
Java
Multithreaded

Programming

A� er learning the contents of this chapter, the reader must be able to :

∑ understand the importance of concurrency
∑ understand multithreading in Java
∑ create user-defi ned classes with thread capability
∑ write multithreaded server programs
∑ understand the concurrent issues with thread programming

This chapter presents multithreading, which is one of the core features supported by Java. The chapter in-
troduces the need for expressing concurrency to support simultaneous operations within Java programs,
especially those off ering network services. It also introduces multithreading programming constructs in Java
including synchronization techniques with examples.

O
B
J
E
C
T
I
V
E
S

Chapter

14.1 INTRODUCTION

In a networked world, it is common practice to share resources among multiple users. Therefore application
programs designed to be deployed in a network should be designed to serve multiple users requests
simultaneously. Even on desktop computers, users typically run multiple applications and carry out some
operations in the background (e.g., printing) and some in the foreground (e.g., editing) simultaneously. With
the increasing popularity of multicore processors, it is common to see even desktop and laptop computers
with an ability to carry out multiple tasks concurrently. To meet these requirements, modern programming
languages and operating systems are designed to support the development of applications containing
multiple activities that can be executed concurrently.

Modern operating systems hold more than one activity (program) in memory and the processor can
switch among all to execute them. This simultaneous occurrence of several activities on a computer is

14

 Multithreaded Programming 365

known as multitasking. For example, you can open a fi le using MS Word and you can work on MS Access
for creating your database. Two applications, MS Word and MS Access, are available in memory and the
processor (by means of the operating system) switches to the application you are actively working on.
Here two different applications are made to run concurrently by the same processor. The operating system
supports multitasking in a cooperative or preemptive manner. In cooperative multitasking each application
is responsible for relinquishing control to the processor to enable it to execute the other application.
Earlier versions of operating systems followed cooperative multitasking. Modern operating systems such
as Windows 95, Windows 98, Windows NT, and Windows 2000 support preemptive multitasking. In the
preemptive type multitasking, the processor is responsible for executing each application in a certain
amount of time called a timeslice. The processor then switches to the other applications, giving each its
timeslice. The programmer is relieved from the burden of relinquishing control from one application to
another. The operating system takes care of it.

A single processor computer is shared among multiple applications with preemptive multitasking.
Since the processor is switching between the applications at intervals of milliseconds, you feel that all
applications run concurrently. Actually, this is not so. To have true multitasking, the applications must be
run on a machine with multiple processors. Multitasking results in effective and simultaneous utilization of
various system resources such as processors, disks, and printers. As multitasking is managed by operating
systems, we encourage readers to refer to books related to that topic. In this chapter, we focus on learning
how to write an application containing multiple tasks (i.e., objects containing operations to be performed)
that can be executed concurrently. In Java, this is realized by using multithreading techniques.

14.2 DEFINING THREADS

To understand multithreading, the concepts process and thread must be understood. A process is a program
in execution. A process may be divided into a number of independent units known as threads. A thread is a
dispatchable unit of work. Threads are light-weight processes within a process . A process is a collection of
one or more threads and associated system resources. The difference between a process and a thread is shown
in Fig.14.1. A process may have a number of threads in it. A thread may be assumed as a subset of a process.

Fig. 14.1 A process containing single and multiple threads

If two applications are run on a computer (MS Word, MS Access), two processes are created.
Multitasking of two or more processes is known as process-based multitasking. Multitasking of two or more
threads is known as thread-based multitasking. The concept of multithreading in a programming language
refers to thread-based multitasking. Process-based multitasking is totally controlled by the operating system.
But thread-based multitasking can be controlled by the programmer to some extent in a program.

366 Object-Oriented Programming with Java

The concept of context switching is integral to threading. A hardware timer is used by the processor
to determine the end of the timeslice for each thread. The timer signals at the end of the timeslice and in
turn the processor saves all information required for the current thread onto a stack. Then the processor
moves this information from the stack into a predefi ned data structure called a context structure. When
the processor wants to switch back to a previously executing thread, it transfers all the information from
the context structure associated with the thread to the stack. This entire procedure is known as context
switching .

Java supports thread-based multitasking . The advantages of thread-based multitasking as compared to
process-based multitasking are given below:

∑ Threads share the same address space.
∑ Context-switching between threads is normally inexpensive.
∑ Communication between threads is normally inexpensive.

14.3 THREADS IN JAVA

Applications are typically divided into processes during the design phase, and a master process explicitly
spawns subprocesses when it makes sense to logically separate signifi cant application functionalities.
Processes, in other words, are an architectural construct. By contrast, a thread is a coding construct that
does not affect the architecture of an application. A single process might contain multiple threads (see
Fig. 14.2). All threads within a process share the same state and same memory space, and can communicate
with each other directly, because they share the same variables.

