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Abstract

Stream processing is an emerging in-memory computing paradigm that ingests dy-
namic data streams with a process-once-arrival strategy. It yields real-time insights by
applying continuous queries over data in motion, giving birth to a wide range of time-
critical applications such as fraud detection, algorithmic trading and health surveillance.

Resource management is an integral part of the deployment process to ensure that
the stream processing system meets the requirements articulated in the Service Level
Agreement (SLA). It involves the construction of the system deployment stack over dis-
tributed resources, as well as its continuous adjustment to deal with the constantly chang-
ing runtime environment and the fluctuating workload. However, most existing resource
management techniques are optimised towards a pre-configured deployment platform,
thus facing a variety of challenges in resource provisioning, operator parallelisation, task
scheduling, and state management to realise robustness, i.e. maintaining a certain level
of performance and reliability guarantee with minimum resource costs.

In this thesis, we investigate novel techniques and solutions for robust resource man-
agement to tackle arising challenges associated with the cloud deployment of stream
processing systems. The outcome is a series of research work that incorporate SLA-
awareness into the resource management process and relieve the burden of the devel-
opers to monitor, analyse, and rectify the performance and reliability problems encoun-
tered during execution. Specifically, we have advanced the state-of-the-art by making the
following contributions:

1. A stepwise profiling and controlling framework that improves application perfor-
mance by automatically scaling up the parallelism degree of streaming operators.
It also ensures proper resource allocation between data sources and data sinks to
avoid processing backlogs and starvation.

2. A resource-efficient scheduler that monitors the application execution, models the
resource consumption, and consolidates the task placement for improving cost ef-
ficiency without causing resource contention.

3. A replication-based state management framework that masks state loss in the cases
of node crashes and JVM failures, which also reduces the fault-tolerance overhead
by eliminating the need of synchronisation with a remote state storage.

4. A performance-oriented deployment framework that conducts iterative scaling of
the streaming application to reach its pre-defined targets on throughput and la-
tency, regardless of the initial amount of resource allocation.
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Chapter 1

Introduction

THE recent development of Information and Communications Technology (ICT) has

led us to the Big Data era, where a wide range of Internet-scale web applications

and the growing number of interconnected intelligent devices have created a tremendous

data explosion. Take the prevalence of Internet of Things (IoT) as an example, Gartner es-

timated that there were approximately 8.4 billion of connected devices in 2017, and this

figure is expected to reach 20.4 billion by 2020.1 International Data Corporation (IDC)

further asserted that the amount of data being generated in a year will mushroom from

4.4 zettabytes in 2013 to 44 zettabytes in 2020, exhibiting a ten-fold increase within seven

years of development.2 With unstructured machine-generated information being cre-

ated at such an unprecedented scale and speed, new challenges have arisen in different

phases of the data life cycle, spanning across collection, aggregation and transmission, to

processing, updating and visualisation.

The explosive growth of data generation has also been accompanied by the surging

demands for real-time data processing, which poses unprecedented challenges to the un-

derlying IT infrastructure and processing paradigms. In many established databases and

MapReduce frameworks, the batch processing approach has been adopted for handling

large volume of data chunks with scalability and accuracy. However, this store-and-

process model is not suitable for processing real-time data streams due to the limitation

of storage capacity and the strict latency constraint. Therefore, stream processing, a new

in-memory paradigm that supports in harnessing the potential of transient data in mo-

tion, has emerged to cope with the velocity requirement of big data. Instead of apply-

ing one-off queries to the static data as a series of batch jobs, stream processing adopts

1https://www.gartner.com/newsroom/id/3598917
2https://www.emc.com/leadership/digital-universe/2014iview/index.htm

1
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Figure 1.1: The data lifecycle in a complete stream processing scenario

the process-once-arrive philosophy to achieve low processing latencies on volatile data

streams, where massively parallel architectures are also investigated to power real-time

data analysis in a distributed environment.

Since stream processing is an umbrella term that describes the activities related to the

collection, integration, analysis, visualisation, and system integration of stream data, it is

necessary to define the scope of a distributed stream processing system. Fig. 1.1 depicts

the complete data life cycle in stream processing from its generation to consumption.

Based on the particular functionality, the whole data path has been broken into six sepa-

rate streaming components that are responsible for data generation, collection, buffering,

processing, storage and presentation, respectively. This thesis mainly focuses on the re-

source management in the processing component, which is conveniently referred to as a

stream processing system in the rest of this thesis.

Fig. 1.2 further illustrates a distributed stream processing system as a layered struc-

ture consisting of streaming applications, middleware, and a distributed infrastructure.

The kernel of a streaming application is a continuous query that is submitted by the

developer upon the completion of the development cycle. Its implementation is a set

of inter-connected operators that stand on the incoming streams, filtering data continu-

ously unless being explicitly terminated. In the example streaming application, the ver-

tices denote different operators encapsulating certain streaming logic such as split and

join; whereas the edges represent dynamic data streams that concatenate the upstream
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Figure 1.2: An example of a distributed stream processing system

and downstream operators. The relevant query result is incrementally updated as the ap-

plication inputs traverse through the processing platform, producing a timely response

with sub-second latencies. Lying at the middleware layer is a Data Stream Management

System (DSMS), which serves a similar role as the conventional database management

systems (DBMS) in a batch processing framework to bridge the user application with

the operating systems of different computing nodes. As middleware, a DSMS provides

application integration, stream management and a variety of other services to the devel-

opers, while abstracting away the complexity of dealing with the concurrent infrastruc-

ture elements and heterogeneous network structures. At the bottom of the structure, the

infrastructure of a distributed stream processing system may include various resource

types ranging from mobile devices to virtual and physical servers, the location of which

could be geographically distributed to cater to the particular streaming scenarios.

Resource management is an integral part of the deployment process to improve sys-

tem performance and reduce the execution cost. During the process of building the lay-

ered structure shown in Fig. 1.2, resource management determines where and how the

user-defined streaming logic is executed in a real-time distributed environment. Specif-
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ically, it involves the construction and configuration of the DSMS and the infrastructure

layer, as well as managing the cross-layer relationships such as the parallelisation and

mapping of abstract streaming logic to the concrete threads and processes. It should be

noted that managing resources in a distributed stream processing system is markedly

different to what we have been familiar with in a batch processing framework. Tradition-

ally, the one-off queries are optimised towards the execution platform for performance

improvement, while the main objective of resource management used to be controlling

access to the critical resources to prevent resource leaks and contentions. However, it is

cumbersome to update continuous queries of stream processing in the presence of pos-

sible fluctuating inputs and strict latency requirements, so ideally the resource manage-

ment needs to be customised to suit the particular needs of streaming logic as well as

catering to the varying characteristics of workloads.

With the advent of cloud computing, an elastic, seemingly endless resource pool is

made available to its customers through a subscription model. Cloud computing pro-

vides a new level of flexibility for resource management and enables runtime resource ad-

justments for a distributed stream processing system. Particularly, the motivation of ro-

bust resource management is to maintain the articulated Service Level Agreement (SLA)

in performance and reliability, while minimising the cost of resource consumption with

a collection of profiling, modelling, and decision-making techniques. Nevertheless, there

are many challenges left to reaching this target, which we summarise in the following.

1.1 Challenges in Robust Resource Management

Maintaining the articulated Service Level Agreement (SLA) in performance and reliabil-

ity with reduced cost has brought many challenges. We discuss them in a top-down order

following the layered structure of a distributed stream processing system.

1.1.1 Challenges in Application Profiling

Accurate profiling of application execution provides the basis for decision-making in the

resource management process. However, the existing approaches profiled either raw

resource utilisation metrics such as CPU and memory usages that do not faithfully re-
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flect the performance of streaming application, or high-level application metrics such

as throughput and latency that are too general to be used to track internal stream bot-

tlenecks. A low-overhead profiling technique capable of identifying runtime operator

congestions and network bottlenecks is needed at the fine-grained thread level to depict

the application features, the computing power of provisioned resources, and the charac-

teristics of incoming workload.

1.1.2 Challenges in Operator Parallelisation

Operator parallelisation divides a parallel operator into several functionally equivalent

replicas, each handling a subset of the whole operator inputs to accelerate data process-

ing. Since the way how operators are partitioned into streaming tasks affects the dis-

tributed execution of a streaming application, it is important to select appropriate par-

allelism degrees to avoid performance bottlenecks and resource wastage. Nevertheless,

this is a challenging work due to a combination of factors. The selectivity3 of an op-

erator could be varying at runtime leading to the fluctuation of workload to its down-

stream operators. The capability of a single task may be mis-estimated, thus causing

under-parallelisation and over-parallelisation with overloaded tasks and excessive man-

agement overhead, respectively. Lastly, it is challenging to maintain the balance of data

sources and data sinks for the system to achieve performance synergy: an overly power-

ful data source may cause severe backlogs in data sinks, while an inefficient data source

would starve the subsequent operators and encumber the overall throughput.

1.1.3 Challenges in Task Scheduling

Task scheduling decides the placement of streaming tasks across horizontally scaled re-

sources to carry out streaming logic at different locations simultaneously and indepen-

dently. The first challenge is to reduce the amount of inter-node communication which

involves message serialisation and network transfer, while intra-node communication

can be reduced to the passing of a pointer in memory which is more efficient and reli-

able. The second challenge is to avoid resource contention among collocated tasks, which

3Selectivity: an operator metric that describes the number of data tuples produced as outputs per tuple
consumed in inputs.
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is one of the leading causes of performance deterioration. It is also a challenge to make

task scheduling more adaptive to the fluctuating workloads and resource availability.

1.1.4 Challenges in State Management

State management in a distributed stream processing system is essential to support dy-

namic scaling and mask state loss in case of failures. The existing state management

approaches rely heavily on the checkpointing method that commits states regularly and

recovers from the last checkpoint if the execution is interrupted. However, this method

involves a remote data store for state preservation and access, resulting in significant

overheads to the performance of error-free execution. It is also hard to tune the fre-

quency of checkpointing – a small interval would bring significant state synchronization

overhead; while a large interval would risk losing state between checkpointing and be-

ing unable to replay failed messages. A novel state management mechanism is required

to reduce the runtime overhead while providing enough support for tolerating different

types of failures.

1.1.5 Challenges in Resource Provisioning

In the literature, it is common to have resources provisioned prior to the deployment of

the stream processing system. Therefore, the streaming application and the data stream

management system need to be optimised towards the pre-configured computing nodes

in order to improve the resource utilisation and performance. However, such platform-

oriented optimisation is conducted on a best-effort basis and can provide little guarantee

in achieving the desired performance and reliability targets. With robust resource man-

agement, we are interested in performance-oriented resource provisioning that enables

the streaming application to reach a specific performance target with minimised resource

consumption.



1.2 Research Problems and Objectives 7

1.2 Research Problems and Objectives

This thesis focuses on the robust resource management in a distributed stream processing

environment, with a purpose of maintaining the satisfactory SLA in performance and

reliability using a minimal amount of resources. In order to tackle the above-mentioned

challenges, this thesis has identified and investigated the following research problems:

• How to profile the streaming application and properly decide the parallelism

degree for different type of operators? The most common approach used to de-

termine operator parallelism is to gradually measure the execution capacity of each

operator and adjust the degree of parallelism according to the expertise of the de-

veloper. This method involves a huge number of man-hours and may result in a

suboptimal configuration. An automatic application profiler is needed to help de-

cide the operator parallelism considering the application features and the platform

computing power.

• How to monitor runtime application execution, model its resource usages, and

then automatically adjust task scheduling under different sizes of inputs? The

default scheduler in many DSMSs is agnostic about matching the resource require-

ments with availability, while the existing resource-aware scheduler is static and

oblivious to the runtime changes of workload pressure. This means that the schedul-

ing plan would inevitably lead to load imbalance and resource competition. Thus,

a dynamic resource-efficient scheduler is required to tackle runtime variations and

perform task consolidation when needed to save resource costs.

• How to manage internal operator states to protect them from various types of fail-

ures? Without proper state management, JVM and node crashes would cause the

loss of states and eventually the incorrect processing results. As discussed before,

the existing check-pointing method incurs excessive runtime overhead and is hard

to tune the backup interval to suit the real-time requirement. A new state manage-

ment mechanism is required to enhance the system reliability with less execution

overhead.

• How to provision and manage resources for the stream processing system to
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achieve a pre-defined performance target? The current resource management prac-

tices are mostly platform-oriented, meaning that the resource allocation, task schedul-

ing, and operator parallelism are decided to fit a static resource-set environment

regardless of the actual performance requirement. To make full use of the various

types of resources in clouds, a performance-oriented resource management frame-

work is required to depict the relationship between resource provisioning and per-

formance scalability, making sure that the right-scale execution platform is created

to meet the specific computing requirements.

1.3 Evaluation Methodology

The proposed approaches in this thesis were evaluated with both synthetic streaming ap-

plications and real-world applications in either public clouds (Nectar4) or private clouds

(OpenStack at Clouds lab, The University of Melbourne). The synthetic applications

cover different types of communication patterns, different requirements of resource con-

sumption, and different time-space operator complexities. The real-world streaming ap-

plications include Word Count, Twitter Sentiment Analysis5 — an established stream-

ing application to judge the positivity and negativity of tweets, and URL-extraction, a

memory-intensive application extracting short Uniform Resource Locators (URLs) from

incoming tweets and replacing them with complete URL.

Throughput and processing latency are the two dominant metrics evaluating the

overall performance of a stream processing system. The reliability aspect is examined

by the runtime overhead on performance and the recovery time it takes to restore the

system back to functioning. We have also designed and implemented a profiling envi-

ronment to make sure that the evaluation of concerned metrics is controllable and re-

peatable. This framework has been extensively used in all of our research chapters, and

statistical techniques such as Lilliefors Test have been applied as well to clearly indicate

the improvements in performance and reliability.

Notably, we have implemented a different prototype system for each of our research

work to evaluate the feasibility and efficacy of the proposed approaches. These proto-

4https://nectar.org.au/research-cloud/
5https://github:com/kantega/storm-twitter-workshop

https://nectar.org.au/research-cloud/
https://github:com/kantega/storm-twitter-workshop
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types are all extended on Apache Storm, implementing a Monitor-Analyze-Plan-Execute

(MAPE) architecture to be runtime-adaptive in resource management. To enable repeti-

tion of our experiments, we have released the source code of these prototypes and the

test applications to the research community6.

1.4 Thesis Contribution

The key contributions of this thesis are listed below:

1. A survey and taxonomy of resource management and task scheduling in distributed

stream processing systems.

2. A stepwise auto-profiling method for performance optimisation of streaming ap-

plications.

• A mathematical model that describes the relationship between resource pro-

visioning and application performance metrics.

• A profiling strategy implemented as a feed-back control loop that allows for

self-adaptivity, scalability, and general applicability to a wide range of stream-

ing applications.

• An operator parallelisation mechanism that automatically scales up the stream-

ing application on a given platform.

3. A resource-efficient and application-transparent task scheduler for stream process-

ing systems deployed on computing clouds.

• A system model and a cost model to formulate the task scheduling problem as

a bin-packing variant.

• A greedy algorithm to solve the bin-packing problem, which generalises the

classical First Fit Decreasing (FFD) heuristic to allocate multidimensional re-

sources.

6https://github.com/xunyunliu

https://github.com/xunyunliu
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• A prototype on Storm that conducts dynamic resource-efficient scheduling,

reducing the amount of inter-node communication as well as minimising the

resource footprints used by the streaming applications.

4. A replication-based state management framework in distributed stream processing

systems:

• A replication-based state management mechanism for achieving state persis-

tence in the case of failures, which exposes a concise fluent-style interface and

works transparently to the upper-level logic.

• A failure recovery protocol that guarantees the application integrity when

failover occurs.

• A prototype implementation that operates at the lowest thread level and is

seamlessly integrated to Storms execution flow. The replication of state is also

autonomous and high-performance, which allows multiple state transfers to

occur concurrently.

5. A performance-oriented deployment framework for automatic resource manage-

ment under certain performance requirement:

• An empirical study that describes how application performance is affected by

resource provisioning, task scheduling and operator parallelisation.

• A task scheduling algorithm that reduces inter-node traffic while ensuring no

computing nodes are overloaded, which further considers the collocation ef-

fect that packing together two communicating tasks in a single node may make

them occupy less resources than the sum of their individual size.

• A self-adaptive resource management framework that allows eventually reach-

ing the predefined performance target regardless of the initial resource alloca-

tion.
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1.5 Thesis Organisation

The organisation of the chapters in this thesis is shown in Fig. 1.3. Chapter 2 provides

a taxonomy and survey for the state-of-the-art resource management research in dis-

tributed stream processing systems. Chapter 3, 4, and 5 focus on a particular aspect of

resource management, covering operator parallelisation, task scheduling and state man-

agement, respectively. Chapter 6 is a comprehensive resource management work that

holistically optimises the deployment process to achieve a certain performance target.

The core chapters of this thesis are mainly derived from the conference and journal pub-

lications completed during my PhD candidature, which are listed as follows.

• Chapter 2 presents a survey and taxonomy of resource management in distributed

stream processing systems, which defines the scope of this thesis and positions its

contribution in the area. This chapter is partially derived from:
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– Xunyun Liu and Rajkumar Buyya, “Resource Management and Scheduling

in Distributed Stream Processing Systems: A Taxonomy, Review and Future

Directions,” ACM Computing Surveys, ACM Press, 2018 (under review).

– Xunyun Liu, Amir Vahid Dastjerdi and Rajkumar Buyya, “Stream Process-

ing in IoT: Foundations, State-of-the-Art, and Future Directions,” Internet of

Things: Principles and Paradigms, Pages: 145-161, Morgan Kaufmann, 2016.

• Chapter 3 proposes a stepwise auto-profiling method. This chapter is derived from:

– Xunyun Liu, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Chenhao Qu and

Rajkumar Buyya, “A Stepwise Auto-Profiling Method for Performance Op-

timization of Streaming Applications,” ACM Transactions on Autonomous and

Adaptive Systems (TAAS), Volume 12, Issue 4, Pages: 1-33, ACM Press, 2017.

• Chapter 4 proposes a resource-efficient task scheduler. This chapter is derived from:

– Xunyun Liu and Rajkumar Buyya, “D-Storm: Dynamic Resource-Efficient Schedul-

ing of Stream Processing Applications,” in Proceedings of the 23rd IEEE Interna-

tional Conference on Parallel and Distributed Systems (ICPADS), Shenzhen, China,

Pages: 1-8, IEEE, 2017.

– Xunyun Liu and Rajkumar Buyya, “Dynamic Resource-Efficient Scheduling

in Data Stream Management Systems Deployed on Computing Clouds,” ACM

Transactions on Internet Technology (TOIT), ACM Press, 2017 (Under review).

• Chapter 5 proposes a replication-based state management framework. This chapter

is derived from:

– Xunyun Liu, Aaron Harwood, Shanika Karunasekera, Benjamin Rubinstein

and Rajkumar Buyya, “E-Storm: Replication-based State Management in Dis-

tributed Stream Processing Systems,” in Proceedings of the 46th International

Conference on Parallel Processing (ICPP), Bristol, UK, Pages: 1-10, IEEE, 2017.

• Chapter 6 proposes a holistic performance-oriented resource management frame-

work. It is derived from:
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– Xunyun Liu and Rajkumar Buyya, “Performance-Oriented Deployment of Stream-

ing Applications on Cloud,” IEEE Transactions on Big Data (TBD), Accepted, In

press, DOI:10.1109/TBDATA.2017.2720622 Pages: 1-14, IEEE, 2017.

• Chapter 7 concludes the thesis with a summary of the key findings and a discussion

of future work directions.





Chapter 2

Literature Review

Stream processing is an emerging paradigm that handles continuous big data in memory on a

process-once-arrival basis, powering latency-critical application such as fraud detection, algorithmic

trading, and health surveillance. To achieve self-adaptive, SLA (Service Level Agreement) -aware, and

resource-efficient deployment of stream processing systems, many research efforts have investigated a

holistic framework for resource management and task scheduling. In this chapter, we introduce the

hierarchical structure of a streaming system, define the scope of the resource management problem,

and then present a comprehensive taxonomy regarding critical research topics such as resource pro-

visioning, operator parallelisation, and task scheduling. We also review the existing works based on

the proposed taxonomy, which helps in making a better comparison of the specific work properties and

method features.

2.1 Introduction

AS Internet started to connect everything, the number of intelligent devices used for

monitoring, managing and servicing has rapidly increased. These interconnected

data sources generate fresh data continuously, forming possible infinite data streams

over the network that inevitably overwhelm the traditional data management systems.

Meanwhile, the ever-growing data generation has been accompanied by the escalating

This chapter is partially derived from:
• Xunyun Liu and Rajkumar Buyya, “Resource Management and Scheduling in Distributed Stream

Processing Systems: A Taxonomy, Review and Future Directions,” ACM Computing Surveys, ACM
Press, 2018 (under review).

• Xunyun Liu, Amir Vahid Dastjerdi and Rajkumar Buyya, “Stream Processing in IoT: Foundations,
State-of-the-Art, and Future Directions,” Internet of Things: Principles and Paradigms, Pages: 145-161,
Morgan Kaufmann, 2016.

15



16 Literature Review

demands for real-time processing. Time-critical applications such as fraud detection, al-

gorithmic trading and health surveillance are gaining increasing popularity, all of which

rely heavily on the real-time guarantee to deliver meaningful results. The desire of fast

analysis gives birth to the emergence of stream processing, a new in-memory processing

paradigm that allows for the collection, integration, analysis, visualisation, and system

integration of stream data in real time to deliver on-the-fly data insights with sub-second

latencies.

Unlike the traditional store-first, process-later batch paradigm, stream processing

adopts the process-once-arrival philosophy to exploit the volatile value of stream data.

The incoming data are handled immediately upon arrival, with the results being incre-

mentally updated as the data flow through the system. Equipped with only limited re-

sources to handle possible infinite inputs, stream processing does not require random

access to the whole stream. Instead, it installs continuous queries over a time- or buffer-

based window, conducting lightweight and independent computations over the recent

data. In this way, the strict latency requirement can be met by proper workload balanc-

ing and processing parallelisation on a host of distributed resources.

A stream processing system includes not only the application but also the services

and resources needed to implement the application logic. Building a distributed stream-

ing application from scratch is a tedious work and error-prone, so various Data Stream

Management Systems (DSMS) have been proposed over the recent years to facilitate the

development of streaming applications. From a structure perspective, DSMSs work as a

middleware within the streaming system, offering unified stream management, imper-

ative programming APIs, and a set of streaming primitives to simplify the application

implementation. The state-of-the-art distributed DSMSs, such as Apache Storm [159]

and Apache Flink [17], further provide transparent fault-tolerance, horizontal scalabil-

ity and state management for the upper layer applications, while abstracting away the

complexity of coordinating distributed resources. With such an operator-based DSMS,

a streaming application is expressed as a set of interconnected operators that can run

and scale on distributed resources, and a typical streaming system is thus a three-layer

structure comprising user-applications, a DSMS and the underlying infrastructure.

Though the adoption of DSMSs has greatly eased the development of streaming ap-
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plications, the resource management involved in the deployment process remain a chal-

lenging and labour-intensive work if one needs to set up a streaming system in a dis-

tributed environment satisfying certain Quality of Service (QoS) requirements with min-

imal resource cost.

Cloud computing has offered a scalable and elastic resource pool allowing for a new

level of freedom in system deployment. Its customers can unilaterally provision comput-

ing capabilities as needed through an automatic-measured, subscription-oriented model,

with the monetary cost calculated on a pay-as-you-go basis. However, the advent of

cloud computing makes the resource management of streaming systems even more chal-

lenging due to a combination of influencing factors, such as the sensitive application

requirements, dynamic workload characteristics, various cloud resource types, and di-

verse pricing models. The improper management of resource and scheduling directly

affects the system performance on clouds. For example, over-provisioning and under-

provisioning of resources lead to extra operational cost and Service Level Agreement

(SLA) breaches, respectively. Acquiring resources from a suboptimal location causes ad-

ditional communication latency and network traffic. The inappropriate parallelisation

of operators results in either overload streaming tasks or excessive overhead of context

switching. Last but not the least, misplacing streaming tasks to the underlying infrastruc-

ture leads to inefficient stream routing and resource contention that impair the system

stability.

Although there are some surveys and taxonomies that are related to the resource man-

agement and scheduling contexts, each of them has a more specific focus in this area

without holistically covering the resource management problem. Zhao et al. [181] sur-

veyed various types of stream processing systems and discussed the default methods

of managing resources in different DSMSs. Dias de Assunção et al. [41] surveyed the

state-of-the-art stream processing engines with a focus on the enabling mechanisms of

resource elasticity. Hummer et al. [80] also provided an overview of stream processing

and explain the key concepts regarding the runtime adaptivity and cloud-based elasticity,

but SLA-aware resource management is not included in their survey. There are also some

surveys that have discussed the patterns and infrastructure to run stream processing sys-

tems elastically [65,66,73,129,138], but they emphasise more on the resource provisioning
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problem and lack the discussion on operator parallelisation and task scheduling.

As the research in this area advances, there is a long over-due effort to define of the

scope of the resource management and scheduling problem, identify the main challenges

lying in every aspect, and comprehensively analyse the developments in this field to

improve the SLA-awareness and cost-efficiency of deployment. In this chapter, we aim

to bridge this gap by proposing a taxonomy of literature on resource management and

scheduling and surveying existing works following the taxonomy structure.

The rest of the chapter is organised as follows. We first introduce the hierarchy of a

distributed stream processing system as background, with a system sketch to illustrate

the research topics involved in the deployment process. Then we present a taxonomy of

resource management and scheduling that details the problem scope and classifies the

key properties of the proposed solutions. In light of the taxonomy, the surveyed works

are mapped into different categories to better compare their strengths and weaknesses.

Finally, we conclude the chapter with a summary.

2.2 Background

The resource management problem is part of the deployment process to ensure the pre-

defined service level agreements (SLAs) or service level objectives (SLOs) are met and

the resource cost is minimised.

To better understand the problem of study and define its scope, Fig. 2.1 presents the

hierarchical structure of an example stream processing system. Sitting on the topmost

level is the abstraction of the streaming logic, which consists of four operators in the ex-

ample application. These inter-connected operators constitute a directed acyclic graph

(DAG) called topology, which represents a continuous query that stands on the incoming

data stream producing incremental results in real-time unless being explicitly terminated.

Each operator encapsulates certain streaming logic such as data filtering, stream aggrega-

tion or function evaluation, while the edges denote the data paths as well as the sequence

of operations conducted on the data streams. In most cases, the DAG of operators has

been properly defined upon the completion of application development. So in the de-

ployment phase, one has to decide where and how these streaming logic are executed in
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Figure 2.1: The sketch of the hierarchical structure of a stream processing system

a live distributed environment to cater to the continuous and possibly fluctuating work-

load.

A Data Stream Management System (DSMS) is positioned in the middle of the system

structure, which serves a similar role as the Data Base Management Systems (DBMSs) in

the conventional data processing context. In general, DSMSs expose a set of imperative

programming APIs and streaming primitives to developers, encapsulating low-level im-

plementation details such as stream routing, data serialisation and buffer management

in a unified streaming model. Developers can thus focus on implementing the user-

defined streaming logic without having to reinvent the wheel for routine data manage-

ment. DSMSs also provide abstractions for parallel and distributed computing, allow-

ing applications to enjoy horizontal scalability and fault-tolerance without code changes.

During the deployment phase, the parallel operators in the topology can scale with a

given parallelism degree, generating multiple replicas, known as tasks, to execute simul-

taneously on top of distributed resources. As demonstrated in Fig. 2.1, Operator B is

parallelised into Task4 and Task5 as a result of operator parallelisation. After that, task

scheduling is for dynamically mapping the streaming tasks to distributed resources, e.g.

Task6 of Operator C is mapped to the right end computing node in Fig. 2.1. Conveniently,

the routine jobs such as stream splitting and tuple tracking that are required to maintain
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semantic correctness are automatically handled by the DSMS itself. Heinze et al. [66] clas-

sified the existing DSMSs into three generations, among which we mainly focus on the

third generation that is highly distributed and even applicable to heterogeneous environ-

ments such as edge and fog clouds. Modern DSMSs falling into this generation include

Apache Storm, Twitter Heron [96], Apache Flink, Samza [122] and Spark Streaming [178],

etc.

The underlying infrastructure level represents the physical view of a stream process-

ing system. Resource provisioning is a process to acquire a set of distributed resources from

the cloud resource pool to constitute an interconnected computing environment. In this

thesis, we consider only the Infrastructure-as-a-Service model for provisioning resources

in clouds. This model visualises the physical infrastructure as separate service compo-

nents such as computing, storage and network, so that users can deploy their applications

with the finest control over the entire software stack, including operating systems, mid-

dleware and applications. There are also some streaming services available in the form of

the Platform as a Service (PaaS) model or the Software as a Service (SaaS) model, includ-

ing Silicus1, Google Dataflow2 and Microsoft Azure Stream Analytics3. However, the

deployment of streaming applications on these services is usually managed by the ser-

vice owner rather than the application provider, so it is impossible for the stakeholders

to directly manage resources for performance improvement and cost-efficiency.

As a summary, the deployment of a streaming system can be regarded as a decision

and configuration process to construct the hierarchical system structure in a distributed

environment, where the higher layer needs to be mapped to and hosted on the lower

layer to be concrete and runnable. During deployment, the main motivation of having

a resource management and scheduling framework is to free the application providers

from the burden of performing a cumbersome tuning and trial-and-error process. By ap-

plying a collection of profiling, modelling, and decisioning techniques, the framework

can automatically ensure that the deployed system meet its SLA-requirements with min-

imal resource consumption.

In this chapter, we have identified three relatively independent research topics that

1https://www.silicus.com/iot/services/stream-processing-and-analytics.html
2https://cloud.google.com/dataflow/
3https://azure.microsoft.com/en-gb/services/stream-analytics/

https://www.silicus.com/iot/services/stream-processing-and-analytics.html
https://cloud.google.com/dataflow/
https://azure.microsoft.com/en-gb/services/stream-analytics/
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fall within the scope of resource management and scheduling. We explain each topic by

highlighting its peculiar problem domain, as well as discussing the issues and challenges

it is facing to achieve the SLA-aware and cost-efficiency targets.

Resource Provisioning Resource provisioning describes the activities to estimate, se-

lect and allocate appropriate resources from the service provider to construct the inter-

connected infrastructure of the stream processing system.

• Resource estimation: estimating the type and amount of resources needed by the

system to meet its performance and cost targets articulated in the SLA. The esti-

mation can be derived from the analysis of historical data as well as the prediction

of future workload, but its accuracy is often affected by the instantaneous, unex-

pected fluctuations of workload volume and system performance. Nevertheless,

over-provisioning and under-provisioning resources both lead to undesirable con-

sequences for both system administrators and users.

• Resource adaptation: it is common that the actual resource demands fluctuate along

with the varying workload, or remain vague and unclear after the system has been

put into runtime. Therefore, it is always challenging to find the right point in time

to scale in/out, adapting the resource allocation to the fluctuating workload and

system performance. In addition, the profitability of adaptation decisions is also

affected by a number of factors such as the selected billing model and the geo-

graphical distribution of resource pools.

Operator Parallelisation Operator parallelisation divides a parallel operator into sev-

eral functionally equivalent replicas, each handling a subset of the whole operator inputs

to accelerate data processing.

• Parallelism calculation: calculation of operator parallelism requires accurate profil-

ing of stream workload and probing the maximum processing capability of every

single task. The composition of the infrastructure also plays an important role, as

the number of cores/threads supported by the platform confines the maximum exe-

cution parallelism and the hardware implementation determines the costs of thread

scheduling and context switching.
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• Parallelism adjustment: performance bottleneck can surface at runtime caused by

both over-parallelisation and under-parallelisation. Under-parallelisation results

in overly-loaded streaming tasks that fail to catch up with the application inputs,

while over-parallelisation increases the overhead of task management and leads

to resource contention as reported by Chapter 6. Runtime task monitoring is thus

required at the DSMS level to suggest possible operator congestions and tentative

parallelism adjustments.

• Balancing data source/sinks: the parallelism degree of an operator reflects the de-

gree of access it has to the distributed resources. While making parallelisation de-

cisions, the balance between the data source and data sinks should be maintained

due to the publisher-and-subscriber model adopted in the streaming system. An

overly powerful data source may cause severe backlogs in data sinks, while an

inefficient data source would starve the subsequent operators and encumber the

overall throughput.

Task Scheduling Task scheduling decides the placement of streaming tasks across dis-

tributed resources, such that data streams are partitioned and processed at different loca-

tions simultaneously and independently.

• Minimising inter-node communication: inter-node communication is much more

expensive than intra-node communication as former involves message serialisation

and network transfer. Therefore, it is preferable to place communicating tasks on

the same node as long as it does not cause contention. If the infrastructure consists

of geographically distributed resources, it is also a challenge to reduce large data

transmissions on remote and error-prone data links with limited bandwidth.

• Mitigating resource contention: one of the leading causes of performance deteriora-

tion is the competition of the computation and network resources among collocated

tasks. There is a great interest to design a resource-aware scheduler that makes sure

the accrued resource demands of collocated tasks do not exceed the node’s capacity.

• Performance-oriented scheduling: the scheduling of tasks should be optimised to-

wards the specific application performance targets defined in the SLA, regardless of
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the adverse impacts brought by workload fluctuations, VM performance variations,

and the interference of the multi-tenancy mechanism enabled at the infrastructure

and the DSMS layer.

The resource management and scheduling process is hardly a one-time effort. In or-

der to satisfy the articulated SLA requirements within such a constantly changing envi-

ronment, the current resource allocation and task placement need to be monitored, tuned,

and adapted at runtime for the streaming system to cope with any internal and external

changes.

