
Java
Software Development

and Object-Oriented

Programming Paradigms

A� er learning the contents of this chapter, the reader would be able to:

∑ understand programming paradigms
∑ know the factors infl uencing the complexity of so� ware development
∑ defi ne so� ware crisis
∑ know the important models used in so� ware engineering
∑ explain the natural way of solving a problem
∑ understand the concepts of object-oriented programming
∑ defi ne abstraction and encapsulation
∑ diff erentiate between interface and implementation
∑ understand classes and objects
∑ state the design strategies embedded in OOP
∑ compare structured programming with OOP
∑ list examples of OOP languages
• list the advantages and applications of OOP

This chapter presents various methodologies for problem solving and development of applications that have
evolved over a period of time. This is primarily driven by the increasing complexity of so� ware and the cost of
so� ware maintenance growing rapidly. The chapter introduces object-oriented design and programming as a
silver bullet to solve so� ware crisis. It then discusses various features of object-oriented programming (OOP)
from encapsulation and inheritance to templates. Finally, the chapter presents various OOP programming
languages with their unique properties.

O
B
J
E
C
T
I
V
E
S

1.1 INTRODUCTION

Computers are used for solving problems quickly and accurately irrespective of the magnitude of the input.
To solve a problem, a sequence of instructions is communicated to the computer. To communicate these
instructions, programming languages are developed. The instructions written in a programming language
comprise a program. A group of programs developed for certain specifi c purposes are referred to as
software whereas the electronic components of a computer are referred to as hardware. Software activates
the hardware of a computer to carry out the desired task. In a computer, hardware without software is
similar to a body without a soul. Software can be system software or application software. System software
is a collection of system programs. A system program is a program, which is designed to operate, control,

Chapter

1

2 Object-Oriented Programming with Java

and utilize the processing capabilities of the computer itself effectively. System programming is the activity
of designing and implementing system programs. Almost all the operating systems come with a set of
ready-to-use system programs: user management, fi le system management, and memory management. By
composing programs it is possible to develop new, more complex, system programs. Application software
is a collection of prewritten programs meant for specifi c applications.

Computer hardware can understand instructions only in the form of machine codes i.e. 0’s and 1’s.
A programming language used to communicate with the hardware of a computer is known as low-level
language or machine language. It is very diffi cult for humans to understand machine language programs
because the instructions contain a sequence of 0’s and 1’s only. Also, it is diffi cult to identify errors in
machine language programs. Moreover, low-level languages are machine-dependent. To overcome the diffi culties
of machine languages, high-level languages such as Basic, Fortran, Pascal, COBOL, and C were developed.

High-level languages allow some English-like words and mathematical expressions that facilitate better
understanding of the logic involved in a program. While solving problems using high-level languages,
importance was given to develop an algorithm (step-by-step instructions to solve a problem). While
solving complex problems, a lot of diffi culties were faced in the algorithmic approach. Hence, object-
oriented programming languages such as C++ and Java were evolved with a different approach to solve the
problems. Object-oriented languages are also high-level languages with concepts of classes and objects that
are discussed later in this chapter.

1.2 PROBLEM DOMAIN AND SOLUTION DOMAIN

A problem is a functional specifi cation of desired activities to generate the intended output. A solution
is the method of achieving the desired output. For example, getting a train ticket from Chennai to Delhi
is a problem statement and purchasing a ticket by going to the Reservation Ticket Counter is a solution
to the problem. The output of this problem is the reserved ticket. Every problem belongs to a domain
of knowledge. The domain is the general fi eld of business or technology in which the user will use the
software. The domain knowledge for reserving the ticket requires knowing the train routes and fares to do
that task. Hence, the term problem domain is used in problem solving. The domain or the sector to which
the problem belongs defi nes the problem domain. The problem that specifi es the requirement in a particular
knowledge domain and the domain experts associated with the task of explaining the requirements belong
to the problem domain. Similarly, the solution obtained belongs to the solution domain. The subject matter
that is of concern to the computer and the persons associated with the task of devising solution defi ne
the solution domain. The problem domain specifi es the scope of the problem along with the functional
requirements represented in a high level so that human beings can understand it.

The solution domain contains the procedures or techniques used to generate the desired output by a
computer. Thus, problem solving is a mapping of problem domain to solution domain as shown in Fig.
1.1. It is the act of fi nding a solution to a problem. The formulation of a solution for a simple problem is
easy. The solution for simple problems may not require any systematic approach. But a complex problem
requires logical thinking and careful planning. Generally, the problems to be solved using computers will
be reasonably complex.

1.2.1 Problem States
The problem has a start state and an end state or goal state. The solution helps the transition from the start
state to the end state as shown in Fig. 1.2. It defi nes the sequence of actions that produces the end state from
the start state.

Software Development and Object-Oriented Programming Paradigms 3

Fig. 1.1 Problem solving

Fig. 1.2 Solution to a problem

The states are to be clearly understood before trying to get a solution for the problem. The initial
conditions and assumptions are to be explicitly stated to derive a solution for a problem. The solution to a
problem must be viewed in terms of the people associated with it.

1.3 TYPES OF PERSONS ASSOCIATED TO A SOLUTION

We may observe the three types of people associated with a solution to a problem as shown in Fig. 1.3.
The logical solution may be explained by the domain experts. A domain expert is a person who has a deep
knowledge of the domain. The program is developed by one set of people and the same is used by another
set of people. The people developing solution are called developers and the people using the solution are
called users. The developer is also known as supplier, or programmer, or implementer. The user is also
called client, or customer, or end-user. The solution represents the instructions to be followed to generate
the output. The solution of a problem should be carefully planned to enable the user to gain confi dence in
the solution.

Fig. 1.3 People associated with the solution

4 Object-Oriented Programming with Java

1.4 PROGRAM

The solution to a problem is written in the form of a program, while a computer is used to solve the
problem. A program is a set of instructions written in a programming language . A programming language
provides the medium for conveying the instructions to the computer. There are many programming
languages such as BASIC, FORTRAN, Pascal, C, C++, etc., similar to the written languages like English,
Tamil, and Hindi. Once the steps to be followed for solving a problem are identifi ed, it is easier to convert these
steps to a program through a programming language. The idea of providing a solution is quite challenging.
The domain experts play a major role in formulating the solution. The formulation of a solution is important
before writing a program. It requires logical thinking, careful planning, and a systematic approach. This
can be achieved through the proper combination of domain experts, system analysts/system designers, and
developers. The program takes the input from the user and generates the desired output, as shown in Fig. 1.4.

Fig. 1.4 Program

1.5 APPROACHES IN PROBLEM SOLVING

The principles and techniques used to solve a problem are classifi ed under the following categories. The
following strategies are used in building solutions to a problem:

1.5.1 Multiple A� acks or Ask Questions
By asking questions like what, why, and how, the solution may be outlined for some problems. Questions
can be asked to many people irrespective of the domain, and the answers to multiple attacks of questions
may help in revealing the solution. Whenever the solution is not known, this approach may be used.

1.5.2 Look for Things That are Similar
We should never reinvent the wheel again. The existing solution for a similar problem can be used to solve a
problem. For example, fi nding the maximum value in a set of numbers is the same as fi nding the maximum
mark in a class of students or fi nding the highest temperature in a day. All these different problems require
the same concept of fi nding the biggest value among all the values. The solution is based on the similar
nature of a problem.

1.5.3 Working Backward or Bo� om-up Approach
The problem can also be solved by starting from the Goal state and reaching the Start state. For example,
sometimes we prefer to derive an equation in mathematics from right-side to left-side. The solution is

Software Development and Object-Oriented Programming Paradigms 5

derived in the reverse direction. For complex problems, this approach will be an easier approach. Consider
the problem of reaching an unknown place from a known place. It is always easier to trace a known place
starting from an unknown place compared to tracing from a known to an unknown place. There may be
many known landmarks nearer to the known place helping in locating the place. If any one such landmark
is reached, it is equivalent to fi nding the solution. But, the landmarks of the unknown place are new while
searching. Hence, even by reaching to the nearest place, sometimes the location may not be identifi ed and
the tracing becomes diffi cult.

