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Abstract

In most Grid systems, submitted jobs are initially placed into a queue if there are

no available compute nodes. Therefore, there is no guarantee as to when these jobs will

be executed. This usage policy may cause a problem for time-critical applications or

task graphs where jobs have inter-dependencies. To address this issue, using advance

reservation (AR) in Grid systems would allow users to secure or guarantee resources prior

to executing their jobs.

This thesis proposes the use of modeling and simulation, since various Grid scenarios

need to be evaluated and repeated. Therefore, this thesis describes the development of

GridSim, a discrete-event Grid simulation tool, which allows modeling and simulation of

various properties, such as advance reservation, differentiated level of network Quality of

Service (QoS), data Grid and resource discovery in a virtual organization.

This thesis investigates how AR can be incorporated and deployed in Grid systems, and

determines how to increase the resource utilization. Towards accomplishing these findings,

this thesis presents a system model for scheduling task graphs with advance reservation and

interweaving to increase resource utilization, and proposes a new data structure, named

Grid advance reservation Queue (GarQ), for administering reservations in the Grid system

efficiently. In addition, this thesis provides a case for an elastic reservation model, where

users can self-select or choose the best option in reserving their jobs, according to their QoS

needs, such as deadline and budget. This thesis adapts an on-line strip packing algorithm

into the elastic model to reduce the number of rejections and fragmentations (idle time

gaps) caused by having reservations in the Grid system.

This thesis investigates how to increase resource revenue, and examines how to regulate

resource supplies and reservation demands. Towards accomplishing these inquests, this

thesis suggests the use of Revenue Management to determine the pricing of reservations,

increase resource revenue, and regulate supply and demand. Moreover, this thesis looks

into overbooking models to protect resources against unexpected cancellations and no-

shows of reservations.
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Chapter 1

Introduction

This chapter presents a high-level overview of this thesis. It provides the motivation

to propose advance reservation and revenue-based resource management for Grid systems.

Then, it identifies the research contributions and outlines the organization of this thesis.

1.1 Grid Computing

Advances in network technologies (e.g. Web 2.0 [106]) have driven the opportunity of using

network-connected computers as a single, unified computing system, known as a cluster

computer [110]. Clusters can be used in different forms for various purposes, such as high

performance computing (HPC) for more computational power than a single computer,

high availability for greater reliability (in case of failure), and high throughput for longer

and larger processing capability.

Grids represent a significant achievement towards the aggregation of clusters and/or

other networked resources for solving large-scale data-intensive or compute-intensive ap-

plications [52]. Depending on the target application domain and purpose, Grids can be

classified into several categories [156].

1. Computational Grids. These provide distributed computing facilities for executing

compute-intensive applications, such as Monte Carlo simulations [1], and Bag-of-

Tasks (BoT) applications [33], where each consists of a collection of independent tasks

or jobs. Some projects such as Nimrod-G [20], SETI@home [5], and MyGrid [36]

1
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Figure 1.1: A high-level overview of Data Grid [149].

utilize Grids to schedule these applications on available resources.

2. Data Grids. These provide the infrastructure to access, transfer and manage large

datasets stored in distributed repositories [30, 68]. In addition, data Grids focus on

satisfying requirements of scientific collaborations, where there is a need for ana-

lyzing large collections of data and sharing the results. Such applications are com-

monly found in the area of astronomy [74], climate simulation [96], and high energy

physics [68]. There are several projects involved in Data Grids, namely LHCGrid [82],

Biogrid [13], Virtual Observatory [6], and Avaki EII [7].

3. Application Service Provisioning (ASP) Grids. These concentrate on provid-

ing access to remote applications, modules, and libraries hosted on data centers or

Computational Grids, e.g. NetSolve [122].

4. Interaction Grids. These provide services and platforms for users to interact with

each other in a real-time environment, e.g. AccessGrid [31]. Thus, this type of Grids

is suitable for multimedia applications, such as video conferencing, and those that

require fast networks.

5. Knowledge Grids. These work on knowledge acquisition, data processing, and data

management. Moreover, they provide business analytics services driven by integrated
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data mining services. Some projects in this field are KnowledgeGrid [25] and the EU

Data Mining Grid [47].

6. Utility Grids. These focus on providing one or more of the above Grid services

to end-users as information technology (IT) utilities on a pay-to-access basis. In

addition, they set up a framework for the negotiation and establishment of contracts,

and allocation of resources based on user demands. Existing projects in this area are

Utility Data Center [60], at the enterprise level and Gridbus [23] at the global level.

A typical usage scenario of Grid activities, in this case for a data Grid, is shown in

Figure 1.1. Scientific instruments, e.g. a satellite dish, generates large data sets which

are stored in a Storage Resource. The Storage Resource then notifies a Replica Catalog

(RC) about a list of available data sets. The RC acts as an indexing server for handling

registrations, notifications and queries from resources and users.

Next, this RC will synchronize its information with other RCs in the Grid. When a

user submits his/her jobs, a Compute Resource communicates to the nearest RC to find

out the location of the required data sets (if not stored locally). Then, the Compute Re-

source requests to have replicas or copies of these data sets from the Storage Resource.

The RCs may be arranged in different topologies depending on the requirements of the ap-

plication domain, the size of the collaboration around the application and its geographical

distribution [149]. Moreover, various replication techniques [137, 143, 3] may be applied

to minimize the transfer time and bandwidth costs.

Based on this usage scenario, from the user’s perspective, Grid computing can be

considered as creating a virtual computer aggregating large hardware and storage infras-

tructures that are managed by different organizations across the world [52]. This scenario

also identifies several key functionalities or components that need to be addressed by Grid

resource providers:

• user interface, where users can submit and track jobs by using a command-line

interface or a remote login, a graphical user interface (e.g. QMON for Sun Grid

Engine [123]) or a web-based portal, such as the P-GRADE Portal [130] and the

BioGrid Portal [59].
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• security and access management, where users need to be authenticated and autho-

rized before submitting jobs and using the resources respectively.

• administration and monitoring, where resource administrators can control and mon-

itor the current state of resources, and users can track or see the progress of their

jobs through an interface.

• resource discovery, where resources register their status and availability to a central

server or a Replica Catalog, as shown in Figure 1.1. Thus, users can query about

these resources.

• data management, where resources manage queries, replication and deletion of data

sets. In addition, various replication techniques are applied.

• resource management, where resources are allocated, assigned and accessed according

to Quality of Service (QoS) criteria, such as advance reservation, deadline and cost.

• job scheduling, where a local resource scheduler, such as Maui [91], executes waiting

jobs in a queue based on the QoS criteria, as mentioned above.

This thesis mainly focuses on the job scheduling and resource management components

of a computational Grid. This thesis aims to improve resource utilization and user satis-

faction by considering novel job scheduling and reservation management strategies. This

thesis also adapts an economy model to determine the pricing of each resource, increase

resource revenue, and regulate supply and demand.

1.2 Motivation

1.2.1 The Need for Advance Reservation

In most Grid systems, submitted jobs are initially placed into a queue if there are no

available resources by a local resource manager or scheduler. However, each Grid system

may deploy a different scheduling algorithm, such as First Come First Serve (FCFS),

Shortest Job First (SJF), Earliest Deadline First (EDF), or EASY Backfilling [98] that

executes jobs based on different parameters, such as submission time, number of resources,
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Figure 1.2: Comparison of scheduling without and with advance reservation.

and duration of execution. Therefore, there is no guarantee as to when these jobs will be

executed.

To address these issues and ensure that the specified resources are available for appli-

cations when required, several researchers have proposed the need for advance reservation

(AR) [86, 132, 121]. Common resources that can be reserved or requested are compute

nodes (CNs), storage elements (SEs), network bandwidth or a combination of any of those.

In general, reservation of the aforementioned resources can be categorized into two:

immediate and advance. However, the main difference between these two reservations is

the starting time. Immediate reservation acquires the resources to be utilized straight

away, whereas advance reservation defers their usage later in the future.

Advance reservation can be useful for several applications, as described below:

• parallel applications, where each task requires multiple compute nodes simultane-

ously for execution.

• workflow applications, where each job may depend on the execution of other jobs in

the application. Hence, it needs to wait for all of the dependencies to be satisfied

before it can be executed.

• multimedia or soft real-time applications, such as video conferencing and player,

where they need to have a certain amount of bandwidth to ensure a smooth broadcast

of video and audio over the network. Therefore, any dropouts in a network transfer

are not tolerable.

However, there are challenges in adopting advance reservation into Grids. Some of

these are:
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1. Significantly more complex operations and algorithms are needed for scheduling jobs,

as shown in Figure 1.2. A reservation-based system needs to handle incoming book-

ings and queries with respect to available spaces in the current and future time, as

depicted in Figure 1.2(b). Note that without AR, the future time is not considered,

as illustrated in Figure 1.2(a).

2. Possibly longer waiting time for other jobs in the queue, and lower resource utilization

due to fragmentations or idle time gaps, as illustrated in Figure 1.2. For example, in

Figure 1.2(a), in a system without AR, a new job that requires two compute nodes

can be scheduled after Job2. However, in a system that uses AR, this new job can

only be executed after AR2, as depicted in Figure 1.2(b).

3. Potentiality more negotiations between the resource and users due to their requests

being rejected. Hence, the system needs to manage the overheads of many requests

for reserving future availability.

4. Regulating resource supplies and reservation demands during busy and non-busy

periods, as this has an impact on utilization, income revenue, number of rejections

and waiting time for local jobs in the system queue.

5. Possible loss of income due to cancellations and no-shows of existing reservations,

since unused AR slots can not be sold to other jobs.

This thesis addresses the above challenges by modeling and scheduling of task graphs

with interweaving and backfilling, using an elastic reservation model on Grid systems, and

applying an economy model into these systems.

1.2.2 The Importance of Economy Model

Buyya et al. [21] introduced the Grid economy concept that provides a mechanism for

regulating supply and demand, and calculates pricing policies based on these criteria.

Thus, Grid economy offers an incentive for resource owners to join the Grid, and encourages

users to utilize resources optimally and effectively, especially to meet the needs of critical

applications.
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Regulating supply and demand of resources is an important issue in AR as a study

by Smith et al. [132] showed that providing AR capabilities increases waiting times of

applications in the queue by up to 37% with backfilling. This study was conducted,

without using any economy models, by selecting 20% of applications using reservations

across different workload models. This finding implies that without economy models or

any set of AR policies, a resource accepts reservations based on a first come first serve

basis and subject to availability. Moreover, it also means that these reservations are treated

similarly to high priority jobs in a local queue.

In order to address the above problem, Revenue Management (RM) techniques are

adapted into this thesis. The main objective of RM is to maximize profits by providing the

right price for every product to different customers, and periodically update the prices in

response to market demands [111]. Therefore, a resource provider can apply RM techniques

to shift demands requested by budget conscious users to off-peak periods as an example.

Hence, more resources are available for users with tight deadlines in peak periods who are

willing to pay more for the privilege. As a result, the resource provider gains more revenue

in this scenario. So far, RM techniques have been widely adopted in various industries,

such as airlines, hotels, and car rentals [92].

1.2.3 A Case for Simulation

Different scenarios need to be evaluated to ensure the effectiveness of advance reservation

and revenue management techniques. Given the inherent heterogeneity of a Grid envi-

ronment, it is difficult to produce performance evaluation in a repeatable and controlled

manner. In addition, Grid testbeds are limited, and creating an adequately-sized testbed

is expensive and time consuming. Moreover, the testbed requires the handling of different

administration policies at each resource. Due to these reasons, this thesis proposes using

modeling and simulation as a means of studying complex scenarios, without a full-scale

implementation of Grids.

For simulating a Grid, a tool needs to be able to model the interaction of users, resource

brokers (on behalf of the users), resources and the network. For these purposes, a Grid

simulation tool must have at least the following functionalities:
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1. Able to model heterogeneous resources, for Computational and/or Data Grids.

2. Extensible and modifiable so that various scheduling systems and economy models

can be implemented and analyzed.

3. Able to store and query information about resource properties and/or data files.

This can be achieved by using an indexing or catalog service.

4. Able to specify an arbitrary network topology in the simulated Grid environment.

Based on the above requirements, GridSim [22] is chosen as the preferred simulation

tool. GridSim is an open-source software platform, that provides features for applica-

tion composition, information services for resource discovery, and interfaces for assigning

applications to resources. GridSim also has the ability to model heterogeneous computa-

tional resources of various configurations. In this thesis, a new extension is implemented

to support advance reservation of nodes in compute resources.

1.3 Contributions

This thesis makes the following contributions towards research in advance reservation and

revenue-based resource management for Grid systems:

1. This thesis presents a new architecture and design of GridSim in order to support

advance reservation. In addition, this thesis describes the development of GridSim,

which allows modeling and simulation of various properties, such as differentiated

levels of network QoS [140], resource failure [24], and data Grid [139]. With the im-

proved design and the addition of these features, GridSim offers researchers the func-

tionality and the flexibility of simulating Grids for various types of studies, such as

service-oriented computing [39], Grid meta-scheduling [3], workflow scheduling [113],

and security solutions [101].

2. This thesis proposes a scheduling approach for task graphs (TGs), by using advance

reservations to secure or guarantee resources prior to their executions. To improve

resource utilization, this chapter also proposes a scheduling solution by interweav-
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ing one or more TGs within the same reservation block, and backfilling with other

independent jobs (if applicable).

3. This thesis puts forward a new data structure, named Grid Advance Reservation

Queue (GarQ), that is tailored to handle advance reservation operations efficiently,

such as searching available resources, adding, and deleting reservations. Moreover,

this thesis discusses the performance of this data structure against existing ones,

such as Segment Tree [17, 120], Calendar Queue [18], and Linked List [155].

4. This thesis presents an elastic reservation model that enables users to query resource

availability with fuzzy parameters, such as duration time and number of nodes re-

quired. With this model, a resource provider can present the users with a preferred

offer (a suitable AR slot) and/or a list of alternatives. Hence, the users can self-select

or choose the best option in reserving their jobs according to their QoS constraints.

Moreover, by using an on-line strip packing algorithm into the model, the model

aims to reduce fragmentations or idle time gaps caused by AR, increase the num-

ber of reservations and system utilization, and minimize the waiting time of local

(non-reserved) jobs in the queuing system.

5. This thesis examines how to regulate resource supplies and reservation demands.

Thus, it proposes the use of Revenue Management (RM) to determine pricing of

reservations in order to increase resource revenue. Hence, the resource provider can

apply RM techniques to shift demands, and to ensure that resources are allocated

to applications that are highly valued by the users. Moreover, to protect resources

against unexpected cancellations and no-shows of reservations, this thesis looks into

overbooking models that are suitable for a Grid reservation-based system. In ad-

dition, this thesis introduces several novel strategies to select which bookings or

reservations to deny, based on compensation cost and user class level.

1.4 Thesis Organization

Figure 1.3 shows the organization of the rest of this thesis. In this figure, the thesis

chapters are categorized into job scheduling and resource management components of a
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computational Grid, as mentioned previously.

Chapter 2 describes recent works to give an insight into the latest research advance-

ments in projects or systems related to advance reservation in networks and Grids. Then,

Chapter 3 presents a new architecture and design to GridSim to support advance reser-

vation and other capabilities, such as differentiated levels of network QoS [140], resource

failure [24], and data Grid [139]. These features of GridSim provide essential building

blocks for simulating various Grid scenarios. In addition, new features can be added and

incorporated easily into GridSim for the performance evaluation on topics addressed in

this thesis.

Chapter 4 addresses the topic of modeling and scheduling of task graphs. This chapter

proposes advance reservation to secure resources prior to their executions. In addition, to

improve the resource utilization, this chapter presents a scheduling solution by interweav-

ing one or more task graphs within the same reservation block, and backfilling with other

independent jobs (if applicable).

For the next topic, this thesis introduces an elastic reservation model on Grid systems

to provide users with alternative reservation slots. However, to realize this model, we

need to have an efficient data structure for administering reservations. Thus, Chapter 5

presents a data structure, named a Grid advance reservation Queue (GarQ), which is built

for this purpose. Then, Chapter 6 shows how GarQ is used by an On-line Strip Packing
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(OSP) algorithm to find alternative offers.

Chapter 7 addresses the topic of increasing resource revenue, and regulating demand

and supply. This chapter proposes the use of Revenue Management (RM) to determine

pricing of reservations. In addition, this chapter introduces the concept of overbooking

to protect the resource against unexpected cancellations and no-shows of reservations.

Finally, Chapter 8 concludes and provides directions for future work.

These chapters are derived from various research works that have been published in

various venues, detailed as follows.

• Chapter 3 is partially derived from:

– A. Sulistio, U. Cibej, S. Venugopal, B. Robic and R. Buyya, A Toolkit for

Modeling and Simulating Data Grids: An Extension to GridSim, Concurrency

and Computation: Practice and Experience (CCPE), 20(13): 1591–1609, Sep.

2008, Wiley Press, New York, USA.

– R. Buyya and A. Sulistio, Service and Utility Oriented, Data Centers and

Grid Computing Environments: Challenges and Opportunities for Modeling

and Simulation Communities, Keynote Paper, In Proceedings of the 41st An-

nual Simulation Symposium (ANSS’08), April 13–16, 2008, Ottawa, Canada.

• Chapter 4 is partially derived from:

– A. Sulistio, W. Schiffmann, and R. Buyya, Advanced Reservation-based Schedul-

ing of Task Graphs on Clusters, In Proceedings of the 13th International Confer-

ence on High Performance Computing (HiPC’06), Dec. 18–21, 2006, Bangalore,

India.

• Chapter 5 is partially derived from:

– A. Sulistio, U. Cibej, S. Prasad, and R. Buyya, GarQ: An Efficient Schedul-

ing Data Structure for Advance Reservations of Grid Resources, International

Journal of Parallel, Emergent and Distributed Systems (IJPEDS),

DOI: 10.1080/17445760801988979, April 4, 2008, Taylor & Francis Publication,

UK.
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• Chapter 6 is partially derived from:

– A. Sulistio, K. H. Kim and R. Buyya, On Incorporating an On-line Strip

Packing Algorithm into Elastic Grid Reservation-based Systems, In Proceed-

ings of the 13th International Conference on Parallel and Distributed Systems

(ICPADS’07), Dec. 5–7, 2007, Hsinchu, Taiwan.

• Chapter 7 is partially derived from:

– A. Sulistio, K. H. Kim and R. Buyya, Using Revenue Management to Deter-

mine Pricing of Reservations, In Proceedings of the 3rd International Conference

on e-Science and Grid Computing (e-Science’07), Dec. 10–13, 2007, Bangalore,

India.

– A. Sulistio, K. H. Kim and R. Buyya, Managing Cancellations and No-shows

of Reservations with Overbooking to Increase Resource Revenue, In Proceed-

ings of the 8th International Symposium on Cluster Computing and the Grid

(CCGrid’08), May 19–22, 2008, Lyon, France.



Chapter 2

Related Work on Advance Reservation

Projects in Networks and Grids

Advance reservation (AR) is the process of requesting resources for use at specific times

in the future [132]. Common resources that can be reserved or requested are compute nodes

(CNs), storage elements (SEs), network bandwidth or a combination of any of those, as

mentioned earlier. This chapter describes recent works to give an insight into the latest

research advancements in projects or systems related to advance reservation in networks

and Grids.

2.1 Networks

Communication networks serve as a fundamental component of Grid computing, since

resources are connected over public, commercial or privately-owned networks. However,

without advance reservation, the network transmission quality can be degraded due to

heavy demand. This may create bottlenecks for data Grids, and any other applications

which primarily deal with large collections of data.

In this section, we describe reservation management systems that provide network

Quality of Service (QoS) guarantee. Table 2.1 shows a summary of these works.

13



14 Chapter 2. Related Work on Advance Reservation Projects in Networks & Grids

Table 2.1: Several systems that support advance reservation in networks.
Name Domain Summary

On-Demand Se-
cure Circuits and
Advance Reser-
vation System
(OSCARS) [62].

intra or sin-
gle domain.

Used within the Energy Sciences Network (ES-
net) [46]. It leverages technologies for enabling
bandwidth reservations, such as Resource ReSerVa-
tion Protocol (RSVP) [159], Multi Protocol Label
Switching (MPLS) [117], and network QoS [15].

Bandwidth
Reservation
for User Work
(BRUW) [71].

intra or sin-
gle domain.

Used within the Internet2 backbone network [73]. It
allows MPLS tunnels to be dynamically created or
deleted on the backbone network.

Advance Multi-
domain Provi-
sioning System
(AMPS) [108].

inter or
multiple
federated
domains.

Used as a federated reservation system within the
GEANT2 network [57]. It provides for a premium
Internet Protocol (IP) service or network QoS for
bandwidth reservation.

2.1.1 On-Demand Secure Circuits and Advance Reservation System

On-Demand Secure Circuits and Advance Reservation System (OSCARS) [62], developed

by Lawrence Berkeley National Laboratory (USA), is a prototype for enabling bandwidth

reservations in a secure channel or circuit within Energy Sciences Network (ESnet) [46],

a nation-wide network across the country. OSCARS aims to provide users with an easy

to use and administer reservations for the whole network path. OSCARS utilizes a Reser-

vation Manager (ReservMgr) to coordinate and configure a guaranteed bandwidth path.

Therefore, users can interact with the ReservMgr through a Web-Based User Interface

(WBUI) or by using the provided Application Programming Interface (API).

The ReservMgr consists of three components: the Authentication, Authorization, and

Auditing Subsystem (AAAS), the Bandwidth Scheduler Subsystem (BSS), and the Path

Setup Subsystem (PSS) [62]. The AAAS manages the security of OSCARS, where it

authenticates username and password, digitally signs messages from network domains,

allocates different resources according to users’ authorizations, and logs activities related

to creating or canceling reservations. The BBS schedules reservations, whereas the PSS

creates and removes on-demand network paths or Label Switched Paths (LSPs) in the

routers.

For the provisioning and policing of reservations, OSCARS leverages Resource ReSer-

Vation Protocol (RSVP) [159], Multi Protocol Label Switching (MPLS) [117], and network
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QoS [15]. The RSVP is used to notify the ReservMgr if the LSP can not be established

due to congestion in one of the routes, whereas the MPLS is configured to establish an

alternate path and label the LSP for a quick response in packet forwarding. Finally,

the network QoS is used to differentiate different packets based on their Class-of-Service

(CoS) attributes. Thus, packets belonging to a class with higher weight will receive a

higher priority and will not be dropped in the case of network congestion.

2.1.2 Internet2 Bandwidth Reservation for User Work

Bandwidth Reservation for User Work (BRUW) [71], as part of the Internet2’s Hybrid

Optical and Packet Infrastructure (HOPI) project [67], is a system that allows users to

reserve bandwidth over the Abilene or Internet2 backbone network [73]. The BRUW

system aims to simplify the reservation process for the users, by hiding the complexity of

finding the appropriate routes and network engineering tasks.

The BRUW system has three major components: user authentication, reservation

verification, and reservation scheduler [71]. Initially, the users need to register and au-

thenticate themselves to the BRUW system by using an on-line registration form. Once

their applications have been approved by the system administrator, the users can request

new reservations through a web portal. Then, these requests are verified against the user’s

privileges, the bandwidth availability, and the requested path that goes across the back-

bone network. If the verifications are successful, the requests are stored in the database.

Finally, the resource scheduler checks the database for reservations that need to be created

or deleted over MPLS tunnels on the backbone network.

2.1.3 GEANT2 Advance Multi-domain Provisioning System

The GEANT2 project [57] is a pan-European network for research and education purposes,

which comprises of multiple federated domains. The Advance Multi-domain Provisioning

System (AMPS) [108], as part of the GEANT2 project, is a federated reservation system

for a premium Internet Protocol (IP) service. Thus, the AMPS allows users to reserve an

end-to-end path on the GEANT2 network as a single request through a web portal. Note

that the premium IP service is a similar term to the network QoS.
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The AMPS is designed to be modular and open to future additions of premium IP

networks. It has a set of loosely coupled and independent web services: Inter-domain

Service (InterDS), Intra-domain Service (IntraDS), Network Information Service (NIS),

and Network Element Configuration Service (NECS) [108]. The InterDS is responsible for

handling users’ requests and managing their reservations globally on multiple domains.

In addition, the InterDS interacts with the IntraDS to make a new reservation on a local

domain, and with the NIS to determine the next route of the requested end-to-end path.

Each domain on the GEANT2 network is independent. Hence, the IntraDS acts as a

local resource manager and an interface to other AMPS services. The reservation request

from the InterDS is first checked against local policies on available resources. Then, the

IntraDS will send a notification back to the InterDS whether the request has been accepted

or rejected. By having the IntraDS in each domain, networks with an existing premium

IP service can participate without the need to change their existing policies.

The NIS keeps an up-to-date network information on inter- and intra-domains. Thus,

it serves as a repository which handles queries from the InterDS and IntraDS about net-

work paths and link capacities over a given period. Finally, the NECS notifies the network

administrator of a local domain with an acknowledgement if a reservation has been ac-

cepted.

2.2 Grids

In this section, we present a brief description on some advance reservation projects or

systems for job and resource management in Grids. Table 2.2 shows a summary of these

works.

2.2.1 Maui Scheduler

Maui Scheduler [91], which was originally developed by the Maui High Performance Center

(MHPC), has evolved into a community project, and is currently maintained by Cluster

Resources, Inc. The Maui Scheduler is an advanced cluster scheduler that supports advance

reservation, fairness, fairshare, optimization, job accounting and QoS policies, such as

job prioritization, job preemption, and service access. The Maui Scheduler can act as a



Section 2.2. Grids 17

Table 2.2: Some systems that support advance reservation in Grids.
Name Resource Type Summary

Maui Scheduler [91]. compute node. A local job scheduler for homogeneous clusters.
It is an advanced scheduler that supports fair-
share, backfilling and QoS policies.

Dynamic Soft
Real-Time (DSRT)
Scheduling Sys-
tem [99, 77].

CPU. How-
ever, memory
& network
can be re-
served through
QualMan [99].

A scheduler for soft real-time applications,
where resources are shared among them. The
CPU broker of the DSRT system provides al-
ternative offers for negotiation if a reservation
request is rejected.

PBS Pro [102]. compute node A local resource manager (a commercial version
of PBS) with added support in advance reserva-
tion, security and information management. It
can also be used to submit jobs to Globus [51].

Sun Grid Engine
(SGE) [123].

compute node An advanced resource management tool for dis-
tributed computing environments. It can inter-
act with an external scheduler, such as Maui, for
providing more comprehensive reservation func-
tionalities.

Globus Architec-
ture for Reservation
and Allocation
(GARA) [53].

network, com-
pute node and
storage.

A system that extends the Globus resource man-
agement architecture [51] to provide end-to-end
QoS management for heterogeneous resources.
It uses DSRT [99, 77] for reserving CPUs.

Highly-Available Re-
source Co-Allocator
(HARC) [88].

network and
compute node.

An open-source system for managing multiple
reservations of various resources. It communi-
cates with a local scheduler to determine the re-
source availability in the future for a particular
reservation.

G-lambda Grid
Scheduling Sys-
tem [141].

network and
compute node.

A web services-based system, developed as part
of the G-lambda project. It provides nodes
via Globus and optical paths on a GMPLS-
controlled network infrastructure.

Grid Capacity Plan-
ning [124].

compute node. A system that provides users with reservations
through negotiations, co-allocations and pricing.
It uses a 3-layered negotiation protocol.
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local resource manager where it has limited support for job queues and static resource

partitioning to different users, groups or jobs. It can also support integration with other

local resource managers, such as PBS Pro [109, 102] and Sun Grid Engine (SGE) [123], and

collaboration with Grid schedulers to access resource information, job staging facilities,

and advance reservations.

For the Maui Scheduler, each reservation has three major components: a set of re-

sources, a timeframe denoting starting and ending time, and an access control list (ACL) [91].

To reserve the resources, a user needs to write a task description which contains the exact

required number of attributes, such as processing elements (PEs), memory, and hard disk.

The ACL specifies which users, groups or jobs can use a reservation. Then, the Maui

Scheduler will find available resources based on the given task description and ACL. To

improve utilization, the Maui Scheduler uses a backfilling method, which execute smaller

jobs waiting later in a queue, provided that they do not affect the start time of existing

reservations. The Moab Workload Manager [97] which is a commercial version of the Maui

Scheduler provides the same reservation features. However, it has other advanced func-

tionalities, such as dynamic partitioning, user statistics, fault tolerance and integration

with Globus [51].

2.2.2 Dynamic Soft Real-Time (DSRT) Scheduling System

Dynamic Soft Real-Time (DSRT) scheduling system [99, 77], developed by University of

Illinois at Urbana-Champaign (USA), is a reservation-based CPU management system

for soft real-time (SRT) applications. SRT applications, such as in multimedia, have soft

deadlines or require a minimum guarantee QoS. Thus, they are tolerable towards minor

delays or lower frame rates.

In the DSRT system, resources are shared among the SRT applications. The CPU

scheduler within the DSRT system is responsible for scheduling these tasks according to

their reservation parameters and usage patterns (e.g. bursty or sporadic mode). Thus, it

has various scheduling mechanisms, such as Periodic Constant Processing Time (PCPT),

Periodic Variable Processing Time (PVPT), Aperiodic Constant Processing Utilization

(ACPU) for maximum resource requirement, sustainable resource requirement, and con-

stant resource utilization, respectively [32]. In addition, the CPU scheduler partitions the
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resources to allow other non-reserved or time sharing (TS) processes to be run in parallel.

However, these TS tasks are to be executed by the local operating system.

