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Design Documentation 

1. Introduction

This document contains the high-level and low-level design specifications for the Software Requirements Specifications (SRS) submitted on 23rd December 2001. Additionally, the software architecture, and user interfaces for each of the deliverables are described as well.

Design

For the high-level design, a call-return architecture has been specified using structure charts. For procedural design, the high-level design modules have been explained using PDL.

Architecture

The Libra Scheduler architecture is as follows:
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The fileserver stores the workspaces of all processes, as well as the binary executables of the scheduler itself. Communications daemons (commd) are running on each of the host on a specified TCP port (786), and form the means of communication between hosts. Execution hosts contain execution queues, each with their own scheduling policies, on which jobs are sent to execute. The master host contains the central queue managing daemon, qmaster, and the scheduling daemon, which makes the actual scheduling decisions regarding which job is to be assigned to which execution queue. Submit hosts are the entry-points for the users. A submit host submits jobs using the ‘qsub’ command, which submits the job along with its corresponding details to the master host. The master host summons the scheduler, which has access to the Queue State Table which in turn contains information on each of the execution hosts. Based on the scheduling algorithm implemented via Libra, the scheduler will choose an execution queue, which the qmaster will subsequently dispatch the job to. 

2. Interfaces

2.1 QMonitor
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This is the central control screen for the Sun Grid Engine within which the Libra Scheduler is to be implemented. From here, the options (from top left to bottom right) are:

1. Job Control

2. Queue Control

3. Job Submission

4. Complexes Configuration

5. Host Configuration

6. Cluster Scheduler

7. Scheduler Configuration

8. Calendar Configuration

9. User Configuration

10. Parallel Environment Configuration

11. Checkpoint Configuration

12. Browser

13. Exit

QMonitor – Job Control (Pending Jobs)
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Once a job is submitted, it goes to the master host which places it in the pending jobs queue. Once there, its ID, Priority, Name, Owner, Status and Queue (to which it will be sent) are stored until the job is actually dispatched to the queue. Every job initially goes to the pending queue while the scheduling daemon runs the selected scheduling algorithm to determine the execution queue to which the job is to proceed. Once this is done, the job goes into the Running Jobs tab (not shown in the screen images), after which it ends up in the finished jobs queue.

QMonitor – Job Control (Finished Jobs)
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The jobs in the finished jobs queue are those that have been scheduled, executed, and completed. It is essentially a list of all the hitherto completed jobs that have been submitted and outputs returned. 

While job status may be viewed from the Job Control window, new jobs may be submitted by clicking on the Submit button, which opens up the Job Submit dialog window.

Submit Job
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Jobs are submitted using this dialog window. The job script specifies the location of the file containing the actual executable commands (for example, “sleeper.sh”). Job args takes in the arguments for the job, including deadline, budget, and expected exeuction time. Output may be directed to different files, and is specified in the stdout and stderr input boxes. Only those hosts that are specified submit hosts on the master host have privileges to submit jobs, however.

Queue Control
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This window lists the currently configured queues for the execution hosts in the cluster. In the above example, execution hosts mspc29 and mspc36 each have a queue (called ‘q’) running on each of them, and each of these queues has 0 out of a maximum of 1 job running on them. Further, more queues may be added to the specified execution hosts, and existing queues may be modified or deleted.

Queue Configuration: Modify
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This is the window from which queue configurations may be changed. For instance, different load/suspend thresholds, which specify the ceiling of maximum allowed load for the queue, beyond which it will begin to suspend jobs running on it till the threshold is satisfied. Also, complexes may be attached or detached from the queue, making queues cater to different resource requirements (in our case, deadline and budget). Checkpointing (the process of saving the current status of any job, for later restarting, or for job migration) can also be configured for each queue individually, to set the conditions under which checkpointing and/or job migration occur. User access specifies which users/hosts are to be given access, and which are to be denied. Subordinates includes those queues that are to follow suit with whatever instructions are sent to this queue; for instance, if a queue is suspended, then its subordinates will be suspended as well. Limits specifies the hard or soft limits imposed on jobs running on the queue (for example, no job may take more than 10 minutes of CPU time, otherwise it is to be suspended or killed).

