Sproj3

Libra: An Economy-Driven Cluster Scheduler
Design Documentation
Version <1.0>

Revision History

Date
Version
Description
People

<28/Jan/02>
<1.0>
First draft
Project Owner and Client: Rajkumar Buyya

Faculty Advisor: Dr. Arif Zaman

Project Group: Jahanzeb Sherwani, Nosheen Ali, Nausheen Lotia, Zahra Hayat

Table of Contents

41.
Introduction

2.
Design
5
3.
Architecture
6
4.
Interfaces
7
4.1
QMonitor
7
4.2
QMonitor – Job Control (Pending Jobs)
8
4.3
QMonitor – Job Control (Finished Jobs)
9
4.4
Submit Job
10
4.5
Queue Control
11
4.6
Queue Configuration: Modify
12
4.7
Host Configuration (Administration Host)
13
4.8
Complex Configuration
14
4.9
Cluster Configuration
15
4.10
Scheduler Configuration
16
5.
Data Definitions
17
6.
Architectural and Procedural Design
22
6.1
Job Input Controller
24
6.2
Job Acceptance Controller
25
6.3
Job Initialization Controller
26
6.4
Job Assignment Controller
27
6.5
Execution Host and Queue Determination Controller
28
6.6
Job Execution Controller
29
6.7
Job Query Controller
30
6.8
Job Modification Controller
31
7.
Program Design Language (Low-Level Design)
32
7.1
Log User In and Input Job
32
7.2
Accept / Reject Job
33
7.3
Compute Job finish Time
34
7.4
Determine Execution Host and Queue
34
7.5
Schedule according to deadline and budget
35
7.6
Implement proportional scheduling model according to allocated tickets
36
7.7
Select Job (according to stride scheduling algorithm)
38
7.8
Query Job
39
7.9
Delete Job
40
7.10
Change Job Details
41
8.
References
42

Design Documentation

1. Introduction

This document contains the high-level and low-level design specifications for the Software Requirements Specifications (SRS) submitted on 23rd December 2001. Additionally, the software architecture, and user interfaces for each of the deliverables are described as well.

Design

For the high-level design, a call-return architecture has been specified using structure charts. For procedural design, the high-level design modules have been explained using PDL.

Architecture

The Libra Scheduler architecture is as follows:

[image: image9.png]-~ QMON +++ Scheduler Configuration

Scheduler Configuration

x|

General Parameters] Load Adjustment

Algorithm

Cancel|

libra

Schedule Interval
0015

Max JobsiUser Max JobsiGroup

o o
Sort by load —

I User Sort
Job Scheduling Information

el |

Load Formula

np_load_avg

Help

The fileserver stores the workspaces of all processes, as well as the binary executables of the scheduler itself. Communications daemons (commd) are running on each of the host on a specified TCP port (786), and form the means of communication between hosts. Execution hosts contain execution queues, each with their own scheduling policies, on which jobs are sent to execute. The master host contains the central queue managing daemon, qmaster, and the scheduling daemon, which makes the actual scheduling decisions regarding which job is to be assigned to which execution queue. Submit hosts are the entry-points for the users. A submit host submits jobs using the ‘qsub’ command, which submits the job along with its corresponding details to the master host. The master host summons the scheduler, which has access to the Queue State Table which in turn contains information on each of the execution hosts. Based on the scheduling algorithm implemented via Libra, the scheduler will choose an execution queue, which the qmaster will subsequently dispatch the job to.

2. Interfaces

2.1 QMonitor

[image: image1.png]- QMON +++ Main Control
File Task

This is the central control screen for the Sun Grid Engine within which the Libra Scheduler is to be implemented. From here, the options (from top left to bottom right) are:

1. Job Control

2. Queue Control

3. Job Submission

4. Complexes Configuration

5. Host Configuration

6. Cluster Scheduler

7. Scheduler Configuration

8. Calendar Configuration

9. User Configuration

10. Parallel Environment Configuration

11. Checkpoint Configuration

12. Browser

13. Exit

QMonitor – Job Control (Pending Jobs)

[image: image2.png]QMO IDICIES

e Job Control

Pending Jobs] Running Jobs Finished Jobs Refresh
Jobld |Priority | JobMName | Owner Status Gueue | Submit
8 0 Slesper 3 qu #pending* | [||| | Force
9 0 Sleeper 3 qu *pending* 5 T

uspen
10 0 Sleeper 3 qu *pending* D
11 0 Sleeper 3 aqw *pending* Resume
12 o Sleeper 3 qw *pending#* Delete
13 0 Sleeper 3 qu *pending*
14 0 Slee » ‘ Wigyo
per 3 aw pending:

Priority
Gatter
Clear Error]

Customize

T

Once a job is submitted, it goes to the master host which places it in the pending jobs queue. Once there, its ID, Priority, Name, Owner, Status and Queue (to which it will be sent) are stored until the job is actually dispatched to the queue. Every job initially goes to the pending queue while the scheduling daemon runs the selected scheduling algorithm to determine the execution queue to which the job is to proceed. Once this is done, the job goes into the Running Jobs tab (not shown in the screen images), after which it ends up in the finished jobs queue.