The CPU broker of the DSRT system is responsible for administering reservation re-

quests, and performing admission tests to find out resource availability by interacting with

the CPU scheduler. In addition, the CPU broker negotiates with users by providing a list

of alternative offers if the original request is rejected. Finally, the CPU broker allows the

users to specify what to expect in case their reservations finish early or late. In case of the

reservation finishes early, the user can choose between termination and scheduling another

process. In case of the reservation finishes late, the user can choose whether to allow the

CPU broker to preempt or extend it for a certain period of time.

The QoS-aware Resource Management System (QualMan) [99] is an extended version

of the DSRT system that reserves additional resource types, such as network and memory.

Each resource type is associated with a broker and a scheduler. Thus, the SRT applications

need to negotiate with different brokers individually, or they can delegate this task to the

QoS broker for simplicity.

2.2.3 PBS Pro

Portable Batch System, Professional Edition (PBS Pro) [109, 102], is a local resource

manager that supports scheduling of batch jobs. It is the commercial version of PBS

with added features such as advance reservation, security (e.g. authentication and autho-

rization), cycle harvesting of idle workstations, information management (e.g. up-to-date

status of a resource and its queue length), and automatic input/output file staging. PBS

Pro can be installed on Unix/Linux and Microsoft Windows operating systems.

PBS Pro consists of two major component types: user-level commands and system

daemons or services (i.e. Job Server, Job Executor and Job Scheduler) [102]. Commands,

such as submit, monitor and delete jobs, can be first submitted through a command-line

interface or a graphical user interface. These commands are then processed by the Job

Server service. These jobs are eventually executed by the Job Executor service or MOM.

In addition, PBS Pro enables these jobs to be submitted to Globus [51] via the Globus

MOM service. Finally, the Job Scheduler service enforces site policies for each job, such

as job prioritization, fairshare, job distribution or load balancing, and preemption. By
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default, the Job Scheduler uses the First In First Out (FIFO) approach to prioritize jobs,

however, it can also use a Round Robin or fairshare approach, where jobs are ordered

based on the group’s usage history and resource partitions.

Reservations are treated as jobs with the highest priority by the Job Scheduler service.

Hence, reservation requests need to be checked for possible conflicts with currently running

jobs and existing confirmed reservations, before they are being accepted. Requests that

fail this check are denied by the Job Scheduler service.

2.2.4 Sun Grid Engine (SGE)

Sun Grid Engine (SGE) is an advanced resource management tool for distributed com-

puting environments [123]. It is deployed in a cluster and/or campus Grid testbed, where

resources can have multiple owners, but they can also belong to a single site and organiza-

tion. SGE enables the submission, monitoring and control of user jobs through a command

line interface or a graphical user interface via QMON. In addition, SGE supports check-

pointing, resource reservation, and Accounting and Reporting Console (ARCo) through a

web browser.

In SGE, resources need to be registered or classified into four types of hosts. The

master host controls the overall resource management activities (e.g. job queues and user

access list), and runs the job scheduler. The execution host executes jobs, while the submit

host is used for submitting and controlling batch jobs. Finally, the administration host

is given to other hosts, apart from the master host, to perform administrative duties. By

default, the master host also acts as an administration host and a submit host.

To manage resource reservations, each job is associated with a usage policy or priority,

the user group, waiting time, and resource sharing entitlements [123]. Thus, the earliest

available nodes will be reserved for pending jobs with higher priority by the SGE scheduler

automatically. This reservation scenario is mainly needed to avoid the job starvation prob-

lem for large (parallel) jobs. On the other hand, SGE can leverage an external scheduler,

such as Maui Scheduler [91] to provide more comprehensive reservation functionalities.
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2.2.5 Globus Architecture for Reservation and Allocation (GARA)

Globus Architecture for Reservation and Allocation (GARA) extends the Globus resource

management architecture [51], by providing advance reservations and end-to-end QoS man-

agement for heterogeneous resources, such as compute nodes, storage elements, network

bandwidth or a combination of any of these [53]. GARA uses Globus toolkit’s information

service for resource discovery, such as obtaining site-specific policies, system characteristics

(e.g. hardware architecture and network type), and its current state (e.g. availability and

installed software).

GARA adopts a layered structure, where a Local Resource Allocation Manager (LRAM)

provides reservation services specific to each individual resource type and a higher-level

GARA External Interface (GEI) handles issues, such as registration, resource discovery,

and authentication of incoming requests. To handle bandwidth reservations or network

QoS, GARA uses differentiated service mechanisms (proposed by Blake et al. [15]) by

implementing an expedited forwarding per-hop behavior (PHB), configuring the ingress

routers that it controls, and deploying online admission control mechanisms to enable

adaptive management of reservations [55]. To reserve compute nodes, GARA adopts the

Dynamic Soft Real-Time (DSRT) scheduler [99] for real-time scheduling of tasks. Finally,

to reserve storage elements, GARA interacts with Distributed-Parallel Storage System

(DPSS) [146] to achieve high-performance data handling.

Any co-reservation or co-allocation agents can interact with GARA seamlessly, by

implementing the required advance reservation and information service API or by using the

Java CoG Kit package [151]. With these approaches, agents can find available resources,

make the required reservations according to QoS, and submit jobs on behalf of applications

or users.

2.2.6 Highly-Available Resource Co-Allocator (HARC)

Highly-Available Resource Co-Allocator (HARC) [88], developed by the Center of Com-

putation & Technology (CCT) at Louisiana State University (USA), is an open-source

system for managing multiple reservations of various resources. This can be done by users

sending reservation requests to HARC via its Java API or a command-line interface. Then,
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the requests are managed by HARC Acceptors. These Acceptors are responsible for inter-

acting with an individual Resource Manager of a specific type, similar to GARA’s LRAM.

Next, the Resource Manager communicates with a local scheduler to determine the re-

source availability in the future for a particular request. Finally, the Resource Manager

sends a message to users via Acceptors, whether it accepts or rejects the given reservation

request. If the request is accepted, then it needs to be committed afterwards [88].

From the above description, HARC employs a two-phase commit protocol. To ensure

the reliability of Acceptors and to prevent any missing messages, HARC uses Paxos Com-

mit [61], a transaction commit protocol, where it uses multiple Acceptors for the same user

to communicate with Resource Managers. With this approach, each Resource Manager

will send the same message to multiple Acceptors. If the head or lead Acceptor fails, then

other Acceptors will take its place automatically.

In HARC, new types of resource can be integrated easily by creating new Resource

Managers. To reserve compute nodes, the HARC Compute Resource Manager works with

a local batch scheduler that supports advance reservation, such as Maui Scheduler [91]

or Moab Workload Manager [97]. To reserve network bandwidth, the HARC Network

Resource Manager acts as a centralized scheduler that oversees the overall management of

network traffic for the entire testbed [87].

2.2.7 G-lambda Grid Scheduling System

The Grid scheduling system, developed as part of the G-lambda project, is a web service

system that is able to allocate resources (compute nodes and network) in advance [141].

The aim of the G-lambda project is to build a standard web service interface among

resource management systems in Grid and network computing [56]. The Grid scheduling

system consists of two main components: the Grid Resource Scheduler (GRS) and the

Network Resource Management System (NRM).

The GRS is developed using Globus Toolkit 4 [50], a Java implementation of Web

Services Resource Framework (WSRF). It handles reservation requests from applications

or Grid portals. To reserve compute nodes, the GRS interacts with Computing Resource

Manager (CRM) on each site. To reserve network bandwidth, the GRS communicates

with Network Resource Management System (NRM). The NRM provides optical paths
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on a GMPLS-controlled network infrastructure. GMPLS is a generalization of the MPLS

architecture, where it supports multiple types of switching other than label switching, such

as lambda and fibre (port) [89].

To satisfy the user’s QoS requirements, the scheduling module inside the GRS interacts

with the CRM and/or NRM to locate available reservation slots using a depth-first search

scheme [141]. However, new scheduling techniques can be easily incorporated into the

module without affecting the rest of the system.

2.2.8 Grid Capacity Planning

The Grid Capacity Planning system [124], developed by the University of Innsbruck (Aus-

tria), targets to provide users with reservations of Grid resource through negotiations,

co-allocations and pricing. The system has a 3-layered negotiation protocol, where the

allocation layer deals with reservations on a particular Grid resource, the co-allocation

layer performs a selection of available nodes from all resources based on user’s QoS and

optimization constraints (e.g. operating system and cost of reservations), and the negoti-

ation layer communicates with the user about suitable reservation times and their prices.

However, the system only concentrates on reserving compute nodes in advance. This is

done by having the allocator and co-allocator components as WSRF web services based

on the Globus Toolkit 4 [50].

The allocator exists at an individual Grid site, where it uses a Vertical Split and

Horizontal Shelf-Hanger (VSHSH) algorithm [124] to solve the allocation problem. In

the VSHSH algorithm, nodes are dynamically partitioned into different shelves based on

demands or needs. Each shelf is associated with a fixed time length, number of nodes and

cost. A new reservation request is placed or offered into an adjacent shelf that is more

suitable.

Then, the co-allocator collects results from allocators of various Grid sites, and pro-

duces suitable reservation slots or offers according to the user’s QoS requirements. To

manage different requests from the user, the co-allocator delegates these tasks to co-

allocation managers (CM). Each CM manages and negotiates one user request. Thus, this

approach reduces the complexities in administering reservations.
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2.3 Summary

This chapter describes some recent works related to advance reservation in networks and

Grids. Reserving bandwidth over optical networks can be achieved by defining a minimum

bandwidth requirement. Then, the resource manager will try to establish an end-to-end

communication path over inter- or intra-domain. In case of multiple or inter-domain, the

resource manager will interact or negotiate with each local administrator. Thus, a user

does not need to reserve network links individually.

In Grids, all the presented works are able to reserve and manage compute nodes

over hetero- or homogeneous systems. This can be done by interacting with a local re-

source manager at each site. Few Grid systems, such as GARA [53], HARC [88] and

G-lambda [141], can also reserve network bandwidth.

All the aforementioned systems are expensive and time-consuming to build, operate

and maintain. Thus, these exercises may not be feasible to some researchers and students.

In the next chapter, we present a Grid simulator, named GridSim. GridSim is an open-

source simulator that provides comprehensive features, such as advance reservation of

compute nodes, resource failure, network QoS, and simulation of data Grids. Hence, with

GridSim, researchers and students can model various scenarios in networks and Grids.



Chapter 3

A Grid Simulator that Supports Advance

Reservation

Often, the evaluation of complex scenarios can not feasibly be carried out on a real

Grid environment due to its dynamic nature. Thus it is difficult to produce performance

evaluation in a repeatable and controlled manner. In addition, Grid testbeds are limited,

and creating an adequately-sized testbed is expensive and time consuming. Moreover,

the testbed requires the handling of different administration policies at each resource.

Therefore, it is easier to use simulation as a means of studying these complex scenarios.

This chapter presents a new extension to GridSim, a Grid simulator, to support advance

reservation of compute nodes. Moreover, this chapter describes several improvements to

the existing GridSim design to make it more flexible and extensible. Thus, new features

can be added and incorporated easily into GridSim.

3.1 Grid Simulation Tools

Simulation has been used extensively for modeling and evaluation of real world systems,

from business process and factory assembly line to computer systems design. Consequently,

modeling and simulation has emerged as an important discipline and many standard and

application-specific tools and technologies have been built. They include simulation lan-

guages (e.g. Simscript [128]), simulation environments (e.g. Parsec [8]), simulation li-

25
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Table 3.1: Some recent and notable Grid simulators.
Functionalities GridSim OptorSim SimGrid MicroGrid GangSim

Resource Extensibility
√

–
√ √

–
Data replication

√ √
– – –

Disk input/output overheads
√

– –
√

–
Complex file filtering or data query

√
– – – –

Scheduling user jobs
√

–
√ √ √

reservation of a resource
√

– – – –
Workload trace-based simulation

√
–

√
–

√

Differentiated network QoS
√

– – – –
Generate background network traffic

√ √ √ √
–

Auction framework
√ √

– – –

braries (e.g. SimJava2 [126]), and application specific simulators (e.g. NS-2 network sim-

ulator [103]). While there exists a large body of knowledge and tools, there are very few

well-maintained tools available for application scheduling simulation in Grid computing

environments. Table 2 lists some of the recent Grid simulation tools that have emerged.

OptorSim [9] is developed as part of the EU DataGrid project. It aims to mimic the

structure of an EU DataGrid Project and study the effectiveness of several Grid replication

strategies. It is quite a complete package as it incorporates few auction protocols and

economic models for replica optimization. However, it mainly focuses more on the issue

of data replication and optimization.

The SimGrid toolkit [28], developed at the University of California at San Diego

(UCSD), is a C language based toolkit for the simulation of application scheduling. It

supports modeling of resources that are time-shared and the load can be injected as con-

stants or from real traces. It is a powerful system that allows creation of tasks in terms of

their execution time and resources, with respect to a standard machine capability.

The MicroGrid emulator [133], undertaken at the UCSD, is modeled after Globus [51],

a software toolkit used for building Grid systems. It allows execution of applications

constructed using the Globus toolkit in a controlled virtual Grid resource environment.

MicroGrid is actually an emulator meaning that actual application code is executed on the

virtual Grid. Thus, the results produced by MicroGrid are much closer to the real world

as it is a real implementation. However, using MicroGrid requires knowledge of Globus

and implementation of a real system/application to study.

GangSim [43], developed at the University of Chicago, is targeted towards a study of
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usage and scheduling policies in a multi-site and multi-VO (Virtual Organization) envi-

ronment. It is able to combine discrete simulation techniques and modeling of real Grid

components in order to achieve scalability to Grids of substantial size.

Finally, GridSim [134], with development led by the University of Melbourne, supports

simulation of various types of Grids and application models scheduling. The following sec-

tions explain GridSim’s capabilities, architecture, as well as the design and implementation

of new extensions that have been integrated into GridSim.

3.2 GridSim Toolkit

GridSim is an open-source software platform, written in Java, that provides features for

application composition, information services for resource discovery, and interfaces for as-

signing applications to resources. GridSim also has the ability to model the heterogeneous

computational resources of various configurations [22].

By leveraging these existing functionalities, new extensions are added into GridSim

to support advance reservation (AR), differentiated levels of network Quality of Service

(QoS) [140], and data Grid [139]. These extensions enable GridSim to be a comprehen-

sive tool for simulating computational and/or data Grids. Some of the GridSim features

enabled by the new extensions are outlined below:

• It allows the modeling of different resource characteristics and their failure proper-

ties [24].

• It enables simulation of workload traces taken from real supercomputers.

• It supports a reservation-based mechanism for resource allocation.

• It has an auction framework, that contains several types of auction, such as English,

Dutch, Double and Sealed-bid first-price auction [38].

• It allocates incoming jobs based on space- or time-shared mode.

• It has the ability to schedule compute- and/or data-intensive jobs [139].

• It provides clear and well-defined interfaces for implementing different resource allo-

cation algorithms.
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Figure 3.1: GridSim architecture

• It enables simulation of differentiated levels of network QoS [140].

• It has a background network traffic functionality based on a probabilistic distribu-

tion [140]. This is useful for simulating data-intensive jobs over a public network

where the network is congested.

• It allows modeling of several regional Grid Information Service (GIS) components for

resource discovery. Hence, it is able to simulate a virtual organization (VO) scenario.

In Grids, resources can be part of one or more VOs, as mentioned earlier. The concept

of a VO allows users and institutions to gain access to their accumulated pool of resources

to run applications from a specific field [54], such as high-energy physics or aerospace

design. With these features, GridSim offers researchers the functionality and flexibility of

simulating Grids for various types of studies, such as service-oriented computing [39], Grid

meta-scheduling [3], workflow scheduling [113], VO-oriented resource allocation [44], and

security solutions [101].

3.2.1 GridSim Architecture

The GridSim architecture with the new extensions is shown in Figure 3.1. GridSim is based

on SimJava2 [126], a general purpose discrete-event simulation package implemented in

Java. Therefore, the first layer at the bottom of Figure 3.1 is managed by SimJava2 for
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Figure 3.2: The interaction between entities in SimJava2.

handling the interaction or events among GridSim components. Also, GridSim denotes

version 4.1 of the software throughout (at the time of writing this thesis).

All components in GridSim communicate with each other through message passing

operations defined by SimJava2. The second layer models the core elements of the dis-

tributed infrastructure, namely Grid resources such as clusters, storage repositories and

network links. These core components are absolutely essential to create simulations or

experiments in GridSim.

The third and fourth layers are concerned with modeling and simulation of services

specific to Computational and Data Grids respectively. Some of the services provide

functions common to both types of Grids such as information about available resources

and managing job submission. In case of Data Grids, job management also incorporates

managing data transfers between computational and storage resources. Replica catalogs

or information services for files and data, are also specifically implemented for Data Grids.

The fifth layer contains components that aid users in implementing their own schedulers

and resource brokers (on behalf of users), so that they can test their own algorithms and

strategies. The layer above this helps users define their own scenarios and configurations

for validating their algorithms.

3.2.2 Fundamental Concepts

In SimJava2, each simulated component that interacts with others, is referred to as an

entity [126]. The communication between entities is modeled by sending or scheduling

events through ports, as shown in Figure 3.2. However, ports in SimJava2 are unidirec-

tional communication links. For example, in this figure, Entity A can only send events to
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Figure 3.3: Relationship between SimJava2 and GridSim classes.

Entity B. In addition, Entity A receives events from Entity C only, not from others.

An entity runs in parallel in its own thread by inheriting from the class Sim entity,

while its desired behavior must be implemented by overriding a body() method, as shown

in Figure 3.3. In this figure, Input and Output are GridSim classes that are responsible

for handling incoming and outgoing events through a network link respectively. Moreover,

the class GridSimCore attaches input and output (I/O) ports and links them to another

entity automatically. Thus, all lower-level implementations are hidden inside this class.

In SimJava2, events and ports are represented by Sim event and Sim port classes respec-

tively. Note that the class GridSimCore does not have the body() method, because its

subclass will override the method for dealing with specific events. Moreover, in a class

diagram (Figures 3.3, 3.5, 3.9 and 3.10) that uses Unified Modeling Language (UML) no-

tations [112], attributes and methods are prefixed with characters +, # and − indicating

access modifiers public, protected and private respectively.

To send an event, the entity needs to use either the sim schedule() method of

Sim entity or the send() method of GridSimCore. Both methods have the same func-

tionality, where they pass the given event into the SimJava2’s simulation kernel with some

important parameters, such as destination name, delay time, and tag name. The delay

time refers to the waiting time of an event in the future event queue, whereas the tag name

indicates a specific action or activity that needs to be performed by the receiver [126].
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Figure 3.4: Interaction among GridSim entities in a network topology.

Figure 3.4 shows a high-level overview of the flow of communication among GridSim

entities, such as GridUser, Link, Router and GridResource, all are instances of Sim entity.

Data sent by GridUser goes to its Output entity (step 1). The Output entity breaks the

data into packets based on the Maximum Transmission Unit (MTU) of a network link (step

2). Then, other network components such as router and packet scheduler will deliver these

packets to the destination, according to a routing table and prioritization respectively [140]

(step 3–7). Finally, the data is received from a network link by GridResource via its Input

entity (step 8–9). the Input entity assembles the packets back into the original data. Next,

we briefly mention all of the GridSim packages and their functionalities.

3.2.3 New GridSim Design

Modifications or improvements to the initial GridSim design, as mentioned in [22], are

needed to allow the addition of new features to be effortlessly integrated. In this section,

we briefly mention some of them.

Figure 3.5 shows a class diagram hierarchy of the new GridSim design, represented by

the UML notations. This figure also shows several new packages created since the initial

design. However, not all classes and their complete attributes and methods are shown in

this figure, as they can be found in the GridSim website [134]. The description of each

GridSim package is mentioned below.

The gridsim package

This is the original GridSim package containing classes that form the main simulation

structure of GridSim, such as
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Figure 3.5: Overview of GridSim class diagram (selected classes).
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• GridSim. This class is responsible for initialization and starting of a simulation, via

init() and startGridSimulation() static methods respectively. The initialization

is required in order to activate the simulation kernel of SimJava2. Moreover, it

should be done before creating any of the entities.

In the new design, this class has undergone a major change, i.e. moving all function-

alities related to the I/O communications to the class GridSimCore, to reduce its

complexities and size for easier maintenance. As a result, this class only concentrates

on recording statistics and managing gridlets (or jobs in GridSim terms). Thus, the

change makes room for new features to be added, such as allowing users to cancel,

to migrate or to know the status of a particular job.

• GridSimCore. This base class is created, as part of the new GridSim design, in order

to reduce the complexity of the class GridSim, as mentioned earlier. Hence, this

class is mainly responsible for managing and handling the I/O communications of

an entity. Moreover, with the addition of the gridsim.net package, an entity of

this class has the ability to know the bottleneck of a network route (by using various

ping methods) or to generate background network traffic in a topology (by using the

class TrafficGenerator).

• Gridlet. This class represents a job package in GridSim, where it contains execution

management details, such as the job length - expressed in Millions Instruction (MI),

the number of processing elements (PEs) required, and the owner or user id.

• GridUser. This user class is created, as part of the new GridSim design, in order to

communicate with a designated GIS entity (extended from the class AbstractGIS

from the gridsim.index package). Hence, it allows the user to query to the GIS

entity regarding to resources’ availabilities and other information locally (within a

VO) or globally.

• GridResource. This class represents a resource with various properties, such as

time zone, a scheduling policy, and number of PEs and their ratings (expressed

in Million Instructions Per Second (MIPS) as devised by Standard Performance

Evaluation Corporation (SPEC) [135]). Therefore, resources can be modeled as
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different hardware in GridSim, such as Symmetric Multi-Processing (SMP) systems

or clusters.

This class has undergone a major change in the new design to allow extensibility

and flexibility in creating new types of resources and scheduling algorithms. More

details on this change is discussed in Section 3.3.2.

• AllocPolicy. This is an abstract class that handles the internal GridResource allo-

cation policy. With this new design, new scheduling algorithms can be easily added

into the resource entity. This can be done by extending this class and implementing

the required abstract methods, as shown in Figure 3.5. More details on this change

is discussed in Section 3.3.2.

This package also includes several new classes that support advance reservation, such

as ARPolicy, AdvanceReservation and ARGridResource. These classes will be discussed

in Section 3.3.

The gridsim.auction package

This new package contains classes that form the framework of an auction model [38] in

GridSim. They include EnglishAuction, DutchAuction, and DoubleAuction for allocat-

ing compute nodes to the winning bidder based on English, Dutch and Double auctions

respectively. Detailed explanation of this package can be found in [38].

The gridsim.datagrid package

This new package contains classes that form the framework of a data Grid model in

GridSim. Some of them are DataGridResource and DataGridUser.

To support data Grid, a Grid resource in GridSim is associated with one or more

Storage objects that can each model either a hard disk-based or a tape-based storage

device, as shown in Figure 3.6. The resource has a Replica Manager which handles

incoming requests for datasets located on the storage elements. In case a new replica

is created, it also registers the replica with the catalog. The replica manager can be

extended to incorporate different replica retention or deletion policies. A Local Replica

Catalog object can be optionally associated with the resource to index available files
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Figure 3.6: Components of a Grid resource that supports data Grid [139].

and handle direct user queries about local files. Finally, the resource has an Allocation

Policy object which executes jobs to available compute nodes. Detailed explanation of

this package can be found in [139].

The gridsim.filter package

This new package contains classes that form the selection of incoming events of a GridSim

entity. Each class looks for a specific future event from the Input entity that matches cer-

tain parameters, such as tag name and sender name. For example, the class FilterCreateAR

only finds an incoming event from a resource, regarding to creating or accepting a new

reservation request. Another example, the class FilterGridlet looks for a specific incom-

ing event that carries a Gridlet object and matches given parameters, such as resource id

and user id.

The gridsim.index package

This new package contains classes that form the structure of multiple regional GIS entities.

These classes act as an indexing service for storing a list of available resources within its

regional area or from the same VO. The class AbstractGIS is an abstract class, which aims

to provide skeletons for its child classes (e.g. RegionalGIS) to implement the required base

functionalities of a regional GIS. In addition, the class RegionalGIS is able to interact with

other GIS entities to find a list of resources that are located outside its VO domain.
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Figure 3.7: Class diagram of the gridsim.net package.

The gridsim.net package

This new package contains classes that form the network model [140] in GridSim, as

shown in Figure 3.7. Hence, it allows GridSim entities to be connected using links and

routers, with different packet scheduling policies for realistic experiments. In addition, this

package enables the entity to request network information during runtime and to generate

background traffic during the experiment. Detailed explanation of this package can be

found in [140].

The gridsim.resFailure package

This new package contains classes that form the framework of resource failure and de-

tection mechanisms [24] in GridSim. The failure models are based on probabilistic dis-

tributions with fully configurable parameters to test various scenarios. As a result, it

gives GridSim a realistic model in simulating dynamic Grid computing experiments. They

include AvailabilityInfo for storing an information about a resource availability, and

FailureMsg for denoting a failure event of a resource. Detailed explanation of this package

can be found in [24].

The gridsim.util package

This new package contains classes that perform other important functionalities of GridSim.

Several of them are Workload, TrafficGenerator, and NetworkReader.

The class Workload is responsible for reading a workload trace file, and sending jobs to
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a resource according to the trace data. The trace is recorded from a real production system.

Hence, it contains several important properties (e.g. submission time and runtime), that

are useful in the evaluation of resource schedulers and system utilization. The format of the

trace can be in standard workload format (SWF) [49], Grid workload format (GWF) [63]

or a user-defined one.

The class TrafficGenerator generates the inter-arrival time, packet size, and number

of packets for each interval, according to various distributions that are supported by Sim-

Java2. Some of the distributions are Bernoulli, negative exponential, and binomial. Then,

these generated values are used by an Output entity to send background traffic packets to

one or all other entities in the network topology [140].

The class NetworkReader has a similar functionality to Workload, where it parses a

file and constructs a network topology automatically. Thus, this class is very useful when

simulating a large topology with many network components, such as routers and links.

3.3 Design and Implementation of Advance Reservation

This section discusses the addition of advance reservation functionalities into GridSim.

With this new extension, GridSim has the framework to handle:

• Creation or request of a new reservation for one or more compute nodes (CNs) or

processing elements (PEs).

• Commitment of a newly-created reservation.

• Activation of a reservation once the current simulation time is the start time.

• Modification of an existing reservation.

• Cancellation and query of an existing reservation.

Note that from this chapter onwards, we use the terms PEs or CNs interchangeably.

3.3.1 States of Advance Reservation

A reservation can be in one of several states during its lifetime as shown in Figure 3.8. The

life-cycle of a reservation in GridSim is influenced by recommendations from the Global
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Figure 3.8: A state transition diagram for advance reservation.

Grid Forum (GGF) draft [86] and the Application Programming Interface (API) [119].

Transitions between the states are defined by the operations that a user performs on the

reservation. These states are defined as follows:

• Requested: Initial state of the reservation, when a request for a reservation is first

made.

• Rejected: The reservation is not successfully allocated due to full slots, or an

existing reservation has expired.

• Accepted: A request for a new reservation has been approved.

• Committed: A reservation has been confirmed by a user before the expiry time,

and will be honored by a resource.

• Change Requested: A user is trying to alter the requirements for the reservation

prior to its starting. If it is successful, then the reservation is committed with the

new requirements, otherwise the values remain the same.

• Active: The reservation’s start time has been reached. The resource now executes

the reservation.
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+ h a n d l e C a n c e l R e s e r v a t i o n ( i n t , i n t , i n t ) :  v o i d
+ h a n d l e C o m m i t R e s e r v a t i o n ( i n t , i n t , i n t , G r i d l e t ) :  v o i d
+ h a n d l e C r e a t e R e s e r v a t i o n ( A R O b j e c t , i n t , i n t ) :  v o i d
+ h a n d l e M o d i f y R e s e r v a t i o n ( A R O b j e c t , i n t , i n t ) :  v o i d
+g r i d l e tCance l ( i n t , i n t ) :  vo i d
+gr id le tS ta tus ( in t , i n t ) :  i n t
+ g r i d l e t S u b m i t ( G r i d l e t , b o o l e a n ) :  v o i d

Figure 3.9: A GridSim resource class diagram (selected attributes and methods).

• Cancelled: A user no longer requires a reservation and requests that it is to be

cancelled.

• Completed: The reservation’s end time has been reached.

• Terminated: A user terminates an active reservation before the end time.

From the above states, GridSim uses a two-phase commit, where a user requests for

a new reservation first. Then, if the request is accepted, then the user needs to commit

the reservation within a specified time limit. If the request gets rejected, then the user

needs to negotiate until successful. The following sections describe the implementation

and usage of these states into GridSim.

3.3.2 Extensible Grid Resource Framework

The new GridSim design provides well-defined abstractions for configuring the resource

management of a system. In GridSim, a resource is represented by a GridResource object.

Each resource is associated with an AllocPolicy object that allocates computing nodes

to the user jobs, depending on the given policy. Hence, the GridResource object, in the

new GridSim design, only acts as an interface between users and the local scheduler, as

shown in Figure 3.9. It is up to the scheduler to manage submitted jobs and to process
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various incoming events. In contrast, the initial GridSim design, as stated in [22], puts

various local schedulers and other resource functionalities into the class GridResource.

As a result, it was hard to maintain and too complex to add new algorithms.

On the other hand, the advantage of this new design is that it gives the flexibility

to implement various scheduling algorithms, such as Shortest Job First (SJF), Earliest

Deadline First (EDF) and EASY Backfilling [98], as they are separate classes or entities.

Hence, they are more manageable. More importantly, introducing a new scheduler into

the resource does not require any modifications to an existing resource nor effect the

functionalities of earlier algorithms. Currently, GridSim has TimeShared and SpaceShared

objects that use Round Robin and First Come First Serve (FCFS) approaches respectively,

as highlighted in Figure 3.9. Note that in this Figure, only selected attributes and methods

in a class are shown.