1.5.4 Problem Decomposition or Top-down Approach
The problem is decomposed into small units and they are further decomposed into smaller units over and
over again until each smaller unit is manageable. The complex problem is simplifi ed by decomposing it into
many simple problems. It is applicable for simple and fairly complex problems. The top-down approach
is also known as stepwise refi nement, or modular decomposition, or structured approach, or algorithmic
approach.

1.6 STYLES OF PROGRAMMING

Each programming language enforces a particular style of programming . The way of organizing information
is infl uenced by its style of programming and it is known as programming paradigm . First generation
programming languages (1954–1958) such as FORTRAN I, ALGOL 58, and FLOWMATIC were used for
numeric computations. Any program makes use of data. Data is represented by a variable or a constant in a
program. To perform an action, an operator acts on the data (operand). Operands and operators are combined
to form expressions. Each instruction is written as a statement with the help of expressions. A sequence
of statements comprises a program. The structure of fi rst generation languages is shown in Fig. 1.5.

There is no support for subprograms. Such
programming is known as monolithic programm-
ing. The data is globally available and hence there is
no chance of data hiding (denying the access of data
is known as data hiding). First generation languages
were used only for simple applications. The program
is closer to the solution domain by representing the
operations/operators in the programming language
that can be performed in the computer.

Second generation programming languages
(1959–1961) introduced subprograms (functions
or procedures or subroutines) as shown in Fig.
1.6. Inclusion of subprograms avoids repetition of
coding. Such programming is known as procedural
programming. Second generation language is suitable
for applications that require medium-sized programs.

FORTRAN II, ALGOL 60, and COBOL are
second generation languages. The second generation
languages provided the possibility of information
hiding (i.e., hiding the implementation details of a
subprogram). However, sharing the same data by

Fig. 1.5 Structure of the fi rst
 generation languages

Fig. 1.6 Sturucture of the second
 generation languages

6 Object-Oriented Programming with Java

many subprograms breaks the data-hiding principle. Hence, data hiding has only partially succeeded. Here
also, the program is closer to the solution domain where concentration is on operations/operators using
functions.

Third generation programming languages (1962–1970) such as PASCAL and C use sequential code,
global data, local data, and subprograms as shown in Fig. 1.7. They follow structured programming, which
supports modular programming. The program is divided into a number of modules. Each module consists of
a number of subprograms, represented by rectangles.

Importance was given to developing an algorithm and hence this approach is also known as
algorithmic oriented programming. In structural programming approach, data and subprograms exist
separately (Algorithms + Data Structures = Programs). A main program calls the subprograms. Structured
programming approach supports the following features:
 1. Each procedure has its own local data and algorithm.
 2. Each procedure is independent of other procedures.
 3. Parameter-passing mechanisms are evolved.
 4. It is possible to create user-defi ned data types.
 5. A rich set of control structures is introduced.
 6. Scope and visibility of data are introduced.
 7. Nesting of subprograms is supported.
 8. Procedural abstractions or function abstractions are achieved, yielding abstract operations.
 9. Subprograms are the basic physical building blocks supporting modular programming.

Fig. 1.7 Data in third generation programming languages

By introducing scopes1 of variables, data hiding was made possible. For a very complex problem, the
maintenance of the program becomes very tedious because of the existence of so many subprograms and
global data. Here also, the program is closer to the solution domain.

1 A scope identifi es the portion of the source program from which a variable can be accessed. It normally consists in the
portion of text that starts from the variable declaration and spans till the end of the nearest enclosing block.

Software Development and Object-Oriented Programming Paradigms 7

Fig. 1.8 Relationship between a program and programmer

It can be observed that in structured programming, the emphasis is on the subprograms and the effi cient
way of developing algorithms in terms of computing time and computer memory to solve the problem.
The relationship between programmer and program is given prime importance as shown in Fig. 1.8. Hence
structured programming paradigms depend on the solution domain and not on the problem domain. The
data is not given importance regarding access permission.

To solve a complex problem using the top-down approach, fi rst the complex problem is decomposed
into smaller problems. Further, these smaller problems are decomposed and fi nally a collection of small
problems are left out. Each problem is solved one at a time. Structured programming starts with high-level
descriptions of the problem representing global functionality. It successively refi nes the global functionality
by decomposing it into subprograms using lower level descriptions, always maintaining correctness at each
level. At each step, either a control or a data structure is refi ned. Thus the top-down approach is followed
in structured programming. This is a fairly successful approach because it will cause problems only when
there is a revision of design phase. Such revisions may result in massive changes in the program. Also, the
possibility of reuse of software modules is minimized.

There was a generation gap from 1970 to 1980. Many programming languages evolved, but only a few
of them were used in software development. Despite the invention of new programming languages and
software engineering concepts, software industries were unable to meet the demand in reality.

1.7 COMPLEXITY OF SOFTWARE

Mainly simple problems were solved using computers during the initial evolution phases of computing
technologies (prior to 1990). These days, computers are utilized in solving many mission-critical problems
and they are playing a vital role in the fi elds of space, defense, research, engineering, medicine, industry,
business, and even in music and painting. For example, Inter-Continental Ballistic Missiles (ICBM) in
defense and launching of satellites in space cannot be controlled without computers. Such applications
cannot be even imagined without computers. Infl uence of computers in various activities leads to
the establishment of many software companies engaged in the development of various types of
applications.

Large projects involve many highly qualifi ed persons in the software development process. Software
industries face a lot of problems in the process of software development. The following factors infl uence
the complexity of software development, as shown in Fig. 1.9.

1. Improper understanding of the problem The users of a software system express their needs to the
software professionals. The requirement specifi cation is not precisely conveyed by the users in a form
understandable by the software professionals. This is known as impedance mismatch between the users and
software professionals.

2. Change of rules during development During the software development process, because of some
government policy or any other industrial constraints realized, the users may request the developer to
change certain rules of the problem already stated.

8 Object-Oriented Programming with Java

Fig. 1.9 Factors infl uencing so� ware complexity

3. Preservation of existing so� ware In reality, the existing software is modifi ed or extended to suit the
current requirement. If a system had been partially automated, the remaining automation process is done by
considering the existing one. It is expensive to preserve the existing software because of the nonavailability
of experts in that fi eld all the time. Also, it results in complexity while integrating newly developed software
with the existing one.

4. Management of development process Since the size of the software becomes larger and larger in the
course of time it is diffi cult to manage, coordinate, and integrate the modules of the software.

5. Flexibility due to lack of standards There is no single approach to develop software for solving
a problem. Only standards can bring out uniformity. Since only a few standards exist in the software
industries, software development is a laborious task resulting in complexity.

6. Behavior of discrete systems The behavior of a continuous system can be predicted by using the
existing laws and theorems. For example, the landing of a satellite can be predicted exactly using some
theory even though it is a complex system. But, computers have systems with discrete states during
execution of the software. The behavior of the software may not be predicted exactly because of its discrete
nature. Even though the software is divided into smaller parts, the phase transition cannot be modeled
to predict the output. Sometimes an external event may corrupt the whole system. Such events make the
software extremely complex.

7. So� ware testing The number of variables, control structures, and functions used in the software are
enormous. The discrete nature of the software execution modifi es a variable and it may be unnoticed. This
may result in unpredictable output. Hence, vigorous testing is essential. It is impossible to test each and
every aspect of the software in a complex software system. So only important aspects are subjected to
testing and the user must be satisfi ed with this. The reliability of the software depends on rigorous testing.
But testing processes make software development more and more complex.

Software Development and Object-Oriented Programming Paradigms 9

1.8 SOFTWARE CRISIS

The complexity involved in the software development process led to the software crisis . Late completion,
exceeding the budget, low quality, software not satisfying the stated demand, and lack of reliability are
the symptoms of software crisis. Software crisis has been the result of a missing methodology in software
development. The lack of structured and organized approach to software development—not conceived as a
process—led to late completion, exceeding the budget in the case of large and complex projects. The OO
paradigm arose as a consequence of a software crisis, where the relative cost of software has increased
substantially at a rate where software maintenance and software development cost has far outstripped
that of hardware costs. This rate of increase is depicted in Fig. 1.10. Software crisis as a term arose from
the understanding that costs in software development and maintenance have increased signifi cantly, and
that software engineering concepts and innovations have not resulted in signifi cant improvements in the
productivity of software development and maintenance. The software crisis provided an impetus to develop
principles and tools in software to drive, maintain, and provide solid paradigms to apply to the software
development life cycle, with the intent to create more reliable and reusable systems. The sharp increase
in software maintenance from 1995–2000 is attributed to the Y2K (Year 2000) problem in software
applications. As a result, Indian software engineers have gained worldwide popularity, which has in turn led
to rapid growth of IT industries in India.