QMonitor – Job Control (Finished Jobs)

[image: image3.png]QMO IDICIES

GEELS Job Control

Pending Jobs I Running Jobs I Finished Jobs E

Jobld |Priority | JobMName | Owner Status |Queue | Submit

1 0 INTERACTIV root 3 mepezona | |

2 0 INTERACTIV j t mspe29.q

4 0 simple.sh § t mspe29.q

5 0 array_subm j t mspe29.q

3 0 Sleeper § r mspe29.q

7 0 Sleeper § r mspe29.q

_I
_Pesure |
_Geis |
|
ot |
oty |
_I

Clenu

Customize

il Done
Help

The jobs in the finished jobs queue are those that have been scheduled, executed, and completed. It is essentially a list of all the hitherto completed jobs that have been submitted and outputs returned.

While job status may be viewed from the Job Control window, new jobs may be submitted by clicking on the Submit button, which opens up the Job Submit dialog window.

Submit Job

[image: image4.png]Job Submission

General |

Advanced

Prefiz|

_iMerge output

Tob Script stdout
Job Tasks stderr
ibbm— Request Resources
Job Args @
Priority
-
= Restart depends on Queue —
Start At

I

_i current Working Directory
Shell

— H

_INotify Job

_{Hold Job

_Istart Job Immediately

2 14

e

Submit
Edit
Clear
Reload
Save Seftings
Load Settings
Done
Help

Jobs are submitted using this dialog window. The job script specifies the location of the file containing the actual executable commands (for example, “sleeper.sh”). Job args takes in the arguments for the job, including deadline, budget, and expected exeuction time. Output may be directed to different files, and is specified in the stdout and stderr input boxes. Only those hosts that are specified submit hosts on the master host have privileges to submit jobs, however.

Queue Control

[image: image5.png]- QMON +++ Queue Control

O

Queue Control

[= [[ey:
w2y o funmin
mapc2s s Seetie
Sots:0(1) S0t 0(1) K
B

Ay —
621 ndar DizakTe

Refresh

Add
Modify
I Force

Suspend
Resurme
Disable
Enable

Clear Error

Delete
Customize
Done
Help

This window lists the currently configured queues for the execution hosts in the cluster. In the above example, execution hosts mspc29 and mspc36 each have a queue (called ‘q’) running on each of them, and each of these queues has 0 out of a maximum of 1 job running on them. Further, more queues may be added to the specified execution hosts, and existing queues may be modified or deleted.

Queue Configuration: Modify

[image: image6.png]Queue Configuration: Modify

Queue Configuration: Modify

oueue T

mspez9.q

cancel
Hostname
mspe29. lums . edu. pk Help

Clone | Reset Refresh
Complexes I Subordinates I User Access I Owners
General Configuration] Execution Method Checkpointing Load/Suspend Thresholds Limits
Sequence Nr o calendar]
Processors nomrmEn NOtify Time T — I~ Batch

I” Interactive

tmp Directory Jtmp :
diele' g Wilew I Checkpoint ing
Sl bin/csh
/pin/ Slots i Parallel
Shell Start Mode Initial State Rerun Jobs

 Transfer

posiz_compliant | default il

This is the window from which queue configurations may be changed. For instance, different load/suspend thresholds, which specify the ceiling of maximum allowed load for the queue, beyond which it will begin to suspend jobs running on it till the threshold is satisfied. Also, complexes may be attached or detached from the queue, making queues cater to different resource requirements (in our case, deadline and budget). Checkpointing (the process of saving the current status of any job, for later restarting, or for job migration) can also be configured for each queue individually, to set the conditions under which checkpointing and/or job migration occur. User access specifies which users/hosts are to be given access, and which are to be denied. Subordinates includes those queues that are to follow suit with whatever instructions are sent to this queue; for instance, if a queue is suspended, then its subordinates will be suspended as well. Limits specifies the hard or soft limits imposed on jobs running on the queue (for example, no job may take more than 10 minutes of CPU time, otherwise it is to be suspended or killed).

2.2 Host Configuration (Administration Host)

[image: image7.png]Host Configuration

Administration Host

Host

Submit Host

Execution Host

Add

Delete

mspe29. lums . edu. pk
mspe36. lums . edu. pk
mspe37. lums . edu. pk

Shutdown
Done
Help

In this window, hosts are configured. The three type of hosts recognized are Administration, Submit, and Execution hosts. Administration hosts are those hosts that are allowed to view and edit the configuration for the cluster as a whole, for hosts individually, for queues within specific hosts, as well as for jobs running on specific queues. Submit hosts are those that are allowed to submit jobs into the cluster. Execution hosts are those that have at least one queue set up where jobs scheduled by the cluster may be sent to actually execute.