Creating a new scheduler in the new design is as simple as extending the class AllocPolicy

and implementing the required abstract methods, as shown in Figure 3.9. For develop-

ing algorithms that have advance reservation capabilities, they need to extend the class

ARPolicy. For example, ARSimpleSpaceShared is a child of ARPolicy class that uses

FCFS approach to schedule reserved jobs. Chapter 4 gives another example on how to

schedule task graphs efficiently by using advance reservation and interweaving techniques.

The same extensibility concept is applied to creating a grid resource for different pur-

poses. For example, ARGridResource is a child of the class GridResource that handles

advance reservation operations, such as add new requests and delete existing reservations,

as depicted in Figure 3.9. Another example is DataGridResource that extends from the

class GridResource to manage queries or requests of various Data Grids functionalities,

such as add master files or delete replicas in the system. Note that these operations or

functionalities are administered in the processOtherEvent() method of the subclasses,

where it selects an incoming event based on its tag name and refers to a private method

accordingly. To register or advertise new features into a GIS entity, the subclass can over-

ride the registerOtherEntity() method, as shown in the class DataGridResource in

Figure 3.9.
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A d v a n c e R e s e r v a t i o n

- t r ansac t i on ID :  i n t
- b o o k i n :  A r r a y L i s t
- t i m e Z o n e :  d o u b l e
+ A d v a n c e R e s e r v a t i o n ( n a m e : S t r i n g , b a u d R a t e : d o u b l e )
+ A d v a n c e R e s e r v a t i o n ( n a m e : S t r i n g , b a u d R a t e : d o u b l e , t i m e Z o n e : d o u b l e )
+ c r e a t e R e s e r v a t i o n ( s t a r t T i m e : l o n g , e n d T i m e : l o n g , n u m P E : i n t , r e s I D : i n t ) :  S t r i n g
+ c r e a t e R e s e r v a t i o n ( s t a r t T i m e : l o n g , d u r a t i o n : i n t , n u m P E : i n t , r e s I D : i n t ) :  S t r i n g
+ c r e a t e R e s e r v a t i o n ( s t a r t T i m e : C a l e n d a r , e n d T i m e : C a l e n d a r , n u m P E : i n t , r e s I D : i n t ) :  S t r i n g
+ c o m m i t R e s e r v a t i o n ( b o o k i n g I D : S t r i n g ) :  i n t
+ c o m m i t R e s e r v a t i o n ( b o o k i n g I D : S t r i n g , o b j : G r i d l e t ) :  i n t
+ c o m m i t R e s e r v a t i o n ( b o o k i n g I D : S t r i n g , l i s t : G r i d l e t L i s t ) :  i n t
+ m o d i f y R e s e r v a t i o n ( b o o k i n g I D : S t r i n g , o b j : A R O b j e c t ) :  i n t
+ q u e r y R e s e r v a t i o n ( b o o k i n g I D : S t r i n g ) :  i n t
+ c a n c e l R e s e r v a t i o n ( b o o k i n g I D : S t r i n g ) :  i n t

Figure 3.10: AdvanceReservation class diagram.

3.3.3 GridSim Application Programming Interface

The GridSim user-side API for AR is encoded in the method calls of the AdvanceReservation

class as shown in Figure 3.10. Thus, it hides the complexity of users wanting to use the AR

functionalities in GridSim. In this class diagram, attributes and methods are prefixed with

characters + and − indicating access modifiers public and private respectively. However,

only few methods are drawn and discussed in this chapter. Detailed API of this class can

be found on the GridSim website [134]. In this section, each AR functionality is briefly

discussed.

In Figure 3.10, the transactionID attribute is a unique identifier for a reservation,

and is used to keep track of each transaction or method call associates with this reser-

vation. Moreover, booking is an important attribute for storing reservations that have

been accepted and/or committed. Finally, timeZone is another important attribute, as

resources are located geographically in different time zones. Hence, a user’s local time will

be converted into a resource’s local time when the resource receives a reservation.

For requesting a new reservation, a user needs to invoke the createReservation()

method, as depicted in Figure 3.10. Before running a GridSim program, an initialization

of some parameters is required. One of the parameters is the simulation’s start time

sim ts, where it can be a current clock time represented by a Java’s Calendar object.

Therefore, a reservation’s start time needs to be ahead of sim ts. The start time can be

of type Calendar object or long representing time in milliseconds. Reservations can also

be done immediately, i.e. the current time is being used as the start time with or without



42 Chapter 3. A Grid Simulator that Supports Advance Reservation

A d v a n c e R e s e r v a t i o n A R G r i d R e s o u r c e A R S i m p l e S p a c e S h a r e d

s e n d  a  n e w  
r e s e r v a t i o n  r e q u e s t  
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Figure 3.11: A sequence diagram for performing a new reservation in GridSim

specifying a duration time. The overall sequence from requesting a new reservation until

the completion of reserved jobs, is captured in Figure 3.11.

If a new reservation has been accepted, then the createReservation() method will

return a unique booking id, bookingID, as a String object, as shown in Figure 3.10.

Otherwise, it will return an approximate busy time in the interval of 5, 10, 15, 30 and

45 in time units. The time unit can be in seconds or minutes or hours. If a request gets

rejected, the user can negotiate with the resource by modifying the requirements, such as

reducing the number of PEs needed or shortening the duration time, until they have come

into an agreement.

Once a request for a new reservation has been accepted, the user must confirm it before

the expiry time of this reservation by invoking the commitReservation() method. The

expiry time is set by the resource or its scheduler. The commitReservation() method

returns an integer value representing error or success code.

Committing a reservation acts as a contract for both the resource and the user. By

committing, the resource is obliged to provide PEs at the specified time for a certain
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period. A reservation confirmation can be done in one of the following ways:

• committing first before the expiry time by sending bookingID. Then, once a job is

ready, committing it again with the job attached before the reservation’s start time.

• committing before the expiry time together with a job. In GridSim, a job or task of

an application is represented by a Gridlet object.

• committing before the expiry time together with a list of jobs, GridletList.

According to the states of AR, as shown in Figure 3.8, a reservation that has been

committed successfully, can be modified before its start time. This can done by invoking

the modifyReservation() method, which returns an integer value representing error or

success code. This method has similar parameters to the createReservation() method,

where the difference is without the need to specify a resource id resID. This is because

bookingID is unique to all resources and reservations, and it contains resID.

The queryReservation() method aims to find out the current status of the given

reservation. Each reservation has one of the following status:

• active: the reservation has begun, and is currently being executed by a designated

GridResource entity.

• canceled: the reservation has been cancelled before activation.

• completed: the reservation is finished, i.e. the current time is greater than the

reservation’s end time.

• expired: the reservation has passed its given expiry time before being committed.

• not committed: the reservation has been accepted by a resource, but not yet been

committed by a user.

• not started: the reservation has not yet begun, i.e. the current simulation time is

before the start time.

• reservation does not exist: the reservation’s bookingID does not exist or can

not be found in the system.
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• terminated: the reservation has been canceled by a user during execution or active

session.

Finally, cancellation of a reservation can be done anytime before the completion time.

The cancelReservation() method requires only bookingID, and returns an integer value

representing error or success code. As with commitment and query of a reservation,

cancellation can be done for one or more jobs.

3.4 Building a Simple Experiment with GridSim

In this section, we show some code snippets on how to build a simple experiment with

GridSim. In this experiment, users are trying to reserve compute nodes to one of the

resources. However, we omit input parameters on some of the class constructors and

methods for simplicity. The exact input parameters and their types are listed in the

GridSim API documentation at the GridSim website [134]. In addition, the GridSim

website [134] provides several simple tutorial examples with detailed explanations for other

GridSim functionalities.

3.4.1 Initializing GridSim

Before creating any GridSim entities and running the experiment, we need to initialize the

SimJava2 simulation kernel. The initialization must be done through the GridSim.init()

method, as shown in Listing 3.1. The method requires three parameters: the total number

of users, the current calendar or the starting time of this experiment, and a flag denoting

whether to record communication events among GridSim entities to a log or trace file.

The trace file can be used for debugging purposes.

Listing 3.1: Code snippet for initializing GridSim.

1 public stat ic void main ( St r ing [ ] a rgs )
2 {
3 try {
4 int num user = 5 ; // number o f u s e r s c r ea ted in t h i s experiment
5 Calendar c a l = Calendar . g e t In s tance ( ) ; // experiment s t a r t i n g time
6 boolean t r a c e f l a g = fa l se ; // t r a c e GridSim events or not
7 GridSim . i n i t ( num user , ca l , t r a c e f l a g ) ;
8

9 . . . // other code f o r i n s t a n t i a t i n g new Grid r e s ou r c e s and use r s
10 }
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11 catch ( Exception e ) {
12 . . . // other code f o r handl ing e r r o r s
13 }
14 }

For the initialization, GridSim needs to know the total number of users in order to

keep track of the number of remaining users during the simulation. As such, GridSim

can notify other entities (e.g. resources and routers) about the end of simulation once all

users have exited the experiment. Thus, these entities do not need to continuously wait

for incoming events. GridSim also needs to know the starting time of the experiment, so

users can use it to determine the reservations’ start time.

3.4.2 Creating Grid Resources

Listing 3.2: Code snippet for creating a Grid resource in GridSim.

1 /∗∗
2 ∗ Creates a GridResource en t i t y that supports advanced r e s e r v a t i o n .
3 ∗ @param name the r e sou r c e name
4 ∗ @param totalPE t o t a l number o f p r o c e s s i ng e lements (PEs) or CPUs
5 ∗ @param totalMachine t o t a l number o f machines or compute nodes
6 ∗ @param ra t i ng the CPU speed
7 ∗/
8 private stat ic ARGridResource createGr idResource ( S t r ing name , int totalPE ,
9 int totalMachine , int r a t i ng )

10 {
11 // Here are the s t ep s needed to c r e a t e a Grid r e sou r c e :
12 // 1 . We need to c r e a t e a l i s t o f Machines
13 MachineList mList = new MachineList ( ) ;
14 for ( int i = 0 ; i < tota lMachine ; i++) {
15 // 2 . A Machine conta in s one or more p ro c e s s i ng e lements (PEs ) .
16 PEList peL i s t = new PEList ( ) ;
17

18 // 3 . Create PEs or CPUs, and add them in to the l i s t .
19 for ( int k = 0 ; k < totalPE ; k++) {
20 // need to s t o r e PE id and MIPS ra t i ng (CPU speed ) .
21 peL i s t . add ( new PE(k , r a t i ng ) ) ;
22 }
23

24 // 4 . Create one Machine with i t s id and l i s t o f PEs or CPUs
25 mList . add ( new Machine ( i , peL i s t ) ) ;
26 }
27

28 // 5 . Create a Re sou r c eCha ra c t e r i s t i c s ob j e c t that s t o r e s the
29 // p r op e r t i e s o f a Grid resource , e . g . ope ra t ing system and time zone .
30 Resou r c eCha ra c t e r i s t i c s r e sCon f i g = new Resou r c eCha ra c t e r i s t i c s ( . . . ) ;
31

32 // 6 . Create a network l i n k to connect t h i s r e s ou r c e
33 Link l i n k = new SimpleLink ( . . . ) ;
34

35 // 7 . Create a ca l endar that s t o r e s d e t a i l s about machines ’ a v a i l a b i l i t y
36 ResourceCalendar c a l = new ResourceCalendar ( . . . ) ;
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37

38 // 8 . F ina l ly , we need to c r e a t e a GridResource ob j e c t .
39 ARGridResource gr idRes ;
40 try {
41 // use a s chedu l e r that supports advance r e s e r v a t i o n
42 ARSimpleSpaceShared po l i c y = new ARSimpleSpaceShared ( . . . ) ;
43

44 // then c r e a t e s a g r id r e sou r c e en t i t y .
45 gr idRes = new ARGridResource (name , l ink , resConf ig , ca l , p o l i c y ) ;
46 }
47 catch ( Exception e ) {
48 . . . // other code f o r handl ing e r r o r s
49 }
50 return gr idRes ;
51 }

The next step of building an experiment with GridSim is to create one or more Grid

resources, by using the createGridResource() method, as shown in Listing 3.2. We first

create a list of machines, where each machine has more than one PE or CPU (line 13–26).

In GridSim, the total processing capability of a resource’s CPU rating is modeled in the

form of Million Instructions Per Second (MIPS) as devised by Standard Performance Eval-

uation Corporation (SPEC) [135]. In this example, we create a cluster with homogeneous

machines, since they all have the same number of PE and MIPS rating.

Each resource also contains a ResourceCharacteristics object (line 30). This object

stores static properties of a resource, such as operating system (e.g. Unix or Solaris), sys-

tem architecture (e.g. Sun Ultra), and time zone. These properties may influence the users’

decision in submitting their jobs. Next, we create SimpleLink and ResourceCalendar ob-

jects for linking this resource to a network and storing information about its machines’

availability at various times, respectively (line 33-36). Finally, we use a scheduler that

supports AR. In this case, the ARSimpleSpaceShared object is created (line 42).

3.4.3 Developing User’s Functionalities

After creating the Grid resources, the next step is to develop the functionalities of a user

in the body() method, as shown in Listing 3.3. For simplicity, we only highlight the

important parts in this listing, i.e. make a new reservation and commit it (if accepted).

Thus, we omit other details, such as how to create jobs and get the results back.

Listing 3.3: Code snippet for creating a user entity in GridSim.

1 /∗∗ A c l a s s that d e f i n e s the behavior o f a user ∗/
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2 public class UserEntity extends AdvanceReservation {
3 private int to ta lJob ;
4 . . . // other code f o r d e c l a r i n g a t t r i b u t e s
5

6 /∗∗ A cons t ruc to r ∗/
7 public UserEntity ( S t r ing name , Link l ink , int t o t a l ) throws Exception {
8 super (name , l i n k ) ;
9 to ta lJob = t o t a l ;

10 . . . // other code f o r i n s t a n t i a t i n g and i n i t i a l i z i n g a t t r i b u t e s
11 }
12

13 /∗∗ A core method that handles communications among GridSim e n t i t i e s ∗/
14 public void body ( ) {
15 // Resource Discovery f o r g e t t i n g a l i s t o f r e s ou r c e IDs
16 LinkedLis t r e s L i s t = super . ge tGr idResourceL i s t ( ) ;
17 Gr i d l e tL i s t j obL i s t = c r e a t eGr i d l e t ( to ta lJob ) ; // job c r e a t i on
18

19 // Make r e s e r v a t i o n r eque s t s and send jobs to r e s ou r c e s
20 r e se rveJob ( r e sL i s t , j obL i s t ) ;
21

22 . . . // other code f o r g e t t i n g the r e s u l t s from r e s ou r c e s
23

24 // S igna l the end o f s imu la t i on f o r t h i s user en t i t y
25 super . f i n i s hS imu l a t i o n ( ) ;
26 }
27

28 /∗∗ A method that c r e a t e s one or more Gr i d l e t s or jobs .
29 ∗ @param t o t a l the t o t a l number o f j obs
30 ∗/
31 private Gr i d l e tL i s t c r e a t eGr i d l e t ( int t o t a l ) {
32 . . . // code f o r the c r e a t i on o f user jobs
33 }
34

35 /∗∗ A method that r eque s t s f o r a new r e s e r v a t i o n and
36 ∗ commits the accepted r e s e r v a t i o n .
37 ∗ @param r e s L i s t a l i s t o f r e s ou r c e IDs
38 ∗ @param jobL i s t a l i s t o f Gr i d l e t s or jobs
39 ∗/
40 private void r e se rveJob ( LinkedLis t r e sL i s t , G r i d l e tL i s t j obL i s t ) {
41 // Want to r e s e r v e 1 day a f t e r the i n i t i a l s imu la t i on time
42 Calendar c a l = GridSim . getS imulat ionCalendar ( ) ;
43 int DAY = 24 ∗ 60 ∗ 60 ∗ 1000 ; // in m i l l i seconds
44 long s t a r t t ime = ca l . ge tT imeInMi l l i s ( ) + (1 ∗ DAY) ;
45

46 // Choose a r e sou r c e randomly from the l i s t
47 Random rand = new Random ( ) ; // a random va r i ab l e
48 int num = rand . next Int ( r e s L i s t . s i z e ( ) ) ;
49 int resID = ( ( In t eg e r ) r e s L i s t . get (num) ) . intValue ( ) ;
50

51 // Determine the durat ion time and number o f PEs r equ i r ed .
52 double durat ion = 0 ; // t o t a l durat ion time
53 for ( int i = 0 ; i < j o bL i s t . s i z e ( ) ; i++) {
54 Gr id l e t g l = ( Gr id l e t ) j obL i s t . get ( i ) ; // get a user job
55 num = g l . getNumPE ( ) ; // assume a l l j obs need the same num of PEs .
56 durat ion += g l . getGr id le tLength ( ) ; // add the durat ion time
57 }
58

59 // Request f o r a new r e s e r v a t i o n block
60 St r ing r e s u l t=super . c r ea t eRes e rva t i on ( s t a r t t ime , durat ion ,num, resID ) ;
61

62 . . . // code f o r check ing the r e s u l t ( accepted or r e j e c t e d )
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63

64 // I f s u c c e s s f u l , commit t h i s r e s e r v a t i o n by sending the jobs
65 int s t a tu s = super . commitReservation ( r e su l t , j obL i s t ) ;
66

67 . . . // code f o r check ing the commit r e s u l t ( su c c e s s or f a i l u r e )
68 }
69 }

In the body() method of Listing 3.3 (line 14–26), the user first needs to know about the

available resources. This information can be obtained by communicating with the GIS or

an indexing server (line 16). In SimJava2, each entity is associated with a unique integer ID

as a means of communication with other entities. Thus, the super.getGridResourceList()

method returns a list of resource IDs. Next, the user needs to create one or more Gridlet

objects or jobs (line 17), before reserving the compute nodes (line 20). Finally, after the

reservation has been made and the user has received the results back, the user notifies

GridSim regarding to exiting the experiment, by using the super.finishSimulation()

method (line 25). Note that in Java, the keyword super refers to using the method of the

UserEntity’s parent class. In addition, we omit the description of the createGridlet()

method (line 31–33) and how to get the results back, as the example code for these can

be found on the GridSim website [134].

In the reserveJob() method of Listing 3.3 (line 40–68), we specify that the user

wants to reserve compute nodes one day after the experiment start time (line 42–44).

Then, the user randomly selects one resource from the list (line 47–49). After determining

the reservation start time, the user also needs to estimate how many nodes to reserve and

for how long. In this listing, we assume that all jobs need the same number of PEs (line

55). Thus, the user simply determines the duration time by adding up all of the job’s

length (line 52–57). Therefore, the aim of having a reservation in this example is to run

batch jobs. Finally, the user sends a reservation request to the selected resource, and if it

is accepted, commits the reservation straight away (line 60–65). Note that in this listing,

we omit the description of the code for error checking for the case of the reservation is

rejected or the commit result is unsuccessful.
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3.4.4 Building a Network Topology

The next important step is to build a network topology, by linking Grid resources and users

to routers, as shown in Listing 3.4. Since we use a simple topology, we can show how to

set up the network entities manually in this listing. For experiments with a large network

topology, the network entities can be specified in a text file. Then, GridSim builds the

topology automatically by using the class NetworkReader, as mentioned in Section 3.2.3.

In the connectEntity() method of Listing 3.4, we first need to create two routers

(line 13–14). Then, we attach users and Grid resources at one of these routers, by using

the attachHost() method of the Router class (line 17–29). For simplicity, we choose

the FIFOScheduler object to schedule packets on all the network links according to the

First In First Out (FIFO) policy [140]. However, GridSim provides other policies for

scheduling network packets, such as Self Clocked Fair Queuing (SCFQ) and a rate-jitter

controlling regulator [140]. Finally, we connect the two routers altogether by using the

attachRouter() method of the Router class (line 32–35).

Listing 3.4: Code snippet for linking GridSim resources and users.

1 /∗∗ Bui lds a s imple network topology :
2 ∗ User ( s ) −−−− Router 1 −−−− Router 2 −−−− GridResource ( s )
3 ∗
4 ∗ @param r e s L i s t a l i s t o f GridResource ob j e c t s
5 ∗ @param us e rL i s t a l i s t o f UserEntity ob j e c t s
6 ∗ @param t r a c e f l a g r e co rd s network t r a f f i c s in r ou t e r s ( t rue means yes )
7 ∗/
8 public stat ic void connectEnt i ty ( ArrayList r e sL i s t , ArrayList u s e rL i s t ,
9 boolean t r a c e f l a g ) {

10 // Create the r ou t e r s .
11 // I f t r a c e f l a g i s s e t to true , then t h i s experiment w i l l c r e a t e
12 // the f o l l ow i n g f i l e s : r ou t e r 1 r epo r t . csv and r ou t e r 2 r epo r t . csv
13 Router r1 = new RIPRouter ( ‘ ‘ r oute r1 ’ ’ , t r a c e f l a g ) ; // Router 1
14 Router r2 = new RIPRouter ( ‘ ‘ r oute r2 ’ ’ , t r a c e f l a g ) ; // Router 2
15

16 // Connect a l l user e n t i t i e s with the Router 1 .
17 UserEntity obj = null ;
18 for ( i = 0 ; i < u s e rL i s t . s i z e ( ) ; i++) {
19 // A F i r s t In F i r s t Out (FIFO) packet s chedu l e r w i l l be used .
20 obj = ( UserEntity ) u s e rL i s t . get ( i ) ;
21 r1 . attachHost ( obj , new FIFOScheduler ( . . . ) ) ;
22 }
23

24 // Connect a l l r e s ou r c e e n t i t i e s with the Router 2 .
25 GridResource resObj = null ;
26 for ( i = 0 ; i < r e s L i s t . s i z e ( ) ; i++) {
27 resObj = ( GridResource ) r e s L i s t . get ( i ) ;
28 r2 . attachHost ( resObj , new FIFOScheduler ( . . . ) ) ;
29 }
30



50 Chapter 3. A Grid Simulator that Supports Advance Reservation

31 // Fina l ly , connect the two rou t e r s .
32 Link l i n k = new SimpleLink ( . . . ) ;
33 FIFOScheduler r1Sched = new FIFOScheduler ( . . . ) ;
34 FIFOScheduler r2Sched = new FIFOScheduler ( . . . ) ;
35 r1 . attachRouter ( r2 , l ink , r1Sched , r2Sched ) ;
36 }

3.4.5 Running GridSim

The final step is to run this experiment by calling the GridSim.startGridSimulation()

method, as shown in Listing 3.5 (line 30). This listing also highlights all the previous steps

that are needed to build and run this experiment on GridSim. Once the simulation starts,

the newly created entities (e.g. resources, users and routers) run in parallel in their own

thread according to the runtime behavior as stated in their body() method.

Listing 3.5: Code snippet for building and running GridSim.

1 public stat ic void main ( St r ing [ ] a rgs )
2 {
3 try {
4 // Step 1 : I n i t i a l i z e GridSim
5 int num user = 5 ; // number o f u s e r s c r ea ted in t h i s experiment
6 Calendar c a l = Calendar . g e t In s tance ( ) ; // experiment s t a r t i n g time
7 boolean t r a c e f l a g = fa l se ; // t r a c e GridSim events or not
8 GridSim . i n i t ( num user , ca l , t r a c e f l a g ) ;
9

10 // Step 2 : Create new Grid r e s ou r c e s
11 int t o t a l r e s o u r c e = 3 ; // number o f r e s ou r c e s c r ea ted
12 ArrayList r e s L i s t = new ArrayList ( t o t a l r e s o u r c e ) ;
13 for ( int k = 0 ; k < t o t a l r e s o u r c e ; k++) {
14 ARGridResource r e s = new createGr idResource ( . . . ) ;
15 . . . // other code f o r s e t t i n g t h i s r e s ou r c e ’ s a t t r i b u t e s
16 r e s L i s t . add ( r e s ) ;
17 }
18

19 // Step 3 : Create new use r s
20 ArrayList u s e rL i s t = new ArrayList ( num user ) ;
21 for ( int i = 0 ; i < num user ; i++) {
22 UserEntity user = new UserEntity ( . . . ) ;
23 . . . // other code f o r s e t t i n g t h i s user ’ s a t t r i b u t e s
24 u s e rL i s t . add ( user ) ;
25 }
26

27 // Step 4 : Link Grid r e s ou r c e s and use r s in a network topology
28 connectEnt i ty ( r e sL i s t , u s e rL i s t , t r a c e f l a g ) ;
29

30 // Step 5 : Sta r t the s imu la t i on
31 GridSim . s ta r tGr idS imu la t i on ( ) ;
32 }
33 catch ( Exception e ) {
34 . . . // other code f o r handl ing e r r o r s
35 }
36 }
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3.5 Summary

This chapter presents the development of GridSim, which allows modeling and simulation

of various properties, such as differentiated level of network Quality of Service (QoS),

data Grid and resource discovery in a virtual organization (VO). In addition, this chapter

introduces the work done on GridSim to support advance reservation. These features of

GridSim provide essential building blocks for simulating various Grid scenarios. Thus,

GridSim offers researchers the functionality and flexibility of simulating Grids for various

types of studies, such as service-oriented computing [39], Grid meta-scheduling [3], work-

flow scheduling [113], VO-oriented resource allocation [44], and security solutions [101].

To make GridSim more flexible and extensible, several improvements to the existing

GridSim design were carried out. The changes include moving all functionalities related

to the I/O communications in GridSim to a new class GridSimCore, creating a new class

GridUser that allows a user to communicate to a Grid Information Service (GIS) entity,

and having an abstract class AllocPolicy that handles the internal GridResource alloca-

tion policy. As a result, new features can be added and incorporated easily into GridSim

for the performance evaluation on topics addressed in this thesis. These topics include

modeling and scheduling of task graphs with advance reservation and interweaving, us-

ing an elastic reservation approach on Grid systems, and adapting Revenue Management

techniques to determine the pricing of reservations. Thus, in the next chapter, we start by

addressing the topic of modeling and scheduling of task graphs with advance reservation

and interweaving.





Chapter 4

Reservation-based Resource Scheduler for

Task Graphs

This chapter proposes a scheduling approach for task graphs by using advance reser-

vation to secure or guarantee resources prior to their executions. In addition, to improve

the resource utilization, this chapter also proposes a scheduling solution by interweaving

one or more task graphs within the same reservation block, and backfilling with other

independent jobs (if applicable).

4.1 Introduction

A Task Graph (TG) is a model of a parallel program that consists of many subtasks that

can be executed simultaneously on different compute nodes (CNs) or processing elements

(PEs). Subtasks exchange data via an interconnection network. The dependencies be-

tween subtasks are described by means of a Directed Acyclic Graph (DAG). Executing

a TG is determined by two factors: a node weight that denotes the computation time of

each subtask, and an edge weight that corresponds to the communication time between

dependent subtasks [65]. Thus, to run these TGs, we need a target system that is tightly

coupled by fast interconnection networks. Typically, systems such as cluster computing

provides an appropriate infrastructure for running parallel programs.

Each TG can be represented in a Standard Task Graph (STG) format [65], as illustrated

53
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9 3 # total subtasks and target PEs (TPEs)

0 1 0 # subtask index, node weight, and num of parents

1 1 0

2 1 1

0 2 # parent index and edge weight

3 1 1

0 4

4 1 2

1 1

2 2

5 1 1

3 3

6 1 2

4 2

5 5

7 1 2

4 1

6 4

8 1 2 # subtask index, node weight, and num of parents

1 5 # parent index and edge weight

7 2 # parent index and edge weight

Figure 4.1: Standard Task Graph (STG) format.

in Figure 4.1. The first row of the STG format consists of two integer values, representing

the total subtasks and the target PEs (TPEs) [65]. The target Processing Element (TPE)

is the number of PEs required or requested by a user to execute one TG. In this figure,

a TG consists of 9 subtasks (T0 − T8), and requires 3 TPEs. Then, a specification of

individual subtask is described in a new row. Each row consists of three integers, denoting

the subtask index or id, its node weight and number of parents, as shown in Figure 4.1.

If the subtask has a dependency, the following row contains two numbers, specifying its

parent id and the edge weight. For example, a subtask with index number 8 or T8 has

two parents. Then, the next lines mention parents of T8, i.e. T1 and T7, and their edge

weights of 5 and 2 time units respectively. Note that in this figure, all subtasks have a

node weight of 1 time unit as an example. In addition, the STG format is similar to the

one proposed by Kasahara et al. [136]. Finally, # denotes a single line comment in the

STG format.

Figure 4.2 show the structure of the TG, by using the example illustrated in Figure 4.1.

In this figure, a subtask’s edge weight is represented by a number next to the arrow line.

Scheduling the TG in a non-dedicated environment is a challenging process because of the
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Figure 4.2: Structure of a task graph.
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Figure 4.3: Schedule of a task graph on
3 PEs.

following constraints: Firstly, the TG requires a fixed number of processors for execution.

Hence, a user needs to reserve the exact number of CNs. Secondly, due to communication

overhead between the subtasks on different PEs, each subtask must be completed within

a specific time period. Finally, each subtask needs to wait for its parent subtasks to

finish executing in order to satisfy the required dependencies, as depicted in Figure 4.2.

Therefore, advance reservation (AR) is needed to secure or guarantee resources prior to

the execution of the subtasks.

Scheduling a TG on a resource can be visualized by a time-space diagram as shown in

Figure 4.3, by using the example illustrated in Figure 4.1 and 4.2. In order to minimize

the schedule length (overall computation time) and the communication costs of a TG, its

subtasks must be assigned to appropriate PEs and they must be started after their parent

subtasks. In this example, T6 depends on T4 and T5, as shown in Figure 4.2. Thus, T6

must wait for both subtasks to finish, and it will be scheduled on the same PE as T5, i.e.