2.3 Taxonomy

Figure 2.2 presents a taxonomy regarding the resource management and scheduling in

distributed stream processing systems. It classifies the existing works based on the re-

search topics and issues identified in Section 2.2. Furthermore, we extend each category

with subdivisions to distinguish the specific work properties and classify the adopted

methods based on their features. In particular, our taxonomy covers the following as-

pects:

• Resource Type: the various resource types involved in the resource management

process to compose the infrastructure of the streaming system.

• Resource Estimation: how to estimate and model the resource cost for the streaming

system to satisfy its SLA requirements.

• Resource Adaptation: how to adapt the resource allocation to the changes of work-

load volume and application performance.

• Parallelism Calculation: how to probe and calculate the parallelism degree for the

parallel operators in the application topology.

• Parallelism Adjustment: how to adapt the operator parallelism to the workload

variations and remain consistent with the processing requirements.

• Scheduling Objective: the various objectives of task scheduling and the rationale

behind these objectives to achieve the overall deployment target.
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Figure 2.2: The taxonomy of resource management and scheduling in distributed stream
processing systems



2.4 Resource Type 25

• Scheduling Methods: the various methods used for task scheduling.

Note that the above-mentioned aspects are only conceptually distinguished in this

taxonomy, with no implication on the independence of research. In fact, the activities

of resource management and scheduling are often tightly correlated and conducted in a

bundle to fulfil a holistic deployment target. For example, a complete resource provision-

ing process consists of three steps — selecting particular resource types, estimating the

amount of resource requirements, and adapting resource allocation for runtime changes,

where the former step often works as a preparation for the latter. Since a surveyed re-

search may stretch across multiple subcategories for completeness, the following sections

(Section 2.4 v Section 2.10) may cover the same work multiple times focusing on different

aspects of the taxonomy.

2.4 Resource Type

Resource describes any physical or virtual component of limited availability within a

computer system. However, depending on the actual context, the same term could con-

tain diverse meanings and refer to various resource types at different levels of abstrac-

tion. For deployment in IaaS clouds, resource generally refers to the computing and

network facilities that are available to rent through usage-based billing, such as Virtual

Machines (VMs), IP addresses, and Virtual Local Area Networks (VLANs). However,

for deployment of streaming systems in a more hybrid and geographically distributed

environment, resources also include other infrastructural components such as specific

hardware and hybrid networks.

In this section, we identify the various resource types involved in the deployment

and resource management process. It is worth noting that the storage resources such

as block storage, file or object storage are omitted in our classification due to the rare

discussion in the previous work. This is credited to the fact that saving stream data to

an off-site storage system is uncommon, which would block the dynamic data flow and

cause unsustainable processing latency.
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2.4.1 Resource Abstractions

Resource abstractions such as CPU, memory, and bandwidth quantify the resource con-

sumption and requirements of a streaming system in a high-level and coarse-grained

manner, regardless of the difference in hardware and the particular network that con-

nects the streaming components. From the end-users’ perspective, the measurement of

resource abstractions is intuitive and straightforward. CPU resources can be counted by

the number of used CPU cores, with loads measured by Million Instructions Per Second

(MIPS) or percentage utilisations; memory usage is quantified by Megabytes (MB); and

bandwidth consumption is gauged by Megabytes per second (MB/s) or Kilobytes per

second (KB/s).

However, having ignored the particularity of the underlying infrastructure also means

that resource provisioning can not be solely determined, or directly calculated on re-

source abstractions, the results of which would be susceptible to modelling errors and

hardware discrepancies. Instead of being used directly to construct the infrastructure,

resource abstractions are found more commonly used in rule-based approaches (Sec-

tion 2.6.2) to approximate resource cost and adjust resource allocation, as they contain

sufficient information to reflect the general system state and shed lights on the direction

of adjustments in the future.

2.4.2 Virtual Machines

Virtual machine (VM) is an emulation of a computer system customisable to the specific

user needs. In a cloud environment, virtual machine is the most common resource type

that encapsulates the computing power and serves as the host of streaming tasks in a

distributed environment.

Provisioning VMs from a particular cloud platform is a mixed problem of consider-

ing the VM price model, the location of data centres, and the network capacity of inter-

connections. The actual VM configurations and placement are determined by the specific

computation and communication needs of the streaming system to meet its performance

and cost SLA. For the generality of discussion, this survey also includes resource man-

agement techniques that originally apply to the on-premise cluster environment, as the
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proposed resource estimation and adaptation methods would also benefit the VM man-

agement in clouds to prevent resource leaks and contentions.

2.4.3 Specific Hardware

The infrastructure of streaming systems may require specific hardware to boost perfor-

mance, improve manageability, and deal with particular streaming scenarios. Due to the

scarcity of supply and the indispensability of functionality, provisioning of these critical

resources is often prioritised over other common computing and network resources in

clouds.

Chen et al. [31] proposed a GPU-enabled extension on Apache Storm, exploiting the

massively parallel computing power of the Single Instruction Multiple Data (SIMD) ar-

chitecture to accelerate the processing of stream data. Similarly, Espeland et al. [47] pro-

cessed distributed real-time multimedia data on GPUs with support for transparent scal-

ing and massive data- and task-parallelism.

FPGA is reconfigurable hardware designed to enable hardware-accelerated compu-

tations. The use of FPGA as central data processing elements allows exploiting low-level

data and functional parallelism in streaming applications. To facilitate the application of

FPGA for stream processing, Auerbach et al. [6] presented a Java-compatible language as

well as the associated compiler and run-time system to integrate the streaming paradigm

into a mainstream programming environment. Neuendorffer et al. [120] from Xilinx dis-

cussed the design tools required for the fast implementation of streaming systems on

FPGAs, and Sadoghi et al. [137] investigated how to map multiple continuous queries to

FPGA hardware using Hardware Description Language (HDL) code.

In some use cases, the deployment platform requires specific sensors to collect input

data or monitor the current processing state such as network transmission and power

consumption. For instance, data collection sensors are employed by Zhu and Vijayaku-

mar [163,184] to aggregate stream data from the satellites and environmental monitoring

facilities in real time. Kamburugamuve et al. [88] proposed a hybrid platform to connect

smart sensors and cloud services, with the data processing logic deployed in the cen-

tralised cloud servers to enable new real-time robotics applications such as autonomous

robot navigation. Traub et al. [160] optimised communication costs on sensor networks
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by sharing sensor reads among continuous queries, so that the amount of data transfer is

reduced by employing a combination of data stream sampling and tailoring techniques.

Also, power meters such as Watts Up are employed by Shen et al. [147] and Mashayekhy

et al. [113] in their streaming systems to get real-time power readings from the host ma-

chines.

2.4.4 Hybrid Network

Traditionally, streaming systems are deployed in a single cluster or cloud environment

as most of the data streams to be processed are collected from web analytic applications.

However, there is an ongoing trend that the deployment platform migrates to a more

heterogeneous and geographically distributed setting to process the huge data streams

generated by the Internet of Things (IoT) applications. In this process, novel network ele-

ments and hybrid network structures have been employed to enhance the infrastructure

connectivity and enable new application paradigms.

Collaborative Fog, Edge, and IoT networks are gaining popularity in stream process-

ing for the ability to offload a substantial amount of control, computation and man-

agement workload to the network gateways close to data sources, thus reducing data

transmission and bandwidth consumption. Papageorgiou et al. [123] identified that the

low latency requirement is often challenged at the edge of the application topology be-

cause of the frequent communication to the external IoT entities, so they built new deci-

sion modules to place selected tasks on edge devices at runtime using resource descrip-

tors. Hochreiner et al. [74] discussed the distributed deployment of streaming applica-

tions over a hybrid cloud, with a threshold-based resource elasticity mechanism to deal

with the variation of IoT streams. Cardellini et al. [21] also investigated distributed de-

ployment of streaming systems over a geographically distributed Fog infrastructure, in

which they focused on the design and implementation of a QoS-aware and decentralised

scheduling policy. Aggregation and processing of streaming data in smart city applica-

tions are tackled by a distributed IoT network developed by Puiu et al. [126], which is

capable of enriching input streams with semantic annotations and utilising stream rea-

soning techniques to allow real-time intelligence with event detection.

Mobile devices have also taken part in the network infrastructure of a streaming



2.5 Resource Estimation 29

system to move computation closer to the data sources. To deploy stream processing

application directly on smartphones, Wang et al. [167] proposed a new check-pointing

method to mask the simultaneous failure of mobile devices and employed a segmented,

UDP-based data transmission method to reduce the cellular network overhead. Simi-

larly, Morales et al. [118] relied on mobile devices to pre-process data streams, and they

also proposed a new check-pointing method that is both connectivity-aware and energy-

aware. Yang et al. [175] discussed how to enable mobile devices to work in partnership

with VMs provisioned in clouds, with a focus on the dynamic partitioning of data streams

between mobile devices and data centres to achieve higher throughput and scalability.

On the other hand, High-performance Computing (HPC) network has also been utilised

in stream processing to enable advanced interconnectivity and better scalability than the

conventional Ethernet connection. Recently, Kamburugamuve et al. [89] discussed the

use of Infiniband and Intel Omni-Path to improve the performance of stream process-

ing applications, where a new Storm extension is proposed utilising the native function

of high performance interconnects to achieve significantly lower latencies and improved

throughputs.

2.5 Resource Estimation

Based on the information retrieved, recorded or derived from the present and the past

system states, resource estimation calculates the minimal amount of resources required

by the streaming system to fulfil its SLA. The accuracy of resource estimation determines

the cost-efficiency of resource provisioning, which plays a key role in a quick converge to

optimal deployment and avoiding over- and under- resource utilisation.

Our taxonomy covers the following characteristics of a resource estimation method:

• Predictive Ability: whether the resource estimation method can predict the future

application and system metrics, such as workload size, resource utilisation, and

application performance.

• Resource cost modelling: how it models the resource costs based on the predicted

or collected metrics, and what criteria in SLA determine the minimal amount of

resource requirements.



30 Literature Review

Metric Prediction

Application Metric Prediction System Metric Prediction

CPU Memory Bandwidth

Performance

Throughput Latency Operator
Bottleneck

Workload

Volume Distribution

Availability

Energy 
Consumption

Figure 2.3: The classification of predicted metrics used for resource estimation

2.5.1 Predictive Ability

Prediction of future application and system metrics allows active speculation of future

resource demands rather than assuming a constant resource consumption pattern.

Fig. 2.3 illustrates the classification of predicted metrics based on the level of which

they are collected from the software stack. Metric of different granularities contain dif-

ferent information and thus contributing to resource estimation in different ways. The

prediction of system metrics normally leads to a direct estimation of future resource re-

quirements, which is consequently oblivious to the particularity of the hosted applica-

tions; whereas the prediction of application metrics leads to an indirect estimation of re-

source demands, which requires further resource cost modelling to suggest the minimal

resource requirement without violating the SLA requirements.

From the methodology perspective, time series analysis and queueing theory are

identified as the two prominent approaches for metric prediction.

Time Series Analysis A time series is a sequence of data records collected at successive

points in time, and time series analysis is an umbrella term that describes a variety of

models and methods on time series to find repeating patterns in the historical data. In the

context of stream processing, time series analysis is applied to the past system resource

usages and application metrics to forecast future values, leading to direct and indirect

estimation of future resource requirements, respectively.

CloudScale [147] is an elastic resource scaling system built on Xen hypervisor4 that

directly predicts the short-term resource demands based on the recent history of sys-

4https://www.xenproject.org/

https://www.xenproject.org/
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tem metrics. They adopted a hybrid time series analysis approach combining both Fast

Fourier Transform (FFT) and a discrete-time Markov chain to balance between high esti-

mation accuracy and low overhead. The light-weight FFT is tried first for fast identifica-

tion of repeating patterns in the previous time series. If not found, the heavier Markov

chain model performs multi-step analysis on the metric history to provide coarse-grained

and long-term resource estimations.

The same approach is also seen in the group’s previous work [182], with more details

revealed on the prediction process. Fast Fourier Transform (FFT) identifies the domi-

nant frequencies of variation in the observed resource-usage time series, followed by a

discrete-time Markov chain model that unveils the deeper-hidden patterns through cal-

culating the feature value distribution for the collected resource metrics. The combination

of these two methods leads to a fast yet accurate estimation model, provided that there

are patterns concealed in the resource usage history.

OrientStream [165] is a recent work on dynamic resource provisioning of stream pro-

cessing systems. It features an online resource prediction module that employs an ensem-

ble regression model on the past system metrics to suggest future resource usages. The

prediction process is essentially a weighted vote of four independent regression models,

reaping the benefit of reducing the overall Relative Absolute Error (RAE).

Dai et al. [35] presented VM provisioning as a multi-objective optimisation problem,

which they solve with an auto-regressive model that learns and predicts the utilisation of

each VM as well as the bandwidth consumption between routers. With further consid-

eration on power management, Liu et al. [105] applied deep reinforcement learning over

a linear combination of system metrics such as total power consumption, VM latency,

and reliability metrics to synthetically predict future system states. Based on the forecast,

a hierarchical resource provisioning model is proposed that saves energy consumption

without significantly impacting the application performance and availability.

When applying to the historical data of application metrics, time series analysis can

also indirectly suggest the future resource demands with the help of resource cost mod-

elling.

Hidalgo et al. [72] applied a Markov chain model on the workload time series to

predict whether an operator’s future state would be overloaded, underloaded, or sta-
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ble. Based on the state predictions, resource cost is modelled by checking the minimal

amount of resources needed for the placement of tasks. Kombi et al. [95] adopted a simi-

lar method to forecast operator bottlenecks, which circumvents the rigorousness of queu-

ing theory while still being able to estimate resource demands at the operator level.

Balkesen et al. [9] applied exponential smoothing on the periodic observations of in-

put stream rate to forecast the volume of future workloads. Their rate-forecasting heuris-

tic solves the bin packing problem formulation, suggesting the future resource usages

based on the stream distribution and the placement of operators. Analogously, Ishii et

al. [82] employed Sequentially Discounting AutoRegression (SDAR) to predict future in-

put rates. They formulated an optimisation problem on resource provisioning and solved

it with linear programming to find the minimal resource requirement without violating

the application latency SLA. HoseinyFarahabady et al. [77] also predicted the changes in

the input traffic with an Auto Regressive Integrated Moving Average (ARIMA) model,

which lays the foundation for a resource provisioning algorithm that causes less QoS

detriments over all available servers.

Mayer et al. [115] predicted the workload distribution and its parameters with a hy-

brid approach of distribution moments and maximum likelihood method. The predicted

workload distribution feeds into the calculation of operator parallelism and then sheds

light on the resource cost by counting the number of processor cores required for task

execution. Imai et al. [81] trained a linear regression model on the performance data

collected in an experimental environment, in order to predict the maximum sustainable

throughput of the streaming application running on a larger number of VMs. Therefore,

the cost model is built by directly linking the desired application performance with the

number of VMs provisioned in the infrastructure.

Queueing Theory Queueing theory is a set of mathematical models studying waiting

lines and queues to describe or predict the waiting time and queue lengths. In stream

processing, queueing theory is often applied to application performance metrics — espe-

cially operator latency — to shed light on the possible data flow bottlenecks.

By modelling the operator as a G/G/1 queueing system, De Matteis et al. [37] re-

garded each operator task as a single server queue where both inter-arrival times and

service times have a general distribution. The Kingman’s formula is then used to ap-
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proximate the mean waiting time at the operator level, which sheds light on the runtime

adaptation of the number of used cores as well as the CPU frequency. The same mod-

elling and solving technique are also found in a variety of literature [27, 38, 39, 98, 108],

which proves that the Kingman’s formula is widely accepted for latency modelling be-

cause of its accuracy and generality applying to arbitrary distributions of the inter-arrival

time and service time.

Differently, HoseinyFarahabady et al. [77] modelled the operator as a G/G/k queue

(k is the number of processors for the target operator) and employed Allen-Cunneen ap-

proximation to give an upper-bound of the sojourn time experienced by each tuple. Since

there is no exact formula known for the G/G/k-model, Allen-Cunneen approximation

provides asymptotically exact results under heavy traffic and is particularly suitable for

streaming applications with highly-utilised operators. There are also two papers [54,149]

that formulate the operator as a M/M/k system, where M indicates Poisson distribution

for arrival and Exponential distribution for service time. Accordingly, Erlang formula is

applied to estimate the expected value of the total tuple sojourn time in the application.

This is different to the G/G/1 and G/G/k modelling at the operator level as the whole

application topology is modelled as a Jackson open queueing network, which increases

the rigorousness of the queueing model but is capable of providing more accurate latency

estimations for the whole application if the model assumptions are met.

2.5.2 Resource Cost Modelling

With the domain knowledge of stream processing, a resource cost model summarises

the various metrics collected at the runtime stack, suggesting an overall estimation of re-

source requirements for the streaming system to satisfy its particular SLA requirements.

Resource cost modelling is generally influenced by the application logic and the de-

sired deployment target. For example, a filtering operator may show a resource usage

pattern linear to its workload volume, while a window operator may exhibit periodical

resource requirement peaks as the window slides or executes. For some applications that

prefer higher reliability and availability, extra resources are required to provide fault-

tolerance or confine the utilisation rate of each node in certain bounds. However, some

applications are more sensitive to resource cost and communication overhead, so the de-
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ployment of these applications is consolidated to as fewer nodes as possible to reduce

resource usages and inter-node communications. Proper resource cost modelling is the

key to deal with these variations and suggest the overall resource requirements accord-

ingly.

For the convenience of discussion, our taxonomy categorises different resource cost

models based on the intended SLA optimisation, i.e. which SLA requirement is more

critical to determine the system resource cost in general.

Minimal Cost Model This model intends to achieve the targeted performance require-

ment with minimal resource cost, so there is no additional resources provisioned to im-

prove reliability and availability. Bin packing is the most common strategy to model the

minimal resource cost based on the compact task placement. Setty et al. [144] used bin-

packing formulation to determine the minimal number of VMs needed by the placement

of topic-subscriber pairs, with a greedy heuristic to optimise cost while respecting the

constraint that the application communication must not exceed the VM bandwidth ca-

pacity. Heinze et al. developed FUGU, an elastic data stream processing prototype, to

evaluate different scaling policies [69] and optimise the scaling parameters [70]. In both

works, the resource requirements are estimated using a bin-packing model solved by a

First Fit and Best Fit heuristic. Balkesen et al. [9] applied bin packing to dynamically re-

assign data streams to different nodes, resulting in runtime adjustments to the previous

round of stream assignment rather than re-optimisation from scratch to balance between

result optimality and the overhead of stream redirections. Bin packing is also employed

by Xu et al. [173], Nardelli et al. [119] and Ghaderi et al. [60] to suggest minimal resource

cost under a certain SLA requirement.

Reliability-oriented Model This model provisions additional resources for state man-

agement and failure recovery. Madsen et al. [110, 111] proposed a Storm extension that

replicates the same operator state across different nodes, allowing faster state migration

to transparently scale and recover stateful operators. The resource cost is thus calculated

by the needs of state management to maintain semantic correctness and fault-tolerance.

Similarly, Castro Fernandez et al. [24] designed a set of state management primitives to

expose internal operator states to the DSMS for transparent failure handling and scaling.
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This leads to a resource cost model built on state management with considerations on

the extra computation and communication overhead introduced by failure recovery and

periodical state check-pointing.

Contention-aware Model Model of this type permits certain resource allowances to

handle random workload bursts when needed. HoseinyFarahabady et al.[77] proposed a

resource cost model that tracks and confines the CPU utilisation level of each node within

an accepted range, and a similar approach is also found in Thamsen et al.’s work [157]. In

order to limit the memory usage and CPU consumption within a certain bound, Cammert

et al. [16] proposed a cost model to estimate resource utilisation of continuous queries

based on the stream characteristics such as the average inter-arrival time and the average

validity of tuples. The proposed fine-grained cost model is customised to a variety of

operator types and streaming logic, making it possible to even quantify the impact of

(re)optimisations on query plans.

Load-balancing-oriented Model This model focuses on the fair utilisation of available

resources and is the opposite to the compact task placement which is commonly seen

in the minimal cost model. Fischer et al. [50], Eskandari et al. [46] and Jiang et al. [86]

regard the operator placement as a graph partitioning problem, so that they explicitly

spread the streaming tasks across all available resources at the infrastructure for better

load balancing. This cost model is also employed by the round-robin scheduler that is

used as default by a variety of DSMSs, which favours even load distribution over partic-

ipating computing nodes.

Distribution-based Model Also, depending on the nature of the cost model, the result

of resource requirement may be a probability distribution rather than a definitive value.

Khoshkbarforoushha et al. [92, 93] employed Mixture Density Networks (MDN), a sta-

tistical machine learning model combining Gaussian mixture models and feed-forward

neural networks, to estimate the whole spectrum of resource usage as probability density

functions. Modelling the resource usage as a distribution rather than a single point value

captures the possible variances caused by resource contentions and interferences from

parallel workloads.
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2.6 Resource Adaptation

Resource adaptation in stream processing generally refers to horizontal scaling, i.e. adding

or removing VMs within in the infrastructure to alter the scale of distributed computa-

tion. This is in contrast to vertical scaling that resizes the existing VMs and adjusts the

capacity of existing hardware in terms of CPU, memory, and network resources. The

main reason behind the rare use of vertical scaling is that its maximal scalability is limited

by the size of the server, and that stop-free vertical scaling has received limited support

from the mainstream cloud provider such as Amazon, Microsoft and Google. It is usu-

ally required to bring the whole streaming system offline for maintenance to make any

configuration change to the provisioned virtual machines, the consequence of which is

unacceptable in the presence of continuous inputs and strict latency SLA.

However, Dynamic Voltage and Frequency Scaling (DVFS) is an exception that verti-

cal scaling is employed in streaming systems to optimise energy consumption. DVFS is

a common power management technique that allows processors to dynamically change

power states, lowering and raising CPU frequency and voltages on the fly according to

the resource demands from virtual machines. It is used by Matteis et al. [37, 39] to ex-

plicitly regulate the CPU frequency, by Sun et al. [156] to model the power-to-frequency

relationship, and by Shen et al. [147] to turn unused resources into energy savings with-

out affecting application SLOs.

In the rest of this section, we categorise horizontal scaling techniques into two major

categories based on how they select the proper scaling time: (1) proactive approaches

that adjust resource provisioning according to the prediction of workload pressure and

system behaviour in the future time horizon, and (2) reactive approaches that scale the

infrastructure only when necessary as indicated by some threshold breaches or changes

of system state.

The choice of proactive or reactive approaches much depends on the predictability of

workload pattern and system behaviour. In some cases, the input stream exhibits gradual

and repetitive variations in volume and composition, so it is preferable to learn from the

history and apply the obtained knowledge to adjust resource provisioning proactively

before the application requirement changes. In other cases, the arriving data stream con-

tains random bursts and drastic workload changes with no clear pattern, leaving the
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prediction of future system state no longer a viable option. Hence, reactive approaches

are required to deal with the bursty load on the best effort basis.

2.6.1 Proactive Adaptation

Proactive adaptation regards the infrastructure layer as a controllable system requiring

certain corrective actions from time to time, e.g. acquiring more resources to tackle under-

provisioning or relinquishing over-provisioned resources for cost-efficiency. Therefore,

there are continuous controlling loops that monitor the various inputs and outputs of

resource management and actively suggest optimal adjustments without delay or over-

shoot.

A typical workflow of a controlling loop is as follows: (1) the resource estimation

module predicts the future system state such as the workload arrival rate and the average

input processing latency in the prediction horizon5. (2) The system model captures the

relationship of various QoS variables, assessing the system’s capability to maintain the

articulated SLA. (3) the control algorithm solves an optimisation problem to find the best

resource allocation for the next loop.

Based on how the optimisation problem is solved, we generally categorise the proac-

tive adaptation methods into two groups. The first one is loop-wise control, which regards

each prediction horizon as an independent control interval and derives proactive adjust-

ments by applying the predefined scaling rules to the estimation of the next control loop.

Methods falling this group are intuitive and straightforward to implement, but they may

suffer from the problem of adjusting for short-term benefits while ignoring the long-term

future.

To mitigate this, Model Predictive Control (MPC) optimises resource provisioning in a

receding prediction horizon that consists of multiple control intervals. At each control

interval, the controller solves an optimisation problem to obtain the optimal reconfigura-

tion trajectory over the prediction horizon. However, when it comes to execution, only

the first element of the optimal reconfiguration trajectory would be employed to steer the

resource adaptation, while the whole trajectory is re-evaluated at the beginning of the

next control interval to exploit the updated forecast in the shifted prediction horizon. De

5Prediction horizon: the period in which the future values of the interested metrics are predicted
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Matteis et al. [37–39] employed MPC to achieve QoS-aware and energy-efficient resource

adaptation, in which they model the optimisation problem as a minimisation of QoS cost,

resource cost and adaptation cost. They proposed a tree structure to describe the search

space and employed the Branch & Bound methods (B&B) to prune the search tree and

reduce the runtime overhead of MPC in a real-time environment. Meanwhile, Hoseiny-

Farahabady et al. [76, 77] employed MPC to proactively alleviate the resource contention

between collocated applications, in which the optimisation problem is solved by Particle-

Swarm Optimization (PSO) with its execution time capped to 1% of the control interval

to limit its computational overhead.

2.6.2 Reactive Adaptation

Based on the metric classification shown in Fig. 2.3, we also categorise different reactive

methods by the nature of the triggering metric.

System Metrics Triggered The system metrics such as CPU utilisation, memory us-

age, and bandwidth consumption contain raw information on system performance and

resource utilisations, thus reflecting the need for adaptation when some metrics have

breached certain thresholds. The common problem associated with this type of meth-

ods is that the system metrics may not faithfully reflect the application performance.

For example, a higher CPU utilisation rate does not necessarily mean higher applica-

tion throughput and lower processing latency. Instead, it may imply that the current

resource provisioning is not sufficient for handling the incoming workload. On the

other hand, methods falling into this category are versatile and easy to implement for

being application-agnostic — the simplest example would be monitoring the CPU util-

isation at each host, with an upper and lower bound defined to trigger scaling in and

out actions [23, 24, 69, 162]. The memory threshold method is also found in Liu et al.’s

work [103].

Application Metrics Triggered The application metrics include not only the applica-

tion performance perceived by the end-user, but also internal metrics from the DSMS

that describe the service time, the arrival rate, and the length of input/output queue for
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individual operators.

Lohrmann et al. [108] present a reactive scaling strategy that reacts to latency con-

straint violations with appropriate scaling actions, which minimises the total resource

consumption under a varying load scenario. The same approach is also employed in

their Nephele [109] implementation. Xu et al. [174] defined a metric named Effective

Throughput Percentage (ETP) for each operator, which captures the state of congestion

and estimates the impact of operator output towards the application throughput. The

operator with the highest ETP will be given more parallelism and assigned to a new VM

for scaling out.

By monitoring the input stream rates and the current processing rates within the

DSMS, Cervino et al. [26] detect overload conditions in the operator buffer and then scale

the number of used VMs accordingly to maintain the required throughput. Similarly,

Vijayakumar et al. [163] defined a derived metric describing the difference between the

processing time per data block and the average time interval of receiving one block, so

that the adaptation is triggered by the calculated buffer-overflow. Kleiminger et al. [94]

monitored the lengths of the input and output queues for stream processors, so that the

computation can scale out from an on-premise cluster to clouds when needed. Satzger et

al. [139] determined if an operator is overloaded by analysing the length of its incoming

message queue, with thresholds hard-coded in the scaling logic to trigger adaptations on

resource provisioning.

Hybrid Metrics Triggered Since relying on system metrics or application metrics alone

may not faithfully reflect the actual application performance and resource utilisation, it

is preferable to combine both to comprehensively trigger reactive resource adaptations.

The most common combination is to monitor the operator throughput and the resource

utilisation at each host node, so that it is possible to deduce the average processing cost

per tuple at the operator granularity. Chapter 6 applied this method to trigger reactive

resource adaptation, so that the overall application throughput can be maintained at a

pre-defined level regardless of the initial allocation of resources. In Chapter 4, scale-in is

performed when the input load decreases and so does the resource consumption of each

operator. The scale of resource adaptation is derived from the monitored load difference

and the comprehensive metric of per-tuple processing cost.
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2.7 Parallelism Calculation

Parallelism calculation answers the question of how many streaming tasks are required

for a particular operator to sustain its assigned workload without causing congestions

to the whole application topology. We have identified two prominent approaches in the

literature. The first approach is called performance-driven parallelisation — the calcula-

tion is a division of the operator input size and the anticipated capacity of each stream-

ing task. The second approach is platform-oriented parallelisation — it first checks the

maximum number of parallelism units supported by the provisioned platform, and then

distributes them as resources among different operators to ensure that the platform is not

over-utilised by an excessive amount of processes and threads.

2.7.1 Performance-driven Parallelisation

In this approach, the correct calculation of the parallelism degree for a particular oper-

ator hinges on the profiling of both operator inputs and the capacity of each streaming

task, the latter of which is defined as the maximum number of tuples that a single task

can sustainably handle per time unit (Chapter 6). There are direct and indirect methods

to measure the volume of inputs for an individual operator. The direct methods install a

metric collector at the task entrance that automatically gauges the flow traffic and regu-

larly reports to the calculation logic [83], while the indirect method utilise the publisher-

subscriber model adopted in the streaming system, inferring the input volume of a par-

ticular operator by examining the selectivity6 of its upstream operators [141]. Note that

nowadays light-weight stream monitoring and management have been supported by a

variety of state-of-the-art DSMSs, so the hurdle of directly measuring operator inputs has

been lowered with the abundance of built-in metrics.

In addition to measuring operator input, task profiling is another piece of the puz-

zle to achieve performance-driven parallelisation. There are a bunch of monitoring and

sampling techniques available to profile the task performance from different perspec-

tives. The most commonly profiled metrics include the average processing latency per

tuple [29], the idleness of task execution [86,168], and the resource usages of a task entity

6Selectivity: an operator metric that describes the number of data tuples produced as outputs per tuple
consumed in inputs.
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(Chapters 4 and 6). The relationship between task capacity and the first two metrics is

readily established — the capacity is reached when the task is occupied with tuple pro-

cessing under the wall clock time; while using the last metric to estimate task capacity

exploits the fact that a task is often hosted by a single thread or process, which means its

peak performance is also limited by the maximum CPU utilisation of a single CPU core.

2.7.2 Platform-oriented Parallelisation

The rationale of platform-oriented parallelisation is twofold — to avoid over-utilising

the available resources with excessive operator parallelism, and to help incorporate some

rules of thumb suggested by the DSMS developers to make full use of the parallel pro-

cessing capability of the deployment platform. Take Apache Storm as an example, it is

suggested that the operator parallelism is a multiple of the number of machines deployed

in the platform, and the parallelism of data source is a factor of the number of partitions of

the message queue, as such configuration empirically facilitates load balancing between

different hosts [154].

Platform-oriented parallelisation is commonly used in industrial deployment settings.

Goetz et al. explain how their company decides on operator parallelism in a slide posted

online7. Specifically, there is a concept of parallelism unit to describe the parallel process-

ing capability of the platform, which essentially multiplies the number of nodes in the

platform by the number of cores available on each node. For instance, there are 160 par-

allelism units available in a cluster consisting of 10 worker nodes with each incorporating

16 cores. The calculated parallelism units are then regarded as a special type of resources

that can be distributed among parallel operators in the topology — the slower the task

is in terms of the processing latency, the larger parallelism it gets from the resource pool

of parallelism units. They also considered the fact that some tasks may exhibit a higher

processing latency because of having intensive communications, so the number of par-

allelism units can be enlarged 10 to 100 times depending on the number of I/O bound

operators present in the topology. This is to ensure that there are enough streaming tasks

for each communication-intensive operator to split the workload and perform I/O oper-

ations.

7https://www.slideshare.net/ptgoetz/scaling-apache-storm-strata-hadoopworld-2014

https://www.slideshare.net/ptgoetz/scaling-apache-storm-strata-hadoopworld-2014
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2.8 Parallelism Adjustment

The direct calculation of operator parallelism may not be feasible in some user cases due

to the lack of pilot run or monitoring facilities. Also, the results of calculation are prone

to profiling errors that adversely affect the system performance. Therefore, an iterative

adjustment process is needed to dynamically adapt the parallelism degree in response to

the continuous variations of workload and system performance.

2.8.1 Rule-based Approaches

Rule-based approaches have attracted extensive research attentions due to the simplic-

ity of implementation and effectiveness of adjustments. The core of the method is made

of a collection of scaling rules that define the triggering thresholds as well as the cor-

responding scaling actions. In most cases, the scaling actions are greedy-based, which

favour direct mitigation of the threshold violation and converging to suitable parallelism

quickly at the expense of optimality. It also means that the resulting parallelism may be

trapped in the local optimum and a proper backtrack mechanism is required to search

for the global optimum [7].

Rule-based approaches can be generally classified as either static or dynamic in terms

of execution.

Static Single Threshold A static threshold is pre-defined in the scaling logic to trigger

parallelism adjustments in a single direction. For example, the threshold on processing

latency is one-sided — when the monitored latency exceeds the SLA requirement, the

operator parallelism is increased to amortise the processing workload by adding more

streaming tasks to the fleet. Besides, Humayoo et al. [78] assessed the necessity of ad-

justment with a utility threshold to evaluate if the probability of obtaining positive gain

outweighs that to incur a loss. Gulisano et al. [64] defined an upper imbalance thresh-

old to ensure the standard deviation of load distribution is below a pre-defined limit.

Though setting a single threshold statically makes it fairly easy to implement the ad-

justment logic, expert knowledge on application characteristics and the platform speci-

fication are still required to properly decide the threshold value and the corresponding
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scaling actions. Furthermore, methods falling into this category lack the ability to scale

reversely nor being self-adaptive as the employed threshold is fixed during the complete

runtime of the system.