Complex Configuration

[image: image8.png]- QMON +++ Complex Configuration

Complex Configuration

Attributes Add
A vane reoe v ||| —
od
arch a STRING none YES
Pm. proc 5 e 1 vES Deete|
load_avg la DOUBLE 99.99 no Done
load_short 1s DOUBLE 99,99 NO
load_medium im DOUBLE 99,99 NO Help
load_long 11 DOUBLE 99,99 NO —I
np_load_avg nla DOUBLE 99,99 NO
np_load_short nls DOUBLE 99,99 NO
np_load_medium nlm DOUBLE 99,99 NO
np_load_long nll DOUBLE 99,99 NO

Complexes are entities representing some aspect of the cluster that the cluster administrator defines. For instance, CPU usage, Virtual Memory usage, Disk Storage usage, are all complexes that the administrator can define and then attach onto specific queues or hosts (as shown in the queue configuration modification screenshot). By attaching a complex to a queue, and defining an associated limit for that complex, the administrator can effectively define a policy for the queue. For instance, one queue may be configured such that no process that requires more than 10 Mb of disk space may be run. Alternatively, another queue may be defined such that the total amount of memory used by processes does not exceed the physical RAM on the host, such that no virtual memory is used, thus speeding execution times. In our case, a complex defining user budget, and another defining user deadline can both be used concurrently to define the behavior for a queue that can effectively ensure that user deadlines and budgets are accounted for during queue execution. This can act as a sentinel in case the scheduling algorithm inaccurately calculates the scheduling policy for the cluster.

Cluster Configuration

[image: image10.wmf]Job Input

Controller

Get Job

Parameters

Forward Job

Details To Master

Host

Log User In

Get User ID

Get User

Password

Authenticate User

Input Job

Parameters

Authenticate Job

Paramters

user id

user id

password

user id,

password

authentication

signal

user id, password

user id

job details

user id

job details

job

details

verified

job details

user id,

job details

This window allows the administrator to define the local policies for hosts in the cluster as well as the global policies for the entire cluster as a whole. Global policies are defined which are inherited by hosts, and in turn inherited by queues in those hosts. Alternatively, hosts may define their individual policies that override the global policies as required. Finally, policies may also be defined for individual queues that override both the global as well as host-level policies. Thus, there is a great degree of customizability for the specific needs of the cluster.

Scheduler Configuration

[image: image11.wmf]Job Acceptance

Controller

Assess Cluster

State

Inform User

Assess Job Finish

Time

Retrieve Relevant

Job Details

Compute Job

Finish TIme

Compare Job

Finish Time to Job

Deadline

Query Cluster

State Table

Query Cluster

Resource List

c, t, e, b, d

job id

job finihs time,

job deadline

within deadline

job accepted

signal

queue load

available

resources

job accepted signal

cluster ready signal, available resources

job id, available

resources

c, t, e, b, d,

available resources

job finish time

user accepted signal

c = category (deadline only, budget only,

 deadline and budget)

t = type (sequential, emb parallel)

e = execution time

b = budget

d = deadline

This is the window from which the scheduling algorithm (as described by the high-level design diagrams) is selected for the master host’s scheduling daemon. This is effectively the master scheduling policy for the cluster, which selects the hosts and queues that are to be allocated to each job. This algorithm effectively schedules jobs based on the user constraints of deadline and budget, within which it maximizes as much as possible system-centric constraints such as CPU utilization, etc.

3. Data Definitions

Name:

Cluster Information stored in Cluster State Table
Aliases:

Updated Cluster Information

Where used/how used:
Schedule Job (input)

Accept/Reject Job (input)

Content Description:
Cluster Information = CPU Load + Node Status + Remaining Time of Pending Jobs + Available Memory

CPU Load = numeric

Node Status = [full | overloaded | partially-full]

full = string

overloaded = string

partially-full = string

Remaining Time of Pending Jobs = (hours) + (minutes) + (seconds)

Hours = double

Minutes = double

Seconds = double

Available Memory = numeric

Supplementary Information:
This is the information maintained by the master host. It is collected periodically from all the execution hosts and also communicated to the scheduler to enable it to make its scheduling decisions.