Threads typically are spawned for a short-term benefi t that is usually visualized as a serial task, but
which does not have to be performed in a linear manner (such as performing a complex mathematical
computation using parallelism, or initializing a large matrix), and then are absorbed when no longer
required. The scope of a thread is within a specifi c code module—which is why we can bolt on threading
without affecting the broader application.

Fig. 14.2 A program with master thread and children threads

 Multithreaded Programming 367

Threads are objects in the Java language. They can be created by using two different mechanisms as
illustrated in Fig. 14.3:
 1. Create a class that extends the standard Thread class.
 2. Create a class that implements the standard Runnable interface.

That is, a thread can be defi ned by extending the java.lang.Thread class (see Fig. 14.3a) or by
implementing the java.lang.Runnable interface (see Fig. 14.3b). The run() method should be
overridden and should contain the code that will be executed by the new thread. This method must be public
with a void return type and should not take any arguments. Both threads and processes are abstractions
for parallelizing an application. However, processes are independent execution units that contain their
own state information, use their own address spaces, and only interact with each other via interprocess
communication mechanisms (generally managed by the operating system).

Fig. 14.3 Creation of Threads in Java

14.3.1 Extending the Thread Class
The steps for creating a thread by using the fi rst mechanism are:
 1. Create a class by extending the Thread class and override the run() method:

 class MyThread extends Thread {
 public void run() {

 // thread body of execution
 }

 }

 2. Create a thread object:

 MyThread thr1 = new MyThread();

 3. Start Execution of created thread:

 thr1.start();

 An example program illustrating creation and invocation of a thread object is given below:

368 Object-Oriented Programming with Java

Program 14.1

/* ThreadEx1.java: A simple program creating and invoking a thread object by
extending the standard Thread class. */
class MyThread extends Thread {
 public void run() {
 System.out.println(“ this thread is running ... ”);
 }
}
class ThreadEx1 {
 public static void main(String [] args) {
 MyThread t = new MyThread();
 t.start();
 }
}

The class MyThread extends the standard Thread class to gain thread properties through inheritance.
The user needs to implement their logic associated with the thread in the run() method, which is the body
of thread. The objects created by instantiating the class MyThread are called threaded objects. Even though
the execution method of thread is called run, we do not need to explicitly invoke this method directly.
When the start() method of a threaded object is invoked, it sets the concurrent execution of the object
from that point onward along with the execution of its parent thread/method.

14.3.2 Implementing the Runnable Interface
The steps for creating a thread by using the second mechanism are:
 1. Create a class that implements the interface Runnable and override run() method:
 class MyThread implements Runnable {
 …
 public void run() {
 // thread body of execution
 }

 }

 2. Creating Object:
 MyThread myObject = new MyThread();

 3. Creating Thread Object:
 Thread thr1 = new Thread(myObject);

 4. Start Execution:
 thr1.start();

 An example program illustrating creation and invocation of a thread object is given below:

Program 14.2

/* ThreadEx2.java: A simple program creating and invoking a thread object by
implementing Runnable interface. */
class MyThread implements Runnable {
 public void run() {
 System.out.println(“ this thread is running ... ”);

 Multithreaded Programming 369

 }
}
class ThreadEx2 {
 public static void main(String [] args) {
 Thread t = new Thread(new MyThread());
 t.start();
 }
}

The class MyThread implements standard Runnable interface and overrides the run() method and
includes logic associated with the body of the thread (step 1). The objects created by instantiating the class
MyThread are normal objects (unlike the fi rst mechanism) (step 2). Therefore, we need to create a generic
Thread object and pass MyThread object as a parameter to this generic object (step 3). As a result of
this association, threaded object is created. In order to execute this threaded object, we need to invoke its
start() method which sets execution of the new thread (step 4).

14.3.3 Thread Class versus Runnable Interface
It is a little confusing why there are two ways of doing the same thing in the threading API. It is important
to understand the implication of using these two different approaches. By extending the thread class, the
derived class itself is a thread object and it gains full control over the thread life cycle. Implementing the
Runnable interface does not give developers any control over the thread itself, as it simply defi nes the
unit of work that will be executed in a thread. Another important point is that when extending the Thread
class, the derived class cannot extend any other base classes because Java only allows single inheritance.
By implementing the Runnable interface, the class can still extend other base classes if necessary. To
summarize, if the program needs a full control over the thread life cycle, extending the Thread class is a
good choice, and if the program needs more fl exibility of extending other base classes, implementing the
Runnable interface would be preferable. If none of these is present, either of them is fi ne to use.

14.4 THREAD LIFE CYCLE

The life cycle of threads in Java is very similar to the life cycle of processes running in an operating system.
During its life cycle the thread moves from one state to another depending on the operation performed by it
or performed on it as illustrated in Fig. 14.4. A Java thread can be in one of the following states:

∑ NEW
 A thread that is just instantiated is in new state. When a start() method is invoked, the thread

moves to the ready state from which it is automatically moved to runnable state by the thread
scheduler.

