog system as resource
utilization characteristics of workloads and Fog nodes and output a
QoS estimate. Using backpropagation to input, i.e., fixing the neural
network parameters and updating the scheduling decision based on the
gradient of DNN output, these methods find the optimal scheduling de-

cisions. Other schedulers, like HUNTER (Tuli et al., 2021b), model the
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input scheduling decision as a graph and use Graph Neural Networks
(GNNs), facilitating the inference by capturing the correlations across
workloads and Fog nodes. However, with such models, as they run
black-box optimization steps, the interpretability of their outputs is low.
Further, continuous approximation of a discrete optimization problem
is known to give sub-optimal decisions in some cases (Miranda-Varela
and Mezura-Montes, 2018).

Stochastic Modeling: Another type of models that approximate sys-
em QoS is stochastic surrogate models. These include Heteroscedastic
aussian Processes to approximate the distribution of the QoS metrics

nstead of giving only a static output for a given input state (Jamshidi
nd Casale, 2016; Bui et al., 2017; Panda et al., 2015). Similarly,
rior works also predict the mean and variance estimates of system
oS based on historical data to perform robust and safe decision
ptimization (Panda et al., 2015; Jawad et al., 2018) or use error-
ased exploration (Jamshidi and Casale, 2016). Other methods use
eep Belief Networks (DBN) for response-time predictions, which are
sed to make prompt offloading decisions under mobility and fluctu-
ting resource demands (Alelaiwi, 2019). Typically, due to the poor
odeling accuracy of Gaussian Processes, they cannot perform well in

omplex environments like heterogeneous Fog environments. Hence,
ore sophisticated models like Bayesian Neural Networks (BNNs) to

dditionally model the stochasticity in the QoS metrics (Jawad et al.,
018; Wu et al., 2020). Recent state-of-the-art methods also rely on
atural Parameter Networks (NPNs) that allow using arbitrary expo-
ential family of distributions to model the weights and parameters of
neural networks (Tuli et al., 2022a).
Reinforcement Learning models: Recently, reinforcement learn-

ing based methods have shown themselves to be robust and versatile
to diverse workload characteristics and complex Fog setups (Tuli et al.,
2020b; Tang et al., 2018; Basu et al., 2019; Gazori et al., 2019). Such
methods use a Markovian assumption of state which is the scheduling
decision at each interval. Based on new observations of reward signals,
they explore or exploit their knowledge of the state-space to converge
to an optimal decision. Recent methods, such as DQLCM (Tang et al.,
2018) and DeepRM (Li et al., 2019b), model the container migration
problem as a multi-dimensional Markov Decision Process (MDP) and
use a deep-reinforcement learning strategy, namely deep Q-Learning
to schedule workloads in a heterogeneous Fog environment. Another
similar method, SDAEM-MMQ (Wang et al., 2021b) uses a stacked de-
noising autoencoder with minimax Q learning for accurate Q estimates
and robust optimization. Policy gradient methods, such as Sheng et al.
(2021), train a DNN to directly predict the optimal scheduling decision
instead of Q values. A recent method, Asynchronous Advantage Actor–
Critic (A3C), is a policy gradient method that schedules workloads
using an actor–critic pair of DNN agents (Tuli et al., 2020b). This
approach uses Residual Recurrent Neural Networks (R2N2) to predict
the expected reward for each action i.e., scheduling decision and tries to
optimize the cumulative reward signal. Another similar method, Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) (Cheng et al.,
2021) formulates the decision optimization problem as a stochastic
game among multiple RL agents to reach to an optimal schedule.
However, such methods are still slow to adapt to real-world application
scenarios (Tuli et al., 2022e). This leads to higher wait times and
subsequently high response times and SLA violations, leading to poor
scalability with workload or the number of nodes in the Fog system.

Coupled Optimization. Finally, coupled or symbiotic simulation
and model-based control have long been used in the modeling and
optimization of distributed systems (Onggo et al., 2021; Bosmans et al.,
2019; Onggo et al., 2018). Many prior works have used hybrid simula-
tion models to optimize decision-making in dynamic systems (Mustafee
et al., 2015; Onggo et al., 2018). To achieve this, they monitor, analyze,
plan and execute decisions using previous knowledge-base corpora
(MAPE-k) (Gill et al., 2019). However, such works use this to facilitate
search methods and not generate additional data to aid the decision-
13

making of an AI model. Recent methods, such as GOBI* (Tuli et al., m
2022e), use an interleaved decision optimization and co-simulation to
run an interactive dynamic between the different levels of fidelity, i.e.,
imulation and surrogate, to optimize QoS. A similar work (Onggo
t al., 2018), presents the notion of symbiotic simulation that aims
o feed in the resource characteristics related data to a co-simulated
odel for optimizing resource management related decisions using ML

echniques. Another similar work, EDSS (Onggo et al., 2021), uses
co-simulator to estimate the effects of various resource scheduling

ecisions from an ML model and choose the one with highest QoS.
unning a co-simulator gives another estimate of system QoS, solving

wo problems at once: the problem of exposure bias to training data
s well as the data saturation problem. The former arises due to the
urrogate models being trained on a set of pre-collected execution
races, wherein the system characteristics might be different from those
t test time. The latter arises due to the limited diversity in training data
uch that even with more datapoints, the performance of the DNN does
ot improve.

.3.2. AI augmented scheduling of workflows
Workflow like applications typically have precedence constraints

f the form of a DAG that must be adhered to when scheduling
uch applications. These workloads could be of the form of a layer
r semantic split neural models (see Section 4.2.1) or other scientific
orkflow applications (Gill et al., 2019).
Meta-Heuristic methods. This class of methods leverages high-

evel problem independent algorithms to find the optimal scheduling
ecision for the workflows. Most state-of-the-art approaches belong
o this category. Among these, many use variants of the PSO opti-
ization technique (Wang et al., 2020e). One such technique is the

mmune-based particle swarm optimization (IMPSO) method (Wang
t al., 2020e). It uses candidate affinity to prevent poor candidates from
eing discarded in subsequent iterations, allowing it to surpass other
SO-based methods in terms of execution costs and average response
ime. Other techniques, categorized commonly as list scheduling, use
etrics like earliest finish time, critical path, and dynamic resource
tilization levels (Adhikari et al., 2019). However, list scheduling per-
orms poorly in settings with non-preemptable jobs and heterogeneous
equirements or machines (Adhikari et al., 2019). Others include ACO,
uch as Huang et al. (2020a). Such a technique starts with several
andom or heuristically initialized candidate solutions. Each candidate
s iteratively optimized, moving it slightly in the state-space where the
ptimization objective tends to increase. Such methods aim to reach
balance between makespan-service spread, makespan-energy and
akespan-cost, respectively. Further, novel bio-inspired meta-heuristic

lgorithms are also introduced to solve Fog application scheduling
imultaneously considering multiple objectives. For instance, the Ant
ating Optimization (AMO) (Ghanavati et al., 2020), aims to mini-
ize the total system makespan and energy consumption for Fog task

cheduling.
Surrogate Optimization. Other recent methods use genetic algo-

ithms to optimize the scheduling decision, again using a DNN as a
urrogate model (Ismayilov and Topcuoglu, 2020; Pham and Fahringer,
020). Again, due to non-local jumps in the search space, such meth-
ds typically lead to better QoS estimates, at the cost of higher task
igration overheads (Tuli et al., 2022e). Recent techniques, such as
SVR (Pham and Fahringer, 2020), initialize its candidate population
sing the Heterogeneous Earliest Finish Time (HEFT) heuristic and
ptimize using the crossover-mutation scheme. To account for volatility
n the system, ESVR continuously fine-tunes the neural network surro-
ate using the latest workload traces and host characteristics (Pham
nd Fahringer, 2020). A similar technique is DNSGA (Ismayilov and
opcuoglu, 2020) that uses a multi-objective optimization method that
ses a Pareto Optimal Front (POF) aware approach that prevents the
et of candidates from converging to the same optima (Ismayilov and
opcuoglu, 2020). Prior work shows that these two methods out-
erform previously proposed genetic algorithms-based techniques (Is-

ayilov and Topcuoglu, 2020; Pham and Fahringer, 2020). However,
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in the case of long-running workflows, having a short-term QoS esti-
mate is detrimental to the system performance as it leads to myopic
optimization. To tackle this, recent methods, such as Monte-Carlo Deep
Surrogate (MCDS) (Tuli et al., 2022b), trains a DNN to generate long-
term QoS estimates by running multiple Monte-Carlo simulations on a
co-simulator. This not only helps in long-term optimization, but also
facilitates stable learning.