Name:

Job Details

Aliases:

Job Parameters, Job Specifications

Where used/how used:
Get Job Details (output)

Schedule Job (output)

Accept/Reject Job (input)

Determine Execution Host (input)

Implement Scheduling Policy (input)

Content Description:
Job Details = Job ID + Job Name + Job Type + Standalone Execution Time + Location of Executable and Input Data Sets + Location of Output + System Type + Budget + Deadline

Job ID = integer

Job Name = string

Job Type = [Sequential Job | Embarrassingly Parallel Job]

Sequential Job = char

Embarrassingly Parallel Job = char

Job Category = [Deadline | Budget | Deadline and Budget]

This explains what is provided as the criterion for job

Job Start Time = integer

Job Submit Time = integer

Standalone Execution Time = Job Duration

Job Duration = (hours) + (minutes) + (seconds)

Hours = double

Minutes = double

Seconds = double

Location of Execution and Input Data Sets = string

Location of Output = string

System Type = string

Budget = rupees

Rupees = double

Deadline = (hours) + (minutes) + (seconds)

Hours = double

Minutes = double

Seconds = double

Supplementary Information:
none

Name:

Scheduling Information
Aliases:

Scheduling Policy Implementation

Where used/how used:
Schedule Job (output)

Execute Job (input)

Implement Scheduling Policy (output)

Content Description:

Scheduling Information = Tickets + Stride + Pass

Tickets = integer

Stride = integer

Pass = integer

Supplementary Information:
Tickets represent the client’s resource allocation, relative to other clients.

Stride represents the interval between selection for execution, measured in passes, and is the inverse of tickets.

Pass represents the virtual time index for the client’s next selection.

Name:

Job Results

Aliases:

Job Output

Where used/how used:
Execute Job (output)

Content Description:

Job Results = (string) + (char) + (numeric)

Supplementary Information:
These are the results of the execution of the job, and are communicated to the user on the submit host from the execution host via the master host.

Name:

Required Budget/Deadline

Aliases:

none

Where used/how used:
Accept/Reject Job (output)

Content Description:

Required Budget/Deadline = Deadline + Budget

Budget = rupees

Rupees = double

Deadline = (hours) + (minutes) + (seconds)

Hours = double

Minutes = double

Seconds = double

Supplementary Information:
This data object represents the response of the system to the submission of a job that cannot be completed with the requested parameters. The system then notifies the user, and demands a different budget and/or deadline.

Name:

Chosen Execution Host

Aliases:

Chosen Execution Node

Where used/how used:
Determine Execution Host (output)

Dispatch Job to Execution Host (input)

Dispatch Job to Execution Host (output)

Update Cluster Status (input)

Content Description:

Chosen Execution Host = (Host Name) + Host IP Address

Host Name = string

Host IP Address = numeric

Supplementary Information:
This is decided by the scheduler, based on the Cluster Information

available to it.

Name:

Chosen Execution Queue

Aliases:

none

Where used/how used:
Determine Execution Host (output)

Dispatch Job to Execution Host (input)

Dispatch Job to Execution Host (output)

Update Cluster Status (input)

Content Description:

Chosen Execution Queue = (Queue Name) + Queue Number

Queue Name = string

Queue Number = numeric

Supplementary Information:
This is decided by the scheduler, based on the Cluster Information

available to it.

Name:

Scheduled Job
Aliases:

Dispatched Job

Where used/how used:
Schedule Job (output)

Execute Job: Stride Scheduling (input)

Dispatch Job to Execution Host (output)

Content Description:
Scheduled Job = Job Details + Chosen Execution Host + Chosen Execution Queue

Job Details = Job ID + Job Name + Job Type + Standalone Execution Time + Location of Executable and Input Data Sets + Location of Output + System Type + Budget + Deadline

Job ID = integer

Job Name = string

Job Type = [Sequential Job | Embarrassingly Parallel Job]

Sequential Job = char

Embarrassingly Parallel Job = char

Standalone Execution Time = Job Duration

Job Duration = (hours) + (minutes) + (seconds)

Hours = double

Minutes = double

Seconds = double

Location of Execution and Input Data Sets = string

Location of Output = string

System Type = string

Budget = rupees

Rupees = double

Deadline = (hours) + (minutes) + (seconds)

Hours = double

Minutes = double

Seconds = double

Chosen Execution Host = (Host Name) + Host IP Address

Host Name = string

Host IP Address = numeric

Chosen Execution Queue = (Queue Name) + Queue Number

Queue Name = string

Queue Number = numeric

Supplementary Information:
This data object represents a job once it has been accepted by the

system, and its execution node and execution queue.

