

Libra: An Economy driven Job Scheduling System for Clusters

Jahanzeb Sherwani¹, Nosheen Ali¹, Nausheen Lotia¹, Zahra Hayat¹, <u>Rajkumar Buyya</u>²

- 1. Lahore University of Science and Management (LUMS), Lahore, Pakistan
- 2. Grid Computing and Distributed Systems (GRIDS) Lab., University of Melbourne, Australia www.gridbus.org

Agenda

- Introduction/Motivations
- The Libra Scheduler Architecture & Costbased Scheduling Strategy
- Implementation
- Performance Evaluation
- Conclusion and Future Work

Introduction

- Clusters (of "commodity" computers) have emerged as mainstream parallel and distributed platforms for high performance, high-throughput and highavailability computing.
- They have been used in solving numerous problems in science, engineering, and commerce.

Adoption of the Approach

Cluster Resource Management System: Managing the Shared Facility

Sequential Applications
Sequential Applications
Sequential Applications

Parallel Applications

Parallel Applications

Parallel Programming Environment

Cluster Management System

(Single System Image and Availability Infrastructure)

Some Cluster Management Systems

- Commercial and Open-source Cluster Management Software
- Open-source Cluster Management Software
 - DQS (Distributed Queuing System)
 - Condor
 - GNQS (Generalized Network Queuing System)
 - MOSIX
 - Load Leveler
 - SGE (Sun Grid Engine)
 - PBS (Portable Batch System)

Cluster Management Systems Still Use System Centric Approach

- Traditional CMSs focus has essentially been on maximizing CPU performance, but not on improving the value of utility delivered to the user and quality of services.
- Traditional system-centric performance metrics
 - CPU Throughput
 - Mean Response Time
 - Shortest Job First
 - FCFS
 - Some Static Priorities
 - ...

The Libra Approach: Computational Economy Paradigm for Management & Job Scheduling

Cost Model: Why are they needed?

- Without cost model any shared system becomes un-manageable
- It supports QoS based resource allocation and help manage supply-and-demand for resources.
- Improves the value of utility delivered.
- Also, improves the resource utilization.
- Cost units (G\$) may be
 - Rupees/Dollars (real money)
 - Shares in global facility
 - Stored in bank

Cost Matrix

- Non-uniform costing
 - Different users are charged different prices that vary with time.

Resource Cost = Function (cpu, memory, disk, network, software, QoS, current demand, etc.)

Computational Economy Parameters

- Job parameters most relevant to usercentric scheduling
 - Budget allocated to job by user
 - Deadline specified by user

Libra Architecture

Libra with PBS

- Portable Batch System (PBS) as the Cluster Management Software (CMS)
 - Robust, portable, effective, extensible batch job queuing and resource management system
 - Supports different schedulers
 - Job accounting
 - Allows Plugging of Third-Party Scheduling Solution

The Libra Scheduler

- Job Input Controller
 - Adding parameters at job submission time
 - deadline
 - budget
 - Execution Time
 - Defining new attributes of job
- Job Acceptance and Assignment Controller
 - Budget checked through cost function
 - Admission control through deadline scheduling
 - Execution host with the minimum load and ability to finish job on time selected
 - Node Resource Share Allocation: Proportional to the needs of multiple User Jobs QoS needs.

The Libra Scheduler

- Job Execution Controller
 - Job run on the best node according to algorithm
 - Cluster and node status updated
 - run Time
 - cpuLoad
- Job Querying Controller
 - Server, Scheduler, Exec Host, and Accounting Logs

Pricing the Cluster Resources

- Cost= α * (Job Execution Time) + β * (Job Execution Time / Deadline)
 - Cost = α *E + β *E/D (where α and β are coefficients)
- Cost of using the cluster depends on job length and job deadline: the longer the user is prepared to wait for the results, the lower his cost
- Cost formula motivates users to reveal their true QoS requirements (e.g., deadline)

PBS-Libra Web --- Front-end for the Libra Engine

PBS-Libra Web Login Page

Login	
User Name:	
Password:	
Submit	
	the Web front-end of Libra an Economy-Driven Cluster
Scheduler.	the Web front-end of Libra an Economy-Driven Cluster The Libra team is: ner/Client: Rajkumar Buyya (rajkumar@csse.monash.edu.au)
Scheduler.	Γhe Libra team is:
Scheduler. The Project Own Jahanzeb Sh	The Libra team is: ner/Client: Rajkumar Buyya (rajkumar@csse.monash.edu.au)
Scheduler. The Project Own Jahanzeb Sl Nosheen Al	The Libra team is: ner/Client: Rajkumar Buyya (rajkumar@esse.monash.edu.au) nerwani (2002-02-0058)

Department of Computer Science

in collaboration with

School of Computer Science and Software Engineering

Send questions and comments to sproj3@lums.edu.pk. You can find help here.