Fig. 1.10 System development cost

Hardware development has been tremendously larger compared to software development. Hardware
industries develop their products by assembling standardized hardware components such as integrated
silicon chips. If a component fails, it is replaced by a new component, without affecting the functionality
of the product. Standardized components are reused in developing other products also. This revolutionary
approach of reusable components and easier maintenance infl uenced the software development process.

1.9 SOFTWARE ENGINEERING PRINCIPLES

To avoid the software crisis, software engineering principles, programming paradigms, and suitable supporting
software tools are introduced. Software engineering principles help to develop software in a scientifi c

10 Object-Oriented Programming with Java

manner. Systematic engineering principles and techniques such as model building, simulation, estimation,
and measurement are used to build software products. There are six main software engineering activities in
the Software Development Life Cycle (SDLC), as shown in Fig. 1.11. This model is known as Waterfall model .

Waterfall model follows the activities in a rigid sequential manner. There is no overlap of activities
in this model. Each activity is followed after completion of the previous activity. Because of the
rigid sequential nature there is a lack of iterations of activities. The analyst may use datafl ow diagrams
(DFDs), the designer may focus on hierarchy charts, and the programmer may use fl owcharts and hence
there are disjoint mappings among the SDLC activities. Generally, the analyst uses top-down functional
decomposition while solving a problem. The programmer implements the solution easily by using the
procedural languages/structural programming languages that support functional decomposition. The
diffi culty of reuse of software components still persists.

Fig. 1.11 So� ware development activities (Waterfall model)

Percentage of costs incurred during the different phases of SDLC is shown in Fig. 1.12. Cost factor of
the fi rst two phases can be combined. It can be observed that the maintenance of software is 60% whereas
all the other costs are only 40%. Hence, maintenance is an important factor to be considered in the software
development process. Also, earlier programming languages did not support reusability. An existing program
cannot be reused because of the dependence of the program on its environment. Thus, the following two
major problems demanded a new programming approach:
 1. software maintenance
 2. software reuse

Logical improvement to the Waterfall model resulted in the Fountain model. The same six activities in
the software development are still followed in the same sequence. However, there is an overlap of activities
and iteration of activities as shown in Fig. 1.13. The Fountain model is a graphical representation to remind

Software Development and Object-Oriented Programming Paradigms 11

us that although some life cycle activities cannot start before others, there is a considerable overlap and
merging of activities across the full life cycle. In a fountain, water rises up the middle and falls back, either
to the pool below or is re-entrained at an intermediate level.

Fig. 1.12 Costs involved in SDLC

Fig. 1.13 Fountain model

12 Object-Oriented Programming with Java

The Fountain model outlines the general characteristics of the systems level perception of an object-
oriented development. There is a high degree of merging in the analysis, design, implementation, and
unit testing phases. Moving through a number of steps, falling back one or more steps and performing
repeatedly, is a far more fl exible approach than the one proposed by Waterfall model. It follows a bottom-
up approach, which starts from the solution. If there is an existing solution, that solution is studied fi rst
and the necessary details are identifi ed and organized in a suitable manner. For a problem not having a
solution, the domain experts (i.e., experts who are capable of providing useful information and future
requirements) are consulted with the conventional solution to start with. Since the software is developed
by analyzing the solution fi rst, this approach is known as bottom-up approach. There is another approach
similar to a Fountain model called a Spiral model, as shown in Fig. 1.14. Spiral model also follows an
iterative approach in each phase.

The Spiral model involves a little bit of analysis, followed by a little bit of design, a little bit of
implementation, and a little bit of testing. A loop of the spiral goes through some or all of the Waterfall
phases. The idea is that each loop produces an output and by repeatedly following all the activities such as
planning, analysis, implementation, and review the fi nal solution is reached. Engineering phase shown in
quadrant III of Fig. 1.14 involves coding, testing, and putting the solution into use.

Fig. 1.14 Spiral model

Both the Fountain model and the Spiral model provided better solutions for complex problems compared
to the top-down approach followed in the Waterfall model. The procedural and structured programming
languages were found unsuitable for the bottom-up approach because a change in requirement, analysis,
or design phase can cause the programming to start from the beginning once again. They lack fl exibility,
modifi ability, and software component reuse.

1.10 EVOLUTION OF A NEW PARADIGM

The complexity of software required a change in the style of programming. It was aimed to:
 1. produce reliable software
 2. reduce production cost
 3. develop reusable software modules
 4. reduce maintenance cost
 5. quicken the completion time of software development

The Object-oriented model was evolved for solving complex problems. It resulted in object-oriented
programming paradigms. Object-oriented software development started in the 1980s. Object-oriented

Software Development and Object-Oriented Programming Paradigms 13

programming (OOP) seems to be effective in solving the complex problems faced by software industries.
The end-users as well as the software professionals are benefi ted by OOP. OOP provides a consistent means
of communication among analysts, designers, programmers, and end-users.

Object-oriented programming paradigm suggests new ways of thinking for fi nding a solution to a
problem. Hence, the programmers should keep their minds tuned in such a manner that they are not to
be blocked by their preconceptions experienced in other programming languages, such as structured
programming. Profi ciency in object-oriented programming requires talent, creativity, intelligence, logical
thinking, and the ability to build and use abstractions and experience.

If procedures or functions are considered as verbs and data items are considered as nouns, a procedure
oriented program is organized around verbs, while an object-oriented program is organized around nouns.

1.11 NATURAL WAY OF SOLVING A PROBLEM

People tackle a number of problems in everyday life. It is very important to understand the way a problem
is addressed. Consider a situation in an offi ce.

Manager wants to go to a customer’s site. He wants to sign a letter before he leaves.

How does the manager solve this problem? The
way by which the problem is addressed is shown in
Fig. 1.15.

The manager fi rst calls the stenographer to prepare
the letter and dictates the matter. The stenographer takes
shorthand notes of the dictation and prepares the letter
using a computer and a printer. Now the letter is ready for
signing and the manager signs it. Then the manager calls
the driver to take him to the customer’s site. The driver
along with the manager reaches the destination with the
help of a car.

The manager delegates the responsibility of typing
and taking the printed output to the stenographer. The
driver is entrusted with the responsibility of taking him
to the customer’s site. Thus, the manager uses two persons to complete the task. He doesn’t bother to know
how the stenographer prepares the document. By delegating the responsibility to someone, the manager
is free from that work. The specifi c tasks assigned to the steno and to the driver are done independently.
The stenographer makes use of another object (computer and printer or typewriter) to complete the task.
The driver uses the car to go to the destination. The manager is able to perform the complex task by
delegating the responsibilities to the concerned persons. Action is initiated by sending a message to the
person responsible for the action. The message-receiving person accepts the responsibility and the task is
carried out by means of a method. Thus, messages and methods play important roles in solving real-world
problems. Message passing is the fi rst principle to initiate an action by means of a method. Observe the
responsibility-driven technique used in problem solving. Message passing resembles a function call in a
structured programming language. A function is called to perform an action by passing parameters. Both
message passing and function call result in performing a task. But there are differences between them. The
differences between function call and message passing, shown in Table 1.1, must be understood before
learning OOP.

Fig. 1.15 Message passing

14 Object-Oriented Programming with Java

Table 1.1 Comparison of function call and message passing

Function Call Message Passing

1. Function call may use zero or more arguments. Message passing uses at least one argument that identifi es
the receiving agent.

2. It always identifi es a single piece of executable code. The function name is called message selector. The same
name may be associated with different receiving agents.

3. It is applied to data to carry out a task. Message passing is a way to access the data. Message
may invoke a function defi ned for a specifi c purpose.