4. Architectural and Procedural Design

[image: image12.wmf]Job Initialization

Controller

Retrieve Job

Details

job details

Set Job Details

job details

Update Pending

Job List

job id,details

updated pending

job list

updated pending

job list

Assign Job Id

job id

[image: image13.wmf]Execution Host

and Queue

Determination

Controller

Sort Hosts

by Load

Choose Min

Loaded Host

Select

Appropriate

Queue

Set Submit

Time

job details, cluster info

host load list

host load list

sorted host load list

sorted host load list

min loaded host

job details,

selected exec host

selected queue

chosen selected host, queue

Determine

Queue Slot

Availability

Query

Queue State

Table

selected exec host,

job details

query info

selected queue

query info

scheduled job

Dispatch

Job

scheduled job

updated scheduled job

Gather Host

Load Info

4.1 Job Input Controller

[image: image14.wmf]Job Selection

Controller

Get Currently

Executing Job

List

Sort Job List by

Pass Value

Select Minimum

Pass Value Job

Job Execution

Control

Quantum

Allocation

Controller

selected job,

scheduling info

currently executing

job list

job list

sorted job list

sorted job list

selected job

selected job

selected job

selected job,

scheduling info

updated

scheduling info

selected job

scheduling info

pass, stride

pass, stride

new pass value

new pass value

updated

scheduling info

Allot Quantum/s

to Job and Run

Calculate and

Set New Pass

Value

Insert Job in

Currently

Executing Jobs

List

Get Present Pass

and Stride

Values

Add Stride to

Present Pass

Value

Set New Pass

Value

4.2 Job Acceptance Controller

[image: image15.wmf]Job Querying

Controller

Log User In

Get Job ID

Get Job Details

Display Job Details

user id,

password

job id

scheduled job

details

Prompt User for

Job ID

Authenticate Job

ID

job id

job id

authentication

 signal

scheduled job

details

Retrieve Details

Based on User's

Choise

Display Options

job id, choice

choice

scheduled job

details

Get Info from User

user id,

password

job id

4.3 Job Initialization Controller

[image: image16.wmf]Job Modification

Controller

Get Info from User

Display Change

Job/Delete Job

Option

user id, password, job id

job id

Delete Job

Change Job

Determine Job

Execution Host

and Queue

Update

Cluster

State Table

Update Exec

Host Queue

Status

Get

Scheduled

Job Details

job id

job id

job id

scheduled

job details

exec host, queue,

job details

job id, exec

host, queue

exec host, queue,

job details

updated

cluster status

exec host,

queue

exec host, queue,

job details

job id

choice

choice

authentication

signal

job id

updated cluster status

updated cluster status

Delete Job

From Queue

Update Cluster

Status

Display

Changeable

Parameters

and Get User's

Choice

Authenticate

Choice

Update Job

Info

4.4 Job Assignment Controller

[image: image17.wmf]Job Assignment

Controller

Cluster Update

Controller

Scheduling

Controller

Retrieve

Scheduled

Job LIst

Calculate

Scheduling

Information

Execution Host

and Queue

Determination

Controller

Update

Cluster

State Table

scheduling info

job details

scheduled

job list

Reserve

Resources

on Exec

Host

Update Exec

Host Queue

Status

Calculate

Pass

Calculate

Stride

Allocate

Tickets

job details, cluster info

job details, chosen exec

host, queue

exec queue,

job details

chosen exec host,

job details

chosen exec host and queue,

scheduled job

job details,

 chosen exec

host, queue

updated cluster

status

job details

allocated

tickets

allocated tickets

stride

stride

calculated pass

job details

scheduling info

Get Cluster Info

cluster info

4.5 Execution Host and Queue Determination Controller

[image: image18.wmf]Job Assignment

Controller

Job Execution

Controller

Job Querying

Controller

Libra Scheduler

Job Modification

Controller

Job Submission

Controller

job details

Job Initialization

Controller

job details, job accepted signal

updated pending

job list

scheduling info,

scheduled job

scheduling info,

scheduled job

updated cluster status

4.6 Job Execution Controller

[image: image19.wmf]Job Submission

Controller

Job Input

Controller

Job Acceptance

Controller

Job Assignment

Controller

Scheduling

Controller

Job Execution

Control

Job Selection

Controller

Quantum

Allocation

Controller

selected job

Execution Host

and Queue

Determination

Controller

Cluster Update

Controller

job details,

job details

job details

job details

job accepted

signal

job details

updated cluster status

selected job

scheduling info,

scheduled job

4.7 Job Query Controller

[image: image20.png]QMON +++ Cluster Configuration

Cluster Configuration

Host

Configuration

mspe29 . lums . edu. pk
mspe36. lums . edu. pk
mspe37. lums . edu. pk

quaster_spool_dir
execd_spool_dir
qsi_common_dir
binary_path
mailer

xterm
1oad_sensor
prolog

epilog
shell_start_mode
login_shells
min_uid

min_gid
user_lists
zuser_lists
1oad_report_time

/shared/sge/default/spool/quaster
/shared/sge/default/spool
/shared/sge/default/ comon/qsi
/shared/sge/bin