Static Multiple Thresholds Multiple static thresholds are set in pairs to maintain the

concerned parameters within certain upper and lower bounds. For instance, Fernandez

et al. [24] defined two thresholds on the average CPU usages of each node to trigger

parallelism adjustment from the perspective of local resource utilisation. This approach

is also seen in Veen et al.’s work [162]. Kombi et al. [95] divided the estimated amount

of operator input by the estimated capacity of a streaming task, where two performance

thresholds are defined delimiting a low and a high activity level to trigger the corre-

sponding scaling action. The major challenge for this type of methods is oscillation,

where opposite scaling operations are conducted continuously due to the poorly con-

figured thresholds or overreacting changes [58]. Therefore, a configuration of cooling

time is set in practice to conservatively limit the frequency of adjustments and mitigate

oscillation.

Dynamic Thresholds With the knowledge acquired from the evaluation of the previ-

ous adjustment results, dynamic thresholds improve the method adaptivity by updat-

ing the triggering thresholds and refining the adjustment behaviours at runtime. It also

helps mitigate oscillation as the parameters of scaling are dynamically updated with re-

gard to the previous run history. Heinze et al. [69] applied reinforcement learning to

reward effective adjustments and punish unnecessary changes caused by inappropriate

thresholds. Bilal et al. [12] examined whether a change of parameter value has an overall

positive or negative impact on latency and throughput, where the dynamic thresholds

are defined as the best performance monitored in the execution history.

2.8.2 Queueing Theory

The anticipation of operator congestion using queueing theory is not only useful for the

estimation and adaptation of resource provisioning, but also for adjusting the relevant

operator parallelism. Mayer et al. [114,115] built an adaptive data parallelisation middle-



44 Literature Review

ware that deduces a stationary distribution of the queue length under a certain paralleli-

sation degree, so that the operator parallelism is adjusted accordingly to make sure that

the message buffer’s limit is not exceeded with a high probability. Chapter 2 employed

a queueing network to infer the throughput distribution among operators considering

their selectivity and communication pattern, based on which the operator parallelism is

scaled in batch in a way that the capability of the data source and data sink is balanced.

A predictive operator latency model is built on queueing theory and employed by

Lohrmann et al. [108] to formulate a linear objective function on the minimisation of

total parallelism. They applied a gradient descent search to find the optimal degree of

parallelism for each operator that reduces resource footprints while enforcing the latency

constraints. Similarly, Fu et al. [54] formulated a latency model based on queueing theory

to determine the number of nodes that each operator needs to be placed on; however,

their approach is dedicated to computationally intensive applications with no regards

to the possible communication overhead and network delays. Cardellini et al. [20, 23]

searched for the optimal parallelism by jointly considering operator replication and task

placement within an integer linear programming formulation, and this process relies on

modelling the underlying computing node as an M/M/1 queue to estimate the response

time of a particular operator subject to its parallelism, service rate, and incoming load.

2.8.3 Control Theory

The versatile control theory also applies to the adjustment of operator parallelism. In

Section 2.6.1, we have discussed various MPC-based algorithms that explore the opti-

mal configuration of the target application under ever-changing operational conditions.

The parallelism degree of each operator is part of configuration which is updated at the

beginning of each control interval [37–39, 76, 77]. In addition, Gedik et al. [58, 59] inves-

tigated the profitability of parallelism adjustment with respect to the changes in work-

load volume and the availability of resources, where a control algorithm is proposed to

manage the operator throughputs and congestion with appropriate parallelism. In Li

et al.’s work [99], the operator parallelism is controlled by the comparison of conges-
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tion degrees8 that are measured on the operator’s receiving and sending queue, where

the strength of intervention could be tweaked by an adjustment coefficient. Floratou et

al. [53] presented a throughput-oriented policy that automatically configures the paral-

lelism degree to ensure satisfactory throughput and alleviate backpressure. Similarly,

Stela [174] also relies on monitoring throughput changes to make control decisions — the

control algorithm increases the parallelism of the most congested and most influential

operator to make full use of the newly added machines during scaling out. In Sun et al.’s

work [153, 154], the parallelism degree of each operator is determined in proportion to

its computational complexity, which is monitored and measured by the unit of MIPS, i.e.

Millions of Instructions Per Second.

2.8.4 Machine Learning

The adjustment of operator parallelism can also resort to a variety of machine learning

techniques. Gaussian processes (GP) is employed by Zacheilas et al. [177] to analyse

historical data of workload volume and processing latency, so that the parallelism de-

gree can be proactively adjusted to augment the system’s performance. By applying

incremental learning techniques to different query workloads as training sets, Wang et

al. [166] predicted the operator resource usages under several manually supplied candi-

date configurations. The optimal parallelism is then selected to minimise resource usages

while considering the current query requests and stream properties. Game theory is also

explored to formulate the elastic parallelism scaling problem as a non-cooperative game,

with each operator regarded as an independent agent performing a local control strategy.

The operator parallelism is thus determined as the system reaches the agreement of Nash

equilibrium [116].

2.9 Scheduling Objectives

Scheduling is of paramount importance to the successful deployment as it determines

whether a streaming task can get enough resources to process inputs received from its

8The congestion degree for a particular operator queue refers to the ratio of the size of the queued messages
to the overall queue buffer size.
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predecessors. As we have discussed in Section 2.5.2, some scheduling targets cannot be

achieved at the same time due to their competing nature, e.g. data locality and load bal-

ancing are two conflicting targets that require consolidated task assignment and scattered

task distribution, respectively. In order to evaluate and compare the quality of different

scheduling policies within the same scope, we have identified six major categories of

scheduling objectives.

2.9.1 Fairness-aware Scheduling

The meaning of fairness is twofold when it comes to the scheduling of streaming tasks.

Firstly, the amount of workload assigned to each node should be fair, so load-unbalance

will not happen where part of the computing infrastructure is over-utilised while the

other part is under-utilised. Secondly, the resources allocated to each streaming appli-

cation should be fair, so that scheduling will not lead to application starvation and re-

source competition that are commonly caused by the multi-tenancy mechanism in the

mainstream DSMSs. However, it should be noted that being fair in load distribution and

resource allocation does not necessarily guarantee each streaming application can meet

its SLA requirements.

2.9.2 Performance-oriented Scheduling

Throughput and latency are the two dominant metrics measuring the performance of a

streaming application from the end-user’s perspective. Maintaining throughput at the

required level is of vital importance to the stability of a streaming system. In a streaming

environment, the data sources usually work independently and asynchronously with re-

spect to the other parts of the streaming system. So if the processing facility lags behind in

sustaining the required throughputs, the message buffer between the data source and the

deployment platform will be overwhelmed by the backlogs which eventually lead to the

system crash (see Chapter 3). On the other hand, the importance of reducing processing

latency stems from the fact that streaming applications are real-time in nature.

Performance-oriented scheduling used to be platform-centric in a cluster environment,

which aims at producing better performance in a fixed deployment platform by opti-
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mising the resource utilisation or reducing the network communication of streaming

tasks [5,29,46,50,85,124,153,173]. However, as cloud computing has enabled dynamic re-

source provisioning during runtime, performance-oriented scheduling has become SLA-

centric that focuses on meeting the pre-defined performance targets with elastic scaling

on resource and operator parallelism [54, 81].

2.9.3 Resource-aware Scheduling

Resource-aware scheduling matches the resource demands of streaming tasks to the ca-

pacity of distributed nodes, so that over-utilisation and under-utilisation are mitigated

preventively, and less computing and network resources are consumed to achieve the

same performance target (Chapter 4). In practice, the resource demands and capacity

are described as a multi-dimensional vector, with each element representing a particular

resource type [124]. The scheduling process is thus finding a mapping of tasks to ma-

chines such that the overall cost of resource consumption is minimised and the resource

constraints are satisfied, i.e. the accumulated vector of resource demands requested by

the collocated tasks does not exceed the vector of resource availability on that node.

In addition, the need for resource-aware scheduling is driven by the ever-growing use

of heterogeneous resources in the streaming infrastructure. The computing nodes could

range from energy-constrained mobile devices to powerful virtual machines, which pos-

sess different computing powers. Hence, it is of crucial importance to ensure that the

workload assignment does not exceed the node’s capacity and the resulting task com-

munications can be sustained by the network facilities connecting to it. Furthermore,

the task scheduling on specific hardware such as GPU and FPGA should be optimised

accordingly to unlock the potential of the heterogeneous hardware [135, 136].

2.9.4 Communication-aware Scheduling

From the perspective of implementation, inter-node communication triggers a cumber-

some process involving serialisation, message queueing and network transmission, while

intra-node communication can be reduced to passing an object’s pointer in memory or
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expedited by the use of a concurrent programming framework like Disruptor9. As inter-

node data transmission incurs much higher resource consumption and significant net-

work latency, it is preferable to place communicating task pairs on the same node as long

as it does not lead to resource contention. This also implies that communication-aware

scheduling is a special type of resource-aware scheduling with a focus on minimising

inter-node communication [5, 29, 46, 50, 52, 86, 173].

To be communication-aware, the scheduler needs to monitor the task communication

pattern as well as the resource usage at each computing node. The communication pat-

tern can be represented by a weighted directed graph of streaming tasks, in which the

weights associated with vertices denote the task resource requirement and the weights

on edges represent the instantaneous throughput of internal streams or the accumulated

volume of data transmission. On the other hand, the deployment infrastructure is also re-

garded as a weighted directed graph of computing nodes, where the weights on vertices

denote the node’s resource availability and the weights on edges represent the band-

width capacity of network connection. Therefore, communication-aware scheduling is to

find a proper mapping of these two graphs at runtime in order to minimise the number

of messages sent between machines while respecting the constraints on computation and

network resources.

2.9.5 Fault-Tolerant Scheduling

Due to the large size of deployment, faults in a stream processing system are not only con-

sidered as exceptions but rather normal events. This implies that fault-tolerance should

be made a first-class citizen in the scheduling phase to allow fast and efficient error-

handling. In a data streaming system, the consequences of faults can range from a single

tuple failure to cascading node crashes [79]. A tuple failure affects the timely delivery of

messages, which could be caused by the package discarding on overloaded networks. A

node crash, on the other hand, impairs the proper functioning of stream operators that

are allocated to this node. In general, we categorise various fault-tolerance techniques

into two groups: (1) state management, which allows stateful operators to survive from

possible node crashes, and (2) event tracking, which ensures that messages are delivered

9https://lmax-exchange.github.io/disruptor/

https://lmax-exchange.github.io/disruptor/
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with regard to the desired semantic. Schedulers that are fault-tolerance-aware can alle-

viate the overhead of state management, reduce the risk of event replay, and expedite

the recovery process by taking the possible failures into consideration during the place-

ment of streaming tasks [97,143,155,164,180]. For example, the frequency of state check-

pointing can be reasonably decreased by being availability-aware [20]: stateful tasks can

be scheduled on more reliable computing nodes while stateless tasks that are fail-fast and

easy to recover can be assigned to nodes with relatively lower availability. Also, placing

communicating tasks in the vicinity and making sure that the bandwidth of network link

is not over-utilised can help reduce the risk of message delivery errors (Chapter 5).

2.9.6 Energy-Efficient Scheduling

Reducing the total energy consumption is of great interests to the scheduling process [153,

156]. The total energy consumption is unnecessarily increased by the under-utilised com-

puting nodes, so it is preferable to perform workload consolidation periodically in order

to put the low-load nodes into shut-down or low-power mode (Chapter 4). Another

critical source of energy consumption is the continuous communication among different

streaming tasks. Depending on the distance of data transfer as well as the implementa-

tion of the underlying network infrastructure, the actual energy consumption of convey-

ing a tuple over a message channel can vary significantly. This implies that the scheduler

should also be aware of energy consumptions when deciding the stream routing, putting

a large volume of internal streams on wired and reliable network connections rather than

channels that are susceptible to interferences to reduce the possibility of retransmission.

2.10 Scheduling Methods

The previous section covers the various objectives of scheduling but provides little expla-

nation on how these targets are achieved. In this section, we categorise different schedul-

ing methods into four groups and explain the design and implementation of associated

schedulers in details.
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2.10.1 Heuristic-based Scheduling

The scale of the scheduling problem increases exponentially along with the growing ap-

plication and platform complexity. Since finding the optimal schedule in such a huge

solution space is an NP-hard problem, heuristic methods are preferred over exact algo-

rithms to trade off optimality, completeness, and accuracy for speed. Aniello et al. [5]

pioneered the dynamically scheduling of streaming tasks to improve application per-

formance at runtime, where a greedy heuristic is applied to minimise inter-node traffic

and avoid load imbalances among all the nodes. T-Storm [173] extended their work by

allowing hot-swapping of scheduling algorithms and fine-grained control over worker

node consolidation. The proposed traffic-aware scheduling algorithm has a greedy-based

heuristic in its kernel that keeps trying to assign streaming tasks to available nodes with

minimum incremental traffic load. Chatzistergiou et al. [29] also proposed an improved

heuristic that utilises the domain-specific group-wise communication pattern between

streaming tasks to minimise the communication cost, which guarantees to produce a

schedule in linear-time outperforming the existing quadratic-time solutions in practi-

cal cases. Similarly, Rizou et al. [132, 133] came up with a task placement heuristic to

minimise the network load which is calculated as the bandwidth-delay product of data

streams between operators. Sun et al. [156] proposed an energy-efficient heuristic that

differentiates the scheduling of critical and non-critical operators to minimise the re-

sponse time and system fluctuations. R-Storm modelled the scheduling problem as a

multi-dimensional Knapsack problem, for which they proposed a heuristic algorithm to

put communicating tasks in proximity while ensuring no resource constraints on CPU

and memory are violated [124]. The list of heuristic-based schedulers goes on with works

done by Cammert et al. [15], Sun et al. [155], Heinze et al. [67, 68] and Jiang et al. [86].

It is also worth mentioning that heuristic can play a complementary role alongside

the exact algorithms for better execution efficiency. The SODA scheduler [170] for Sys-

tem S, a proprietary DSMS developed at IBM, uses a local search heuristic as a backup

solution to the main approach of mixed-integer optimisation. The heuristic method steps

in when the CPLEX-based solution fails or becomes too slow to converge. In addition,

meta-heuristic has been employed in the scheduling process to improve method adap-

tivity. Smirnov et al. [150] investigated the use of genetic algorithms to yield throughput
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improvement as compared to the greedy heuristics, where the task placement is adapted

as an evolutionary process utilising the performance statistics gathered at runtime.

2.10.2 Graph-Partitioning based Scheduling

As we have discussed in Section 2.9.4, the scheduling process can be regarded as a graph

partitioning problem where the communication graph is divided into smaller compo-

nents hosted on different computing nodes. The quality of partitioning is often measured

by the total amount of inter-partition communications, the degree of load balance across

the platform, and the execution time required to work out a partition plan. By assuming

the streaming tasks cannot move after their initial placement, Xing et al. [172] employed a

static partitioning method to select an operator placement plan that is resilient enough to

withstand different input rate combinations. For dynamic scheduling, Fischer et al. [50]

collected the communication behaviour of applications, built the communication graph

at runtime, and then set a partitioning objective function in the METIS software to re-

duce network loads and balance the CPU usage and bandwidth consumption over the

platform. Similarly, Khandekar et al. [91] proposed a minimum-ratio cut subroutine to

achieve hierarchical partitioning of the operator graph in System S. Eskandari et al. [46]

also discussed hierarchical scheduling of streaming tasks with METIS, proposing a two-

phase approach that improves on the traditional k-way partitioning method by allow-

ing to dynamically compute the number of computing nodes required in the platform.

Ghaderi et al. [60] employed a randomised scheduling algorithm with a theoretically

provable guarantee on low-complexity, which enables a smooth trade-off between the

cost of approaching the optimal partitioning and the queueing performance. In Li et al.’s

work [99], the streaming tasks are firstly partitioned based on the dependency graph of

communication, while determining the actual task assignment further involves joint op-

timisation on the topology structure, inter-node traffic and worker node load-balancing.

The theoretical aspect of graph partitioning in the context of streaming task schedul-

ing has been investigated by Eidenbenz et al. [45]. They proved that optimal partitioning

is an NP-hard problem and proposed an approximation algorithm that deterministically

achieves a constant-factor approximation under a few consumptions on resource provi-

sioning and processing cost.
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2.10.3 Constraint-Satisfaction based Scheduling

Constraint satisfaction problems (CSPs) study how to optimise the objective function

while ensuring that the result satisfies a number of constraints or limitations. Since

scheduling streaming tasks on a collection of computing nodes is subject to various re-

source and SLA constraints, it is natural to consider scheduling as one of the constraint

satisfaction problems requiring efficient search methods to be solved in real-time. When

comparing to the heuristic-based scheduling discussed in Section 2.10.1, constraint sat-

isfaction based scheduling emphasises more on the result optimality and is willing to

traverse through a large area of solution space to maximise the objective function.

Cardellini et al. [19, 22] formulated an optimal scheduling problem considering the

application and resource heterogeneity. The objective function is to minimise migration

costs, and the constraints are modelled as the satisfaction of the application SLA. The

problem is then solved by CPLEX, a widely used integer programming toolkit. Jiang

et al. [87] also formulated a mixed integer program on scheduling to achieve max-min

fairness in resource allocation for multiple streaming applications, where the non-convex

constraints are converted to several linear constraints using linearisation and reformula-

tion techniques. Schneider et al. [142] proposed a scheduling algorithm for the ordered

streaming runtime to minimise synchronisation, global data and access locks, which al-

lows any thread to execute any operator while maintaining the constraints of tuple order

in operator communication. Load-balancing is added as an implicit constraint by Zhang

et al. [179] to ensure more task assignment will be assigned to the node with the low-

est CPU and memory consumptions. For a similar purpose, Liu et al. [106] proposed a

runtime-adaptive scheduler that assigns tasks loads in proportion to the processing ca-

pacity of nodes. By dynamically migrating tasks assignment from slow nodes to fast

nodes, the latency difference between the fastest and slowest nodes is mitigated. Bud-

dhika et al. [14] formulated a resource-constrained problem on scheduling to reduce

interference that adversely impacts the performance of streaming computations. They

proposed a proactive scheduling algorithm that accounts for the changes in the stream

packet arrivals and cluster resource utilisations, which utilises a new data structure of

prediction ring to track the amount of workload expected in a given time window.

Constraint satisfaction problems can also be solved by exhausted search. Li et al. [101]
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trained a model with Support Vector Regression (SVR) on a collection of monitored fea-

tures to predict metrics like the average latency of tuple processing and the average size

of tuple transfer. The resulting scheduler algorithm is essentially an exhaust search al-

gorithm that traverses the whole solution space to find the optimal schedule with the

minimised end-to-end latency.

2.10.4 Decentralised Scheduling

A decentralised scheduler is not a tangible entity that collects global information from

the deployment platform and makes holistic scheduling decisions for the whole stream-

ing system. Instead, it offloads the scheduling logic to the individual streaming operator

or computing node, regarding each as an independent agent that collaborates with each

other to converge to a feasible scheduling plan. The first prominent benefit of decen-

tralised scheduling is robustness, which eliminates the single point of failure and allows

graceful degradation in the presence of computing node crashes — the nodes that are

not actively cooperating will be excluded from the scheduling resource pool. The second

merit of this design is that it can base the scheduling decision on the accurate predic-

tion of communication latency between different hosts, which is of crucial importance

for dealing with streaming systems that are geographically-distributed on Edge and Fog

cloud.

Specifically, the Vivaldi algorithm [34] — a decentralised approach that has linear

complexity with respect to the number of network locations — is often employed to

calculate accurate coordinates of distributed nodes in a latency network. Pietzuch et

al. [125] pioneered the use of the Vivaldi algorithm to make continuous optimisation in

stream processing scheduling without the global knowledge of the system. In their work,

a stream-based overlay network is proposed to map the upper streaming system and

the underlying physical network, so that the task placement is determined by searching

in a multi-dimensional cost space in a decentralised manner. Cardellini et al. [18] pre-

sented a distributed and self-adaptive QoS-aware scheduler based on the Vivaldi algo-

rithm, which can deal with infrastructure with non-negligible latencies. Rizou et al. [134]

employed the Vivaldi algorithm to form a continuous latency space, and the proposed

scheduler ensures that the QoS guarantee on latency is fulfilled while the network load
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incurred is reduced.

Repantis et al. [131], on the other hand, provided a set of fully distributed algorithms

to discover and evaluate the reusability of data streams and processing components, so

that sharing-aware component composition is allowed while remaining consistent with

QoS requirements. Zhou et al. [183] proposed a decentralised and asynchronous schedul-

ing algorithm that improves load balancing by dynamically migrating operators from

overloaded nodes to lightly loaded ones.

Unless otherwise stated, the schedulers surveyed in the other subsections are cen-

tralised designed, which are often collocated on the master node of the deployment plat-

form for the convenience of metric collection and scheduling coordination.

At the end of our review, we present a tabular comparison of key works regarding

resource management and scheduling in distributed streaming systems.
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Table 2.1: A Review and comparison of key works regarding resource management and scheduling in distributed streaming systems

Work Resource Type Prediction Method Cost Modelling
Resource

Adaptation
Parallelism Calculation

Parallelism

Adjustment
Scheduling Objective

Scheduling

Methods

De Matteis et al. [39] CPU Time series analysis Minimal cost Proactive — MPC — —

De Matteis et al. [38] CPU Time series analysis Minimal cost Proactive — MPC — —

HoseinyFarahabady et al. [77] CPU, Mem Time series analysis Contention-aware Proactive — MPC Resource-aware Control theory

Imai et al. [81] VM Time series analysis Minimal cost Proactive Platform-oriented — Performance-oriented Heuristic

Cardellini et al. [23] VM — Reliability-aware Reactive — Queuing theory Communication-aware Heuristic

Xu et al. [174] VM — Minimal cost Reactive — Control theory Performance-oriented Heuristic

Khoshkbarforoushha et al. [93] CPU Time series analysis Distribution-based — — — — —

Wang et al. [165] CPU, Mem Ensemble regression Minimal cost Proactive — Rule-based — —

Thamsen et al. [157] CPU, Mem Time series analysis Contention-aware Proactive — Rule-based — —

De Matteis et al. [37] CPU Time series analysis Minimal cost Proactive — MPC — —

Cardellini et al. [20] CPU, Mem — Reliability-aware Reactive — Queuing theory Communication-aware Heuristic

Kombi et al. [95] CPU, Mem Time series analysis Minimal cost Proactive — Rule-based Resource-aware Heuristic

Hidalgo et al. [72] CPU, Mem Markov chain Minimal cost Proactive — MPC Fairness-aware Round-robin

Shieh et al. [148] CPU — Minimal cost Reactive — Rule-based Fairness-aware Round-robin

HoseinyFarahabady et al. [76] CPU, Mem ARIMA Contention-aware Proactive — MPC Performance-oriented MPC

Mencagli et al. [116] VM — Minimal cost Reactive — Machine learning — —

Smirnov et al. [150] VM — Minimal cost Reactive — — Resource-aware Heuristics

Jiang et al. [87] VM — Load-balancing Reactive — Rule-based Fairness-aware CSP-based

Sun et al. [155] CPU, Mem — Reliability-aware Reactive Performance-oriented Control theory Fault-tolerant Heuristics

Shukla et al. [149] VM Queueing theory Minimal Cost Proactive — Control theory Resource-aware Heuristics

Cardellini et al. [22] CPU, Mem — Reliability-aware Reactive — Queuing theory Communication-aware Heuristic

Buddhika et al. [14] CPU, Mem, Bandwidth Time series analysis Contention-aware Proactive — — Performance-oriented CSP-based

Li et al. [99] CPU, Mem, — Minimal cost Reactive — — Fairness-aware Graph-based

Schneider et al. [142] CPU — Contention-aware Reactive — Rule-based Resource-aware CSP-based

Liu et al. [106] CPU, — Load-balancing Reactive — Rule-based Fairness-aware CSP-based

Ghaderi et al. [60] VM — Minimal cost Reactive — — Resource-aware Graph-based

Zhang et al. [179] CPU, Mem — Load-balancing Reactive — — Communication-aware CSP-based

Li et al. [101] VM Support vector regression Minimal cost Proactive — — Performance-oriented CSP-based

Eskandari et al. [46] VM — Load-balancing Reactive — — Performance-oriented Graph-based

Sun et al. [153] CPU, Mem Time series analysis Reliability-aware Proactive Performance-oriented — Fault-tolerant Heuristics

Eidenbenz et al. [45] VM — Cost minimal Reactive — — Communication-aware Graph-based

Lohrmann et al. [108] CPU Queueing theory Load-balancing Reactive — Queueing theory Fairness-aware Round-robin

Heinze et al. [70] CPU Queueing theory Minimal cost Reactive — Queueing theory — —

Lin et al. [103] BW — Minimal cost Reactive — Rule-based — —

Continued on next page
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Table 2.1 – continued from previous page

Work Resource Type Prediction Method Cost Modelling
Resource

Adaptation
Parallelism Calculation

Parallelism

Adjustment
Scheduling Objective

Scheduling

Methods

Veen et al. [162] VM — Minimal cost Reactive — Rule-based Fairness-aware Round-robin

Heinze et al. [69] VM — Minimal cost Reactive — Rule-based Resource-aware Heuristics

Madsen et al. [110] VM — Reliability-aware Reactive — Rule-based Fault-tolerant Heuristics

Setty et al. [144] VM — Minimal cost Reactive — — Fairness-aware Heuristics
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2.11 Summary

It is of great interest to both academia and industry investigating resource management

and scheduling of distributed streaming systems to satisfy the Quality of Service (QoS)

requirements with minimal resource cost. This topic has received extensive attention in

the literature — many have paved the way for SLA-aware, self-adaptive deployment by

proposing enabling techniques such as elastic resource scaling, dynamic task scheduling,

and runtime operator parallelisation.

In this chapter, we summarise the achievements made on this front by presenting a

comprehensive taxonomy and survey regarding the resource management and schedul-

ing in distributed stream processing systems. Our narrative starts with the definition

of the problem scope, where a sketch of the hierarchical structure of a stream process-

ing system is presented to enumerate the research topics of interest. We then identified

the issues and challenges associated with each research topic and developed a taxonomy

to classify the specific work properties and method features. Following the structure of

the taxonomy, we discussed existing work in details and compared the strengths and

weaknesses of different methods. In the following four chapters, we present our research

contributions in this area.





Chapter 3

Stepwise Auto-Profiling for
Performance Optimisation of Stream

Processing

For parallel execution on a particular platform, the streaming operators need to be appropriately

replicated into multiple instances that split and process the workload simultaneously. In this chapter,

we propose a stepwise profiling approach to optimise application performance on a given execution

platform. It profiles the application execution automatically, scales up distributed computations over

streams based on application features and processing power of provisioned resources, and builds the

relationship between provisioned resources and application performance metrics to evaluate the effi-

ciency of the resulting configuration.

3.1 Introduction

CURRENTLY, most state-of-the-art Data Stream Management System (DSMS) such

as Storm1 and Samza2 are data-driven and operator-based. In operator-based

DSMSs, continuous operations on data are realised as logical operators standing on data

streams, and the DSMS is responsible for the partition and distribution of resources

among operators to achieve satisfactory performance [5].

This chapter is derived from:
• Xunyun Liu, Amir Vahid Dastjerdi, Rodrigo N. Calheiros, Chenhao Qu and Rajkumar Buyya, “A

Stepwise Auto-Profiling Method for Performance Optimization of Streaming Applications,” ACM
Transactions on Autonomous and Adaptive Systems (TAAS), Volume 12, Issue 4, Pages: 1-33, ACM Press,
2017.

1https://storm.apache.org/
2http://samza.apache.org
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Figure 3.1: The logical view of a streaming application on an operator-based DSMS

For a streaming application, resource partitioning largely depends on how operators

are built and organised. To better explain this process, Figure 3.1 illustrates the logical

view of a typical streaming application. The left part of Figure 3.1 shows that all the

queries3 have been translated into a pipeline of operators that perform transformations on

the data. The relative size of operators represents the relative time complexity, with edges

indicating data flows within the application. These operators and edges constitute the

application topology, which can be modelled as a directed acyclic graph (DAG) that wires

the operations together and denotes the sequence by which a single datum traverses the

system.

When it comes to the implementation, the topology of a streaming application is fur-

ther subdivided. To enable parallel processing, each operator may have several tasks

scattering out over the platform. Each task is an operator instance that ingests a portion

of operator input and executes the whole operator logic simultaneously. As the right side

of Figure 3.1 shows, tasks of a downstream operator in the topology take the results of its

precedents as input and continuously feed the successors with its output stream. Clearly,

it is important for an operator to secure a sufficient number of parallel tasks, so that it

could timely process its inbound load and avoid being the bottleneck that throttles the

overall throughput of the system.

However, the decision of the number of instances in each operator depends on the

specific application deployment process, which involves provisioning resources from the

underlying hardware infrastructure and determining how the logical representation is

3By query, we mean formal statements of information needs that apply on continuous streams and that
demand some computational capacity to be processed.
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Figure 3.2: The physical view of an example streaming application on an operator-based
DSMS. After being wrapped up by threads and processes, the tasks of operators are fi-
nally deployed on several physical or virtual machines.

mapped to a physical point of view for real execution. The latter is known as a critical

transition from logic notation to real implementation. Figure 3.2 shows an example of this

transition process. Tasks are wrapped up by threads, which are usually considered as the

minimum units of execution in terms of resource scheduling, then threads affiliated to

several processes are deployed on the particular execution environment. It is a non-trivial

task to make optimal choices in such transition from logical to physical view because:

1. Different operators can have diverse requirements on different types of resources

(CPU, memory, network bandwidth, etc.).

2. Changing the number of tasks for one operator may adversely affect the perfor-

mance of other operators that are collocated in the same machine, causing unex-

pected bottleneck shift. Such kind of resource contention is hard to formally model.

3. The transition is largely platform-dependent. Thus, without field testing, it is diffi-

cult to guarantee the effectiveness and efficiency of the transition decision.

Due to the difficulties stated above, the most common approach used to determine

operator parallelism is to gradually measure the execution capacity of each operator and

adjust the number of tasks according to the expertise of the developer. Obviously, this

method involves a huge number of man-hours and may result in a suboptimal config-

uration. As existing research mainly focuses on the other side of the problem, which is

scheduling threads on processes or arranging processes on machines [5,11,15,117], the re-
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search question of automatically finding a proper and integral solution to this transition

is largely overlooked.

Motivated by the goals of automation and enhanced developers’ productivity, we

design and implement a stepwise profiling framework that selectively evaluates several

possible configurations, monitors feedbacks, and provides an entire solution to the transi-

tion. The objective of the proposed profiler is to determine the possible best performance4

that the application can achieve in a particular execution environment.

To the best of our knowledge, this is the first work using profiling to holistically probe

the best configuration for an arbitrary streaming application, which is capable of strik-

ing a balance between the data source and data ingestion subsystems for it to achieve

sustainable high performance. Specifically, our main contributions are threefold:

• Our profiling system automatically scales up the streaming application on a given

platform. Such processing parallelisation is achieved by profiling of both applica-

tion features and processing power of provisioned resources. Therefore, developers

are no longer required to provide parallel settings beforehand.

• The profiling strategy is designed as a feed-back control loop that allows for self-

adaptivity, scalability, and general applicability to a wide range of streaming appli-

cations, which is demonstrated in our experiments.

• Based on the result of profiling, the relationship between resource provisioning and

performance metrics of application is built, enabling further evaluation of the effi-

ciencies of candidate topologies that are implemented for the same streaming ap-

plication.

3.2 Motivation

The development cycle of a streaming application on an operator-based DSMS typically

consists of two phases. The first phase consists in the logic development, where all the

4Though the meaning of performance may vary under various definitions of QoS (Quality of Service), we
refer to it as the ability to steadily handle an input stream of throughput T within an acceptable processing
latency L. In this sense, higher T means better performance as long as the latency constraint is met.
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continuous queries or other data operations are implemented as logical operators work-

ing on data streams. The second phase consists in the application deployment, which

mainly comprises a transition from logical to physical view. In this phase, the paral-

lelism setting for each operator is determined and the decision on how tasks of operators

are wrapped up and mapped to underlying resources is made, which are collectively re-

ferred to as a parallel configuration. Our primary motivation is to automate the transition

and ensure that, in the resulting configuration, resources are properly partitioned among

operators to enable better performance.

As mentioned above, optimisation of the application deployment is a non-trivial pro-

cess. Here are three fundamental prerequisites that a streaming application should meet

before it comes into service.

Application scaling: Scaling up5 is a critical process for a streaming application to

use distributed resources. As scaling is both resource specific and topology-dependent,

there is no universal model able to provide a general solution. Therefore, the transi-

tion in the second phase has to be designed and performed by developers according to

their own experiences, which causes additional development burden and may not yield

efficient resource utilisation. It becomes even more problematic when the underlying

resource structure is configurable. State-of-the-art DSMSs are integrating elasticity into

their implementation to enable resource consumptions customisation with regard to fluc-

tuating workloads. They support (1) dynamic resizing, e.g. DSMS can be scaled out by

adding new machines, and (2) adjustable operator parallelisation, which allows stateful

and stateless operators to choose their number of tasks in order to suit different sizes

of execution environment. However, applications running on an elastic DSMS do not

have the ability to adapt their configuration to infrastructure changes, meaning that they

are unable to automatically take advantage of newly added compute resources when the

DSMS is scaled out, and may face severe resource contention due to excessive paralleli-

sation when the DSMS is scaled in. Our work fills in this gap by automating the scaling

up process once the underlying system is updated, which complements efforts towards

making DSMS scalable and elastic [24, 58, 140, 141].

Besides, it is also desirable to quantitatively evaluate how efficient the transition is

5Scaling up refers to further parallelising the execution of logical operators to improve the resource utilisa-
tion of a streaming application, whereas scaling out/in stands for adding or removing machines.
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and automatically probe whether there is still room for improvements. However, due

to the labour-intensive task of manual deployment, it is a common practice for devel-

opers to stop scaling up the application when a transition that meets the requirement of

performance is found. Nevertheless, it may result in suboptimal resource utilisation.