PE0, in order to minimize the communication cost. This is because executing T6 on PE1

and PE2 will incur a communication time of 7 and 5 time units respectively. In contrast,

running T6 on PE0 after T5 will have a penalty of 2 time units, as shown in Figure 4.2.

If we consider DAGs with different node and edge weights, the general scheduling

problem is NP-complete [34]. Thus, in practice, heuristics are most often used to compute

optimized (but not optimal) schedules, in order to minimize the total execution time.

Unfortunately, the (time) optimized schedules that these algorithms produced, do not

make an efficient use of the given PEs [129, 66]. In this context, the efficiency is measured

by the ratio of the total node weight in relation to the overall processing time provided
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for the TGs. As an example, in Figure 4.3, the efficiency of this TG schedule is 9/18 or

50%, which is low because PE1 and PE2 are mostly idling. If there are no idle PEs at all

time, then the efficiency can be said to be optimal (100%). In Section 4.3.3, we propose

a scheduling model to increase the efficiency of a task graph, by rearranging and moving

subtasks, interweaving with other TGs, and backfilling with other independent jobs.

4.2 Related Work

With regards to the efficiency analysis of functional parallel programs, i.e. executing two or

more tasks concurrently, there are only several works done so far. Sinnen and Sousa [129]

analyze the efficiency of TG schedules, such as Economical Critical Path Fast Duplication

(ECPFD) [4], Dynamic Level Scheduling (DLS) [125] and Bubble Scheduling and Alloca-

tion (BSA) [79] with respect of different Communication-to-Computation (CCR) values.

The authors report that the utilization of a resource drops down if the CCR value is in-

creased, and it also depends on the network topology of the target system. Moreover, they

find that for coarse grained parallel programs (low CCR), the efficiency achieved is lower

than 50%. However, it can be easily shown that this definition of efficiency is equivalent

to the earlier description.

Hoenig and Schiffmann [66] also compare the efficiency of several popular heuristics,

such as Dynamic Level Scheduling (DLS) [125], Earliest Time First (ETF) [70], Highest

Levels First with Estimated Times (HLFET) [2] and Modified Critical-Path (MCP) [154].

They use a comprehensive test bench that is comprised of 36,000 TGs with up to 250

nodes. Essentially, it reveals that the efficiency of these schedules is mostly below 60%,

which means a lot of the provided computing power is wasted. The main reason is due to

the constraints of the schedule as mentioned earlier. Therefore, the main goal of our work

is to increase the efficiency of these TGs by interweaving them, and backfilling with other

independent jobs (if applicable).

For running DAG applications in the cluster or Grid computing environment, there are

some systems available, such as Condor [144], GrADS [12], Pegasus [41], Taverna [105] and

ICENI [93]. However, only ICENI provides a reservation capability in its scheduler. In

comparison to our work, the scheduler inside ICENI does not consider backfilling other in-
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dependent jobs with the reserved DAG applications. Hence, the ICENI resource scheduler

does not consider the efficiency of the reserved applications towards resource utilization.

A comprehensive survey on the characteristics and functionalities of these systems and

others, is mentioned in [157].

4.3 Description of the Model

4.3.1 User Model

A user provides the following parameters during submission:

• TG = {T1, T2, ..., Tn} : Task Graph (TG) that consists of a set of dependent

subtasks, where each subtask has one node weight and one or more edge weights.

The TG is described in the STG format, as mentioned earlier.

• List = {TG1, TG2, ..., TGk} : a collection of TGs and their schedules on the

reserved PEs.

• numCN : number of compute nodes to be reserved.

• ts : reservation start time.

• te : reservation end time.

In this model, the two-phase commit of advance reservation is applied, where a user

needs to make a reservation by specifying a tuple < numCN, ts, te > to a resource. If

the resource is not available, then the user needs to negotiate with the resource with a

different time interval. Once the reservation has been accepted and confirmed, then the

user sends List to the resource before the start time, otherwise the reservation will be

canceled. Note that the two-phase commit and states of advance reservation are explained

in more details in Section 3.3.1.

4.3.2 System Model

Figure 4.4 shows the open queuing network model of a Grid system applied to our work.

In this model, there are two separate queues: the AR Queue for storing reserved jobs, and
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Figure 4.4: System that supports advance reservation.
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(b) Moving subtasks.

Figure 4.5: Rearranging and moving a task graph. The shaded subtasks denote the before
(a) and after (b) a moving operation.

the Job Queue for storing non-reserved jobs. The two queues have a finite buffer with

size S to store objects waiting to be processed by one of P independent PEs or compute

nodes. The AR Queue is a priority queue, where reserved jobs are sorted according to

their reservations’ start time. In contrast, the Job Queue is a queue or a First In First

Out (FIFO) structure, where incoming jobs are appended to the end of the queue.

In Figure 4.4, all nodes are connected by a high-speed network. The nodes in the

system can be homogeneous or heterogeneous. In this work, we assume that the system

has homogeneous nodes, each having the same computing power, memory and hard disk.

In addition, the system has a Resource Scheduler, which is responsible for assigning

waiting jobs in the Job Queue to available nodes. In case of reserved jobs in the AR

Queue, the Resource Scheduler will schedule them according to their reservations’ start

time. Next, we will explain the scheduling model used by the Resource Scheduler in details.
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4.3.3 Scheduling Model

In this model, we assume that we already know the optimal schedules for each TG in the

AR Queue for simplicity. With this assumption, the Resource Scheduler only needs to

reserve available nodes, and runs these TGs according to the given schedules. In addition,

the Resource Scheduler aims to improve the average efficiency on the reserved nodes. This

can be done by rearranging and moving subtasks without breaking any of the subtasks’

dependencies, as shown in Figure 4.5. In the best case scenario, these methods would result

in a reduction of the total number of schedule’s PEs (SPEs). The schedule Processing

Element (SPE) is the actual number of PEs used to execute one TG. Thus, the remaining

PEs can be used to run other TG or non-reserved jobs from the Job Queue. These methods

will be discussed next.

Algorithm 1: Rearranging subtasks of TG

Input: TG and numCN

index[ ]← φ ;1

i← 0 ;2

while i < numCN do3

index[i].num subtask ← get num subtask(TG, i);4

index[i].PE id← i ;5

i← i + 1 ;6

end7

index[ ]← sort(index[ ], NUM SUBTASK, ASCENDING ORDER);8

TG← update schedule(index[ ], TG) ;9

return ;10

Rearranging Subtasks of TG

This is done by rearranging all subtasks in TG based on the total number of subtasks

executed on each PE, as described in Algorithm 1. In this algorithm, we denote index[ ]

as an indexing array. Thus, we need to store the total number of subtasks running on each

PE (line 3–7). Then, we sort index[ ] from the lowest to the highest number of subtasks,

where NUM SUBTASK and ASCENDING ORDER are constant variables (line 8).

Finally, we use the update schedule() function to update the schedules of TG (line 9),

since each subtask may now be executing on a different PE.

For example, we relocate all subtasks of PE0, PE1 and PE2 as depicted in Figure 4.3



60 Chapter 4. Reservation-based Resource Scheduler for Task Graphs

to PE2, PE0 and PE1 respectively as shown in Figure 4.5(a). This fundamental step is

required as a basis for the next step.

Algorithm 2: Moving subtasks of TG to different PEs

Input: TG and numCN

PE id[ ]← φ;1

for i = 0 to i < numCN do2

subtask list[ ]← get subtask(TG, i); // subtasks that run on the i-th PE3

group subtask(subtask list[ ]); // based on dependencies & edge weight4

PE id[i].add(subtask list[ ]); // add subtasks into list of the i-th PE5

end6

for i = 0 to i < numCN do7

k ← i + 1;8

if k ≥ numCN then9

break; // exit the loop10

end11

merge subtask( PE id[i].get subtask(), PE id[k].get subtask() );12

end13

TG← update schedule(PE id[ ], TG) ;14

return ;15

Moving subtasks

This is done by moving one or more subtasks from one PE to another as long as there

are empty slots, as described in Algorithm 2. In this algorithm, we need to find a list of

subtasks that run on a particular PE (line 3). Then, if there are two or more subtasks

that depend on each other, we tag or group them as a whole (line 4). The tagging or

grouping is needed to prevent them from executing into different PEs, which may incur

hefty communication costs. Finally, a loop is needed to merge the two PE id arrays into

one (line 7–13), provided that there are empty slots that fit one or more subtasks.

For example, we move T1 and T8 from PE0, as mentioned in Figure 4.5(a), to PE1

and PE2 respectively, as shown in Figure 4.5(b). As a result, PE0 can be used to run

another TG by interweaving, and/or backfilling with independent jobs as discussed next.

Interweaving TGs

This can be done by combining two or more TGs from List and still keeping the original

allocation and dependencies untouched. Algorithm 3 describes on how to interweave two
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Algorithm 3: Interweaving two TGs

Input: TG1, TG2, and numCN

PE id1[ ]← φ; // storing information regarding to TG11

PE id2[ ]← φ; // storing information regarding to TG22

for i = 0 to i < numCN do3

subtask list1[ ]← get subtask(TG1, i); // subtasks run on the i-th PE4

subtask list2[ ]← get subtask(TG2, i);5

PE id1[i].add(subtask list1[ ]); // add subtasks into list of the i-th PE6

PE id2[i].add(subtask list2[ ]);7

PE id1[i].start time← get start time(TG1, i); // starting time8

PE id2[i].start time← get start time(TG2, i);9

PE id1[i].end time← get end time(TG1, i); // ending time10

PE id2[i].end time← get end time(TG2, i);11

end12

// check whether the given two TGs are matched for each other or not

result← is suitable(PE id1[ ], PE id2[ ]);13

if result == false then14

return φ ; // not matched, then exit15

end16

// determine the scheduling order of the two TGs

sched first[ ]← get first schedule(PE id1[ ], PE id2[ ]);17

if equal(sched first[ ], PE id1[ ]) == true then18

sched last[ ]← PE id2[ ]; // TG2 is scheduled to run after TG119

else20

sched last[ ]← PE id1[ ]; // TG1 is scheduled to run after TG221

end22

// then sort PEs that run the TG
sched first[ ]← sort(sched first[ ], END TIME, DESCENDING ORDER);23

sched last[ ]← sort(sched last[ ], START TIME, ASCENDING ORDER);24

// begin interweaving the two TGs

new PE id[ ]← φ;25

last CN ← numCN − 1; // index of the last PE26

for i = 0 to i < numCN do27

gap time← sched last[last CN ].start time− sched last[i].start time;28

sched last[i].start time← sched first[last].finish time− gap time;29

sched last[i]← update schedule(sched last[i]);30

new PE id[i]← append TG(sched first[i], sched last[i]);31

end32

new TG← update schedule(new PE id[ ], TG1, TG2) ;33

return new TG ;34
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Figure 4.6: Combining the execution of two TGs by interweaving.

TGs with the use of Figure 4.6 as an example.

For each reserved PE on both TGs, as shown in Figure 4.6, we need to find a list of

subtasks and its starting and ending time (Algorithm 3 line 3–12). Afterwards, we need to

check whether both TGs are suitable with or matched for each other or not (line 13–16).

The matching criteria need to have different starting time, ending time, or a combination

of any those on one or more reserved PEs from the same TG, as shown in Figure 4.6 for

example. Otherwise, the given TGs can not be interlocked properly, hence, there is no

significant increase in the average efficiency of SPEs.

The next step of Algorithm 3 is to determine the scheduling order of the two TGs

(line 17–22), where it also depends on the matching criteria, as mentioned earlier. For

example, in Figure 4.6 on the left (with subtasks represented as D with shaded boxes),

the reserved PEs for scheduling TG1 have the same ending time, hence, TG1 will be

placed after TG2. Then, we sort the reserved PEs of each TG accordingly (line 23–24).

For example, in Figure 4.6, we sort the reserved PEs of TG1 and TG2, based on the

starting time in ascending order and ending time in descending order respectively. Note

that in Algorithm 3, END TIME, DESCENDING ORDER, START TIME, and

ASCENDING ORDER are constant variables.

Finally, both TGs are ready to be interweaved as one (line 25–34). This can be done

by delaying or modifying the starting time of subtasks in sched last[ ] appropriately (line

28–30). Of course this will create fragmentations or time gaps of idle processor-cycles, as

depicted in Figure 4.6 on the right. However, these gaps can be hopefully closed by the

following backfilling step.
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Backfilling a TG or remaining gaps between interweaved TGs

This can be done if there are smaller independent jobs that can be fit in and executed,

without delaying any of the subtasks of TG. Thus, we are trying to reduce fragmentations

or idle time gaps. In contrast to the interweaving step, the best fitting jobs should only

be selected. We start with the first gap, and look for a job that has an estimated schedule

length lower or (best) equal to the gap’s length. As an example, there is enough gap on

PE0 in Figure 4.6 (on the right) to put two small independent jobs (each runs for 1 time

unit) or one bigger job than needs to be scheduled for 2 time units.

4.4 Performance Evaluation

In order to evaluate the performance of our advance reservation-based scheduler (AR), we

compare it with two standard algorithms, i.e. First Come First Serve (FCFS) and EASY

backfilling (Backfill) [98]. We simulate the experiment with three different homogeneous

target systems that consist of clusters with varying number of SPEs, i.e. 16, 32 and 64

compute nodes. Then, we run the experiment by submitting both TGs and other jobs

(taken from a workload trace) into these systems.

4.4.1 Simulation Setup: Test Bench Structure

In this experiment, we use the same test bench (created by a task graph generator), as

discussed in [65], to evaluate the performance of our scheduler. Therefore, we briefly

describe the structure of the test bench. More detailed explanation of the test bench can

be found in [65].

TGs with various properties are synthesized by a graph generator whose input param-

eters are varied. The directory tree that represents the structure of test bench is shown in

Figure 4.7. The total number of TGs at each level within a path of the tree is shown on

the right side. The parameters of a TG are described as follows (from top to bottom level

in Figure 4.7):

• Graph Size (GS): denotes the number of nodes or subtasks for each TG. In Figure 4.7,

the parameters of a generated TG are grouped into three categories: 7 to 12 nodes
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Figure 4.7: Structure of the test bench.

(GS7 12), 13 to 18 nodes (GS13 18) and 19 to 24 nodes (GS19 24).

• Meshing Degree (MD) or Number of Sons (NoS): denotes the number of dependencies

between the subtasks of each TG. When a TG has a low, medium and strong meshing

degree, the NoS in Figure 4.7 are NoS Low, NoS Avg and NoS High respectively.

TGs with random meshing degrees are represented as NoS Rand.

• Edge Length (EL): denotes the distance between connected nodes. When a TG has

a short, average & long edge length, Figure 4.7 depicts the notation as EL Short,

EL Avg & EL Long respectively. TGs with random edge lengths are represented as

EL Rand.

• Node- and Edge-weight: denotes the Computation-to-Communication Ratio with a

combination of heavy (H), light (L) and random (R) weightings for the node & edge.

From this test bench, we also use the optimal schedules for the branches of GS7 12

and GS13 18 for both 2 and 4 TPEs. Each branch contains 2,400 task graphs, hence

the maximum number of task graphs that we use is 9,600. These optimal schedules were

computed and cross-checked by two independent informed search algorithms (branch-and-

bound and A∗) [65]. Note that at the time of conducting this experiment, the optimal
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schedules of GS19 24 for 4 TPEs are not available. Therefore, in this experiment, we omit

the branch of GS19 24 for both 2 and 4 TPEs.

4.4.2 Simulation Setup: Workload Trace

We also take two workload traces from the Parallel Workload Archive [49] for our experi-

ment. We use the trace logs from DAS2 fs4 (Distributed ASCI Supercomputer-2 or DAS

in short) cluster of Utrecht University, Netherlands and LPC (Laboratoire de Physique

Corpusculaire) cluster of Universite Blaise-Pascal, Clermont-Ferrand, France. The DAS

cluster has 64 CNs with 33,795 jobs, whereas the LPC cluster has 140 CNs with 244,821

jobs. The detailed analysis for DAS and LPC workload traces can be found in [84] and [94]

respectively. Since both original logs recorded several months of run-time period with thou-

sands of jobs, we limit the number of submitted jobs to be 1000, which is roughly a 5-days

period from each log. If the job requires more than the total PEs of a resource, we set this

job to the maximum number of PEs.

In order to submit 2,400 TGs within the 5-days period, a Poisson distribution is used. 4

TGs arrive in approximately 10 minutes for conducting the FCFS and Backfill experiments.

When using the AR scheduler, we set the limit of each reservation slot to contain only 5

TGs from the same leaf of the test bench tree from Figure 4.7. Hence, only 480 reservations

were created during the experiment, where every 30 minutes a new reservation is requested.

If there are no available PEs, then the resource scheduler will reserve the next free ones.

4.4.3 Results

Figure 4.8 and 4.9 show the total completion time for executing TGs on the DAS trace for 2

and 4 TPEs respectively. In addition, Figure 4.10 and 4.11 show the total completion time

for executing TGs on the LPC trace for 2 and 4 TPEs respectively. From these figures,

the AR scheduler takes about the same amount of time to finish the TGs, regardless of

the number of TPEs, SPEs, and GS branches.

From Figure 4.8 and 4.9, the AR scheduler manages to finish the experiment in 46

days (in simulation time). However, FCFS and Backfill need at least 162 and 93 days to

complete the experiment for 16 and 32 SPEs respectively. For 64 SPEs, FCFS and Backfill

achieve the same number of days as the AR scheduler. However, this accomplishment is
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Figure 4.8: Total completion time on the DAS trace with 2 TPEs (lower number is better).
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Figure 4.9: Total completion time on the DAS trace with 4 TPEs (lower number is better).
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Figure 4.10: Total completion time on the LPC trace with 2 TPEs (lower number is
better).
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Figure 4.11: Total completion time on the LPC trace with 4 TPEs (lower number is
better).

Table 4.1: Average percentage of reduction in a reservation duration time
Task Graph 2 TPEs (% reduction) 4 TPEs (% reduction)
Parameters GS7 12 GS13 18 Average GS7 12 GS13 18 Average

MD Low 2.06 2.15 2.10 14.99 22.80 18.89

MD Avg 6.59 7.73 7.16 13.68 19.87 16.78

MD High 9.66 9.61 9.64 12.33 16.55 14.44

MD Rand 5.35 4.68 5.02 15.80 23.54 19.67

EL Long 0.21 0.00 0.11 9.52 11.85 10.69

EL Short 11.92 13.99 12.96 16.89 23.04 19.96

EL Avg 3.64 3.03 3.34 13.83 22.55 18.19

EL Rand 7.89 7.15 7.52 16.55 25.32 20.94

LNode LEdge 4.02 3.99 4.00 8.42 10.94 9.68

LNode HEdge 6.80 8.01 7.41 9.73 12.62 11.17

HNode LEdge 5.75 5.47 5.61 23.74 25.72 24.73

HNode HEdge 7.57 6.69 7.13 18.78 26.31 22.55

RNode REdge 5.67 6.05 5.86 12.26 24.60 18.43
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Table 4.2: Average of total backfill time on the DAS trace (in seconds)
Task Graph 2 TPEs 4 TPEs
Parameters GS7 12 GS13 18 Average GS7 12 GS13 18 Average

MD Low 1,089.00 432.00 760.50 711.33 209.67 460.50

MD Avg 4,499.00 2,301.33 3,400.17 2,121.33 2,585.33 2,353.33

MD High 598.67 145.00 371.83 197.67 614.33 406.00

MD Rand 943.33 1,041.67 992.50 698.67 644.33 671.50

EL Long 2,834.67 1,627.33 2,231.00 1,574.33 491.33 1,032.83

EL Short 1,811.33 1,114.00 1,462.67 467.33 2,469.33 1,468.33

EL Avg 2,263.67 379.67 1,321.67 777.33 329.00 553.17

EL Rand 220.33 799.00 509.67 910.00 764.00 837.00

LNode LEdge 1,760.67 865.33 1,313.00 981.33 329.67 655.50

LNode HEdge 602.67 74.67 338.67 436.67 9.33 223.00

HNode LEdge 620.67 102.00 361.33 201.67 146.67 174.17

HNode HEdge 1,259.67 382.00 820.83 509.33 962.67 736.00

RNode REdge 2,886.33 2,496.00 2,691.17 1,600.00 2,605.33 2,102.67

Table 4.3: Average of total backfill time on the LPC trace (in seconds)
Task Graph 2 TPEs 4 TPEs
Parameters GS7 12 GS13 18 Average GS7 12 GS13 18 Average

MD Low 2,451.67 1,640.67 2,046.17 1,136.00 815.67 975.83

MD Avg 883.00 474.00 678.50 718.00 2,874.33 1,796.17

MD High 1,902.33 1,916.67 1,909.50 2,334.00 678.00 1,506.00

MD Rand 2,474.67 1,698.67 2,086.67 2,172.00 1,020.33 1,596.17

EL Long 2,018.67 1,611.33 1,815.00 1,889.00 1,419.33 1,654.17

EL Short 1,830.67 1,835.00 1,832.83 1,610.00 1,846.33 1,728.17

EL Avg 2,469.00 1,213.67 1,841.33 1,218.33 455.00 836.67

EL Rand 1,393.33 1,070.00 1,231.67 1,642.67 1,667.67 1,655.17

LNode LEdge 1,578.33 978.00 1,278.17 1,459.33 1,419.00 1,439.17

LNode HEdge 1,126.33 1,051.33 1,088.83 1,387.67 541.67 964.67

HNode LEdge 2,114.33 683.00 1,398.67 828.00 940.33 884.17

HNode HEdge 1,121.67 1,529.33 1,325.50 838.00 1,011.00 924.50

RNode REdge 1,771.00 1,488.33 1,629.67 1,847.00 1,476.33 1,661.67

mainly due to adding more nodes, rather than the effectiveness of FCFS and Backfill

schedulers. The same trend can also be observed in Figure 4.10 and 4.11. From these

figures, the AR scheduler manages to increase the utilization of SPEs, and minimizes the

effect of having reservations in the system towards the waiting time of non-reserved jobs

in the queue.

There are two main reasons that the AR scheduler manages to complete the experi-

ments earlier than the FCFS and Backfill algorithms. The first reason is because a set of

TGs in a single reservation slot can be interweaved successfully, as shown in Table 4.1.
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For TGs on a GS7 12 branch for 4 TPEs, the initial reservation duration time is reduced

up to 23.74% on the HNode LEdge branch. For TGs on a GS13 18 branch for 4 TPEs,

the maximum reduction is 26.31% on the HNode HEdge branch. In contrast, the reduc-

tion is much smaller for 2 TPEs on the same branches. The reduction in the reservation

duration time can also be referred to as an increase in the efficiency of scheduling TGs in

this experiment. Overall, these results show that the achievable reduction depends on the

size of the TGs and their graph properties as well.

The second reason is because there are many small independent jobs that can be used

to fill in the gaps within a reservation slot, as depicted in Table 4.2 and 4.3. Hence, the AR

scheduler reduces fragmentations or idle time gaps. However, on average, the AR scheduler

manages to backfill more jobs from the LPC trace into the reservation slot compared to

the DAS trace. This is due to the characteristics of workload jobs themselves. The first

1,000 jobs from the LPC trace are primarily independent jobs that require only 1 PE with

an average runtime of 23.11 seconds. In contrast, the first 1,000 jobs from the DAS trace

contain a mixture of independent and parallel jobs that require on average 9.15 PEs with

an average runtime of 61 minutes. Thus, it explains why the total completion time on the

DAS trace took much longer than the LPC one.

4.5 Summary

This chapter proposes a scheduling approach for task graphs by using advance reservation

to secure or guarantee resources prior to their executions. In addition, to improve the

resource utilization, this chapter also proposes a scheduling solution (AR scheduler) by

interweaving one or more task graphs within the same reservation block, and backfilling

with other independent jobs (if applicable).

The results show that the AR scheduler performs better than the First Come First

Serve (FCFS) and EASY backfilling algorithms, in reducing both the reservation duration

time and the total completion time. The AR scheduler manages to interweave a set of task

graphs. Thus, it results in a reduction of the overall reservation duration time up to 23.74%

and 26.31% on 7–12 nodes and 13–18 nodes, respectively, on 4 target processing elements

(TPEs). However, the achievable reduction depends on the size of the task graphs and their
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graph properties. Finally, the results shows that when there are many small independent

jobs, the AR scheduler accomplished to fill these jobs into the reservation blocks.

Although the above findings are encouraging, there are few limitations to this approach

or model. First, if there are no sufficient and suitable number of independent jobs in the

queue for backfilling, then the resource utilization will suffer due to fragmentations. Second

and more importantly, users must re-negotiate many times for finding available reservation

slots if their earlier requests got rejected, since the resource does not provide any counter

or alternative offers. Therefore, this thesis proposes an elastic reservation model to provide

users with alternative reservation slots. However, to realize this model, we need to have

an efficient data structure for administering reservations. Thus, in the next chapter, we

present a data structure, named a Grid advance reservation Queue (GarQ), which is built

for this purpose.



Chapter 5

GarQ: An Efficient Data Structure for

Managing Reservations

An efficient data structure for managing reservations plays an important role in or-

der to minimize the time required for searching available resources, adding, and deleting

reservations. Therefore, this chapter proposes a new data structure, named Grid advance

reservation Queue (GarQ), for administering reservations in a Grid system efficiently.

5.1 Introduction

In order to reserve available resources in a Grid system, a user must first submit a request

by specifying a series of parameters such as number of compute nodes (CNs) needed,

start time and duration of his/her jobs, as described in Section 3.3.1. Then, the system

checks for the feasibility of this request. If there are no available nodes for the requested

time period, the request is rejected. Consequently, the user may resubmit a new request

with a different start time and/or duration until available nodes can be found. Given

this scenario, the choice of an efficient data structure can significantly minimize the time

complexity needed to search for available compute nodes, add new requests, and delete

existing reservations.

Well-designed data structures provide the flexibility and easiness in implementing var-

ious algorithms, hence, some of them are tailored to specific applications. For example, a

71
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tree-based data structure is commonly used for admission control in network bandwidth

reservation [17, 153, 158]. Each tree node contains a time interval and the amount of

reserved bandwidth in its subtree. Therefore, a leaf node has the smallest time interval

compared to its ancestor nodes. Hence, the amount of bandwidth required for a single

reservation is stored into one or more fitting nodes. In general, a tree-based structure has a

time complexity of O(log n) for searching the available bandwidth, where n is the number

of tree nodes. This approach is considered to be better than using a sorted Linked-List

data structure [155], which has a sequential searching method leading to O(totAR) time

complexity, where totAR is the total number of reservations. This is because the List

does not partition each reservation into a fixed time interval like a tree-based structure.

Contrarily, a study done by Burchard [19] found that arrays provide better performance

than a tree-based structure, such as a Segment Tree [17], for processing new requests and

searching larger time intervals. The study was conducted to measure the admission speed

of a bandwidth broker using each structure in a multilink admission control environment.

The previous studies are primarily focused on testing the search time of the afore-

mentioned data structures. However, these studies do not explicitly consider add and

delete operations for adding new requests and deleting existing reservations respectively,

for these data structures. This is because, for reserving network bandwidth, each tree

node and index in Segment Tree and Array respectively, only stores information regarding

the allocated reserved bandwidth. Hence, the performance of addition and deletion can

be neglected. In contrast, a data structure needs to keep additional information for re-

serving compute nodes in a Grid system, such as user’s jobs for executing on the reserved

nodes, and their status for monitoring purposes. Therefore, in order to support advance

reservation in Grids, a data structure needs to perform the following basic operations:

• search: checking for availability of CNs in a given time interval. This operation is

defined as searchReserv(ts, te, numCN), where ts denotes the reservation start

time, te denotes the reservation end time, and numCN indicates the number of

compute nodes to be reserved.

• add : inserting a new reservation request into the data structure. This operation is

performed only when the previous search phase succeeded. For addition, the new
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Figure 5.1: An example of advance reservations for reserving compute nodes. The maxi-
mum available compute nodes is 3. A dotted box denotes a new request.

reservation is represented as addReserv(ts, te, numCN, user), where user is an

object storing the user’s jobs and other relevant information.

• delete: removing the existing reservation from the data structure. This operation is

conducted only when the add phase succeeds and the reservation’s finish time has

passed. It is described as deleteReserv(ts, te, numCN).

In addition, most of these studies, except done by [19], do not consider an interval

search operation, where the data structure finds an alternative time for a rejected re-

quest. This operation helps users who requests got rejected in negotiating a suitable

reservation time. Therefore, the performance of this operation also needs to be con-

sidered when choosing the appropriate data structure. This operation is represented as

suggestInterval(ts, te, numCN).

Figure 5.1 shows an example of existing reservations represented in a time-space dia-

gram. When a new request from User5 arrives, the resource checks for any available CNs.

In this example, the request is defined as reserv(ts, te, numCN), with numCN = 2.

However, only one node is available, hence, this request will be rejected. By performing

suggestInterval(11, 16, 2) on this request, the system manages to find the next available

time, which is from time 13 to time 15. Note that in this example, the ending time has been

increased for a bigger search time range. Moreover, this interval search operation plays

an important role in finding alternative offers in an elastic reservation model (discussed in

Chapter 6).

In the next section, we describe modified versions of Linked List and Segment Tree
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data structures to support add, delete, and search, as well as the interval search operation

capable of dealing with advance reservations in computational Grids. For this, we had to

specifically develop an algorithm for finding closest interval to a requested reservation for

Segment Tree. Then, we introduce and adapt Calendar Queue [18] data structure for man-

aging reservations. Calendar Queue is a priority queue for future event set (FES) problems

in discrete event simulation. FES shares similar characteristics to advance reservations in

Grids, namely it records future events, and schedules them in chronological order.