/bin/mail

fusr/bin/Kl1/stern

none

none

none

posix_compliant

sh, ksh, csh, tesh

i

0

none

none

=

Add
Modify
Delete

Done

EEEE

Help

4.8 Job Modification Controller

[image: image21.png]-~ QMON +++ Scheduler Configuration

Scheduler Configuration

x|

General Parameters] Load Adjustment

Algorithm

Cancel|

libra

Schedule Interval
0015

Max JobsiUser Max JobsiGroup

o o
Sort by load —

I User Sort
Job Scheduling Information

el |

Load Formula

np_load_avg

Help

Program Design Language (Low-Level Design)

4.9 Log User In and Input Job

Output: userID

UserID = getUserIdFromUser

Password = getPasswordFromUser

If UserID and Password match UserID and Password in database

Send authentication signal

Request Job details

Verify Job Details

Assign Job Id and Initialize Job

Else

Display error and ask for UserID and Password again

Return userID

4.10 Accept / Reject Job
Input: jobDetails

Output: jobAcceptedSignal

qLoadList = clusterStateTable.QueueList

clusRes = clusterResourceList

send clusterReady signal

c = jobDetails.category

t = jobDetails.type

e = jobDetails.execTime

b = jobDetails.budget

d = jobDetails.deadline

Loop through qLoadList

If current.rate <= b and current.type = t

finTime = call procedure computeJobFinishTime(current.load, e)

If fineTime <= deadline

Return accept job signal

Return deny job signal

4.11 Compute Job finish Time

Input: queueLoad, jobExecTime

Output: finishTime

Loop through the queueLoad timeSlots until jobExecTime is zero

If currentTimeSlot is free

jobExecTime = jobExecTime - size of currentTimeSlot

Return currentTimeSlot

4.12 Determine Execution Host and Queue

Input: jobDetails, ClusterInfo

Output: chosenExecQueue, chosenHost

HostLoadList = List of the Loads on each Host

Set initial load as minimum

Loop though list of loads

If current load < minimum so far

minimum = current number

chosenHost = HostLoadList(minimum)

queueList = QueueStateTable [HostLoadList(chosenHost)]

Set first queue as chosenExecQueue

Loop through the queuelist

If there exist slots in current queue that fulfill jobdetails.execTime

choose current queue as chosenExecQueue

ScheduledJobDetails.startTime = current time

Return (chosenExecQueue,chosenHost)

4.13 Schedule according to deadline and budget
Algorithm:

M - Resources, N - Jobs, D - deadline

Note: Cost of any Ri is less than any of Ri+1 Or Rm

RL: Resource List need to be maintained in increasing order of cost

Ct - Time when accessed (Time now)

Ti - Job runtime (average) on Resource i (Ri) [updated periodically]

Ti is acts as a load profiling parameter.

Ai - number of jobs assigned to Ri , where:

Ai = Min (No.of Unassigned Jobs, No. Jobs Ri can complete by remaining deadline)

No.UnAssignedJobsi = Diff(N, (A1+…+Ai-1))

JobsRi consume = RemainingTime (D- Ct) DIV Ti

ALG: Invoke Job Assignment() periodically until all jobs done.

Job Assignment():

Establish (RL, Ct , Ti , Ai) dynamically.

For all resources (I = 1 to M) { Assign Ai Jobs to Ri , if required }

4.14 Implement proportional scheduling model according to allocated tickets

We are using the stride scheduling algorithm to allocate quantums between jobs, to implement their priorities according to their budget and deadline. The tickets represent their priority and are determined according to prioritizing sorted lists of jobs according to budget and sorted lists according to deadline, and determining their combined priorities to figure out the eventual priorities of these jobs.

The Algorithm is as follows:
/* per-client state */

typedef struct {

…

 int tickets, stride, pass, remain;

} *client t;

/* quantum in real time units (e.g. 1M cycles) */

const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */

const int stride1 = (1 << 20);

/* current resource owner */

client t current;

/* global aggregate tickets, stride, pass */

int global tickets, global stride, global pass;

/* update global pass based on elapsed real time */

void global pass update(void)

{

static int last update = 0;

int elapsed;

/* compute elapsed time, advance last update */

elapsed = time() - last update;

last update += elapsed;

/* advance global pass by quantum-adjusted stride */

global pass +=

(global stride * elapsed) / quantum;

}

/* update global tickets and stride to reflect change */

void global tickets update(int delta)

{

global tickets += delta;

global stride = stride1 / global tickets;

}

/* initialize client with specified allocation */

void client init(client t c, int tickets)

{

/* stride is inverse of tickets, whole stride remains */

c->tickets = tickets;

c->stride = stride1 / tickets;

c->remain = c->stride;

}

/* join competition for resource */

void client join(client t c, queue t q)

{

/* compute pass for next allocation */

global pass update();

c->pass = global_pass + c->remain;