Game-Theoretic Modeling. Another recently proposed workflow
scheduling model, namely Closure, uses an attack-defense game-
theoretic formulation (Wang et al., 2020b). Unlike other schemes
that assume mostly homogeneous resources, Closure has been shown
to efficiently manage heterogeneous devices by calculating the Nash
Equilibrium of the attack-defense game model. This is crucial in Edge-
cloud environments where there are contrasting resource capacities of
Edge and Cloud.

Reinforcement Learning. Some methods constrain the action space
of the MDP formulation to exclude scheduling decisions that violate the
precedence constraints set by the incoming workloads. These include
removing infeasible actions from the action set at each state of the
MDP (Wang et al., 2019b) for Deep Q Networks (DQN) or masking
the policy likelihood scores in policy gradient methods (Hu et al.,
2019; Ghosal et al., 2020). For instance, DQ-HEFT (Kaur et al., 2020)
superimposes the task order over the reward function to ensure that the
Q-learning model converges to an optimal scheduling decision.

Other. Many prior works utilize other augmentation strategies in
tandem with AI. For instance, some works optimize the Fog network.
Examples include (Jalali et al., 2019, 2017), which introduce cognitive
Edge gateways that use machine learning (regression and ensemble
models) to automatically learn the best allocation for each task based
on the Fog environment status and performance requirements of the
tasks. Similarly, other methods (Wang et al., 2020f) propose an intelli-
gent task offloading algorithm to synergistically run them on Edge and
Cloud platforms. Their dynamic switching algorithm groups applica-
tions using a support vector machine based approach to improve the
performance in terms of delay and energy consumption. Other meth-
ods such as gradient descent search (Alsurdeh et al., 2021) has been
adopted for hybrid workflow scheduling in Edge and cloud computing
to optimize execution time and monetary cost.

4.4. AI augmented maintenance

In this work, we focus on the aspect of maintaining Fog systems
using resource management techniques, particularly concerned with
fault tolerance, resilience and remediation. Resilience is crucial when
utilizing AI for resource management, as corrupted computation from
failed nodes can lead to ML systems having erroneous behavior. Such
errors can be fatal in some scenarios, such as autonomous driving and
medical predictions. We measure system resilience with three metrics.

1. Resource Contention: Stressful workloads tend to overwhelm the re-
source capacities of the Edge or Cloud nodes, leading to competition
among workloads for resources. This competition can cause failures
due to inefficient resource scheduling, resulting in outages. The
most common way of mitigating this is by proactive resource provi-
sioning that ensures sufficient resources are available for incoming
workloads before they arrive. However, it is crucial to eschew the
over-provisioning of resources to avoid system under-utilization or
resource wastage in Fog systems.

2. Service Availability: It is possible that the node performing a crucial
computation fails due to hardware or software faults. This disrupts
the service provided to the user and is a critical metric to mea-
sure system reliability. It is usually addressed by having multiple
Fog nodes involved in the processing of the same application so
that one can take over if the other fails. This resilience concept
is known as hot-standby, where the backup resources are called
fallback nodes (Zhao et al., 2020a). However, this metric trades off
with energy and cost as application replication leads to redundant
computations, leading to inefficiency.
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3. Security and Privacy: Fog systems must also ensure data resilience
to ensure that data is not compromised by malicious attacks (Zhang
et al., 2019a). This includes data integrity, i.e., resilience to data
corruption, and data confidentiality, i.e., sensitive data remains hid-
den from malicious entities. To avoid data corruption and stealing,
technologies such as encryption (Bonawitz et al., 2017), differential
privacy (Abadi et al., 2016), detection (Preuveneers et al., 2018) are
used.

A summary of resilience methods for Fog systems in presented in
Table 6.

4.4.1. AI augmented fault-detection and prediction
Several machine learning algorithms have been proposed for fault

detection and prediction in Edge Cloud environments. They have pro-
posed a framework that includes time-series data collection and data
pre-processing components for the training of DNNs.

Unsupervised Reconstruction Models. Majority of prior work
proposes reconstruction-based methods that predominantly aim to en-
capsulate the temporal trends and predict the time-series system data
in an unsupervised fashion, then use the deviation of the prediction
with the ground-truth data as anomaly scores. In such methods, the
time-series system data may correspond to utilization characteristics
of the running workloads in a Fog system. One such method, LSTM-
NDT (Hundman et al., 2018), relies on an LSTM to forecast data for
the next timestamp. This work also proposes a non-parametric dynamic
error thresholding (NDT) strategy to set a threshold for anomaly la-
beling using moving averages of the error sequence. A similar work,
Omnianomaly (Su et al., 2019), uses a stochastic recurrent neural
network (similar to an LSTM-Variational Autoencoder Park et al., 2018)
and a planar normalizing flow to generate reconstruction probabilities.
It also proposes an adjusted Peak-Over-Threshold (POT) method for
automated anomaly threshold selection that outperforms the previ-
ously used NDT approach. This work led to a significant performance
leap compared to the prior art, but at the expense of high training
times. The Multi-Scale Convectional Recursive Encoder Decoder (MS-
CRED) (Zhang et al., 2019) converts an input sequence window into
a normalized two-dimensional image and then passes it through a
ConvLSTM layer. This method is able to capture more complex inter-
modal correlations and temporal information, however is unable to
generalize to settings with insufficient training data. The CAE-M (Zhang
et al., 2021a) uses a convolutional autoencoding memory network,
similar to MSCRED. It passes the time-series through a CNN with the
output being processed by bidirectional LSTMs to capture long-term
temporal trends. Such recurrent neural network-based models have
been shown to have high computation costs and low scalability for high
dimensional datasets (Audibert et al., 2020). The DAGMM (Zong et al.,
2018) method uses a deep autoencoding Gaussian mixture model for
dimension reduction in the feature space and recurrent networks for
temporal modeling. This work predicts an output using a mixture of
Gaussians, where the parameters of each Gaussian are given by a deep
neural model. However, it still is slow and unable to explicitly utilize
inter-modal correlations (Deng and Hooi, 2021). The Graph Deviation
Network (GDN) approach learns a graph of relationships between data
modes and uses attention-based forecasting and deviation scoring to
output anomaly scores. MTAD-GAT (Zhao et al., 2020b) uses a graph-
attention network to model both feature and temporal correlations and
pass it through a lightweight Gated-Recurrent-Unit (GRU) network that
aids detection without severe overheads. Traditionally, attention opera-
tions perform input compression using convex combinations where the
weights are determined using neural networks.

Generative Models. More recent works such as USAD (Audibert
t al., 2020), MAD-GAN (Li et al., 2019a) and openGauss (Li et al.,
021) do not use resource-hungry recurrent models, but only attention-
ased network architectures to improve training speeds. The USAD
ethod uses an autoencoder with two decoders with an adversarial
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Table 6
Summary of state-of-the-art methods for AI augmented maintenance. Color scheme as per Table 7.