5.2 Adapting Existing Data Structures

In general, a data structure that deals with a resource reservation can be categorized

into two types, i.e. a time-slotted and a continuous data structure. A time-slotted data

structure divides the reservation time into fixed time intervals, also called time slots. For

example, 1 slot may represent 5 minutes or 1 hour of a node’s computation time. Hence,

the start time and duration time of a reservation will be partitioned, compared with the

existing ones and placed to the appropriate slots (if accepted). Examples of this type of

data structure are Segment Tree and Calendar Queue, and they will be discussed next. In

contrast, a continuous data structure, such as Linked List is more flexible, where it allows

a reservation to start or finish at arbitrary times. Moreover, it obviates the need to have

a minimum duration time for each reservation as compared to a time-slotted structure.

5.2.1 Segment Tree

Segment Tree, as shown in Figure 5.2, is a binary tree where each node represents a semi-

open time interval (X, Y ]. The left sibling of the node represents the interval
(

X, X+Y
2

]

,

and the right sibling represents the interval
(

X+Y
2

, Y
]

. Each node has also the following

information:

• rv: the number of reserved CNs over the entire interval. When a reservation which

spans the entire interval (X, Y ] is added, rv is increased by the number of CNs

required by this reservation. No further descent into the child nodes is needed.
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Figure 5.2: A representation of storing reservations in Segment Tree. A request from User5
is rejected, because node (b), representing a time interval (10, 12], uses 2 nodes already.

• mv: the maximum number of reserved CNs in the child nodes. In the leaf nodes,

the mv value is 0. The total number of reserved CNs in the interval of a leaf node

is the sum of all rv of nodes on the path from the root node to the leaf node.

An example of a Segment Tree is shown in Figure 5.2, where it uses the same example

as in Figure 5.1. Note that the complete tree in Figure 5.2 is not drawn here due to lack

of space. However, the height of Segment Tree can be computed as:

height = log2

(

interval length

slot length

)

(5.1)

where interval length is the length of the whole interval we want to cover, and

slot length is the length of the smallest time slot. In our implementation, interval length

is one month (30 days), and the leaves of this tree represent slot length of 5 minutes. To

deal with reservations for an arbitrary time T , we first compute a new time which fits into

this interval. In order not to overlap reservation from different months, we assume that

no reservations are made more than one month in advance. This assumption is also valid

for other data structures. As a result, the whole tree can be reused for the next month

interval. Hence, the tree is only going to be built once in the beginning.

All operations on Segment Tree are performed recursively. Before giving a brief de-

scription of the operations, we define some common notations that will be used, as follows:
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• N is the node the recursion is currently in with Nl is the left sibling and Nr is the

right sibling.

• (lN , rN ] is the interval of the node N .

• (l, r, numCN) is the input to all the operations.

• maxCN is the maximum number of available CNs in the system.

For the search operation, if a reservation request covers the entire interval of the current

node, such that (l, r] == (lN , rN ] && (rv + mv + numCN) ≤ maxCN , then we have

found enough free CNs and can terminate the recursion, as shown in Figure 5.2. Hence,

Segment Tree is able to search quickly without having to go down to the leaf nodes for a

larger interval.

Likewise, for the add operation, if (l, r] == (lN , rN ], we increase rv by numCN and

return (rv+mv) to the parent node. Figure 5.2 shows how the reservations are added into

the tree. By using Figure 5.1 as an example, User1 is stored into node (a), User2 to node

(b) and (d), User3 to node (c) and (e), and User4 to node (g). Moreover, the values of rv

and mv on each node are updated accordingly. Removing a reservation is very similar to

adding one, so the description can be omitted from this chapter.

Algorithm 4: suggestInterval(l, r, numCN) in Segment Tree

if numCN > NavailableCN then return −1;1

if (l, r] == (lN , rN ] then return lN ;2

else3

if N is a leaf node then return l;4

if l ∈ (lNl
, rNl

] and r ∈ (lNr
, rNr

] then5

leftS ← Nl.suggestInterval(l, lNl
, numCN);6

if leftS == l then7

rightS ← Nr.suggestInterval(lNr
, lNr

+ ∆− (l − lNr
), numCN);8

if rightS == lNr
then return l;9

else return rightS;10

else return N.suggestInterval(leftS, leftS + ∆, numCN);11

else if r 6∈ (lNr
, rNr

] then12

leftS ← Nl.suggestInterval(l, lNl
, numCN);13

if leftS == l then return l;14

else return N.suggestInterval(leftS, leftS + ∆, numCN);15

else return Nr.suggestInterval(l, r, numCN);16

end17
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Searching for a free slot. Brodnik et al. [17] do not describe the operation of finding

a new free interval, closest to the proposed reservation reserv(l, r, numCN), so we give

a more detailed description of the implementation of this function. We have to point

out that the operation described below finds the closest interval later than the current

proposed interval. The description is given in pseudocode in Algorithm 4, and uses the

common symbols defined as:

• NavailableCN is the number of available CNs in the whole interval of the node N ;

• leftS, rightS are temporary variables, that store the suggested starting time from

the left and right subtree respectively; and

• ∆ is the length of the reservation interval, so simply ∆ = r − l.

The function recursively searches for a suitable interval. In the case where the reser-

vation interval covers the whole interval of the current node N , it examines the number

of available CNs in this interval (lines 1–2). If there are enough CNs, the function returns

the leftmost point of the interval lN , and the rightmost point rN , otherwise. When the

searched interval does not cover the entire interval of the current node (lines 3–17), the

function deals with four different possibilities:

1. Current node is a leaf (line 4). This is the boundary condition where the interval is

a candidate for the free slot.

2. The interval (l, r] covers the intervals of both the node Nl and Nr (lines 5–11). First

it finds a candidate interval in the left sibling (leftS). If the suggested interval is

equal to the original interval (starting at l) we can check if there is enough space in

the right subtree as well. Otherwise we re-check the interval (lN , rN ] with a new

proposed interval (leftS, leftS + ∆].

3. The interval (l, r] covers only the interval of the node Nl (lines 12–15). Similarly

to the approach in the first case (above), the procedure searches the left subtree. If

the suggested interval is the same as the proposed one, we return it, otherwise we

re-check the interval (lN , rN ].
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Figure 5.4: A representation of storing reservations in Linked List.

4. The interval (l, r] covers only the interval of the node Nr (line 16). In this case we

recursively search for a free slot only in the right subtree.

In the case where there is no free interval in Segment Tree, the function returns (-1).

5.2.2 Calendar Queue

Calendar Queue (CalendarQ) was introduced by Brown [18], as a priority queue for future

event set problems in discrete event simulation. It is modeled after a desk calendar, where

each day or page contains sorted events to be scheduled on that period of time. Hence,

CalendarQ is represented as one or more pages or “bucket” with a fixed time interval or

width δ. Then, each bucket contains a sorted linked list storing future events. Figure 5.3

shows how reservations are stored in CalendarQ with δ = 4 time interval, by using the

example illustrated in Figure 5.1. If a reservation requires more than δ, this reservation

will also be duplicated into the next buckets. This approach makes the search operation

easier since it only searches for a list inside each bucket.

In our implementation, we opted for a static CalendarQ where the number of buckets

M and δ are fixed. Hence, these parameters do not need to be adjusted periodically as

the queue grows and shrinks. Therefore, by choosing the proper settings for M and δ,

CalendarQ performs constant expected time per event processed [45]. In addition, with

the static approach, the whole CalendarQ can be reused for the next time period, similar
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1. A request from User5 is rejected because not enough CNs for slot [11, 12) as shown by
the shaded box.

to Segment Tree.

Overall, CalendarQ has a complexity of O(k) for adding reservations, where k is the

number of reservations in the list for each bucket. Deleting reservations require a fast

O(1) because the reservations are sorted in the list, and CalendarQ only removes the

reservations in the current bucket as time progresses. Searching for available CNs require

O(k msub), where msub is the number of buckets within a subinterval. The interval search

operation is the same as the search procedure, but it has a larger time interval.

5.2.3 Linked List

Linked List is the simplest and most flexible data structure of all, because accepted reser-

vations will be inserted into the list based on their starting time. In Linked List, each

node contains a tuple 〈ts, te, numCN, user〉. Figure 5.4 shows how these reservations

are stored by using the example illustrated in Figure 5.1.
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Searching for available CNs. For a search operation, the implementation in Linked

List is as follows. First, the List needs to find out which nodes have already reserved

CNs within [ts, te] of the new request. By using the example illustrated in Figure 5.1,

we find that only User2 and User3 reserve these CNs within the time interval of User5.

Second, it creates a temporary array for storing the number of CNs used within each time

slot, including the new request as shown in Figure 5.5. Finally, it checks each time slot

for sufficient number of available CNs. Therefore, for the search operation, Linked List

has O(totAR msub), where totAR is the total number of reservations, and msub is the

number of slots in the subinterval. The same approach also applied to the interval search

operation, but shifting the time interval to [ts + λ, te + λ] instead, where λ is the length

of busy period found from the previous search operation. The interval search operation

ends when it reaches the tail of the List and/or (te + λ) > (ts + MAX LIMIT ), where

MAX LIMIT denotes the maximum time needed for searching.

Adding and Deleting a reservation. These operations can be performed easily in

Linked List by iterating through the list from the root node, and comparing each existing

node based on its ts. If the correct position or node has been found, then addition or

deletion can be done respectively. Overall, List has O(totAR) complexity for add and

delete operations. However, Linked List can become very inefficient for running these

operations on many short reservations, because it needs to find the correct position or

node starting from the root node.

5.3 The Proposed Data Structure: Grid Advance Reserva-

tion Queue (GarQ)

After analyzing the characteristics of the modified Segment Tree and Calendar Queue

data structures in the previous section, we propose an array-based structure for managing

reservations in Grid computing. The idea behind this data structure was partially inspired

by Calendar Queue and Segment Tree. By combining Calendar Queue and Segment Tree

into this structure, we gained the following advantages:

• ability to add new reservations directly into a particular bucket. Hence, it has a fast
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O(1) access to the bucket;

• ability to reuse these buckets for the next time period;

• built only once in the beginning;

• easy to search and compare by using iteration;

• easy to implement in comparison to Segment Tree and Calendar Queue; and

• flexibility in handling resource availability. In Grids, CNs can be added or removed

periodically. This issue can be addressed by a reservation system or a resource

scheduler by setting the amount of available CNs on that resource appropriately.

Moreover, existing reservations can be relocated to other CNs through the add and

delete operations.

The proposed data structure has buckets with a fixed δ, which represents the smallest

slot duration, as with the Calendar Queue. Each bucket contains rv (the number of

already reserved CNs in this bucket) and a linked list (sorted or unsorted), containing the

reservations which start in this time bucket. Figure 5.6 shows how reservations are stored

in “GarQ with Sorted Queue” with a δ = 1 time interval, by using the example illustrated

in Figure 5.1. For enabling a fast O(1) access to a particular bucket, we use the following

formula:

i =

⌈

t

δ

⌉

mod M (5.2)

where i is the bucket index, t is the request time, and M is the number of buckets in

the data structure.

In what follows, we give a detailed description of the four operations: searching for

available CNs, adding a reservation, deleting a reservation and searching for the closest

free interval. Throughout the description of these operations, a common input for all of

them is the tuple 〈ts, te, numCN〉. Moreover, they use start bucket and end bucket,

which denote the index of the start and end bucket in the reservation interval respectively.

To determine the exact index, get bucket index() function uses Equation 5.2. We also use

maxCN to indicate the maximum number of CNs available in the system.
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Algorithm 5: searchReserv(ts, te, numCN) in GarQ

start bucket← get bucket index(ts); // get the starting index1

end bucket← get bucket index(te); // get the ending index2

finish ← 0;3

// a case where it needs to wrap around the array

if end bucket < start bucket then finish ← M ; // set to the last index4

else finish ← end bucket;5

for i = start bucket to finish do6

// wrapping the array

if i == M then7

i ← 0; // set to the first index8

finish ← end bucket;9

end10

if bucket[i].rv + numCN > maxCN then return false; // slot is full11

end12

return true;13

5.3.1 Searching for Available Nodes

With GarQ, searching for available CNs is done by iterating through the entire interval

and checking each bucket for free CNs, as shown in Algorithm 5. When i points to the

end of the array or M , then it needs to search from the beginning of the array (line 7–10).

Overall, the complexity of GarQ for searching is O(msub), where msub is the number of

buckets within a subinterval.

Algorithm 6: addReserv(ts, te, numCN, user) in GarQ

start bucket← get bucket index(ts); // get the starting index1

end bucket← get bucket index(te); // get the ending index2

bucket[start bucket].addInfo(user); // store user’s jobs & other details3

finish ← 0;4

// a case where it needs to wrap around the array

if end bucket < start bucket then finish ← M ; // set to the last index5

else finish ← end bucket;6

for i = start bucket to finish do7

// wrapping the array

if i == M then8

i ← 0; // set to the first index9

finish ← end bucket;10

end11

bucket[i].rv ← bucket[i].rv + numCN ; // increase rv12

end13
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5.3.2 Adding and Deleting a Reservation

We assume there are enough CNs to add this reservation, i.e. a search has been done

beforehand. Adding a new reservation is very similar to searching, and it is described in

Algorithm 6. Hence, the complexity of our structure for addition is O(msub) or O(k+msub)

when using unsorted and sorted queue respectively, where k is the number of reservations

in a bucket list.

Deleting an existing reservation applies to the same principle as adding a new one. It

can be done by removing the reservation from the starting bucket and decrementing rv

through out the relevant bucket interval.

Algorithm 7: suggestInterval(ts, te, numCN) in GarQ

start bucket← get bucket index(ts); // get the starting index1

end bucket← get bucket index(te); // get the ending index2

tot req ← 1 + end bucket − start bucket; // total slots required3

new start← start bucket; // the new starting index4

count← 0; // count number of slots available so far5

last bucket← get bucket index(ts + MAX LIMIT ); // the last bucket to search6

finish ← 0;7

// a case where it needs to wrap around the array

if last bucket < start bucket then finish ← M ; // set to the last index8

else finish ← last bucket;9

for i = start bucket to finish do10

// wrapping the array

if i == M then11

i ← 0; // set to the first index12

finish ← last bucket;13

end14

if bucket[i].rv + numCN > maxCN then15

new start← i + 1; // points to the next bucket16

count← 0; // reset the counter to zero17

else count ← count + 1;18

if count >= tot req then break; // exit loop if found enough slots19

end20

if count < tot req then new start← (−1); // all slots do not have enough CNs21

new time ← convert index(new start); // convert bucket index into start time22

return new time;23

5.3.3 Searching for a Free Time Slot

Searching for the closest interval is also straightforward in GarQ, as shown in Algorithm 7.

This algorithm is similar to Algorithm 5, but the search interval is now expanded by
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Table 5.1: Summary of the data structures, where n is the number of tree nodes, k is the
number of reservations in the list for each bucket, msub is the number of buckets or slots
within a subinterval, and totAR is the total number of reservations.

Name Time Complexity
Add Delete Search

Segment Tree O(log n) O(log n) O(log n)

Calendar Queue O(k) O(1) O(k msub)

Linked List O(totAR) O(totAR) O(totAR msub)

GarQ with Unsorted Queue O(msub) O(k + msub) O(msub)

GarQ with Sorted Queue O(k + msub) O(msub) O(msub)

MAX LIMIT . This constant variable denotes the maximum time needed for the interval

search operation, hence, it prevents the algorithm from searching the array infinitely.

During the searching, a temporary counter count indicates how many buckets still need

to be searched (and have enough free CNs) before the operation can finish (line 15–19).

At the end of the operation, the index of a new start bucket, new start, is converted into

the new starting time by using convert index() function.

After describing these data structures, a summary of each of them is given in Ta-

ble 5.1, including our proposed data structure, namely GarQ with either Unsorted or

Sorted Queue. In the next section, we evaluate the performance of our data structure

with the existing ones. We conduct the evaluation using real workload traces taken from

production systems.

5.4 Performance Evaluation

In order to evaluate the performance of our proposed data structure, i.e. GarQ with

Unsorted Queue (GarQ-U) and GarQ with Sorted Queue (GarQ-S), we compare them to

Linked List (List), Segment Tree (Tree) with slot length = 5 minutes, and static Calendar

Queue (SCQ) with δ = 1 hour. For SCQ to be optimal, we choose the value of δ based

on the jobs’ average duration time as stated in Table 5.2. For GarQ-U and GarQ-S, we

set each slot to be a 5-minute interval. All, except List, have a fixed interval length of 30

days, as mentioned previously. Finally, we simulate a homogeneous cluster of 64 compute

nodes, i.e. maxCN = 64.

For the evaluation, we are investigating: (i) the total number of tree nodes or slots
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Table 5.2: Workload traces used in this experiment.
Trace Name Location # Jobs Mean Job Time From To

DAS2 fs0 Vrije Univ., The Netherlands 225,711 11.74 minutes Jan 2003 Dec 2003
LPC EGEE Clermont-Ferrand, France 242,695 52.07 minutes Aug 2004 May 2005
SDSC BLUE San Diego, USA 243,314 69.34 minutes Apr 2000 Jan 2003

accessed throughout for each of the operations, including temporary ones for List and SCQ;

(ii) the average runtime for using the above operations; and (iii) the average memory

consumption for these data structures. Note that we conduct the experiment this way

because we want to get a clear picture on how each data structure performs, without the

interference of external factors or scheduling issues, such as deadline, backfilling and job

preemption.

5.4.1 Experimental Setup

We selected three workload traces from the Parallel Workload Archive [49] for our exper-

iments, as summarized in Table 5.2. These traces were chosen because they represent a

large number of jobs and contain a mixture of single and parallel jobs. In addition, the

LPC trace was based on recorded activities from the EGEE (Enabling Grids for E-science

in Europe) project, hence it is very suitable for conducting the evaluation. Moreover, as

shown in Table 5.2, the average job duration time varies from 11 to 70 minutes. Hence, we

can analyze in more detail the performance of each data structure for jobs with a short,

medium and long duration time.

Although these traces were taken from the real production systems, the jobs’ start

time were logged in increasing order. Thus, it might not be suitable for testing out the

interval search operation. Therefore, we shuffled or randomized the start time order of

jobs for every 2-week period of each trace. Overall, we have 6 traces in this experiment:

the 3 original ones and 3 shuffled ones. Several modifications have also been made to these

traces, as follows:

• If a job requires more than the total number of nodes of a resource, we set this job

to maxCN .

• A request’s start time is rounded up to the nearest 5-minute time interval. For

example, if a job request starts at time 01:03:05 (hh:mm:ss), then it will be rounded
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Figure 5.7: Total number of nodes accessed during add and delete operation using original
traces (lower number is better).

to time 01:05:00.

• A job duration time is within the range of 5 minutes to 28 days. We limit the

maximum duration time to prevent overlapping reservations from different months.

Hence, each structure, except for Linked List, can be reused and built only once.

5.4.2 Experimental Results

Adding and Deleting Reservations

Figures 5.7 and 5.8 show the total number of access for adding and deleting reservations

using the original and the shuffled traces, respectively. Note that List has been omitted

in Figure 5.8 due to a much greater number of access than other structures, by at least

60-fold from SCQ.

For the add operation, GarQ-U performs the best compared to other structures, as

shown in Figure 5.7 (a) and (b). The main reason is that when there are many reservations

stored in a slot, GarQ-U does not need to sort them. Thus, GarQ-U reduces the number
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Figure 5.8: Total number of nodes accessed during add and delete operation using shuffled
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of access by at least 150% and 44% compared to GarQ-S for the DAS2 and LPC traces,

respectively. GarQ-U achieves a much lower number of access than GarQ-S for the DAS2

trace compared to the LPC trace, since the DAS2 trace contains many small jobs. As a

result, GarQ-U avoids the overhead of sorting many reservations in a particular bucket.

A similar trend is also noted for the add operation using the shuffled traces of DAS2

and LPC, as shown in Figure 5.8 (a) and (b), respectively. GarQ-U manages to reduce

the number of access by at least 194% and 64% compared to GarQ-S for the DAS2 and

LPC shuffled traces, respectively.

For large jobs in the SDSC trace, GarQ-U has a similar performance to GarQ-S, as

shown in Figure 5.7 (c). However, SCQ is able to reduce the number of access by more

than a half compared to GarQ-U and GarQ-S. List also performs better than GarQ-U

and GarQ-S by at least 8%. The main reason is because both SCQ and List append new

requests at the end since these requests arrive sequentially. If they arrive randomly, as

shown in Figure 5.8 (c), GarQ-U and GarQ-S are able to lower the number of access by
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Figure 5.9: Total number of nodes accessed during search operations using original traces
(lower number is better).

more than a half compared to SCQ. In fact, for all the shuffled traces, both GarQ-U and

GarQ-S are always better than Tree, SCQ and List.

Theoretically, when it comes to deleting existing reservations, SCQ with the O(1)

time complexity should have the best performance. This is because SCQ only deletes

reservations in the particular array bucket. Thus, Figure 5.7 clearly shows the superiority

of SCQ compared to other structures for the delete operation. More specifically, SCQ is

able to reduce the number of access by more than a half compared to GarQ-U and GarQ-S.

In Figure 5.7 (c), List also performs better than GarQ-U and GarQ-S by more than a

half. This is mainly due to deleting reservations that are located at the front of the list,

since they are arriving sequentially. In addition, since the SDSC trace contains many large

jobs, both GarQ-U and GarQ-S need to decrement rv on buckets located within the given

time interval, thus, giving additional number of access.

On the other hand, for the shuffled traces in Figure 5.8 (a) and (c), the performances

of GarQ-U and GarQ-S for the delete operation are shown to be on par with SCQ. For
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Figure 5.10: Total number of nodes accessed during search operations using shuffled traces
(lower number is better).

the shuffled LPC trace, as depicted in Figure 5.8 (b), SCQ performs worse because in each

bucket, the incoming reservations are sorted based on their start time. In the worst case

scenario, some reservations located in front of the list have a longer duration. Thus, SCQ

needs to iterate through the list to remove completed reservations that have a shorter

duration time.

Searching for Available Slots

Figures 5.9 and 5.10 show the total number of nodes accessed when searching for empty

slots using the original and shuffled traces respectively. Note that for the interval search

operation, we set the maximum time limit or MAX LIMIT to be 12 hours from the

request’s initial start time. In addition, the results for List has been omitted in Figure 5.10,

since it has a much greater number of access than other structures.

For the normal search operation, Figures 5.9 and 5.10 show that GarQ-U and GarQ-S

have the best performance. This is because they perform a sequential and straightforward
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Figure 5.11: Average runtime using original traces (shorter time is better).

comparison. Thus, they have the same number of access for this operation. In contrast,

Tree has to traverse down to the left and/or right subtrees, and thus, visits many nodes

along the search path. In the worst case scenario, Tree needs to traverse down to the leaf

nodes to search for available resources for small jobs. List and SCQ perform the worst as

they have to start searching from the beginning of a list, and iterate through the affected

reservations.

For the interval search operation, Tree has an advantage over GarQ-U and GarQ-S,

since it can find out the resource availability at a larger time interval and with fewer

number of nodes to visit. This scenario is clearly shown for the SDSC trace, as depicted

in Figures 5.9 (c) and 5.10 (c).

Average Runtime Performance

To measure the average runtime performance of each data structure, we run the exper-

iments several times on a 2 Ghz Opteron machine with 4 GB of RAM. We take into

account the time required to perform “basic operations”, i.e. conducting the add, delete
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and search operation as a whole, and to run these operations using only the interval search.

Figures 5.11 and 5.12 show the average runtime using the original and the shuffled traces,

respectively. Note that the results for List has been omitted in Figure 5.12, since it has a

much greater number of access than other structures.

For the basic operations, as shown in Figure 5.11, GarQ-U and GarQ-S perform the

best overall, whereas SCQ performs the worst. For SCQ, the δ value of 60 minutes is

not optimal to manage small and medium jobs of DAS2 and LPC traces respectively, as

shown in Figure 5.11 (a) and (b). This is because most of these jobs are concentrated in

a particular bucket, and not spread out to other buckets.

For operations that include only the interval search, as shown in Figure 5.11, GarQ-U

and GarQ-S perform the best overall. For Figure 5.11 (a) and (b), List and SCQ perform

worse than Tree as expected. However, Tree takes the longest time for running large jobs

of the SDSC trace, as shown in Figure 5.11 (c). This is partly due to the overhead of using

recursive functions.

In Figure 5.12 (a), GarQ-U and GarQ-S do not perform too well compared to Tree
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because this trace contains many small jobs. SCQ also takes a big performance hit for

managing these jobs. An improvement to GarQ can be done by imposing a minimum du-

ration limit by the resource and/or grouping small jobs as one big batch before requesting

a reservation. With this approach, GarQ will be able to perform more efficiently, since

this scenario will be similar to reserving large jobs, as shown in Figure 5.12 (c). It is also

important to note, on average, the overhead cost of using the interval search operation in

GarQ-U and GarQ-S is minimal compared to other structures. This is a very encouraging

result since the array-based implementation is also easy to implement.

Average Memory Consumption

For measuring the average memory consumption of each data structure, we run the exper-

iments on the same setup as previously mentioned, i.e. using the 2 Ghz Opteron machine

with 4 GB of RAM. We measure the memory consumption based on the measurement

before and after the experiment. Moreover, in order to improve accuracy, we run the

experiment several times.

From Figures 5.13 and 5.14, List and SCQ are very efficient in all of the traces, followed

by GarQ-U and GarQ-S. However, SCQ requires more memory than List due to the cost of

having fixed M buckets, and duplicating reservations that take longer than δ across several

buckets. Tree consumes more memory because the complete structure needs to be built

for the entire length of time interval we want to cover. Note that in these experiments, all

data structures require less than 5 KB of RAM in a machine with a total RAM of 4 GB.

Therefore, the trade-off between space and time complexity can be neglected.

On the other hand, there is a big trade-off between low memory consumption and run-

time performance. Even though both List and SCQ consume the least amount of memory,

their runtime performance were the worst, as mentioned previously. In contrast, Tree

consumes more memory, but runs faster than List and SCQ. Finally, GarQ-U and GarQ-S

have a moderate memory consumption, but a better runtime performance compared to

List, Tree and SCQ (on average). Overall, GarQ-U and GarQ-S have a better ratio.

In terms of comparing GarQ-U with GarQ-S, both have a similar ratio and an equal

number of access in the search operations. However, GarQ-U performs better than GarQ-S

in the add operation. Thus, for the remaining of this thesis, we refer GarQ with Unsorted
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Queue (GarQ-U) as GarQ.

5.5 Summary

An efficient data structure is important for minimizing the time complexity needed to per-

form advance reservation operations, such as searching for available resources, adding new

requests and deleting existing reservations. This chapter proposes a new data structure,

named Grid advance reservation Queue (GarQ), for administering reservations efficiently.

In addition, this chapter introduces a new operation, called interval search, to find a free

time interval closest to the requested reservation, if it was previously rejected. This op-

eration has a significant value to users, because it locates the next suitable reservation

time.

GarQ is an array-based data structure inspired by Calendar Queue and Segment Tree.

According to our performance evaluation, whose input is taken from real workload traces,

such as DAS2 fs0 from Vrije University in the Netherlands, GarQ manages to perform

much better on average than Linked List, Segment Tree and Calendar Queue for the above

reservation operations. However, for small jobs in the randomized DAS2 fs0 trace, Segment

Tree proves to have the best average runtime performance. We shuffled or randomized the

starting time of jobs from these traces because they are logged in increasing order of

arrival time. Overall, GarQ has a better ratio between low memory consumption and

runtime performance compared to these data structures. Hence, the results of GarQ are

encouraging because it is also easy to implement and can be reused for the next time

interval. Therefore, GarQ only needs to be built once in the beginning. In the next

chapter, we present an elastic reservation model for Grid systems, and show how GarQ is

used by an on-line strip packing algorithm to find alternative reservation offers.



Chapter 6

Elastic Reservation Model with On-line

Strip Packing Algorithm

This thesis provides a case for an elastic reservation model, where users can self-select

or choose the best option in reserving their jobs, according to their Quality of Service

(QoS) needs, such as deadline and budget. In addition, this thesis adapts an on-line strip

packing algorithm to provide alternative offers, and reduce fragmentations or idle time

gaps caused by having reservations in the system.

6.1 Introduction

In order to reserve the available resources, a user must first submit a request by specifying

a series of parameters such as number of resources needed, and start time and duration

of his/her jobs [86]. Then, the system checks for the feasibility of this request. If one or

more parameters can not be satisfied, then the request is rejected. Hence, this approach

is known as an inelastic or rigid method, because these parameters are hard constraints

that do not permit the system any modifications.

Consequently, the user may resubmit new requests with modified existing parameters,

such as a different start time and/or duration until available resources can be found. How-

ever, this approach will have a negative impact in increasing the communication overheads

between users and the resource. Moreover, it will also degrade the performance of the re-

95
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source in managing many incoming requests due to previously rejected ones. Finally, if

such a solution is found, it might not be a good one since it only looks for the first available

resources. As a result, it will cause fragmentations of AR jobs, which leave behind many

gaps of idle time among them. Thus, the resource utilization will be significantly lowered.

To overcome the above problem, this thesis introduces an elastic reservation model,

which takes into consideration the resource utilization when processing reservation re-

quests. With this model, users can query about the resource availability on a given time

interval. They can also provide a reservation duration time and/or number of compute

nodes (CNs) needed as soft constraints to the query. Then, the resource will give the users

an offer and/or a list of alternative ones, if these constraints can not be met. This ap-

proach allows a flexibility to the users to self-select or choose the best option in reserving

their jobs according to their Quality of Service (QoS) needs, such as deadline and budget.