DAGs comparison: The topology of a streaming application is organised as a di-

rected acyclic graph (DAG) of logical operators. However, the conversion of queries and

operations on data streams into operators, which is performed in the first phase, can be

conducted in multiple ways, resulting in different topologies that are logically equiva-

lent. It means that, although different types of DAGs are formed by operators, they take

the same input stream and all produce correct answers. It is difficult but still necessary to

determine which one is better with respect to their performances in a particular platform.

Resource requirement analysis: It is essential to know how many resources are

needed to meet time constraints to handle the inbound stream. The answer depends

on the volume of the input stream and the application resource needs per input data el-

ement. In the context of stream processing, the input stream may vary significantly in

volume and speed and so does the amount of resource needed per element. Usually,

application developers do not have control over the input data [80], but tracking the lat-

ter could help them to guarantee real-time response with minimal resource consumption

when the workload varies. Based on this, a rule-based auto-scaling approach could be

proposed.

In this chapter, we choose application profiling as an empirical and adaptive approach

to fulfil the above targets. Compared to analytical models based on abstract modelling,

profiling excels as it provides more reliable results via real experiments. Furthermore, by

taking advantage of profiling, our method is generic enough to support different execu-

tion environments, including variations in characteristics of underlying resources, load

balancing of DSMS, and the type of streaming application running on it. Besides, a re-

calibration mechanism has been introduced to ensure that the decision on parallel con-

figuration is up-to-date. Therefore, possible changes to application and DSMS, as well as

data-dependent variation affecting the execution time of data elements, will not compro-

mise the accuracy of profiled knowledge.
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Figure 3.3: Flowchart of stepwise profiling and a working demonstration on a word count
application.

3.3 Stepwise Profiling Overview

The profiling process works by selectively evaluating several possible configurations and

finally choosing the one that shows the most promising performance potential, i.e. the

one capable of processing more data streams per unit time while meeting the latency

requirement.

Figure 3.3 describes the flowchart of our profiling approach and depicts how it applies

to a word count application on Apache Storm. The topology of word count consists

of four operators: the first operator, Kestrel Spout, pulls data from a queue server and

generates a continuous stream of tweets as its output. The second operator, JSON Parser,

parses the stream and extracts the main message body. Next, the Sentence Splitter divides

the main body of text into a collection of separate words, and finally the Word Counter is

responsible for the final occurrence counting.

Regarding the profiling procedure, Application Feature Profiling (the first step) sim-

ulates the situation in which each task has adequate resources to conduct its data opera-

tion. It feeds the application with only a small size of input stream and aims to identify

inherent application features that are not affected by the change of parallel configura-

tions. On completion of this process, it determines the ratios of the numbers of tasks for

the last three operators, which in this case is 2:2:3.

Platform Capability Profiling (the second step) stresses the platform with a high vol-

ume of input data to push it to its capability limit. At the end of this step, the actual
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number of tasks for each operator is determined.

Operator Capacity Profiling (the last step) makes necessary adjustment by monitoring

the capacity of each operator. As our profiling model and measurement in the previous

processes may have introduced some errors, this is the place where possible amendments

are made.

The recalibration is essentially a repetition of the aforementioned profiling steps, trig-

gered by performance degradation, detected via monitoring, when the resulted configu-

ration is no longer suitable for the current system status.

3.4 Stepwise Profiling Design

Figure 3.4 illustrates the architecture of our stepwise profiler (top half of the figure) and

how it interacts with the operator-based DSMS in the profiling environment (bottom half

of the figure).

The profiling environment consists of a profiling message generator, a message queue,

and an operator-based DSMS. All the profiling input originates from the message gener-

ator, where real data collected from the production environment is sent to the message

queue at a controllable speed. In the meantime, the message queue works as a data buffer
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to store possible backlogs when the DSMS cannot cope with the speed of data generation.

The operator-based DSMS contains the primitive streaming application logic as well as

supporting hardware resources.

Each single round of profiling is a feedback control process that corresponds to a

MAPE (Monitoring, Analysis, Planning, Execution) loop, the approach of which is widely

adopted in the field of autonomic computing to enable self-adaptivity [90].

The MAPE loop starts with the metric reporter running alongside the DSMS, which

constantly collects current performance metrics from the evaluated streaming applica-

tion. This information is then acquired by the monitor module and being organised as

a set of window-based performance histories. The analysis phase is conducted by the

three control units of our stepwise profiler as shown in the grey box of Figure 3.4, which

are referred to as Application Feature Profiler, Platform Capability Profiler and Opera-

tor Capacity Profiler. These modules check the collected performance metrics according

to their designated profiling strategies and make decisions on whether another round

of profiling is needed. The MAPE loop proceeds to the planning phase if the stopping

condition is not met. In this phase, the three control units make necessary amendments

on operator parallelism and rely on the configuration generator to compose a viable de-

ployment plan, which includes determining the speed of data generation for profiling,

the number of tasks for each operator, and how these tasks are deployed on DSMS. In the

last execution phase, the configuration modifier is responsible for applying changes and

facilitating automation of application deployment.

The recalibration module also works in the analysis phase to check if the previously

profiled configuration still suits the current system state. If not, it will plan for the next

round profiling without using any prior knowledge.

3.4.1 Application Feature Profiling

As illustrated in Figure 3.5, the logical view of a streaming application is divided into

two parts: data source, the operator that forms the initial stream by continuously pulling

data from external sources, and data sinks, where inbound data is buffered into a waiting

queue before being processed by one of the parallel tasks.

The application feature profiling aims to identify two invariant properties that an
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Figure 3.5: An example of application feature profiling in operation

operator should maintain regardless of its parallel degree through the analysis of a data

stream of a relatively small size. The first property is the minimal processing latency

MinLp. As shown in Figure 3.5, the processing latency Lp is the time interval that a single

datum would spend in a task for being processed, while MinLp, illustrated by the size

of operator on the right side of Figure 3.5, denotes the minimum value that Lp can reach

in this particular platform. The second property is the Relative Stream Size (RSS), which

indicates the relative data transmission intensity for the operator. The word “relative”

means that the amount of data transmitted between operators is normalised with regard

to the total sum to show the proportion among operators. As shown in the right of Figure

3.5, the width of the lines between the operators represents the size of data flow relative

to other visible streams.

These two properties remain constant regardless of the parallel configuration changes

for two reasons. Firstly, for a given operator, MinLp only depends on its processing logic

and how long it takes for this logic to be executed in the platform. To measure MinLp it

is important to assert that the profiling stream load is sufficiently small, so that each task

of this operator obtains enough resources as it requires to process the workload. On the

other hand, changes in the parallelism for an operator, such as adding new tasks for it,

influence the waiting latency Lw rather than the processing latency Lp, because a single

datum in the stream cannot be executed by multiple tasks concurrently. However, it is

still possible that Lp increases due to improper configurations, e.g. congested tasks may

cause severe resource contention that causes high processing latency.
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Secondly, the relative size of the data stream is a reflection of the operator type, which

also makes it parallel-configuration irrelevant. More specifically, a given operator could

be categorised into one of three types based on the correlation between its input stream

and output stream, as presented in Table 3.1. Si and So denote the relative size of in-

put/output stream, respectively.

Table 3.1: Categorisation of operators based on its relative input/output stream size (se-
lectivity)

Type of Correlation Expression Example Operators

Proportional So = Ccoe f ∗ Si Join, Function
Workload-Dependent So = f (workload) ∗ Si Split, Filter

Logic-Dependent So = g(logic) Top N, Aggregation

Proportional operators continuously work on one or more input streams and emit re-

sults based on each piece of input, which means that the size of the output stream is linear

to the size of input stream, with Ccoe f as a constant that represents the linear coefficient.

Examples for this category include stream joins and function operators. In the case of

word count, the JSON Parser belongs to this category because its output size depends

only on the particular input, and changes in the number of tasks do not affect the output

size.

In the case of workload-dependent operators, the relative size of the output stream is not

only decided by the size of input stream, but also it is influenced by the inherent property

of the workload. For example, different tweets may have a different number of countable

words, making the size of output stream fluctuate even when the size of the input stream

is stable. But in the case of Figure 3.5, it is observed that, on average, the size of output

stream for Sentence Splitter becomes 12 times larger than the input streams, which means

that the application profiling helps in identifying what the value of f (workload) would

be when subject to a production input. Obviously, this correlation is also not affected by

changes in the number of tasks available for the Sentence Splitter.

There are also logic-dependent operators whose output streams solely depend on the

processing logic. Some common examples include the Top N operator, which compares

and emits the most popular items based on their occurrences, and stream aggregation

operator, which aggregates the input stream or regularly performs batch operations. The

Word Counter operator in Figure 3.5 is used for aggregation and thus is an example of a
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logic-dependent operator.

Whenever an operator becomes a bottleneck, the DSMS has to throttle the upstream

and downstream operators to maintain the system stability. This leads to the observation

that the streaming application can be well-approximated with an intuitive queueing net-

work of data flow, which runs on a computational system of unknown capability where

contention affects all tasks in the same way. The latter assumption may not always hold

true during the runtime, but it is reasonable for us to depict the relative parallelism re-

quirement for each operator.

In light of this, more resources (in this context, more tasks) should be allocated to

operators with relative larger input data streams and higher processing latency to prevent

bottlenecks in the first place. After profiling the minimal processing latency and relative

stream size for each operator, Algorithm 3.1 is proposed to provide an initial estimation

on the number of tasks that an operator should incorporate considering its complexity

and the amount of stream load it processes.

In summary, Algorithm 3.1 determines the parallelism ratio of each operator based on

its calculated task load. The task load TaskLoadi of operator i is formulated as the product

of its minimal processing latency MinLpi multiplied by the sum of its input stream sizes

∑
k

RSSk,i (index k iterates over all the input streams of operator i). After the algorithm

finishes traversing all the operators, each element in the resulted array
−→
R is updated with

a parallelism ratio relative to the weight of its task load (line 23). Note that in both line

16 and 23, the index s of max
∀s

TaskLoads iterates through all the operators in the topology.

However, there are two exceptions to this general rule. Some operators are logically

non-parallel, which means that they can have only one task and thus are more likely to

restrict the scalability of the whole system. Our algorithm takes these operators into

consideration by fixing their parallelism degrees to 1 and quantitatively calculating the

restriction they pose to the total size of stream flows (TotalFlow). TotalFlow intuitively

estimates the maximum sum of throughput generated by each operator. Based on this,

Algorithm 3.1 decides the parallelism ratio or degree for other parallel operators to be

able to handle the data stream of its share.

Secondly, some operators are non-scalable as they are dominated by logic-dependent

operators, which means that there exists a logic-dependent operator in every path that
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Algorithm 3.1: Calculate the relative ratio or number of tasks for each operator
Input: MinLpi : minimum processing latency of operator i
Input: RSSi,j: relative stream size between consecutive operators i and j
Output:

−→
R : parallelism ratio array of parallel operators, in which Ri corresponds
to operator i

Output:
−→
P : parallelism degree array of non-parallel and non-scalable operators,

in which Pj corresponds to operator j
1 Initialise each element of

−→
R to 1;

2 TotalFlow← ∞;
3 Identify all the operators that are dominated by logic-dependent operator, label

them as Non-Scalable;
4 foreach Operator i do
5 if i is Non-Parallel then
6 Pi ← 1 ;
7 TotalFlow← min(TotalFlow, 1

MinLpi
∗∑

k
RSSk,i

);

8 else
/* Calculate TaskLoad for parallel operator i */

9 TaskLoadi ← MinLpi ∗∑
k

RSSk,i;

10 foreach Parallel Operator i do
11 if i is Non-Scalable then
12 if TotalFlow = ∞ then
13 Pi ← d TaskLoadi

min
∀s

TaskLoads
e;

14 else
15 Pi ← dTaskLoadi ∗ TotalFlowe;

16 else
17 Ri ← TaskLoadi

max
∀s

TaskLoads
;

18 return
−→
R ,
−→
P ;

connects this operator to the data source. Recalling that the size of output stream for a

logic-operator is irrelevant to the input size, we can reasonably infer, in this case, that the

size of input stream would be constant even if the system throughput increases. There-

fore, instead of assigning parallelism ratios to them in
−→
R , Algorithm 3.1 calculates the

initial parallelism degrees for these operators in
−→
P based on TotalFlow and task load,

indicating that their parallelism degrees are not to be proportionally scaled in the next

step.

The output
−→
R of Algorithm 3.1 only provides an array of decimals. However, the
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next step requires an array of integers, as this array represents the ratio of the number

of tasks. In the decimal to integer conversion, precision is not the primary concern since

the results may be subject to measurement errors introduced by the profiling process.

Therefore, the chosen value in the resulted integer array is reduced if possible, in such

a way that it still roughly depicts the basic proportions. For this purpose, a parameter

of unit task load called slice is introduced to convert all the decimals in
−→
R into integers

according to Equation 3.1.

Ri ← d
Ri

slice
e slice ∈ (0, 1] (3.1)

The value of slice should be tailored to the specific streaming application. Our rule of

thumb is to try small values (0.1, 0.2, etc.) and select the one that minimises the profiling

effort in the next step. Section 3.6.4 will shed more light on the parameter selection with

real experiments.

It is also worth mentioning that in line 3 we omit the process of identifying dominance

relationship for the sake of simplicity. Actually, there are some breadth-first searches

starting from each logic-dependent operator to examine which operators are affected

logic-dependent successors. In summary, the algorithm sequentially evaluates the opera-

tor located at the head of the queue with regard to the status of its predecessors (each op-

erator maintains a HashSet of all its status-undetermined predecessors for quick location

and removal). If an operator has all its predecessors marked as either logic-dependent

or already dominated, i.e. its HashSet of status-undetermined predecessors is emptied

while this operator dequeues, it then should be identified as dominated and its successors

are added to the tail of queue for further evaluation.

Algorithm 3.1 also has a computational complexity ofO(n) with the worst case being

O(n ∗ (d−avg + 2)), in which n is the number of operators and d−avg is the average vertex

in-degree in the topology graph. The most time-consuming step lies in line 3 as each op-

erator in the topology may be repeatedly visited, at most, its in-degree times to determine

whether it has been dominated by logic-dependent operators or not. Besides line 3, the

algorithm body traverses the topology graph only twice and all the required input can be

collected with simply one round of profiling.
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Figure 3.6: An example of platform capability profiling in operation

3.4.2 Platform Capability Profiling

Unlike the previous step which requires only a small data stream to probe application

features, the platform capability profiling requires the message generator to produce a

continuous data stream that is large enough to stress the streaming application. Given

sufficient profiling data, the configuration of the application is changed through a trial-

and-error process in order to determine the real capability of DSMS as well as its under-

lying infrastructure. The resulting configuration reveals a reasonable choice of resource

partition in this platform where it is capable of handling a relatively large stream without

violating the latency constraint6.

As shown in Figure 3.6, each configuration trial is first evaluated in terms of system

performance variation. Specifically, changes in throughput and latency are collected and

reported to the monitor module, which can be used to identify if the new configuration

improves the resource utilisation. Configuration changes that have a negative impact on

the system performance are discarded in this phase.

Based on the result of performance evaluation, the profiler applies changes to the

configuration according to Algorithm 3.2 and generates a new one for the next round

of profiling. The new configuration not only targets throughput improvement, but also

aims at maintaining the balance between data source and data sinks. If it failed to do

6Different applications may have different preferences with regard to their desirable performance. Though
the final decision is left up to the application developer, as a default the profiler favours better throughput
on the condition that the system still meets the pre-defined latency requirement.
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so, an overly powerful data source may cause severe backlogs in data sinks and lead to

a higher system latency, while an inefficient data source starves the following operators

and encumbers the overall throughput. As a result, tasks are alternatively added to the

data source or to data sinks to strengthen their processing abilities, and the search for

the desired configuration leads the application to its performance limit where neither

enhancing data source nor data sinks improves it.

Figure 3.7 illustrates the aforementioned scaling process with an example. At each

edge of the figure, the solid short lines with labels indicate different configurations for

data source and data sinks, while the dashed lines in the middle represent the overall

system performance resulting from the configurations on each side. Different configura-

tions lead to various processing potentials in terms of throughput and latency, which are

shown in the right corner. Thus, short lines are all ranked by throughput with different

heights in the figure, and the curves connecting them with numbers denote the poten-

tial throughput variances that resulted from different configuration changes by applying

Algorithm 3.2. At first, the system is configured with Source0 for data source and Sink0

for data sinks, where Source0 indicates that the data source is able to pull a data stream

at a throughput of X0, while Sink0 with (Xsink0, Ycon) means that data sinks under this

configuration are capable of dealing with a stream of size Xsink0 within the user-specified

latency constraint Ycon.
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Given a particular platform, there should be a configuration that delivers the best

performance in this profiling environment, indicating that the data source and data sinks

have been properly coordinated. As denoted by the top two short lines in Figure 3.7,

the data source Sourcecap and data sink Sinkcap represent such ideal configuration that

the profiler aims to achieve at the end of its operation. Initially, the data source Source0

is less powerful than the data sink Sink0. Thus, the system performance P0 is confined

at (X0, Y0), where X0 is decided by Source0 and Y0 < Ycon because the data sinks are

underutilised. After detecting the latency margin, the profiler first scales up the data

source to Source1, causing bottleneck shifts to data sinks Sink0. This time the performance

P1 is limited at (Xsink0, Y1) where Y1 > Ycon since that some backlogs have already been

accumulated. Afterwards, the profiler enhances the ability of data sinks from Sink0 to

Sink1, improving the performance from P1 to P2 = (Xsink1, Y2). However, as indicated by

Y2 > Ycon, the last modification is still inadequate and another sink scaling is needed in

the next round.

Scaling up data source and data sinks works by adding new tasks to operators that

need to be further parallelised, but it also raises a question of how to map the updated

task graph to the underlying machines in order to achieve better resource utilisation. This

is also known as the task placement and scheduling problem. There are several policies

available to decide the distribution of tasks across the platform, and certain applications

may require a particular policy to suit a very specific need (e.g. assigning a particular

task to a particular machine due to licence restrictions). We therefore design the platform

capability profiler to enable scheduling policies to be plugged in so that it can be used in

conjunction with various scheduling heuristics with different optimisation targets, such

as minimising inter-node communication [5, 173], reducing the average tuple processing

time [100], and being resource-aware to ensure the capability of each task to handle its

task load [124]. Since the focus of this work does not lie in task placement and schedul-

ing, we introduce our profiling approach in tandem with the widely adopted round-robin

policy and apply it in a platform with homogeneous computational resources for ease of

presentation. The round-robin policy is particularly suitable for homogeneous platforms

as tasks are evenly distributed among available machines to enable fault-tolerance and

load-balancing.
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Algorithm 3.2: Generation of a new configuration under the round-robin policy
Input: T: Topology throughput
Input: α: Threshold for triggering reconfiguration
Input: Tb: Best throughput record
Input:

−→
R : Ratio of parallelism of each operator

1 if Last change increased T then
2 Tb ← T;
3 if Latency constraint is not met then
4 foreach operator do Add tasks according to

−→
R and the operator’s position

in the topology;

5 else Increase number of tasks of source by 1;

6 else if Last change did not significantly change T then
7 if Last change enhanced data sink then
8 Increase number of tasks of source by 1;

9 else if Last change enhanced data source then
10 foreach operator do Add tasks according to

−→
R and the operator’s position

in the topology;

11 else if Last change throttled the data source then
12 if latency requirement has been met then
13 Terminate the profiling;

14 else Increase throttle strength;

15 else if Last change decreased T then
16 if T < α ∗ Tb then
17 Return the system to the configuration where the best performance is

observed;
18 Throttle the data source;

19 else if Last change enhanced data sink then
20 Increase number of tasks of source by 1;

21 else if Last change enhanced data source then
22 foreach operator do Add tasks according to

−→
R and the operator’s position

in the topology;

23 else if Last change throttled the data source then
24 Decrease throttle strength;

Algorithm 3.2 shows the interplay between performance evaluation and configura-

tion generation carried out by the profiler under the round-robin policy7. Scaling data

sources is a relatively lightweight operation: it only requires the number of tasks for the

7We adopt a Two Sample T-Test to determine whether a throughput change is significant or not, more details
are given in Section 3.6.1 as a part of experiment setup.



3.4 Stepwise Profiling Design 77

data source to be increased by 1, so that the application has one extra task pulling data

from the message queue and thus increasing the input rate. However, The decision of

increasing the parallelism for a data sink operator depends on the type of operator and

its position in the topology. For example, an operator should keep its number of tasks

unchanged if it is a non-parallel operator, or if it is non-scalable dominated by logic-

dependent operators as its input stream tends to be steady during the profiling process.

As for other types of operators,
−→
R indicates the extent of enhancement for each operator.

Nevertheless, not every scaling effort, especially those applied for data sinks, can

guarantee improvements. The reason why scaling data sinks is even more difficult than

scaling data sources is that it has to exhaust current resources for additional computa-

tion and coordination. Therefore, to meet the latency constraint, our profiler performs a

third operation on configuration, source throttle, which limits the size of input stream by

controlling the amount of data that is allowed to sojourn in the system.

The complexity of computation required for configuration generation is constant.

However, the profiling process that evaluates the effectiveness of a new configuration

is relatively time-consuming since performance measurement must wait until the appli-

cation is stabilised. To examine the number of profiling rounds required in the worst case,

we regard Algorithm 3.2 as a search algorithm that explores a vectored value space, with

each dimension confined by the actual parallelism degrees that can be seen in the ideal

configuration. Given the fact that every three consecutive profiling efforts can increase

the total number of used tasks at least by
∥∥∥−→R ∥∥∥

1
through data sink enhancement (except

for consecutive source throttles, which is rare), and that assigning excessive parallelism

degree to an operator would harm the application performance, it is intuitive to deduce

a conservative estimate that in the worst case there will be no more than 3 ∗ nMaxp∥∥∥−→R ∥∥∥
1

rounds

of profiling. In the expression, n is the number of operators in the topology, and Maxp

represents the maximal parallelism degree among all the operators. However, Maxp is

unknown before the actual profiling, but it can be approximated in practice by the num-

ber of threads able to run simultaneously in this particular platform (by multiplying the

number of available cores by the number of thread(s) per core).
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3.4.3 Operator Capacity Profiling

The previous step of profiling divided the streaming application into two parts (data

sources and sinks), of which the parallel configurations of operators are collectively ad-

justed based on the overall performance of the system. Such coarse modifications may

not be accurate enough to achieve the targeted configuration. Therefore, in the third step,

profiling is carried out at operator level through the individual evaluation of performance

of each operator. The goal of this step is to achieve finer granularity of performance tun-

ing.

Operator capacity, which is formally defined in Equation 3.2, is used to quantita-

tively evaluate the degree of utilisation of operators in data sinks. In the equation,

Operator latency is the average time that a single datum would spend in this operator

over a specific time period. The length of such time period is called Window size and

the amount of data processed in this period is denoted by Executed load. Thus, capacity

represents the percentage of the time in the observation time window that the operator

spent executing inputs. The closer to 1 is this value, the more likely the operator is the

bottleneck in our topology.

Capacity =
Operator latency ∗ Executed load

Window size
(3.2)

This step utilises the same profiling environment used in the previous step. However,

besides overall performance metrics such as throughput and latency, the profiler in this

stage also collects the capacity information from each operator for fine-grained evalua-

tion. The profiling strategy also resembles the previous one: the performance evaluation

phase sheds light on the system status and the possible bottleneck, and the previous con-

figuration change is revoked if it causes performance degradation. However, this process

differs from the previous step in that it has only one operation, which is increasing the

number of tasks by 1 for the operator that has the highest capacity and has not been en-

hanced nor revoked. If there is no performance improvement obtained from enhancing

the operator with the highest capacity, the operator that has the second highest capacity

is tested in the next round and so on.
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There are two stopping conditions for the profiling. The first is when there are con-

secutive revocations observed indicating that recent scaling up efforts on candidate op-

erators have failed. The second condition is when all the measured operator latencies

approach the minimal processing latency MinLp by a factor k. We evaluate the effect of

diverse values of k in the performance of the profiling later in Section 3.6.4.

3.4.4 Recalibration Mechanism

The application of the above three profiling steps yields a specific parallel configuration

that builds a relation between provisioned resources and performance metrics. However,

such relation is perceived to be volatile, since the performance under the same configura-

tion may vary and the resulting configuration may need to be promptly modified due to

the live changes that happen to the streaming application or platform. This section there-

fore discusses the recalibration mechanism, which repeats the profiling process when

necessary to keep the configuration and operator profiling up-to-date with minimal ad-

justment cost.

In general, recalibration is triggered by any three types of changes: (i) resizing of

DSMS, which leads to a new platform to be profiled after the infrastructure layer is dy-

namically scaled; (ii) re-deployment of the application, resulting from the alteration of ap-

plication topology and the manipulation of some critical parameters that would greatly

affect the application behaviour; and (iii) data-dependent variation, an uncontrollable

factor related to the characteristic of workload, causing performance to vary even if the

configuration remains unchanged.

For the first two causes, the recalibration decision is straightforward. If the platform

or application turn into a state that has not been previously profiled, all the profiling

steps are repeated. However, the process is more challenging when it comes to dealing

with data-dependent variation, as all the changes are independent of the platform and

application. We can safely assume that all data elements within the same stream are of

the same type, but the time and space complexity of execution may vary along with the

changing element size or the density of information contained. The Sentence Splitter,

in the word count topology, is a typical example to show the effect of data-dependent

variation: its process latency and relative size of output stream depend on the average
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length of incoming tweets.

To deal with such variation, the recalibration mechanism requires a monitoring sys-

tem to oversee the degradation of performance during runtime. It continuously monitors

the length of the message queue, which indicates the capability of application to handle

a certain level of throughput that previously demonstrated in the profiling phase, and

the system latency, which examines if the user-specified latency constraint is still satis-

fied. In order to reduce the frequency of adjustment, we adopt a threshold-based method

which postpones any recalibration action until the monitored values have exceeded the

predefined threshold for a specific period of time.

3.5 System Implementation

The architecture of the stepwise profiling system, as shown in Figure 3.4, consists of two

main parts — the profiling environment and the stepwise profiler8.

The setup of the profiling environment has been briefly introduced in Section 3.4.

More specifically, the Profiling Message Generator is a Java program that reads the work-

load file on demand in order to emit a particular size of profiling stream. The Message

Queue connecting the streaming application to the Profiling Message Generator is built

with Twitter Kestrel9, a distributed queueing system that enables controllable message

buffering. Developers could make use of the Thrift interface provided by Kestrel to re-

trieve the length of the message queue and determine whether the streaming application

has been overwhelmed by the profiling data.

As a specific DSMS was needed to enable the implementation and evaluation of the

prototype, Apache Storm was chosen. This is because it is an open source software (and

thus has all the source code available and detailed on-line documentation), and provides

a built-in metric system and external configuration reader that facilitate the implementa-

tion of the stepwise profiler.

Figure 3.8 describes the integration of the profiler prototype into Apache Storm. The

Stepwise Profiler module in the grey box is DSMS-independent, as it only interacts with

other components of the architecture to make profiling decisions. Therefore, it is imple-

8The source code is available on https://github.com/xunyunliu/StepwiseProfiler
9https://github.com/twitter-archive/kestrel
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Figure 3.8: The integration of the profiler prototype into Apache Storm

mented as a stand-alone Java Program.

The other modules of the architecture interact directly with the DSMS to collect infor-

mation or apply changes, thus the implementation of these modules are DSMS-dependent.

The Metric Reporter component utilises Storm’s built-in metric system and the associated

RESTful interface to collect performance information and publish results. Such metrics

are then periodically sent to MongoDB10 to facilitate tracking of performance changes.

The Monitor Module, implemented as a Java program, inquires the MongoDB for the

latest system status and reports it to the Stepwise Profiler for decision-making. In this

process, some performance metrics, like complete latency (average time taken by a tuple

and all its offspring to be completely processed by the topology), number of data emit-

ted, and operator capacity can be directly used in the stepwise profiler. Some metrics,

however, require certain post-processing in the Monitor Module. For example, there is

no default definition for throughput among the built-in metrics. Thus, to avoid ambi-

guity, the Monitor Module calculates the overall throughput of a streaming application

based on the observed number of acknowledgements or emitted data per unit of time,

depending on whether the application adopts reliable message processing or not.

We also utilise some useful features of Storm in the process of generating and ap-

plying new configurations. Specifically, Storm not only supports reading parallelism

setting of operators from an external configuration file, but also provides a command

line tool (Storm API) to manage the topology with additional operational parameters.

The stepwise profiler thus makes use of the Configuration Modifier component, which is

10https://www.mongodb.com/
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implemented as a script file, to pack up all the profiling decisions in a deployment con-

figuration file, and then invokes the command line tool to submit the application with

the updated deployment scheme for the next round of profiling. The round-robin sched-

uler guarantees that tasks are evenly distributed across Worker Nodes and that load is

equally distributed among machines.

Another aspect relating to implementation is the management of operator states dur-

ing the scaling up process. We do not address dynamic stream rerouting and live state

migration since the Configuration Modifier relies on the rebalance command to apply

any deployment changes. This command, as a built-in Storm functionality, essentially

pauses the application during the redeployment and then restarts it from scratch with

the new configuration, following the so-called Pause and Resume protocol [66]. As our

current prototype treats stateful operators the same ways as stateless operators in terms

of scaling, the management of operator states is not transparently handled by the profil-

ing framework. Therefore, it is required that stateful operators preserve their states at the

application level when the rebalance command is triggered, and these operators should

also be initialised with the previous states when the application is restarted. However,

there are some advanced mechanisms proposed in the literature that enable application-

agnostic state management and interruption-free operator scaling, which is discussed in

Section 3.7.

3.6 Performance Evaluation

We have conducted three different sets of experiments to validate the effectiveness of our

prototype.

1. The first experiment presented in Section 3.6.2 evaluates whether the stepwise pro-

filing effectively applies to a variety of streaming applications, and if it fulfils the

other goals discussed in Section 3.2.

2. The second one in Section 3.6.3 assesses the scalability of our prototype and show-

cases its runtime overhead under relative large test cases.

3. The last experiment in Section 3.6.4 investigates the effect of different parameters
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on the profiler performance, based on which we suggest default preferences.

3.6.1 Experiment Setup

The experiment environment is set up on a private cloud running OpenStack. The envi-

ronment consists of three IBM X3500 M4 machines, and each machine is equipped with

2 x Intel Xeon E5-2620 Processor (6 core@2.0GHz), 64 GB RAM and 2.1 TB HDD. The

virtual cluster deployed on the physical environment is composed of a control machine,

a ZooKeeper node and several processing nodes. The first two nodes are “m1.large”

(4 VCPU and 8 GB RAM), while the rest of the processing nodes are “m1.medium” (2

VCPU and 4GB RAM per machine). The control machine hosts the Stepwise Profiler,

Profiling Message Generator, and the Message Queue components of the architecture to

avoid possible interference to the profiling result.

Test Applications

We adapt six streaming topologies as our evaluation applications11. These include three

synthetic topologies (collectively referred to as Micro-benchmark) and three real-world

streaming applications: Word Count (WC), Synthetic Word Count (SWC), and Twitter

Sentiment Analysis (TSA). All applications are configured with acknowledgements en-

abled in order to track the complete latency, and they process the same type of workload

to calculate comparable throughput. The profiling stream used for performance test is re-

cursively generated from a single workload file, which contains 159,620 tweets in JSON

format collected from 24/03/2014 to 14/04/2014. In addition, these applications are

carefully tuned to avoid the out-of-memory crash and other failures due to insufficient

resource allocation, so that the only potential consequence of improper configuration is

suboptimal performance, rather than abrupt termination of the application.

Micro-benchmark: the micro-benchmark topology is synthetically designed to evaluate

how the stepwise profiler generalises to different topology structures. As shown in Fig-

ure 3.9, it covers three common structure patterns: Linear, Diamond, and Star, where an

11In the following section, we use application and topology interchangeably to refer to the streaming logic
developed on Apache Storm.
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Figure 3.9: Structure of the synthetic Micro-benchmark topologies

Op1 Op3 Op4 Op7 Op8 Op9 Op10 Op11

Op2 Op5 Op6

Figure 3.10: Structure of the Twitter Sentiment Analysis (TSA) topology

operator has (1) one-input-one-output, (2) multiple-outputs or multiple-inputs, and (3)

multiple-inputs-multiple-outputs, respectively.

In addition, the execute method of each operator is implemented in three different

patterns in order to reflect diverse time-space complexities. Some operators are (1) CPU

bound, as they invoke a random number generation method Math.random() 10000 times

for each tuple received. Some are (2) I/O bound with only a JSON parse operation ap-

plied on the incoming tuple, so that they spend more time on waiting for I/O operations

rather than actually processing the current data. The rest of the operators are (3) Sojourn

time-bond, which sleep for 5 ms upon any tuple receipt. These operators are introduced

to mimic the cases where an external service is requested to complete the tuple transac-

tion. Consequently, they demand almost no CPU and memory usages on the execution

platform, but still consume a substantial sojourn time for each incoming tuple to be pro-

cessed.

All these operators have a function implemented to read the operator selectivity12

from the external configuration file. Higher selectivity can be specified to produce sat-

urated network usages, so that I/O bound operators could be overwhelmed by large

internal streams.

Word Count and Synthetic Word Count: the Word Count topology is illustrated in Figure

12The selectivity is defined as the ratio between the number of output tuples produced and the number of
tuples consumed by this operator.
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3.3. The Synthetic Word Count topology adds a Waiting operator (a bolt13 in Storm’s

terminology) between the Kestrel Spout and the JSON Parser, where each incoming tuple

is kept for 1 ms before being sent to the next operator. Therefore, WC and SWC are

actually two different implementations for the same streaming application.