Decision type Category Ref. Method Infra. Benchmark Framework/Simulator Merits Limitations

Fault detection and
prediction

Unsupervised
reconstruction models

Hundman et al. (2018),
Su et al. (2019) and
Park et al. (2018)

LSTM E+C SMD S: Custom Generalizable Overhead

Zhang et al. (2019) and
Zhang et al. (2021a)

ConvLSTM E+C Custom S: Custom High accuracy Scalability

Zong et al. (2018) DNN + GMM E+C Custom S: Custom High accuracy Overhead
Zhao et al. (2020b) and
Deng and Hooi (2021)

Graph neural network E+C SWaT S: Custom High accuracy Overhead

Generative models

Li et al. (2019a) and
Feng et al. (2021)

Generative adversarial nets E+C SWaT – Fast and Scalable Exposure bias

Audibert et al. (2020)
and Gan et al. (2020)

VAE C – F: Custom Memory efficient Scalability

He et al. (2020) and
Girish and Rao (2021)

GNN + LSTM + VAE C HDFS F: Custom High accuracy Execution time

Chouliaras and Sotiriadis
(2021)

LSTM + VAE C – – Generalizable Overhead

Huang et al. (2020b) Transformers E+C HDFS F: Openstack Fast execution Generalizability
Tuli et al. (2021c) Neural design E SMD F: COSCO Memory efficient Overhead

Clustering methods
Won and Kim (2021) Few shot learning C – F: Openstack Fast execution Accuracy
Li et al. (2018) Fuzzy clustering E+C – – Fast execution Accuracy
Hu et al. (2021) VAE + Fuzzy clustering E+C Custom S: Custom Fast execution Accuracy

Fault remediation

Fault-tolerant scheduling

Talaat et al. (2020) Q learning E+C MHealth – Generalizable Scalability
Talaat et al. (2019) Deep surrogate optimization E+C MHealth S: iFogSim Cost efficient Interpretability
Liu et al. (2016) Particle swarm optimization C – S: Cloudsim* Memory efficient Scalability
Satpathy et al. (2018) Crow Search C Custom S: Cloudsim Energy efficient Scalability
Wang et al. (2021c) Deep Q learning E+C – S: Custom High throughput Scalability
Tuli et al. (2022c) Generative adversarial nets E DeFog F: COSCO High QoS Data Hungry

Load balancing

Jan et al. (2021) Particle swarm optimization E+C – S: iFogSim Fast execution Scalability
Kaur and Aron (2021) Grey wolf optimization E+C WfCommons S: iFogSim* Cost efficient Scalability
Marahatta et al. (2020) DNN + Search C Google Cluster S: Cloudsim High Util. Ratio Interpretability
Arabnejad et al. (2017) Fuzzy logic + Search C – F: Openstack Low overhead Low QoS

Scaling

Etemadi et al. (2021) RNN E+C Custom S: iFogSim Low overhead Scalability
Abdullah et al. (2020) Decision tree regression E+C Custom F: Custom Fast execution Scalability
Etemadi et al. (2020) NAR network E+C T-Drive S: iFogSim* Cost efficient Scalability
Li et al. (2020a) DNN + ARIMA E+C Custom – Cost efficient Scalability
Naha et al. (2021) Fuzzy logic + Search E+C – S: Cloudsim* Fast and Scalable Scalability
Aral and Brandić (2021) Dynamic Bayesian network E SETI – Fast execution Interpretability
Aral and Brandic (2017) Bayesian neural network E Custom – Fast execution Interpretability

Straggler analysis Aral and Brandic (2018) Dynamic Bayesian network E SETI – Fast execution Interpretability
Tuli et al. (2021a) VAE + LSTM C PlanetLab S: Cloudsim High QoS Overhead
b
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game-style training framework. This is one of the first works that focus
on low overheads by using a simple autoencoder and can achieve a
several-fold reduction in training times compared to the prior art. The
MAD-GAN (Li et al., 2019a) uses an LSTM based GAN model to model
the time-series distribution using generators. This work uses not only
the prediction error, but also the discriminator loss in the anomaly
scores. The openGauss approach uses a tree-based LSTM that has lower
memory and computational footprint and allows capturing temporal
trends even with noisy data. However, due to the small window as
an input and the use of simple or no recurrent models, the latest
models are unable to capture long-term dependencies effectively. A re-
cently proposed HitAnomaly (Huang et al., 2020b) method uses vanilla
transformers as encoder–decoder networks, but is only applicable to
natural-language log data and not appropriate for generic continuous
time-series data as inputs. Other methods, such as TopoMAD (He et al.,
2020), use a topology-aware neural network that is composed of a
Long-Short-Term-Memory (LSTM) and a variational autoencoder (VAE)
to detect faults. However, the reconstruction error is only obtained for
the last state, limiting them to using reactive fault recovery policies.
Similar methods use slight variations of LSTM networks with either
dropout layers (Girish and Rao, 2021), causal Bayesian networks (Gan
et al., 2020) or recurrent autoencoders (Chouliaras and Sotiriadis,
2021). A GAN-based approach that uses a stepwise training process,
StepGAN (Feng et al., 2021), converts the input time-series into matri-
ces and executes convolution operations to capture temporal trends.
However, such techniques are not agnostic to the number of hosts
or workloads as they assume a maximum limit of the active tasks in
the system. Moreover, even though more accurate than heuristic-based
approaches, deep learning models such as deep autoencoders, GANs
and recurrent networks are adaptive and accurate, but have a high
memory footprint that adversely affects system performance. To resolve
this, some works have been proposed that have low memory footprint,
such as GONs (Tuli et al., 2021c).

Clustering Models. Very recent works also propose a few-shot
learning method for fault detection (Won and Kim, 2021). Other recent
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methods utilize deep neural networks to execute fuzzy clustering (Hu f
et al., 2021; Li et al., 2018). For instance, the Adaptive Weighted Gath-
Geva (AWGG) (Hu et al., 2021) clustering method is an unsupervised
model that detects faults using stacked sparse autoencoders to reduce
detection times. Such methods train using supervised labels and do not
present a mechanism to recover from faults once detected, and hence
cannot be used to develop end-to-end fault tolerance in Fog systems.
Other methods, such as Isolation Forest (Liu et al., 2008) in an unsu-
pervised method that is used for anomaly detection in systems (Tuli
et al., 2022d).

4.4.2. AI augmented fault remediation
When Edge servers fail or are unavailable, optimal migration of

the running tasks is crucial. However, it is also important to ensure
that the task placement and scheduling procedures are fault-aware and
aim to minimize system faults to minimize the overheads of running
remediation strategies.