For this model, this thesis adapts an existing on-line strip packing algorithm [40, 90] to

provide these alternative offers, and reduce fragmentations or idle time gaps caused by

having reservations in the system.

The importance of the self-select or self-service concept is further highlighted by a

survey done in 2007 by the International Air Transport Association (IATA) for the airlines

industry. The survey was conducted on over 10,000 active travelers. The result shows

that 54% of the survey participants said yes to more self-service options, and 69% of

them had used the provided self-service kiosks [72]. The result also shows that 83% of

these participants wished to have the opportunity to choose their own seats through online

websites [72]. In Chapter 7, we consider compute nodes as perishable, similar to aircraft

seats. Thus, the IATA findings are notably related and important to our problem domain.

6.2 Description of the Elastic Reservation Model

6.2.1 User Model

In order to reserve compute nodes, a user needs to submit a reservation request. In this

model, the request is defined as reserv(ts, te, numCN), where ts denotes the reservation

start time, te denotes the reservation end time, and numCN indicates the number of

compute nodes to be reserved, respectively. When the system receives the request, it
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Figure 6.1: An example of elastic AR with 3 nodes. A dotted box denotes a new request.

checks for availability. Then, the system replies back to the user whether it can accept the

request or not. If the request has been accepted, then the user sends his/her jobs or goes

back to submit a new reservation request with a different time interval.

To increase the chance of getting accepted, the user can query about available time

slots. This query operation is defined as queryReserv(tis, tie, dur?, numCN?), where

tis denotes the earliest start time interval, tie denotes the latest end time interval, and

dur denotes the reservation duration time, respectively. Note that the “?” sign indicates

that this attribute is optional. In addition, we assume that (tie − tis) ≥ dur.

Upon receiving the queryReserv() operation, the resource will find a solution or an of-

fer that satisfies both dur and numCN constraints. Otherwise, these parameters are

treated as soft constraints, and a list of alternative offers are given. The list is de-

fined as offerList[ ] = { offer(ts, te, numCN) + }, where the “+” sign denotes one

or more occurrences of this tuple. These offers are temporary results generated from

this queryReserv() operation. Thus, the user needs to select an offer and to send a

reserv(ts, te, numCN) operation for a guarantee. Note that in this thesis, we solely

focus on reserving homogeneous nodes as the type of resource. Moreover, the “?” and “+”

signs are borrowed from a W3C recommendation on XML [16].

Figure 6.1 shows an example of existing reservations in the system, represented as a

time-space diagram. When a new query from User5 arrives, i.e. queryReserv(11, 16, 2, 2),

the system checks for any available nodes within [11, 16] time interval. It founds a solu-

tion, which is offer(13, 15, 2), that satisfies both dur and numCN constraints. Then,

the user sends a reservation request, i.e. reserv(13, 15, 2), to accept this offer.
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Figure 6.2: System that supports an elastic reservation model.

6.2.2 System Model

To incorporate an elastic reservation model into an existing system (discussed in Chap-

ter 4.3.2), we add two new components: Reservation System and Resource Calendar, as

shown in Figure 6.2. The Reservation System handles users’ queries and bookings, whereas

the Resource Calendar stores reservations’ details and updates node availability as time

progresses or as needed.

The Reservation System communicates with the Resource Calendar to search for avail-

able nodes, and add new reservations. The Resource Scheduler also interacts with the

Resource Calendar to determine the start time of reserved jobs in the AR Queue. For the

Reservation System, we adapt an on-line strip packing algorithm, which will be discussed

next. For the Resource Calendar, we use GarQ, as explained in Chapter 5.

6.3 On-line Strip Packing Algorithm

In this section, we describe how to generate suitable offers for AR requests, by using

an adapted on-line strip packing (OSP) algorithm for our elastic model. Since no prior

knowledge of AR arrivals is given, the proposed OSP algorithm focuses on finding a solution

or alternative offers for each request. Hence, OSP aims to increase resource utilization and

reduce fragmentations. This problem is similar to a strip packing problem, where objects

of different sizes are coming in and it is trying to minimize the height of objects packed
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Algorithm 8: The OSP algorithm for an elastic reservation model.

Input: queryReserv(tis, tie, dur, numCN)
Output: offerList[ ] or a list of offers, including a solution (if found)

if (dur 6= φ) and (numCN 6= φ) then1

needSol ← true;2

else needSol ← false;3

// initialize with a default value

if (dur == φ) then dur ← δ;4

if (numCN == φ) then numCN ← 1;5

offerList[ ] ← φ;6

ts← get total slot(dur); // total slots needed7

slotList[ ] ← find consecutive slot(tis, tie);8

size ← get size(slotList); // size of list9

// rank slotList[ ] in the increasing order of freeCN and returns its indices

indexRank[ ] ← get sorted index( slotList[ ] );10

// a loop to search for offers

for (i = 0) to (size− 1) do11

index← indexRank[i]; // current index12

slot← slotList[index]; // current slot13

// skips this unsuitable slot and goes back to the top of the loop

if (slot.freeCN < numCN) then continue;14

head← indexRank[i]; // starting index15

tail← indexRank[i]; // ending index16

totSlot← slot.numSlot; // total number of slots found so far17

minCN ← slot.freeCN ; // lowest freeCN that can be offered so far18

// look for slots located earlier than slotList[index] (left side)

for (l = index− 1) to (l ≥ 0) do // decrement19

freeCN ← slotList[l].freeCN ;20

if (freeCN < numCN) or (totSlot ≥ ts) then21

break;22

end23

head ← l; // starts from this slot24

totSlot← totSlot + slotList[l].numSlot;25

minCN ← min(freeCN, minCN);26

end27

// look for slots located later than slotList[index] (right side)

for (r = index + 1) to (r ≤ size− 1) do28

freeCN ← slotList[r].freeCN ;29

if (freeCN < numCN) or (totSlot ≥ ts) then30

break;31

end32

tail ← r; // ends until this slot33

totSlot← totSlot + slotList[r].numSlot;34

minCN ← min(freeCN, minCN);35

end36

offer ← make offer(head, tail, totSlot, minCN); // make a new offer37

offerList[ ] ← add offer(offerList[ ], offer); // storing list of offers38

// found a solution

if (totSlot ≥ ts) and (needSol == true) then39

offerList[ ] ← found sol(offer, offerList[ ]);40

needSol ← false;41

break; // stops looking for more offers (exit the loop)42

end43

end44

offerList[ ] ← set cost(offerList[ ]);45

return offerList[ ];46
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into one bin. Applying this problem to our model, an AR request represents an object of

which its width and height are numCN and dur respectively.

Algorithm 8 shows the proposed OSP algorithm for each AR request. If the request

does not specify any duration time, then the OSP algorithm sets the dur parameter to

be δ by default (line 4), where δ is a fixed time interval used by GarQ (as mentioned in

Chapter 5). Similarly, numCN = 1 if the value of numCN is not given (line 5). If both

parameters are specified in the request, the OSP algorithm aims to find a solution that

satisfies these constraints. The boolean variable needSol is used to notify such a case (line

1–3), such that in the end, this solution can be placed at the top of the list. If no solution

is found, the OSP algorithm treats the dur and numCN parameters as soft constraints.

After getting these constraints, OSP obtains a list of consecutive slots (slotList[ ]) from

GarQ within the [tis, tie] interval (line 8). We define a consecutive slot to be a sequence

of slots with the same number of freeCN , i.e. maxCN − slot.rv, where maxCN is the

maximum number of nodes. The aim is to reduce the total number of slots needed to

search for available nodes. Then, OSP ranks these consecutive slots in an increasing order

of freeCN , and stores them in indexRank[ ] (line 10). Therefore, indexRank[i] indicates

the index of a slot with the (i + 1)-th low freeCN in slotList[ ] (line 12–13), such that

slotList[iA].freeCN ≤ slotList[iB].freeCN

where iA = indexRank[i], iB = indexRank[i + 1], and i = 0, . . . , size− 1.

After sorting slotList[ ], OSP iterates indexRank[ ] searching for a local minima (line

11–44). We denote a local minima as the first consecutive slot, where its freeCN is greater

than or equal to numCN . Otherwise, the slot will be ignored by OSP (line 14). The aim

of this exercise is to use this consecutive slot first. In the best case scenario, nodes of

this slot are fully utilized. As a consequence, other nearby slots can be allocated to run

reserved and/or non-reserved jobs that may require more than one node. Thus, OSP takes

into consideration the need of users running their parallel jobs in the system.

Then, OSP aims to satisfy the dur (duration time) or ts (total slots needed) constraint.

At each consecutive slot, OSP sets head and tail variables to the current position of

indexRank[ ] (line 15–16) for later usage, where head denotes the starting index, and tail
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denotes the ending index. OSP also adds numSlot to totSlot (line 17), where numSlot

denotes the number of slots grouped together, and totSlot denotes the total number of

slots found so far. Finally, OSP sets minCN to the slot’s freeCN (line 18) for later usage,

where minCN denotes the lowest number of available nodes that can be offered so far.

If totSlot is less than ts, then OSP looks for more numSlot (line 19–36). First, OSP

looks to the left side or finds more slots that are located earlier than slotList[index] (line

19–27), where index denotes the position of the consecutive slot in slotList[ ]. If totSlot

is still not enough, OSP looks to the right side or finds more slots that are located later

than slotList[index] (line 28–36). For either side, the head (for the left side), tail (for the

right side), totSlot, and minCN variables are updated accordingly. The search on either

side ends if it satisfies one of the following conditions: (i) the number of available nodes at

each slot is less than numCN ; (ii) the total number of slots found so far equals or exceeds

ts; or (iii) the search hits one of the sentinels (beginning or ending position in slotList[ ]).

The main reason to search the left side first is to have a solution that is closest to the

starting time interval (tis) given by the user.

After the search ends, OSP makes a new reservation offer (line 37), where totSlot is

converted into the actual duration time. This offer is within the [head, tail] interval in

slotList[ ], and has minCN available nodes. Subsequently, this offer is added to offerList

(line 38), where offerList denotes a list containing newly-created offers. If the total

number of slots, totSlot, from this offer meets the ts and needSol objectives, then this

offer is marked as a solution or the most preferred one (line 39–43). Then, the found sol()

function moves this offer to the top of the list to become the first choice (line 40). In

addition, OSP stops looking for more offers if such solution is found.

Once all offers have been made, OSP applies the total cost or price to each of them

(line 45). Finally, OSP gives the list to the user (line 46), so he/she can decide. In

addition, the user is given the flexibility to reduce the dur and/or numCN values of an

offer. Overall, the time complexity for this OSP algorithm is O(n2), where n denotes the

number of consecutive slots in slotList[ ]. Note that detailed explanations on calculating

the price of each offer will be discussed in Chapter 7.
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6.4 Performance Evaluation

In order to evaluate the performance of our proposed algorithm, i.e. the On-line Strip

Packing (OSP) algorithm, we compare it to a First Fit (FF) algorithm. Moreover, we

introduce a Rigid algorithm as a base comparison. The FF algorithm only looks for the

first available nodes within a given time interval, whereas the Rigid algorithm treats tis,

dur and numCN as hard constraints. Therefore, if no solution is found, then the Rigid

algorithm will reject such reservation requests. Note that only the OSP algorithm provides

a list of offers for this experiment.

For scheduling reserved and non-reserved jobs from the queues, we incorporate First

Come First Serve (FCFS) and Easy Backfilling (BF) [98] policies into the Resource Sched-

uler. Thus, for this experiment, we model a system that uses one of the following Reser-

vation System and Resource Scheduler combinations: FF with FCFS (FF + FCFS), FF

with BF (FF + BF ), OSP with BF (OSP + BF ), Rigid with FCFS (Rigid + FCFS),

and Rigid with BF (Rigid + BF ). In addition, the system uses GarQ for the Resource

Calendar. We set GarQ with δ = 5 minutes, and a fixed interval length of 30 days. Finally,

we simulate a system with 64 homogeneous compute nodes, i.e. maxCN = 64.

6.4.1 Simulation Setup

We use a workload trace of the San Diego Supercomputer Center (SDSC) Blue Horizon

obtained from the Parallel Workload Archive [49]. This trace is chosen because it represents

a large number of jobs and contains a mixture of single and parallel jobs. Note that we

only simulate the first 2-weeks period of the trace, which is approximately 3200 jobs, since

the original trace was recorded over a two-year period. We selected 30% of these jobs to

use reservation. Few modifications have also been made to this trace, as mentioned below:

• If a job requires more than the total number of nodes of a resource, we set this job

to maxCN .

• A request’s start time is rounded up to the nearest 5-minute time interval. For

example, if a job request starts at time 01:03:05 (hh:mm:ss), then it will be rounded

to time 01:05:00.
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Figure 6.3: Degree of flexibility of a reservation query.

• A job duration time is within the range of 5 minutes to 28 days. We limit the

maximum duration time to prevent overlapping reservations from different months.

Hence, the data structure can be reused and built only once.

For the evaluation, we are investigating: (i) the effects of having the elastic reservation

model compared to the rigid model. These effects include the average resource utilization,

and the total number of rejections by the system; (ii) the impact of elastic and rigid

models to non-reserved jobs, where we measure the average waiting time these jobs spent

in the Job Queue; and (iii) the degree of flexibility given to the elastic model, where we

vary the [tis, tie] interval of a reservation query, by using the following parameters:

• book-ahead time, bt, where it denotes the booking time prior to the job’s starting

time ts (as stated in the SDSC trace), as shown in Figure 6.3. In the experiment,

we use bt ∈ {1, 5, 10} hours.

• search limit time, slt, where it denotes the time appended at the end of the job, as

shown in Figure 6.3. In the experiment, we use slt ∈ {0, 1, 2, 4, 6, 8, 10, 12} hours.

6.4.2 User’s Selection Policy

As mentioned earlier, the user submits a reservation query to a resource. Then, he/she

will receive a list of offers, offerList[ ], from the resource. Algorithm 9 shows the user’s

selection policy in choosing the best offer (line 1–9).

In Algorithm 9, the user is willing to accept an offer by reducing the initial dur and

numCN objectives, by up to a half or δ and 1 respectively (line 1–2). Therefore, the list

needs to be sorted in decreasing order based on the duration time, i.e. from the longest

to the shortest duration time (line 3). Then, each offer in the list is checked against the

minDur and minCN objectives (line 4–9). If a suitable offer is found, the user will place
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Algorithm 9: The selection policy of a user.

Input: offerList[ ] or a list of offers

minDur ← max(dur / 2, δ);1

minCN ← max(numCN / 2, 1);2

offerList[ ] ← sort decreasing(offerList[ ]); // based on the duration time3

for (i = 0) to (size− 1) do4

offer ← offerList[i];5

if is suitable(offer, minCN, minDur) == true then6

return offer; // found a suitable offer, so make a reservation7

end8

end9

return φ; // no suitable offers found10
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Figure 6.4: Average resource utilization.

a reservation on this offer (line 7). Otherwise, the user ignores the given offers (line 10).

Note that this selection policy is overly simplified and might not be feasible in real Grid

applications. However, we do this in order to demonstrate the elasticity of the proposed

model and the effectiveness of the OSP algorithm.
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Figure 6.5: Total number of busy CNs over a two-week period, with δ = 5 minutes, bt =
5 hours and slt = 8 hours.

6.4.3 Results

Figure 6.4 shows the effects of having reservations on the resource utilization. The result of

this figure is also influenced by the choice of a good scheduling policy, where BF manages

to perform much better than FCFS in all cases, by more than 4%. This can be shown by

comparing Rigid + FCFS with Rigid + BF , and FF + FCFS with FF + BF . For the

two Rigid algorithms, the gap between FCFS and FF is 4.3%, 6.5% and 8% for bt of 1, 5,

and 10 hours respectively. For the two FF algorithms, the gap is even bigger, i.e. 11% on

average of all bt results, ranging from 5.7% (slt = 0) to more than 15% (slt = 12).

Having a degree of flexibility in the reservation requests allows an additional im-

provement in the resource utilization, as depicted in Figure 6.4. The elastic model (i.e.

OSP + BF ) improves the resource utilization by 4.39% on average compared to the rigid

model (i.e. Rigid+BF ). Figure 6.4 also shows that the resource utilization stays constant

for both Rigid + FCFS and Rigid + BF , since because they treat the input parameters

as hard constraints. Thus, the bt and slt values do not have any effects on these Rigid
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Figure 6.6: Total Number of Rejection (lower number is better).

algorithms.

In Figure 6.4 (a), OSP + BF behaves slightly worse to FF + BF , since bt is too small

to make any improvements for the resource utilization. However, when bt is larger and

slt ≥ 6 hours in Figure 6.4 (b) and (c), the performance of OSP + BF is improving, and

performing better than FF + BF by 2.5% on average.

Figure 6.5 looks at the resource utilization in more details, as it shows the total con-

sumption of nodes for the entire duration. FF + BF and Rigid + FCFS, as shown in

Figure 6.5 (a) and (c) respectively, fluctuate frequently throughout. This condition can

be interpreted as having too many fragmentations or idle time gaps in the system. In

contrast, OSP + BF manages fragmentations better since reserved jobs are assigned to

slots within a local minima of free nodes, as displayed in Figure 6.5 (b). Thus, in the

best scenario, all nodes are busy or close to full, while at the same, leaving some empty

nodes available at different time periods. As a result, reserved and non-reserved jobs that

require many nodes have a lower probability of being rejected compared to the FF and

Rigid algorithms on average, as shown in Figure 6.6.
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Figure 6.7: Degree of flexibility in reserving AR jobs for the OSP + BF algorithm.

With the elastic model, users can self-select which alternative offers to choose, if no

solution is found. Thus, they can reduce the initial numCN and/or dur values according

to Algorithm 9, and select the most suitable offer from the list. Figure 6.6 shows that, as

slt increases, OSP + BF has the lowest number of rejection. For slt = 0 in Figure 6.6

(b) and (c), OSP + BF performs worse than the Rigid algorithms since it does not allow

to search for alternative solutions at later times. However, as slt increases, OSP + BF

manages to reduce the number of rejections by at least 12% (slt = 1) to 88% (slt = 12)

compared to Rigid+FCFS, as shown in Figure 6.6. On average, the elastic model reduces

the number of rejections by 54.88% and 41.67% compared to the Rigid and FF algorithms,

respectively.

Figure 6.7 also shows the importance of slt for the elastic model. As slt increases,

OSP + BF manages to find solutions that satisfy the given parameters. This figure also

shows that by allowing users to select an alternative offer if no solutions are found, it

reduces the total number of rejection, by at least 13.5% (slt = 0) to 63.6% (slt = 12).

Finally, Figure 6.8 shows the impact of reservation for non-reserved jobs, in terms of
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the average waiting time in the Job Queue. When bt = 1, the Rigid algorithms have the

lowest impact on average, as shown in Figure 6.8 (a). This is because they reject the most

reservations, as mentioned previously. For OSP +BF , the impact is worse when a request

has a short time interval, e.g. slt ≤ 2 in Figure 6.8 (a) and (b), due to not enough room

for flexibility. However, for the same slt, as bt becomes larger, OSP + BF manages to

minimize the waiting time by at least 22% on average. Eventually, OSP + BF performs

better than the Rigid algorithms for bt = 10, as highlighted in Figure 6.8 (c). Note that,

this result is influenced by the frequency of jobs arrival rate and the choice of a good

scheduling policy, where BF performs better than FCFS.

6.5 Related Work

Strip packing is a generalization of bin packing [83]. Bin packing is an NP-hard problem,

where it aims to minimize the number of bins used to store a set of objects of different

sizes. Many variants of bin packing have been proposed by several researchers [11, 115].
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A flexible method for reserving jobs in Grids has been presented [26, 69, 76], where

they talk about extending the reservation time interval or window in order to increase the

success rate. However, they do no provide alternative offers if the reservation is rejected.

On the other hand, the work done by [116, 124] provides this important functionality.

The fuzzy model introduced by Roeblitz et al. [116] provides a set of parameters when

requesting a reservation, and applies speedup models for finding the alternative solutions.

Moreover, their model requires additional input conditions, such as the gap between two

consecutive time slots and maximum number of time slots. However, no optimization on

the resource utilization is considered in their model. In addition, our model aims to reduce

fragmentations, hence, it does not require to specify the gap between time slots.

The model proposed by Siddiqui et al. [124] uses a 3-layered negotiation protocol,

where the allocation layer deals with flexible reservations on a particular Grid resource.

In this layer, the authors also used the strip packing method. However, the resources

are dynamically partitioned into different shelves based on demands or needs, where each

shelf is associated with a fixed time length, number of CNs and cost. Thus, the reservation

request is placed or offered into an adjacent shelf that is more suitable. In contrast, our

model does not need different shelves with variable length, since we use a time-slotted

data structure, based on a fixed time interval δ. Therefore, our approach is focusing more

on utilizing the compute nodes for each time slot in the data structure.

In networks, Naiksatam and Figueira [100] propose an elastic model for bandwidth

reservations, by partitioning the network capacity into slots. Then, they present a heuristic

algorithm, Squeeze In Stretch Out (SISO), to schedule bandwidth reservations. Each

reservation is associated with a minimum and a maximum number of bandwidth slots

for a guarantee QoS. Thus, SISO can increase (squeeze in) or decrease (stretch out) the

allocated slots of each reservation over the time period, in order to increase the overall

bandwidth utilization. However, this approach is not feasible, since in our model the

compute nodes are fully dedicated to executing one reservation at a time (a space-shared

mode). Thus, they can not be shared with other reservations or jobs.

In a real-time system, Kim [77] extends the DSRT scheduling system to provide al-

ternative offers if a request is rejected, as described in Section 2.2.2. In addition, the

CPU broker of the DSRT system allows the users to specify what to expect in case their
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reservations finish early or late, as mentioned previously. We will consider this feature as

a future work.

6.6 Summary

This chapter provides a case for an elastic reservation model, where users can self-select or

choose the best option in reserving their jobs, according to their Quality of Service (QoS)

needs, such as deadline and budget. In this model, each Grid system has a Reservation

System and a Resource Calendar. The Reservation System is responsible for handling

reservation queries and requests, whereas the Resource Calendar is responsible for storing

and updating information about resource availability as time progresses. For the Reserva-

tion System, the model adapts an on-line strip packing (OSP) algorithm. For the Resource

Calendar, the model uses GarQ, as explained in Chapter 5.

The OSP algorithm considers the duration and number of required compute nodes as

soft constraints for a given reservation query. Thus, it aims to find a solution or alternative

offers within the given time interval for users to choose themselves. Rather than giving

the first available empty slots to users, the OSP algorithm plans ahead and targets at a

slot which represents a local minima, based on the remaining number of available nodes

recorded in GarQ. In the best case scenario, all nodes at this slot become busy. As a

consequence, other slots can be used to run jobs that require more than one node. Thus,

the OSP algorithm also aims to reduce fragmentations or idle time gap caused by having

reservations in the system.

Having a degree of flexibility in the reservation requests allows an improvement in the

resource utilization. Results show that the elastic model improves the resource utilization

by 4.39% on average compared to the rigid model. In addition, the elastic model reduces

the number of rejections by 54.88% on average compared to the rigid model. The results

also show that by allowing users to select an alternative offer if no solutions are found,

the OSP algorithm reduces the total number of rejection by around 13.5% – 63.6%. Note

that the rigid model treats all the request parameters as hard constraints. Therefore, if

no solution is found, then the rigid model will reject such requests.

The challenging issue of adopting advance reservation in existing Grid systems is its
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impact in increasing the waiting times of local jobs in the queue. As expected, results

show that the rigid model has a minimal impact on the average waiting time, as it did not

accept too many reservations. However, the elastic model performs better as the reserva-

tion requests become more flexible. The results show that the elastic model improves its

performance by 22% on average. The elastic model performs better than the rigid model

for requests with a book-ahead time of 10 hours.

In addition, there are several issues need to be addressed by the Grid systems, such

as calculating reservation price, increasing resource revenue, and regulating supply and

demand. In the next chapter, we propose the use of Revenue Management to address

these issues.





Chapter 7

Revenue Management, Overbooking and

Reservation Pricing

This chapter proposes the use of Revenue Management to determine the pricing of

reservations in order to increase the resource revenue, and to regulate supply and demand.

In addition, this chapter introduces the concept of overbooking to protect the resource

against unexpected cancellations and no-shows of reservations.

7.1 Introduction

Buyya et al. [21] introduced a Grid economy concept that provides a mechanism for reg-

ulating supply and demand, and calculates pricing policies based on these criteria. With

this concept, it offers an incentive for resource owners to join the Grid, and encourages

users to utilize resources optimally and effectively.

A study by Smith et al. [132] showed that by providing advance reservation (AR) in

Grid systems, it increases waiting times of applications in the queue by up to 37% with

backfilling. This study was conducted, without using any economy models, by selecting

20% of applications using reservations on across different workload models. The finding

implies that without economy models or any set of policies, the systems accept reservations

based on a first come first serve basis and subject to availability. It also means that

these reservations are treated similarly to high priority jobs in a local queue. Therefore,

113
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regulating supply and demand is an important issue in advance reservation.

Revenue Management (RM) can be an answer for the aforementioned problems. The

main objective of RM is to maximize profits by providing the right price for every prod-

uct to different customers, and periodically update the prices in response to market de-

mands [111]. Therefore, a resource provider can apply RM techniques to shift demands

requested by budget conscious users to off-peak periods as an example. Hence, more re-

sources are available for users with tight deadlines in peak periods who are willing to pay

more for the privilege. As a result, the resource provider gains more revenue, and allocates

available nodes to applications that are highly valued by the users in this scenario. So far,

RM techniques have been widely adopted in various industries, such as airlines, hotels,

and car rentals [92].

7.2 Revenue Management Techniques and Strategy

Revenue management (RM) is applicable when the following requirements are met [111]:

• Capacity is limited and immediately perishable. For example, an empty hotel room

of today cannot be stored to satisfy future demand.

• Customers book capacity ahead of time to guarantee its availability when they need

to consume it.

• Seller manages a set of fare classes and updates their availability based on market

demands.

From the above criteria, RM is suitable in determining the pricing of reservations in

Grids, as computing powers can be considered perishable. To successfully adapt RM,

a resource provider needs to have an initial strategy, establishes a system that handles

bookings and updates its tactics periodically based on demands [111]. These aspects are

discussed next.

7.2.1 Market Segmentation

This is an initial step of RM that identifies different customer segments for a product, and

applies different pricing to each of them. The resource provider only needs to come up
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Table 7.1: An example of market segmentation in Grids for reserving jobs.
Class User Category Restrictions

1 Premium none

2 Business same VO, allow cancellation

3 Budget same VO, non-refundable, only
for a limited number of CNs

Table 7.2: Characteristics of different users.
Budget User Business and Premium User

Relaxed deadline Tight deadline
Run longer jobs Run short/medium jobs
Highly price sensitive Less price sensitive
Book earlier Book later
More flexible Less flexible
More accepting of restrictions Less accepting

with a strategy quarterly or annually. Note that a product in the Grid context means a

resource requested by users in advance.

The airlines industry is a well-known example that segments customers and offers

them different fare classes based on when they book their flights prior to departure times.

Each fare class is a combination of a price and a set of restrictions on who can purchase

the product and when. For example, a customer that books a flight one day prior to a

departure time can be identified as a business customer. The airline knows from historical

data that business customers are less flexible to changes and less price sensitive than leisure

customers who book a week before. Therefore, the airline can sell a higher price to business

customers compared to leisure customers for seats in a same flight.

In Grids, resources can be part of one or more virtual organizations (VOs). The concept

of a VO allows users and institutions to gain access to their accumulated pool of resources

to run applications from a specific field [54], such as high-energy physics or aerospace

design. Table 7.1 shows an example of market segmentation in Grids, where we classify

users into three classes, i.e. Premium, Business and Budget. The classifications are based

on user VO domains and a set of conditions or restrictions imposed on each user category.

In addition, we profile users according to their Quality of Service (QoS) requirements (e.g.

deadline and cost) and job patterns (e.g. job size and time of bookings), as depicted in

Table 7.2.
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Figure 7.1: Revenue Management System as part of a Grid resource.

7.2.2 Price Differentiation

Once users’ classifications and profiling are identified, restrictions can be introduced to

create virtual products oriented toward different market segments to make additional

profits. As an example, products for the Budget users have many restrictions, as shown

in Table 7.1, that make them unsuitable and unavailable to users with tight deadlines and

from different VOs respectively. As a result, an inferior product can be sold to a more

price-sensitive segment of the market [111]. Therefore, the resource provider can set prices

for the same product to be: p1 > p2 > p3, where p1 denotes the price paid by the Premium

(class 1) users and so on. This practice is commonly known in the economics literature as

price differentiation or discrimination.

The main advantage of this approach is that these prices can be adjusted dynamically

based on demands, since Grid resources are limited. Hence, by increasing the price to all

classes during peak periods, it can shift some demands from the Budget users to off-peak

periods. As a result, more resources are available for reservations for both the Premium

and Business users.
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7.3 Revenue Management System

Figure 7.1 shows how Revenue Management System (RMS) can be integrated into the

existing elastic Grid reservation-based system, which was discussed in Chapter 6. With

the adoption of the RMS, the functionalities of the Reservation System are integrated into

the Booking Control (BC). Thus, the BC is now responsible for handling users queries and

bookings (step 1). This is done by consulting and checking booking limits in the Resource

Calendar (step 2).

A booking limit (b) is the maximum number of nodes that may be reserved at each fare

class. Therefore, each slot in the data structure, as explained in Section 5.3, is modified

to contain b1, b2, and b3 denoting the booking limit for class 1, 2 and 3 respectively.

