Journal of Parallel and Distributed Computing 126 (2019) 107-120

Contents lists available at ScienceDirect

PARALLELAND
DISTRIBUTED
COMPUTING

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

ACAS: An anomaly-based cause aware auto-scaling framework for
clouds

Sara Kardani Moghaddam *, Rajkumar Buyya, Kotagiri Ramamohanarao
Cloud Computing and Distributed Systems (CLOUDS) Laboratory, School of Computing and Information Systems, The University of Melbourne, Australia

Check for
updates

HIGHLIGHTS

e Proposing an anomaly prediction module to detect future performance problems.

o Applying unsupervised Isolation-Trees based approach with a new strategy for model updating.
e Investigating types of performance anomalies including CPU and memory bottlenecks.

e Proposing a two-level auto-scaler by categorizing anomalies into two levels local and global.

e Extending CloudSim simulator by adding characteristics of the elastic VMs.

ARTICLE INFO ABSTRACT

Article history: Cloud computing as a model to deliver distributed resource and services on the pay-as-you-go policy has
Received 14 SePtembEf 2017 become increasingly popular for all organizations including industry. However, the inherent dynamicity
Received in revised form 9 April 2018 in this environment makes it prone to various types of performance problems which introduce many

Accepted 12 December 2018

Available online 26 December 2018 challenges in the area of distributed resource management. Advances in the big data learning approaches

can bring the opportunity for a data aware dynamic management of resources in the cloud. The collected

Keywords: data from the performance indicators of the system can be a valuable source of information to identify
Cloud computing unusual behaviors in the resource consumptions or application performance. Different types of problems
Anomaly detection can cause the performance degradations at VM or system level. System administrators are overwhelmed
Performance management with the huge amount of data to be analyzed to find the problems and overall health of the system. In

Isolation-trees

this paper, we argue that a better selection of dynamic resource scaling policies can be employed for
Vertical scaling pap g y g P ploy

better performance by predicting the anomalies in the system and narrowing down the possible cause
of the anomaly to one of the attributes of the system. Therefore, we propose a 2-level cause aware auto-
scaling framework which leverages two types of resource management solutions, horizontal and vertical,
as the corrective actions when the performance is degraded. We show the effectiveness of vertical scaling
strategy as a quick solution for cases that a VM is exposed to some type of the local anomaly, while
the horizontal scaling solutions can be used for system wide anomaly to add new VMs in the system.
Moreover, our data analysis module can predict anomalies to give sufficient time to the scaling system
to make an effective scaling decision. The proposed unsupervised anomaly detection module leverages a
new updating strategy for renewing the models which considers the changes in the state of the system
to reduce the overhead of recurrent model trainings. We have performed a comparison of the proposed
framework with an approach which is used by several popular cloud providers to show the advantage
of mixing the multi-level auto-scaling with the knowledge of anomaly detection analysis in resolving
performance problems in the cloud.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction customers from individuals to commercial companies are leverag-
ing the power of offered services in an on demand pay-as-you-go
model. On the other hand, public providers such as Amazon and
Google aim at satisfying the demand of their customers as well
as meeting the service level agreements (SLA) knowing that the
violation of SLAs can cost them money and their reputation.
Elastic resource management offers the providers the ability to
* Corresponding author. dynamically adjust the resources based on the type and number
E-mail address: skardani@student.unimelb.edu.au (S.K. Moghaddam). of requests from the users. For example, existing auto-scalers

Cloud computing as a model to deliver computing infrastruc-
ture and services is bringing both opportunities and challenges in
the area of distributed resources management. A wide range of

https://doi.org/10.1016/j.jpdc.2018.12.002
0743-7315/© 2018 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jpdc.2018.12.002
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2018.12.002&domain=pdf
mailto:skardani@student.unimelb.edu.au
https://doi.org/10.1016/j.jpdc.2018.12.002

108 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

such as Amazon elastic auto-scaler [1] enable the system to dy-
namically add and remove Virtual Machine (VM) instances as a
response to the observed performance degradations in the system.
Workload fluctuations targeting hosted applications are one of the
main underlying reasons for these performance problems. This
is a highly important observation, especially for the large scale
web application systems where the interaction between users
and web servers can change frequently, affecting the pattern of
workloads and resource requirements. On the other hand, there
is a variety of problems that can happen locally in one VM such
as a bug in the application code, resource bottlenecks or hardware
faults. This type of problems can affect the local performance of
the VM adversely. Distinguishing these faults from system wide
problems can help auto-scalers to make more informed decisions
by focusing on the solutions that target directly the root cause of
the anomalies. To achieve this goal, we can divide the data-aware
resource management problem into two main subproblems, data
analysis and resource management by auto-scaling, that can be
dealt with separately.

First, it should be mentioned that different types of perfor-
mance problems in the VMs usually leave distinctive signs in the
performance indicators of the machine. Therefore, continuously
monitoring the behavior of resources by collecting the values of
important attributes provides system administrators a valuable
source of the data that can be analyzed to have timely information
about the performance of the system. Big data learning approaches
offer the necessary concepts and tools to analyze the collected data
and find interesting patterns of unexpected behaviors or anomalies
encountered by the system.

The second part of the problem focuses on the auto-scaling
solutions to be triggered when a performance problem is iden-
tified by analyzing the collected data from the system. There is
a variety of resource management solutions including horizontal
scaling, elastic VM management, migrations, resource contention
management, etc. for alleviating the performance degradations.
However, when the scaling actions should be triggered and which
type of the scaling action selected are different challenges which
are investigated in this paper.

With regard to the aforementioned challenges, we propose
an Anomaly and Cause Aware auto-Scaling (ACAS) framework
consisting of three main modules, monitoring, data analyzer, and
resource auto-scaler which exploits two types of the resource
adjustment policies, horizontal and vertical scaling. In this work,
we focus on the local anomalies such as CPU and memory bot-
tlenecks as well as system wide load problems that can affect the
performance of the applications. Accordingly, the contributions of
this paper are as follows:

e Proposed a proactive, unsupervised anomaly detection on
predicted performance data of the VMs to identify future
anomalies of the system. We have also developed a strategy
for deciding when the anomaly detection model need to be
updated to reduce the recurrent model training overheads

e Proposed a two-level auto-scaler by categorizing anomaly
problems into two levels of local and global anomalies. Local
anomalies are targeted by elastic VM solutions while system-
wide anomalies are resolved by the global scaler

e Achieved better scalability by breaking down the problem
of performance management to local and global anomaly
detection

e Extended CloudSim simulator functionality by adding char-
acteristics of the elastic VMs

e Performed extensive experimental evaluation of the pro-
posed system under various loads and demonstrated ACAS
ability to maintain a better quality of performance compared
to the existing resource management solutions

An extensive set of experiments are performed targeting both
types of local anomalies and global load problems. The experi-
ments show that distinguishing between VM specific anomalies
and system wide load problems help auto-scaler to take advantage
of fast vertical scaling policies to increase bottleneck resources for
one VM while the proactive anomaly detection helps to trigger
early system wide horizontal scaling actions to reduce the number
of SLA violations.

The rest of this paper is organized as follows: Section 2 intro-
duces some of the existing works in the field of data-aware re-
source management. Section 3 presents the motivation, an
overview of the approach and a brief introduction to Isolation-
Trees based anomaly detection. Section 4 presents the details of
learning algorithms and explains communication among the mod-
ules. Section 5 presents the experiments and the results and finally,
the paper is concluded with the future directions in Section 6.