4. Consumer is responsible for choosing functions that
operate properly on the data.

Supplier is responsible for choosing the appropriate
message.

5. There is no designated receiver in the function call. There is a designated receiving agent in message
passing.

If the way of solving a problem is viewed in depth, the concept of abstraction can be understood.

1.12 ABSTRACTION

The abstract view of solving a problem is an essential requirement as we do in a real-world problem.
Consider the previous example of the situation in an offi ce. The manager passes the information about
the place of destination to the driver who performs the action of moving from the offi ce to the desired
site. The manager must know the person who is capable of doing this task even though he may not know
driving. The driver takes care of the execution part of driving. In the perspective of the manager, the
driver is an employee who knows driving and can take him to the desired place. This abstract information
about the driver is enough for the manager. The manager is an offi cer employed in the offi ce. For the
driver the details of the offi cer like name and designation are enough. This is the abstract information
about the offi cer. The driver uses a car to perform the task. In the perspective of a driver the features of a
car are shown in Fig. 1.16. In the perspective of the manager, the type of car such as A/C or non-A/C and
brand name may be important. Thus the
abstract information of the same entity
differs from individual to individual.

The essential features of an entity
are known as abstraction. A feature
may be either an attribute refl ecting a
property (or state or data) or an operation
refl ecting a method (or behavior or
function). The features such as things in
the trunk of a car, the medical history of
the manager traveling in the car, and the
working mechanism of the car engine are
not necessary for the driver. The essential
features of an entity in the perspective of
the user defi ne abstraction. A good abstraction is achieved by having:

Fig. 1.16 Features of a car in the perspective of a driver

Software Development and Object-Oriented Programming Paradigms 15

∑ meaningful name such as driver refl ecting the function
∑ minimum and at the same time complete features
∑ coherent features
Abstraction specifi es necessary and suffi cient descriptions rather than implementation details. It results in

separation of interface and implementation. The concepts of interface and implementation are discussed next.

1.13 INTERFACE AND IMPLEMENTATION

It is very important to know the difference between interface and implementation. For example, when a
driver drives the car, he uses the steering to turn the car. The purpose of the steering is known very well to
the driver, but the driver need not to know the internal mechanisms of different joints and links of various
components connected to the steering.

An interface is the user’s view of what can be done with an entity. It tells the user what can be
performed. Implementation takes care of the internal operations of an interface that need not be known to
the user, as shown in Fig. 1.17. The implementation concentrates on how an entity works internally. Their
comparison is shown in Table 1.2.

Fig. 1.17 Separation of interface from implementation

Table 1.2 Comparison of interface and implementation

Interface Implementation
It is user’s viewpoint. (What part) It is supplier’s viewpoint. (How part)
It is used to interact with the outside world. It describes how the delegated responsibility is carried out.
User is permitted to access the interfaces only. Functions or methods are permitted to access the data. Thus,

supplier is capable of accessing data and interfaces.
It encapsulates the knowledge about the object. It provides the restriction of access to data by the user.

1.14 ENCAPSULATION

From the user’s point of view, a number of features are packaged in a capsule to form an entity. This
entity offers a number of services in the form of interfaces by hiding the implementation details. The term
encapsulation is used to describe the hiding of the implementation details. The advantages of encapsulation
are:

∑ information hiding
∑ implementation independence

16 Object-Oriented Programming with Java

If the implementation details are not known to the user, it is called information hiding. Restriction of
external access to features results in data hiding. The driver may not know the steering mechanism, but
knows how to use it. Here, the hidden steering mechanism refers to information hiding. Whatever type of
steering is used, the way of using the steering is the same. Rotating the steering wheel is an example of
interface. The steering wheel is visible to the driver (user) and its function is not affected by the change
in the implementation by a different type of steering mechanism such as power steering. The user’s
interface is not affected by changing the implementation mechanism. A change in the implementation is
done easily without affecting the interface. This leads to implementation independence. Thus, the natural
way of solving a problem involves abstraction and encapsulation. Conventional programming, which uses
structured programming, is different from the natural way of solving a problem.

1.15 COMPARISON OF NATURAL AND CONVENTIONAL
 PROGRAMMING METHODS

In conventional programming, structured or procedural languages are used. In the structured programming
approach, functions are defi ned according to the algorithm to solve the problem. Here, function abstractions
are concentrated. A function is applied to some data to perform the actions on data. This approach may be
called a data-driven approach, which involves operator/operand concept. It depends on the solution domain
because the algorithm (solution) is closer to the coding of the program. The relationship between the
programmer and the program is emphasized in the data-driven approach. The solution is solution-domain
specifi c. Conventional programming follows the following principles:

∑ operator-operand concept
∑ function abstraction
∑ separation of data and functions
The development of the algorithm is given prime importance in conventional programming. The

importance of data is not considered and hence, sometimes critical data having global access may result
in miserable output. The abstraction followed is function abstraction and not data abstraction. Data and
functionalities are considered as two separate parts.

But, in the natural way of solving real-world problems, the responsibility is delegated to an agent.
The solution is proposed instead of developing an algorithm. The problem is solved by having a number
of agents (interfaces). The interface part is the user’s viewpoint, and hence the solution is not closer to
the coding of the program. The real-world problem is solved using a responsibility-driven approach. In
this approach, the relationship between the user and the programmer is emphasized. Here, the solution is
problem domain-specifi c. The natural way of problem solving follows the following basic principles:

∑ message passing
∑ abstraction
∑ encapsulation
The importance of data is realized through object-oriented technology, which follows the natural way of

solving problems. Data abstraction and data encapsulation help to make the abstract view of the solution
with information hiding. Data is given the proper importance and action is initiated by message passing.
Data and functionalities are put together resulting in objects and a collection of interacting objects are used
to solve the problem. Object-oriented programming languages are developed based on object-oriented
technology.

Software Development and Object-Oriented Programming Paradigms 17

1.16 OBJECT-ORIENTED PROGRAMMING PARADIGMS

The object-oriented approach to programming is an easy way to master the management and complexity in
developing software systems that take advantage of the strengths of data abstraction. Data-driven methods
of programming provide a disciplined approach to the problems of data abstraction, resulting in the
development of object-based languages that support only data abstraction. These object-based languages do
not support the features of the object-oriented paradigm, such as inheritance or polymorphism. Depending
on the object features supported, there are two categories of object languages:
 1. Object-Based Programming Languages
 2. Object-Oriented Programming Languages

Object-based programming languages support encapsulation and object identity (unique property
to differentiate it from other objects) without supporting important features of OOP languages such as
polymorphism, inheritance, and message based communication, although these features may be emulated to
some extent. Ada, C, and Haskell are three examples of typical object-based programming languages.

Object-based language = Encapsulation + Object Identity
Object-oriented languages incorporate all the features of object-based programming languages,

alongwith inheritance and polymorphism (discussed later in this chapter). Therefore, an object-oriented
programming language is defi ned by the following statement:

Object-oriented language = Object-based features + Inheritance + Polymorphism
Object-oriented programming languages for projects of any size use modules to represent the physical

building blocks of these languages. A module is a logical grouping of related declarations, such as objects
or procedures, and replaces the traditional concept of subprograms that existed in earlier languages.

The following are important features in object-oriented programming and design:
 1. Improvement over the structured programming paradigm.
 2. Emphasis on data rather than algorithms.
 3. Procedural abstraction is complemented by data abstraction.
 4. Data and associated operations are unifi ed, grouping objects with common attributes, operations,

and semantics.
Programs are designed around the data on which it is being operated, rather than the operations

themselves. Decomposition, rather than being algorithmic, is data-centric. Clear understanding of classes
and objects are essential for learning object-oriented development. The concepts of classes and objects help
in the understanding of object model and realizing its importance in solving complex problems.

Object-oriented technology is built upon object models. An Object is anything having crisply defi ned
conceptual boundaries. Book, pen, train, employee, student, machine, etc., are examples of objects. But the
entities that do not have crisply defi ned boundaries are not objects. Beauty, river, sky, etc., are not objects.
Model is the description of a specifi c view of a real-world problem domain showing those aspects, which
are considered to be important to the observer (user) of the problem domain. Object-oriented programming
language directly infl uences the way in which we view the world. It uses the programming paradigm to
address the problems in everyday life. It addresses the solution closer to the problem domain. Object model
is defi ned by means of classes and objects. The development of programs using object model is known as
object-oriented development.