Once the query yields a list of options, the Billing System (BS) calculates a fare class

for each of them (step 3). Then, the BS sends this information to the user (step 4).

The BS also handles the user payment and confirms his/her booking by submitting this

information to the Resource Calendar (step 5).

Forecasting Module (FM) is responsible for generating and updating forecasts of de-

mands in the future. Initially, the forecast can be done about two to three weeks prior to

an opening of bookings. Then the FM updates this forecast frequently as bookings and

cancellations are received over time from the BS (step 6).

These forecasts are then used as inputs by the Booking Optimization to re-generate

booking limits for each user class in the Resource Calendar (step 7 and 8). Hence, if the

demands are deemed to be low, the booking limit for the Budget users is set to a higher

number in order to increase the existing capacity. Forecasting and optimization will be

discussed next.

7.4 Revenue Management Tactics

RM tactics are used in a daily operational planning to calculate and update booking limits.

For these tactics, we assume that class 3 (Budget) users reserve before class 2 users before

class 1 users, as shown in Figure 7.2. This assumption is used so that once a booking limit

for class 3, b3, is reached, then users will be offered a fare class of the next one, i.e. class

2, and so on.
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Figure 7.2: Protection levels (y1, y2) and nested booking limits (b1, b2, b3) for each slot.

7.4.1 Protection Levels and Nested Booking Limits

When an initial demand is generated, the Forecasting Module sets protection levels, y1 and

y2 for class 1 and 2 respectively. A protection level (y) is required in order to make some

CNs available for business and premium users that might book later in time, as shown in

Figure 7.2.

In order to prevent high-fare bookings are being rejected in favor of budget ones, a

nested approach is used to determine bi, where bi denotes the booking limit for class i, as

shown in Figure 7.2. With this approach, the booking limits are always non-increasing,

i.e. b1 ≥ b2 ≥ b3. In addition, every class has access to all of the bookings available to

lower classes. Hence, b1 denotes the maximum number of CNs to be reserved.

7.4.2 Calculating Booking Limit for Two-Fare Class Users

Let us first consider a two-class user problem for a given capacity C for simplicity, where

h denotes a higher class and l denotes a lower class. Let pi denotes the price of class i.

Since the price of a higher class is more expensive than that of a lower class, as mentioned

in Section 7.2.2, it follows that ph > pl.

We assume that a cumulative distribution function of class i’s demand is given by

Fi(x), because the analysis is based on forecasting future bookings [92]. Thus, Fi(x) is the

probability that the demand of class i user is less than or equal to x.

We assume that the current booking limit for the lower class is bl − 1. The expected

revenue (E) can be changed by IR(bl), where IR(bl) denotes the increase of bl by 1. In

addition, E depends on the demand of the lower-class users (dl). If dl ≤ (bl − 1), then the

expected revenue is the same. However, if dl > (bl − 1), then the revenue depends on dh.

When E relies on the demand of the higher-class users (dh), we encounter two pos-
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sibilities. If dh ≤ (C − bl), then the revenue can be increased by a minimum of pl. On

the contrary, if dh > (C − bl), the resource provider will lose by at least (ph − pl). The

expected revenue increase from bl − 1 to bl is defined by the following [111]:

E[IR(bl)] = (1− Fl(bl − 1))× {Fh(C−bl)pl − (1−Fh(C−bl))(ph−pl)}

= (1− Fl(bl − 1)){pl − (1− Fh(C − bl))ph}

The algorithm to calculate bl is shown in Algorithm 10, where it starts from zero and

keeps incrementing until the increased expected revenue becomes zero or negative. As a

result of Algorithm 10, the protection level of a higher class is also determined by C − bl.

Algorithm 10: BookingLimit (C, ph, pl, Fh)

bl ← 0;1

while bl < C do2

bl ← bl + 1 ;3

E[IR(bl)]← (1−Fl(bl − 1)){pl−(1−Fh(C − bl))ph} ;4

if E[IR(bl)] ≤ 0 then return bl − 1 ;5

end6

return bl ;7

7.4.3 Capacity Allocation in Three-Fare Class Users

The capacity allocation problem in RM is to decide the booking limit for each class user,

in order to maximize the overall expected total revenue. If too many CNs are allocated

to lower-class users, we may lose a chance to earn more revenue from accepting future

bookings from higher-class users, e.g. in peak periods. On the contrary, an insufficient

quota for the lower-class users, may lead to a lower resource utilization and revenue, e.g.

in off-peak periods. Thus, determining an appropriate capacity allocation to each user

class at different time periods is an important factor in RM.

Let us consider the capacity allocation problem of three classes in the RMS. We use

an expected marginal seat revenue (EMSR) heuristic [10] to determine the booking limits

of three classes, as shown in Algorithm 11. In order to determine b3, the protection levels

of class 1 and 2 need to be calculated first, as shown in Algorithm 11. Then, b2 can be

found by using the two-class problem with C = maxCN − b3.
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Algorithm 11: Capacity Allocation in Three-fare Class Users.

y1 ← maxCN − BookingLimit (maxCN, p1, p3, F1) ;1

y2 ← maxCN − BookingLimit (maxCN, p2, p3, F2) ;2

b3 ← max(0, maxCN− y1 − y2) ;3

b2 ← b3+ BookingLimit (maxCN − b3, p1, p2, F1) ;4

b1 ← maxCN ;5
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Figure 7.3: An example of total number of reservations with and without overbooking.

7.5 Overbooking

Once users book a certain amount of CNs, the resource provider expects them to submit

their jobs before reservations start. However, in reality, users may cancel their reservations

before starting time or by not submitting at all (no-show), due to reasons such as resource

or network failures on the other end. Thus, the resource provider has no choice but to reject

bookings from potential users, who are willing to pay for a higher price and committing to

use the resource during a period of high demands for example. As a result, the resource

provider is faced with a prospect of loss of income and lower system utilization.

Overbooking offers a solution for the above problem, by allowing the resource provider

to accept more reservations than the capacity. Hence, it can be effectively used to min-

imize the loss of revenue [92, 111]. However, the challenging issues in using overbooking

are determining the appropriate number of excess reservations, minimizing total compen-

sation costs, addressing legal and regulatory issues, and dealing with market acceptance,

especially the ill-will or negative effects from users who have been denied access [142]. In

this section, we only consider the first two issues of overbooking.
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Figure 7.3 illustrates an example on how overbooking can protect a resource provider

against unanticipated cancellations and no-shows. We define a cancellation as a reservation

that is terminated by a user before the service or starting time ts, as shown in Figure 7.3.

Moreover, we describe a no-show as a reservation that fails to arrive and run on the

resource on ts (without a cancellation notice).

By setting the overbooking limit ob to be greater than maxCN , the resource provider

can still accept more reservations (after t1) until total number of reservations totAR equals

to ob (on t2 and t3), as shown in Figure 7.3. In contrast, a resource without overbooking

has to deny potential reservations starting from t1, since the capacity is full.

The overbooking limit itself needs to be updated and evaluated frequently as ts ap-

proaches. Thus, as totAR increases, ob decreases, as shown in Figure 7.3. Then, the

resource provider takes an advantage of the cancellation and no-show periods to reduce

totAR. In the best-case scenario, the resource may not need to deny any excess reservations

due to a large number of no-shows. In the end, on ts, a resource with overbooking yields

more reservations that show up than without overbooking. Note that, if totAR > maxCN ,

we address this problem by introducing a compensation scheme. More details on this

scheme is discussed in Sections 7.5.2 and 7.6.3.

In this section, we adopt several static overbooking policies, introduced in the RM lit-

erature [111, 142], into our work. These static policies only calculate the ideal overbooking

limit periodically prior to ts, when the state and probabilities change over time. Thus, we

assume the following things:

• Cancellations and no-shows are independent of the number of total bookings.

• The probability of a cancellation is Markovian, i.e. it only depends on the current

time.

• No-shows are treated as cancellations on ts. Hence, we can define q(t) as a show rate

or a probability that reservations show up from the time remaining until ts.

7.5.1 A Probability-based Policy

This is a simple overbooking policy, where ob is determined statistically based on the

probability of shows. Equation 7.1 determines the overbooking limit at time t. For exam-
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ple, if maxCN = 100 and q(t) = 0.80, then the amount of overbooking capacity is 125.

Therefore, the lower the probability of shows, the higher the overbooking limit becomes.

ob =
maxCN

q(t)
(7.1)

7.5.2 A Risk-based Policy

A risk-based policy aims to balance the expected cost of denied service with the revenue

by accepting more bookings. The cost of denied service refers to the compensation money

given to users who got rejected or bumped at the service time. This cost of denied service

is denoted as costds and is usually higher than the reservation price p. Thus, a risk analysis

is required in order to calculate a threshold at which the overbooking is allowed.

For computing the threshold, we need to find out the probability distribution of users

demand and number of shows. Let A(x) denotes the probability that the demand of users

is less than or equal to x, where x denotes the number of bookings. Moreover, we define

Fx(y) as the probability that the number of bookings that will show up at the time of

service is less than or equal to y.

We derive the show distribution Fx(y) at time t, under the assumption that each

customer’s showing probabilities are independent. The show probability of each customer

at time t is denoted as q. Then, the number of shows, as investigated by Thompson [145],

follows a binomial distribution with the cumulative distribution function:

Fx(y) =

y
∑

k=0

(

x

k

)

qk (1− q)x−k (7.2)

Let us assume that the current booking limit and capacity are b and C, respectively.

Then, we derive the expected revenue change by increasing the booking limit from b to

b + 1. By doing this, we are faced with three possible cases:

1. demand < b + 1, which means there are no changes in the forecasted revenue.

2. demand ≥ b+1 and the number of shows ≤ C. Since the resource provider can serve

users at ts, the profit of p is obtained by accepting an additional reservation.

3. demand ≥ b+1 and the number of shows > C, which means the resource provider has
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to deny one user with a compensation cost. As a result, there is a loss of costds − p,

where costds > p.

Thus, we can derive the expected revenue change by increasing the booking limit from

b to b + 1 as follows.

E[R|b + 1]− E[R|b] = (1−A(b)){pFb+1(C) + (p− costds)(1− Fb+1(C))}

= (1−A(b)){p− costds(1− Fb+1(C))}
(7.3)

Algorithm 12: Overbooking Limit using a Risk Policy

ob← C;1

IR← (1−A(ob)){p− costds(1− Fob+1(C)) ;2

while IR > 0 do3

ob← ob + 1 ;4

IR← (1−A(ob)){p− costds(1− Fob+1(C)) ;5

end6

return ob ;7

As long as the expected revenue change is greater than zero, the overbooking limit can

be increased, as shown in Algorithm 12. The booking limit ob starts from the maximum

capacity C (line 1), and is incremented until the expected revenue change becomes zero

or negative (line 3).

In multiple fare classes, the increased revenue from having an additional booking can

not be easily calculated. Therefore, a suitable approach is to determine a weighted average

price p̂, based on the mean demands µ in each user class [111]. More specifically,

p̂ =
n

∑

i=0

µipi (7.4)

7.5.3 A Service-Level Policy

Although the risk-based policy enhances the expected revenue of the resource, users who

got denied at the service time, tend to submit their jobs to other resources in the future.

Thus, by using the risk-based policy, a resource may lose some of these users in the long

term. Moreover, this policy may increase the negative impact of overbooking towards

users’ satisfaction.

A service-level policy addresses the above issues by defining a specified level or fraction
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of denied users. For example, American Airlines and United Airlines have an involuntary

denied boarding (DB) ratio of 0.84 and 0.51 per 10,000 passengers respectively, due to

oversales in 2006 [104]. The data were taken from flights within and originated in the

United States. With the service-level policy, the airlines may set a threshold of involun-

tary DB ratio to be 0.50 as an example. Accordingly, the airlines could determine the

overbooking limit based on this threshold.

Suppose that the number of shows for a given x bookings is denoted as B(x). Then,

the service level of x bookings, s(x) is defined by Equation 7.5, where (B(x) − C)+ =

max(0, B(x) − C). The equation implies the fraction of the expected denied service over

the expected number of shows.

s(x) =
E[(B(x)− C)+]

E[B(x)]
(7.5)

If we use a binomial distribution for show demands, then the service level of x bookings

can be derived as follows. The probability mass function of a binomial distribution:

Px(k) = P (B(x) = k)

=
(

x
k

)

qk (1− q)x−k, k = 0, 1, . . . , x
(7.6)

with mean E[B(x)] = xq and variance V ar(B(x)) = xq(1 − q). According to Talluri and

Ryzin [142], Equation 7.5 can further be refined to

s(x) =

∑x
k=C+1

(k − C) Px(k)

xq
(7.7)

Thus, substituting Equation 7.6 into Equation 7.7, we obtain

s(x) =
1

xq
×

x
∑

k=C+1

(k − C)

(

x

k

)

qk (1− q)x−k (7.8)

For a given service level ds threshold, the overbooking limit for this policy is calculated

in Algorithm 13. Initially, the overbooking limit ob starts from the maximum capacity C

(line 1), and is incremented until s(x) equals to or less than ds threshold (line 3).
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Algorithm 13: Overbooking Limit using Service Policy

ob← C;1

s(x)← E[(B(x)− C)+] / E[B(x)] ;2

while s(x) ≤ ds threshold do3

ob← ob + 1 ;4

s(x)← E[(B(x)− C)+] / E[B(x)] ;5

end6

return ob ;7

7.5.4 Examples of Overbooking Limit Calculation

In this subsection, we give a brief example on the calculation of the overbooking limit for

the above policies. We consider the price of a single time slot in a resource is fixed, with p

= G$100 and C = 50 for simplicity. However, the denied cost costds and the show-rate q

are varied from 125 to 175 and from 0.60 to 0.95, respectively. In this example, the money

is represented in Grid dollar (G$).

ENR = pE[B(ob)]− costds ∗ E[(B(ob)− C)+] (7.9)

= p ∗ ob ∗ q − costds ∗
ob

∑

k=C+1

(

ob

k

)

qk(1− q)ob−k

Table 7.3 and 7.4 shows the overbooking limit (ob), expected net revenue (ENR in

G$), and service level (SL) for each show rate (q), according to the probability-based and

risk-based policies, respectively. Note that the ENR and SL in both tables are calculated

using Equations 7.9 and 7.8 respectively.

For the probability-based policy, as q decreases, ob increases accordingly, as shown in

Table 7.3. However, this policy does not take into a consideration the denied cost in its

overbooking calculation. Thus, at each q, as costds increases, the ENR decreases.

On the other hand, the risk-based policy adaptively selects ob with a consideration

of both the show rate and the denied cost, as shown in Table 7.4. In this example, the

risk-based policy calculates more overbooking limit than the probability-based one, since

the demand are forecasted to be greater than the cancellation rate (i.e. 1 - q). However,

as costds increases at each q, ob decreases to prevent the ENR from reducing any further.

As a result, the risk-based policy generates more net revenue than the probability-based
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Table 7.3: Calculating the overbooking limit by using a Probability-based policy.
Expected Net Revenue (G$) Service

q ob costds = 125 costds = 150 costds = 175 Level

0.60 83 4,770.5 4,728.6 4,686.7 0.0337

0.65 76 4,769.1 4,734.9 4,700.8 0.0277

0.70 71 4,796.7 4,762.1 4,727.4 0.0279

0.75 66 4,805.6 4,776.7 4,747.8 0.0233

0.80 62 4,828.4 4,802.1 4,775.8 0.0212

0.85 58 4,836.5 4,817.8 4,799.1 0.0152

0.90 55 4,870.7 4,854.9 4,839.0 0.0128

0.95 52 4,898.9 4,890.7 4,882.4 0.0067

Table 7.4: Calculating the overbooking limit by using a Risk-based policy.
costds = 125 costds = 150 costds = 175

q ob ENR SL ob ENR SL ob ENR SL

0.60 90 4,836.9 0.0834 87 4,750.4 0.0600 85 4,689.9 0.0459

0.65 83 4,846.7 0.0813 80 4,766.8 0.0555 78 4,711.1 0.0405

0.70 76 4,858.8 0.0693 74 4,784.2 0.0509 73 4,729.6 0.0425

0.75 71 4,870.4 0.0683 69 4,802.4 0.0480 68 4,753.2 0.0389

0.80 66 4,884.2 0.0600 64 4,824.3 0.0385 63 4,782.2 0.0292

0.85 62 4,898.4 0.0564 60 4,847.9 0.0330 59 4,811.5 0.0232

0.90 58 4,916.7 0.0465 57 4,873.1 0.0334 56 4,846.4 0.0219

0.95 54 4,941.4 0.0294 53 4,912.3 0.0162 53 4,891.9 0.0162

one for the same show rate and denied cost.

Table 7.5 shows the ob and ENR for a given service level, i.e. from 0.01 (1%) to 0.0001

(0.01%). Note that the ENR is also calculated by using Equation 7.9. From Table 7.5,

it can be concluded that as SL decreases, ob and ENR become smaller for the same q.

Although this policy produces the lowest net revenue of all the overbooking policies, it

Table 7.5: Calculating the overbooking limit by using a Service-level policy (with costds =
150).

SL = 0.01 SL = 0.001 SL = 0.0001
q ob ENR ob ENR ob ENR

0.60 77 4,555.3 70 4,194.9 66 3,959.4

0.65 71 4,563.3 66 4,283.7 62 4,029.5

0.70 67 4,628.8 62 4,334.6 59 4,129.4

0.75 63 4,667.1 59 4,418.9 56 4,199.6

0.80 60 4,731.7 56 4,475.3 54 4,319.5

0.85 57 4,779.0 54 4,584.0 52 4,419.6

0.90 54 4,813.7 52 4,675.1 50 4,500.0

0.95 52 4,890.7 50 4,750.0 50 4,750.0
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has the lowest number of denied reservations. For example, for the same costds of 150

in the service-level policy, the SL of the risk-based policy varies from 0.0162 (q = 0.95)

to 0.0600 (q = 0.60), as shown in Table 7.4. This means that about 162 – 600 out of

10,000 reservations are denied by a resource provider when using the risk-based policy.

For the probability-based policy, the SL varies from 0.0067 (q = 0.95) to 0.0337 (q = 0.60)

regardless of any denied costs, as shown in Table 7.3. Thus, the resource provider needs

to deny 67 – 337 out of 10,000 reservations when using this policy.

Overall, from this example, the probability-based policy can be used to generate an

extra net income when the show rate is high (e.g. q ≥ 0.90) and the denied cost is low

(e.g. costds = 125). Moreover, it has the simplest formula for calculating the overbooking

limit. In contrast, the risk-based policy can be applied to produce more revenue, when

the demand exceeds the cancellation rate and the denied cost increases over time. Finally,

the service-level policy can be adopted to reduce the number of denied reservations due

to overbooking in the long run.

7.5.5 Capacity Allocation with Overbooking

Algorithm 14: Capacity Allocation with Overbooking

ob← OverbookingLimit(q, maxCN) ;1

C+ ← max(maxCN, ob) ;2

y1 ← C+ − BookingLimit(C+, p1, p3, F1);3

y2 ← C+ − BookingLimit(C+, p2, p3, F2);4

b3 ← max(0, C+ − y1 − y2) ;5

b2 ← b3 + BookingLimit(C+ − b3, p1, p2, F1);6

b1 ← C+ ;7

Algorithm 14 shows how an existing capacity allocation problem, as discussed in Sec-

tion 7.4.3, can be extended to support overbooking. Initially, the overbooking limit needs

to be calculated according to one of the models we have previously discussed (line 1).

Then, a virtual capacity C+ can be found (line 2), where C+ ≥ maxCN . Then, we cal-

culate the protection levels of higher-class users, before the booking limit of class 3 users

(line 3–5). Finally, we determine the booking limit of class 2 and 1 users (line 6–7). Note

that line 3–7 are similar to the Algorithm 11, where we use C+ instead of maxCN for the

resource’s maximum capacity.
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7.6 Reservation Pricing, Penalty Fee and Denied Cost

Apart from overbooking and capacity allocation, the next important point in RM is to

determine the pricing of each reservation. Moreover, if a cancellation or no-show occurs,

a penalty fee needs to be introduced to discourage users from misusing AR, and to cover

some operational cost associated with managing reservations. Finally, the denied cost due

to overbooking also needs to be addressed.

7.6.1 Pricing of Reservations

As mentioned previously, we differentiate jobs based on whether they are using reservations

or not. For non-reserved jobs, we calculate the running cost as

cost = dur ∗ numCN ∗ bcost (7.10)

where dur denotes the job runtime, numCN denotes the number of compute nodes, and

bcost is the base cost of running a job at one time unit. Intuitively, the cost for jobs that

use AR will incur higher due to the privilege of having guaranteed resources at a future

time. Hence, the running cost for reserved jobs is charged based on the number of reserved

slots in the data structure or GarQ:

costAR = numSlot ∗ numCN ∗ bcostAR (7.11)

bcostAR = τ ∗ bcost ∗ δ (7.12)

where numSlot is the total number of reserved slots, bcostAR is the cost of running the

AR job at one time slot, and τ is a constant factor (τ ≥ 1) to differentiate reservation

prices. With this equation, the RMS can simply modify the τ value, as necessary. Note

that δ is a fixed time interval used by GarQ (as mentioned in Chapter 5).

Table 7.6 shows an example of setting different τ of Equation 7.12, where τ1, τ2, and

τ3 denote τ for user class 1, 2 and 3, respectively. In this table, we set τ > 1, such that

costAR > cost for one time slot or δ time unit. In addition, for simplicity, we specify

that τ1 and τ2 are 50% and 25% more expensive than τ3, respectively. Then, we set τ3
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Table 7.6: An example of variable pricing with different τ1, τ2, and τ3 during the week.
Pricing Name Day Period Time Period τ1 τ2 τ3

Super Saver Weekdays 12 am – 06 am 1.88 1.56 1.25

Peak Weekdays 06 am – 06 pm 3.38 2.81 2.25

Off-Peak Weekdays 06 pm – 12 am 2.63 2.19 1.75

Super Saver Weekends 06 pm – 06 am 1.88 1.56 1.25

Off-Peak Weekends 06 am – 06 pm 2.63 2.19 1.75

differently for various time periods.

We classify the time period of weekdays into peak, off-peak and super saver, as shown

in Table 7.6. For weekends, we only have off-peak and super saver. The main purpose

of having this classification or variable pricing is to increase the resource revenue and

provide nodes to applications that are highly valued by the users. For example, the RMS

can increase τ3 during the peak period to shift the demands of budget conscious users to

other periods. Thus, the nodes can be reserved for users with tight deadlines, since they

are willing to pay more. Note that the time period classification is based on the daily

arrival rate of jobs recorded by several parallel and Grid systems [49, 85]. For simplicity,

we partition the time period with either a 6-hour or 12-hour block.

7.6.2 Penalty Fee for Cancellations and No-Shows

We use a simple penalty fee calculation, where the RMS charges the user with a penalty

rate αp times the price for each canceled or no-show reservation, where 0 ≤ αp ≤ 1.

αp = 0 means the reservation is fully refundable, and αp = 1 means it is not refundable.

For example, if αp = 0.10 and the reservation price is G$100, then the penalty fee would

be G$10 or 10% of the price. In multiple fare classes, we have αp1 < αp2 < αp3.

7.6.3 Denied or Compensation Cost

We use Equation 7.11 to determine costds, i.e. the denied service or compensation cost for

each reservation. The value of τds depends on the agreement or policy set by the resource

provider to a particular user class, with τds > τ . Moreover, we present several strategies

for addressing which excess reservations to deny at the starting time ts, based on costds

and user class level, namely Lottery, Denied Cost First (DCF), and Lower Class DCF

(LC-DCF), as shown in Algorithm 15, 16, and 17 respectively.
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Algorithm 15: Lottery drawing

Input: ts and C

bookingList← get booking list(ts) ;1

overbookedCN ← get total CN(bookingList)− C;2

denyCN ← 0; // total nodes to be denied3

while denyCN < overbookedCN do4

data← get booking(bookingList, LOTTERY );5

calculate denied cost(data) ;6

remove(data, bookingList) ;7

denyCN ← denyCN + get total CN(data) ;8

end9

The simplest way to deny existing reservations is by conducting a lottery drawing, as

depicted in Algorithm 15. Initially, a list of bookings, bookingList, that start at time ts is

withdrawn from the data structure (line 1). Since a booking may require more than one

node, we also need to find out the number of overbooked CNs, overbookedCN , based on

the current capacity C, and the total CNs required from bookingList (line 2). Then, the

algorithm performs a lottery drawing on bookingList (line 5), with the unlucky booking is

compensated and removed from the list and the data structure altogether (line 6–7). Next,

the total CNs to be denied, denyCN , is incremented (line 8). Finally, this algorithm keeps

ejecting more bookings from the list as long as denyCN < overbookedPE (line 4–9).

Algorithm 16: Denied Cost First (DCF)

Input: ts and C

bookingList← get booking list(ts) ;1

overbookedCN ← get total CN(bookingList)− C;2

denyCN ← 0; // total nodes to be denied3

sort(bookingList, GLOBAL DENIED COST ) ;4

while denyCN < overbookedCN do5

data← get booking(bookingList, HEAD) ;6

calculate denied cost(data) ;7

remove(data, bookingList) ;8

denyCN ← denyCN + get total CN(data) ;9

end10

In contrast, to minimize the total compensation cost on ts, the Denied Cost First (DCF)

strategy chooses which bookings to be denied based on costds, as shown in Algorithm 16.

Thus, DCF sorts bookingList based on the lowest costds globally, regardless of any class

types (line 3). Afterwards, DCF removes this booking from the head of bookingList (line
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6), since the list is sorted from lowest to highest costds. The rest of the operations are

similar to the Lottery strategy.

Lower Class Denied Cost First (LC-DCF), as shown in Algorithm 17, has a similar

strategy as DCF. However, LC-DCF aims at protecting higher-class bookings from being

denied in the first place. Hence, LC-DCF sorts bookingList based on costds for each class

type (line 3). Similar to DCF, LC-DCF removes a booking from the head of bookingList

(line 6), but this booking is from a lower-class user that has the lowest costds. If there are

no more bookings from a lower class, then LC-DCF continues removing bookings from a

higher class. The rest of the operations are similar to the Lottery strategy.

Algorithm 17: Lower Class Denied Cost First (LC-DCF)

Input: ts and C

bookingList← get booking list(ts) ;1

overbookedCN ← get total CN(bookingList)− C;2

denyCN ← 0; // total nodes to be denied3

sort(bookingList, CLASS DENIED COST ) ;4

while denyCN < overbookedCN do5

data← get booking(bookingList, HEAD) ;6

calculate denied cost(data) ;7

remove(data, bookingList) ;8

denyCN ← denyCN + get total CN(data) ;9

end10

7.7 Performance Evaluation

In this section, we evaluate the effectiveness of using Revenue Management on Grid sys-

tems. We model these systems based on EU DataGrid TestBed I [48]. The testbed

topology is shown in Figure 7.4. The details of simulation parameters are discussed next.

7.7.1 Simulation Setup

Table 7.7 summarizes all the resource relevant information, where we divide the resources

into four VOs, based on their location. In GridSim, a CPU rating of one node is modeled in

the form of Million Instructions Per Second (MIPS) as devised by Standard Performance

Evaluation Corporation (SPEC) [135]. The resource settings were obtained from the cur-

rent characteristics of the real LHC testbed [82]. We took the data about these resources
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Figure 7.4: The simulated topology of EU DataGrid TestBed 1.

Table 7.7: Resource specifications and their jobs’ inter-arrival rates (λ).
Resource Name # CPU VO bcost µ λpeak λoff λsaver

(Location) Nodes Rating runtime

RAL (UK) 41 49,000 1 0.49 3 hours 0.01670 0.00835 0.004175

Imperial College (UK) 52 62,000 1 0.62 3 hours 0.01670 0.00835 0.004175

NorduGrid (Norway) 17 20,000 2 0.20 3 hours 0.00835 0.004175 0.0020875

NIKHEF (Netherlands) 18 21,000 2 0.21 3 hours 0.00835 0.004175 0.0020875

Lyon (France) 12 14,000 3 0.14 3 hours 0.00835 0.004175 0.0020875

CERN (Switzerland) 59 70,000 3 0.70 3 hours 0.03340 0.00167 0.000835

Milano (Italy) 5 7,000 4 0.07 3 hours 0.00418 0.0020875 0.00104375

Torino (Italy) 2 3,000 4 0.03 3 hours 0.00167 0.000835 0.0004175

Rome (Italy) 5 6,000 4 0.06 3 hours 0.00418 0.00209 0.001045

Bologna (Italy) 67 80,000 4 0.80 3 hours 0.03340 0.0167 0.00835

and scaled the number of nodes of each resource by 10. This is because simulating original

computing capacities is not possible due to limited physical memory in a computer, since

many resources and jobs need to be created during the simulation.

In this experiment, we model the Grid systems based on the resources mentioned

in Table 7.7. Thus, each resource has Revenue Management System (RMS), Resource

Calendar and Resource Scheduler components, as depicted in Figure 7.1. For the Resource

Calendar, GarQ is used with δ = 5 minutes, and has a fixed interval length of 30 days.

For the Resource Scheduler, the Easy Backfilling (BF) [98] policy is used. Then, we set

all nodes in the resource to be homogeneous with the same CPU rating.

For calculating the pricing of reservations on each resource, we use Equation 7.11.