2. Related work

The idea of utilizing data learning techniques for the perfor-
mance analysis in the cloud has been of great interest to the
researchers in recent years. The work presented in [3] investigates
the feasibility of Isolation-Trees based anomaly analysis to detect
anomalies in data from IaaS data centers, focusing on the behavior
of the algorithm to the presence of seasonality/trends in their
dataset. ACAS also leverages the same concept of Isolation-Trees
in the anomaly detection part of the problem. However, ACAS is
a complete framework that covers the problems of online learning
and model updating, root cause analysis and resource management
modules. [9] proposes a method for long-term load prediction in
Google data centers, considering load as the main factor involved
in resource management solutions. Another work presented in [5]
considers a single attribute, number of required processors at a
certain time, for resource utilization estimation. [22] presents a
regression based workload prediction framework to improve the
utilization of the resources while reducing the cost. To achieve
this goal, they use the knowledge from workload prediction to
decide the time and amount of resources to be changed in the
system, considering both types of vertical and horizontal scal-
ing. [23] combines workload prediction and reinforcement learn-
ing to find the best configuration for VM resources. The feedbacks
from application performance and resource utilizations are used
to calculate the reward and update the resource configuration
strategy for better selection of future actions. Compared to our
framework, the aforementioned works address the problem of
resource management by focusing on the workloads as the only in-
fluential factor for performance analysis and ignore other sources
of performance problems in the system. [10] follows a more sys-
tematic approach to the problem of VM management in the cloud
by modeling the problem as a feedback-based control approach.
The Proportional-Integral-Derivative (PID) based controller is de-
signed to manage the number of VMs in the system, aiming at
keeping the service quality in accordance with the agreement
levels. [2] designs a reinforcement learning approach to gradually
learn from the environment and decide on the VM level scaling
of the system to alleviate the performance problems occurring
due to the load fluctuations in the system. Different to our model,
these works consider the management of resources only at VM
level by changing the number of VMs in the system. [13] presents
an automatic anomaly identification technique for adaptively de-
tecting performance anomalies such as Disk and Memory related
failures. Proposed method investigates the idea that a subset of
the principal components of metrics can be highly correlated to
specific failures in the system. BARCA, proposed in [6], is another
framework for online identification of anomalies in distributed
applications which divides anomaly detection process into two

S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120 109

steps. First, a one class classifier is employed to distinguish normal
behavior from unexpected ones. Second, a multi-class classifier
is used to separate different types of anomalies from detected
abnormal behaviors. [12] investigates proactive anomaly detection
in data stream processing systems. The proposed solution includes
a phase of predicting resource utilization and then applying an
anomaly identification algorithm on the predicted values. The tar-
get anomalies are injected and the training is done on a labeled
dataset of different anomaly occurrences in the past data. Although
these works focus on the same problem of anomaly detection, how
this information can be used for resource management is not inves-
tigated. Alternatively, [21] addresses the performance problem by
integrating a 2-dependent Markov model as the predictor and tree-
augmented Bayesian networks (TAN) for anomaly detection. Based
on the knowledge from learning algorithm, they apply some type
of the vertical scaling or migration to minimize the performance
degradation. [14] focuses on the cost effectiveness of vertical scal-
ing approaches and proposes a threshold based scaling strategy to
combine different scaling approaches including self-healing, fine-
grained resource scaling and VM level scaling to meet QoS while
reducing cloud providers’ costs. [18] addresses the problem of
shared memory management among multiple VM with the over-
subscription approach and elastic VM technique. A threshold based
strategy on the value of memory related metrics is utilized to
trigger the memory adjustment actions while live migration is used
to avoid the SLA violations when the total memory demands of
the VMs exceed the available memory of the physical machine. In
contrast, our proposed work ACAS focuses on the effectiveness of
horizontal and vertical scaling policies by leveraging the capabili-
ties of unsupervised learning approaches for situations that system
is exposed to the local and load related anomalies. Another study
by [8] investigates unsupervised behavior learning problem for
proactive anomaly detection. The proposed framework leverages
Self-Organizing Maps (SOM) to map a high dimensional input
space (performance metrics) to a lower dimensional map without
losing the structural information of original instances. In contrast,
we show that resource management process can make use of
the knowledge from proactive anomaly detection and root cause
identification to address the specific anomalies occurring in each
VM.

Table 1 compares the above mentioned works by highlighting
the main components and characteristics of the proposed solutions
for the problem of performance analysis and management in large
distributed systems.

3. Preliminary

In this section, we explain the motivation and an overview
of our approach. Then, a short introduction to the concept of
isolation-based anomaly detection is presented.

3.1. Motivation and approach overview

Virtualization technologies are the core concept in the function-
ality of cloud models. The possibility of running many VMs and
applications on one physical host brings new opportunities, as well
as adds more complexity to the design of these environments.

Resource management concept is much more challenging due
to the inherent dynamic nature of cloud environment, where we
can host different range of applications with a variety of demands
and workload types. This is especially important for the large scale
web applications, in which the pattern of the incoming requests
from the users can change quickly creating a dynamic environment
where the configurations of resources should frequently be ad-
justed to satisfy the demanded SLAs. Elastic resource management,
as a solution for this problem, leverages the VM based scaling of the

system known as horizontal scaling. Public cloud providers offer
customized policies of horizontal scaling to satisfy the resource
demands of the applications based on the load in the system. Even
though the VM based scaling policy is a common approach to
manage performance problems in the cloud environment, it may
not be a proper solution for a different category of performance
problems caused by the faults in one VM. For example, consider a
situation where a memory-intensive process is started in the same
VM hosting a web based application which is consuming all the
available memory, ignoring the demands of the web application.
Therefore, the lack of the free memory can cause performance
degeneration such as longer than usual response times from the
web server. The conventional scaling approaches add new VMs
into the system even though the problem is not caused by the
load growth from a higher number of user requests. Having the
same load in the system, newly added instances incur extra costs
including both resource and license costs as well as higher resource
wastage due to added resources which are not utilized. Considering
this scenario, there are other types of the problem that can create
similar effects on the utilization of the resources. For example, it is
shown that the web applications are prone to many of the perfor-
mance problems which involves CPU and memory resources [20].

On the other hand, existing auto-scaling solutions such as Ama-
zon elastic auto-scaler are designed in a way that are more suitable
to track the changes at the system level. They do not consider VM
based problems particularly when the changes in one VM does
not have an immediate impact on the average performance of
the system. One solution to address this category of problems is
to have a resource management solution at fine-grained levels of
control. Elastic VM architecture enables on-the-fly tuning of VM
resources without turning off the VM which avoids the delays of
rebooting the system. Given the above explanations, we formulate
the problem as the selection of proper resource scaling policy to
satisfy the quality of service (QoS) by analyzing the state of the
system to distinguish resource level bottlenecks from system wide
load problems. To be more explicit about the system state, we use
the following definition:

System State: State or behavior of the system at each time is an
abstract representation of operational attributes and performance
indicators of the system which can be recognized in normal or ab-
normal/anomalous condition. The main indicators of an abnormal
state are the presence of unexpected patterns or values in the load
and resource level measurements of VMs and applications.

The proposed framework addresses the resource management
problem at the service provider level who has access to the VMs
hosting the application to monitor system and application level
metrics. In this paper, we target a category of performance anoma-
lies known as resource bottlenecks and particularly two problems
insufficient CPU and memory in one VM. Therefore, by tracking
resource level metrics of VMs, one can utilize vertical scaling func-
tionality to increase the amount of RAM capacity or the number of
CPU cores of one VM to quickly respond to the performance degra-
dations of the system. When there is a system level degradation,
the framework employs horizontal scaling to add new VMs into
the system.

In the next section, the components of ACAS framework for
cause aware auto-scaling in the cloud are explained in more detail.
However, before that, we present a brief introduction to IForest
algorithm which is the key function used in the proposed anomaly
identification approach in the data analyzer module. It should be
highlighted that several other algorithms can also be used for the
problem of anomaly detection [7,13,15]. However, as we explain
more in the following section, IForest is extremely efficient and
have been shown to work with a wide variety of distributions of
data and do not require prior knowledge of these distributions
which makes it a notable alternative to be utilized for real-time
tracking of anomalous behavior.