To learn object-oriented programming concepts, it is very important to view the problem from the user’s
perspective and model the solution using object model.

18 Object-Oriented Programming with Java

1.17 CLASSES AND OBJECTS

The concepts of object-oriented technology must be represented in object-oriented programming languages.
Only then, complex problems can be solved in the same manner as they are solved in real-world situations.
OOP languages use classes and objects for representing the concepts of abstraction and encapsulation. The
mapping of abstraction to a program is shown in Fig. 1.18.

Fig. 1.18 Mapping real world entity to object oriented programming

The software structure that supports data abstraction is known as class. A class is a data type capturing
the essence of an abstraction. It is characterized by a number of features. The class is a prototype or blue
print or model that defi nes different features. A feature may be a data or an operation. Data are represented
by instance variables or data variables in a class. The operations are also known as behaviors, or methods,
or functions. They are represented by member functions of a class in C++ and methods in Java and C#.

A class is a data type and hence it cannot be directly manipulated. It describes a set of objects. For
example,

apple is a fruit
implies that apple is an example of fruit. The term “fruit” is a type of food and apple is an instance of

fruit. Likewise, a class is a type of data (data type) and object is an instance of class.
Similarly car represents a class (a model of vehicle) and there are a number of instances of car. Each

instance of car is an object and the class car does not physically mean a car. An object is also known as
class variable because it is created by the class data type. Actually, each object in an object-oriented system
corresponds to a real-world thing, which may be a person, or a product, or an entity. The differences
between class and object are given in Table 1.3.

Table 1.3 Comparison of Class and Object

Class Object
Class is a data type.
It generates object.
It is the prototype or model.
Does not occupy memory location.
It cannot be manipulated because it is not
available in the memory.

Object is an instance of class data type.
It gives life to a class.
It is a container for storing its features.
It occupies memory location.
It can be manipulated.

Software Development and Object-Oriented Programming Paradigms 19

Instantiation of an object is defi ned as the process of creating an object of a particular class.
An object has:
∑ states or properties
∑ operations
∑ identity
Properties maintain the internal state of an object. Operations provide the appropriate functionality to the

object. Identity differentiates one object from the other. Object name is used to identify the object. Hence,
object name itself is an identity. Sometimes, the object name is mixed with a property to differentiate two
objects. For example, differentiation of two similar types of cars, say MARUTI 800 may be differentiated
by colors. If colors are also same, the registration number is used. Unique identity is important and hence
the property refl ecting unique identity must be used in an object.

The properties of an object are important because the outcome of the functions depends on these
properties. The functions control the properties of an object. They act and react to messages. The message
may cause a change in the property of an object. Thus, the behavior of an object depends on the properties.
For example, assume a property called brake condition for the class car. If the brake is not in working
condition, guess the behavior of car. The outcome may be unexpected.

Similarly, in a student mark statement, the result() behavior depends on the data called marks. The
property of resultStatus may be modifi ed based on the marks.

1.18 FEATURES OF OBJECT-ORIENTED PROGRAMMING

The fundamental features of object-oriented programming are as follows:
∑ Encapsulation
∑ Data Abstraction
∑ Inheritance
∑ Polymorphism
∑ Extensibility
∑ Persistence
∑ Delegation
∑ Genericity
∑ Object Concurrency
∑ Event Handling
∑ Multiple Inheritance
∑ Message Passing
A model of these features and the way they relate to the Java language is shown in Fig. 1.19.

1.18.1 Encapsulation
The process, or mechanism, by which you combine code and the data it manipulates into a single unit,
is commonly referred to as encapsulation. Encapsulation provides a layer of security around manipulated
data, protecting it from external interference and misuse. In Java, this is supported by classes and objects.

1.18.2 Data Abstraction
Real-world objects are very complex and it is very diffi cult to capture the complete details. Hence, OOP
uses the concepts of abstraction and encapsulation. Abstraction is a design technique that focuses on the
essential attributes and behavior. It is a named collection of essential attributes and behavior relevant to
programming a given entity for a specifi c problem domain, relative to the perspective of the user.

20 Object-Oriented Programming with Java

Fig. 1.19 Features of the object-oriented paradigm

Closely related to encapsulation, data abstraction provides the ability to create user-defi ned data types.
Data abstraction is the process of abstracting common features from objects and procedures, and creating
a single interface to complete multiple tasks. For example, a programmer may note that a function that
prints a document exists in many classes, and may abstract that function, creating a separate class that
handles any kind of printing. Data abstraction also allows user-defi ned data types that, while having the
properties of built-in data types, it also allows a set of permissible operators that may not be available in
the initial data type. In Java, the class construct is used for creating user-defi ned data types, called Abstract
Data Types (ADTs).

A good abstraction is characterized by the following properties:
 1. Meaningful way of naming An abstraction must be named in a meaningful way. The name itself

must refl ect the attributes and behaviors of the object for which the abstraction is made.
 2. Minimum features An abstraction must have only essential attributes and behaviors, no more and

no less.
 3. Complete details
 4. Coherence

Software Development and Object-Oriented Programming Paradigms 21

An abstraction should defi ne a related set of attributes and behavior to satisfy the requirement. Knowing
the ISBN number of a book is irrelevant for a reader whereas for a librarian, it is very important for
classifi cation. Hence, the abstraction must be relevant to the given application.

Separation of interface and implementation is an abstraction mechanism in object-oriented programming
language. Separation is useful in simplifying a complex system. It refers to distinguishing between a goal
and a plan. It can be stated as separating “what” is to be done from “how” it is to be done. The separation
may be well understood by the following equivalent terms, as shown in Table 1.4.

Table 1.4 Equivalent terms refl ecting separation
What How

Goals Plans
Policy Mechanism
Interface/requirement Implementation

The implementation is hidden and it is important only for the developer. Separation in software design
is an important concept for simplifying the development of software. Also, separation provides fl exibility
in the implementation. Several implementations are possible for the same interface. Sometimes, a single
implementation can satisfy several interfaces.

Encapsulation is a process of hiding nonessential details of an object. It allows an object to supply only
the requested information to another object and hides nonessential information. Since it packages data
and methods of an object, an implicit protection from external tampering prevails. However, an entire
application cannot be hidden. A part of the application needs to be accessed by users to use an application.
Abstraction is used to provide access to a specifi c part of an application. It provides access to a specifi c part
of data, while encapsulation hides data.

Rendering abstraction in software is an implicit goal of programming. Object-oriented programming
languages permit abstractions to be represented more easily and explicitly. Object-oriented programming
languages use classes and objects for representing abstractions. A class defi nes the specifi c structure of a
given abstraction. It has a unique name that conveys the meaning of the abstraction. Class defi nition defi nes
the common structure once. It allows “reuse” when creating new objects of the defi ned structure. An
object’s properties are exactly those described by its class. Two main parts of an object are:

∑ Interface: The user’s view of the operations performed by an object is known as the interface part of
that object.

∑ Implementation: The implementation of an object describes how the entrusted responsibility in the
interface is achieved.

It is important to observe abstraction from the perspective of the user. Software is developed for end-
users. Hence, the abstraction is captured from the user’s point of view. For the same reason abstraction
varies from viewer to viewer. For example, a book abstraction viewed by a librarian is different from the
abstraction viewed by a reader of the book. A librarian may consider the following features:

Attributes Functions
title printBook()
author getDetails()
publisher sortTitle()
cost sortAuthor()
accNumber
ISBNnumber

A reader may consider the following features:

22 Object-Oriented Programming with Java

Attributes Functions
title bookDetails()
author availability()
content tokenDetails()
examples
exercises
index

Here, the attributes are data and the functions are operations or behaviors related to data. If an application
software is to be developed for a library, the abstraction captured by the librarian is important. The reader’s
point of view is not necessary. Thus abstraction differs from viewer to viewer. Abstraction relative to the
perspective of the user is very important in software development.