/* add to queue */

global tickets update(c->tickets);

queue insert(q, c);

}

/* leave competition for resource */

void client leave(client t c, queue t q)

{

/* compute remainder of current stride */

global pass update();

c->remain = c->pass - global_pass;

/* remove from queue */

global tickets update(-c->tickets);

queue remove(q, c);

}

/* proportional-share resource allocation */

void allocate(queue t q)

{

int elapsed;

/* select client with minimum pass value */

current = queue remove min(q);

/* use resource, measuring elapsed real time */

elapsed = use resource(current);

/* compute next pass using quantum-adjusted stride */

current->pass +=

(current->stride * elapsed) / quantum;

queue insert(q, current);

}

4.15 Select Job (according to stride scheduling algorithm)

Output: selectedJob

currJobList = currentlyExecutingJobList

Set first job as minimum

Loop through currJobList

If currentJob.pass < minimum.pass

minimum = currentJob

selectedJob = currJobList(minimum)

Return selectedJob

4.16 Query Job
Output: Required queries displayed on screen

userID = getUserIdFromUser

password = GetPasswordFromUser

If UserID and Password match UserID and Password in database

Send authentication signal

Else display error and ask for UserID and Password again

jobID = getJobIDFromUser

If jobID and UserID tally

Send authentication signal

Else display error message and ask user for jobID again

Display job attirbutes that user may view

If remainingTime is selected

call procedure calculateRemainingTime(jobID)

If startTime is selected

display jobDetails.startTime

If budget is selected

display jobDetails.budget

If Deadline is selected

display jobDetails.deadline

If Execution Host and Queue is selected

display jobDetails.execHost and jobDetails.execQueue

4.17 Delete Job

Input: jobID

Output: updatedClusterStatus

eHost = jobDetails.execHost

eQueue = jobDetails.execQueue

eQueue.delete(jobID)

clusterStateTable.host(eHost).resources -= calculateRemainingTime(jobID)

4.18 Change Job Details

Input: jobID, choice

If choice = name

newName = readNewNameFromUser()

If newName is blank

Display error message and ask user to enter new name again

Else

jobDetails.name = newName

If choice = location of execution and input data sets

currJobList = currentlyExecutingJobList

Loop through currJobList

If currentJob.jobID = jobID

Display error message

Return

newLoc = readNewLocationFromUser()

jobDetails.inputLocation = newLoc

If choice = location of output

newLoc = readNewLocationFromUser()

jobDetails.outputLocation=newLoc
5. References

 [1] R. Buyya, D. Abramson, and J. Giddy, Nimrod/G: An Architecture for a Resource Management and Scheduling System in a Global Computational Grid, HPC ASIA’2000, China, IEEE CS Press, USA, 2000.

[2] R. Buyya, D. Abramson, J. Giddy, An Economy Driven Resource Management Architecture for Global Computational Power Grids, The 2000 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA 2000), Las Vegas, USA, June 26-29, 2000.

[3] R. Buyya, D. Abramson, and J. Giddy, An Economy Grid Architecture for Service-Oriented Grid Computing, 10th IEEE International Heterogeneous Computing Workshop (HCW 2001), with IPDPS 2001, SF, California, USA, April 2001.

[4] Rajkumar Buyya, Heinz Stockinger‡, Jonathan Giddy, and David Abramson, Economic Models for Management of Resources in Peer-to-Peer and Grid Computing, Monash University.

[5] B.N. Chun and D.E. Culler, Market-based proportional resource sharing for clusters. Submitted for publication, September 1999.

[6] Sun Microsystems, Inc., Sun Grid Engine 5.2.3 Manual. July 2001

� EMBED MSPhotoEd.3 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

PAGE

[image: image22.png]Masterhost

o)

E/N

Fileserver

[image: image23.wmf]Job Input

Controller

Get Job

Parameters

Forward Job

Details To Master

Host

Log User In

Get User ID

Get User

Password

Authenticate User

Input Job

Parameters

Authenticate Job

Paramters

user id

user id

password

user id,

password

authentication

signal

user id, password

user id

job details

user id

job details

job

details

verified

job details

user id,

job details

[image: image24.wmf]Job Acceptance

Controller

Assess Cluster

State

Inform User

Assess Job Finish

Time

Retrieve Relevant

Job Details

Compute Job

Finish TIme

Compare Job

Finish Time to Job

Deadline

Query Cluster

State Table

Query Cluster

Resource List

c, t, e, b, d

job id

job finihs time,

job deadline

within deadline

job accepted

signal

queue load

available

resources

job accepted signal

cluster ready signal, available resources

job id, available

resources

c, t, e, b, d,

available resources

job finish time

user accepted signal

c = category (deadline only, budget only,

 deadline and budget)