110 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

Table 1

Related works on cloud performance management.
Work Data analysis method Resource management Proactive Unsupervised® Vertical scaling
[3] [Forest (AD)" X X v -
[9] Bayes Model (Workload Analysis) v v - X
[10] Control Theory v X - X
[2] Reinforcement Learning v v - X
(6] SVM (AD) X v v -
[12] Markov models, Bayes Classifier (AD) X v X -
[21] Markov models, Bayes Classifier (AD) v v X v
[14] Threshold-Based Rules v X - v
[18] Threshold-Based Rules v X - v
[23] Reinforcement Learning v v - v
[8] Self-Organizing Maps (AD) X v v -
Proposed work (ACAS) Isolation-based Trees (AD) v v v v

2This column is applicable for the works with the focus on anomaly detection.
bAnomaly Detection.

X3 Xy X

Xe X7

Fig. 1. A simple Isolation Tree for two attributes CPU and Memory.

3.2. A brief summary of isolation-trees

The concept of isolation based anomaly detection which is used
in Isolation-Forest (IForest) algorithm [16] is based on the idea
that an anomaly instance is isolated in attribute space faster than
a normal instance. IForest leverages this definition to create an
ensemble of random binary trees on the attribute space of the
problem with the expectation that an anomaly instance is isolated
quickly close to the root node of the tree.

In order to generate a random tree, [Forest first randomly se-
lects a sample of i instances and starts by selecting a random
attribute with a random value based on the measurements in the
selected sample. This step corresponds to creating one node in the
tree. Then, sample instances are divided into two categories based
on their values for the corresponding attribute. Each category
is assigned to a new child node and this process continues for
newly created nodes until there is only one instance left or all
the instances have the same values or the length of the tree has
reached the predefined maximum value. Fig. 1 shows a simple
Isolation Tree generated on a sample space of 7 instances, each
representing the utilization values of CPU and memory of one VM.
Let X = (X1, X3, ...,X7) be the set of the input observations for
the IForest algorithm. To create the root node, the value of ¢; is
selected based on the observed utilization values of CPU attribute
in X. As Fig. 1 shows, the instance x; is the only instance with a
utilization less than c; which creates a leaf node on the left side of
the root node, while the remaining instances create the right child
node. The right child node includes more than one instance with
different utilization values. Therefore, another attribute is selected
to divide the remaining instances, creating two new sub nodes.

This process continues until the terminating conditions are met.
In this example, instance x; can be a possible anomaly as it seems
to be in a different range of CPU utilization values compared to the
other instances.

In order to build a model, IForest generates t Isolation trees from
the training data. An anomaly score can be calculated for each new
observation which represents the degree of anomalousness of the
record compared to the past observations used for the training of
the models. Each instance traverses all the randomly generated
trees, starting from the root of the tree until it reaches a leaf
node. Then, the score is calculated by averaging the length of the
traversed paths on all the trees and using a formula presented
in [16]. The anomalous score is inversely proportional to the av-
erage length of the branches. Shorter the length, more likely the
instance is anomalous. The authors demonstrate that the algorithm
has a low linear-time complexity with small memory requirements.
The algorithm’s worst time and space complexity for training is
O(ty?) and O(tyr) respectively, where t is the number of trees in
the ensemble. Since ¢t and are small values, both training and
testing can be performed quickly. The extensive comparisons of
[Forest done in [16] with other state-of-the-art anomaly detectors
such as Random Forests or Local Outlier Factor (LOF) demonstrate
the superiority and robustness of [Forest in terms of the accuracy
as well as the processing time. Moreover, the authors show that the
[Forest performs near optimal (largely insensitive to the values of
t and) with the default parameter settings which is consistent
with our observations during ACAS experiments. This is a very
important feature, especially for highly dynamic environments,
where the frequent updating of the models is requited. For these
reasons, we have chosen to employ IForest for our anomaly detec-
tion for each VM.

4. System design

Fig. 2 depicts an overview of the proposed framework and how
the components work together. The framework is modeled based
on a web based application with the application and database
servers hosted on the cloud VMs. These applications are known
for the exposure of many performance degradations caused by
the changes in the workload or CPU and memory related faults.
However, the definitions are generic and can be applied to any dis-
tributed application. The components of the application can be dis-
tributed on different VMs, while each VM has its own monitoring
component, data analyzer and local scaler modules installed. The
data analyzer box in Fig. 2 shows the details of the local analyzer
module on each VM. The scaling decisions are performed at two
levels, local and global. The local scaler is responsible for the ver-
tical scaling decisions at one VM, while the global scaler performs
horizontal scaling decision in the system. The global scaler and the
load balancer are parts of a separate master node which plays as

S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120 111

4 VM

Local Data
Analyzer

Monitoring Local
C \ Scaler

Componer \

Local
Component Scaler

i

VM
Local Data
Analyzer TS
\
Monitoring
/

Local Data Analyzer

Anomaly Detection

R/ Python
libraries

Master Node

Global Scaler

Load Balancer

VM Unit Managemnt

Servers j
Config
File

Global Data
Analyzer

Fig. 2. A high level system model.

the central broker for the whole system. Therefore, the incoming
requests are distributed among existing VMs (application servers)
based on the load balancer configuration and registered servers at
the master.

Each VM monitors the performance of its own resources and
collects a variety of attributes such as CPU and memory utilization,
and disk I/O rates which can model the state of the system. During
regular intervals, collected data are sent to the local data analyzer
to be processed for the possible signs of performance problems
occurring in the near future. Therefore, at the first step, future
values of each metric are predicted. There is a wide range of
algorithms that can be used for the prediction and modeling of
time series data. We have tested two algorithms ARIMA and feed-
forward Neural Networks (NN) for this step and finally selected
NN due to the observed stability of its predictions in the presence
of the noise in our dataset. NN is utilized to generate a separate
model for each metric and predicts the future values based on
the learned models from the past observations of the system.
Upon receiving the newly predicted values, the anomaly detection
algorithm calculates an anomaly score for each observation and
sends a new alert if the new score exceeds the threshold 6. Before
proceeding, we should remark that anomaly detection module
considers every deviation in the values of the attributes from the
past state of the system as an anomaly which is reflected in the
calculated anomaly scores. However, from the service providers
perspective, a performance anomaly is important when it shows a
possible breach of the SLA objectives; otherwise, it can be ignored.
Therefore, to be clear about an anomaly event which is considered
by the resource management module for taking the corrective
actions we pursue the following definition in the next sections:

Anomaly Event: A continuous change in the behavior of the
system which is reflected as unexpected trends in the values of the
monitored attributes of the VM while at least one of the metrics
shows the possibility of breaching the threshold for the maximum
accepted utilization.

The first part of the aforementioned definition is handled by
anomaly detection module to detect the attributes that show a
transition in their state based on the details provided in Section 4.1.
The second part of the definition confines the performance anoma-
lies to the anomaly events that are breaching the performance

thresholds. This part is considered by resource management mod-
ule as described in Section 4.2.

During anomaly detection phase and at the time of observing
anomalous behavior, the system asks the cause detection module
to analyze the state of different observed metrics and find a pos-
sible cause for detected anomalies. The suggested causes of the
problem from this module are used as additional knowledge in
the auto-scaler components to help them make more informed
decisions regarding the scaling policies.

The results from anomaly detection module are sent to the local
and global auto-scaler components. The local scaler is responsible
for resource configurations at VM level also known as vertical
scaling policies. In contrast, the global scaler is aware of the state
of the whole system and is responsible for changing the number of
VM s in the system known as horizontal scaling policies. Algorithm
1 shows a summary of the main steps of ACAS framework at the
local and global level. The details of these steps and the priority of
different scaling policies are explained in the following algorithms
and subsection. A list of all the notations used in following sections
are listed in Table 2.

4.1. Anomaly prediction based on isolation-trees models

Given one VM measurements, the goal is to find if the collected
values show a different pattern compared to the past behavior
(lines 3-7 Algorithm 1). Therefore, having a sequence of past obser-
vations from one VM, an ensemble of Isolation-Trees is generated
using the IForest algorithm. After the training is done and each VM
has the initial models of its performance, the anomaly detection
process starts to analyze the new measurements collected from
the VM. Algorithm 2 shows the sequence of required steps for
the process of anomaly prediction in ACAS. This process is called
regularly to check the recent performance of the VM.