Twitter Sentiment Analysis: we adapted this topology from a mature open-source project

hosted on Github14 with the structure shown in Figure 3.10. It has 11 bolts constituting a

tree-style topology that has 8 stages in depth. The processing logic of this application is

straightforward: once a new tweet is pulled into the system through Kestrel Spout (Op1),

it is firstly stored by a file writer (Op2) and examined by a language detector (Op3) to

identify which language it uses. If it is written in English, there is a sentiment analysis

bolt (Op4) that splits the sentence and calculates the sentimental score for the whole con-

tent using AFINN15, which contains a list of words with their pre-computed sentiment

valence from minus five (negative) to plus five (positive). There are also several bolts to

count the average sentiment result (Op5, Op6) and to rank the most frequent hashtags

occurring over a specific time window (Op7 ∼ Op11).

Evaluation Methodology

We use throughput and complete latency to quantitatively evaluate the performance of

streaming applications. Higher monitored throughput indicates higher performance po-

tential, as long as the complete latency satisfies the desired target. In other words, if a

streaming application has demonstrated throughput T in the profiling environment, we

can confidently assume that it has the ability to process any throughput T
′
< T with-

out violating the latency constraint, unless the profiling knowledge needs to be recali-

brated. Therefore, to probe the maximum sustainable throughput, the profiling environ-

ment feeds the applications with large inputs, until the performance hits its highest stable

point before recording it as the observed value.

The measurement of performance metrics first requires the test application to be de-

ployed on the execution platform. Apart from complying with the generated configura-

tion, we also set the number of workers to one per machine and the number of tasks to

13Operators in Storm are called spouts—if they are data sources—or bolts otherwise.
14https://github.com/kantega/storm-twitter-workshop
15http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

https://github.com/kantega/storm-twitter-workshop
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
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be the same as the number of executors, which conforms to the recommendation of the

Storm community16. All the topologies run for 10 minutes to enable sufficient stabilisa-

tion, and then performance data are collected every 30 seconds for 10 minutes, forming an

array of 20 observations on throughput and latency. These settings were chosen because

we observed that the fluctuation among the average results of repeat experiments did

not exceed 3%, and the Lilliefors Test does not reject the null hypothesis that the obser-

vations on throughput are normally distributed (at the 5% significance level). However,

other applications may require longer time to reach a stable state, or a larger monitoring

interval to avoid drastic but periodic throughput variation.

As we have collected an array of throughput metrics in each profiling round, the

significant change mentioned in Algorithm 3.2 can be determined by a Two Sample T-Test

(at the 5% significance level) to determine if there is a statistically significant difference

between the performance of previous and new configuration.

For completeness, Table 3.2 summarises the parameter settings used for setting up

the stepwise profiler in our evaluation.

Table 3.2: The parameter settings used by the stepwise profiler in evaluations

Parameters Values

Latency constraint (Ycon) 500 ms
Task load unit (slice) 0.3
Stopping coefficient (k) 2
Threshold for triggering reconfiguration (α) 0.9

Comparable Methods

We compare the stepwise profiling prototype with two existing scaling up approaches:

the threshold-based method and Stela [174].

The threshold-based method adjusts the parallelism hint of each operator based on

its monitored capacity as formulated in Equation 3.2, in contrast to those in the literature

that set up thresholds over the CPU utilisation of worker nodes [64, 69]. The scaling up

threshold in our experiment is set to be 0.8 and we reduce the capacity of congested oper-

ators by gradually increasing their parallelism. In this sense, it may take several rounds

16https://storm.apache.org/documentation/FAQ.html

https://storm.apache.org/documentation/FAQ.html
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to complete the scaling up process: the application is deployed with no parallelism con-

figured17 at the beginning. In the following rounds, the most overloaded operator will

be provided with an extra task in an attempt to rectify the congestion and optimise per-

formance.

Stela scales up the streaming applications with the same goal of optimising post-

scaling throughput. In contrast to the threshold-hold method that examines only the

operator capacity for bottleneck detection, Stela prioritizes those congested yet influen-

tial operators in the scaling up process by calculating the ETP (Effective Throughput

Percentage) metric [174]. Furthermore, it allows the parallelism degree of multiple oper-

ators to be adjusted in a single monitoring round, thus greatly reducing the time span of

scaling up process. However, Stela is initially designed for on-demand elasticity, hence

some changes are required to make it comparable with our approach:

1. The scaling out process is omitted as we intend to optimise the application perfor-

mance on a pre-configured cluster. All infrastructural resources are made available

to Stela from the beginning of the scaling up process.

2. A single monitoring round of Stela corresponds to an on-demand scaling request

in its original form, which may involve multiple scaling up iterations. During each

iteration, Stela calculates the ETP for all operators and assigns a new task to the

operator with the highest ETP. Before proceeding to the next iteration, the table of

ETP is updated with projected values that estimate the consequence of scaling, such

as the projected input rate and the processing rate of the targeted operator.

3. Since the estimation of ETP is prone to error propagation, we limit the maximum

number of scaling up attempts in a monitoring round to m, which is the number

of worker nodes available at the infrastructure level. In this way, the efficacy of

the scaling algorithm is assured as the table of ETP is revised with monitored data

every m iterations; and the risk of over-scaling is controlled since each machine will

be assigned with no more than one new task in a single monitoring round.
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(a) Linear Topology (Sythetic, CPU-bound)

1 2 3 4 5 6

Profiling Rounds

3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

5800

6000

6200

6400

6600

6800

7000

7200

7400

7600

7800

8000

8200

8400

T
hr

ou
gh

pu
t (

T
up

le
s/

se
c)

Stepwise
Stela
Threshold

(b) Star Topology (Sythetic, I/O-bound)
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(c) Diamond Topology (Sythetic, Hybrid)
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(d) Word Count (WC)
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(e) Sythetic Word Count (SWC)
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(f) Twitter Sentiment Analysis (TSA)

Figure 3.11: Scaling up testing applications on 6 processing nodes, the X axis represents a
series of profiling rounds and the Y axis compares the throughput resulting from different
configurations. In each profiling round, we use 3 boxplots that each contains 20 readings
of throughput to denote the observation variances.
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3.6.2 Applicability Evaluation

In the applicability experiment, all the topologies are executed in 6 worker nodes. We

configured the micro-benchmark topologies with different resource complexities in or-

der to examine how application diversity affects the performance optimisation process.

Specifically, the Linear topology incorporates only CPU-bound operators so that the whole

application is bound by available CPU resources; while the Star topology consists of only

I/O bound operators, causing its performance to be bound by communication capabil-

ity18. The Diamond topology, on the other hand, is a hybrid streaming application that

includes all sorts of operators (1 CPU bound, 1 I/O bound, and 2 Sojourn time-bound) in

the intermediate tier, making its bottleneck more difficult to identify and resolve in the

scaling up process.

The results in Figure 3.11 show that the stepwise profiler successfully scales up the

targeted topologies. In particular, the Linear topology reaches its maximum through-

put at 1876 with the parallelism set as (1, 2, 2, 2)19, which is 95.7% higher than its initial

throughput performance yielded by (1, 1, 1, 1). It took 4 rounds for the scaling up process

to converge: the stepwise profiler tried the configuration of (1, 3, 3, 3) at round 3, but it

then rejected such configuration change due to the observed performance degradation.

Note that the operator capacity profiling is entirely omitted in this scaling up process, as

the measured operator latencies have all fallen into the vicinity of the monitored MinLp

by a factor of 2.

Being I/O intensive in nature, the Star topology requires much higher parallelism

settings to enable satisfactory performance, which consequently leads to a longer scaling

up process. In our evaluation, the scaling up process took 6 rounds to finish, with the

parallelism finally set as (3, 3, 48, 24, 24) delivering 64% higher throughput than the first

round. Thank to the homogeneity of operator implementation, there is no need to fine

tune the operator capacities as the stopping condition on latency has been met.

The Diamond topology, in contrast, spent 3 rounds in the third step to further scale

up the I/O bound operator (Op3). During the process of platform capability profiling,

stepwise profiler successfully determines the right parallelism for CPU-bound and So-

17By default, Apache Storm initialises each operator in the topology with one task for execution.
18For I/O bound topologies (e.g. Star), we set Ycon to 100 ms to reflect stricter timeliness requirement.
19From left to right, each number corresponds to the number of tasks of each operator in the Linear Topology.
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journ time-bound operators; however, it underestimates the number of tasks for Op3 and

causes it to be the throughput bottleneck. The reason of insufficient scaling is that Equa-

tion 3.1 made a conservative decimal conversion by using slice of 0.3, which prevents

Op3 from scaling more than 4 times faster than the other operators. We will shed more

light on the effect of parameter selection in Section 3.6.4.

In addition, by interpreting the scaling up process of real-world streaming applica-

tions, we conclude that our method is consistently better than the other two scaling ap-

proaches in the following three aspects. Firstly, stepwise profiling exploits the inherent

feature of a streaming application and thus has a more reasonable starting point of profil-

ing comparing to the other two baseline methods, which by contrast determine the initial

configuration only based on the topology structure. Figure 3.11 illustrates that the appli-

cation feature profiling for WC, SWC, and TSA improves the performance by 45%, 21.1%

and 25% at the beginning, respectively.

Secondly, as platform capability profiling collectively adjusts the parallelism hints

for a set of operators, it significantly enhances the performance gains obtained from the

first few profiling rounds. On average, the relative performance improvement observed

from the first four rounds in our method is 2.48 times as large as that of Stela, and 11.63

times compared to that of the threshold-based method. Besides, despite having the ability

to tune multiple parallelism hints in a single round, Stela’s estimation-based algorithm

could lead to incorrect scaling decision, e.g. it added new tasks to logic-dependent oper-

ators and caused performance degradation at round 10 in Figure 3.11f. To make things

worse, there is no reversal mechanism to rollback the wrong move.

Finally, the stopping condition introduced in Section 3.4.3 greatly limited the number

of profiling rounds. Specifically, stepwise profiling stops trying new configuration in TSA

because there are successive revocations that show increasing parallelism hint no longer

benefits the performance. In WC and SWC, the profiler execution terminates when the

latencies for each bolt dropped into a range of (0, 2∗MinLp], which indicates that the

application has been sufficiently scaled up. In the end, our approach is 34.1%, 40.1%,

31.9% better than the best alternative in terms of the throughput resulted from the final

configuration, respectively.

With the performance information profiled, the quality of different topology imple-
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Figure 3.12: Scalability evaluation of the stepwise profiler. The X axis represents a se-
ries of profiling rounds and the Y axis compares the throughput resulting from different
configurations.

mentations in terms of their performance potentials can be easily observed. In this case,

SWC is consistently worse than WC as the former implementation only reaches 86.8%

throughput of the latter and it takes more effort (9 rounds vs 5 rounds) to probe a reason-

able configuration.

3.6.3 Scalability Evaluation

We explore the scalability of our stepwise profiling prototype in two dimensions. The

first dimension is topology complexity, which examines how the increasing number of

operators in the topology affects the scaling up process. The other dimension is platform

size, which checks if the prototype is able to deliver a reasonably higher post-scaling

performance using more resources. Meanwhile, we also compare stepwise profiling with

Stela in terms of the minimal resources needed to reach a specific performance target.

In the first experiment, we run the Linear topology with various types of operators

on 6 worker nodes. The topology depth is further extended to 6, 8 and 12 in order to

construct a more complex structure. Results in Figure 3.12a show that increasing the

topology chain leads to a longer operator capacity profiling process, but the overall pro-

filing effort does not scale linearly with the number of operators. This is because the

monitored MinLp also increases along with the topology complexity and contributes to
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the timely termination of the profiling process. In fact, we observed that the stopping

condition on latency is satisfied by most operators at the end of the platform capability

profiling, and only I/O bound operators demand further adjustment of capacity as their

MinLp are relatively small and hard to approach. This observation enables the conclu-

sion that the parameter selection process is application-dependent and a higher k should

be set for I/O bound topologies.

Additionally, this experiment showcases that the increasing complexity of target ap-

plication compromises the performance gain from profiling, with the monitored improve-

ment being 33.5%, 24%, 20.5% in the three test cases, respectively. Therefore, a larger plat-

form is required for complex streaming topologies to obtain satisfactory performance.

In the second experiment, we run the Word Count topology on 6, 10 and 14 worker

nodes, respectively. Note that by using 14 worker nodes we can still guarantee that one

virtual CPU corresponds to a physical core so as to avoid the interference of CPU over-

booking. The results in Figure 3.12b demonstrate that the application features profiled in

the first step, i.e. MinLp and RSS, are nicely maintained on larger platforms, therefore the

process of platform capability profiling is accordingly extended to provide higher paral-

lelism for different operators. However, the stepwise profiler is not able to achieve linear

growth of performance using more resources. This is because other factors, such as task

location and concurrency settings, also influence the throughput outcome, but they are

not fine-tuned by the profiler due to the hardness of modelling.

Using WC as the test topology, we also applied Stela and stepwise profiling on an

increasing number of nodes, from 2 to 14, to determine the performance limits of the

topology given different resources. Both methods were executed with the same iterations

to ensure fairness, and the results of scaling shed light on the minimal resource provision

needed for the test application to reach a specific throughput target.

Figure 3.13 shows that the stepwise profiling is able to reduce resource usage by up

to 57.1%. For example, stepwise profiling can achieve a target of 6000 tweets processed

per second using only 4 nodes. On the other hand, Stela suggests 8 nodes to process such

stream without breaking SLA, which results in a significant resource wastage.

Additionally, it took 200 minutes for the stepwise profiler to complete the scaling up

process of WC on 16 machines (2 for control and coordination and 14 for execution).



3.6 Performance Evaluation 93

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Throughput Target (Tuples/sec)

0

2

4

6

8

10

12

14

16

N
um

be
r 

of
 P

ro
ce

ss
in

g 
N

od
es

 R
eq

ui
re

d

Stepwise Profiling
Stela

Figure 3.13: Relationship between the throughput target and required resources to handle
it without latency violation.

Given that a configuration trial in each round runs for 20 minutes, and that 10 config-

urations are evaluated, the overhead incurred by the profiling algorithm in the whole

process is negligible.

3.6.4 System Parameters Evaluation

In this experiment, we evaluate the influences of three parameters in the performance of

stepwise profiler. These include the user-specified latency constraint Ycon, the task load

unit slice and the stopping coefficient k. In particular, TSA is executed on 4 processing

nodes. When a particular parameter is being examined, the others were set to their de-

fault values. Table 3.3 describes the evaluated and default values for each parameter.

Table 3.3: Evaluated parameters and their values. Default values are showed in bold

Parameters Values

Latency constraint (Ycon) 300 ms, 500 ms, 700 ms
Task load unit (slice) 0.1, 0.3, 0.5
Stopping coefficient (k) 1.5, 2, 3

Results show that relaxing Ycon does not necessarily increase the throughput. In fact,

it encourages the profiler to try further data source scaling operations in the second pro-

filing step, checking if the bottleneck lies in insufficient data supply. As shown in Figure

3.14a, the third data point marked with a circle denotes the operation that scales up the

data source, but it is revoked because the overall throughput is impaired by this change.
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Figure 3.14: Influence of different parameters on the performance of stepwise profiling.
For better readability, we only plot the average of throughput in each profiling round.
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On the other hand, the throughput would be significantly affected if Ycon were set to

an overly small value. As indicated by the third data point marked with a square, our

method has to throttle the data source at the end of the second profiling step to meet the

latency requirement, and the following rounds in the third step do not compensate the

performance degradation due to the strict latency constraint.

The behaviour of the platform capability profiling mainly depends on the value of

slice. When slice increases from 0.3 to 0.5, both the starting point and the performance

gain from scaling are worse than the default case, reaching only 90.9% and 79.7% of the

default case performance, respectively. This is because, in this case,
−→
R is no longer able

to describe the proportion of different operators, which in turn causes heavy bottlenecks

in bolts of the whole topology. By contrast, a value of slice that is too small exaggerates

this proportion and makes each scaling attempt more extreme. Data points marked with

squares in Figure 3.14b show that, even though the profiler managed to improve the

performance of the starting point against the normal case, the following scaling trials in

the second step all failed because of over-scaling — too many tasks were being added

each time.

Variation of the parameter k mainly affects the number of rounds in the operator ca-

pacity profiling. Figure 3.14c shows that, when k changes from 2 to 3, the whole third step

of profiling is omitted at round 7 because each operator satisfies the stopping condition,

though only a suboptimal configuration is obtained in this case. On the contrary, when k

is decreased to 1.5, more operators are involved in the third step, which causes a longer

series of performance fluctuation. Note that more rounds of profiling in the third step do

not guarantee a better throughput due to the nature of greedy heuristics.

3.7 Related Work

In summary, our work introduces a controlled profiling environment allowing evalua-

tion of different configurations, with the objective of finding and employing a tailored

deployment plan to capture relevant characteristics of both the application and target ex-

ecution platform. Since our research goal is to achieve performance oriented deployment

for applications on operator-based DSMS, and the adopted method falls into the broad
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Figure 3.15: Three processes of deploying a streaming application on the operator-based
DSMS running in a cloud and cluster environment. Text in italic describes the interrela-
tion between them.

scope of application profiling, this section reports relevant works in these two fields—

performance oriented deployment and application profiling. There is also a line of work

applicable to the previous generation of DSMS that focused on tuning performance with-

out changing the semantic of a streaming application. Therefore, we succinctly review

them and summarise how performance optimisation is achieved on other types of DSMS.

3.7.1 Performance Oriented Deployment

As shown in Figure 3.15, there are three tightly coupled processes involved in stream-

ing application deployment once the target cluster or cloud environment has been provi-

sioned: (i) task parallelisation, which involves the decision of the parallelism degree for the

logic DAG, such that each abstract operator is translated into a certain number of tasks

to conduct real data operations; (ii) task allocation & scheduling, which involves allocation

and scheduling of tasks among participating compute nodes; and (iii) parameter tuning,

which concerns fine-grained adjustment of available parameters for better coordination

of the application and the platform.

Only a handful of works investigated the task parallelisation problem. Researchers in

IBM [58,140,141] tried to automate this process using a compiler and runtime system that

is capable of identifying and levering potential data-parallel regions for applications on

System S [84]. But instead of altering the parallelism to improve the application perfor-

mance, their work mainly focused on addressing the safety challenge related to paralleli-

sation, which has already been handled by the implementation of state-of-the-art DSMSs.

Fischer et al., who abstract the streaming application as a black box with an unknown
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performance function, proposed another similar work that regards the task parallelisa-

tion as only a part of parameter tuning [51]. Though the adopted Bayesian optimisation

method has demonstrated its effectiveness through extensive evaluation, it would lead

to an inherent lengthy convergence process compared to our stepwise profiling approach

in which operators are heuristically parallelised with insights obtained from the queuing

model.

Elasticity in DSMSs has received increasing research attention as it enables cost-efficient

handling of workload variations. Some works explored dynamically scale out/in stream-

ing applications through the adjustment of parallelism settings as well as tuning rele-

vant parameters. DRS is a resource scheduler that dynamically decides the parallelism

hint for each operator based on queueing theory, with the goal of minimising the total

sojourn time of an average input [54]. However, it targets only computation-intensive

applications. Lohrmann et al. [108] continuously rebalance the topology with new con-

figurations according to a proposed latency model, and they double the parallelism of

any operator found to be a bottleneck. Nevertheless, the proposed bottleneck resolving

method is coarse-grained and may lead to resources wastage. Heinze et al. compared

three different scaling techniques in terms of the quality of the produced scaling deci-

sions, and the results demonstrated that reinforcement learning is more adaptive and

robust than the threshold-based alternatives [69]. Hidalgo et al. combined the threshold-

based method with the Markov chain model to dynamically change the operator paral-

lelism, so that the short-term and mid-term workload variations can be handled with

reactive and predictive approaches, respectively [72]. Besides, realising elasticity for

stateful operators requires non-trivial efforts to handle issues such as stream rerouting

and state migration. While the adopted pause-and-resume strategy is commonly seen in

the literature [23, 24, 111], there are also advanced protocols for operator movement and

state management that allow for interruption-free elasticity [39,130,171]. In future work,

these techniques can be integrated in our prototype to improve its responsiveness against

workload burst. As for parameter tuning, Das et al. [36] proposed a control algorithm to

automatically determine the most suitable batch for a given state, while online parame-

ter optimisation has been investigated by Heinze et al. to deal with the situation where

the application needs to be dynamically scaled as a reaction to workload changes [70].
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Our target is different to all those above as we try to determine the configuration for any

streaming application given the platform that maximises the throughput under latency

constraint.

In contrast, the task allocation and scheduling problem has received much more at-

tention from the research community. Aniello et al. pioneered this area with two schedul-

ing algorithms on Apache Storm: the off-line version makes all the scheduling decisions

through a static analysis of the logic DAG, while the on-line version regularly collects

runtime information to sort all the communicating pairs of tasks, with an attempt to se-

quentially co-locate them in the same node to reduce communication cost [5]. Inspired by

this idea, many works extended the on-line algorithm by adding some other aspects into

consideration, such as scheduling overhead, resource awareness and energy efficiency.

Chatzistergiou et al. proposed a linear time task allocation algorithm to adaptively recon-

figure task locations in the presence of environmental changes, resulting in a significant

improvement from the existing quadratic time solutions [29]. Fischer et al. presented an

application agnostic algorithm that supports scheduling of large-scale task graphs with

regard to the communication pattern, the problem of minimising inter-node messages

is thus translated into a graph partitioning problem which can be solved by the use of

METIS algorithm [50].

On the other hand, there are also some papers that explored the area of resource-

aware scheduling and put an emphasis on worker node consolidation. The algorithm

used in T-Storm [173] tries to minimise both inter-node and inter-process traffic while

avoiding overloading the dwindled worker nodes. Similarly, Peng et al. [124] considered

the task scheduling as a variation of the Knapsack problem with several hard/soft re-

source constraints, so that it can be solved by the application of linear programming given

that the user has provided the resource demand and availability information. Apart

from the common target of reducing communication cost, Re-Stream, an energy-efficient

resource scheduling mechanism by Sun et al., proposed the minimisation of energy con-

sumption as long as the response latency meets SLA requirements. This is achieved by an

analytic model that depicts the relationship among energy consumption, response time,

and the resource utilisation [152, 156]. Our work can be used along with these methods

above as none of them addresses the issue of task parallelisation.
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Besides cluster and cloud environments that are the target of our approach, the prob-

lem of deploying streaming applications on multi-core systems and distributed networks

has also been discussed by several works. Hormati et al. [75] proposed a framework

that dynamically adapts applications to the changing characteristics of the multi-core re-

sources in order to maximise the throughput, using a hybrid approach of static compila-

tion and dynamic configurations adjustments. Similarly, Suleman et al. [151] introduced

a framework to tune the parallelism for each stage in a processing pipeline using a hill-

climbing algorithm that can both save time and reduce the number of used cores. As for

network deployment, Cardellini et al. [18] extended Apache Storm with a self-adaptive

distributed scheduling mechanism, which allows execution of streaming applications on

a geographically distributed environment with a certain level of QoS guarantee.

3.7.2 Application Profiling

Application profiling is a technique that actively extracts and evaluates the characteristics

of applications, for example, the space or time complexity, to facilitate the use of comput-

ing resources. The profiled data sets can be either low-level usage traces of CPU, memory,

and network bandwidth, or high level metrics that are part of application SLA, such as

throughput, latency and fault-tolerance ability [169]. In order to make sure that the appli-

cation profile would accurately reflect resource needs, the profiling process is normally

conducted in a dedicated profiling environment following the MAPE-K autonomic loop

(Monitor, Analyze, Plan, Execute - Knowledge) [90], which enables controllable organisa-

tion of input data and eliminates variation factors that would affect the result collection

and analysis.

Most of the state-of-the-art programming IDEs, such as Microsoft Visual Studio and

Eclipse, provide tools to aid in determining bottlenecks in the code that affect the over-

all performance of a program. However, the research community has gone way beyond

code-level performance profiling. Urgaonkar et al. [161] investigated the overbooking

problem by the use of application profiling, which helps to deliver an accurate estimate

of resource needs for application components co-located on shared hosts. Do et al. [43]

achieved better virtual machine placement with a performance prediction model derived

from the application profile. To obtain higher profiling accuracy, they identify back-
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ground load, which is the interference of other applications into consideration. Shen et al.

[146] used profiling to automate the detection of performance bottleneck for web appli-

cations with a large set of input parameters. Similar to our work, the proposed profiling

method is able to heuristically search the best configuration that maximises the objective

performance function. Qian et al. [127] developed a tool that profiles the cross-layer in-

teraction within mobile applications, aiming to better reveal the performance and energy

bottlenecks hidden in the inefficient resource usages. Still, our work is different to them

in that we adopt the profiling method to guide the deployment process of streaming ap-

plication, while the above-mentioned models mostly target batch-oriented (MapReduce)

or interactive-oriented (web and mobile) applications and thus cannot be directly applied

in streaming applications.

It is also worth mentioning that we have carefully designed the stepwise profiler

to avoid DSMS lock-in. Besides Apache Storm, there are many operator-based DSMSs

that support general purpose stream processing, including Microsoft TimeStream [128],

Apache Samza, Apache Flink [109], and Twitter Heron [96]. None of them has a built-in

feature to automatically decide the parallel configuration for a particular application, and

thus all of them can benefit from the proposed profiler.

3.7.3 Other Performance Optimisation Techniques

It has been more than a decade since the first generation DSMSs, including Aurora [2], Ni-

agara [30] and Telegraph [28], were introduced to facilitate the development and deploy-

ment of streaming applications. Along with the increasing adoption of DSMS, various

optimisation techniques have been developed to improve the performance of applica-

tions without changing their topology or semantics.

Operator placement optimisation, for example, is a process of assigning operators

to specific hosts and cores to reach a trade-off between communication cost and re-

source contention. Though it is still a kind of adjustment in application layout rather

than spreading and scheduling tasks (as discussed in Section 3.7.1), operator placement

in previous generation DSMS regards each operator as an indivisible entity that can

only appear in one place at a time. In this context, Gordon et al. designed a software-

programmable substrate capable of generating custom communication code to reduce
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message hops when placing operator on multi-core systems [62]. Auerbach et al. pro-

posed a placement mechanism to guarantee that operators compiled for an FPGA will

always be placed on hosts with FPGAs [6]. In addition to resource matching, Wolf et

al. [170] considered other constraints during the placement process, such as licensing

and security requirement.

Load balancing is another commonly used optimisation technique to evenly distribute

workload across available resources. This requires either a balanced operator placement

plan or a runtime mechanism to dynamically assign stream tuples to operators. As exam-

ples of these two approaches, Xing et al. migrated conflicting operators that experience

load spikes at the same time to separate locations to avoid resource contention and thus

improving load balance [176], while Amini et al. [4] discussed the use of back-pressure

in System S to compensate skews found in runtime.

However, these optimisation techniques are no longer applicable to state-of-the-art

streaming applications built on top of operator-based DSMS, as the implementation of

DSMS has greatly evolved towards scalability and robustness, causing operator place-

ment and load balancing to rely heavily on the parallelisation and scheduling of tasks

that constitute the operator.

3.8 Summary

In this chapter, we proposed a streaming application profiler that consists of three steps,

namely (i) application feature profiling, which aims to identify the complexity and task

load for each operator; (ii) platform capability profiling, which endeavours to scale up

the application with the knowledge learned from the previous step; and (iii) operator

capacity profiling, which makes necessary amendments on fine-grained operator level

to further improve performance of the application. Our profiler can be used to scale up

the streaming application, build the relationship between the underlying resources and

the performance metrics, and further evaluate the choice of resource provisioning. An

evaluation of a profiler prototype applied to three real world applications showed that

our approach is able to automatically improve the throughput up to 40.1% compared to

Stela, a state-of-the-art alternative scaling approach.
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However, this chapter employed the static round-robin method for task placement

and scheduling, which could lead to over- and under- utilisation at runtime as the vol-

ume of workload fluctuates. It could also result in an immense amount of inter-node com-

munication with significant network overhead as the scheduling is not communication-

aware. In the next chapter, we propose a dynamic resource-efficient scheduler that au-

tomatically matches the resource requirements of task execution with the resource avail-

ability of the infrastructure, achieving better performance and cost efficiency through a

bin-packing formation of compact task placement.



Chapter 4

Dynamic Resource-Efficient
Scheduling in Stream Processing

Systems

Resource-efficient scheduling is to improve cost-efficiency at runtime by dynamically matching the

resource demands of streaming applications with the resource availability of computing nodes. In

this chapter, we model the scheduling problem as a bin-packing variant and propose a heuristic-based

algorithm to solve it with minimised inter-node communication. We also present a prototype scheduler

named D-Storm that validates the efficacy and efficiency of our scheduling algorithm. The evaluation

proves that D-Storm outperforms the existing schedulers in terms of the reduction of inter-node traffic

and application latency, as well as resulting in a significant amount of resource savings through task

consolidation.

4.1 Introduction

SCHEDULING of streaming applications is one of the many tasks that should be

transparently handled by the Data Stream Management Systems (DSMS). As the

deployment platform of DSMS shifts from a homogeneous on-premise cluster to an elas-

tic cloud resource pool, new challenges have arisen in the scheduling process to enable

This chapter is derived from:
• Xunyun Liu and Rajkumar Buyya, “D-Storm: Dynamic Resource-Efficient Scheduling of Stream Pro-

cessing Applications,” in Proceedings of the 23rd IEEE International Conference on Parallel and Distributed
Systems (ICPADS), Shenzhen, China, Pages: 1-8, IEEE, 2017.

• Xunyun Liu and Rajkumar Buyya, “Dynamic Resource-Efficient Scheduling in Data Stream Man-
agement Systems Deployed on Computing Clouds,” ACM Transactions on Internet Technology (TOIT),
ACM Press, 2017 (Under review).
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fast processing of high-velocity data with minimum resource consumption. First, the in-

frastructural layer can be composed of heterogeneous instance types ranging from Shared

Core to High-CPU and High-memory machines1, each equipped with different comput-

ing power to suit the diverse user needs. Thus, the assumption of homogeneous re-

sources becomes invalid, and the node differences must be captured in the scheduling

process to avoid resource contention. Additionally, the distance of task communication

needs to be optimised at runtime to improve application performance. In stream process-

ing systems, intra-node communication (i.e. information exchange between streaming

tasks within a single node) is much faster than inter-node communication as the former

does not involve cumbersome processes of data (de)serialisation, (un)marshalling and

network transmission. Therefore, it is up to the dynamic scheduling process to convert

as much inter-node communication as possible into intra-node communication. Last but

not least, the dynamics of real-time applications lead to unpredictable stream data gen-

eration, requiring the processing system to be able to manage elastic resources according

to the current workload and improve cost-efficiency at runtime.

Therefore, to maximise application performance and reduce the resource footprints,

it is of crucial importance for the DSMS to schedule streaming applications as compact

as possible, in a manner that fewer computing and network resources are consumed

to achieve the same performance target. This motivates the needs of resource-aware

scheduling, which matches the resource demands of streaming tasks to the capacity

of distributed nodes. However, the default schedulers adopted in the state-of-the-art

DSMSs, including Storm, are resource agnostic. Without capturing the differences of task

resource consumptions, they follow a simple round-robin process to scatter the applica-

tion tasks over the cluster, thus inevitably leading to over/under utilisation and causing

execution inefficiency. A few dynamic schedulers have also been proposed recently to

reduce the network traffics and improve the maximum application throughput at run-

time [5, 29, 32, 50, 99, 153, 173]. However, they all share the load-balancing principle that

distributes the workload as evenly as possible across participating nodes, thus ignoring

the need of resource consolidation when the input is small. Also, without application

isolation, the scheduling result may suffer from severe performance degradation when

1https://cloud.google.com/compute/docs/machine-types

https://cloud.google.com/compute/docs/machine-types


4.1 Introduction 105

multiple applications are submitted to the same cluster and end up competing for the

computation and network resources on every single node.

To fill in this gap, Peng et al. [124] proposed a resource-aware scheduler that schedules

streaming applications based on the resource profiles submitted by users at compile time.

But the problem is only partially tackled for the following reasons:

1. The resource consumption of each task is statically configured within the applica-

tion, which suggests that it is agnostic to the actual application workload and will

remain unchanged during the whole lifecycle of the streaming application. How-

ever, the resource consumption of a streaming task is known to be correlated to the

input workload, and the latter may be subject to unforeseeable fluctuations due to

the real-time streaming nature.

2. The scheduler only executes once during the initial application deployment, mak-

ing it impossible to adapt the scheduling plan to runtime changes. Its implemen-

tation is static, which tackles the scheduling problem as a one-time item packing

process, so it only works on unassigned tasks brought by new application submis-

sions or worker failures.

In this chapter, we propose a dynamic resource-efficient scheduling algorithm to

tackle the problem as a bin-packing variant. We also implement a prototype named D-

Storm to validate the efficacy and efficiency of the proposed algorithm. D-Storm does

not require users to statically specify the resource needs of streaming applications; in-

stead, it models the resource consumption of each task at runtime by monitoring the

volume of incoming workload. Secondly, D-Storm is a dynamic scheduler that repeats

its bin-packing policy with a customisable scheduling interval, which means that it can

free under-utilised nodes whenever possible to save resource costs.

The main contributions reported in this chapter are summarised as follows:

• We formulate the scheduling problem as a bin-packing variant using a fine-grained

resource model to describe requirements and availability. To the best of our knowl-

edge, this work is the first of its kind to dynamically schedule streaming applica-

tions based on bin-packing formulations.
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• We design a greedy algorithm to solve the bin-packing problem, which generalises

the classical First Fit Decreasing (FFD) heuristic to allocate multidimensional re-

sources. The algorithm is capable of reducing the amount of inter-node commu-

nication as well as minimising the resource footprints used by the streaming appli-

cations.

• We implement the prototype on Storm and conduct extensive experiments in a

heterogeneous cloud environment. The evaluation involving realistic applications

such as Twitter Sentiment Analysis demonstrates the superiority of our approach

compared to the existing static resource-aware scheduler and the default scheduler.