∑ RUNNABLE (ready�running)
 A thread executing in the JVM is in running state.
∑ BLOCKED
 A thread that is blocked waiting for a monitor lock is in this state. This can also occur when a thread

performs an I/O operation and moves to next (runnable) state.
∑ WAITING
 A thread that is waiting indefi nitely for another thread to perform a particular action is in this state.
∑ TIMED_WAITING (sleeping)
 A thread that is waiting for another thread to perform an action for up to a specifi ed waiting time is in

this state.

370 Object-Oriented Programming with Java

∑ TERMINATED (dead)
 A thread that has exited is in this state.

Fig. 14.4 Life cycle of Java threads

At any given time, a thread can be in only one state. These states are JVM states as they are not linked to
operating system thread states.

When the object of a user Thread class is created, the thread moves to the NEW state. After invocation of
the start() method, the thread shifts from the NEW to the ready (RUNNABLE) state and is then dispatched
to running state by the JVM thread scheduler. After gaining a chance to execute, the run() method will be
invoked. It should be noted that when the run() method is invoked directly (explicitly in the program), the
code in it is executed by the current thread and not by the new thread (as the thread object is not assigned
to the virtual machine scheduler). Depending on program operations or invocation of methods such as
wait(), sleep(), and suspend() or an I/O operation, the thread moves to the WAITING, SLEEPING,
and BLOCKED states respectively. It should be noted that the thread is still alive. After the completion of an
operation that blocked it (I/O or sleep) or receiving an external signal that wakes it up, the thread moves to
ready state. Then the JVM thread scheduler moves it to running state in order to continue the execution of
remaining operations. When the thread completes its execution, it will be moved to TERMINATED state. A
dead thread can never enter any other state, not even if the start() method is invoked on it.

14.5 A JAVA PROGRAM WITH MULTIPLE THREADS

To illustrate creation of multiple threads in a program performing concurrent operations, let us consider the
processing of the following mathematical equation:

p = sin (x) + cos (y) + tan (z)
As these trigonometric functions are independent operations without any dependencies between them,

they can be executed concurrently. After that their results can be combined to produce the fi nal result as
illustrated in Fig. 14.5.

 Multithreaded Programming 371

Fig. 14.5 Flow of control in a master and multiple workers threads application

The main/default thread is called MathThreads, which acts like a master thread. It creates three worker
threads (MathSin, MathCos, and MathTan) and assigns them to compute values for different data inputs.
All three worker threads are concurrently executed on shared or dedicated CPUs depending on the type of
machine. Although the master thread can continue its execution, in this case, it needs to make sure that all
operations are completed before combining individual results. This is accomplished by waiting for each
thread to complete by invoking join() method associated with each worker thread. A complete Java
program illustrating this concept is given in Program 14.3.

Program 14.3

/* MathThreads.java: A program with multiple threads performing concurrent
operations. */
import java.lang.Math;
class MathSin extends Thread {
 public double deg;
 public double res;

 public MathSin(int degree) {
 deg = degree;
 }
 public void run() {
 System.out.println(“Executing sin of ”+deg);
 double Deg2Rad = Math.toRadians(deg);
 res = Math.sin(Deg2Rad);
 System.out.println(“Exit from MathSin. Res = ”+res);
 }
}
class MathCos extends Thread {
 public double deg;
 public double res;

372 Object-Oriented Programming with Java

 public MathCos(int degree) {
 deg = degree;
 }
 public void run() {
 System.out.println(“Executing cos of ”+deg);
 double Deg2Rad = Math.toRadians(deg);
 res = Math.cos(Deg2Rad);
 System.out.println(“Exit from MathCos. Res = ”+res);
 }
}
class MathTan extends Thread {
 public double deg;
 public double res;

 public MathTan(int degree) {
 deg = degree;
 }
 public void run() {
 System.out.println(“Executing tan of ”+deg);
 double Deg2Rad = Math.toRadians(deg);
 res = Math.tan(Deg2Rad);
 System.out.println(“Exit from MathTan. Res = ”+res);
 }
}
class MathThreads {
 public static void main(String args[]) {
 MathSin st = new MathSin(45);
 MathCos ct = new MathCos(60);
 MathTan tt = new MathTan(30);
 st.start();
 ct.start();
 tt.start();
 try { // wait for completion of all thread and then sum
 st.join();
 ct.join(); //wait for completion of MathCos object
 tt.join();
 double z = st.res + ct.res + tt.res;
 System.out.println(“Sum of sin, cos, tan = ”+z);
 }
 catch(InterruptedException IntExp) {
 }
 }
}

Run 1:
[raj@mundroo] threads [1:111] java MathThreads
Executing sin of 45.0
Executing cos of 60.0
Executing tan of 30.0

 Multithreaded Programming 373

Exit from MathSin. Res = 0.7071067811865475
Exit from MathCos. Res = 0.5000000000000001
Exit from MathTan. Res = 0.5773502691896257
Sum of sin, cos, tan = 1.7844570503761732