In order to give the system enough time to trigger auto-scaling
actions, we need to detect anomalies in the future data. Therefore,
the first step is to predict the future values of each metric for
the VM (lines 1-2). NN algorithm is exploited as the prediction
function (f,) to forecast the w values of each metric based on the
recent measurements from the system. Predicted values are fed as

112 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

Algorithm 1: Cause Aware Resource Scaling in ACAS
input 1V = (VMy, VM,, , ..., VM): A list of all
registered VMs in the system
1 while The system is running and in the beginning of
performance-check interval do
2 for VM; € V do
/* This part of the code is executed

locally in each VM */
3 if VM; has not initialized the IForest models and
there are enough data collected for training then
4 \ Initialize IForest models for VM; ;
5 end
6 Collect the recent monitored values for different
metrics of VM;
7 Call Algorithm 2 on the collected observations to

predict future data and find the possible

performance anomalies and suggested causes;

8 call Algorithm 3 to check if VM; requires a new

vertical scaling to be done by local scaler; If

scaling is done, VM; goes into a locked state for a

predefined time.

9 end

/* This part of the code is executed in
the master node */

10 Initialize all indicators in f; to 0;

1 for VM; € V do

12 if VM; is not in a locked state and is moving to
critical condition based on the Algorithm 4 then

13 | fi<1

14 end

15 end

16 Decide on a new horizontal scaling action based on
the information provided by f;;

17 end
Table 2
Description for notations.
Notation Description
K Minimum number of alerts before an anomaly record is created
w prediction window size
lw Number of observations in prediction learning window
tw Number of observations in training window
L Minimum number of violations before the threshold based
approach (baseline) starts an action
r Number of attributes for each observation
LI Log Time for monitoring system to record a new observation
0 Threshold for anomaly score. Values greater than 6 will be
considered as anomaly
Xxm A record of monitored metrics (attributes) from environment
th; Usage threshold for attribute i
fi An indicator of anomalousness of attribute i
S Anomaly scores
v Number of randomly selected samples from input instances as

the input of IForest algorithm

the inputs to the trained models which calculate an anomaly score
for each predicted record. The anomaly scores show the degree
of abnormality of the observations compared to the data used in
training phase (line 3).

It should be highlighted here that we expect to encounter cases
where ACAS may miss some of the anomalies due to the wrong
measurements or wrong predictions resulting from the dynamic
nature of the target environment. Therefore, ACAS also consid-
ers more reactive mechanisms which try to adjust the scores of
anomaly points when a violation in the system is detected. To make
this point clear, let S; be the score for the prediction P;. ACAS checks

if S; actually reflects the violation observed at time t; and if it does
not (meaning thatS; < 6 and P; > th;), it deliberately increases the
score S; to a higher value so other components of the framework
handle situation as a new anomaly state.

4.1.1. Model updating

One question to be answered is how the system decides to
update the anomaly detector models. The inherent dynamicity in
cloud workloads and the possibility of different types of failures
highlight the importance of updating models so they can show the
most recent state of the system. In this regard, three different states
of the system are distinguished as follows:

e Transition State: The system is recognized as in transition
if it meets two main conditions. First, newly observed val-
ues differ from the past training data in the patterns and/or
values. Therefore, we expect to see higher anomaly scores
calculated to show the abnormality of recent behavior com-
pared to the historical records. Second, the system has not
reached a stable state, meaning that a continuous change
of the variables is still observable. The focus of this paper
is on the transitions which cause the average values of the
attributes to change with the assumption that the patterns
remain unaffected. For example, consider a situation that an
incremental trend is continuously impacting the values of one
of the attributes in the system.

e Changed State: The system has reached the changed state
when the new observations show deviations compared to
the recorded data used for the training. However, the system
has reached a stable condition meaning that no significant
changes in the average values of the attributes are detected.
In terms of the conditions mentioned for the transitions state,
a system at changed state satisfies the first condition only.

o Normal State: The system is at the normal state when none
of the above conditions is satisfied, meaning that the average
values of the attributes for recent observations do not show
significant changes compared to the training data. As a result,
the calculated anomaly scores do not indicate any abnormal
behavior demonstrating a stable environment.

The anomaly detection module decides to update the model if it
finds the corresponding VM is at the changed state
(lines 6-12). The reason is that, at this state, the high number
of anomaly alerts shows the previously trained models are not
representing the current state of the system. Moreover, the sys-
tem has reached a new stable environment and new models are
required to enable the anomaly detection module to perform in
accordance with the changes. The updating procedure continues
until the new models correctly reflect the new state or another
transition in the system starts. It should be mentioned that ACAS
does not consider transition state a proper time for updating the
models as some of the attributes are showing significant changes
in their values and new models quickly become obsolete, resulting
in many unnecessary updates.

4.1.2. Cause identification

The cause detection procedure tries to provide some knowledge
about the possible resource level root causes of the performance
problem to help the scaling modules make a more informed de-
cision about the proper scaling policies. Therefore, if the output
scores from anomaly detection module show a possible anomaly
is occurring in the VM, the next step is to identify the underlying
reason for the problem. The category of changes addressed in this
paper are the ones that impact the average values of the attributes
with an increasing or decreasing trend. Therefore, to find an at-
tribute with a trend in the values, we follow an approach which

S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120 113

Algorithm 2: Anomaly Detection

2D = (X", Xy, ..., X["), X" € R™": A matrix
of Iw records, each record including
measurements for r features

Parameter: w: Prediction Window
6: Anomaly Score Threshold

: (Anomaly Alert, Cause of Anomaly)

input

output

1¢<« —1

/* Prediction function f, is used to
predict future values of data.X™
corresponds to the Measured data and X?
presents Predicted data. x/

2 (Xpyir: Xppias oo X)) = SoXTL X3, ., X0)

35 = AnomalyScore(XﬁHi), 0 < i < w: Find the anomaly
scores with IForest algorithm. Then, check if these
scores should be adjusted based on a reactive approach
if some violation is already happening in the system.

4 anomalyDetected < (Count(S > 0) > Length(S)/2)
5 if anomalyDetected then
6 Initialize all indicators in f; to 0
7 for featurei € D do
8 if system is in changing state on dimension i then
9 | fi<1
10 end
1 end
12 Decide about updating the models based on the
information provided by f;.
13 Identify the cause of abnormality and assign it to c.

14 end
15 return (anomalyDetected, c)

fits a regression line on the data and calculates the slope of the line
as a measure of the existing trends in the data.

One point worth noting here is how to distinguish load prob-
lems from other local anomalies. One observation to be followed is
that when the performance of the system is impacted due to the
changes in the incoming workload, we expect to see more than
one attribute affected and changes their state. Accordingly, ACAS
checks whether most of the attributes in the system are recognized
at the transition state simultaneously and then flags the anomaly as
a load problem.

4.2. Resource management module

The management of resources in a continuously changing envi-
ronment requires the integration of resource configuration policies
at different layers of granularity. Depending on the type of the
problem and identified root causes, some policies may work better
at meeting the SLA objectives such as time or cost of the solution.
In this paper, two policies horizontal and vertical scaling of the
resources are considered. Horizontal policies address resource con-
figuration strategies which change the number of active VMs in the
system. In contrast, vertical policies are defined at finer grains of
control (Elastic VMs) and adjust the amount of allocated resources
based on the new demands of the VM. Since the scaling happens
online and there is no need to reboot the instance, vertical scaling
is much faster and does not add extra costs for a software license
or wasted resources.

Upon receiving an anomaly alert from anomaly prediction mod-
ule, the framework should create a new record to flag the begin-
ning of a new anomaly event in the target VM. However, we need to
consider the transient changes in the system that may cause false
alarms. As a result, a new anomaly event is recorded at time t if the

current observation is showing an anomaly alert as well as all the
past observations in the window {t — K,t — K —1,...,t — 1}.In
other words, the system ignores the first K alarms for one VM until
there will be at least K+1 consecutive alerts notifying an anoma-
lous behavior. A proper value for K can be selected considering
the trade-off between computation overheads, the stability of the
environment and the performance degradation tolerance. Small
values of K may cause the system to perform unnecessary checks
of the performance or decide on preventive actions for many false
alarms, while large values of K increase the time it takes for the
system to start a scaling action in response to the performance
problems.