A simple view of an object is a combination of properties and behavior. The method name with
arguments represents the interface of an object. The interface is used to interact with the outside world.
Object-oriented programming is a packaging technology. Objects encapsulate data and behavior hiding the
details of implementation. The concept of implementation hiding is also known as information hiding. Since
data is important, the users cannot access this data directly. Only the interfaces (methods) can access or
modify the encapsulated data. Thus, data hiding is also achieved. The restriction of access to data within an
object to only those methods defi ned by the object’s class is known as encapsulation. Also, implementation
is independently done improving software reuse concept. Interface encapsulates knowledge about the
object. Encapsulation is an abstract concept. Table 1.5 gives a clear picture about the different concepts.

Table 1.5 Comparison of Abstraction and Encapsulation

Abstraction Encapsulation
Abstraction separates interface and implementation. Encapsulation groups related concepts into one item.
User knows only the interfaces of the object and how
to use them according to abstraction. Thus, it provides
access to a specifi c part of data.

Encapsulation hides data and the user cannot access the
same directly (data hiding).

Abstraction gives the coherent picture of what the
user wants to know. The degree of relatedness of an
encapsulated unit is defi ned as cohesion. High cohesion
is achieved by means of good abstraction.

Coupling means dependency. Good systems have low
coupling. Encapsulation results in lesser dependencies
of one object on other objects in a system that has low
coupling. Low coupling may be achieved by designing a
good encapsulation.

Abstraction is defi ned as a data type called class which
separates interface from implementation.

Encapsulation packages data and functionality and hides
the implementation details (information hiding).

The ability to encapsulate and isolate design from
execution information is known as abstraction.

Encapsulation is a concept embedded in abstraction.

Classes and objects represent abstractions in OOP languages. Class is a common representation with
defi nite attributes and operations having a unique name. Class can be viewed as a user-defi ned data type.
Data types cannot be used in a program for direct manipulation. A variable of a particular data type
is defi ned fi rst as a container for storage. The variables are manipulated after holding data in them. For
example,

int year, mark ;

is a declaration of variables in C. This statement conveys to the compiler that year and mark are
instances of integer data type. Likewise, in OOP, a class is a data type. A variable of a class data type is
known as an object. An object is defi ned as an instance of a class. For example, if Book is a defi ned class,

Software Development and Object-Oriented Programming Paradigms 23

Book cBook, javaBook ;

declares the variables cBook and javaBook of the Book class type. Thus, classes are software prototypes
for objects. Creation of a class variable or an object is known as instantiation (creation of an instance of a
class). The objects must be allocated in memory. Classes cannot be allocated in memory.

1.18.3 Inheritance
Inheritance allows the extension and reuse of existing code, without having to repeat or rewrite the code
from scratch. Inheritance involves the creation of new classes, also called derived classes, from existing
classes (base classes). Allowing the creation of new classes enables the existence of a hierarchy of classes
that simulates the class and subclass concept of the real world. The new derived class inherits the members
of the base class and also adds its own. For example, a banking system would expect to have customers, of
which we keep information such as name, address, etc. A subclass of customer could be customers who are
students, where not only we keep their name and address, but we also track the educational institution they
are enrolled in.

Inheritance is mostly useful for two programming strategies: extension and specialization. Extension
uses inheritance to develop new classes from existing ones by adding new features. Specialization makes
use of inheritance to refi ne the behavior of a general class.

1.18.4 Multiple Inheritance
When a class is derived through inheriting one or more base classes, it is being supported by multiple
inheritance. Instances of classes using multiple inheritance have instance variables for each of the inherited
base classes. Java does not support multiple inheritance. However, Java allows any class to implement
multiple interfaces, which to some extent appears like a realization of multiple inheritance.

1.18.5 Polymorphism
Polymorphism allows an object to be processed differently by data types and/or data classes. More
precisely, it is the ability for different objects to respond to the same message in different ways. It allows
a single name or operator to be associated with different operations, depending on the type of data it has
passed, and gives the ability to redefi ne a method within a derived class. For example, given the student
and business subclasses of customer in a banking system, a programmer would be able to defi ne different
getInterestRate() methods in student and business to override the default interest getInterestRate()
that is held in the customer class. While Java supports method overloading, it does not support operator
overloading.

1.18.6 Delegation
Delegation is an alternative to class inheritance. Delegation allows an object composition to be as powerful
as inheritance. In delegation, two objects are involved in handling a request: methods can be delegated by
one object to another, but the receiver stays bound to the object doing the delegating, rather than the object
being delegated to. This is analogous to child classes sending requests to parent classes. In Java, delegation
is supported as more of a message forwarding concept.

1.18.7 Genericity
Genericity is a technique for defi ning software components that have more than one interpretation
depending on the data type of parameters. Thus, it allows the abstraction of data items without specifying

24 Object-Oriented Programming with Java

their exact type. These unknown (generic) data types are resolved at the time of their usage (e.g., through
a function call), and are based on the data type of parameters. For example, a sort function can be
parameterized by the type of elements it sorts. To invoke the parameterized sort(), just supply the required
data type parameters to it and the compiler will take care of issues such as creation of actual functions and
invoking that transparently. Genericity is introduced in Java 1.5, implemented as generic interfaces that take
parameter types.

1.18.8 Persistence
Persistence is the concept by which an object (a set of data) outlives the life of the program, existing
between executions. All database systems support persistence, but, persistence is not supported in Java.
However, persistence can be simulated through use of fi le streams that are stored on the fi le system.

1.18.9 Concurrency
Concurrency is represented in Java through threading, synchronization, and scheduling. Using concurrency
allows additional complexity to the development of applications, allowing more fl exibility in software
applications.

1.18.10 Events
An event can be considered a kind of interrupt: they interrupt your program and allow your program to
respond appropriately. In a conventional, nonobject-oriented language, processing proceeds literally through
the code: code is executed in a ‘top-down’ manner. The fl ow of code in a conventional language can only be
interrupted by loops, functions, or iterative conditional statements. In an object-oriented language such as
Java, events interrupt the normal fl ow of program execution. Objects can pass information and control from
themselves to another object, which in turn can pass control to other objects, and so on. In Java, events
are handled through the EventHandler class, which supports dynamically generated listeners. Java also
implements event functionality in classes such as the Error subclass: abnormal conditions are caught and
thrown so they can be handled appropriately.

1.19 MODULARITY

The complexity of a program can be reduced by partitioning the program into individual modules. In
object-oriented programming languages, classes and objects form the logical structure of a system. Modules
serve as the physical containers in which the classes and objects are declared. Modularity is the property
of a system that has been decomposed into a set of cohesive and loosely coupled modules. A module is
an indivisible unit of software that can be reused. The boundaries of modules are established to minimize
the interfaces among different parts of the development organization. Modules are frequently used as an
implementation technique for abstract data type. Abstract data type is a theoretical concept and module is
an implementation technique. Each class is considered to be a module in OOP.

The responsibilities of classes are defi ned by means of their attributes and behavior. But a single object
alone is not very useful. Higher order functionality and complex behavior are achieved through interaction
of objects in different modules. Hence, interaction of objects is very important. Software objects interact
and communicate with each other by sending messages to each other.

The activities are initiated by the transmission of a message to an object responsible for the action. The
message encodes the request and the information is passed along with the message as parameters. There are
three components to comprise a message:

Software Development and Object-Oriented Programming Paradigms 25

∑ The receiver objects to whom the message is addressed.
∑ The name of the function performing the action.
∑ The parameters required by the function.
Interaction between objects is possible with the help of message passing. In the case of distributed

applications, objects in different machines can also send and receive messages.

1.20 HOW TO DESIGN A CLASS?

A class is designed with a specifi c goal. Its purpose must be clear to the users. An entity in solving a
problem is categorized as a class if there is a need for more than one instance of this class. Also, it is very
important to entrust a responsibility to an object. Presenting simply the behaviors such as reading data and
displaying data in a class is a poor design of a class. To perform complex tasks, one class must jointly work
with the other classes to perform the task. This approach is known as collaboration among classes. The
class must be designed with essential attributes and behavior to refl ect an idea in the real world.