Fault-Aware Scheduling. Recently, several resilience models have
een proposed that leverage AI methods like RL, surrogate or recon-
truction modeling. Many of these methods run proactive scheduling
nd task placement steps to avoid faults in a future state. An RL based
pproach is Load Balancing and Optimization Strategy (LBOS) (Talaat
t al., 2020) that allocates the resources using RL. The reward of the
L agent is calculated as a weighted average of multiple QoS metrics

o avoid system contention by balancing the load across multiple
ompute nodes. The values of the weights are determined using genetic
lgorithms. LBOS observes the network traffic constantly, gathers the
tatistics about the load on each Edge server, manages the arriving
ser requests and uses dynamic resource allocation to assign them
o available Edge nodes. However, RL approaches are known to be
low to adapt in dynamic settings (Tuli et al., 2022e). Most other
pproaches use neural networks as a surrogate model. For instance,
ffective Load Balancing Strategy (ELBS) (Talaat et al., 2019) is a recent
ramework that offers an execution environment for IoT applications
nd creates an interconnect among Cloud and Edge servers. The ELBS
ethod uses the priority scores to proactively allocate tasks to Edge
odes or worker nodes as brokers to avoid system failures. It uses a

uzzy inference system to calculate the priority scores of different tasks
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based on three fuzzy inputs: SLA deadline, user-defined priority, and
estimated task processing time. The priority values are generated by
a neural network acting in the capacity of a surrogate of QoS scores.
The Proactive Coordinated Fault Tolerance (PCFT) (Liu et al., 2016)
method uses Particle Swarm Optimization (PSO) to reduce the overall
transmission overhead, network consumption and total execution time
for a set of tasks. This method first predicts faults in the running host
machines by anticipating resource deterioration and uses PSO to find
target hosts for preemptive migration decisions. This approach mainly
focuses on reducing transmission overheads in distributed Cloud setups
but often fails to improve the I/O performance of the compute nodes.
CSAVM (Satpathy et al., 2018) uses another evolutionary Crow Search
scheme to take live migration decisions for the task queues. The method
is used to optimize the power consumption of a compute setup by
preventing unnecessary migrations. DDQP (Wang et al., 2021c) uses
double deep Q-networks to place services on network nodes. However,
such reinforcement learning schemes are known to be slow to adapt in
volatile settings (Tuli et al., 2022e). Another such work is PreGAN (Tuli
et al., 2022c), which uses a GAN to generate preemptive migration
decisions and anomaly scores from an input Fog system state. It uses
a co-simulator in tandem with a few-shot anomaly classifier to ensure
robust model training and fine-tunes the model to adapt to dynamic
scenarios.

Load Balancing for Tolerance. Load balancing is a concept that
proactively aims to balance the load on different elements of a Fog
infrastructure to avoid a faulty future system state. One such work,
namely DPSO (Jan et al., 2021), proposes network gateways to host
the load balancing logic where they monitor the load across Edge
servers and balance the load using evolutionary algorithms. Further-
more, a migration mechanism is also incorporated where application
modules are rearranged to achieve a balanced load across Edge servers.
Migration is triggered based on a machine learning-based dynamic
threshold. Similarly, FOCALB (Kaur and Aron, 2021) proposes a hybrid
load balancing algorithm based on Grey Wolf Optimization (GWO) and
Ant Colony Optimization (ACO), where energy consumption, execution
time and implementation cost of scientific workflows are achieved by
uniformly distributing the workload across Fog devices to optimize the
Fog resource utilization. Similarly, some methdos (Arabnejad et al.,
2017) propose a fuzzy logic based weighting scheme to run load-
balancing task placement. Other methods, like PEFS (Marahatta et al.,
2020), present a prediction-based energy aware fault-tolerant load bal-
ancing scheme that uses a neural network to predict faults in the system
and run load-balancing strategies to ensure a high resource utilization
ratio. Load balancing based approaches are proactive in terms of fault-
tolerance and do not require to use additional compute infrastructure
in case of failures, making them more suitable for resource constrained
settings.

Automatic Scaling. Many methods aim to optimal decide how to
scale the Fog infrastructure to avoid or recover from faults in the
system. Similar to resource provisioning (Section 4.2.2), here too, it is
vital to avoid over-provisioning and under-provisioning of limited Fog
resources under dynamic workloads. An RNN based method (Etemadi
et al., 2021) provides a deep learning based solution to utilize metrics
such as resource requests (i.e., CPU, RAM, etc.) and Fog resource
status (e.g., CPU efficiency, storage utilization, network traffic, ac-
tive/inactive resources) to make optimum auto-scaling decisions. More-
over, AI-augmented auto-scaling methods have the potential to support
proactive auto-scaling of containers under dynamic workload fluctu-
ations. Similarly, Abdullah et al. (2020) presents a predictive auto-
scaling policy using decision tree regression (DTR) model where a
reactive rule-based auto-scaling mechanism is employed to train the
proactive model under multiple heterogeneous workloads. Existing
works explore the use of AI-augmented workload forecasting (Li et al.,
2020a; Etemadi et al., 2020) to make proactive auto-scaling decisions
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within Edge/ Fog environments. Another method, MADRP (Li et al., s
2020a), uses a hybrid ARIMA and DNN model to forecast the work-
loads, whereas a nonlinear autoregressive (NAR) neural network is used
by Etemadi et al. (2020) to predict the future demands for the Fog
devices. Methods such as FLBFH (Naha et al., 2021), propose a fuzzy
logic-based method to handle unpredicted and predicted failures in Fog
environments. Such methods predict two failure scores to decide what
actions to be undertaken to handle failures for unreliable Fog devices.
The first failure score is based on device mobility, device response time
and device power availability. This score determines the checkpointing
interval as a proactive mechanism for unpredicted failures. The second
score is based on CPU utilization, device mobility, device response time,
device power availability, device communication. This score is used
to decide about preemptive task migration. In some cases where the
rate of unpredicted failure is high, the proposed fuzzy-logic mechanism
will suggest an application replication. An extension to this work is the
Dependency and Topology-aware Failure Resilience (DTFR) algorithm,
which considers failure probability, response time and the number
of replicas to schedule services on Edge servers (Aral and Brandić,
2021). DFTR explores the spatio-temporal failure dependency among
Edge servers to develop a dynamic method with minimum redundancy
to enhance the failure resilience of services. Other works (Aral and
Brandic, 2017), continue this trend to estimate the availability level
of VMs in Edge Data Centers (EDCs) based on Bayesian Networks. The
probabilistic models consider dependencies between different failures
such as hardware, software, or network failures, and power outage. This
model is utilized to select VMs that can meet the availability require-
ments in SLA. Another similar method is the Fuzzy-based Real-Time
Auto-scaling (FRAS) (Etemadi et al., 2021) technique that leverages a
virtualized environment for the recovery of IoT applications that run
on compromised or faulty Edge nodes. Here, FRAS executes each IoT
application in a virtual machine (VM) and performs VM autoscaling to
improve execution speed and reduce execution costs. The VM autoscal-
ing decisions making involves inference of system QoS using a fuzzy
recurrent neural network as a surrogate model.

Straggler Aware Models. Another common performance problem
n Fog systems is dealing with straggler tasks that are slow running
nstances that increase the overall response time. Such tasks can signifi-
antly impact the system’s QoS and the SLA. Methods, such as JFP (Aral
nd Brandic, 2018), exploit failure dependencies between Edge servers
o predict the failure probability of given service deployment. JFP
valuates the use of replication in Edge servers based on analyzing
istorical failure logs of individual servers, modeling temporal depen-
encies as a Dynamic Bayesian Network (DBN), and predicting the
robability at which a certain number of servers fail simultaneously.
t also uses two replica scheduling algorithms to optimize failure prob-
bility and the cost of redundancy in an Edge computing environment.
imilarly, other methods such as START (Tuli et al., 2021a), proactively
redict the occurrence of straggler tasks to avoid adverse impact on
ystem QoS.

. Classification of state-of-the-art

Table 7 classifies the discussed state-of-the-art works in Section 4 as
er the AI methods they use. This facilitates researchers in identifying
he class of methods that have been used in the past and can be utilized
o solve one of the scopes of deployment, scheduling and maintenance
or resource management in Fog systems.
Classical AI. This category includes traditional AI schemes that do

ot utilize DNNs, such as local and evolutionary search, regression and
eta-heuristic optimization schemes. We also include neural design,
.e., the application specific design of neural models to achieve optimal
erformance or reduced overheads. We observe that the search and
esign based methods are quite popular in the case of DNN deploy-
ent. This is predominantly due to the search-driven DNN design

pecific improvements required to ensure optimal deployment of large-

cale AI models on constrained Fog nodes. Nevertheless, we see some



Journal of Network and Computer Applications 216 (2023) 103648S. Tuli et al.
Table 7
Classification of state-of-the-art techniques in terms of the used AI methods (Guan et al., 2021; Wan et al., 2012).