It is worth noting that though our D-Storm prototype has been implemented as an

extended framework on Storm, it is not bundled with this specific platform. The fact

that D-Storm is loosely coupled with the existing Storm modules and the design of ex-

ternal configuration make it viable to be generalised to other operator-based data stream

management systems as well.

The remainder of this chapter is organised as follows: we introduce Apache Storm

as a background system in Section 4.2 to explain the scheduling problem. Then, we for-

mulate the scheduling problem, present the heuristic-based algorithm, and provide an

overview of the proposed framework in Sections 4.3 and 4.4. The performance evaluation

is presented in Section 4.5, followed by the related work and conclusions in Sections 4.6

and 4.7, respectively.

4.2 Background

This section introduces Apache Storm, explains the concept of scheduling, and uses

Storm as an example to illustrate the scheduling process in the state-of-the-art DSMSs.

Apache Storm is a real-time stream computation framework built for processing high-

velocity data, which has attracted attention from both academia and industry over the

recent years. Though its core implementation is written in Clojure, Storm does pro-

vide programming supports for multiple high-level languages such as Java and Python

through the use of Thrift interfaces. Being fast, horizontally scalable, fault-tolerant and
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Figure 4.1: The structural view and logical view of a Storm cluster, in which the process
of task scheduling is illustrated with a three-operator application.

easy-to-operate, Storm is considered by many as the counterpart of Hadoop in the real-

time computation field.

Storm also resembles Hadoop from the structural point of view — there is a Nim-

bus node acting as the master to distribute jobs across the cluster and manage the subse-

quent computations; while the rests are the worker nodes with the worker processes running

on them to carry out the streaming logic in JVMs. Each worker node has a Supervisor

daemon to start/stop worker processes as per Nimbus’s assignment. Zookeeper, a dis-

tributed hierarchical key-value store, is used to coordinate the Storm cluster by serving

as a communication channel between the Nimbus and Supervisors. We refer to Fig. 4.1a

for the structural view of a Storm cluster.

From the programming perspective, Storm has its unique data model and terminol-

ogy. A tuple is an ordered list of named elements (each element is a key-value pair re-

ferred to as a field) and a stream is an unbounded sequence of tuples. The streaming

logic of a particular application is represented by its topology, which is a Directed Acyclic

Graph (DAG) of operators standing on continuous input streams. There are two types of

operators: spouts act as data sources by pulling streams from the outside world for com-

putation, while the others are bolts that encapsulate certain user-defined processing logic

such as functions, filtering, and aggregations.
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When it comes to execution, an operator is parallelised into one or more tasks to split

the input streams and concurrently perform the computation. Each task applies the same

streaming logic to its portion of inputs which are determined by the associated grouping

policy. Fig. 4.1b illustrates this process as operator parallelisation. In order to make effi-

cient use of the underlying distributed resources, Storm distributes tasks over different

worker nodes in thread containers named executors. Executors are the minimal schedula-

ble entities of Storm that are spawned by the worker process to run one or more tasks of

the same bolt/spout sequentially, and Storm has a default setting to run one executor per

task. The assignment of all executors of the topology to the worker processes available in

the cluster is called scheduling. Without loss of generality, in this work, we assume each

executor contains a single task so that executor scheduling can be interpreted as a process

of task scheduling.

Since version 0.9.2, Storm implements inter-node communications with Netty2 to en-

able low latency network transmission with asynchronous, event-driven I/O operations.

However, the data to be transferred still needs to be serialised, then hit the transfer buffer,

the socket interface and the network card at both sides of communication for delivery.

By contrast, intra-node communication does not involve any network transfer and is

conveyed by the message queues backed by LMAX Disruptor3, which significantly im-

proves the performance as tuples are deposited directly from the Executor send buffer to

the Executor receive buffer.

The default scheduler in Storm is implemented as a part of Nimbus function that

endeavours to distribute the same number of tasks over the participating worker nodes,

where a round-robin process is adopted for this purpose. However, as pointed out in

Section 4.1, such a simple scheduling policy may lead to over/under resource utilisation.

On the other hand, the scheduler proposed by Peng et al. [124] is the most relevant to

our work and is widely adopted in the Storm community because it is resource-aware,

bin-packing-related, and readily available within the standard Storm release. However,

it can only partially tackle the problem of over/under resource utilisation due to the

limitation of being static in nature and requiring users to input the correct resource con-

figuration prior to execution. In Section 4.5, we conduct a thorough comparison of our

2https://netty.io/
3https://lmax-exchange.github.io/disruptor/

https://netty.io/
https://lmax-exchange.github.io/disruptor/
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approach and Peng et al.’s work with performance evaluation in a real environment.

4.3 Dynamic Resource-Aware Scheduling

The dynamic resource-aware scheduling in D-Storm exhibits the following characteris-

tics: (1) each task has a set of resource requirements that are constantly changing along

with the amount of inputs being processed; (2) each machine (worker node) has a set of

available resources for accommodating tasks that are assigned to it; and (3) the schedul-

ing algorithm is executed on-demand to take into account any runtime changes in re-

source requirements and availability.

4.3.1 Problem Formulation

For each round of scheduling, the essence of the problem is to find a mapping of tasks

to worker nodes such that the communicating tasks are packed as compact as possible.

In addition, the resource constraints need to be met — the resource requirements of the

allocated tasks should not exceed the resource availability in each worker node. Since

the compact assignment of tasks also leads to reducing the number of used machines, we

model the scheduling problem as a variant of the bin-packing problem and formulate it

using the symbols illustrated in Table 4.1.

Table 4.1: Symbols used for dynamic resource-efficient scheduling

Symbol Description

n The number of tasks to be assigned
τi Task i, i ∈ {1, ..., n}
m The number of available worker nodes in the cluster
νi Worker node i, i ∈ {1, ..., m}

Wνi
c CPU capacity of νi, measured in a point-based system, i ∈ {1, ..., m}

Wνi
m Memory capacity of νi, measured in Mega Bytes (MB), i ∈ {1, ..., m}

ωτi
c Total CPU requirement of τi in points, i ∈ {1, ..., n}

ωτi
m Total memory requirement of τi in Mega Bytes (MB), i ∈ {1, ..., n}

ρτi
c Unit CPU requirement for τi to process a single tuple, i ∈ {1, ..., n}

ρτi
m Unit memory requirement for τi to process a single tuple, i ∈ {1, ..., n}

ξτi ,τj The size of data stream transmitting from τi to τj, i, j ∈ {1, ..., n}, i 6= j
Θτi The set of upstream tasks for τi, i ∈ {1, ..., n}
Φτi The set of downstream tasks for τi, i ∈ {1, ..., n}
κ The volume of inter-node traffic within the cluster

Vused The set of used worker nodes in the cluster
mused The number of used worker nodes in the cluster
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In this work, the resource consumptions and availability are examined in two dimen-

sions — CPU and memory. Though memory resources can be intuitively measured in

terms of megabytes, the quantification of CPU resources is usually vague and imprecise

due to the diversity of CPU architectures and implementations. Therefore, following the

convention in literature [124], we specify the amount of CPU resources with a point-based

system, where 100 points are given to represent the full capacity of a Standard Compute

Unit (SCU). The concept of SCU is similar to the EC2 Compute Unit (ECU) introduced by

Amazon Web Services (AWS). It is then the responsibility of the IaaS provider to define

the computing power of an SCU, so that developers can compare the CPU capacity of

different instance types with consistency and predictability regardless of the hardware

heterogeneity presented in the infrastructure. As a relative measure, the definition of an

SCU can be updated through benchmarks and tests after introducing new hardware to

the data centre infrastructure.

In this chapter, we assume that the IaaS cloud provider has followed the example

of Amazon to create a vCPU as a hyperthread of an Intel Xeon core4, where 1 SCU is

defined as the CPU capacity of a vCPU. Therefore, every single core in the provisioned

virtual machine is allocated with 100 points. A multi-core instance can get a capacity of

num of cores * 100 points, and a task that accounts for p% CPU usages reported by the

monitoring system has a resource demand of p points.

Task τi’s CPU and memory resource requirements can be linearly modelled with re-

gard to the size of the current inputs, which are illustrated in Eq. (4.1).

ωτi
c = ( ∑

τj∈Θτi

ξτj,τi) ∗ ρτi
c

ωτi
m = ( ∑

τj∈Θτi

ξτj,τi) ∗ ρτi
m

(4.1)

Note that i and j in Eq. (4.1) are just two generic subscripts that represent certain

values within a range defined in Table 4.1. Therefore, ξτj,τi has a similar meaning of ξτi ,τj

that denotes the size of data stream transmitting from the former task to the latter.

Having modelled the resource consumption at runtime, each task is considered as

an item of multi-dimensional volumes that needs to be allocated to a particular machine

during the scheduling process. Given a set of m machines (bins) with CPU capacity Wνi
c

4https://aws.amazon.com/ec2/instance-types/

https://aws.amazon.com/ec2/instance-types/
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and memory capacity Wνi
m (i ∈ {1, .., m}), and a list of n tasks (items) τ1, τ2, ..., τn with their

CPU demands and memory demands denoted as ωτi
c , ωτi

m (i ∈ {1, 2, .., n}), the problem

is formulated as follows:

minimise κ(ξξξ, xxx) = ∑
i,j∈{1,..,n}

ξτi ,τj(1− ∑
k∈{1,..,m}

xi,k ∗ xj,k)

subject to
m

∑
k=1

xi,k = 1, i = 1, ..., n,

n

∑
i=1

ωτi
c xi,k ≤Wνk

c k = 1, ..., m,

n

∑
i=1

ωτi
mxi,k ≤Wνk

m k = 1, ..., m,

(4.2)

where xxx is the control variable that stores the task placement in a binary form: xi,k = 1 if

and only if task τi is assigned to machine νk.

Through the formulation, we quantify the compactness of scheduling by counting

the total amount of inter-node communication resulted from the assignment plan, with

the optimisation target being reducing this number to its minimal. Specifically, the ex-

pression (1 − ∑
k∈{1,..,m}

xi,k ∗ xj,k) is a toggle switch that yields either 0 or 1 depending

on whether task τi and τj are assigned to the same node. If yes, the result of (1 −

∑
k∈{1,..,m}

xi,k ∗ xj,k) becomes 0 which eliminates the size of the data stream ξτi ,τj to make

sure that only inter-node communication is counted in our objective function.

There are three constraints formulated in Eq. (4.2): (1) each task shall be assigned to

one and only one node during the scheduling process; (2) the CPU resource availability

of each node must not be exceeded by the accrued CPU requirements of the allocated

tasks; and (3) the memory availability of each node must not be exceeded by the accrued

memory requirements of the allocated tasks.

Also, Eq. (4.3) shows that xxx can be used to reason the number of used worker nodes

as the result of scheduling:

Vused = {νj | ∑
i∈{1,...,n}

xi,j > 0, j ∈ {1, ..., m}}

mused = |Vused|
(4.3)



112 Dynamic Resource-Efficient Scheduling in Stream Processing Systems

Algorithm 4.1: The multidimensional FFD heuristic scheduling algorithm
Input: A task set ~τ = {τ1, τ2, . . . , τn} to be assigned
Output: A machine set~ν = {ν1, ν2, . . . , νmused} with each machine hosting a

disjoint subset of ~τ, where mused is the number of used machines
1 Sort available nodes in descending order by their resource availability as defined

in Eq. (4.4)
2 mused ← 0
3 while there are tasks remaining in ~τ to be placed do
4 Start a new machine νm from the sorted list;
5 if there are no avaiable nodes then
6 return Failure

7 Increase mused by 1
8 while there are tasks that fit into machine νm do
9 foreach τ ∈ ~τ do

10 Calculate $(τi, νm) according to Eq. (4.5)

11 Sort all viable tasks based on their priority
12 Place the task with the highest $(τi, νm) into machine νm
13 Remove the assigned task from ~τ
14 Update the remaining capacity of machine νm

15 return~ν

4.3.2 Heuristic-based Scheduling Algorithm

The classical bin-packing problem has proved to be NP-Hard [33], and so does the schedul-

ing of streaming applications [124]. There could be a massive amount of tasks involved

in each single assignment, so it is computationally infeasible to find the optimal solution

in polynomial time. Besides, streaming applications are known for their strict Quality

of Service (QoS) constraints on processing time [158], so the efficiency of scheduling is

even more important than the result optimality to prevent the violation of the real-time

requirement. Therefore, we opt for greedy heuristics rather than exact algorithms such as

bin completion [55] and branch-and-price [40], which have exponential time complexity.

The proposed algorithm is a generalisation of the classical First Fit Decreasing (FFD)

heuristic. FFD is essentially a greedy algorithm that sorts the items in decreasing or-

der (normally by their size) and then sequentially allocates them into the first bin with

sufficient remaining space. However, in order to apply FFD in our multidimensional

bin-packing problem, the standard bin packing procedure has to be generalised in three

aspects as shown in Algorithm 4.1.
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Firstly, all the available machines are arranged in descending order by their resource

availability so that the more powerful ones get utilised first for task placement. This

step is to ensure that the FFD heuristic has a better chance to convey more task com-

munications within the same machine, thus reducing the cumbersome serialisation and

de-serialisation procedures that would have been necessary for network transmissions.

Since the considered machine characteristics — CPU and memory are measured in dif-

ferent metrics, we define a resource availability function that holistically combines these

two dimensions and returns a scalar for each node, as shown in Eq. (4.4).

℘(νi) = min { nWνi
c

∑
j∈{1,...,n}

ω
τj
c

,
nWνi

m

∑
j∈{1,...,n}

ω
τj
m
} (4.4)

Secondly, the evaluation of the task priority function is dynamic and runtime-aware,

considering not only the task communication pattern but also the node to which it at-

tempts to assign. We denote the attempted node as νm, then the task priority function

$(τi, νm) can be formulated as a fraction — the greater the resulting value, the higher

priority τi will have to be assigned into νm.

The numerator of this fraction quantifies the increase of intra-node communications

as the benefit of assigning τi to νm. It is a weighted sum of two terms, which are namely:

(1) the amount of newly introduced intra-node communication if τi is assigned to νm,

and (2) the amount of potential intra-node communication that τi can bring to νm in the

subsequent task assignments. It is worth noting that we stop counting the second term in

the numerator when the node νm is about to be filled up, so tasks capable of bringing more

potential intra-node communications will be left for other nodes with more available

resources.

On the other hand, the denominator of this fraction depicts the resource costs that

νm spends on accommodating τi. Inspired by the Dominant Resource Fairness (DRF)

approach used in Apache Mesos [61], we evaluate the resource costs of τi in terms of its

usages of critical resource, where “critical resource” is defined as the most scarce and

demanding resource type (either being CPU or memory) at the current state. Therefore,

tasks occupying less critical resources will be preferred in the priority calculation, and the

resulting resource usages are more likely to be balanced across different resource types.
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After introducing the rationales behind our priority design, the mathematical formu-

lation of $(τi, νm) is given as follows:

$1(τi, νm) = ∑
j∈{1,...,n}

xj,νm(ξτi ,τj + ξτj,τi)

$2(τi, νm) = ∑
j∈Φτi

(1− ∑
k∈{1,...,m}

xj,k)ξτi ,τj

+ ∑
j∈Θτi

(1− ∑
k∈{1,...,m}

xj,k)ξτj,τi

<νm =max {
∑

j∈{1,...,n}
ω

τj
c xj,νm

Wνm
c

,

∑
j∈{1,...,n}

ω
τj
mxj,νm

Wνm
m

}

$3(τi, νm) = <
xτi ,νm=1
νm −<xτi ,νm=0

νm

$(τi, νm) =


α$1(τi, νm) + β$2(τi, νm)

$3(τi, νm)
<νm ≤ DThreshold

α$1(τi, νm)

$3(τi, νm)
otherwise;

(4.5)

In Eq. (4.5), $1(τi, νm) represents the sum of introduced intra-node communication if

τi is assigned to νm, while $2(τi, νm) denotes the sum of communications that τi has with

an unassigned peer, which effectively translates to the potential intra-node communi-

cation gains in the subsequent task assignments. After that, <νm represents the current

usage of critical resources in νm by the percentage measurement, and $3(τi, νm) calculates

the difference of <νm after and before the assignment to reflect the resource costs of νm

accommodating τi. In the end, $(τi, νm) is defined as a comprehensive fraction of the ben-

efits and costs relating to this assignment. In Eq. (4.5), α and β are the weight parameters

that determine the relative importance of the two independent terms in the numerator,

and DThreshold is the threshold parameter that indicates when the node resources should

be considered nearly depleted.

Designing $(τi, νm) in this way makes sure that the packing priority of the remaining

tasks is dynamically updated after each assignment, and those tasks sharing a large vol-

ume of communication are prioritised to be packed into the same node. This is in contrast

to the classical FFD heuristics that first sort the items in terms of their priority and then

proceed to the packing process strictly following the pre-defined order.

Finally, our algorithm implements the FFD heuristic from a bin-centric perspective,
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which opens only one machine at a time to accept task assignment. The algorithm keeps

filling the open node with new tasks until its remaining capacity is depleted, thus satis-

fying the resource constraints stated in Eq. (4.2).

4.3.3 Complexity Analysis

We analyse the work-flow of Algorithm 4.1 to identify its complexity in the worst case.

Line 1 of the algorithm requires at most quasilinear time O(mlog(m)) to finish, while the

internal while loop from Line 8 to Line 14 will be repeated for at most n times to be either

complete or failed. Diving into this loop, we find that the calculation of $(τi, νm) at Line 10

consumes linear time of n, and the sorting at Line 11 takes at most O(nlog(n)) time to

complete. Therefore, the whole algorithm has the worst case complexity of O(mlog(m) +

n2log(n)).

4.4 Implementation of D-Storm Prototype

A prototype called D-Storm has been implemented to demonstrate dynamic resource-

efficient scheduling, which incorporates the following new features into the standard

Storm framework:

• It tracks streaming tasks at runtime to obtain their resource usages and the volumes

of inbound / outbound communications. This information is critical for making

scheduling decisions that avoid resource contention and minimise inter-node com-

munication.

• It endeavours to pack streaming tasks as compact as possible without causing re-

source contention, which effectively translates to the reduction of resource foot-

prints while satisfying the performance requirements of streaming applications.

• It automatically reschedules the application whenever a performance issue is spot-

ted or possible task consolidation is identified.

To implement these new features, D-Storm extends the standard Storm release with

several loosely coupled modules, thus constituting a MAPE-K (Monitoring, Analysis,
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Figure 4.2: The extended D-Storm architecture on top of the standard Storm release,
where the newly introduced modules are highlighted in grey.

Planning, Execution, and Knowledge) framework as shown in Fig. 4.2. This architectural

concept was first introduced by IBM to design autonomic systems with self-* capabili-

ties, such as self-managing, self-healing [25], and self-adapting [90]. In this work, the

proposed MAPE-K framework incorporates self-adaptivity and runtime-awareness into

D-Storm, allowing it to tackle any performance degradation or mismatch between re-

source requirements and availability at runtime.

The MAPE-K loop in D-Storm is essentially a feedback control process that considers

the current system metrics while making scheduling decisions. Based on the level at

which the metrics of interest are collected, the monitoring system generally reports three

categories of information — application metrics, task metrics, and OS (Operating System)

metrics.

The application metrics, such as the topology throughput and complete latency5, are

obtained through the built-in Storm RESTful API and used as a coarse-grained interpre-

tation of the application performance. The volume of incoming workloads is also mon-

itored outside the application in order to examine the system’s sustainability under the

current workload.

The task metrics, on the other hand, depict the resource usages of different tasks

5Complete latency: the average time a tuple tree takes to be completely processed by the topology.
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and their communication patterns within the DSMS. Acquiring this information requires

some custom changes to the Storm core, so we introduce the Task Wrapper as a middle

layer between the current task and executor abstractions. Each task wrapper encapsu-

lates a single task following the decorator pattern, with monitoring logic transparently

inserted into the task execution. Specifically, it obtains the CPU usages in the execute

method by making use of the ThreadMXBean class, and it logs the communication traf-

fics among tasks using a custom metric consumer which is registered in the topology

building process.

Apart from higher level metrics, Collectd6, a lightweight monitoring daemon, is in-

stalled on each worker node to collect statistics on the operating system level. These

include CPU utilisation, memory usage and network interface access on every worker

node. It is worth noting that due to the dynamic nature of stream processing, the col-

lected metrics on communication and resource utilisation are all subject to non-negligible

instantaneous fluctuations. Therefore, the monitor modules average the metric readings

over an observation window and periodically report the results to Zookeeper for persis-

tence.

The analysing phase in the MAPE-K loop is carried out by the System Analyser mod-

ule, which is implemented as a boundary checker on the collected metrics to determine

whether they represent a normal system state. There are two possible abnormal states

defined by the comparison of the application and OS metrics. (1) Unsatisfactory perfor-

mance — the monitored application throughput is lower than the volume of incoming

workloads, or the monitored complete latency breaches the maximum constraint articu-

lated in the Quality of Service (QoS). (2) Consolidation required — the majority of worker

nodes exhibit resource utilisations below the consolidation threshold, and the monitored

topology throughput closely matches the volume of incoming workloads. Note that for

the sake of system stability, we do not alter the scheduling plan only because the resulting

resource utilisation is high. Instead, we define abnormal states as strong indicators that

the current scheduling plan needs to be updated to adapt to the ongoing system changes.

The Scheduling Solver comes into play when it receives the signal from the system

analyser reporting the abnormal system states, with all the collected metrics passed on

6https://collectd.org/

https://collectd.org/
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to it for planning possible amendments. It updates the model inputs with the retrieved

metrics and then conducts scheduling calculation using the algorithm elaborated in Sec-

tion 4.3. The passive design of invocation makes sure that the scheduler solver does not

execute more frequently than the predefined scheduling interval, and this value should

be fine-tuned to strike a balance between the system stability and agility.

Once a new scheduling plan is made, the executor in the MAPE-K loop — D-Storm

Scheduler takes the responsibility to put the new plan into effect. From a practical perspec-

tive, it is a jar file placed on the Nimbus node which implements the IScheduler interface

to leverage the scheduling APIs provided by Storm. The result of assignment is then

cross-validated with the application metrics retrieved from the RESTful API to confirm

the success of re-scheduling.

The Knowledge component of the MAPE-K loop is an abstract module that represents

the data and logic shared among the monitoring, analysing, planing and execution func-

tions. For the ease of implementation, D-Storm incorporates the scheduling knowledge

into the actual components shown in Fig. 4.2, which includes background information

on topology structures and user requirements, as well as the intelligent scheduling algo-

rithm based on which the self-adaptation activities take place.

In order to keep our D-Storm scheduling framework user-transparent to the appli-

cation developers, we also supply a Topology Adapter module in the Storm core that

masks the changes made for task profiling. When the topology is built for submission,

the adapter automatically registers the metric consumer and encapsulates tasks in task

wrappers with logic to probe resource usages and monitor communication volumes. In

addition, developers can specify the scheduling parameters through this module, which

proves to be an elegant way to satisfy the diverse needs of different streaming scenarios.

4.5 Performance Evaluation

In this section, we evaluate the D-Storm prototype using both synthetic and realistic

streaming applications. The proposed heuristic-based scheduling algorithm is compared

against the static resource-aware algorithm [124], as well as the round-robin algorithm

used in the default Storm scheduler.
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Specifically, the performance evaluation focuses on answering the following indepen-

dent research questions:

• Whether D-Storm applies to a variety of streaming applications with diverse topol-

ogy structures, communication patterns and resource consumption behaviours. Whether

it successfully reduces the total amount of inter-node communication and improves

the application performance in terms of latency. (Section 4.5.2)

• How much resource cost is incurred by D-Storm to handle various volumes of

workload? (Section 4.5.3)

• How long does it take for D-Storm to schedule relatively large streaming applica-

tions? (Section 4.5.4)

4.5.1 Experiment Setup

Our experiment platform is set up on the Nectar Cloud7, comprising 1 Nimbus node, 1

Zookeeper node, 1 Kestrel8 node and 12 worker nodes. The whole cluster is located in

the NCI availability zone to avoid cross data centre traffic, and there are various types

of resources present to constitute a heterogeneous cluster. Specifically, the 12 worker

nodes are evenly created from three different instance flavours, which are (1) m2.large

(4 VCPUs, 12 GB memory and 110 GB disk space); (2) m2.medium (2 VCPUs, 6 GB

memory and 30 GB disk space) and (3) m2.small (1 VCPUs, 4 GB memory and 30 GB

disk space). On the other hand, the managing and coordination nodes are all spawned

from the m2.medium flavour. Note that we denote the used instance types as “large”,

“medium” and “small” hereafter for the convenience of presentation.

As for the software stack, all the participating nodes are configured with Ubuntu

16.04 and Oracle JDK 8, update 121. The version of Apache Storm on which we build our

D-Storm extension is v1.0.2, and the comparable approaches — the static resource-aware

scheduler and the default scheduler are directly extracted from this release.

In order to evaluate the performance of D-Storm under different sizes of workload,

we have set up a profiling environment that allows us to adjust the size of the input

7https://nectar.org.au/research-cloud/
8https://github.com/twitter-archive/kestrel

https://nectar.org.au/research-cloud/
https://github.com/twitter-archive/kestrel
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Figure 4.3: The profiling environment used for controlling the input load. The solid
lines denote the generated data stream flow, and the dashed lines represent the flow of
performance metrics.

stream with finer-grained control. Fig. 4.3 illustrates the components of the profiling

environment from a workflow perspective.

The Message Generator reads a local file of tweets and generates a profiling stream

to the Kestrel node using its message push API. The tweet data were collected from

4/03/2014 to 14/04/2014 in JSON format, and the size of the generated data stream is

externally configurable. The Message Queue running on the Kestrel node implements a

Kestrel queue to cache any message that has been received but not pulled by the stream-

ing application. It serves as a message buffer between the message generator and the

streaming application to avoid choking either side of them in the case of mismatch.

The D-Storm cluster runs the D-Storm prototype as well as the streaming application,

where different scheduling algorithms are evaluated for efficiency. The Metric Reporter

is responsible for probing the application performance, i.e. throughput and latency, and

reporting the volume of inter-node communication in the forms of the number of tuples

transferred and the volume of data streams conveyed in the network. Finally, the Perfor-

mance Monitor is introduced to examine whether the application is sustainably process-

ing the profiling input and if the application performance has satisfied the pre-defined

Quality of Service (QoS), such as processing 5000 tuples per second with the processing

latency no higher than 500 ms.

Test Applications

The evaluation includes five test applications — three synthetically made and two drawn

from real-world streaming use cases. The acknowledgement mechanism is turned on for
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all these applications to achieve reliable message processing, which guarantees that each

incoming tuple will be processed at least once and the complete latency is automatically

tracked by the Storm framework. We also set the Storm configuration MaxSpoutPending9

to 10000, so that the resulting complete latency of different applications can be reasonably

compared in the same context.

Synthetic applications (Micro-benchmark): the three synthetic applications are col-

lectively referred to as micro-benchmark. They are designed to reflect various topological

patterns as well as mimic different types of streaming applications, such as CPU bound,

I/O bound and parallelism bound computations.

As shown in Fig. 4.4a, the micro-benchmark covers three common topological struc-

tures — Linear, Diamond, and Star, corresponding to operators having (1) one-input-

one-output, (2) multiple-outputs or multiple-inputs, and (3) multiple-inputs-multiple-

outputs, respectively. In addition, the synthetic operators used in the micro-benchmark

can be configured in several ways to mimic different application types, which are sum-

marised in Table 4.2.

Table 4.2: The configurations of synthetic operators in the micro-benchmark

Symbol Configuration Description

Cs The CPU load of each synthetic operator.
Ss The selectivity10of each synthetic operator.

Ts
The number of tasks that each synthetic operator has,
also referred to as operator parallelism.

From the implementation point of view, the configuration items listed in Table 4.2

have a significant impact on the operator execution. Specifically, Cs determines how

many times the method of random number generation Math.random() is invoked by the

operator upon any tuple receipt (or tuple sending for topology spout), with Cs = 1 repre-

senting 100 invocations. Therefore, the higher Cs is set, the larger CPU load the operator

will have. Besides, Ss determines the selectivity of this operator as well as the size of

internal communication stream within the application, while Ts indicates the operator

parallelism which is the number of tasks spawned from this particular operator.

9The maximum number of unacknowledged tuples that are allowed to be pending on a spout task at any
given time.

10Selectivity is the number of tuples emitted per tuple consumed; e.g., selectivity = 2 means the operator
emits 2 tuples for every 1 consumed.
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(a) The topologies of the micro-benchmark synthetic application

(b) The topology of the URL-converter ap-
plication
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(c) The topology of the twitter sentiment anaysis application

Figure 4.4: The topologies of test applications. Fig. 4.4a is synthetically designed while
the rest two are drawn from realistic use cases.

URL-Converter: it is selected as a representative of memory-bound applications. So-

cial media websites, such as Twitter and Google, make intensive use of short links for the

convenience of sharing. However, these short links eventually need to be interpreted by

the service provider to be accessible on the Internet. The URL-Converter is a prototype

interpreter, which extracts short Uniform Resource Locators (URLs) from the incoming

tweets and replaces them with complete URL addresses in real-time. As depicted in

Fig. 4.4b, there are four operators concatenated in tandem: Op1 (Kestrel Spout) pulls the

tweet data from the Kestrel queue as a stream of JSON strings; Op2 (Json Parser) parses

the JSON string for drawing the main message body; Op3 (URL Filter) identifies the short

URLs from the tweet content; and Op4 (Converter) completes the URL conversion with

the help of the remote service. This application results in significant memory usages, as it

caches a map of short and complete URLs in memory to identify the trending pages from

the statistics and prevent checking the remote database again upon receiving the same

short URL.
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Twitter Sentiment Analysis (TSA): the second realistic application is adapted from

a comprehensive data mining use case — analysing the sentiment of tweet contents by

word parsing and scoring. Fig. 4.4c shows that there are 11 operators constituting a tree-

like topology, with the sentimental score calculated using AFFINN — a list of words

associated with pre-defined sentiment values. We refer to [121] for more details of this

analysis process and the application implementation.

Parameter Selection and Evaluation Methodology

In our evaluation, the metric collection window is set to 1 minute and the scheduling

interval is set to 10 minutes. These values are empirically determined for D-Storm to

avoid overshooting and mitigate the fluctuation of metric observations on the selected

test applications. As for the heuristic parameters, we configure DThreshold to 80%, α to 10,

and β to 1, putting more emphasis on the immediate gain of each task assignment rather

than the potential benefits. Additionally, the latency constraint of each application is set

to 500 ms, which represents a typical real-time requirement for streaming use cases.

For all conducted experiments, we deployed the test application using the same ap-

proach recommended by the Storm community11. Specifically, the number of worker

processes is set to one per machine and the number of executors is configured to be the

same as the number of tasks, thereby eliminating unnecessary inter-process communica-

tions. Once the test application is deployed, we supply the profiling stream to a given

volume and only collect performance results after the application is stabilised.

Also, the performance of the static resource-aware scheduler largely depends on the

accuracy of resource profile. As the scheduler required that users submit the static re-

source profile at compile time [124], we conducted pilot run on test applications, probing

their up-to-date resource profile and leading to a fair comparison between the dynamic

and static resource-aware schedulers. In particular, we utilised the LoggingMetricsCon-

sumer12 from the storm-metrics package to probe the amount of memory/CPU resources

being consumed by each operator, and we associate each pilot run with a particular ap-

plication setting, so that the resource profile can be properly updated whenever the ap-

11https://storm.apache.org/documentation/FAQ.html
12https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/
LoggingMetricsConsumer.html

https://storm.apache.org/documentation/FAQ.html
https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/LoggingMetricsConsumer.html
https://storm.apache.org/releases/1.0.2/javadocs/org/apache/storm/metric/LoggingMetricsConsumer.html
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Linear)

10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

110

   
   

   
 In

te
r-

no
de

 c
om

m
un

ni
ca

tio
n 

as
 n

et
w

or
k 

tr
af

fic
s 

(M
B

/s
)

Round Robin
Static RAS
D-Storm

(e) Varying Cs (Synthetic
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Star)

2500 5000 7500 10000
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

   
   

   
 In

te
r-

no
de

 c
om

m
un

ni
ca

tio
n 

as
 n

et
w

or
k 

tr
af

fic
s 

(M
B

/s
)

Round Robin
Static RAS
D-Storm

(l) Varying Ps (Synthetic
Star)

Figure 4.5: The change of the inter-node communication when varying the configurations
of the micro-benchmark. We repeated each experiment for 10 times to show the standard
deviation of the results. In the legend, RAS stands for the Resource-Aware Scheduler.

plication configuration is changed.

4.5.2 Evaluation of Applicability

In this evaluation, we ran both the synthetic and realistic applications under the same

scenario that a given size of profiling stream needs to be processed within the latency

constraint. Different schedulers are compared in two major aspects: (1) the amount of

inter-node communications resulted from the task placement, and (2) the complete la-

tency of the application in milliseconds.
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To better examine the applicability of D-storm, we configure micro-benchmark to ex-

hibit different patterns of resource consumption. These include CPU intensive (varying

Cs), I/O intensive (varying Ss) and parallelism intensive (varying Ts). In addition, we

alter the volume of profiling stream (Ps) for all the applications to test the scheduler per-

formance under different workload pressures. Table 4.3 lists the evaluated values for

the application configurations, where the default values are highlighted in bold. Note

that when one configuration is altered, the others are set to their default value for fair

comparison.

Table 4.3: Evaluated configurations and their values (defaults in bold)

Configuration Value

Cs (for micro-benchmark only) 10, 20, 30, 40
Ss (for micro-benchmark only) 1, 1.333, 1.666, 2
Ts (for micro-benchmark only) 4, 8, 12, 16
Ps (all applications) 2500, 5000, 7500, 10000

Fig. 4.5 presents the changes of inter-node communication while altering the micro-

benchmark configurations listed in Table 4.3. We find that our D-Storm prototype always

performs at least as well as the static counterpart, and often results in significant commu-

nication reduction as compared to the default scheduler.