In the proposed framework, some conditions should be met
before resource manager decides on a new scaling action for the
system. The following subsections and Algorithm 3 explain these
conditions.

Algorithm 3: Vertical Scaling Policy

input : counter: Number of recent alerts for the VM

input : anomalyDetected: True if recent anomaly
score exceeds threshold

input : cause: The root cause detected for the

current anomaly
Parameter: K: Minimum Number of Alerts to Record an
Anomaly
6: Anomaly Score Threshold
/* reset the counter when the system is in
normal state. */
if anomalyDetected then
| counter < counter + 1
else
| counter < 0
end
if counter > K then
if system is not in cooling period && cause # Load
then
8 If system is moving toward critical condition
based on Algorithm 4, start a vertical scaling
action.
9 end
10 end

NS s W N =

4.3. Per-VM vertical scaling policies

After receiving a confirmed anomaly event for one VM, the VM
starts to check if some type of the resource adjustment is required.
ACAS considers scaling strategy only when a performance degra-
dation or SLA violation is observed. In this case, we consider the
breach of the resource utilization thresholds as a sign of the viola-
tion of SLA objectives. Let th; be the threshold for resource i. If the
utilization of this resource at time ¢t is more than th;, system records
a violation of SLA starting from time t. Therefore, no corrective
action is triggered if there are enough spare resources to fulfill the
requests during next time intervals. One question to be answered
here is that what is the best time interval to predict the future
utilization of resources. Since the online resource adjustments in
elastic VMs become effective almost immediately, we take one
time interval away from the recent observation as the prediction
interval. Therefore, the framework sends back the list of all metrics
that are predicted to violate their respective thresholds at the next
time interval.

Since vertical scaling is a response to local anomalies happening
in a VM, the load problem is ignored at this step and local resource
adjustment is triggered if the detected problem is related to one
of the resource level metrics of the VM. Depending on the metric

114 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

Algorithm 4: Identification of System Criticality

(D= (X" Xy, ., X™), X™ € R A matrix
of Iw records, each record including
measurements for r features

: cause: Root cause detected for current
anomaly

Parameter: LI: Log Interval

delay < 0

if cause # Load then
| delay <« VerticalScalingDelay

else
\ delay < HorizontalScalingDelay

end

windowLength < delay/LI

P = (leiuﬂuindowLength) = fP(X;n’ Xéﬂ’ i Xlrlrll))
for featurei € P do

if P; exceeds th; then

| fi<1

end
end
Decide about the criticality of system based on the
information provided by f;

input

input

© ® N U hA W N =

ke
B W N = o

detected as the root cause of the problem, the system decides
about changing the number of CPU cores or the amount of memory
capacity of the VM to prevent performance degradations in the
application. After starting an auto-scaling process, the VM will
enter in a locked state which means that during this time no other
scaling action is performed. The reason is that it takes some time
for the system to adapt to the changes of the resources, so the first
few anomaly alerts are ignored to give the system enough time to
reach a stable state.

4.4. Horizontal scaling policies

Ahorizontal scaling policy is performed if there are no VM in the
locked state, meaning that there has not been any vertical scaling
in the recent intervals that can affect the state of the system. First,
the state of all VMs is checked and the number of VMs which are
moving toward critical condition is recorded. One VM is recognized
in critical condition if at least one of the main attributes is predicted
to breach the threshold in the near future. Similar to vertical scaling
procedure, we consider a rough estimate of the time it takes to boot
anew VM in the system as prediction interval. In other words, ACAS
asks for enough time to add a new VM before the system enters the
anomaly state. If all the active VMs are found moving toward the
violation state, an alert to add a new VM is issued. Afterwards, the
system starts a cooling period when no scaling will take place. This
waiting time is required so the load balancer can detect new VM
and start sending new requests to that.

5. Performance evaluation

The proposed framework incorporates multiple components
from resource monitoring, resource configuration and data analy-
sis. The framework is general and should be applicable to different
types of applications and workloads. However, in order to demon-
strate the effectiveness of ACAS, we select web applications which
are shown to be prone to many performance problems involving
CPU and memory resources [20]. The main focus of this work is the
performance of the application layer which can be easily affected
by the behavior of users, buggy codes or other malfunctioning
applications.

To validate the framework, we use CloudSim discrete event
simulator [4] which is a framework for modeling and simulation of
cloud computing infrastructures. CloudSim has been used exten-
sively for validation of cloud services and applications that can be
hard to be validated in real implementation as we need a controlled
environment where one could perform analysis of the system
with and without data analysis or auto-scaling methods including
elastic VMs. An extension of the CloudSim is leveraged that im-
plements an analytical performance model of 3-tier applications in
the cloud and multi-cloud environments [11]. CloudSim offers both
flexibility as well as the extensively validated models of reference
workloads that helped us to create a near real environment.

5.1. Experimental settings

The experimental environment is simulated as one cloud data
center hosting the application and database servers. The appli-
cation servers are modeled with the initial configuration of one
virtual core, 3.75 GB of RAM and Linux operating system. The VM
start-up times are modeled based on the performance study done
by [17].

The following experiments are based on an extension of
CloudSim which models the workloads on Rice University Bid-
ding System (RUBIS) benchmarking environment [19]. RUBIS is a
benchmark that implements the core functionality of an auction
site including browsing, bidding and selling modeled based on
eBay.com. RUBIS follows a 3-tier web based framework consisting
of the client, application and database servers. Sessions are the unit
of works defined in the RUBIS and represent a sequence of requests
from one customer interacting with the application. The resource
usage of each session is monitored and modeled in the CloudSim
based on the work done by [11]. In total, there are 4 attributes
CPU, memory, I/O usages as well as the number of sessions which
are collected during each experiment for data analysis part. For
the details of how the workload is modeled and validation of the
extracted models you can refer to the work [11]. To implement
the prediction step, we utilize forecast package implemented in R'
which models a feed-forward neural network with lagged inputs
for forecasting univariate time series. The final prediction is an
average of the results from 20 trained networks; each network
is trained on lag-1 of all input values. Therefore, each network
has one input (with a bias node), one hidden layer with one node
(with a bias node) and one final output node which is analogous
to AR model but with a non-linear function. The averaging on the
all networks helps the prediction result to be more robust in the
presence of noise.

In order to demonstrate the functionality of ACAS in resolving
local performance problems with the help of fine grained resource
scaling, we have also extended CloudSim framework to enable the
on-the-fly changes of the resource configurations without turning
the VM off. Two main resource types CPU and RAM are considered
in this implementation. However, the codes are general and can
easily be extended for other types of the resources. The amount of
changes in each scaling action can be configured to be a percentage
of the original capacity of the resource. For the following experi-
ments, the capacity of CPU resources increases by one core (100%
of initial configuration) while the RAM storage is increased by 20%
for each scaling action. Moreover, the anomaly detection models in
ACAS are generated using IsolationForest package implemented in
R environment.? In order to connect the anomaly detection module
to the simulation environment which is developed in JAVA, we

1 https://[www.rdocumentation.org/packages/forecast/versions/8.1/topics/
nnetar

2 https://sourceforge.net/projects/iforest/.

https://www.rdocumentation.org/packages/forecast/versions/8.1/topics/nnetar
https://www.rdocumentation.org/packages/forecast/versions/8.1/topics/nnetar
https://sourceforge.net/projects/iforest/

S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120 115

Table 3
Experiment configurations.
Variable Description Value
K Minimum number of alerts before an anomaly 6
record is created
lw Number of observations in learning window 60
tw Number of observations in training window 300
L Minimum number of violations before baseline 2
approach starts an action
LI Monitoring Interval (Log Time) 60
0 Anomaly Score Threshold 0.55

utilize Rengine interface which supports calling R implemented
functions from Java environment.

Each experiment has a duration of 18 h with sessions arrival
time modeled as a Poisson distribution with a frequency that is
defined as a function of time [11].