Category Method Deployment Scheduling Maintenance

DNN deployment Resource provisioning Bag-of-Tasks Workflows Detection and prediction Tolerance

Classical AI

Informed and local search Jiang et al. (2019b),
Liu et al. (2017b),
Zhou et al. (2021),
Sattler et al. (2019),
Luo et al. (2021b),
Lane et al. (2016),
Imani et al. (2019),
Kang et al. (2017),
Zhang et al. (2021b)
and Kaplunovich and
Yesha (2020)

. Panda et al. (2015),
Jawad et al. (2018)
and Alelaiwi (2019)

Alsurdeh et al. (2021) . Satpathy et al. (2018)
and Marahatta et al.
(2020)

Neural design Shao and Zhang
(2020a), Yu et al.
(2020), Huang et al.
(2020c), Reisizadeh
et al. (2020), Hamer
et al. (2020), Tran
et al. (2019), Coelho
et al. (2021), Jain
et al. (2018), Matsubara
et al. (2019),
Teerapittayanon et al.
(2017), Goli et al.
(2020), Chen et al.
(2018), Huang et al.
(2020d) and Kim et al.
(2017)

. . . Tuli et al. (2021c) .

Maxweight, Linear/Dynamic Prog. Callegaro et al. (2020) Stuckey et al. (2020) Liu et al. (2020) Wan et al. (2012) . .

Regression (Linear/Gaussian/SVM) . Hyndman and
Athanasopoulos (2018),
Zhu et al. (2016), Chen
and Wang (2018), Luo
et al. (2020), Luo et al.
(2021a), Taylor and
Letham (2018), Singh
et al. (2019), Calheiros
et al. (2014) and Xu
et al. (2020a)

Jamshidi and Casale
(2016), Bui et al.
(2017), Onggo et al.
(2021) and Onggo
et al. (2018)

Wang et al. (2020f) Zong et al. (2018) Abdullah et al. (2020)
and Li et al. (2020a)

ACO/AMO/PSO/GA/BO/GWO . Aliyu et al. (2020), Luo
et al. (2020), Luo et al.
(2021a), Zhu et al.
(2016), Chen et al.
(2020b) and Asghari
et al. (2021)

Han et al. (2018) and
Tuli et al. (2020a)

Wang et al. (2020e),
Huang et al. (2020a),
Ghanavati et al. (2020),
Ismayilov and Topcuoglu
(2020) and Pham and
Fahringer (2020)

. Liu et al. (2016), Jan
et al. (2021) and Kaur
and Aron (2021)

Reinforcement learning
Tabular RL (SARSA/Q learning) . . Wang et al. (2021b) . . Talaat et al. (2020)

Deep RL (DQN) Tuli (2022) Xu et al. (2020b),
Bitsakos et al. (2018)
and Sami et al. (2021)

Tang et al. (2018) and
Li et al. (2019b)

Wang et al. (2019b),
Kaur et al. (2020)

. Wang et al. (2021c)

Policy gradient learning Xia et al. (2019), Li
et al. (2019c), Zhao
et al. (2021) and Yu
et al. (2021)

Xu et al. (2020c), Chen
et al. (2020a) and Chen
et al. (2021)

Sheng et al. (2021),Tuli
et al. (2020b) and
Cheng et al. (2021)

Ghosal et al. (2020)
and Hu et al. (2019)

. .

Neural optimization Deep surrogate optimization . Wilder et al. (2019) Tuli et al. (2022e), Tuli
et al. (2021b) and Tuli
et al. (2022a)

Tuli et al. (2022b) . Talaat et al. (2019)

Neural approximation

Fully Connected Network (FCN) . Levy et al. (2020) and
Chen et al. (2019)

Tuli et al. (2022e) and
Tuli et al. (2022a)

. . .

Convolutional Neural Network (CNN) . Bega et al. (2019) and
Jeddi and Sharifian
(2019)

. . Zhang et al. (2019) and
Zhang et al. (2021a)

.

Recurrent Neural Network (GRU/LSTM) . Ouhame et al. (2021)
and Yazdanian and
Sharifian (2021)

. Feng et al. (2019) Hundman et al. (2018),
Su et al. (2019), Park
et al. (2018), He et al.
(2020), Girish and Rao
(2021) and Chouliaras
and Sotiriadis (2021)

Etemadi et al. (2021)
and Tuli et al. (2021a)

GAN/GNN/Transformers/Fuzzy-Logic . . Tuli et al. (2022c) and
Guan et al. (2021)

. Zhao et al. (2020b),
Deng and Hooi (2021),
Li et al. (2019a), Feng
et al. (2021), Won and
Kim (2021) and Li
et al. (2018), Hu et al.
(2021)

Tuli et al. (2022c),
Arabnejad et al. (2017),
Naha et al. (2021), Aral
and Brandić (2021),
Aral and Brandic (2017)
and Aral and Brandic
(2018)
overlap across the three domains: deployment, scheduling and main-
tenance. For instance, risk-based and robust optimization has been
seen in gradient pruning for DNN deployment (Sattler et al., 2019),
task scheduling (Jawad et al., 2018; Panda et al., 2015) and load
balancing (Marahatta et al., 2020). Similarly, neural design has been
used for splitting DNNs for inference of resource-constrained Edge
nodes (Kim et al., 2017) and memory-efficient anomaly detection (Tuli
et al., 2021c). Regression models have been popular across all domains.
All kinds of predictions are made using regression techniques, such as
workload demand prediction for optimal resource provisioning (Zhu
et al., 2016; Luo et al., 2020, 2021a), task QoS prediction (Jamshidi
and Casale, 2016; Tuli et al., 2020a) and time-series reconstruction
for anomaly detection (Zong et al., 2018). Similarly, meta-heuristic
optimization strategies have frequently been in use in Fog research. For
instance, PSO optimization has been used for decision optimization of
17
VM provisioning in Cloud (Zhu et al., 2016; Chen et al., 2020b), work-
flow scheduling decision (Wang et al., 2020e) and load-balancing (Jan
et al., 2021).

Reinforcement Learning. This category includes the various ways
to solve MDP style problems using AI methods, such as tabular RL (Q
and SARSA learning), deep Q learning and policy gradient methods
(A3C, DDPG, etc.). Most state-of-the-art approaches do not utilize
tabular RL due to its poor scalability of modeling real-life state–action
spaces in physical Fog and Cloud systems with thousands of devices.
Thus, researchers tend to rely on neural network-based approximation
of the Q function, which estimates the long-term reward using a DNN.
DQNs have been used to optimize the placement decisions of neural
network-based tasks generated after DNN splitting (Tuli, 2022), QoS
aware resource provisioning (Bitsakos et al., 2018), task and workflow
scheduling (Tang et al., 2018; Li et al., 2019b; Wang et al., 2019b) and
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fault-tolerant scheduling (Wang et al., 2021c). However, in complex
Fog scenarios, a richer action space might be required to ensure that RL
agents do not get stuck in local optima. As tabular RL and DQNs have
deterministic action policies, researchers have shifted to utilizing DNNs
for stochastic action prediction, i.e., policy gradient learning (PGL).
These include REINFORCE, Actor–Critic and other forms of DNNs that
predict action probabilities instead of Q values. For instance, some
methods use PGL to decide the optimal placement of split neural models
in a heterogeneous Edge-cloud setup (Yu et al., 2021). Other methods
utilize PGL to optimize metrics such as energy (Tuli et al., 2020b) and
cost (Cheng et al., 2021) by using them as reward signals.