Run 2:
[raj@mundroo] threads [1:111] java MathThreads
Executing sin of 45.0
Executing tan of 30.0
Executing cos of 60.0
Exit from MathCos. Res = 0.5000000000000001
Exit from MathTan. Res = 0.5773502691896257
Exit from MathSin. Res = 0.7071067811865475
Sum of sin, cos, tan = 1.7844570503761732

Run 3:
[raj@mundroo] threads [1:111] java MathThreads
Executing cos of 60.0
Executing sin of 45.0
Executing tan of 30.0
Exit from MathCos. Res = 0.5000000000000001
Exit from MathTan. Res = 0.5773502691896257
Exit from MathSin. Res = 0.7071067811865475
Sum of sin, cos, tan = 1.7844570503761732

Observations on Results A close observation of the output of three different runs reveals that the
execution/completion of threads does not need to be in the order of their start (i.e., invocation of start()
method). In Run 1, it so happened that the output of all three threads happen to be generated in the same
order of their start. However, this is not the case in the next two runs. Because of various operations that are
performed within JVM, threads, and different applications running at different times, it is hard to predict
the precise time at which context-switching occurs. It is possible to enforce the order of execution to some
extent by setting different priorities for threads.

14.6 THREAD PRIORITY

In Java, all the thread instances the developer created have the same priority, which the process will
schedule fairly without worrying about the order. It is important for different threads to have different
priorities. Important threads should always have higher priority than less important ones, while threads that
need to run quietly as a Daemon may only need the lowest priority. For example, the garbage collector
thread just needs the lowest priority to execute, which means it will not be executed before all other
threads are scheduled to run. It is possible to control the priority of the threads by using the Java APIs. The
Thread.setPriority(…) method serves this purpose. The Thread class provides 3 constants value for
the priority:

 MIN_PRIORITY = 1, NORM_PRIORITY = 5, MAX_PRIORITY = 10

The priority range of the thread should be between the minimum and the maximum number. The
following example shows how to alter the order of the thread by changing its priority.

374 Object-Oriented Programming with Java

Program 14.5

/* ThreadPriorityDemo.java: A program which shows altering order of threads
by changing priority. */
class A extends Thread {
 public void run() {
 System.out.println(“Thread A started”);
 for(int i = 1; i <= 4; i++) {
 System.out.println(“\t From ThreadA: i= ” + i);
 }
 System.out.println(“Exit from A”);
 }
}
class B extends Thread {
 public void run() {
 System.out.println(“Thread B started”);
 for(int j = 1; j <= 4; j++) {
 System.out.println(“\t From ThreadB: j= ” + j);
 }
 System.out.println(“Exit from B”);
 }
}
class C extends Thread {
 public void run() {
 System.out.println(“Thread C started”);
 for(int k = 1; k <= 4; k++) {
 System.out.println(“\t From ThreadC: k= ” + k);
 }
 System.out.println(“Exit from C”);
 }
}
public class ThreadPriorityDemo {
 public static void main(String args[]) {
 A threadA = new A();
 B threadB = new B();
 C threadC = new C();
 threadC.setPriority(Thread.MAX_PRIORITY);
 threadB.setPriority(threadA.getPriority() + 1);
 threadA.setPriority(Thread.MIN_PRIORITY);
 System.out.println(“Started Thread A”);
 threadA.start();

 System.out.println(“Started Thread B”);
 threadB.start();
 System.out.println(“Started Thread C”);
 threadC.start();
 System.out.println(“End of main thread”);
 }
}

 Multithreaded Programming 375

This example creates 3 threads, and adjusts the priority of each thread. The possible output of the
example is shown as follows:

Started Thread A
Started Thread B
Started Thread C
Thread B started
End of main thread
Thread C started
 From ThreadC: k= 1
 From ThreadC: k= 2
 From ThreadC: k= 3
 From ThreadC: k= 4
Exit from C
 From ThreadB: j= 1
 From ThreadB: j= 2
 From ThreadB: j= 3
 From ThreadB: j= 4
Exit from B
Thread A started
 From ThreadA: i= 1
 From ThreadA: i= 2
 From ThreadA: i= 3
 From ThreadA: i= 4
Exit from A

The highest priority thread C is scheduled/executed fi rst and the thread A which has the lowest priority is
scheduled last.

14.7 THREAD METHODS

The sleep() method causes the current thread to sleep for a specifi ed amount of time in milliseconds:
public static void sleep(long millis) throws InterruptedException

For example, the code below puts the thread in sleep state for 3 minutes:

try {
 Thread.sleep(3 * 60 * 1000); // thread sleeps for 3 minutes
} catch(InterruptedException ex){}

The yield() method causes the current thread to move from the running state to the RUNNABLE state,
so that other threads may get a chance to run. However, the next thread chosen for running might not be a
different thread:

public static void yield()

The isAlive() method returns true if the thread upon which it is called has been started but not moved
to the dead state:

public final boolean isAlive()

When a thread calls join() on another thread, the currently running thread will wait until the thread
it joins with has completed. It is also possible to wait for a limited amount of time instead for the thread
completion.