Then, we apply the τ values shown in Table 7.6 into the equation. However, each resource
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Table 7.8: µ CPU rating for Grid & VO level, and their jobs’ inter-arrival rates (λ).
Level µ Rating µ runtime λpeak λoff λsaver

Grid 56,000 2 hours 0.13812 0.02290 0.01979

VO 1 56,000 5 hours 0.05087 0.02092 0.01913

VO 2 20,000 5 hours 0.05954 0.00537 0.00295

VO 3 60,000 5 hours 0.15901 0.00097 0.00046

VO 4 68,000 5 hours 0.07098 0.00672 0.00257

Table 7.9: Simulated users’ characteristics.
Trace Level User Category Booking Period Search Limit Time λc αp τds

Grid Premium 2 hours 2 hours 0.25 0% 5 τ1

Resource Business 4 hours 4 hours 0.45 10% 4 τ2

VO Budget 6 hours 24 hours 0.85 25% 3 τ3

has different bcost, as shown in Table 7.7. We determine the bcost of each resource based

on its CPU rating. Therefore, the higher the rating of a resource, the more costly it

becomes. For example, RAL has a CPU rating of 49,000. Thus, its bcost is G$0.49, where

we scale the rating by 100,000.

We model incoming job traffic at three levels: Grid (with all 10 resources), VO, and

resource, by using a Poisson model with different lambdas for peak (λpeak), off-peak (λoff )

and super saver (λsaver) period, as depicted in Table 7.7 and 7.8. With these lambdas,

we can set the peak period to be arriving more frequently than the off-peak period and

so on. The lambdas for Grid and VO levels are taken from [85], where the authors used a

3-stage Markov Modulated Poisson Process (MMPP) model in their workload analysis.

For handling no-show of reservations, we use binomial distribution with the probability

of no-shows (qns) sets to 0.05, 0.10 and 0.15 for peak, off-peak, and super saver periods

respectively. For job runtime, we use an exponential distribution with different mean (µ)

for each level. Since we are trying to simulate Bag-of-Tasks (BoT) applications, we set the

number of reserved nodes to be 1 for all bookings.

We identify the Grid-level trace to be Premium users with a booking period of 2 hours

and a search limit time of 2 hours, as depicted in Table 7.9. The search limit time is used

for finding alternative time slots, if resources in the initial starting time are unavailable, as

mentioned in Figure 6.3. Then, we choose each resource-level trace to be Business users,

whereas each VO-level trace to be Budget users. All traces use exponential distribution
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to calculate the number of cancellations. Table 7.9 also lists the job’s canceled rate (λc),

the penalty rate (αp), and τds for the denied service cost for each user class.

For the Premium users, they will choose a resource from the Grid based on the earliest

job completion time, whereas for the Budget users, they will submit jobs to a resource

within the VO based on the cheapest price. Since all resources have different CPU rat-

ings, we scale each job duration in the trace according to the µ rating found in Table 7.8.

However each Business user is designated to submit to a particular resource, so no scaling

is required. For all users, if a booking for the current job can not be made due to unavail-

ability of nodes, then we ignore this job and proceed to the next one. Overall, we simulate

15 traces in this evaluation for a period of 14 days.

The main objective of this experiment is to look at the impact of using RM in increasing

the revenue of a resource. Therefore, we have two scenarios: in Scenario 1 (S1), we select

R1 (RAL) and R10 (Bologna) to use a static pricing method with τs = {1.9, 2.8} (without

RM), and R2 − R9 to have RM. Then in Scenario 2 (S2), all resources use RM by using

variable τ according to Table 7.6.

Another objective is to examine the impact of the overbooking policies (Probability

(Pr), Risk, and Service-Level (SL)), and the denied-booking strategies (Lottery, DCF, and

LC-DCF) on the net revenue of a resource, where cancellations and no-shows are allowed.

For the Service-Level (SL) policy, we set the ds threshold to be 0.01 or 1%. We compare

these scenarios with the same set of parameters.

7.7.2 Results

Table 7.10 shows the initial protection levels, y1 and y2 for the Premium and Business

users respectively for S2. Based on this table, the Budget users are allocated to 25%, 50%

and 75% of total capacity during peak, off-peak and super saver period respectively. Since

y1 and y2 will be re-forecasted dynamically based on demand fluctuation, according to

Algorithm 11, a resource provider is only required to give an initial estimation.

Table 7.11 shows the total revenue earned by each resource in both scenarios. R1 and

R10 make a huge profit by using RM in S2, instead of using a static pricing of τs = 1.9 in

S1. This is because R1 and R10 protect some free nodes for the Premium and Business

users’ bookings at later times, since they pay at a higher rate of τ compared to τs = 1.9
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Table 7.10: Initial protection levels, y1 and y2.
Resource Peak Off-Peak Super Saver

Name y1 y2 y1 y2 y1 y2

RAL (R1) 10 20 5 15 3 7

Imperial (R2) 12 27 6 20 2 11

NorduGrid (R3) 5 8 2 6 1 3

NIKHEF (R4) 5 8 2 6 1 3

Lyon (R5) 3 6 2 4 0 3

CERN (R6) 12 32 6 23 3 11

Milano (R7) 1 2 0 2 0 1

Torino (R8) 0 1 0 0 0 0

Rome (R9) 1 2 0 2 0 1

Bologna (R10) 15 35 8 25 4 12

Table 7.11: Total revenue for each resource, where τs = 1.9 in S1 for RAL and Bologna.
Resource S1 (x1000) S2 (x1000) % gain / loss

RAL (R1) G$ 834 G$ 31,523 3,678.70

Imperial (R2) G$ 66,662 G$ 61,645 -7.53

NorduGrid (R3) G$ 2,570 G$ 4,638 80.44

NIKHEF (R4) G$ 4,928 G$ 5,171 4.94

Lyon (R5) G$ 684 G$ 742 8.37

CERN (R6) G$ 101,997 G$ 103,529 1.50

Milano (R7) G$ 170 G$ 171 0.57

Torino (R8) G$ 10 G$ 13 26.46

Rome (R9) G$ 114 G$ 119 4.07

Bologna (R10) G$ 2,051 G$ 147,279 7,079.71

and τ3. However, RM also provide a limited number of available nodes with a cheaper

price to the Budget users. According to Table 7.6, the average of τ3 is 1.65 or at least 15%

cheaper than τs = 1.9. As a result, RM is beneficial to both time- and budget-conscious

users, and resource providers.

As expected, when we increase τs in S1 from 1.9 to 2.8 (average of τ during peak

period), R1 and R10 both gained an extra 42% and 39% respectively in the total revenue,

as shown in Table 7.12. However, from Table 7.11 and 7.12, we can see that by adopting

RM, R1 and R10 produce more profits in comparison to using a static pricing. Even with

the increased of τs, the percentage gain for both R1 and R10 is still very large, i.e. more

than 2,500%, as highlighted in Table 7.12. The main reason is that during peak period

in S2, more nodes are available for the Premium users in R1 and R10, since they pay a

higher τ compared to τs = 2.8.
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Table 7.12: Total revenue for each resource, where τs = 2.8 in S1 for RAL and Bologna.
Resource S1 (x1000) S2 (x1000) % gain / loss

RAL (R1) G$ 1,188 G$ 31,523 2,553.44

Imperial (R2) G$ 70,437 G$ 61,645 -12.48

NorduGrid (R3) G$ 4,656 G$ 4,638 -0.38

NIKHEF (R4) G$ 5,117 G$ 5,171 1.06

Lyon (R5) G$ 854 G$ 742 -13.15

CERN (R6) G$ 103,184 G$ 103,529 0.34

Milano (R7) G$ 209 G$ 171 -18.13

Torino (R8) G$ 15 G$ 13 -15.66

Rome (R9) G$ 157 G$ 119 -24.45

Bologna (R10) G$ 2,863 G$ 147,279 5,043.37
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Figure 7.5: Total number of bookings for Budget users.

Figure 7.5–7.7 show the total number of bookings made by each resource for different

user classes. When R1 uses a static pricing of τs in S1, Budget users within VO 1 prefer to

send their jobs to R2, due to a cheaper price in the VO during off-peak and super saver

period, as depicted in Figure 7.5(a) and 7.5(b). However, when R1 adopts RM in S2, more

bookings from these users are being made. The same trend can be observed for R10 in

VO 4 in Figure 7.5(a). For Figure 7.5(b), R10 in S2 sets a limited quota on the Budget

users. Therefore, there is a slight decrease on the number of bookings for this user class.

Figure 7.6 and 7.7 show the bookings made by the Business and Premium users re-

spectively. Due to the fact that no protection levels are imposed on R1 and R10 in S1,

when they want to book closer to the reservation time, no available nodes can be found.

As a consequence, the Business users have to cancel their bookings, and the Premium

users have to use other resources in the Grid. This situation is called dilution, since R1
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Figure 7.6: Total number of bookings for Business users.
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Figure 7.7: Total number of bookings for Premium users.

and R10 decrease the revenue they would have received from protecting additional nodes,

y1 and y2, for these users.

When R1 and R10 utilizing RM in S2, the number of bookings are significantly grown

for the Business and Premium users. As a result, R1 and R10 are experiencing a huge

increase in the revenue, as shown in Table 7.11 and 7.12. However, the increased number

of bookings have an effect in other resources, as depicted in Figure 7.5 and 7.7. This is

because the Budget and Premium users can book to any available resources within the

VO and Grid respectively. Among other resources, the impact was felt by R2 the hardest

in Table 7.11, since R2 is located on the same VO as R1. For Table 7.12, R7–R9 lose the

most revenue, since both them and R10 belong to VO 4.
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Figure 7.8: Percentage of income revenue in scenario 2 (S2 - all resources using RM).

Figure 7.8 shows the percentage of incoming revenue for each user class. For smaller

and medium-sized resources, such as Torino (R8) and NorduGrid (R3), the Premium

users contribute more than 60% of the total revenue. On the other hand, the Business

users contribute more than 50% on large-sized resources, such as CERN (R6) and Bologna

(R10). Hence, from this figure, both the Business and Premium users are a major source of

revenue for a resource. Therefore, in a competitive market, a resource needs to differentiate

itself among others to attract these users.

7.7.3 Results using Overbooking

Table 7.13 shows the negative effect of unanticipated cancellations and no-shows (CNS) on

the net revenue of each resource. By allowing CNS and without any overbooking policies,

all resources experienced a significant drop in revenue, i.e. by more than 87%. However, if

we set RAL and Bologna to use overbooking policies instead, they both reported around 6–

9% increase in net profits from their previous evaluation (without overbooking), as shown

in Figure 7.9(a) and 7.9(b) respectively. Thus, this finding provides a financial incentive

for other resources to overbook. Note that RAL has zero denied bookings for all the

overbooking policies. Hence, in this section, we mainly discuss the impact of overbooking

policies and denied-booking strategies in Bologna.

When looking at the performance of each overbooking policy in Figure 7.9(a) and 7.9(b),

all policies produce about the same amount of net revenue. However, the main difference
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Table 7.13: The impact of unanticipated cancellations and no-shows (CNS) on net revenue.
Resource No CNS Allow CNS % loss

Name (x 1000) (x 1000)

RAL G$ 31,523 G$ 2,321.44 -92.64
Imperial G$ 61,645 G$ 7,038.12 -88.58
Nordu G$ 4,638 G$ 413.90 -91.08

NIKHEF G$ 5,171 G$ 421.90 -91.84
Lyon G$ 742 G$ 94.08 -87.32

CERN G$ 103,529 G$ 10,400.91 -89.95
Milano G$ 171 G$ 7.46 -95.63
Torino G$ 13 G$ 0.58 -95.43
Rome G$ 119 G$ 5.56 -95.31

Bologna G$ 147,279 G$ 7,606.47 -94.84
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Figure 7.9: Total net revenue.

between them is the overbooking limit, ob, at each time slot in the data structure, as shown

in Figure 7.10(a) and 7.10(b). Note that we omit figures using Lottery and LC-DCF in

Bologna, since they are similar.

For RAL in Figure 7.10(a), the maximum ob percentage gain from maxCN is 7%, 12%

and 27% for SL, Risk and Pr policies respectively. For Bologna in Figure 7.10(b), it is

8%, 12% and 24% for SL, Risk and Pr policies respectively. Thus, in both cases, the SL

policy is the most conservative of all, since it estimates the lowest ob. This is consistent

with the calculation that we performed in Section 7.5.4. However, with costds can be up

to five times more expensive than costAR, the Risk policy sets a lower limit than the Pr

policy in both Figure 7.10(a) and 7.10(b).

In this evaluation, we found that a lower ob leads to a smaller the total number of

denied bookings and compensation cost, as shown in Figure 7.11 and 7.12 for Bologna
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Figure 7.10: Overbooking Limit.

respectively. In both figures, on average, the Risk and SL policies are 49% and 74% lower

than the Pr policy respectively.

Apart from estimating ob, another important issue is selecting which excess bookings

to deny. In terms of total net revenue, the denied-booking strategies (Lottery, DCF, and

LC-DCF) in Bologna produced a similar income, i.e. within 0.1–2% of each other, as shown

in Figure 7.9(b). On average, DCF gives the highest total amount of income, followed by

LC-DCF and then Lottery.

Surprisingly, the Lottery strategy has the lowest total denied bookings compared to

DCF and LC-DCF in the Pr and Risk policies, as shown in Figure 7.11. The Lottery

strategy is 4% and 35% lower than DCF in the Pr and Risk policies respectively. Moreover,

it is 12% and 40% lower than LC-DCF in the Pr and Risk policies respectively. For the

SL policy, the Lottery strategy is 2% higher than DCF, but 27% lower than LC-DCF, as

depicted in Figure 7.11. As a result, the Lottery strategy works best in reducing total

denied bookings. Moreover, it is the simplest and easiest to implement.

However, each denied booking has a different value in terms of the job duration time,

user class level, and more importantly costds. Thus, due to its randomness, the Lottery

strategy pays the most amount of money to denied users, by up to 16%, 10% and 65% in

the Pr, Risk and SL policies respectively, compared to DCF and LC-DCF, as depicted in

Figure 7.12. Hence, from the compensation cost’s point of view, the Lottery strategy is

the least desirable.
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Measuring DCF against LC-DCF, DCF has the lowest number of denied bookings by

7%, 3% and 30% in the Pr, Risk and SL policies respectively, as highlighted in Figure 7.11.

Hence, in terms of total costds, DCF is about 5% and 94% lower than LC-DCF in the

Pr and SL policies respectively, as indicated in Figure 7.12. For the Risk policy, both

DCF and LC-DCF have a similar cost, less than 0.5% of each other. This is because the

Risk policy calculates the overbooking limit carefully based on the denied cost. When

combining with the SL policy, the total net revenue with DCF is the highest of all, as

shown in Figure 7.9(b). Overall, from these findings, DCF seems to be a better choice

than LC-DCF.

From Figure 7.8, we found out that Premium and Business users contribute more

than 60% on smaller and medium-sized resources (e.g. Torino and NorduGrid), and 50%

on large-sized resources (e.g. CERN and Bologna) respectively. The main disadvantage

of DCF is that this strategy does not take into consideration which user class level each

booking belongs to. In contrast, LC-DCF removes bookings from lower-class users first,

based on their costds. As a result, LC-DCF has the lowest number of denied Premium

users, as shown in Table 7.14. Therefore, to minimize the negative effects from high-paying

users who have been denied access, the combination of SL and LC-DCF policies is a better

solution in the long run.



142 Chapter 7. Revenue Management, Overbooking and Reservation Pricing

Table 7.14: Total denied bookings for the Service-Level policy.
Premium Users Business Users Budget Users

Lottery 14 23 1

DCF 15 33 2

LC-DCF 6 38 7

7.8 Related Work

Several studies have been done to improve handling and scheduling of reservations in Grid

systems with some degree of flexibilities using different techniques [76, 116, 124]. However,

[116, 124] provide a simple pricing model to determine the usage cost of each reservation.

This may not be sufficient, as resources need to adopt a more complex method to increase

their incentives or profits in a competitive market.

Numerous economic models for resource management have been proposed in the lit-

erature. These include: commodity market models [20, 150], tendering or contract-net

models [81, 138], auction models [114, 152, 107], bid-based proportional resource sharing

models [80], and cooperative bartering models [35]. From these models, RM is more suited

to the commodity market one, where it complements the commodity’s pricing. So far, RM

techniques have been widely adopted in various industries, such as airlines, hotels, and car

rentals [92].

In a study done by Smith et al. [131] on American Airlines, 50% of the bookings were

resulted in cancellations or no-shows. Moreover, the report found that 15% of the flight

seats would be unused, if bookings were only limited to the capacity of a plane. Therefore,

overbooking models were introduced to address the problem in unanticipated cancellations

and no-shows, by several researchers in the airlines industry [29, 37, 118, 145, 127]. The

overbooking policies were also studied and applied to various industry, such as hotel [14,

42, 64], cruise [147], air cargo [75], health [78] and car rentals [27, 58]. Similarly, in this

chapter, we adopt these overbooking policies in the context of scheduling jobs by means of

reservations in a Grid resource. Moreover, we propose several strategies for determining

which excess reservations to deny, based on compensation cost and user class level.

In networks, overbooking is used to optimize throughput [95] and to address the issue of

burst contentions in optical burst switched networks from a new domain [160]. Similarly, in
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Grids, Urgaonkar et al. [148] suggested overbooking as a way to increase resource utilization

in shared hosting platforms, by specifying an overbooking tolerance on each component

of an application running on one compute node. However, none of these works aim at

maximizing revenue by charging the users with different prices, and calculating an ideal

overbooking limit.

7.9 Summary

This chapter presents a novel approach of using Revenue Management (RM) to determine

the pricing of reservations in Grid systems in order to increase resource revenue. The main

objective of RM is to maximize profits by providing the right price for every product to

different customers, and periodically update the prices in response to market demands.

Therefore, a resource provider can apply RM techniques to shift demands requested by

budget conscious users to off-peak periods as an example. As a result, more resources are

available for users with tight deadlines in peak periods that are willing to pay more.

We evaluate the effectiveness of RM and show that by segmenting users, charging them

with different pricing schemes, and protecting resources for those who are willing to pay

more, will result in an increase of total revenue for that resource, by at least 25-fold.

In addition, this thesis suggests the concept of overbooking in order to protect the

resource against unexpected cancellations and no-shows of reservations. By overbooking,

the resource accepts more reservations than the maximum capacity. Thus, it can be effec-

tively used to minimize the loss of revenue. This chapter adopts several static overbooking

policies, such as Probability (Pr), Risk, and Service-Level (SL). In addition, this thesis

introduces several novel strategies to select which excess bookings to deny, based on com-

pensation cost and user class level, namely Lottery, Denied Cost First (DCF), and Lower

Class DCF.

The result shows that the Pr policy suffers from excessive denied bookings and com-

pensation cost (costds), since it calculates the overbooking limit (ob) based only on user

demands at that particular time. The Risk policy manages to balance the show rate and

costds well. However, it tends to set a more conservative ob, when the compensation cost

is much higher than the weighted average price of all class users. Finally, the SL policy
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defines a specified level or fraction of denied users. This approach has the advantage of

having the lowest denied bookings and costds compared to other policies.

With regards to the denied-booking strategies, the result shows that DCF to be the

best as it has both the lowest costds compared to Lottery and LC-DCF, and the highest net

revenue when associated with the SL policy. However, to prevent high-paying users from

submitting their jobs to other resources due to overbooking, the combination of the SL and

LC-DCF policies is the better option. Overall, the result indicates that by overbooking

reservations, the resource gains of an extra 6-9% in the total net revenue is achievable.

Thus, this finding shows a financial incentive for resources to overbook.



Chapter 8

Conclusion and Future Directions

Grid technologies represent a significant achievement towards the aggregation of net-

worked resources for solving large-scale data-intensive or compute-intensive applications [52].

This thesis proposes the use of advance reservation to ensure the specified resources are

available for applications when required. In addition, this thesis recommends the use of

Revenue Management to determine the pricing of reservations, increase resource revenue,

and regulate supply and demand. These studies are carried out through modeling and sim-

ulation on GridSim, a discrete-event Grid simulation tool, since different scenarios need

to be evaluated and repeated. In this chapter, we highlight the thesis contributions and

present possible future directions.

8.1 Conclusion

This thesis describes the development of GridSim, which allows modeling and simulation

of various properties, such as differentiated level of network Quality of Service (QoS), data

Grid and resource discovery in a virtual organization (VO). This thesis also introduces

the work done on GridSim to support advance reservation. These features of GridSim

provide essential building blocks for simulating various Grid scenarios. Thus, GridSim

offers researchers the functionality and flexibility of simulating Grids for various types

of studies, such as service-oriented computing [39], Grid meta-scheduling [3], workflow

scheduling [113], VO-oriented resource allocation [44], and security solutions [101].

145
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In addition, several improvements to the existing GridSim design were performed in

order to make it more flexible and extensible. As a result, new features can be added

and incorporated easily into GridSim for the performance evaluation on topics addressed

in this thesis. These topics include modeling and scheduling of task graphs with advance

reservation and interweaving, using an elastic reservation approach on Grid systems, and

adapting Revenue Management techniques to determine the pricing of reservations.

This thesis presents a novel approach to schedule task graphs by using advance reser-

vation in a homogeneous environment, such as cluster computing. In addition, to improve

the resource utilization, this thesis proposes an advance reservation (AR) scheduler by

interweaving one or more task graphs within the same reservation block, and backfilling

with other independent jobs (if applicable).

By interweaving a set of task graphs, the AR scheduler manages to reduce the overall

reservation duration time up to 26.31% on 4 compute nodes ( CNs). In addition, when

there are many small independent jobs, the AR scheduler is able to fill these jobs into

the reservation blocks. As a result, the AR scheduler improves the utility of the system

substantially on a cluster with 16 and 32 nodes compared to the First Come First Serve

(FCFS) and EASY backfilling algorithms.

This thesis provides a case for an elastic reservation model, where users can self-select

or choose the best option in reserving their jobs, according to their QoS needs, such as

deadline and budget. In this model, each Grid system has a Reservation System (RS) and

a Resource Calendar (ResCal). The RS is responsible for handling reservation queries and

requests. When the RS receives a reservation query or request, it searches for availability.

More specifically, the RS communicates with the ResCal for this request. Therefore, the

primary role of the ResCal is to store and update information about resource availability

as time progresses.

A well-designed data structure provides the flexibility and easiness in implementing

various algorithms. This thesis suggests an array-based data structure for administering

reservations efficiently in the ResCal. The new data structure is called Grid advanced

reservation Queue (GarQ).

GarQ is a time-slotted structure, where each slot contains rv, the number of already

reserved nodes, and a linked list for storing reservations that start at this time. Thus, it
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partitions the duration or length of a reservation into slots based on a fixed time interval

δ. If the duration spans multiple slots, rv on each of them is updated accordingly. GarQ

has the following advantages: (i) a fast O(1) access to a particular slot; (ii) able to reuse

these slots for the next time interval, assuming that the length of a reservation is less than

30 days; and (iii) built only once in the beginning.

This thesis adapts an On-line Strip Packing (OSP) algorithm for the RS. The OSP

algorithm considers the duration and number of required compute nodes as soft constraints

for a given reservation query. Thus, it aims to find a solution or alternative offers within

the given time interval for users to choose themselves. In addition, the OSP algorithm aims

to reduce fragmentations or idle time gaps caused by having reservations in the system.

Having a degree of flexibility in the reservation requests allows an improvement in the

resource utilization. Results show that the elastic model improves the resource utilization

by 4.39% on average compared to the rigid model. In addition, the elastic model reduces

the number of rejections by 54.88% on average compared to the rigid model. The results

also show that by allowing users to select an alternative offer if no solutions are found,

the OSP algorithm reduces the total number of rejection by around 13.5% – 63.6%. Note

that the rigid model treats all the request parameters as hard constraints. Therefore, if

no solution is found, then the rigid model will reject such requests.

The challenging issue of adopting AR in existing Grid systems is its impact in increasing

the waiting times of local jobs in the queue. Smith et al. [132] showed that providing AR

capabilities increases waiting times of applications in the queue by up to 37%. As expected,

results show that the rigid model has a minimal impact on the average waiting time, as

it did not accept too many reservations. However, the elastic model performs better as

the reservation requests become more flexible. The results show that the elastic model

improves its performance by 22% on average. The elastic model performs better than the

rigid model for requests with a book-ahead time of 10 hours.

This thesis proposes the use of Revenue Management (RM) to determine the pricing

of reservations in Grid systems in order to increase resource revenue. The main objective

of RM is to maximize profits by providing the right price for every product to different

customers, and periodically update the prices in response to market demands. Therefore, a

resource provider can apply RM techniques to shift demands requested by budget conscious
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users to off-peak periods as an example. As a result, more resources are available for users

with tight deadlines in peak periods who are willing to pay more for the privilege. With

the adaption of RM, the functionalities of the Reservation System are integrated into the

Revenue Management System (RMS).

By segmenting customers, charging them with different pricing schemes, and protecting

resources for those who are willing to pay more, the result shows an increase of total revenue

by at least 25-fold. In addition, using RM techniques ensure that resources are allocated

to applications that are highly valued by the users.

However, in reality, users may cancel their reservations before starting time or by not

submitting at all (no-show), due to reasons such as resource or network failures on the

other end. Thus, during a period of high demands for example, the resource provider

has no choice but to reject bookings from potential users, who are committing to use the

resource and willing to pay for a higher price. As a result, the resource provider is faced

with a prospect of loss of income and lower system utilization.

This thesis suggests the concept of overbooking in order to protect the resource against

unexpected cancellations and no-shows of reservations. By overbooking, the resource ac-

cepts more reservations than the maximum capacity. Thus, it can be effectively used to

minimize the loss of revenue. In addition, this thesis introduces several novel strategies

to select which excess bookings to deny, based on compensation cost and user class level,

namely Lottery, Denied Cost First (DCF), and Lower Class DCF. The result shows that

the DCF produced the lowest total compensation cost compared to other strategies. The

result also indicates that by overbooking reservations, the resource gains of an extra 6-9%

in the total net revenue is achievable. Thus, this finding shows a financial incentive for

resources to overbook.

8.2 Future Directions

This thesis suggests several future directions to further enhance advance reservation and

revenue-based resource management for Grid systems. The future directions are related

to the three key functionalities of Grids, i.e. job scheduling, resource management and

data management.
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8.2.1 Incorporating Resource Failure Model

The Resource Scheduler presented in this thesis assume that all the compute nodes are

available for execution. However, in reality, some of these nodes may not be available at

some point in the future due to maintenance or upgrade (e.g. software, hardware and

security). Thus, the Resource Scheduler needs to consider a case where several nodes fail

during execution.

The addition of a resource failure model to the job scheduling problem will present

another challenge to the Resource Scheduler and RMS. The Resource Scheduler needs to

interact with the RMS and the Resource Calendar to find suitable solutions. Such solutions

can be migrating the affected jobs to other available nodes either located internally or

externally, postponing these jobs to later times, or providing them with some compensation

costs. However, these decisions needed to be chosen carefully as they may reduce the

overall resource revenue and disrupt other reservations and existing jobs in the queues. As

such, incorporating the resource failure model provides an interesting and exciting research

problem.

8.2.2 Addressing Complex Reservation Scenarios

The work presented in this thesis uses real workload and synthetic traces. These traces

provide a duration time for each job, based on information recorded on production parallel

systems [49] or the exponential distribution. However, in reality, users may under- or over-

estimate their jobs’ duration time.

In case of over-estimation, this will introduce problems, such as finding available nodes

for other reservations or incurring longer waiting time for non-reserved jobs. Thus, the

Resource Scheduler and RMS need to consider this issue. One possible solution is to

allow users to specify what to expect in case their reservations finish early or late. This

is a similar approach undertaken by the Dynamic Soft Real-Time (DSRT) Scheduling

System [77], as mentioned in Section 2.2.2. Another solution is to partition the resource

or system, i.e. to allocate certain amount of nodes (not all) for AR. Thus, the remaining

nodes can act as a buffer against over-estimation and overbooking.

With regards to the Revenue Management’s overbooking and tactic, a scenario where
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cancellations and no-shows are dependent of the total bookings need to be considered. In

addition, a scenario for handling group bookings and cancellations need to be analyzed.

These scenarios will have a significant effect on the calculation of booking limit for each

user class and the total net revenue.

8.2.3 Integrating Various Types of Resources

As mentioned previously, common resources that can be reserved are compute nodes (CNs),

storage elements (SEs), network bandwidth or a combination of any of those. However,

this thesis is mainly focusing on reserving compute nodes. Therefore, allowing users to

reserve a combination of resource types is highly desirable, since various applications,

especially in the area of data Grid, can be modeled and studied.

This work leads to another interesting research problem, as it involves coordination and

negotiation of multiple resources shared by different organizations. In the case of reserving

network bandwidth, a Network Manager is needed to focus on network management issues,

such as establishing a guaranteed end-to-end path, and handling traffic congestion. In

addition, implementing the Multi Protocol Label Switching (MPLS) architecture [117] into

GridSim may also be required. In the case of data Grid applications, a Replica Manager

is needed to address various data management issues, such as deletion and replication of

data sets. Thus, to reserve a combination of resource types, the RMS needs to collaborate

with the Network Manager and Replica Manager.

This work also brings an issue in determining the overall reservation price, as each

resource type may have its own price model. A feasible solution is to establish a multilateral

pricing agreement between the resource providers. The agreement may include the base

cost of using the resources, discount rate, penalty rate, and compensation cost.

8.2.4 Implementing Resource Management on a Real Grid Testbed

The study about resource management in this thesis is carried out through modeling

and simulation on GridSim, since different scenarios need to be evaluated and repeated.

The next step is to turn this study into a reality, i.e. by implementing the RMS, the

Resource Calendar, and the Resource Scheduler as a prototype on a real Grid testbed.

The prototype can be built on top of open-source software, such as Maui Scheduler [91]
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or Sun Grid Engine [123], as discussed in Section 2.2.1 and 2.2.4, respectively. Thus,

this work leads to a number of challenging software engineering issues, such as system

reliability or persistence, handling simultaneous transactions, and testing and debugging

the prototype source code.
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