In order to evaluate different aspects of the proposed frame-
work, four cases of experiments have been run. In two cases,
the behavior of ACAS is tested in the presence of local anomalies
in the VMs. In two other cases, the system is exposed to work-
load increases and the functionality of the framework is analyzed.
Two types of the resource level bottlenecks, insufficient memory
and CPU, are simulated. In both cases, we focus on the impact
of increasing trends on the corresponding attribute. In order to
simulate memory problems in CloudSim, a predefined percentage
of the memory storage is removed from the available memory at
consecutive interval times which creates an incremental trend in
the used memory of the VM. For insufficient CPU, a predefined
percentage of the available CPU capacity is flagged as reserved
assuming a different CPU-intensive application starts running as
a background process along with the target application.

The idea of performance anomaly detection has been widely
investigated in the research area. However, most of them follow
supervised approaches or are designed for specific scenarios or
focus on data analysis part of the problem without providing the
details of an integrated framework for the purpose of resource
management. On the other hand, many of popular public cloud
providers such as Amazon [1] use a threshold based auto-scaling
approach for dynamic scaling of their resources. In the threshold
based approaches, system continuously tracks the state of the
resources in the system and an anomaly alert is triggered if the
utilization of monitored metrics exceeds a predefined threshold.
For example, a new machine is added to the system if the CPU
utilization is more than 80% for five continuous sampling intervals.
Therefore, for the comparison purpose, we have implemented the
same threshold method as our baseline approach. To have a com-
parable experiment, the thresholds for the baseline auto-scaler are
the same as the triggering thresholds of ACAS framework. In the
all experiments, this value is equal to 70% and is similar for both
CPU and memory. A cooling period of 15 min is considered for the
baseline simulation. Therefore, no two auto-scalings are performed
in a time interval less than the cooling period. Table 3 shows the
values of parameters used in the experiments.

5.2. Experiments and results

In the first experiment, we investigate the behavior of ACAS
based on a sample workload similar to Fig. 3. The experiment starts
by sending requests to a load balancer which distributes the load
among application servers on a round robin basis. In order to start
training the models, we follow the observations from [16] which
suggests that 2% generally is enough to consider as the sample
size (y) for training phase. Considering this and based on the
nature of the dataset and empirical experiments to apply IForest
as an online anomaly detection algorithm, 300 is selected as the

Table 4
Number of times that resource utilization exceeds the threshold before the first
auto-scaling action is triggered. NA means no scaling is performed.

Anomaly Type Algorithm

ACAS Threshold Method
CPU 1 NA (>100)
Memory 10 NA (>100)
System Load 5 8

training window size (tw) to be considered for the sampling and
training purpose. Therefore, the anomaly module waits for the first
330 observations to pass and then initializes the first anomaly
detection models by training IForest algorithm with the last 300
records as it is shown in Fig. 3. The first 30 records are ignored for
the system to stabilize.

After the first initialization, anomaly detection module starts to
regularly check the performance of the system by applying the gen-
erated anomaly detection models on the recent collected observa-
tions at the configured time intervals (presented as a while loop
in Algorithm 1). However, depending on the state of the system
and based on the definitions discussed in Section 4.1, models may
need to be updated occasionally to represent the new state of the
system. As we can see in Fig. 3, after the first model initialization, a
low rate increase of the incoming load is started which corresponds
to a transition state based on our definitions. Therefore, the first
update of the models recorded for this experiment is occurring
around 435th observation when the system is identified at the
end of the transition and entering a new normal state. Similarly,
other updates occur occasionally during the experiment due to the
fluctuations in the utilization data. However, there are also several
gaps that no update has occurred during that times. These gaps are
consistent with our observations of the stability of average utiliza-
tion data and the functionality of ACAS which has not detected any
transition that requires new model trainings. For example, there
is no update between observations 570 to 640 or there are only
7 updates between observations 645 to 760. The reduction in the
number of updates helps the system to decrease the overhead of
recurrent trainings to create new models. The same procedure with
similar reasoning is applicable for the next load increase, starting
around observation 800, that changes the state of the system from
normal to transition and also triggers an auto-scaling action which
adds a new VM to the system.

The next experiments are designed to test the presence of the
local anomalies in VMs. The initial configuration is done by adding
3 application and 2 database servers in the system. Then, one VM
is randomly selected as an anomalous VM. For both experiments
of CPU and memory anomaly, we wait for a minimum of 5 h and
then, at a random time, the injection of the anomaly in the VM is
started. Table 4 shows the number of recorded observations that
the attribute corresponding to the detected root cause exceeds the
threshold. NA in the table means that there was no auto-scaling
action in the response to the injected fault in the target VM which
is equal to a 100% violation of the SLA. The exact number of the
violations depends on the duration of the corresponding anomaly
in the system which may last for hours.

For more clarification of the way these policies are reacting in
the presence of local performance problems, Figs. 4 and 5 present
the utilization of the corresponding attribute for each fault and for
both ACAS and threshold methods. Regarding CPU, the ACAS has
increased the number of cores by one as soon as it predicts the
criticality of the CPU utilization measurements. One violation is
observed in this case which is a result of the fast changes in the
attribute values which the prediction function has not caught. In
contrast, the threshold approach is monitoring the average state
of the whole system, missing the local faults occurring at the

116 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

100

[e]
o

[
o

First training window

IS
o

CPU Utilization (%)

N
o

100 200 300

Horizontal Scaling

—/

No Update

435 500 570 640 800 900
Time Index

Fig. 3. The process of ACAS on a sample workload including the first training window and one horizontal scaling action. One part of the data that is analyzed with the same

models (no model update occurred during this time) is also annotated.

100
— Threshold Method
c
o
©
N
E
0
0 100 200 300 400 500 600
Time Index
(a) CPU Utilization
10°
— Threshold Method
5 10!
o
=
[J]
£
F 10°
[]
(%]
C
o
Q
)
x 10?
102
0 100 200 300 400 500 600
Time Index

(b) Response Time (Log scale)

Fig. 4. Vertical auto-scaling for CPU bottleneck. ACAS avoids high response times by timely reaction to the predicted performance problem.

anomalous VM. It is worth mentioning that even having a per-VM
monitoring mechanism for the threshold approach can only help to
trigger a horizontal scaling with the condition that the monitored
values show a minimum of L violations before auto-scaler starts
triggering an action. The L value should be chosen reasonably to
avoid unnecessary scalings in the presence of temporal changes
in the system. In our simulations, L has a small value equal to 2.

However, depending on the application instability, this value can
be higher which leads to even more violations. This situation is
a result of the lack of the knowledge about preceding trends to
the anomaly state. ACAS solves this problem by keeping the track
of the patterns in the data and performing the scaling when the
conditions of being in a continuous anomaly state and the violation
of the threshold values are met.

S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120 117

90

— Threshold Method

80

70
60
50
40

Utilization

30
20
10

0 100 200

300 400 500

Time Index

(a) Memory Utilization

160

— Threshold Method
140} ... ACAS

120

100

80

60

40

Number of Failed Sessions

20

JWNWWWM

0 100 200

300 400 500

Time Index

(b) Failed Sessions

Fig. 5. Vertical auto-scaling for Memory bottleneck. ACAS avoids failed sessions by timely reaction to predicted performance problem (ACAS line for the failed sessions is

zero for duration of the experiment).

The above reasoning is also applicable for memory bottlenecks.
One point to mention is that the simulated RUBIS application
shows a CPU intensive behavior. Therefore, memory usage has
fewer fluctuations and shows more clear change points which can
be detected with higher accuracy. Fig. 5 shows two sequential
vertical scalings of memory which adds 20% of the initial capacity
each time. The first scaling happens before any violation is ob-
served which shows the prediction part of ACAS helps the scaler
to perform a proactive action to predict the future anomaly events
and start a corrective action. The results show that the memory
usage drops down by 20%. However, the utilization continues to
increase which causes the start of the second scaling action. This
time, however, a few numbers of violations of the memory usage
are observed. The reason is that for a small duration of time after
the first scaling, the system is recognized in a new changed state
which is followed by an update of the models. Therefore, the initial
increases in the memory do not trigger anomaly alerts which cause
the system to start the second action after some delays. In this case,
the reactive part of the approach helps the system to detect the
anomaly state when the violations are observed.