2.2 Host Configuration (Administration Host)
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In this window, hosts are configured. The three type of hosts recognized are Administration, Submit, and Execution hosts. Administration hosts are those hosts that are allowed to view and edit the configuration for the cluster as a whole, for hosts individually, for queues within specific hosts, as well as for jobs running on specific queues. Submit hosts are those that are allowed to submit jobs into the cluster. Execution hosts are those that have at least one queue set up where jobs scheduled by the cluster may be sent to actually execute. 

Complex Configuration
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Complexes are entities representing some aspect of the cluster that the cluster administrator defines. For instance, CPU usage, Virtual Memory usage, Disk Storage usage, are all complexes that the administrator can define and then attach onto specific queues or hosts (as shown in the queue configuration modification screenshot). By attaching a complex to a queue, and defining an associated limit for that complex, the administrator can effectively define a policy for the queue. For instance, one queue may be configured such that no process that requires more than 10 Mb of disk space may be run. Alternatively, another queue may be defined such that the total amount of memory used by processes does not exceed the physical RAM on the host, such that no virtual memory is used, thus speeding execution times. In our case, a complex defining user budget, and another defining user deadline can both be used concurrently to define the behavior for a queue that can effectively ensure that user deadlines and budgets are accounted for during queue execution. This can act as a sentinel in case the scheduling algorithm inaccurately calculates the scheduling policy for the cluster.

Cluster Configuration
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This window allows the administrator to define the local policies for hosts in the cluster as well as the global policies for the entire cluster as a whole. Global policies are defined which are inherited by hosts, and in turn inherited by queues in those hosts. Alternatively, hosts may define their individual policies that override the global policies as required. Finally, policies may also be defined for individual queues that override both the global as well as host-level policies. Thus, there is a great degree of customizability for the specific needs of the cluster.

Scheduler Configuration
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This is the window from which the scheduling algorithm (as described by the high-level design diagrams) is selected for the master host’s scheduling daemon. This is effectively the master scheduling policy for the cluster, which selects the hosts and queues that are to be allocated to each job. This algorithm effectively schedules jobs based on the user constraints of deadline and budget, within which it maximizes as much as possible system-centric constraints such as CPU utilization, etc.

3. Data Definitions

Name: 



Cluster Information stored in Cluster State Table
Aliases:


Updated Cluster Information

Where used/how used:
Schedule Job (input)





Accept/Reject Job (input)

Content Description:
Cluster Information = CPU Load + Node Status + Remaining Time of Pending Jobs + Available Memory


CPU Load = numeric


Node Status = [full | overloaded | partially-full]


full = string


overloaded =  string


partially-full =  string


Remaining Time of Pending Jobs = (hours) + (minutes) + (seconds)


Hours = double


Minutes = double


Seconds = double



Available Memory = numeric

Supplementary Information:
This is the information maintained by the master host. It is collected periodically from all the execution hosts and also communicated to the scheduler to enable it to make its scheduling decisions.

Name:


 
Job Details

Aliases:

 
Job Parameters, Job Specifications

Where used/how used: 
Get Job Details (output)




 
Schedule Job (output)




 
Accept/Reject Job (input)





Determine Execution Host (input)




 
Implement Scheduling Policy (input)


  

Content Description: 
Job Details = Job ID + Job Name + Job Type + Standalone Execution Time + Location of Executable and Input Data Sets + Location of Output + System Type + Budget + Deadline


Job ID = integer


Job Name = string


Job Type = [Sequential Job | Embarrassingly Parallel Job]


Sequential Job = char


Embarrassingly Parallel Job = char


Job Category = [Deadline | Budget | Deadline and Budget]