Neural Optimization and Approximation. We consider another
category of optimization that either uses DNNs to approximate opti-
mization objects (unlike regression in classical AI) or gradient-
optimization to generate optimal decisions (unlike ACO, PSO, etc. in
classical AI). Recently, many methods use DNNs as QoS surrogates,
to optimize provisioning decision (Wilder et al., 2019), scheduling
decisions (Tuli et al., 2022e,a,b) or fault-tolerant scheduling (Talaat
et al., 2019). Other methods utilize DNNs directly to take deployment,
scheduling or maintenance decisions. For instance, FCNs (Levy et al.,
2020; Chen et al., 2019), CNNs (Bega et al., 2019; Jeddi and Sharifian,
2019) and LSTMs (Ouhame et al., 2021; Yazdanian and Sharifian,
2021) are used for resource provisioning, FCN (Tuli et al., 2022e) and
LSTM (Feng et al., 2019) are used for scheduling, and CNNs (Zhang
et al., 2019, 2021a) and RNNs (Hundman et al., 2018; Su et al., 2019;
Park et al., 2018; He et al., 2020; Girish and Rao, 2021; Chouliaras and
Sotiriadis, 2021) are also used for reconstruction based fault detection.
Fog maintenance related state-of-the-art methods also leverage other
DNN types, including GNNs and GANs (Tuli et al., 2022c; Arabnejad
et al., 2017; Naha et al., 2021; Aral and Brandić, 2021; Aral and
Brandic, 2017, 2018).

6. Trends, challenges and future directions

Existing AI-driven resource management techniques cover a wide
range of decision making problems. We now identify the key trends
in the domain of AI based augmentation for resource management
in the Fog continuum and elucidate them in Section 6.1. We also
discuss in Section 6.2, the limitations of the current state-of-the-art
works as per the classes identified in Section 5. Stemming from the
identified limitations, we discuss emerging challenges in the field of AI-
augmented Fog continuum systems and a series of open opportunities
while briefly proposing new methods for future blue-sky research in
application areas (Section 6.4) and AI methods (Section 6.5).

6.1. Trends

Shift to Deep Surrogate Models. Recently, there has been a shift
from using regression models, such as linear regression, support vector
regression, Gaussian process regression, to training a DNN. Regression
models allow us to tune the parameters of a function using expectation
maximization (Russell and Norvig, 2009). These models are typically
used to generate an estimate of the system performance, usually a
combination of QoS metrics, with respect to independent variables like
resource management decision (Luo et al., 2021a, 2020). However, in
practice, the data distributions that these models try to capture may
have far more complex relationships with independent variables that
such models can represent. To combat this, researchers now resort
to DNNs as function approximators and surrogates of QoS metrics
such as energy consumption, average response time and execution
costs (Wilder et al., 2019; Tuli et al., 2022e, 2021b).

Shift to Co-Simulated Digital-Twins. AI models that rely on DNNs
for function approximation, such as deep surrogate optimization, DQN,
and policy gradient methods often face present issues characteristic of
DNNs. For instance, when training a DNN to predict workload demands
in a future state, it is often trained with historical trace data collected
18
from a Fog system. However, when the model is applied in a setting
with different workload traces, the model has poor demand prediction
accuracy as it is never exposed to new data at training time. This
problem is commonly referred to as the exposure bias problem in DNN
training. To tackle this, recent methods now develop a co-simulated
digital twin of the Fog system to solve three problems (Tuli et al.,
2022e; Talaat et al., 2019). First, for data augmentation, i.e., generate
new traces by random perturbation of the environment or workload
parameters to solve the exposure bias problem. Second, to solve the
data saturation problem, i.e., increasing the amount of data does not im-
prove the model performance. Co-simulation allows us to run A/B tests
to generate diverse scenarios to improve model performance. Third, co-
simulations allow the generation of new datapoint for the latest system
state, facilitating fine-tuning DNNs to adapt to non-stationary workload
settings.

Shift to Transformers and Geometric Models. For series like
data, researchers traditionally used recurrent models such as GRUs and
LSTMs. However, training these models is time-consuming, giving rise
to high training costs on public Cloud or local Edge nodes. The main
bottleneck of such models is the requirement of providing sequential
data one at a time (Vaswani et al., 2017; Tuli et al., 2022d). Recent
models, like Transformers, use self-attention to infer on the complete
sequence at once, allowing faster training and higher accuracy. Further,
instead of FCN, CNNs and LSTMs, researchers are now resorting to
composite AI neural networks that also model the system state as
a geometric model, most often as a graph. These might be used to
encode the network architecture (Deng and Hooi, 2021) or the input
decision (Tuli et al., 2021b). GNNs over graph-like data allow capturing
data correlations to be aware of the spatial structures.

Shift to Resource Efficient Management. Most AI-based resource
management applications are heavy in terms of resource requirements.
Thus, broker nodes are typically more powerful than a common Fog
worker (Tuli et al., 2019b; Gill et al., 2019). As the number of de-
vices in the worker layer of Fog architectures increases, the resource
management AI models become more data and resource hungry. To
scale and allow resilience in the broker layer of Fog systems, running
resource management applications on worker-like resource-limited de-
vices becomes inevitable. Thus, systems based AI research is now
working to develop more pragmatic AI models that can be deployed in
decentralized and constrained environments (Tuli et al., 2021c; Li et al.,
2020b; Hou et al., 2021). Further, researchers are developing DNNs
that have much lower training times than before, facilitating quick
adaptability in volatile environments (Huang et al., 2020b). Another
important trends is taking into account the energy consumption of
DNNs while achieving high accuracy to have more sustainable machine
learning models (Tuli et al., 2021b).

Shift to Unsupervised Models. Traditional methods mainly rely
on manual labeling of important data characteristics, such as fault
indication, through domain experts, which is infeasible in modern IoT
solutions with enormous amounts of log data (Hu et al., 2021). Thus,
for large-scale systems, researchers are now developing unsupervised
and semi-supervised models that are as accurate as supervised mod-
els (Hu et al., 2021; Su et al., 2019). The advantage of unsupervised
models is that we do not require labeled data, allowing us to scale
resource management systems to systems with possibly millions of IoT
devices and Fog nodes.

6.2. Limitations

Scalability. Most AI models suffer from the limitation of having
poor scalability. Scalability in Fog systems refers to the ability to apply
an AI model as the number of Fog nodes or workloads increases without
a significant drop in system performance. As the number of IoT devices
and users relying on Fog architectures increases, it makes it crucial
to develop scalable AI models. This specifically requires developing

on top of existing AI methods that are scalable. For instance, tabular
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reinforcement learning (Q/SARSA learning) saves the Q estimate of
each state and action pair in an MDP formulation. On the contrary,
DQN utilizes a DNN to capture the interdependence across states and
actions to train a generic model that can provide accurate Q estimates
without needing the same number of parameters as tabular RL methods.
Similarly, other techniques such as geometric modeling (GNNs) and
attention operation further improve scalability.