376 Object-Oriented Programming with Java

void join()
void join(long millis)
void join(long millis, int nanos)

A thread exists in a thread group and a thread group can contain other thread groups. This example visits
all threads in all thread groups.

// Find the root thread group
ThreadGroup root = Thread.currentThread().getThreadGroup().getParent();
while (root.getParent() != null) {
 root = root.getParent();
}
// Visit each thread group
visit(root, 0);

// This method recursively visits all thread groups under the given group.
public static void visit(ThreadGroup group, int level) {
 // get threads in the given group
 int numThreads = group.activeCount();
 Thread[] threads = new Thread[numThreads*2];
 numThreads = group.enumerate(threads, false);

 // enumerate each thread in ‘group’
 for(int i=0; i<numThreads; i++) {
 // get thread
 Thread thread = threads[i];
 }

 // get thread subgroups of the given group
 int numGroups = group.activeGroupCount();
 ThreadGroup[] groups = new ThreadGroup[numGroups*2];
 numGroups = group.enumerate(groups, false);

 // recursively visit each subgroup
 for(int i=0; i<numGroups; i++) {
 visit(groups[i], level+1);
 }
}

Here is an example of some thread groups that contain some threads:

java.lang.ThreadGroup[name=system,maxpri=10]
 Thread[Reference Handler,10,system]
 Thread[Finalizer,8,system]
 Thread[Signal Dispatcher,10,system]
 Thread[CompileThread0,10,system]
java.lang.ThreadGroup[name=main,maxpri=10]
 Thread[main,5,main]
 Thread[Thread-1,5,main]

Another pair of methods is used for daemon threads. Threads that work in the background to support the
runtime environment are called daemon threads. The setDaemon method is used to make the current thread

 Multithreaded Programming 377

as a daemon thread, and the isDaemon method is used to identify whether the current thread is a daemon
thread or not.

public final void setDaemon(boolean isDaemon)
public final boolean isDaemon()

The usage of these two methods is intuitive. However, one important thing to notice is that a daemon
thread does not mean its priority is very low, in contrast, a thread with minimum priority is not a daemon
thread unless the setDaemon method is used to set it.

14.8 MULTITHREADED MATH SERVER

It is time to implement a more comprehensive threaded application by utilizing the thread programming
you have learned so far. A sample multithreaded math interaction demonstrating an online math server that
can perform basic math operations serving clients making simultaneous requests is shown in Fig. 14.6.
The multithreaded math server extends the math server from the previous Socket chapter, it enables the
math server to concurrently accept client requests and to open a new thread for each socket connection by
implementing the java.lang.Runnable interface. The following code shows how it is implemented.

Fig. 14.6 A multithreaded math server and its clients

Program 14.4

/* MultiThreadMathServer.java: A program extending MathServer which
allows concurrent client requests and opens a new thread for each socket
connection. */
import java.net.ServerSocket;
import java.net.Socket;
public class MultiThreadMathServer
 extends MathServer implements Runnable {
 public void run() {

378 Object-Oriented Programming with Java

 execute();
 }
 public static void main(String [] args)throws Exception {
 int port = 10000;
 if (args.length == 1) {
 try {
 port = Integer.parseInt(args[0]);
 }
 catch(Exception e) {
 }
 }
 ServerSocket serverSocket = new ServerSocket(port);
 while(true){
 //waiting for client connection
 Socket socket = serverSocket.accept();
 socket.setSoTimeout(14000);
 MultiThreadMathServer server = new MultiThreadMathServer();
 server.setMathService(new PlainMathService());
 server.setSocket(socket);
 //start a new server thread...
 new Thread(server).start();
 }
 }
}

As can be seen from the program, the run method just invokes the execute method from the base
MathServer class. The main method of the MultiThreadMathServer has a infi nite while loop when
a client request comes, it creates a new instance of the MultiThreadMathServer class and starts it as a
separate thread. There is no need to change the client code as the multithreaded version of the Math service
is totally transparent to the client. The purpose of implementing a multithreaded math server is to enable
concurrent client connections, which means it now can support multiple clients at the same time compared
with the single thread version. One more thing that needs to be mentioned is that every client socket has
been explicitly set at a 14-seconds timeout in order to release critical resources if it is waiting for too long.

14.9 CONCURRENT ISSUES WITH THREAD PROGRAMMING

Threading is a very powerful technique which is sometimes very hard to control, especially when it is
accessing shared resources. In such cases, the threads have to be coordinated, otherwise it will violate the
data of the whole application. For example, a printer cannot be used to print two documents at the same
time and if there are multiple printing requests, threads managing these printing operations needs to be
coordinated. Another example would be simultaneously operating the same bank account: it is not correct
to do both deposit and withdraw operations on a bank account at the same time. There are two very basic
problems related to concurrent issues when dealing with multiple threads: read/write problem and producer-
consumer problem.