PBS-Libra Web Script Submission

Navigation: Start Page || Tar File Upload || Compile Uploaded Files || Script Generation and Submission || PBS Queue Information || View Job Status || View Job Output || View Home Drive || Login || Logout || Change PBS-Libra Web Password || Erase all submissions

PBS-Libra Web

Job name: sproj3			Execution Commands: date /usr/local/bin/povray +i/shared/povray31/scenes/advanced/sunsethf.pov +fp +w640 + h480 ppmtojpeg sunsethf.ppm > /home/j/public_html/sunsethf.jpg date		
Job Options Estimate (in seconds)	10				
Deadline (in seconds)	20				
Budget (in Rupees)	15)	File Staging (data files only; executable automatically staged) Stagein		
Queue to submit job to:	Default •		From here:		
Number of processors	1 🔻		To there:		
Maximum time (HH:MM:SS)	01:00:00	(00:00:00 = no time limit)	Stageout From here:		
Merge STDERR to STDOUT?			To there:		
Send message when job:	□ Aborts □ Ends □ Starts		Clear filestaging		
Address to send messages to:	sproj3@lums.edu.pk				
Submit Job					
Start Page			Send questions and comments to sproj3@lums.edu.pk.		

Job Status for Job 393

Navigation: Start Page || Tar File Upload || Compile Uploaded Files || Script Generation and Submission || PBS Queue Information || View Job Status || View Job Output || View Home Drive || Login || Logout || Change PBS-Libra Web Password || Erase all submissions

PBS-Libra Web

```
Job Id: 393.mspc37.lums.edu.pk
    Job Name = sproj3
    Job Owner = j@mspc37.lums.edu.pk
   resources used.cput = 00:00:00
    resources used.mem = 2856kb
    resources used.vmem = 6484kb
    resources used.walltime = 00:00:00
    job state = R
    queue = dque
    server = mspc37.lums.edu.pk
    Checkpoint = u
    ctime = Thu May 9 02:29:51 2002
    Error Path = mspc37.lums.edu.pk:/home/j/pbsweb/libra/sproj3.e393
    exec host = mspc37/0
    Hold Types = n
   Join Path = n
   Keep Files = n
   Mail Points = aeb
   Mail Users = sproj3@lums.edu.pk
   mtime = Thu May 9 02:29:51 2002
    Output Path = mspc37.lums.edu.pk:/home/j/pbsweb/libra/sproj3.o393
    Priority = 0
    gtime = Thu May 9 02:29:51 2002
   Rerunable = True
   Resource List.ncpus = 1
    Resource List.walltime = 01:00:00
    session id = 28394
    Shell Path List = /bin/sh
    Variable_List = PBS_O_HOME=/home/j,PBS_O_LOGNAME=j,
        PPG O PATH=/usr/local/bin:/bin:/usr/bin:/shared/pvm3/lib,
        PBS O MAIL=/var/mail/j, PBS O SHELL=/bin/bash,
       PBS O HOST=mspc37.1 ms.edu.pk, PBS O WORKDIR=/home/j/pbsweb/libra,
        PBS O QUEUE=dque
    etime = Thu May 9 02:29:51 2002
    budget = 15
    deadline = 20
    estimate = 10
```


Performance Evaluation: Simulations

Goal:

Measure the performance of Libra Scheduler

Performance = ?

- Maximize user satisfaction
- Maximise value delivered by the utility
- Simulation Platform: GridSim
 - Simulated scheduling using the GridSim toolkit
 - http://www.gridbus.org/gridsim

Simulations

Methodology

- Workload
 - 120 jobs with deadlines and budgets
 - Job lengths: 1000 to 10000 (MIs)
- Resources
 - 10 node, single processor (MIPS rating: 100) (homogenous) cluster

Simulations

- Scheduler simulated as a function
 - Input: job size, deadline, budget
 - Output: accept/reject, node #, share allocated

Simulations

Compared:

- Proportional Share (Libra)
- FIFO (PBS)

Experiments:

- 120 jobs, 10 nodes
- Increasing workload to 150 and 200
- Increasing cluster size to 20

Simulation Results

120 jobs, 20 did not meet budget

100 Jobs, 10 Nodes FIFO: 23 rejected - Proportional Share: 14 rejected

25

FIFO

PBS

Simulation Results

 Increase workload to 200 jobs on the same 10 node cluster

200 Jobs, 10 Nodes FIFO: 105 rejected - Proportional Share: 93 rejected

Simulation Results

Scale the cluster up to 20 nodes

200 Jobs, 20 Nodes FIFO: 35 rejected - Proportional Share: 23 rejected

PBS FIFO & Libra Strategy

No. of Jobs	No. of Nodes	No. of Jobs Accepted		No. of Jobs Rejected	
		PBS FIFO	Libra	PBS FIFO	Libra
100	10	77	86	23	14
	20	90	86	10	14
200	10	95	102	105	98
	20	165	177	35	23

Conclusion & Future Work

- Successfully developed a Linux-based cluster that schedules jobs using PBS with our economydriven Libra scheduler, and PBS-Libra Web as the front end.
- Successfully tested our scheduling policy
- Proportional Share delivers more value to users
- Exploring other pricing mechanisms
- Expanding the cluster with more nodes and with support for parallel jobs
- Implement Libra for SGE (Sun Grid Engine)
 - Sponsored by Sun!

Thank you

Copyright 3 1999 United Feature Syndicate, Inc. Redistribution in whole or in part prohibited