Generalizability. Generalizability is the ability of an AI model to
erform successfully for unseen inputs. This depends on the stability,
obustness and adaptability of the developed model (Xu and Man-
or, 2012). Thus, limitations in the above areas result in limiting the
eneralizability of the model. To improve the generalizability of the
raditional machine learning and deep learning algorithms within the
ontext of distributed architectures such as Edge and Fog computing,
ederated learning is a viable option. It allows the models to be trained
ith a sufficient amount of data when the collection of data at a

entral location is not a possible option due to privacy, security or
he sheer volume of data generated. However, conventional federated
earning needs to be further improved to adapt to the challenges
f network, computation and storage heterogeneity within Edge/Fog
nvironments (Hosseinalipour et al., 2020).
Reliability. Reliability limitations of AI techniques can be analyzed

nder two main aspects: stability and robustness. The former indicates
he ability of a model to yield consistent performance across similar yet
iverse data inputs. The latter indicates the consistency of the output of
he approach under new data (Xu and Mannor, 2012). IoT data-related
ssues such as missing data due to unreliable networks, limited access
o sensitive data (for example, health data), noisy data and malicious
ata, cripple the stability and robustness of the machine learning and
eep learning approaches. Susceptibility of machine learning models,
specially deep learning models to adversarial examples, is critical
ithin the context of latency and safety–critical IoT applications where
ccuracy is paramount (Qiu et al., 2021). Meta-heuristic algorithms
lso face limitations in stability and robustness. As meta-heuristics
re designed to converge towards a near-optimal solution, stability
nd robustness limitations occur due to their tendency to converge to
ocal optimum solutions, especially due to the dynamic changes in Fog
nvironments.
Adaptability. Adaptability is the ability of the AI models to main-

ain accuracy when training and test data belong to different dis-
ributions. However, traditional machine learning and deep learning
pproaches operate under the assumption that both training and test
ata share the same distribution, which results in performance reduc-
ion in real-world deployments, for instance, in cases with exposure
ias (Pan and Yang, 2009). Insufficient and biased data (i.e., due
o data privacy and security issues in smart healthcare, IIoT, etc.),
utdated training data and inability to use large data sets in Fog
nvironments due to resource limitations demand higher adaptability
n such use cases (Sufian et al., 2020). To overcome this limitation,
ome machine learning and deep learning approaches leverage transfer
earning, which is a learning framework that enables knowledge trans-
er between task domains (Pan and Yang, 2009). Some AI models utilize
o-simulators to generate diverse datapoints and adapt to changing
ettings (Tuli et al., 2022e). However, fine-tuning the parameters of
NNs using co-simulators gives rise to high overheads.
Agility. Agility indicates the ability of a system to adapt and evolve

apidly with changing Fog environments. This becomes a prominent
equirement in IoT applications, Fog environments that keep evolving
apidly require high agility not only within application development
nd deployment but also for algorithm development for resource pro-
isioning, application scheduling and system maintenance. To keep up
ith this nature, AI models used within these contexts need to be able

o undergo rapid updates as more data and data sources appear, more
ervice requirements appear and the nature of the deployment envi-
onment and its technologies evolve (i.e., updates in communication
19

echnologies, availability of novel Edge/Fog computation resources and a
heir hardware or architectural changes etc.) (Jackson et al., 2019). But,
he data-centric nature of the lifecycle of an AI model makes the devel-
pment, testing, deployment cycle highly experimental and repetitive,
hus making agility a major limitation (Schleier-Smith, 2015).

.3. Emerging challenges

Legacy Deployment. As research progresses and more accurate and
etter performing models are developed, it typically follows the adop-
ion of advanced AI models by industry. However, more complex AI
odels are usually more resource-hungry and need more powerful sys-

ems to be deployed on. To deploy an enhanced AI model, technology
ased companies such as Meta, Amazon, Netflix and Google frequently
pgrade their devices, raising many sustainability concerns (Gill et al.,
019). Stemming from the scalability limitations of state-of-the-art, the
ntegration of large-scale DNN models within legacy edge or cloud
achines has become a challenging problem. As research moves in the
irection of the neural design of sophisticated AI models, it becomes
rucial to ensure that these new models can be deployed on legacy
nfrastructures to bring down deployment costs and carbon footprint
f AI.
Automated and Generic Modeling. Another challenge being

aced by industrial AI adopters, related to the generalizability and
daptability of AI models, is the ability to tune AI models in settings
ifferent from the ones tested by researchers (Liaw et al., 2018).
s the performance of AI models is highly dependent on the proper

uning of a large number of hyperparameters, these variables need to
e re-tuned when deploying a pre-trained model in a new setting of
cheduling or fault detection in Edge/Cloud. This problem stems from
eneralizability, but needs to be solved specifically for each application
omain of deployment, scheduling or maintenance. In such cases, either
he hyperparameter values of the models need to be decided in an
utomated fashion, or the neural design needs to be generic enough
o accommodate new Fog settings, with possibly different number of
odes, workload characteristics and user demands.
Interpretability. Many state-of-the-art AI methods are being uti-

ized today as black-box models that give rise to high QoS in Fog
ystems, but do not have any transparency on the process that led to the
arious resource management level decisions made by an AI agent. This
ainly entails explaining the main reasons for choosing or not choosing

ertain management decisions and exploring the unknown state spaces
o ensure exhaustive coverage of the decision space. For sensitive
ndustrial segments, such as healthcare and autonomous vehicles, it is
rucial to expose the underlying patterns and features in the decision-
aking process to gain credibility for the end-user. Building such
hite-box or explainable models is an emerging field of research for the
se of trustworthy AI models. Many AI models, such as decision trees,
egression algorithms and rule-based systems allow interpretability, but
re not as accurate or scalable as deep-learning based counterparts.

.4. Application areas

Healthcare. With the rapid increase in connected devices in hos-
itals, such as sensors, mobile phones and wearables, the amount
f data generated and their rate of generation is snowballing. This
esults in a massive increase in the volume and variety of available
ealth data, paving the way for the development of more reliable
nd robust AI models in the areas of proactive monitoring, disease
revention, and more in smart healthcare (Panesar, 2019). However,
his results in challenges related to ensuring data quality and security,
specially in the context of distributed EdgeAI, particularly in the case
f handling sensitive healthcare information like patient records. To
vercome these challenges, future research is focusing on the con-
ergence of Blockchain and AI, where Blockchain is used in solving
ata quality and integration issues that enable AI to improve the

ccuracy of data analytics (Yaqoob et al., 2021). Moreover, low latency
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communication technologies like 5G/6G enable novel technologies like
Augmented Reality, Virtual Reality and Tactile Internet, thus improving
and expanding services such as robot-assisted surgery.

Next Generation Networking. Due to the high data rate, reliabil-
ty, ultra-low latency, and ultra-low energy consumption provided by
G/6G, these wireless communication technologies are identified as the
ey enablers of future IoT applications. However, to support the ever-
volving service requirements of the IoT services, 5G/6G technologies
ave to be able to observe environment variations and dynamically self
rganize the network accordingly (Li et al., 2017). This can be achieved
hrough AI-empowered management and orchestration of cellular re-
ources within 5G/6G networks. With the advancements in Software
efined Networking (SDN) and network function virtualization (NFV),
G/6G technologies introduce Network Slicing (NS) to support this. NS
s a mechanism for provisioning virtualized network resources intelli-
ently based on the service performance metrics (Letaief et al., 2019).
earning algorithms such as deep learning and reinforcement learning
an improve the dynamism of NS through prediction-based proac-
ive resource allocation in Edge or Cloud architectures with dynamic
lice creations for different applications (Wijethilaka and Liyanage,
021). We also need to consider upcoming cases where the internet
s provided through satellites (such as the Starlink network) in lieu of
he conventional copper/fiber connections. In such cases, the latency
nd bandwidth characteristics might be significantly different, requir-
ng re-tuning hyperparameters or adapting existing AI based resource
anagement policies (Song et al., 2021; Wang et al., 2019d).
Production and Supply Chain. In the coming age of IIoT, most

industrial pipelines are managed by smart devices. Such devices may
utilize AI methods to self-monitor and predict potential problems in the
supply chain to optimize the overall service efficiency. The COVID-19
pandemic is an example demonstrating the importance of automation
in logistics to avoid service downtimes (Salehi-Amiri et al., 2021). AI
based forecasting approaches, such as recurrent neural models and
GANs can be used to predict stock shortage and proactively order addi-
tional stocks to prevent shortage (Salehi-Amiri et al., 2021). Similarly,
large-scale ML models can aid the development of smart-manufacturing
technologies that utilize several IoT and Fog devices to collaboratively
monitor, control manufacturing and production related equipment.