Specifically, a study of Figs. 4.5a, 4.5e and 4.5i reveals that D-Storm performs slightly

better than, or at least similarly to the static Resource-Aware Scheduler (RAS) when ap-

plied to CPU-intensive use cases. In most instances, D-Storm achieves the similar com-

munication reduction as the static RAS, with the difference also reaching as high as 17%

when Cs is set to 20 for the Star topology. We interpret this performance similarity in that

all streaming tasks are created homogeneously by their implementation, which makes

the job easy for the static method to probe accurate resource profiles through a pilot

run. Moreover, as the scheduling of CPU-intensive application reduces to a typical bin-

packing problem, both resource-aware approaches performed well in the beginning by

utilising the large nodes first for assignment. On average, they saved 63.9%, 57.7%, and

80.1% inter-node traffic compared to the default scheduler in the linear, diamond and star

topology, respectively.

This also explains the variation trend we see in the figures: as the applications become
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increasingly computational-intensive, the performance gain of being resource-aware is

gradually reduced (from on average 67.2% less to almost identical). This is because the

streaming tasks are forced to spread out to other nodes as they become more resource-

demanding, thus introducing new inter-node communications within the cluster.

However, it is worth noting that the communication reduction brought by the static

RAS is based on the correct resource profile provided by the pilot run. If this information

were not specified correctly, the static resource-aware scheduler would lead to undesir-

able scheduling results, causing over-utilisation and impairing the system stability.

Figs. 4.5b, 4.5f and 4.5j, on the other hand, showcase the communication changes

as the selectivity configuration is altered, which creates heterogeneous and intensive

communications on the tailing edges of the topology. The results demonstrate that D-

Storm outperforms the static RAS in terms of the communication reduction by on aver-

age 15.8%, 17.4%, and 16.2% for the linear, diamond and star topology, respectively. This

is credited to the fact that D-Storm is able to take runtime communications into account

during the decision-making process. By contrast, the existing resource-aware scheduler

can only optimise inter-node communication based on the number of task connections,

which contains only coarse-grained information and does not reflect the actual commu-

nication pattern. We also find out that the amount of inter-node communication increases

rapidly along with the growing selectivity. Especially, the four-operator linear topology

exhibits 5.1, 11.8, and 9.7 times network traffic increase under all the three schedulers

when the selectivity configuration doubles, which proves that the internal communica-

tion has been magnified exponentially by the concatenated selectivity settings.

Figs. 4.5c, 4.5g and 4.5k compare the three schedulers in parallelism intensive test

cases. The analysis of results discovers that the amount of inter-node communication is

relatively insensitive to the variations of the parallelism settings. We found it is because

a single worker node can accommodate more tasks for execution, as the resource require-

ment of each streaming task reduces effectively in inverse proportion to the parallelism

increase. However, it is also worth reporting that in Fig. 4.5g the static RAS performs

noticeably worse than D-Storm, causing an average of 10.4 MB/s more network traffic in

the four test cases. We interpret this result as the static scheduler having overestimated

the resource requirement for Op6, which results in the use of more worker nodes in the
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Figure 4.6: The change of the inter-node communication when varying the input size of
realistic applications. We repeated each experiment for 10 times to show the standard
deviation of the results.

cluster. As a matter of fact, the additional overhead of thread scheduling and context

switching increases along with the parallelism setting, which would be hard for the static

RAS to estimate prior to the actual execution.

Finally, we evaluate the communication changes as the test application handles dif-

ferent volumes of workload. The results of micro-benchmark are shown in Figs. 4.5d,

4.5h and 4.5l, while the results of the realistic applications are presented in Fig. 4.6.

Specifically, D-Storm and the static RAS performed similarly when applied to the micro-

benchmark, which demonstrates that the static method works well on applications with

homogeneous operators. On the other hand, D-Storm achieved much better performance

than its static counterpart in the realistic applications — Fig. 4.6 shows that D-Storm

improves the communication reduction by 14.7%, 21.3%, 18.7% and 15.5% in the URL-

Converter, and by 9.3%, 18.8%, 15.5% and 25.3% in the Twitter Sentiment Analysis when

Ps is varied from 2500 to 10000. Part of this performance improvement is credited to D-

Storm being able to handle uneven load distributions, which is a common problem in

realistic applications due to the hash function based stream routing. As a contrast, the

static scheduler configures resource profile at the operator-level, deeming the spawned

streaming tasks homogeneous in all aspects. Consequently, the increasingly unbalanced

workload distribution among the same-operator tasks is ignored, which leads to the per-

formance degradation of the static scheduler.

We also collected the metric of complete latency to examine the application respon-

siveness while using different schedulers. As observed in Fig. 4.7, the complete latency
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(b) Varying Ps (Diamond)
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(c) Varying Ps (Star)
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(d) Varying Ps (URL-Converter)
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Figure 4.7: The application complete latency under different volumes of profiling
streams. Each result is an average of statistics collected in a time window of 10 minutes,
so the error bar is omitted as the standard deviation of latency is negligible for stabilised
applications.

is strongly affected by the combination of two factors — the size of the profiling stream

and the volume of inter-node communications. First of all, the higher the application

throughput, the higher the complete latency is likely to be yield. If we calculate an aver-

age complete latency for these three schedulers, we can find out the results for the linear,

diamond, star, URL-Converter, and Twitter Sentiment Analysis have increased to 5.2, 4.4,

4.3, 2.9 and 3.1 times the original values, respectively. It also shows that more resources

are required for the Twitter Sentiment Analysis to handle higher throughput without vi-

olating the given latency constraint, as the complete latency has reached as high as 410.4

milliseconds in our evaluation.

Besides, we notice that reducing the inter-node communication is also beneficial to

improving the application responsiveness. As shown in Figs. 4.7d and 4.7e, packing

communicating tasks onto fewer worker nodes allows D-Storm to reduce the commu-

nication latency to on average 72.7% and 78% of that of the default scheduler in the URL-
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Figure 4.8: Cost efficiency analysis of D-Storm scheduler as the input load decreases. The
pricing model in the AWS Sydney region is used to calculate the resource usage cost.

Converter and Twitter Sentiment Analysis, respectively. These results confirm the fact

that conducting communication on network is much more expensive than inter-thread

messaging, as the later avoids data serialisation and network delay through the use of a

low-latency, high-throughput message queue in memory.

4.5.3 Evaluation of Cost Efficiency

Modelling the scheduling problem as a bin-packing variant offers the possibility to con-

solidate tasks into fewer nodes when the volume of incoming workload decreases. In this

evaluation, we examine the minimal resources required to process the given workload

without violating the latency constraint. Specifically, D-Strom scheduler is applied to the

test applications, with the size of input stream (Ps) varied from 10000 tuples / second to

2500 tuples / second. To intuitively illustrate the cost of resource usages, we associate

each worker node created in the Nectar cloud with the pricing model in the AWS Sydney

Region13. In particular, a small instance is billed at $0.0292 per hour, a medium instance

costs $0.0584 per hour, and a large instance charges $0.1168 per hour.

All five test applications introduced in Section 4.5.1 are included in this evaluation,

in which the synthetic topologies have configured their settings to the default values. As

shown in Fig. 4.8, the cost of resources used by the D-Storm scheduler steadily reduces

when the input load decreases. Specifically, the diamond topology is the most resource-

13https://aws.amazon.com/ec2/pricing/

https://aws.amazon.com/ec2/pricing/


130 Dynamic Resource-Efficient Scheduling in Stream Processing Systems

consuming synthetic application in the micro-benchmark, utilising 4 large nodes and 4

medium nodes to handle the profiling stream at 10000 tuples / second. Such resource

configuration also demonstrates that D-Storm avoids using smaller instances for schedul-

ing unless the larger nodes are all depleted, which helps minimise the inter-node com-

munication and improve the application latency. As the volume of the profiling stream

drops from 10000 tuples / second to 2500 tuples / second, the resource consolidation is

triggered and the usage cost of the diamond, linear, and star topology reduces to 33.3%,

40.2%, 36.4% of the original values, respectively.

This same trend is also observed in the evaluation of realistic applications, with con-

solidation resulting in 69.2% and 71.43% cost reduction for the URL-Converter and Twit-

ter Sentiment Analysis, respectively. In particular, Twitter Sentiment Analysis only re-

quires two large instances to handle the reduced workload whereas it used to occupy the

whole cluster for processing.

However, the comparable schedulers such as the static resource-aware scheduler and

the default Storm scheduler lack the ability to consolidate tasks when necessary. In these

test scenarios, they would occupy the same amount of resources even if the input load

dropped to only one-quarter of the previous amount, which results in under-utilisation

and significant resource waste.

4.5.4 Evaluation of Scheduling Overhead

We also examine the time required for D-Storm to calculate a viable scheduling plan using

Algorithm 4.1, as compared to that of the static RAS scheduler and the default Storm

scheduler. In this case, the synthetic applications are evaluated with various parallelism

settings, as well as the realistic applications under the default size of the profiling stream.

Specifically, we utilised the java.lang.System.nanoTime method to probe the elapsed

time of scheduling in nanosecond precision. To overcome the fluctuation of results, we

repeated the clocking procedure for 5 times and present the average values in Table 4.4.

Studying Table 4.4, we find that the default Storm scheduler is the fastest among

all three comparable schedulers, which takes less than 3 milliseconds to run the round-

robin strategy for all test applications. Its performance is also relatively insensitive to the

increasing parallelism configuration, as there are no task sorting or comparison involved
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Table 4.4: Time consumed in creating schedules by different strategies (unit: millisec-
onds)

Schedulers
Test Cases Linear Topology

Ts=4 Ts=8 Ts=12 Ts=16

D-Storm 15.49 18.07 26.52 32.29
Static Scheduler 3.01 3.91 4.25 4.51
Default Scheduler 1.20 1.64 1.98 2.04

Diamond Topology

Ts=4 Ts=8 Ts=12 Ts=16

D-Storm 19.08 22.90 35.89 39.64
Static Scheduler 3.29 3.62 5.78 6.01
Default Scheduler 1.77 1.51 2.84 2.83

Star Topology

Ts=4 Ts=8 Ts=12 Ts=16

D-Storm 13.80 23.66 28.71 32.59
Static Scheduler 3.11 5.38 5.76 5.27
Default Scheduler 1.36 1.78 2.17 2.47

Realistic applications

URL-Converter TSA

D-Storm 18.17 42.25
Static Scheduler 5.56 5.91
Default Scheduler 1.55 2.99

in the scheduling process.

On the other hand, the static resource-aware scheduler usually takes 3 to 6 millisec-

onds to run its greedy algorithm. Compared to the default round-robin scheduler, it

consumes roughly twice the time of the former to make sure that the number of commu-

nication connections across different worker nodes is minimised.

In contrast, the algorithm proposed in D-Storm is the slowest among the three, as it

requires dynamically re-sorting all the remaining tasks by their updated priority after

each single task assignment. However, considering the fact that the absolute value of the

time consumption is at the millisecond level, and the analysis in Section 4.3.3 has shown

that the algorithm is at worst in quadratic time complexity, we conclude our solution is

still efficient and scalable to deal with large problem instances from the real world.
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4.6 Related Work

Scheduling of streaming applications has attracted close attention from both big data

researchers and practitioners. This section conducts a multifaceted comparison between

the proposed D-Storm prototype and the most related schedulers in various aspects, as

summarised in Table 4.5.

Table 4.5: Related work comparison

Aspects
Related Works Our

[5] [124] [50] [173] [156] [155] [101] [99] Work

Dynamic Y N Y Y Y Y N Y Y
Resource-aware N Y N N Y Y Y N Y
Communication

Y N Y Y N N Y Y Y
-aware
Self-adaptive Y N Y Y N N N Y Y
User-transparent N N Y Y N N N N Y
Cost-efficient N Y N N Y Y N N Y

Aniello et al. pioneered dynamic scheduling algorithms in the stream processing con-

text [5]. They developed a heuristic-based algorithm that prioritises the placement of

communicating tasks, thus reducing the amount of inter-node communication. The pro-

posed solution is self-adaptive, which includes a task monitor to collect metrics at run-

time and conducts threshold-based re-scheduling for performance improvement. How-

ever, the task monitor is not transparently set up at the middleware level and the algo-

rithm is unaware of the resource demands of each task being scheduled. It also lacks the

ability to consolidate tasks into fewer nodes for improving cost efficiency.

By modelling the task scheduling as a graph partitioning problem, Fisher et al. [50]

demonstrated that the METIS software is also applicable to the scheduling of stream pro-

cessing applications, which achieves better results on load balancing and further reduc-

tion of inter-node communication as compared to Aniello’s work [5]. However, their

work is also not aware of resource demand and availability, let alone reducing the re-

source footprints with regard to the varying input load.

Xu et al. proposed another dynamic scheduler that is not only communication-aware

but also user-transparent [173]. The proposed algorithm reduces inter-node traffic through
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iterative tuning and mitigates the resource contention by passively rebalancing the work-

load distribution. However, it does not model the resource consumption and availability

for each task and node, thus lacking the ability to prevent resource contention from hap-

pening in the first place.

Sun et al. investigated energy-efficient scheduling by modelling the mathematical

relationship between energy consumption, response time, and resource utilisation [156].

They also studied reliability-oriented scheduling to trade-off between competing objec-

tives like better fault tolerance and lower response time [155]. But the algorithms pro-

posed in these two papers require modifying the application topology to merge operators

on non-critical paths. A similar technique is also seen in Li’s work [99], which adjusts the

number of tasks for each operator to mitigate performance bottleneck at runtime. Never-

theless, bundling scheduling with topology adjustment sacrifices the user transparency

and impairs the applicability of the approach.

Cardellini et al. [21] proposed a distributed QoS-aware scheduler that aims at placing

the streaming applications as close as possible to the data sources and final consumers.

Differently, D-Storm makes scheduling decisions out of the resource-saving perspective

and regards the minimisation of network communication as its first-class citizen. Papa-

georgiou et al. [123] proposed a deployment model for stream processing applications to

optimise the application-external interactions with other Internet-of-Things entities such

as databases or users, while our work focuses entirely on reducing network traffic among

streaming operators.

The static resource-aware scheduler proposed by [124] has been introduced in Sec-

tions 4.1 and 4.2. The main limitation of their work, as well as [101, 150], is that the

runtime changes to the resource consumptions and availability are not taken into consid-

eration during the scheduling process.

4.7 Summary

In this chapter, we proposed a resource-efficient algorithm for scheduling streaming ap-

plications in Data Stream Management Systems and implemented a prototype scheduler

named D-Storm to validate its effectiveness. It tackles new scheduling challenges intro-
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duced by the deployment migration to computing clouds, including node heterogeneity,

network complexity, and the need of workload-oriented task consolidation. D-Storm

tracks each streaming task at runtime to collect its resource usages and communication

pattern, and then it formulates a multi-dimensional bin-packing problem in the schedul-

ing process to pack communicating tasks as compact as possible while respecting the

resource constraints. The compact scheduling strategy leads to the reduction of inter-

node communication and resource costs, as well as reducing the processing latency to

improve the application responsiveness. Our new algorithm overcomes the limitation

of the static resource-aware scheduler, offering the ability to adjust the scheduling plan

to the runtime changes while remaining sheer transparent to the upper-level application

logic.

However, our D-Storm prototype has not considered the management of operator

states during the scheduling process. It also lacks the ability to deal with possible node

crashes and JVM failures that impair the availability and integrity of intermediate results

cached in the state. In the next chapter, we present a replication-based state management

framework to support on-demand state migration among streaming tasks, which helps in

maintaining the semantic correctness of stateful operations despite the runtime changes

of the infrastructure.



Chapter 5

Replication-based State Management
in Stream Processing Systems

The exiting checkpointing framework involves a remote data store for state preservation and access,

resulting in significant overheads to the performance of error-free execution. We propose E-Storm,

a replication-based state management system that actively maintains multiple state backups on dif-

ferent worker nodes. We build a prototype on top of Storm by extending it with monitoring and re-

covery modules to support inter-task state transfer whenever needed. The experiments carried out on

synthetic and real-world streaming applications confirm that E-Storm outperforms the checkpointing

method in terms of the resulting application performance, obtaining as much as 9.44 times throughput

improvement while reducing the application latency down to 9.8%

5.1 Introduction

THERE are three fault-tolerance mechanisms built in Storm that enable reliable stream

processing, namely: (1) Supervised and stateless daemon execution, which al-

lows the failed Storm daemons to be restarted, resuming their stateless execution under

the supervision of an external process monitoring tool; (2) Message delivery guarantee,

which ensures the consistency of processing semantics by using a subtle anchoring and

acknowledgement algorithm; and (3) State persistence, which persists the computation

states to somewhere in order to mask the loss of states caused by JVM or node crashes.

This chapter is derived from:
• Xunyun Liu, Aaron Harwood, Shanika Karunasekera, Benjamin Rubinstein and Rajkumar Buyya,

“E-Storm: Replication-based State Management in Distributed Stream Processing Systems,” in Pro-
ceedings of the 46th International Conference on Parallel Processing (ICPP), Bristol, UK, Pages: 1-10, IEEE,
2017.
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This chapter proposes a novel state management framework to better achieve this goal.

Since version 1.0.0, Storm’s core has abstractions for stream operators to save and

retrieve states against a persistent state store. However, the current state persistence

technique introduces significant overhead to error-free execution. From the implemen-

tation’s perspective, state persistence is now achieved through checkpointing, where a

remote data store is constantly involved in all state accesses. Specifically, there is an in-

ternal data source that initialises a checkpoint transaction by sending signals across the

streaming application. Upon receiving the checkpoint signal, stateful operators prepare

and preserve their intermediate states to a Redis1 store, and then empty the in-memory

cache to commit the transaction. The frequency of checkpointing is defaulted to every

second, which brings significant state synchronization overhead; while setting the check-

point interval too large would risk losing state between checkpointing and being unable

to replay failed messages. Secondly, the use of any committed state resorts to the remote

data store, which imposes non-trivial data access delay for latency-sensitive streaming

applications. Lastly, there could be a massive amount of operators accessing the remote

data store simultaneously for state retrieval or check-pointing, which makes the store a

potential performance bottleneck to application throughput.

In this chapter, we propose E-Storm, a light-weight, replication-based state manage-

ment framework in Storm that eliminates the use of remote data store during error-free

execution. To ensure state persistence in the case of failures, our framework automati-

cally maintains live state replicas on different nodes of Storm and transfers state when

needed. The number of replicas can be customised with regard to the user’s needs, but

in general a stateful operator with k replicas is able to tolerate the failure of any k − 1

worker nodes.

The main contributions of this work are as follows:

• We propose a replication-based state management framework for achieving state

persistence in the case of failures, which exposes a concise fluent-style interface

and works transparently to the upper-level logic.

• We design a failure recovery protocol that guarantees application integrity when

failover occurs. The recovery operates at the lowest thread level and is seamlessly

1https://redis.io/

https://redis.io/
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integrated to Storm’s execution flow. The replication of state is also autonomous

and high-performance, which allows multiple transfers to occur concurrently.

• We implement the framework and conduct extensive experiments to demonstrate

the superiority of our approach compared to the existing check-pointing method,

which reaches as much as 9.44 times throughput boosts and 90.2% latency reduc-

tion.

Our implementation of E-Storm is loosely coupled with the existing Storm modules,

and externally configurable to provide different levels of state resilience in different use

cases. Such implementation design makes it viable to be generalised to other operator-

based stream processing systems.

5.2 Background

In recent years, Apache Storm emerged as a new generation of data stream manage-

ment system for tackling many real-time use cases such as on-line machine learning,

continuous computation and Distributed Remote Procedure Call (DRPC). The scalable,

fault-tolerant, and language-agnostic design of Storm offers seamless integration with

the mainstream queueing and database technologies, making it much easier to process

unbounded fast data on a set of distributed resources.

From the structure point of view, a Storm cluster much resembles Hadoop — its coun-

terpart in batch processing. It also includes a master node and several worker nodes: the

master node has a nimbus daemon that is responsible for monitoring the cluster and dis-

tributing workload; while the worker node hosts the worker processes to carry out the

streaming logic in JVMs. Additionally, there is a supervisor daemon that communicates

with the nimbus and constantly governs the worker processes during runtime. The

whole Storm cluster relies on Zookeeper — a distributed hierarchical key-value store to

coordinate and failover.

In Storm’s terminology, a tuple is an ordered list of key-value pairs (each pair is re-

ferred to as a field) and a stream is an unbounded sequence of tuples. From the logical

perspective, the workflow of a streaming application is represented by the topology — a

Directed Acyclic Graph (DAG) of operators standing on streams. Among operators, the
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sources of streams are called spouts that pull stream data to the topology, while the others

are referred to as bolts that can either generate new streams based on inputs or simply

consume data without emission. Different bolts may contain various user-defined pro-

cessing logics such as functions, filtering, and aggregations.

From the viewpoint of execution, an operator is distributed across the Storm cluster

as one or more tasks, the process of which is called operator parallelisation. Each task is an

operator instance that handles a portion of the operator input with the same streaming

logic, so Storm makes full use of distributed resources by distributing tasks to different

worker nodes. Also, as a consequence of parallelisation, each incoming stream is ac-

companied by a grouping policy that determines how tuples are routed among the receipt

tasks. When a streaming application is submitted to the cluster, the worker process will

spawn executors — the minimal schedulable entity of Storm — to wrap the execution of

tasks. Note that each executor is a thread that may run one or more tasks for the same

component (spout or bolt), Therefore, internally tasks have to run in sequence.

Most of the streaming applications involve stateful operators that accumulate states

such as window-grouped tuples or aggregation results during runtime. Therefore, it is

crucial to ensure the integrity of operator states in the case of failures. From the execution

point of view, the parallel execution of stateful operator requires each task to maintain

a unique partition of the internal state. All the internal states are temporally stored in

memory and are thus subject to JVM failure. Currently, the only way to achieve state

persistence is through regularly checkpointing them to a remote Redis store. Storm has a

built-in checkpoint mechanism which implements a three-phase commit protocol on top

of the existing message delivery system, ensuring that the states of different tasks would

be saved in a consistent and atomic manner. However, as we have explained in Sec-

tion 5.1, such implementation introduces non-trivial overhead to the error-free execution

of streaming applications.

5.3 Framework Overview

In order to maintain multiple state backups independently, our state management frame-

work duplicates the execution of stateful tasks on different worker nodes. Fig. 5.1 uses
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Figure 5.1: The execution of an example streaming application on Storm, with or without
state replication.

an example application to illustrate the changes we have made to the Storm execution

model. There are three linearly connected operators in the example application: OpA is

the spout, OpB is a stateful operator, and OpC is a stateless operator. Both OpB and OpC

are parallelised into two tasks for distributed execution:

1. Having set the number of replicas for OpB to 2, the framework spawns two shadow

tasks TB′1
and TB′2

to mirror the execution of the primary task TB1 and TB2 , respectively.

Tasks sharing the same state make up a task fleet, which are exclusively placed on

different worker nodes for independent execution.

2. Any input stream sent to the primary task is copied to its shadow counterparts.

However, shadow tasks have no output stream as they only serve as state contain-

ers.

3. In the case of failures, the restarted tasks recover their lost states from the alive

partners of the same fleet.

We have extended Storm with several modules to implement these changes. These in-

clude the Topology Adapter, the State Monitor, the Task Wrapper, the Recovery Manager

and the State Transit Station, which are highlighted in grey in Fig. 5.2.

The Topology Adapter is written in Storm core to help alleviate the adaptation effort

on the application level. Developers can define the number of replicas using a fluent-

style replication API, just like how they specify the number of tasks for operators. The

adapter is also in charge of re-grouping streams for stateful operators and initialising
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Figure 5.2: The extended Storm architecture with the state management framework,
where the newly introduced modules are highlighted in grey.

other modules for state management. When the application is submitted to Nimbus, this

module ensures that the shadow tasks are transparently set up across the Storm cluster.

The State Monitor, located alongside the supervisor daemon, is responsible for mon-

itoring the health of states residing in this worker node. Once a state issue is detected,

it will send a recovery request to the Recovery Manager through Zookeeper. The State

Monitor itself is stateless and fail-fast, with execution placed under constant supervision.

The Recovery Manager is an internal operator that initialises, oversees and finalises the

recovery process. It implements the Zookeeper watcher interface to monitor recovery re-

quests, then exploiting the Storm’s acknowledgement system to ensure the consistency of

recovery. Being a stateless operator, its fault-tolerance is guaranteed by Storm to survive

from node and JVM crashes.

The Task Wrapper encapsulates the task execution with the logic to handle state trans-

fer and recovery. There is also the State Transit Station that decouples the senders and

receivers during the state transferring process. By directing all the state transfers to the

station, task wrappers perform state management without synchronization and leader

selection, which would have been necessary in a peer-to-peer style recovery and intro-

duce non-negligible overhead.

The state management framework has two different working modes, namely error-

free execution and failure recovery. In the following sections, we discuss in detail how
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these extended modules are implemented to achieve state persistence against JVM and

node crashes.

5.4 Error-free Execution

When a streaming application is submitted, the topology adapter is responsible for de-

ciding the task roles in execution (primary or shadow). It is also in charge of rewiring

the task communication for message replication and placing the tasks of the same fleet

on different machines for failure-independence.

The role of a task is statically decided based on its task ID — the primary task is the

one with the lowest ID in a fleet. As shown in Fig. 5.3, OpA is a stateful operator that is

initially parallelised as n tasks. After users set the number of replicas to m, the topology

adapter transparently multiplies the number of tasks to n times m and composes each

m tasks as a task fleet. Therefore, TA1
1
, TA1

2
...TA1

n
are set as primary tasks and each one of

them is accompanied by m− 1 shadow tasks that are adjacent in ID. Note that the role of

these tasks will not change throughout the application lifecycle.

In order to replicate states across the task fleet, the contained tasks must receive the

same inputs for processing. To this end, the topology adapter replaces the original group-

ing that connected to the stateful bolt with a custom, replication-aware stream grouping

method, which replicates the tuples in transmission transparently at the message chan-

nel.

Take the fields grouping — the most common grouping type in stateful computation —

as an example. It routes a particular tuple Tuple to its target task Ttarget according to the

following equation: Ttarget = hash(Tuple. f ields)%n, where n is the number of tasks and
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hash is a concatenating function on the hash codes of the selected grouping fields. When

the fields grouping is replaced with the replication-aware fields grouping, the message

channel computes a list of m target tasks rather than a single one, which is formulated as

Ttargets = {hash(Tuple. f ields)%n ∗m + i|(i = 0, .., m− 1)}.

5.4.1 Replication-aware Task Placement

Essentially, the task placement problem is a bin-packing variant that takes tasks as items

and worker nodes as bins, while the optimization target is to reduce the number of inter-

node communication pairs for improving application performance. Besides, our problem

has a hard constraint that tasks from the same fleet are not to be put on the same worker

node.

The task placement problem itself is NP-Hard since it can be reduced to the PAR-

TITION problem [33]. However, it is feasible to find a sub-optimal solution by using

efficient heuristic methods. We therefore propose a replication-aware task placement al-

gorithm based on the greedy heuristic, with the following desirable features in its design:

• It is only responsible for placing shadow tasks to worker nodes; while the place-

ment of other tasks are left for the user-given task scheduling algorithm to decide.

Such a design allows for the use of various existing scheduling algorithms that op-

timise towards different targets, such as throughput, latency, resource-awareness,

etc.

• The shadow tasks are spread as far as possible across the cluster, so the overhead

of replication is balanced and the effort of state recovery is minimised in the case of

failures.

• The algorithm makes use of the topology structure to place communicating tasks

as close as possible.

Algorithm 5.1 depicts the pseudo-code for the replication-aware task placement. It

first calculates Ami , the capacity of each node, by enforcing the shadow tasks to spread

out across the cluster. Then the standard Breadth-first traversal procedure is applied to

the topology structure, yielding an operator queue Qop which is a partial ordering of

operators with the communicating pairs placed in succession.
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Algorithm 5.1: The replication-aware task placement algorithm
Input: A Storm cluster with nm nodes and a topology Γ
Input: A task set ~τ = {τ1, τ2, . . . , τn} to be assigned
Output: A node set ~m = {m1, m2, . . . , mnm} with each node hosting a disjoint

subset of ~τ
1 Ami ← d n

nm
e (i = 1, 2, ...nm)

2 Qop ← BFSTraversal(Γ, spout)
3 ~τordered ← ∅
4 while ~τordered does not contain all the tasks in ~τ do
5 foreach Operator op ∈ Qop do
6 if op has an unvisited shadow task τi then
7 ~τordered.append(τi)
8 op.remove(τi)

9 foreach Task τi ∈ ~τordered do
10 foreach node mj ∈ ~m that has Amj > 0 do
11 if mj has no conflicting tasks to τi then
12 Imj ← the increase of the intra-node communication pairs if τi were put

onto mj

13 Place τi to node mj with the largested Imj

14 Amj ← Amj − 1

15 return ~m

Lines 3-8 of the algorithm describe the procedure to generate an ordered list of tasks

~τordered based on Qop. For each operator being traversed, the algorithm takes out one

shadow task at a time and appends it to the ordering list. This process continues until all

the tasks to be placed are ordered, which ensures that, in the later placement phase, the

communicating tasks have better chance to be placed in close vicinity.

The rest of the algorithm determines the exact node where a particular task would

be placed. As shown in line 13, the greedy heuristic chooses the one that is capable of

turning more communications into intra-node message passing. If there is a tie between

multiple alternatives, the one with the highest remaining capacity will be selected.

5.5 Failure Recovery

The recovery phase is triggered when any worker crashes during runtime. Fig. 5.4 briefly

illustrates the work flow of recovery after the failure occurs.
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Figure 5.4: The flowchart of the recovery process, which is seamlessly integrated with
the Storm’s error-handling logic and leverages the acknowledgement system to pause
and resume the execution flow.

In general, Storm automatically pauses the application execution due to the lack of tu-

ple acknowledgement. Through the heartbeat mechanism between worker processes and

Storm daemons, the failed tasks will be transparently restarted with the same task ID, but

possibly placed on different worker nodes depending on the type of failure. Therefore, it

is required that the replication-aware task placement is invoked to avoid two tasks from

the same fleet being collocated. During the preparation process, these restarted tasks re-

port the loss of state to the state monitor, which initialises a recovery transaction on a

dedicated Zookeeper node, recording a transaction ID as well as the set of tasks being

affected. The recovery manager that constantly monitors the Zookeeper would make

sure that all the affected tasks get initialised with its previous states through the failure

recovery process.

The recovery manager is implemented as an internal spout, which is automatically
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Algorithm 5.2: The state operation logic encapsulated in the StateManipulator
Input: A recovery transaction tx with ID tx.id and the set of tasks that have lost

their state tx.set
Input: An initilisation flag isInit that indicates if s, the state of the wrapped task,

has been initilised
Input: A CuratorFramework client c f that opeartes on the Zookeeper
Input: The task fleet t f that the wrapped task belongs to

1 if isInit == True then
2 c f initilises a shared inter-process lock on t f

3 if c f .acqureLock(t f ) and s ∈ tx.set then
4 if s is not on the State Transition Station then
5 Save s to the State Transition Station

6 c f .releaseLock(t f )

7 else
8 while s is not on the State Transition Station do
9 Sleep a while, recheck until recovery times out

10 if s exist in the State Transition Station then
11 Read s from the State Transition Station and assign it to the wrapped task
12 Process the pending tuples that received before s is initilised
13 isInit = True

14 else
15 Return with a recovery failure flag

16 Emit the recovery transaction tx to downstream
17 Acknowledge the recovery transaction tx
18 return

added by the topology adapter if there is at least one stateful bolt and the state replica-

tion is turned on. The adapter also connects the recovery manager with other operators

through a separate internal stream, allowing it to send recovery signal across the topol-

ogy for starting and supervising the failure recovery process. Once the recovery manager

receives acknowledgement from all the downstream operators, the state recovery is com-

plete and the streaming application can resume execution from the point it left off.

As mentioned in Section 5.3, the task wrapper encapsulates the state transfer and re-

covery logic, making the state management mechanism autonomous and transparent to

its wrapped task. There are two different types of wrappers in our framework, encom-

passing stateless and stateful tasks, respectively. The wrapper for stateless tasks is called

SignalForwarder, whose only duty is to forward the signal tuple to all its downstream
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tasks; while the StateManipulator for stateful tasks not only handles the state manage-

ment on receiving the recovery transaction, but also relays the received signal for it to be

broadcast across the topology DAG.

Specifically, Algorithm 5.2 illustrates the pseudo-code of state operations in the State-

Manipulator. Lines 1-6 of the algorithm are executed by the statful tasks that are not af-

fected by the failure. Considering that there could be multiple tasks alive in the same

fleet and they all attempt to preserve states without prior-synchronization, our algo-

rithm takes advantage of the inter-process lock on Zookeeper, ensuring that there is only

one task in each crash-affected fleet communicating to the state transmit station, which

greatly reduces the network flow during the state transfer process.

Lines 7-15 of the algorithm describe the state recovery logic for restarted tasks. Once

the recovery signal is received, tasks that are initialised from scratch start querying the

state transmit station for accessing their lost state. However, the corresponding state

preservation process may not be complete by the time they restarted, so these tasks need

to repeat the retrieval attempts until the recovery times out. Besides, any tuple that is

received before the state initialisation is added to a pending list to delay its execution.

Due to the limitation of the acknowledgement system in Storm’s core, our failure re-

covery logic cannot eliminate duplicate tuple evaluation and provide only at-least-once

message processing guarantee. However, it is possible to achieve exactly-once semantics

with the Trident abstraction, where the idea of replication still applies for state persis-

tence.