 Multithreaded Programming 379

14.9.1 Read/Write Problem
If one thread tries to read the data and another thread tries to update the same data, it is known as read/
write problem, and it leads to inconsistent state for the shared data. This can be prevented by synchronizing
access to the data via Java synchronized keyword. For example,

public synchronized void update() {
…
}

It is better to explain the synchronized approach to access the shared data via a simple example. Consider
an example of a bank offering online access to its customers to perform transactions on their accounts from
anywhere in the world, as shown in Fig. 14.7. It is possible that an account holder has given a cheque
to some other account holder. If the cheque receipient happens to withdraw the money at the same time
the orginal account holder deposits the money, both parties are performing simultaneous operations on the
same account (as shown in Program 14.7). This situation can lead to incorrect operation on the account.
This can be avoided by sychronization, which ensures that only one person is able to perform an operation
on a shared data at a time (i.e., in a way operations are sequenced to avoid data inconsistency problems).
The following class shows a typical invocation of banking operations via multiple threads.

Fig. 14.7 Online Bank: Serving Many Customers and Operations

Program 14.6

/* InternetBankingSystem.java: A simple program showing a typical invocation of
banking operations via multiple threads. */
public class InternetBankingSystem {

public static void main(String [] args) {

 Account accountObject = new Account(100);
 new Thread(new DepositThread(accountObject,30)).start();
 new Thread(new DepositThread(accountObject,20)).start();
 new Thread(new DepositThread(accountObject,10)).start();
 new Thread(new WithdrawThread(accountObject,30)).start();

380 Object-Oriented Programming with Java

 new Thread(new WithdrawThread(accountObject,50)).start();

 new Thread(new WithdrawThread(accountObject,20)).start();
} // end main()

}

There are 6 threads that access the same Account object simultaneously. The following code shows the
operations that will be performed on each thread.

Program 14.7

/* WithdrawThread.java A thread that withdraw a given amount from a given
account. */
package com.javabook.threading;
public class WithdrawThread implements Runnable {
 private Account account;
 private double amount;

 public WithdrawThread(Account account, double amount) {
 this.account = account;
 this.amount = amount;
 }

 public void run() {
 //make a withdraw
 account.withdraw(amount);
 }
}//end WithdrawThread class
/* DepositThread.java A thread that deposit a given amount to a given
account. */

package com.javabook.threading;

public class DepositThread implements Runnable {
 private Account account;
 private double amount;

 public DepositThread(Account account, double amount) {
 this.account = account;
 this.amount = amount;
 }

 public void run() {
 //make a deposit
 account.deposit(amount);
 }
}//end DepositThread class

As can be seen (in Program 14.6), the three deposit threads are performing deposit operations on an
account and simultaneously three Withdraw threads are withdrawing from the same account. If the
account object is not synchronized properly, the outcome may be unpredictable while these operations are

 Multithreaded Programming 381

performing simultaneously. To ensure the proper behavior of the application, it is necessary to synchronize
the methods on the Account class as illustrated in Program 14.8.

Program 14.8

/* Account.java: A program with synchronized methods for the Account class.
*/
package com.javabook.threading;
public class Account {
 private double balance = 0;

 public Account(double balance) {
 this.balance = balance;
 }

 // if ‘synchronized’ is removed, the outcome is unpredictable
 public synchronized void deposit(double amount) {
 if (amount < 0) {
 throw new IllegalArgumentException(“Can’t deposit.”);
 }
 this.balance += amount;
 System.out.println(“Deposit ”+amount+“ in thread”
 +Thread.currentThread().getId()
 +“, balance is ” +balance);
 }

 // if ‘synchronized’ is removed, the outcome is unpredictable
 public synchronized void withdraw(double amount) {
 if (amount < 0 || amount > this.balance) {
 throw new IllegalArgumentException(“Can’t withdraw.”);
 }
 this.balance -= amount;
 System.out.println(“Withdraw ”+amount+“ in thread ”
 + Thread.currentThread().getId()
 + “, balance is ”+balance);
 }
}//end Account class

The synchronized method will ensure that only one class can access the data at one time, other operations
have to wait until the fi rst operation fi nishes. Simply run the InternetBankingSystem program, the following
results should be shown on the systen console:

Deposit 30.0 in thread 8,new balance is 130.0
Withdraw 50.0 in thread 12,new balance is 80.0
Deposit 10.0 in thread 10,new balance is 90.0
Withdraw 20.0 in thread 13,new balance is 70.0
Withdraw 30.0 in thread 11,new balance is 40.0
Deposit 20.0 in thread 9,new balance is 60.0

This is the expected behavior when even the order of the thread execution is unknown. However, if the
account class is modifi ed without the synchronized keyword placed on the methods that access the balance

382 Object-Oriented Programming with Java

data, unpredictable behavior will occur. Run the InternetBankingSystem program again by removing the
synchronized keyword; run may generate the following printout in the system console.