This explains what is provided as the criterion for job 


Job Start Time = integer


Job Submit Time = integer


Standalone Execution Time = Job Duration 


Job Duration = (hours) + (minutes) + (seconds)


Hours = double


Minutes = double


Seconds = double


Location of Execution and Input Data Sets = string


Location of Output = string


System Type = string


Budget = rupees


Rupees = double


Deadline = (hours) + (minutes) + (seconds)


Hours = double


Minutes = double


Seconds = double


Supplementary Information:
none

Name:



Scheduling Information
Aliases:


Scheduling Policy Implementation

Where used/how used:
Schedule Job (output)




 
Execute Job (input)




 
Implement Scheduling Policy (output)

Content Description:
 
Scheduling Information = Tickets + Stride + Pass 





Tickets = integer





Stride = integer





Pass = integer

Supplementary Information:
Tickets represent the client’s resource allocation, relative to other clients. 


Stride represents the interval between selection for execution, measured in passes, and is the inverse of tickets. 


Pass represents the virtual time index for the client’s next selection.

Name:



Job Results

Aliases:

 
Job Output

Where used/how used: 
Execute Job (output)

Content Description:

Job Results = (string) + (char) + (numeric)

Supplementary Information:
These are the results of the execution of the job, and are communicated to the user on the submit host from the execution host via the master host.

Name:


 
Required Budget/Deadline

Aliases:

 
none

Where used/how used: 
Accept/Reject Job (output)

Content Description:
 
Required Budget/Deadline = Deadline + Budget


Budget = rupees


Rupees = double


Deadline = (hours) + (minutes) + (seconds)


Hours = double


Minutes = double





Seconds = double

Supplementary Information:
This data object represents the response of the system to the submission of a job that cannot be completed with the requested parameters. The system then notifies the user, and demands a different budget and/or deadline.

Name:



Chosen Execution Host

Aliases:


Chosen Execution Node

Where used/how used:
Determine Execution Host (output)





Dispatch Job to Execution Host (input)





Dispatch Job to Execution Host (output)





Update Cluster Status (input)

Content Description:

Chosen Execution Host = (Host Name) + Host IP Address





Host Name = string





Host IP Address = numeric

Supplementary Information:
This is decided by the scheduler, based on the Cluster Information 





available to it.

Name:



Chosen Execution Queue

Aliases:


none

Where used/how used:
Determine Execution Host (output)





Dispatch Job to Execution Host (input)





Dispatch Job to Execution Host (output)





Update Cluster Status (input)

Content Description:

Chosen Execution Queue = (Queue Name) + Queue Number





Queue Name = string





Queue Number = numeric

Supplementary Information:
This is decided by the scheduler, based on the Cluster Information 





available to it.

Name:



Scheduled Job
Aliases:


Dispatched Job

Where used/how used:
Schedule Job (output)





Execute Job: Stride Scheduling (input)





Dispatch Job to Execution Host (output)

Content Description:
Scheduled Job  = Job Details + Chosen Execution Host + Chosen Execution Queue


Job Details = Job ID + Job Name + Job Type + Standalone Execution Time + Location of Executable and Input Data Sets + Location of Output + System Type + Budget + Deadline


Job ID = integer


Job Name = string


Job Type = [Sequential Job | Embarrassingly Parallel Job]


Sequential Job = char


Embarrassingly Parallel Job = char

Standalone Execution Time = Job Duration 


Job Duration = (hours) + (minutes) + (seconds)


Hours = double


Minutes = double


Seconds = double


Location of Execution and Input Data Sets = string


Location of Output = string


System Type = string


Budget = rupees


Rupees = double


Deadline = (hours) + (minutes) + (seconds)


Hours = double


Minutes = double





Seconds = double





Chosen Execution Host = (Host Name) + Host IP Address





Host Name = string





Host IP Address = numeric





Chosen Execution Queue = (Queue Name) + Queue Number





Queue Name = string





Queue Number = numeric

Supplementary Information:
This data object represents a job once it has been accepted by the 





system, and its execution node and execution queue.