The terms class and object are very important in object-oriented programming. A class is a prototype or
blueprint or model that defi nes the variables and functions in it. The variables defi ned in a class represent
the data, or states, or properties, or attributes of a visible thing of a certain type.

Classes are user-defi ned data types. It is possible to create a lot of objects of a class. The important
advantages of classes are:

∑ Modularity
∑ Information hiding
∑ Reusability

1.21 DESIGN STRATEGIES IN OOP

Object-oriented programming includes a number of powerful design strategies based on software
engineering principles. Design strategies allow the programmers to develop complex systems in a
manageable form. They have been evolved out of decades of software engineering experience. The basic
design strategies embedded in object-oriented programming are:
 i. Abstraction
 ii. Composition
 iii. Generalization

The existing object-oriented programming languages support most of these features.
Abstraction is clearly discussed in the Section 1.18.2.

1.21.1 Composition
A complex system is organized using a number of simpler systems. An organized collection of smaller
components interacting to achieve a coherent and common behavior is known as composition. There are
two types of composition:
 1. Association
 2. Aggregation

Aggregation considers the composed part as a single unit whereas association considers each part of
composition as a separate unit. For example, a computer is an association of CPU, keyboard, and monitor.
Each part is visible and manipulated by the user. CPU is an aggregation of processor memory and control
unit. The individual parts are not visible and they cannot be manipulated by the user. Both types of

26 Object-Oriented Programming with Java

composition are useful. Aggregation provides greater security because its structure is defi ned in advance
and cannot be altered at runtime. Association offers greater fl exibility because the relationships among the
visible units can be redefi ned at run time. It adapts to changing conditions in its execution environment
by replacing one or more of its components. The two types of composition are frequently used together. A
computer is an example for combination of both association and aggregation.

1.21.2 Generalization
Generalization identifi es the common properties and behaviors of abstractions. It is different from
abstraction. Abstraction is aimed at simplifying the description of an entity, whereas generalization
identifi es commonalities among a set of abstractions. Generalizations are important since they are like
“laws” or “theorems”, which lay the foundation for many things. Generalization helps to develop software
capturing the idea of similarity.

The different types of generalization are:
 1. hierarchy
 2. genericity
 3. polymorphism
 4. pattern

1. Hierarchy The fi rst type of generalization uses a tree-structured form to organize commonalities.
A generalization/specialization hierarchy is achieved with the help of inheritance in object-oriented
programming languages. The advantages are:

∑ Knowledge representation in a particular form.
∑ The intermediate levels in the hierarchy provide the names that can be used among developers and

between developers and application domain experts.
∑ A new specialization at any level can be extended.
∑ New attributes and behavior can be easily added.

2. Genericity It refers to a generic class, which is meant for accepting different types of parameters.
A stack class can be considered as a generic class if it is capable of accepting integer data as well as fl oat or
double or char data also. This type of generalization is known as genericity.

3. Polymorphism The term poly means many and the term morph means to form. Then
polymorphism concerns the possibility for a single property of exposing multiple possible states. The
generally accepted defi nition for this term in object oriented programming is the capability of objects
belonging to the same class hierarchy to react differently to the same method call. This means that a
function may be defi ned in different forms with the same function name. It is possible to implement
different functionalities using a common name for a function. Polymorphism provides a way of generalizing
algorithms. Late binding or dynamic binding (discussed later) is required to implement polymorphism in
object-oriented programming. Based on the parameters passed, the compiler dynamically identifi es the
function to be invoked and it is known as dynamic binding.

4. Pa� ern A pattern is a generalization of a solution for a common problem. An architecture or model
is a large scale pattern used in computer science. Client-server model is an example of a large-scale pattern.
A pattern is a distinct form of generalization. It gives a general form of solution. A pattern need not be
expressed in code at all. The elements of the pattern are represented by classes. The relationships among the
elements may be defi ned by association, aggregation, and/or hierarchy.

Software Development and Object-Oriented Programming Paradigms 27

1.22 COMPARISON OF STRUCTURED AND OBJECT-
 ORIENTED PROGRAMMING

It is essential to understand the basic differences between structured programming and OOP concepts,
which is shown in Table 1.6.

Table 1.6 Diff erence between Structured and OO Programming

Structured Programming Object-Oriented Programming
Top-down approach is followed. Bottom-up approach is followed.

Focus is on algorithm and control fl ow. Focus is on object model.

Program is divided into a number of submodules, or
functions, or procedures.

Program is organized by having a number of classes and
objects.

Functions are independent of each other. Each class is related in a hierarchical manner.

No designated receiver in the function call. There is a designated receiver for each message passing.

Views data and functions as two separate entities. Views data and function as a single entity.

Maintenance is costly. Maintenance is relatively cheaper.

Software reuse is not possible. Helps in software reuse.

Function call is used. Message passing is used.

Function abstraction is used. Data abstraction is used.

Algorithm is given importance. Data is given importance.

Solution is solution-domain specifi c. Solution is problem-domain specifi c.

No encapsulation. Data and functions are separate. Encapsulation packages code and data altogether. Data
and functionalities are put together in a single entity.

Relationship between programmer and program is
emphasized.

Relationship between programmer and user is
emphasized.

Data-driven technique is used. Driven by delegation of responsibilities.

1.23 OBJECT-ORIENTED PROGRAMMING LANGUAGES

Several object-oriented programming languages have been invented since 1960. Some well-known ones
are listed in Table 1.6. Among them, C++, Java, and C# are the three most commercially successful OOP
languages. Inventors and features of various OOP languages are given in Table 1.7.

Simula Simula was the fi rst object-oriented language with syntax similar to Algol. Concurrent processes
are managed by scheduler class. This language is best suited to the simulation of parallel systems. It allows
classes with attributes and procedures that are public by default. It is also possible to declare them as
private. Inheritance and virtual functions are supported. Memory is managed automatically with garbage
collection.

28 Object-Oriented Programming with Java

Table 1.7 OO Programming languages
(a) OO programming languages and their inventors

Language Inventor, Year Organization
Simula Kristen Nygaard and Ole-Johan

Dahl, 1960
Norwegian Defense Research
Establishment, Norway

Ada Jean Ichbiah, 1970 Honeywell-CII-Bull, France
Smalltalk Alan Kay, 1970 Xerox PARC, USA
C++ Bjarne Stroustrup, 1980 AT&T Bell Labs, USA
Objective C Brad Cox, 1980 Stepstone, USA
Object Pascal Larry Tesler, 1985 Apple Computer, USA
Eiffel Bertrand Meyer, 1992 Eiffel Software, USA
Java James Gosling, 1996 Sun Microsystems, USA
C# Anders Hejlsberg, 2000 Microsoft, USA

(b) OO programming languages and comparison of their features

Feature Java C++ Smalltalk Objective
C

Simula Ada Eiffel C#

Encapsulation ÷ ÷ Poor ÷ ÷ ÷ ÷ ÷
Single inheritance ÷ ÷ ÷ ÷ ÷ X ÷ ÷
Multiple inheritance X ÷ X ÷ X X ÷ X

Polymorphism ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷
Binding (early or late) Late Both Late Both Both Early Early Late
Concurrency ÷ Poor Poor Poor ÷ Diffi cult ÷ ÷
Garbage collection ÷ X ÷ ÷ ÷ X ÷ ÷
Persistent objects X X promised X X Like 3GL Limited X
Genericity ÷ ÷ X X X ÷ ÷ ÷
Class libraries ÷ ÷ ÷ ÷ ÷ Limited ÷ ÷

Ada Ada was developed by Jean Ichbiah and his team at Bull in the late 1970s. It was named after
Augusta Ada, daughter of Byron, the famous romantic poet. It is a general-purpose language. An abstract
type is implemented as a package in Ada. Each package can contain abstract types. The concept of
genericity is introduced at the level of types and packages.

Smalltalk It was designed by Alan Kay at Xerox PARC during the 1970s. It is a general purpose
language. It allows polymorphism. Automatic garbage collection is provided. Generalization of the object
concept is another original contribution from Smalltalk.