t = type (sequential, emb parallel)

e = execution time

b = budget

d = deadline

[image: image25.wmf]Job Submission

Controller

Job Input

Controller

Job Acceptance

Controller

Job Assignment

Controller

Scheduling

Controller

Job Execution

Control

Job Selection

Controller

Quantum

Allocation

Controller

selected job

Execution Host

and Queue

Determination

Controller

Cluster Update

Controller

job details,

job details

job details

job details

job accepted

signal

job details

updated cluster status

selected job

scheduling info,

scheduled job

[image: image26.wmf]Job Assignment

Controller

Cluster Update

Controller

Scheduling

Controller

Retrieve

Scheduled

Job LIst

Calculate

Scheduling

Information

Execution Host

and Queue

Determination

Controller

Update

Cluster

State Table

scheduling info

job details

scheduled

job list

Reserve

Resources

on Exec

Host

Update Exec

Host Queue

Status

Calculate

Pass

Calculate

Stride

Allocate

Tickets

job details, cluster info

job details, chosen exec

host, queue

exec queue,

job details

chosen exec host,

job details

chosen exec host and queue,

scheduled job

job details,

 chosen exec

host, queue

updated cluster

status

job details

allocated

tickets

allocated tickets

stride

stride

calculated pass

job details

scheduling info

Get Cluster Info

cluster info

[image: image27.wmf]Execution Host

and Queue

Determination

Controller

Sort Hosts

by Load

Choose Min

Loaded Host

Select

Appropriate

Queue

Set Submit

Time

job details, cluster info

host load list

host load list

sorted host load list

sorted host load list

min loaded host

job details,

selected exec host

selected queue

chosen selected host, queue

Determine

Queue Slot

Availability

Query

Queue State

Table

selected exec host,

job details

query info

selected queue

query info

scheduled job

Dispatch

Job

scheduled job

updated scheduled job

Gather Host

Load Info

[image: image28.wmf]Job Assignment

Controller

Job Execution

Controller

Job Querying

Controller

Libra Scheduler

Job Modification

Controller

Job Submission

Controller

job details

Job Initialization

Controller

job details, job accepted signal

updated pending

job list

scheduling info,

scheduled job

scheduling info,

scheduled job

updated cluster status

[image: image29.wmf]Job Selection

Controller

Get Currently

Executing Job

List

Sort Job List by

Pass Value

Select Minimum

Pass Value Job

Job Execution

Control

Quantum

Allocation

Controller

selected job,

scheduling info

currently executing

job list

job list

sorted job list

sorted job list

selected job

selected job

selected job

selected job,

scheduling info

updated

scheduling info

selected job

scheduling info

pass, stride

pass, stride

new pass value

new pass value

updated

scheduling info

Allot Quantum/s

to Job and Run

Calculate and

Set New Pass

Value

Insert Job in

Currently

Executing Jobs

List

Get Present Pass

and Stride

Values

Add Stride to

Present Pass

Value

Set New Pass

Value

[image: image30.wmf]Job Querying

Controller

Log User In

Get Job ID

Get Job Details

Display Job Details

user id,

password

job id

scheduled job

details

Prompt User for

Job ID

Authenticate Job

ID

job id

job id

authentication

 signal

scheduled job

details

Retrieve Details

Based on User's

Choise

Display Options

job id, choice

choice

scheduled job

details

Get Info from User

user id,

password

job id

[image: image31.wmf]Job Modification

Controller

Get Info from User

Display Change

Job/Delete Job

Option

user id, password, job id

job id

Delete Job

Change Job

Determine Job

Execution Host

and Queue

Update

Cluster

State Table

Update Exec

Host Queue

Status

Get

Scheduled

Job Details

job id

job id

job id

scheduled

job details

exec host, queue,

job details

job id, exec

host, queue

exec host, queue,

job details

updated

cluster status

exec host,

queue

exec host, queue,

job details

job id

choice

choice

authentication

signal

job id

updated cluster status

updated cluster status

Delete Job

From Queue

Update Cluster

Status

Display

Changeable

Parameters

and Get User's

Choice

Authenticate

Choice

Update Job

Info

[image: image32.wmf]Job Initialization

Controller

Retrieve Job

Details

job details

Set Job Details

job details

Update Pending

Job List

job id,details

updated pending

job list

updated pending

job list

Assign Job Id

job id

_1073764241.bin

_1073827833.vsd

_1073828133.vsd

_1073851018.vsd

_1073833718.vsd

_1073827883.vsd

_1073828023.vsd

_1073827367.vsd

_1073827544.vsd

_1073827490.vsd

_1073772977.bin

_1073826420.vsd

_1073741968.bin

_1073742009.bin

_1073742039.bin

_1073741979.bin

_1073741693.bin

_1073741772.bin

_1073741615.bin