Withdraw 30.0 in thread 11, balance is 60.0
Deposit 20.0 in thread 9, balance is 60.0
Withdraw 50.0 in thread 12, balance is 60.0
Deposit 10.0 in thread 10, balance is 60.0
Withdraw 20.0 in thread 13, balance is 60.0
Deposit 30.0 in thread 8, balance is 60.0

The balance of each transaction is totally unpredictable and wrong compared with the expected results.

14.9.2 Producer and Consumer Problem
The producer-consumer problem (also known as the bounded-buffer problem) is another classical example
of a multithread synchronization problem. The problem describes two threads, the producer and the
consumer, who share a common, fi xed-size buffer. The producer’s job is to generate a piece of data and put
it into the buffer. The consumer is consuming the data from the same buffer simultaneously. The problem is
to make sure that the producer will not try to add data into the buffer if it is full and that the consumer will
not try to remove data from an empty buffer.

The solution for this problem involves two parts. The producer should wait when it tries to put the newly
created product into the buffer until there is at least one free slot in the buffer. The consumer, on the other
hand, should stop consuming if the buffer is empty. Take a message queue as an example, the following
code shows a simple implementation of such a message queue.

Program 14.9

/* MessageQueue.java: A message queue with synchronized methods for queuing
and consuming messages. */

package com.javabook.threading;
import java.util.ArrayList;
import java.util.List;

public class MessageQueue {
 //the size of the buffer
 private int bufferSize;

 //the buffer list of the message, assuming the string message format
 private List<String> buffer = new ArrayList<String>();

 //construct the message queue with given buffer size
 public MessageQueue(int bufferSize){
 if(bufferSize<=0)
 throw new IllegalArgumentException(“Size is illegal.”);
 this.bufferSize = bufferSize;
 }
 //check whether the buffer is full
 public synchronized boolean isFull() {
 return buffer.size() == bufferSize;

 Multithreaded Programming 383

 }

 //check whether the buffer is empty
 public synchronized boolean isEmpty() {
 return buffer.isEmpty();
 }

 //put an income message into the queue, called by message producer
 public synchronized void put(String message) {
 //wait until the queue is not full
 while (isFull()) {
 System.out.println(“Queue is full.”);
 try{
 //set the current thread to wait
 wait();
 }catch(InterruptedException ex){
 //someone wake me up.
 }
 }
 buffer.add(message);
 System.out.println(“Queue receives message ‘”+message+“’”);

 //wakeup all the waiting threads to proceed
 notifyAll();
 }

 //get a message from the queue, called by the message consumer
 public synchronized String get(){
 String message = null;
 //wait until the queue is not empty
 while(isEmpty()){
 System.out.println(“There is no message in queue.”);
 try{
 //set the current thread to wait
 wait();
 }catch(InterruptedException ex){
 //someone wake me up.
 }
 }
 //consume the first message in the queue
 message = buffer.remove(0);

 //wakeup all the waiting thread to proceed
 notifyAll();
 return message;
 }
} //end MessageQueue class

The put method of the message queue object will be called by the message producer and in case the
buffer is full, it invokes the wait method from the Object class, which causes the current thread to wait

384 Object-Oriented Programming with Java

until another thread invokes a notify() or notifyAll() method for this message queue object. All the other
producer threads who are trying to put messages into the queue will be waiting until the notifyAll method
is called by another consumer thread. If the message queue is not full, this method will skip the loop and
enqueue the message into the buffer, and notify all the consumer threads who are trying to get income
messages from the empty buffer, if there is any.

The get method of the message queue object will be called by the message consumer and in case the
buffer is empty, it invokes the wait method similarly as in the put method, and all of the following consumer
threads who are trying to consume messages from the empty buffer will wait until notifyAll method on
this message queue is called by another producer thread. If the message queue is not empty, this method
will skip the loop and dequeue a message from the queue, notify all the waiting producer threads who are
waiting for free buffer slots, and send back the message to the consumer, if there is any.

The synchronized keyword is essential as both get/put methods are accessing the shared data which is
the message queue buffer list, it will be protected against the fi rst read/write problem. The implementation
of the producer and the consumer now is pretty straightforward as the message queue is very well-protected
to prevent the concurrent problems. Program 14.10 lists the implementation of the producer class.

Program 14.10

/* Producer.java: A producer that generates messages and put into a given
message queue. */

package com.javabook.threading;

public class Producer extends Thread{
 private static int count = 0;
 private MessageQueue queue = null;

 public Producer(MessageQueue queue){
 this.queue = queue;
 }

 public void run(){
 for(int i=0;i<10;i++){
 queue.put(generateMessage());
 }
 }

 private synchronized String generateMessage(){
 String msg = “MSG#”+count;
 count ++;

 return msg;
 }
} //end Producer class

The run method generates 10 messages for each producer, and synchronization is used to protect the
static count fi eld that will be accessed by multiple producer threads at the same time when generating
messages. The consumer is even simpler as shown in Program 14.11.