Fig. 5 also shows the number of failed sessions for both policies.
A session is flagged as failed if the VM does not have enough mem-
ory to process its requests. As the figure shows, in the experiments
with the threshold method, the number of failed sessions has in-
creased as a result of ignoring the local fault in the VM. In contrast,
ACAS has properly adjusted the configurations corresponding to

the bottleneck resource which avoids the unusual increases in the
failed sessions.

As demonstrated by aforementioned experiments, the proac-
tive vertical scaling helps to quickly target the bottleneck resource
and reduce the number of violations by adjusting the amount of
resources accordingly. This process also helps to reduce the cost
as well as the energy consumptions compared to the conventional
way of adding new VM machines in the system. It is also worth
noticing that the local execution of anomaly detection reduces
the complexity of training the anomaly detection models. As it is
explained in Section 3 the time and space complexity of IForest
algorithm is constant when the same number of training observa-
tions is used for model generation.

The next set of the experiments analyzes the behavior of the
system when the input workload of the machines suddenly in-
creases. Two types of the problem have been considered. The first
experiment simulates an environment where one VM is exposed
to an increasing workload while other VMs in the system stay in
their normal state. Therefore, one VM is randomly selected and the
number of the requests sent to this VM is increased. This scenario
can happen in different cases such as a result of a misconfigured
balancer service which assigns a higher weight to one VM. Fig. 6
shows the impact of the load increase on the response time of the
target VM for both policies. As we expect, the threshold approach
is not successful at detecting the local performance problem and
many violations of the response time are observed. In contrast,

118 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

10
— Threshold Method
----- ACAS M
8
o
o}
2
o 6
£
l_
[}
Z
s 4
o3
%]
0}
o
i u
0 »—"“’V‘J ___
0 200 400 600 800 1000
Time Index
Fig. 6. Response time of one application server when the machine is overloaded.
100
— Threshold Method
C
o
©
N
£
10
0 20 40 60 80 100 120 140 160 180
Time Index
(a) CPU Utilization
2.0
— Threshold Method
o
ja}
)
]
£
'_
[}
%]
c
o
[oR
%]
0}
o

) 20 40 60 80
Time Index

100 120 140 160 180

(b) Response Time

Fig. 7. CPU Utilization and Response Time of one application server when the system is overloaded. ACAS is able to proactively trigger a horizontal scaling action compared

to reactive response of the threshold method which causes more SLA violations.

the local anomaly detection approach utilized by ACAS helps to
identify the problem as soon as the metrics show an increasing
trend followed by exceeding the thresholds.

The second experiment for the load problem simulates an over-
loaded system where the number of incoming requests to the bal-
ancer is increased, resulting in the increase in the resource usage

of every machine at the same time. This scenario is a common
case in the web applications known as flash crowds when sudden
surges in the traffic to a web site causes high delays in the response
time making it virtually unreachable for the users. As Fig. 7 shows,
both policies make similar decisions and add a new VM after the
problem is recognized. However, ACAS approach is able to react to

S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

70

60

50

40

30

CPU Utilization

20

0 200 400

119

600

800

1000 1200

Time Index

Fig. 8. CPU utilization of one application server when the machine is overloaded. The marked points are the records detected as anomaly.

Anomaly

Model
Updated

0 200 400

600 800 1000 1200

Time Index

Fig. 9. Detected anomaly points and the model update times for the duration of the experiment. Red points show the observations that detected as an anomaly. Blue points

show the times that a model update occurred in the system.

the problem immediately at the same time that the first breach of
the threshold is detected which causes the system to return back
to the normal state after 5 observations of the violation of CPU
and memory metrics. In contrast, the threshold approach does not
have a knowledge of the past behavior of the system and therefore
delays the triggering of the auto-scaling action for L observations.
In our experiments, this value is set equal to 2 which results in
about 8 violations before the system goes back to the normal state.
Larger values for L, more SLA violations in the system.

Finally, a set of the plots presenting the relation between
anomaly scores and model updates are shown for a sample ex-
periment in ACAS framework. Fig. 8 shows the CPU utilization of
one application server. The marked points are the observations
recognized as anomalies, meaning that the corresponding anomaly
scores are higher than 0.55. Fig. 9 presents a combined view of
the anomaly detection process for the same workload, including
detected anomaly points along with the anomaly update times.
Each point at the top line shows that the observation at the
corresponding time was detected as an anomaly, while the gaps
between these points reflect normal or transition states of the
system. The first 330 points are ignored as they are used during
the training phase and detection process was not activated at that
time. Similarly, each point at the bottom line shows that a model
update happened at the time of the corresponding observation.
As we can see, at the times that the system is recognized in the
normal state, no update is occurring, meaning that the models
are reflecting the current state of the system. Another observation

from these figures indicates that the updates are delayed when an
anomaly event is started while the system is recognized as being
in the transition state. An example of this condition can be seen
between observation 900 to 1100 which is reflected by the gaps
among the points at the bottom line.

6. Conclusions and future work

Elastic VMs with the accompanying knowledge from analyz-
ing performance data can bring new opportunities to offer better
resource management solutions in the distributed environment.
In this work, we show how fine grained resource configurations
can help to improve the auto-scaling solutions for a category of
local anomalies occurring in one VM. The proposed ACAS frame-
work utilizes a low overhead anomaly detection solution based
on the Isolation-Trees and combines it with a cause identification
procedure to enable appropriate auto-scaling solution taking into
consideration the nature of the anomaly.

For the future work, we plan to improve the cause detection
method with the aim of detecting more complex anomaly prob-
lems, the ones that can affect the pattern of the data in long run
or influence multiple attributes. As an example of more complex
types of anomalies, distributed attacks on the cloud resources are
a challenging problem, especially considering the other sources of
data such as packet information which should be included along
with the previously discussed resource level measurements. In this
case, we may need to add a profiling step to record a signature of

120 S.K. Moghaddam, R. Buyya and K. Ramamohanarao / Journal of Parallel and Distributed Computing 126 (2019) 107-120

old and new anomalies, categorizing them based on the underlying
reason for the problem. Moreover, we can work to further im-
prove the framework by adjusting the thresholds for both anomaly
scores and attribute dependent violations automatically based on
the type of the anomaly, the intensity of changes in the data,
etc. Finally, we plan to extend our work to consider alternative
virtualization methods such as containers in which the same Op-
erating System (OS) is shared among multiple container-hosted
applications. While the proposed ACAS framework is applicable
to these environments and we expect similar performance of our
framework when applied to containers at the resource level, the
nature of containers may introduce some additional requirements
in terms of measuring resource utilization with respect to each
container. Therefore, the isolation of performance may become
more challenging which requires finer levels of data analysis such
as monitoring system call traces and interactions among contain-
ers to alleviate corresponding performance degradations.

References

[1] Amazon, Amazon 2018, URL https://aws.amazon.com/.

[2] J.V. Bibal Benifa, D. Dejey, RLPAS: Reinforcement learning-based proactive
auto-scaler for resource provisioning in cloud environment, Mobile Netw.
Appl. (2018).

[3] R.N. Calheiros, K. Ramamohanarao, R. Buyya, C. Leckie, S. Versteeg, On the
effectiveness of isolation-based anomaly detection in cloud data centers,
Concurr. Comput.: Pract. Exper. (2017) e4169.

[4] R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A.F. De Rose, R. Buyya, CloudSim: A
toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms, Softw. Pract. Exper. 41 (1)
(2011) 23-50.

[5] K. Cetinski, M.B. Juric, AME-WPC: Advanced model for efficient workload
prediction in the cloud, J. Netw. Comput. Appl. 55 (2015) 191-201.