4. Architectural and Procedural Design
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4.1 Job Input Controller
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4.2 Job Acceptance Controller
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4.3 Job Initialization Controller
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4.4 Job Assignment Controller
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4.5 Execution Host and Queue Determination Controller
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4.6 Job Execution Controller
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4.7 Job Query Controller
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4.8 Job Modification Controller

[image: image21.png]-~ QMON +++ Scheduler Configuration

Scheduler Configuration

x|

General Parameters ] Load Adjustment

Algorithm

Cancel|

libra

Schedule Interval
0015

Max JobsiUser Max JobsiGroup

o o
Sort by load —

I User Sort
Job Scheduling Information

el |

Load Formula

np_load_avg

Help





Program Design Language (Low-Level Design)

4.9 Log User In and Input Job

Output: userID

UserID = getUserIdFromUser

Password = getPasswordFromUser

If UserID and Password match UserID and Password in database


Send authentication signal


Request Job details


Verify Job Details


Assign Job Id and Initialize Job

Else


Display error and ask for UserID and Password again

Return userID

4.10 Accept / Reject Job
Input: jobDetails

Output: jobAcceptedSignal

qLoadList = clusterStateTable.QueueList

clusRes = clusterResourceList

send clusterReady signal

c = jobDetails.category 

t = jobDetails.type 

e = jobDetails.execTime

b = jobDetails.budget

d = jobDetails.deadline

Loop through qLoadList


If current.rate <= b and current.type = t



finTime = call procedure computeJobFinishTime(current.load, e)



If fineTime <= deadline




Return accept job signal

Return deny job signal

4.11 Compute Job finish Time

Input: queueLoad, jobExecTime

Output: finishTime

Loop through the queueLoad timeSlots until jobExecTime is zero


If currentTimeSlot is free



jobExecTime = jobExecTime - size of currentTimeSlot


Return currentTimeSlot

4.12 Determine Execution Host and Queue

Input: jobDetails, ClusterInfo

Output: chosenExecQueue, chosenHost

HostLoadList = List of the Loads on each Host

Set initial load as minimum

Loop though list of loads


If current load < minimum so far

          

minimum = current number

chosenHost = HostLoadList(minimum)

queueList = QueueStateTable [HostLoadList(chosenHost)]

Set first queue as chosenExecQueue

Loop through the queuelist


If there exist slots in current queue that fulfill jobdetails.execTime



choose current queue as chosenExecQueue

ScheduledJobDetails.startTime = current time

Return (chosenExecQueue,chosenHost)

4.13 Schedule according to deadline and budget
Algorithm:

M - Resources, N - Jobs, D - deadline

Note: Cost of any Ri is less than any of Ri+1 Or Rm 

RL: Resource List need to be maintained in increasing order of cost 

Ct - Time when accessed (Time now)

Ti  - Job runtime (average) on Resource i (Ri)  [updated periodically]

Ti is acts as a load profiling parameter.

Ai - number of jobs assigned to Ri , where:

Ai = Min (No.of Unassigned Jobs, No. Jobs Ri can complete by remaining deadline)

No.UnAssignedJobsi = Diff( N,  (A1+…+Ai-1))

JobsRi consume = RemainingTime (D- Ct) DIV  Ti

ALG: Invoke Job Assignment() periodically until all jobs done.

Job Assignment():

Establish ( RL, Ct , Ti , Ai ) dynamically.

For all resources (I = 1 to M) { Assign Ai  Jobs to Ri , if required }

4.14 Implement proportional scheduling model according to allocated tickets

We are using the stride scheduling algorithm to allocate quantums between jobs, to implement their priorities according to their budget and deadline. The tickets represent their priority and are determined according to prioritizing sorted lists of jobs according to budget and sorted lists according to deadline, and determining their combined priorities to figure out the eventual priorities of these jobs. 