C++ C++ was designed by Bjarne Stroustrup in the AT and T Bell Laboratories in the early 1980s. It
borrowed the concepts of class, subclass, inheritance and polymorphism from Simula. The name C++ was
coined by Rick Mascitti in 1983.

Software Development and Object-Oriented Programming Paradigms 29

Objective C It is a general-purpose language designed by B. Cox. It extends C with an object model
based on Smalltalk 80. It does not support metaclasses, which are classes used to describe other classes.
Simple inheritance is supported. There are generic classes and no memory garbage collector.

Object Pascal It is an extension of Pascal, developed by Apple for the Macintosh in the early 1980s.
Simple inheritance dynamic binding is supported. There is no automatic garbage collection.

Eiff el It was developed by Bertrand Meyer in 1992 for both scientifi c and commercial applications.
Exception management is a feature supported by this language.

Java It is a pure object-oriented language developed by Arnold and Gosling in 1996. It helps in
developing small applications called applets which can be integrated into web pages. It supports
multithreading. It supports encapsulation, inheritance, polymorphism, genericity, and dynamic binding.

C# It is an object-oriented programming language developed by Microsoft Corporation for its new
.NET Framework. It is derived from C and C++; appears very similar to Java. It supports encapsulation,
inheritance, polimorphysm, genericity, and late binding.

1.24 REQUIREMENTS OF USING OOP APPROACH

The method of solving complex problems using OOP approach requires:
∑ Change in mindset of programmers, who are familiar with structured programming.
∑ Closer interaction between program developers and end-users.
∑ Much concentration on requirement, analysis, and design.
∑ More attention for system development than just programming.
∑ Intensive testing procedures.

1.25 ADVANTAGES OF OBJECT-ORIENTED PROGRAMMING

The following are the advantages of software developed using object-oriented programming:
 1. Software reuse is enhanced.
 2. Software maintenance cost can be reduced.
 3. Data access is restricted providing better data security.
 4. Software is easily developed for complex problems.
 5. Software may be developed meeting the requirements on time, on the estimated budget.
 6. Software has improved performance.
 7. Software quality is improved.
 8. Class hierarchies are helpful in the design process allowing increased extensibility.
 9. Modularity is achieved.
 10. Data abstraction is possible.

1.26 LIMITATIONS OF OBJECT-ORIENTED PROGRAMMING

 1. The benefi ts of OOP may be realized after a long period.
 2. Requires intensive testing procedures.
 3. Solving a problem using OOP approach consumes more time than the time taken by structured

programming approach.

30 Object-Oriented Programming with Java

1.27 APPLICATIONS OF OBJECT-ORIENTED PROGRAMMING

If there is complexity in software development, object-oriented programming is the best paradigm to solve
the problem. The following areas make use of OOP:
 1. Image processing
 2. Pattern recognition
 3. Computer assisted concurrent engineering
 4. Computer aided design and manufacturing
 5. Computer aided teaching
 6. Intelligent systems
 7. Data base management systems
 8. Web based applications
 9. Distributed computing and applications
 10. Component based applications
 11. Business process reengineering
 12. Enterprise resource planning
 13. Data security and management
 14. Mobile computing
 15. Data warehousing and data mining
 16. Parallel computing

Object concept helps to translate our thoughts to a program. It provides a way of solving a problem in
the same way as a human being perceives a real world problem and fi nds out the solution. It is possible
to construct large reusable components using object-oriented techniques. Development of reusable
components is rapidly growing in commercial software industries.

1.28

Computers are used to solve problems. Diff erent styles of programming have evolved in the
history of generation of languages. But the problem of reuse and maintenance was not solved
by those early languages and this led to the phenomenon called so� ware crisis. To overcome the
limitations, so� ware engineering principles were applied and the object-oriented paradigm model
was found to be suitable for addressing, modeling, and solving complex problems. The diff usion
of this paradigm is the result of a continuous shi� of programming abstractions from the solution
domain to the problem domain. The more the problems to solve got complex the more we moved to
models more close to the problem domain for solving them. From machine language to the object-
oriented model and beyond. This constant movement has made the activity of fi nding a solution
easier, more understandable, and maintainable.

Object-oriented programming uses object models and it resembles the natural way of solving
a problem. The concepts of abstraction and encapsulation are used in OOP. The essential features
of an entity are known as abstraction. Abstraction separates the interface from implementation.
Encapsulation insulates the data by wrapping them up using methods. Classes and objects are
the fundamental concepts that render abstractions. Classes are user-defi ned data types and objects
are instances of a class. The features of OOP are discussed to realize the importance of OOP
approach. The design strategies such as abstraction, composition, and generalization are embedded
in OOP. Examples of OOP languages, advantages, and applications of OOP are presented to
know the importance of OOP. Java is an OOP language. The history of development of Java and
the runtime environment of Java are described in the next chapter.

Software Development and Object-Oriented Programming Paradigms 31

1.29 EXERCISES

Objective Questions

 1.1 Both Java and C# are _________ programming language.
 1.2 Mapping of problem domain to solution domain is so called _________.
 1.3 A program is a set of instructions written in a _________.
 1.4 _________ approach general requires decomposing a complex problem into smaller problems.
 1.5 _________ process is useful to make a software reliable.
 1.6 _________ is a software development model that follows top-down approach.
 1.7 The software structure that supports data abstraction is known as_________.
 1.8 The process, or mechanism, by which you combine code and the data it manipulates into a single

unit, is commonly referred to as _________ .
 1.9 _________ allows an object to be processed differently by data types and/or data classes.
 1.10 The basic design strategies embedded in object-oriented programming are: _________ , _________

and _________.
 1.11 Bottom-up and top-down are the two very common problem solving strategies: True or False.
 1.12 C and C++ are structural programming languages, Java and C# are object-oriented programming

languages: True or False.
 1.13 Class is a data type and Object is an instance of a class: True or False.
 1.14 Abstract Data Types is a term referring to an abstract class: True or False.
 1.15 Encapsulation hides the data and the user cannot access them directly: True or False.
 1.16 Reusability is an important aspect of designing classes: True or False.
 1.17 Object inheritance is a way of achieving genericity: True or False.
 1.18 The focus of Object-Oriented Programming is the algorithm and control fl ow in a way of defi ning

classes: True or False.
 1.19 Structural programming language does not have a way of defi ning classes: True or False.
 1.20 The testing is used to help Object-oriented programs instead of structural programs: True or False.

Review Questions

 1.21 What is a problem domain?
 1.22 What is a solution domain?
 1.23 What is a programming paradigm?
 1.24 What is the difference between monolithic programming and procedural programming?
 1.25 What are the features of structured programming?
 1.26 List the features of the programming languages in each generation.
 1.27 What is top-down approach?
 1.28 Explain the factors that infl uence the complexity of software development.
 1.29 What are the factors that infl uence software crisis?
 1.30 How is the software crisis avoided?
 1.31 What are the important activities involved in Software development life cycle?
 1.32 Explain the Waterfall model in software development.
 1.33 What are the various costs involved in the Software development life cycle?

32 Object-Oriented Programming with Java

 1.34 Explain the Fountain model related to software development.
 1.35 What is bottom-up approach?
 1.36 Explain the Spiral model related to software development.
 1.37 Explain the concept of message passing.
 1.38 Explain the concept of abstraction.
 1.39 Compare interface and implementation.
 1.40 Explain the concept of encapsulation.
 1.41 What are the advantages of encapsulation?
 1.42 Explain the basic principles involved in the natural way of problem solving.
 1.43 What are the principles involved in conventional programming?
 1.44 What are class and objects?
 1.45 List properties and access methods for a typical student class?
 1.46 Distinguish between a class and an object.
 1.47 What are the features of an object?
 1.48 Compare abstraction and encapsulation.
 1.49 Explain the basic design strategies embedded in OOP.
 1.50 What are the characteristics of a good abstraction?
 1.51 Explain the concept of separation.
 1.52 Explain the different types of generalization.
 1.53 What is composition? Explain its types.
 1.54 Compare structured programming and OOP.
 1.55 State any fi ve OOP Languages.
 1.56 What are the advantages of OOP?
 1.57 What are the limitations of OOP?
 1.58 What are the important points to be considered while solving a problem using OOP approach?