[6] J.A. Cid-Fuentes, C. Szabo, K. Falkner, Online behavior identification in dis-
tributed systems, 34th IEEE Symposium on Reliable Distributed Systems,
Montreal, Quebec, Canada, 2015, pp. 202-211.

[7] CA. Cunha, L. Moura e Silva, Separating performance anomalies from
workload-explained failures in streaming servers, in: Proceedings of the
2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (Ccgrid 2012), CCGRID’12, IEEE Computer Society, Washington,
DC, USA, 2012, pp. 292-299.

[8] D.J.Dean, H. Nguyen, X. Gu, UBL: Unsupervised behavior learning for predict-
ing performance anomalies in virtualized cloud systems, in: Proceedings of
the 9th International Conference on Autonomic Computing, ACM, New York,
NY, USA, 2012, pp. 191-200.

[9] S.Di,D.Kondo, W. Cirne, Google hostload prediction based on bayesian model
with optimized feature combination, J. Parallel Distrib. Comput. 74 (1) (2014)
1820-1832.

[10] D. Grimaldi, V. Persico, A. Pescape, A. Salvi, S. Santini, A feedback-control
approach for resource management in public clouds, in: IEEE Global Commu-
nications Conference, 2015, pp. 1-7.

[11] N. Grozev, R. Buyya, Performance modelling and simulation of three-tier
applications in cloud and multi-cloud environments, Comput. J. 58 (1) (2013)
1-22.

[12] X. Gu, H. Wang, Online anomaly prediction for robust cluster systems, in:
Proceedings of the 25th IEEE International Conference on Data Engineering,
2009, IEEE, Shanghai, China, 2009, pp. 1000-1011.

[13] Q. Guan, S. Fu, Adaptive anomaly identification by exploring metric subspace
in cloud computing infrastructures, in: Proceedings of the 32nd IEEE Interna-
tional Symposium on Reliable Distributed Systems, SRDS’13, IEEE Computer
Society, Braga, Portugal, 2013, pp. 205-214.

[14] R.Han, L. Guo, M.M. Ghanem, Y. Guo, Lightweight resource scaling for cloud
applications, in: Proceedings of the 2012 12th IEEE/ACM International Sym-
posium on Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID’12, [EEE
Computer Society, Washington, DC, USA, 2012, pp. 644-651.

[15] B. Hong, F. Peng, B. Deng, Y. Hu, D. Wang, DAC-Hmm: Detecting anomaly in
cloud systems with hidden Markov models, Concurr. Comput.: Pract. Exper.
27 (18)(2015) 5749-5764.

[16] FE.T.Liu, K.M. Ting, Z.H. Zhou, Isolation-based anomaly detection, ACM Trans.
Knowl. Discov. Data 6 (1) (2012) 3:1-3:39.

[17] M. Mao, M. Humphrey, A performance study on the VM startup time in the
cloud, in: Proceedings of the 2012 IEEE Fifth International Conference on
Cloud Computing, CLOUD’12, IEEE Computer Society, Washington, DC, USA,
2012, pp. 423-430.

[18] G. Molté, M. Caballer, C. de Alfonso, Automatic memory-based vertical elas-
ticity and oversubscription on cloud platforms, Future Gener. Comput. Syst.
56 (C) (2016) 1-10.

[19] RUBIS, Rice University Bidding System, URL http://rubis.ow2.org/.

[20] B.Subraya, Integrated Approach to Web Performance Testing: A Practitioner’s
Guide, IGI Global, 2006.

[21] Y. Tan, H. Nguyen, Z. Shen, X. Gu, C. Venkatramani, D. Rajan, PREPARE:
Predictive performance anomaly prevention for virtualized cloud systems,
Proceedings of the 32nd IEEE International Conference on Distributed Com-
puting Systems, Macau, China, 2012, pp. 285-294.

[22]].Yang,C.Liu,Y.Shang, Z. Mao,]. Chen, Workload predicting-based automatic
scaling in service clouds, in: Proceedings of the 2013 IEEE Sixth International
Conference on Cloud Computing, CLOUD’13, IEEE Computer Society, Wash-
ington, DC, USA, 2013, pp. 810-815.

[23] L. Yazdanov, C. Fetzer, VScaler: autonomic virtual machine scaling, in: Pro-
ceedings of the 2013 IEEE Sixth International Conference on Cloud Com-
puting, CLOUD’13, IEEE Computer Society, Washington, DC, USA, 2013,
pp.212-219.

Sara Kardani Moghaddam received her Bachelor’s de-
gree from the Shiraz University of Technology and com-
pleted a master degree in Information Technology at
Sharif University of Technology. She is currently a Ph.D.
student, at the University of Melbourne, Australia. Her
major research interests are large scale distributed sys-
tems, performance management, anomaly detection and
time-series analysis.

Dr. Rajkumar Buyya is a Redmond Barry Distinguished
Professor and Director of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory at the University
of Melbourne, Australia. He is also serving as the founding
CEO of Manjrasoft, a spin-off company of the University,
commercializing its innovations in Cloud Computing. He
served as a Future Fellow of the Australian Research
Council during 2012-2016. He has authored over 625
publications and seven text books including "Mastering
Cloud Computing" published by McGraw Hill, China Ma-
chine Press, and Morgan Kaufmann for Indian, Chinese
and international markets respectively. He also edited several books including
"Cloud Computing: Principles and Paradigms" (Wiley Press, USA, Feb 2011). He
is one of the highly cited authors in computer science and software engineering
worldwide (h-index=123, g-index=271, 78,000+ citations). Microsoft Academic
Search Index ranked Dr. Buyya as #1 author in the world (2005-2016) for both field
rating and citations evaluations in the area of Distributed and Parallel Computing.
"A Scientometric Analysis of Cloud Computing Literature” by German scientists
ranked Dr. Buyya as the World’s Top-Cited (#1) Author and the World’s Most-
Productive (#1) Author in Cloud Computing. Recently, Dr. Buyya is recognized as
a "Web of Science Highly Cited Researcher” in 2016, 2017, and 2018 by Thomson
Reuters, a Fellow of IEEE, and Scopus Researcher of the Year 2017 with Excellence
in Innovative Research Award by Elsevier for his outstanding contributions to Cloud
computing. He is currently serving as Co-Editor-in-Chief of Journal of Software:
Practice and Experience, which was established over 45 years ago. For further
information on Dr. Buyya, please visit his cyberhome: www.buyya.com.

Professor Ramamohanarao (Rao) Kotagiri received PhD
from Monash University. He was awarded the Alexander
von Humboldt Fellowship in 1983. He has been at the
University Melbourne since 1980 and was appointed as
a professor in computer science in 1989. Rao held several
senior positions including Head of Computer Science and
Software Engineering, Head of the School of Electrical
Engineering and Computer Science at the University of
Melbourne and Research Director for the Cooperative Re-
search Center for Intelligent Decision Systems. He served
or serving on the Editorial Boards of the Computer Jour-
nal, Universal Computer Science, IEEE TKDE, VLDB Journal and International Journal
on Data Privacy. Rao is a Fellow of the Institute of Engineers Australia, a Fellow
of Australian Academy Technological Sciences and Engineering and a Fellow of
Australian Academy of Science.

https://aws.amazon.com/
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb2
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb3
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb4
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb5
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb5
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb5
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb7
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb8
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb9
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb9
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb9
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb9
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb9
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb11
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb12
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb13
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb14
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb15
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb16
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb17
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb18
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb18
http://rubis.ow2.org/
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb20
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb22
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
http://refhub.elsevier.com/S0743-7315(18)30908-0/sb23
www.buyya.com

	ACAS: An anomaly-based cause aware auto-scaling framework for clouds
	Introduction
	Related work
	Preliminary
	Motivation and Approach Overview
	A Brief Summary of Isolation-Trees

	System Design
	Anomaly Prediction based on Isolation-Trees models
	Model Updating
	Cause Identification

	Resource Management Module
	Per-VM Vertical Scaling Policies
	Horizontal Scaling Policies

	Performance Evaluation
	Experimental settings
	Experiments and Results

	Conclusions and Future Work
	References