Smart Cities. Smart cities aim to utilize IoT to deliver services that
can enhance the living standards within cities. This includes a plethora
of application domains such as smart governance, smart energy, smart
transportation, and smart security (Nayak et al., 2021). Advancements
in wireless communications such as 5G/6G enable a massive amount
of data to be transmitted towards Edge nodes in real-time. This has
resulted in the rise of novel technologies like crowd-sensing and crowd-
sourcing (Kong et al., 2019). Distributed collections and processing of
such massive volumes of data demands future research to focus on
distributed and reliable AI, specifically in data-sensitive applications at
the Edge. At the same time, data security becomes crucial in future
smart city services, with the widespread use of crowd-sensing and
crowd-sourcing for data collection. Moreover, ultra-low latency com-
munication provided future radio access networks to support services
related to hazard avoidance and safety (Rudd-Orthner and Mihaylova,
2020), which requires AI models with higher reliability, accuracy and
lower latency.

6.5. Methods

Self-supervised AI. The self-supervised learning technique enables
learning with unlabeled data by solving pretext tasks (Saeed et al.,
2020). In contrast to this, supervised learning depends on the avail-
ability of labeled data. Even though a massive amount of data gets
generated by the sensors, the lack of annotated data poses an obstacle
for using supervised learning. This is specifically applicable in scenarios
where fault-detection or workload scheduling is required for previously
20

unseen workload or device characteristics in Edge or Cloud platforms.
As generating expert-labeled fault labels or optimal scheduling deci-
sions is infeasible for large-scale systems, self-supervised learning offers
a possible solution for such scenarios. This approach is capable of
generating a more generalizable model by removing the heavy depen-
dency on labeled data by automatically generated data annotations,
possibly using a co-simulator (Saeed et al., 2020). Moreover, self-
supervised learning has the potential to achieve higher reliability due
to its robustness to adversarial examples, label corruption, and input
corruptions (Hendrycks et al., 2019).

Model Driven RL. As Fog environments and service demands are
dynamic; algorithms should have the capability to adapt accordingly.
IoT applications (i.e., healthcare, smart cities, etc.) and their enabling
elecommunication technologies (i.e., 5G, 6G) benefit from RL-based
ntelligence due to higher adaptability of RL techniques and their
bility to learn without prior knowledge (Sami et al., 2021). However,
xploration errors, long learning time and distributed learning within
esource constraint devices in Edge environments are some of the
hallenges in utilizing RL techniques within resource-constrained and
istributed Fog environments. A canonical case is the development
f RL based methods for deploying large-scale application workflows
n constrained Edge or Cloud clusters. Addressing these challenges in
uture research is vital for the RL-based approaches to reach their full
otential within EdgeAI scenarios. In an attempt to address these chal-
enges, EdgeAI research is exploring advanced RL approaches such as
odel-based RL (Sutton and Barto, 2018) and co-simulated RL (Amini

t al., 2020).
Analog AI. The current implementation of AI is targeted for digital

ystems where the values are stored in a binary format. Herein, the
ajor challenge posed by digital implementations of DNNs is the linear
ependence of memory footprint with the number of parameters of
he neural model. Upcoming analog memory-based chips present new
ays to perform the same operations, but with orders of magnitude

ower amount of memory requirement, computational load and energy
onsumed (Channamadhavuni et al., 2021). This is particularly useful
n memory-constrained Edge and MEC devices where sophisticated
NNs need to be executed in AI on Fog setting or decentralized resource

management is required in AI for Fog settings. However, there are
some drawbacks in the loss of precision in computation across layers
within a DNN. The tradeoff offered by such DNN implementations is
similar to model pruning and splitting, but with possibly more extreme
energy/compute benefits. This direction has been explored to a limited
extent and requires further investigation and software development to
efficiently harness the potential of analog hardware accelerators.

Decentralized Modeling. The success of distributed EdgeAI, by
utilizing layer and semantic splitting strategies for AI deployment
(discussed in Section 4), shows some promise in other domains of
scheduling and maintenance. For scheduling applications and maintain-
ing Fog systems at scale, it is possible to decentralize the training and
inference procedures of the resource management level AI applications
across multiple broker nodes. The decentralized fashion of resource
management has a two-fold benefit. Firstly, there is no single point of
failure in the system as the management steps are run in multiple bro-
ker nodes. Secondly, it allows the distribution of resource management
load across multiple computing devices, facilitating the scalability of
the model.

AI Driven Simulations. A major advantage of co-simulators in Fog
systems is the ability to generate new data points for tuning AI models
and resolving issues like exposure bias and data saturation (Renda
et al., 2020). However, another important benefit of co-simulators is the
ability to run multiple simulations concurrently and pick the best re-
source management decisions, allowing interpretable decision-making.
This is due to the ability of co-simulators to generate a complete
execution trace, possible for several future states of the systems and
allowing developers or end-users to visualize the long-term effects of
various decisions. They are able to do this much faster than execut-

ing the decisions on a physical infrastructure and waiting for several
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minutes to reflect changes in QoS. This is primarily due to the discrete
event-driven execution style of modern simulators. This is applicable
for all three types of resource management decisions, i.e., deploy-
ment, scheduling and maintenance. Simulations can indicate changes
in QoS scores for each model compression or splitting type, applica-
tion placement or fault-remediation steps like preemptive migrations.
These signals can facilitate decision making. However, co-simulators
are mere approximations of the entire Fog system and typically fail to
map the entire complexity of real infrastructure. However, the success
of deep surrogate models hints us to build simulators with possibly
millions of parameters and utilize DNNs to estimate optimal parameter
values, such that our simulators resemble the real systems as closely
as possible. An increased number of parameters could, in principle,
give a higher representative capacity to our simulators, now being able
to map complex real-life workloads and device characteristics. Thus,
AI-driven simulators could help improve system performance with the
added bonus of interpretable decision making.

AI Driven Co-Design. Currently, almost all resource management
solutions for Fog systems solve only a specific problem from the three
domains of deployment, scheduling or maintenance. However, for
holistic performance enhancement, it is crucial to develop AI models
that can concurrently take decisions across multiple facets of the man-
agement of Fog resources to efficiently exploit the synergy across these
decision domains. Research in AI-based augmentation of Fog systems
may benefit from other efforts in system co-design (Hao et al., 2021)
to improve upon the existing management solutions. This is crucial in
Fog systems particularly due to the constraints certain decision types
impose on other resource management control knobs. For instance,
provisioning decision constrains the devices on which incoming tasks
can be scheduled on or the active tasks may be migrated to. There is a
need to build end-to-end AI models that rely on multi-modal data and
can take multiple decision types simultaneously for data privacy and
improved system performance.

7. Conclusions

This work conducts an extensive literature review of the methods
concerned with AI-based augmentation of Fog systems. We discuss di-
verse state-of-the-art techniques for Fog resource management, specif-
ically for optimal AI deployment, workload scheduling and system
maintenance. We consider two kinds of AI models: AI on and AI for Fog
computing. We use taxonomy of AI methods and classify them broadly
into classical methods, machine learning, reinforcement learning and
deep learning. There is significant overlap across different decision
domains in terms of the used AI models. This overlap suggests the
importance of certain design decisions over others and hints at the
possible gaps of current research. We have highlighted the importance
of a more comprehensive research style that not only considers spe-
cific aspects of resource management but distills historical knowledge
gathered from the myriad of AI-based decision-making methods to
develop well informed AI models and eclectic management solutions.
The various advances in the field of computing need to be considered
in tandem to bolster AI research and build holistic AI-based methods
for emerging application areas, future technologies and next-generation
users.
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