The Algorithm is as follows:
/* per-client state */

typedef struct {

…

 int tickets, stride, pass, remain;

}   *client t;

/* quantum in real time units (e.g. 1M cycles) */

const int quantum = (1 << 20);

/* large integer stride constant (e.g. 1M) */

const int stride1 = (1 << 20);

/* current resource owner */

client t current;

/* global aggregate tickets, stride, pass */

int global tickets, global stride, global pass;

/* update global pass based on elapsed real time */

void global pass update(void)

{


static int last update = 0;

int elapsed;

/* compute elapsed time, advance last update */

elapsed = time() - last update;

last update += elapsed;

/* advance global pass by quantum-adjusted stride */

global pass +=

(global stride * elapsed) / quantum;

}

/* update global tickets and stride to reflect change */

void global tickets update(int delta)

{

global tickets += delta;

global stride = stride1 / global tickets;

}

/* initialize client with specified allocation */

void client init(client t c, int tickets)

{

/* stride is inverse of tickets, whole stride remains */

c->tickets = tickets;

c->stride = stride1 / tickets;

c->remain = c->stride;

}

/* join competition for resource */

void client join(client t c, queue t q)

{

/* compute pass for next allocation */

global pass update();

c->pass = global_pass + c->remain;

/* add to queue */

global tickets update(c->tickets);

queue insert(q, c);

}

/* leave competition for resource */

void client leave(client t c, queue t q)

{

/* compute remainder of current stride */

global pass update();

c->remain = c->pass - global_pass;

/* remove from queue */

global tickets update(-c->tickets);

queue remove(q, c);

}

/* proportional-share resource allocation */

void allocate(queue t q)

{

int elapsed;

/* select client with minimum pass value */

current = queue remove min(q);

/* use resource, measuring elapsed real time */

elapsed = use resource(current);

/* compute next pass using quantum-adjusted stride */

current->pass +=

(current->stride * elapsed) / quantum;

queue insert(q, current);

}

4.15 Select Job (according to stride scheduling algorithm)

Output: selectedJob

currJobList = currentlyExecutingJobList

Set first job as minimum

Loop through currJobList


If currentJob.pass < minimum.pass



minimum = currentJob

selectedJob = currJobList(minimum)

Return selectedJob

4.16 Query Job
Output: Required queries displayed on screen

userID = getUserIdFromUser

password = GetPasswordFromUser

If UserID and Password match UserID and Password in database


Send authentication signal

Else display error and ask for UserID and Password again

jobID = getJobIDFromUser

If jobID and UserID tally


Send authentication signal

Else display error message and ask user for jobID again

Display job attirbutes that user may view

If remainingTime is selected


call procedure calculateRemainingTime(jobID)

If startTime is selected


display jobDetails.startTime

If budget is selected


display jobDetails.budget

If Deadline is selected


display jobDetails.deadline

If Execution Host and Queue is selected


display jobDetails.execHost and jobDetails.execQueue

4.17 Delete Job

Input: jobID

Output: updatedClusterStatus

eHost = jobDetails.execHost

eQueue = jobDetails.execQueue

eQueue.delete(jobID)

clusterStateTable.host(eHost).resources -= calculateRemainingTime(jobID)

4.18 Change Job Details

Input: jobID, choice

If choice = name


newName = readNewNameFromUser()


If newName is blank



Display error message and ask user to enter new name again


Else



jobDetails.name = newName

If choice = location of execution and input data sets


currJobList = currentlyExecutingJobList


Loop through currJobList



If currentJob.jobID = jobID




Display error message




Return


newLoc = readNewLocationFromUser()


jobDetails.inputLocation = newLoc

If choice = location of output


newLoc = readNewLocationFromUser()


jobDetails.outputLocation=newLoc
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