 Multithreaded Programming 385

Program 14.11

/* Consumer.java: A consumer that consumes messages from the queue. */

package com.javabook.threading;

public class Consumer extends Thread {

 private MessageQueue queue = null;

 public Consumer(MessageQueue queue){

 this.queue = queue;

 }

 public void run(){

 for(int i=0;i<10;i++){

 System.out.println(“Consumer downloads ”
 +queue.get()+ “ from the queue.”);

 }

 }

} //end Consumer class

The run method gets messages from the message queue for 10 times and prints a message if there is any.
Otherwise, it will wait until the next available message is ready to pick up in the queue. Program 14.12
shows how to assemble the message queue, producer, and consumer together as a message system demo
program.

Program 14.12

/* MessageSystem.java: A message system that demonstrate the produce and
consumer problem with the message queue example. */

package com.javabook.threading;

public class MessageSystem {
 public static void main(String[] args) {
 MessageQueue queue = new MessageQueue(5);
 new Producer(queue).start();
 new Producer(queue).start();
 new Producer(queue).start();
 new Consumer(queue).start();
 new Consumer(queue).start();
 new Consumer(queue).start();
 }
} //end MessageSystem class

386 Object-Oriented Programming with Java

14.10

Multithreading is one of the core features supported by Java. It allows creation of multiple objects
that can simultaneously execute diff erent operations. It is o� en used in writing programs that
perform diff erent tasks asynchronously such as printing and editing. Network applications that
are responsible for serving remote clients requests have been implemented as multithreaded
applications.

14.11 EXERCISES

Objective Questions

 14.1 A ______ is a program in execution. A ______ is a dispatchable unit of work.
 14.2 There are two ways to defi ne a thread in Java.
 i. Defi ne an object that extends ______ class.
 ii. Defi ne an object than implements ______ interface.
 14.3 The ______ method in the thread class starts a thread.
 14.4 The ______ method in the Object class will wait until the current thread completes.
 14.5 Thread.sleep(100) will make the current thread sleep for ______ seconds.
 14.6 Thread priority can be changed by using ______ method.
 14.7 ______ keyword can be used to protect accessing the shared data.
 14.8 The producer and consumer problem is also known as ______.
 14.9 The thread is going to its wait state if the method ______ is called.
 14.10 The thread will be waked up from the wait state to running state
 if ______ or ______ is called.
 14.11 A process can contains more than one thread at the same time: True or False.
 14.12 The start method of the Thread class needs to be overloaded by the subclass of Thread:
 True or False.
 14.13 Java does not allow developers to control the Thread life cycle: True or False
 14.14 Thread.run() can be called to start a thread without problem: True or False
 14.15 Calling notify method, no exception will be generated by the waiting thread: True or False
 14.16 To make a thread as a daemon thread, developers can either use setDaemon method or set
 The thread priority to the minimum number: True or False
 14.17 The synchronized keyword has to be used for every method with multithread access:
 True or False.
 14.18 To execute the following code, thread 1 will run fi rst: True or False
 Thread thread1 = new Thread();
 Thread thread2 = new Thread();
 Thread thread3 = new Thread();
 thread1.start();
 thread2.start();
 thread3.start();

 Multithreaded Programming 387

 14.19 The read/write problem will not happen if the data is not shared between multiple threads:
 True or False.
 14.20 The producer and consumer problem is caused by the producer who produces too many threads and

the consumer cannot consume. True or False.

Review Questions

 14.21 What are threads? Briefl y explain the differences between a thread and a process.
 14.22 Briefl y explain the concept of context-switching.
 14.23 What are the advantages of thread-based multitasking as compared to process-based multitasking?
 14.24 Describe two possible ways to create threads in Java.
 14.25 Briefl y describe the life cycle of a thread in Java.
 14.26 Assume the developer has created a thread class and that the main method is as follows:
 public static void main(String [] args){
 Thread th1 = new MyThread();
 Thread th2 = new MyThread();
 th1.run();
 th2.run();

 }

 What will happen when executing this main method? Briefl y describe the consequences.
 14.27 Describe the basic methods that are supported by the Thread class.
 14.28 Explain the meaning of the priority of the thread with a simple example.

Programming Problems

 14.29 Implement a class that checks whether a given number is a prime using both the Thread class and
Runnable interface

 14.30 Write a simple Timer that can periodically print a timeout message.
 14.31 Write a simulation program for the fruit market. The farmer will be able to produce different types

of fruits (apple, orange, grape, and watermelon), and put them in the market to sell. The market
has limited capacity and farmers have to stand in a queue if the capacity is exceeded to sell their
fruits. Consumers can come to the market any time and purchase their desired fruits; and if the
fruits they want to buy runs out, they are willing to wait until the supply of that kind is ready. (Hint:
implementing this market will encounter the producer and consumer problem, and it probably
needs multiple buffers for different kinds of fruits).

Mini Project

 14.32 Implement the basic functions for the Online Banking Application based on the discussion in this
chapter. Make sure the implementation is thread safe (all the shared data needs to be properly
synchronized).