5.6 Performance Evaluation

In this section, we explore in detail the performance of our prototype (E-Storm) compared

to the existing checkpointing method, by applying them to both synthetic and real-world

streaming applications. The design of evaluation answers the following questions:

• What are the runtime overheads for enabling state persistence and how do these

overheads vary in different use cases? (Section 5.6.2)

• How does the resilience level, i.e. the number of state replications, affect the per-

formance of E-Storm? (Section 5.6.2)
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(a) The topology of the synthetic test application

(b) The topology of the real-world test application

Figure 5.5: The illustration of the test application topologies. In Fig. 5.5a, Stateful Bolt 1
and State Bolt 2 have the same implementation.

• How long does it take for E-Storm to recover a streaming application from JVM

crashes. (Section 5.6.3)

5.6.1 Experiment Setup

Our experiments are conducted on Storm v1.0.2 using the Nectar IaaS Cloud2. The

Storm cluster consists of 10 worker nodes and 2 administrative nodes for Nimbus and

Zookeeper, respectively. Apart from that, there is also (1) a Kestrel3 node that caches

inputs for streaming applications when the processing capability of the cluster cannot

catch up with the speed of data generation; and (2) a Redis node that works as the re-

mote data store in the checkpointing method and the state transmit station in E-Storm.

The above-mentioned nodes are all of “m2.medium” size, provisioned from the same

NCI availability zone and equipped with 2 VCPUs, 6GB RAM and 30GB root disk.

Test Applications

Our first test application is synthetically designed to mimic different intensities of state

usages. As shown in Fig. 5.5a, it consists of four operators (Op1, ..., Op4): Op1 is the

KestrelSpout that pulls input data from the Kestrel queue server, while Op2 and Op4 are

two stateful operators that are connected through the stateless operator Op3. Table 5.1

illustrates the application configurations that adjust the size of internal states and the

way of accessing them.

2https://nectar.org.au/research-cloud/
3https://github.com/twitter-archive/kestrel

https://nectar.org.au/research-cloud/
https://github.com/twitter-archive/kestrel
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Table 5.1: The configuration of the synthetic test application

Symbol Configuration Description

Ns The number of stateful tasks in this topology
Es The size of states being kept in each stateful task
Fs The number of state access in the execute method

In particular, Ns denotes the number of stateful tasks in total, where Op2 and Op4

equally get Ns/2 tasks for parallel execution; whereas the parallelism degree of Op3 is

fixed at 10, as it is sufficiently large to ensure the stateless operator will not be the bot-

tleneck of the topology. In terms of the streaming logic, each stateful task maintains a

key-value map and continuously fills it with the recently received data. We externally

cap the maximum number of map entries at Es, which essentially determines the size of

the internal state to be kept in this particular task. Lastly, Fs denotes the number of state

access operations encapsulated in the execute method, which effectively determines the

frequency of state access for processing a single tuple.

The second application is drawn from a real-world use case — extracting short Uni-

form Resource Locators (URLs) from incoming tweets and replacing them with complete

URL addresses. As depicted in Fig. 5.5b, the whole application also consists of 4 opera-

tors: the KestrelSpout as used in the synthetic application, the JsonParser bolt that parses

the tweet string and extracts the main body from the JSON content, the URLFilter that

isolates and filters short URLs from the message body, and the Converter that actually

performs the conversion. Among them, the Converter is a stateful operator caching the

map of short and complete URLs in its memory, so trending pages can be identified from

the map statistics and it does not need to check the remote database whenever an input

tuple is received. As for configuration, this application has only one parameter to be set,

i.e. the number of tasks that are evenly distributed among all these four operators.

Evaluation Methodology

We examine the application performance in two major metrics, namely throughput and

complete latency. The application throughput is obtained externally by observing the

number of acknowledgements per unit of time, while the complete latency is a built-in
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Figure 5.6: The profiling environment set for the performance evaluation. Solid connec-
tors represent the generated data stream flow, while the dashed connectors denote the
flow of performance metrics.

Storm metric, which calculates the average time taken by a tuple and all its offspring to

be completely processed by the topology.

In order to evaluate the performance overhead brought by different approaches of

state persistence, we have set up a profiling environment that feeds the streaming appli-

cation with sufficient inputs and continuously monitors the resulting performance. The

components of the profiling environment are briefly depicted in Fig. 5.6. The Message

Generator is a Java program that reads the workload file on-demand to emit a particular

size of profiling stream, and the workload file contains 899,560 tweets in JSON format

that collected from 24/03/2014 to 14/04/2014. Running on the kestrel node, the Mes-

sage Queue module is built with Twitter Kestrel, which exposes a Thrift interface for

the message generator to retrieve the length of the message queue and further deter-

mine whether the streaming application has been overwhelmed by the profiling data.

The application metrics, such as throughput and latency, are externally collected by the

performance monitor which is implemented as a RESTful client. With ample profiling in-

puts, the Storm cluster will be pushed to its performance limit, i.e. exhibiting the highest

throughput, after the application is stabilised. For all the test applications, we also set the

Storm configuration MaxSpoutPending to 10000, which is the maximum number of un-

acknowledged tuples that can be pending on a spout task at any given time. Therefore,

such environment setting makes it possible to compare the performance across different

test applications.
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5.6.2 Performance of Error-free Execution

Overhead of State Persistence

In this section, we first examine the performance overhead brought by state persistence,

as well as how it varies under different application behaviours when the configurations

of state have been altered. Table III describes the evaluated and default values for each

application parameter. When a particular parameter is being examined, the others were

set to their default values.

Table 5.2: Evaluated parameters and their values (Default values are showed in bold).

Parameters Values

Ns (synthetic application) 10, 20, 30, 40, 50
Es (synthetic application) 210, 212, 214, 216, 218

Fs (synthetic application) 4, 6, 8, 10, 12
Number of tasks (real application) 8, 16, 24, 32, 40
Number of state replications 2, 4, 6, 8, 10

As shown in Fig. 5.7 and Fig. 5.8, the results obtained from the synthetic applica-

tion clearly demonstrate that enabling checkpoint for state persistence leads to significant

performance degradation. Under the default configuration, checkpointing yields 18.3%

throughput and 5.38 times complete latency, compared to the baseline case with no state

management. As a matter of fact, the acknowledgement of processed tuples have to be

delayed until the internal state has been committed to the remote data store, therefore,

it is not possible for the checkpointing method to reduce the complete latency below the

pre-designated checkpoint interval, which is default to 1 second for performance consid-

eration.

Furthermore, by altering the application configuration, we can identify and measure

the factors that contribute to the checkpointing overhead, namely periodic synchroniza-

tion and state access. When the size of state is increased from 210 to 218, the application

throughput drops to about 49.9% while the complete latency soars to 196.7%, indicating

that larger state involves more state updates and thus imposing significant overhead for

the remote data store to synchronize. However, this overhead does not increase linearly

along with the size of state as the checkpointing method actually adopts the strategy of
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Figure 5.7: The application throughput under different state persistence methods. Each
result bar is an average of 10 consecutive throughput readings collected every 60 seconds,
with the standard deviation plotted in the error bar.
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Figure 5.8: The application latency under different state persistence methods. Each result
is an average of statistics collected in a time window of 10 minutes, and the error bar is
omitted as the standard deviation of latency is negligible for stabilised applications.
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incremental update for synchronization.

However, such update strategy also brings non-negligible network delay for state ac-

cess. After Fs varies from 4 to 12, the checkpointing method suffered from 59% through-

put loss and 233.7% latency increase, and the performance degradation almost changes

linearly in regard to the variation of Fs.

The replication-based state persistence, by contrast, shows promising performance

against checkpointing. To start with, the replication method exhibited steady throughput

and latency when varying Es and Fs, i.e. the size of state and the frequency of state

access. In the worst case, it accounts for 74.9% of throughput and introduces only 11.5%

of latency compared to the non-persistent baseline. The rationale behind these results

is that our approach manages the internal states in memory resembling the way how

baseline works, and the performance is unlikely to be bottlenecked by the memory access

speed.

However, as expected, it has been identified that the overhead of state replication

climbs as the number of stateful tasks increases. To put it quantitatively, after adjusting

Ns from 10 to 50, the throughput of replication reduces from 73.3% to 55% and the com-

plete latency rises from 108.4% to 123.2%, with all figures obtained from the comparison

to the baseline in which no state persistence is provided. Our analysis deems such per-

formance degradation as the result of bandwidth contention. As there are more shadow

tasks to be spawned at different nodes and their inputs to be replicated at the message

channel, our approach causes additional bandwidth consumption and impairs the max-

imum performance. However, this overhead does not increase super-linearly with the

number of stateful tasks, so we argue that the proposed method is still applicable to

production-scale applications for state persistence.

Overhead of Maintaining More Replicas

To investigate how the number of replicas affects the application performance, we de-

ployed the two test applications to the testbed: the synthetic application uses its default

configuration, while the real application sets the number of tasks to 24 for better demon-

stration. The evaluation results are illustrated in Fig. 5.9. For the synthetic application

whose performance is bounded by the inter-node bandwidth, the resulting throughput
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Figure 5.9: The application performance under different resilience levels, i.e. number of
replicas for stateful tasks. The throughput and latency notations have the same meaning
as explained in Fig. 5.7 and Fig. 5.8.

dramatically decreases to roughly 26.4% of the highest point as the number of replicas

increases to 10, while the complete latency experiences a slight increase from 219 ms to

294 ms during this variation. On the other hand, introducing more state replicas to the

real application has not produced noticeable performance degradation, which can be ex-

plained by the fact that the whole application is actually bounded by the lack of tasks to

process the incoming stream in parallel, rather than the duplication of messages at the

communication channel. We also observed that tasks of the real application spend most

of their time executing tuples, contrasting to the tasks of the synthetic topology having

a relative small capacity with more time spent on waiting I/O operation to complete.

Through this experiment, we reach the conclusion that our method is better suited for

applications with mild or medium bandwidth consumptions. If an operator is known to

be bandwidth bound, E-Storm has the ability to individually set the number of replicas

for this operator to a relatively small value, in order to avoid significant performance

penalty.

5.6.3 Performance of Recovery

To inject failures and invoke the recovery process, we send SIGKILL signals to the des-

ignated worker processes, forcing them to terminate without proper clean-up. The real-

world application (url-mapping) is selected as the test application, with number of tasks

set to 40 and each stateful task having one replica running on another worker node. The
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Figure 5.10: The recovery test performed on the real-world streaming application

application outputs and metrics are collected throughout the test to validate the efficacy

and efficiency of E-Storm.

Recovery from a Single Error

In the first experiment, a JVM crash was injected to the test application on the 10th minute,

causing two stateful tasks to lose their states. Fig. 5.10a depicts the application through-

put obtained through the Storm’s RESTFul API. Note that they are calculated as an aver-

age statistics of a short time period (10 seconds), as the instantaneous throughput can

better reflect the consequence of failure on the application performance. The results

demonstrated that the application was paused for 30 seconds, and then gradually in-

creased its throughputs for 60 seconds until stabilisation. The recovery time includes: (1)

the time used for the supervisor daemon to restart the failed worker process (5.6 s); (2)

the time taken for the failed tasks to be prepared (1.8 s); (3) the time taken by the alive

tasks to write to Redis (6.2 s) and (4) the time taken by the restarted tasks to retrieve

their states from Redis (7.9 s). This break-down data is obtained from the analysis of the

Storm log file and the status of Redis server. However, it is also worth mentioning that

by default, the Kestrel Spout waits for 30 seconds before replaying the failed tuples, so

the application did not produce throughputs immediately after completing the recovery

process.
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Recovery from Multiple Errors

The second experiment is to evaluate the performance of recovery triggered by multiple

errors. We injected multiple SIGKILL signals to the target worker processes at the same

time, with care taken not to bring down all the states backups for a stateful task. As

shown in Fig. 5.10b, the size of states being cached in Redis almost rises proportionally

along with the number of tasks being affected. This result can be explained by two fac-

tors: firstly, each stateful tasks maintains roughly the same size of states as the hash-code

based streaming grouping balances the load well among them; secondly, only one alive

task in each affected task fleet got to preserve its state to Redis, while the others were

staying idle during the whole recovery process.

Table 5.3: The comparison of recovery time under multiple errors (unit: seconds)

No. of stateful tasks affected Wr Tp Ws Rs Total

2 5.6 1.8 6.2 7.9 90
4 5.6 1.9 11.2 13.2 120
6 5.6 2 16.7 18.9 120
8 5.6 1.9 20.2 22.5 120
10 5.7 2.1 25.8 28.7 140

In Table 5.3, we also compare the recovery time needed for the application to resume

execution under multiple errors. In this table, Wr is the time used for the failed worker

processes to be restarted; Tp is the time for restated tasks to be prepared; Ws is the time

used for writing states to Redis and Rs is the time for loading states to the restated tasks.

Note that each failed node executes the recovery protocol asynchronously, so they may

take different times to complete each recovery stage. Therefore, we report the results by

averaging the readings collected on the failed nodes, except the Total column which is

the time taken for the topology to restore its normal performance (reaching 90% of the

average throughput observed before failure).

The comparison results indicate that the recovery time for Storm daemons are in-

dependent from the scale of failures, but the time used for writing and reading states

increases along with the state sizes, which are shown in Fig. 5.10b. However, we can rea-

sonably envision that the use of multiple Redis instances can reduce these time, as dif-

ferent task fleets are mapped to their corresponding Redis instance for concurrent state
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transfer.

5.7 Related Work

State management is one of the major research topics in distributed stream processing.

In this section we review the approaches that manage the transient operator states with

particular goals in data stream management systems.

Some works manage states for application integrity in the event of failure or operator

scaling. Fernandez et al. proposed a set of state management primitives to expose oper-

ator states explicitly to the middle-ware system, so that the DSMS is able to periodically

checkpoint them to the upstream VMs with partitions in order to enable state recovery

and scaling [24]. Similarly, ChronoStream [171] provides elastic support for stateful oper-

ators by dividing the application states into a set of computation slices, which are check-

pointed to specified nodes exploiting locality-affinity and lineage-free progress tracking

to ensure deterministic semantics. StreamScope is a recent effort to provide declarative

interface for users to express complex streaming logic, which also offers the snapshots

abstraction that periodically checkpoints the operator states without user intervention

[104]. Also, MillWheel checkpoints its work in progress at fine granularity so that the

states are persisted against failure and message senders are relieved from buffering the

pending data for a long period [3]. There are even more works that fall into this area

[49, 109, 128]. However, regardless the level of which the checkpoint is performed or the

place where the checkpoint data is stored, periodic state manipulation still introduces

non-negligible runtime overhead.

Some works, on the other hand, focus on migrating states for dynamical application

scaling. Cardellini et al. realise dynamic horizontal scaling for stateful operators in Storm

by allowing the states to be migrated between existing and newly added tasks [23]. Gedik

et al. explores the profitability of auto-parallelisation by providing a state management

API, a run-time migration protocol, and compile-time topology optimization techniques

[58, 141]. Ding et al. further investigate the trade-off between synchronization overhead

and result delay during state migration, so that the selection of migrated tasks can be

optimised to lower the latency spike [42]. However, these methods cannot be used to
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provide state persistence against failures.

The strategy of replication in stream processing has also been discussed in the litera-

ture. Stormy uses replications for high availability, so there is no failure recovery mech-

anism provided to transfer states between different replicas [107]. For fault-tolerance,

Balazinska et al. incorporate a replication-based approach in the Borealis system [1],

which duplicates the execution of the same query network on multiple worker nodes

[8]. To ensure all replicas processing data in the same order, they also introduce a data-

serialising operator that sorts the multiple streams as input and produces a single out-

put stream with a deterministic order. By contrast, E-Storm performs replication at the

fine-grained operator level with the flexibility to adjust the resilience guarantee individ-

ually, and it does not duplicate the execution of stateless operations. Also, we achieve

replica consistency through a lightweight acknowledgement mechanism, thus avoiding

the heavy messaging sorting overhead. To reduce the burden of active replication, Martin

et al. present an approach that first conducts state partitioning and then distributes state

slices across the participating worker nodes [112]. However, this method only profits in

MapReduce-like event processing systems as the state partitioning is a side effect of exe-

cution during runtime, whereas in the state-of-the-art data stream systems, this method

would incur significant state transfer cost when the execution is error-free.

With the similar goal of reducing the replication overhead, Henize et al. combine ac-

tive replication with upstream backup, allowing for the adaptive selection of replication

mechanism for individual operators based on the characteristics of the current work-

load [71]. However, the placement of operator and replicas to hosts is not discussed in

the paper. Flux is an opaque operator implemented in TelegraphCQ [28] that composes

duplicated dataflows to enable online-recovery and mask load imbalances [145]. Never-

theless, replicating the whole data flow and adding an Exchange layer [63] between each

Producer-Consumer pair would incur more overhead than our approach, which requires

only replicating the stateful operations.
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5.8 Summary

In this chapter, we designed and implemented E-Storm, a replication-based state man-

agement system that masks the loss of operator states in the case of JVM and node

crashes. By using E-Storm, the stateful tasks are replicated on different worker nodes

under a replication-aware placement strategy, and the restarted tasks are able to retrieve

their previous states from the alive partners through an asynchronous recovery proto-

col. During the state transfer process, the implementation of E-Storm takes advantage

of Redis to decouple the coordination of state senders and receivers, and makes use of

Zookeeper to reduce the size of states being transmitted. Therefore, it achieves concur-

rent and high performance system recovery in the presence of failures.

Through a comprehensive performance evaluation, the results confirm that our ap-

proach greatly outperforms the existing checkpointing method in terms of throughput

and latency overhead. Specifically, E-Storm can bring up to 9.44 times throughput im-

provement while reducing the application latency down to 9.8% compared to that of the

checkpointing method (witnessed in the synthetic test application when Fs, the number

of state access in the execute method, is set to 12). We also identified that the overhead

of checkpointing is attributable to the frequent state access and remote synchronization,

which cannot be mitigated by enlarging the checkpointing interval as it would incur un-

acceptable latency penalty for real-time streaming applications.

After discussing individual resource management topics such as operator parallelisa-

tion, task scheduling, and state management, the next chapter presents a comprehensive

framework to deploy the streaming applications in clouds towards a pre-defined per-

formance target. We aim to optimise resource provisioning using an iterative feedback

and control process, so that the performance target can be achieved with minimal costs

regardless of the initial resource allocation.





Chapter 6

Performance-Oriented Deployment of
Streaming Applications on Cloud

The current deployment practices are mostly platform-oriented, meaning that the deployment con-

figuration is tuned to a static resource-set environment and thus is inflexible to be used in clouds

with an on-demand resource pool. In this chapter, we propose P-Deployer, a deployment framework

that enables streaming applications to run on IaaS clouds with satisfactory performance and minimal

resource consumption. It achieves performance-oriented, cost-efficient and automated deployment by

holistically optimizing the decisions of operator parallelisation, resource provisioning, and task map-

ping. Using a Monitor-Analyze-Plan-Execute (MAPE) architecture, P-Deployer iteratively builds

the connection between performance outcome and resource consumption through task profiling and

models the deployment problem as a bin-packing variant. Extensive experiments using both synthetic

and real-world streaming applications have shown the correctness and scalability of our approach, and

demonstrated its superiority compared to platform-oriented methods in terms of resource cost.

6.1 Introduction

FOR better programmability and manageability, streaming applications are devel-

oped on top of a specialised middleware — Data Stream Management System (DSMS)

to exploit the abstraction of processing primitives and simplify the use of distributed

computing resources. The imperative programming language provided by DSMS hides

the low-level complexity of implementations from applications developers, allowing them

This chapter is derived from:
• Xunyun Liu and Rajkumar Buyya, “Performance-Oriented Deployment of Stream-

ing Applications on Cloud,” IEEE Transactions on Big Data (TBD), Accepted, In press,
DOI:10.1109/TBDATA.2017.2720622 Pages: 1-14, IEEE, 2017.
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to express the continuous query as a direct graph of inter-connected operators (called

topology hereinafter). In this way, the development burden of complex application logic,

e.g. matrix multiplication and iterative data analytic, is significantly relieved. Moreover,

the unified data stream management model assists developers with the ability to grace-

fully partition and route streams between operators, enabling streaming applications to

scale-out on a large-scale distributed computing environment in the presence of a higher

volume of processing load.

Though the use of DSMS has greatly facilitated the development of streaming logic,

the deployment of such layered architecture (streaming logic, DSMS, and underlying

hardware) is not transparent to developers. They are responsible for deciding how the

streaming logic is carried out in a distributed environment to meet the specific processing

requirement, including deciding the number and types of computing resources required

by different stages of the streaming application.

Such deployment decisions depend on the type of the target environment. In the past,

it was common to run streaming applications in a cluster where a combination of comput-

ing nodes were pre-configured [5, 10, 46, 100, 106]. As developers have assumed a static

environment and only tune the application configuration towards higher utilisation of

on-premise resources, the deployment process in such environment is platform-oriented.

With the emergence of cloud computing, an increasing number of streaming applications

are being migrated to cloud to exploit the merits of virtualisation, such as on-demand

self-service, elastic resource pooling and the “pay-as-you-go” billing scheme. Since the

cost of using cloud is based on the actual resource usage, a performance-oriented deploy-

ment model that customises the resource provisioning with regard to the actual demands,

i.e. enables the streaming application to reach a specific performance1 target while mini-

mizing the resource consumption is long overdue.

The overall performance of a streaming application is actually determined by the in-

terplay between a variety of contributing factors, which include the implementation of

streaming logic, characteristics of workload, parameters of application and DSMS, and

the sufficiency of resource provisioning. During the deployment phase, since the logic

1While the context of performance may very under different types of QoS (Quality of Service), in this chapter
we refer it as the ability to steadily handle an input stream of throughput T within an acceptable processing
latency L.
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implementation is already given and the workload characteristics are not to be controlled

by the processing system, proper mapping of the streaming logic to the underlying re-

sources is the key for the application to accomplish a pre-defined performance target.

Specifically, there are three optimization problems involved: (1) operator parallelisation,

which decides the number of running instances (called tasks hereinafter) for each operator

to partition input load and realise parallel and asynchronous execution (2) resource pro-

visioning, which estimates the resource usage and provisions the right scale computing

power to constitute the processing system, and (3) task mapping, which implements the

scheduling interface in DSMS, resulting in a task mapping to machines that distributes

the computations and transformations derived from the operator logic.

Among the three, operator parallelisation and task mapping have been separately

investigated in the existing literature for various optimization targets [5, 46, 50, 54, 173],

but resource provisioning is largely ignored in the platform-oriented deployment prac-

tice. Manually deciding the required resources makes the deployment plan inefficient

nor swift to be applied in a cloud environment.

We overcome this limitation by proposing an automated, performance-oriented de-

ployment framework that tackles these three optimization problems holistically. The de-

ployment framework, called P-deployer, has the following desirable features: (1) based

on fine-grained profiling information at the task level, it provisions right-scale execution

platform on cloud, as well as decides the operator parallelism and task mapping config-

urations to guarantee high resource utilisation and desired performance outcome; (2) it

uses an automatic and iterative approach to deploy streaming application, reducing de-

ployment effort for developers to address the identified performance bottlenecks; and (3)

it is transparent to application logic, i.e. the existing application code can be deployed

without any changes.

Our main contributions are summarized as follows:

• By profiling a real-world streaming application, we illustrate some important obser-

vations from the experimentation of different deployment plans, which lay down

the foundation for P-deployer.

• We present the design of P-deployer that, to our best knowledge, is the first sys-

tem to automatically deploy a streaming application on cloud with a pre-defined
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performance target.

• We model the resource provisioning problem as a variant of bin-packing problem

with tasks being items and machine being bins, where packing together two com-

municating tasks may make them occupy less volumes than the sum of their indi-

vidual size. Our heuristic reduces inter-node traffic while ensuring no computing

nodes are overloaded.

• We implement a prototype on top of Apache Storm, and conduct a series of de-

ployment experiments using both synthetic and real-world streaming applications

to validate the resulted performance and the scalability of our approach. The re-

sults confirm that our framework significantly outperforms the state-of-the-art ap-

proaches in terms of resource cost.

6.2 Background

A streaming application needs to be deployed on a particular execution environment be-

fore it can accept and process continuous data streams. In this section, we give a brief

introduction to the layered structure of streaming applications and discuss the optimiza-

tion problems involved in its deployment process.

As shown in Fig. 6.1, there are three layers in the streaming application structure.

the topology lying in the topmost logical layer is a directed acyclic graph that defines the

streaming logic to be applied on the input data streams. Each vertex is an operator that

encapsulates the semantic of a specific operation, such as filtering, join or aggregation;

whereas each edge represents the direction of data transfer between upstream and down-

stream operators.

The DSMS layer is a middleware system that manages distributed resource and or-

ganises continuous streams to support the upper-level streaming logic defined in the

topology. It is the key for the realisation of “develop once, use many” concept. Since that

a streaming application may need to run in different environment to deal with different

volumes of input, DSMS makes the deployment plan adjustable, allowing the parallel

execution of each operator to be customised with regard to the specific situation, such as
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Figure 6.1: Layered structure of an example streaming application

the workload characteristics, performance target, and the capacity of underlying infras-

tructure.

The first deployment choice incurred in this layer is (1) operator parallelisation. Specifi-

cally, DSMS treats each operator as a dividable logical entity and parallelises its execution

using a number of asynchronous tasks. Each task is logically equivalent as it handles a

subset of the operator input and performs the same type of operation. During the actual

execution, DSMS guarantees the correctness of task coordination and makes sure that the

subdivided inner streams would follow the pre-defined partition scheme. Therefore, de-

velopers are only required to specify the degree of parallelism for each operator so that it

can secure a just enough number of tasks to keep up with its inbound load. We illustrate

this process in Fig. 6.1 using a dash arrow labelled as “operator parallelisation”, which

shows that Operator B is parallelised into two tasks: Task4 and Task5.

The underlying infrastructure layer is the place where the parallel execution of tasks

actually happens. The construction of this layer involves the other two deployment de-
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cisions: (2) resource provisioning — where developers select the number and types of re-

sources from the elastic resource pool in the cloud. The streaming application in Fig. 6.1,

as an example, has a 3-node virtual cluster provisioned; (3) task mapping, which assigns

the asynchronous tasks to provisioned machines in an effort to achieve a particular de-

ployment target or optimization goal, e.g. reaching a pre-defined throughput target, max-

imizing distributed resource utilisation, minimizing the overall data processing latency,

and etc. In Fig. 6.1, Task6 of Operator C is assigned to the third node as indicated by the

dash arrow.

These three deployment decisions are highly correlated in nature. Our motivation

is to iteratively optimise them to achieve automatic, performance-oriented, and cost-

efficient streaming application deployment.

6.3 Preliminaries

We performed a series of deployment experiments on an IaaS cloud to investigate how

different deployment decisions affect the performance outcome and resource consump-

tion of a streaming application.

Our proof-of-concepts experiments were conducted on the Nectar Cloud2 using 4

“m2.medium” instances in the NCI availability zone (each equipped with 2 VCPUs, 6GB

RAM and 30GB root disk). On this virtual cluster, we deployed a word count streaming

application built on top of the well-known DSMS — Apache Storm3 0.10.0 using various

deployment plans.

The topology of word count depicted in Fig. 6.2 consists of four operators: the first

operator, Kestrel Spout, pulls data from a message queue server and generates a contin-

uous stream of tweets as its output. The second operator, JSON Parser, parses the stream

and extracts the main message body. Sentence Splitter divides the main body of text

into a collection of separate words, and finally, Word Counter is responsible for the final

occurrence counting.

In order to evaluate the efficiency of different deployment plans, we have set up a

profiling environment that feeds the streaming application with a controllable size of

2https://nectar.org.au/research-cloud/
3http://storm.apache.org/
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Figure 6.2: The topology of word count streaming application, where the solid arrows
represent data streams.

input stream and constantly monitors the application behaviours under that given pres-

sure. For the sake of result stability, all the measurements of performance outcomes and

resource usages are averaged using 5 consecutive readings of the corresponding value,

which are all collected after the application is stabilised. The observations and corre-

sponding analysis are summarized as follows.

Observation 1: resource consumption of a task is positively correlated with its stream load

and the ratio of inter-node communications. We consider the resource consumption in two

dimensions: memory and CPU. Unlike memory consumption that can be measured in

megabytes; the definition of CPU consumption is puzzlingly vague due to the diversity

of operating systems and CPU architectures. Following the method used by the resource-

aware scheduler in Storm [124], we adopt a point-based system to describe the amount of

CPU resources available on a node or demanded by a particular task. Typically, an avail-

able CPU core gets 100 points and a multi-core machine could get num o f cores ∗ 100

resources points in total, whereas a task that occupies x% CPU usages reported by the

monitoring system requires x points accordingly. Besides, we define the stream load of an

operator (or a task) as the amount of stream data that passed through this component

during a unit period of time. Due to the DAG organization of the topology, the measure-

ment of stream load can be calculated by summing up the throughputs of all its incoming

streams.

Our first experiment tracks the resource consumption of a task when it processes dif-

ferent sizes of stream load. We deployed the word count application using a spread-out

strategy, where each operator has only one task and every task is mapped to a separate

node. The results showed that, for all the examined tasks, the resource consumption in-

creases almost linearly with the size of stream load. Particularly, those CPU-bound tasks

reach their maximum processing capability when they have fully occupied the available

CPU resources on a single core.



168 Performance-Oriented Deployment of Streaming Applications on Cloud

TaskS1TaskJ1 TaskW2

TaskJ2 TaskW1

JSON 
Parser

Sentence 
Splitter

Word 
Counter

Figure 6.3: Partial deployment sketch that shows how to designedly assign the inter-node
communication ratio of TaskS1 to 50%. Solid arrows represent data streams while dash
arrows denote the “operator-task” containment relationship.

The second experiment investigates how the resource consumption of a task is in-

fluenced by the ratio of inter-node communication. For each examined task, we keep

the stream load unchanged at a fixed rate (500 tuples4/s) and constantly vary its inter-

node communication ratio by parallelising the upstream and downstream operators and

properly placing the spawned tasks on different machines. For example, suppose we

would like to probe the resource consumption of a Sentence Splitter task TaskS1 with a

inter-node communication ratio set to 50%, Fig. 6.3 illustrates how we can deploy the

word count application to achieve this goal. Specifically, we parallelise JSON Parser and

Word Counter into two tasks (Task J1, Task J2), (TaskW1, TaskW2), but only put Task J2 and

TaskW1 on the same node of TaskS1 collocating with the examined task. If we assume that

the load is balanced between the sibling tasks that constitute the same operator, TaskS1

would have half of its data communication transferred through the inter-node network.

Once again, the results have shown a linear increase of resource consumption along with

the increasing inter-node communication ratio, indicating that minimizing the inter-node

traffic is also quantitatively profitable from the prospective of resource savings.

Observation 2: overly parallelising an operator on a single machine greatly hurts its perfor-

mance. We conducted this experiment to break the myth that higher operator parallelism

would result in better performance, i.e. fine-grained parallel execution is always encour-

aged for an operator to incorporate as many tasks as possible to partition its stream load.

In this experiment, we chose JSON Parser as the examined operator and tested three

4Tuple is a single datum in stream that is processed.
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parallelisation configurations: the first one sets up 2 tasks and puts them on a separate

node to avoid interference from other operators; analogously, the second one initialises 8

tasks and the third one creates 16 for comparison. To observe the performance differences

resulted from different configurations, we provide the streaming application with a suf-

ficiently large input stream and make sure that other operators will not be the bottleneck

of the topology.

From the results we observe that the first configuration yields the best performance

among the three (35% higher throughput than the second and 69% higher than that of the

third setting). This is because spawning two tasks for JSON Parser is already adequate to

make full use of the two-core machine, while having 8 or even 16 tasks on this node only

imposes additional resource costs of thread scheduling and context switching, — for the

third setting particularly, half of the CPU time is spent running the kernel rather than

user space processes, which greatly impairs the trafficability of JSON Parser.

6.3.1 Assumptions

In addition to the observations we made from the experiments, we make the following

assumptions to build an automatic deployment framework:

1. Tasks of the same operator fairly process the same amount of workload. In other

words, the stream load of an operator can be equally partitioned to all its con-

stituent tasks.

2. The inter-node communication cost for each task is calculated from its bidirectional

bandwidth usages, which is in line with the literature convention [5, 29, 124, 173].

3. The same type of machines are selected on the IaaS cloud to form a homogeneous

infrastructure.

6.4 P-Deployer Overview

P-Deployer’s design follows a typical Monitor-Analyze-Plan-Execute (MAPE) architec-

ture and it works in a profiling environment to find the desirable deployment plan. The
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Figure 6.4: The Monitor-Analyze-Plan-Execute (MAPE) architecture of P-Deployer and
its working environment

construction of profiling environment serves two major purposes: (1) information collec-

tion: it allows P-Deployer to probe the runtime characteristics of both streaming appli-

cation and underlying cloud platform, thus collecting necessary information to model

the performance behaviour as well as its corresponding resource consumption. (2) de-

ployment verification: it verifies the proposed deployment plan against the pre-defined

performance target by actual execution, i.e. examining how the deployed streaming ap-

plication performs under a profiling stream that mimics the situation of processing the

maximum throughput.

The profiling environment, as shown in the bottom half of Fig. 6.4, consists of a mes-

sage generator, a message queue, and a streaming application to be run in the IaaS cloud

environment. The message generator is able to produce data stream with a speed speci-

fied by P-Deployer, where all the data used in this stream is collected from the production

phase to simulate the real workload. The profiling input is then directed to the message

queue, which works as a message buffer to avoid overwhelming the streaming applica-

tion in case its processing capability cannot catch up with the performance requirement.

The streaming application ingests the profiling stream from the message queue with its

layered structure shown in the rightmost frame. Alongside the streaming application,

there are also some platform dependent modules that connect P-Deployer to the profiling

environment. These include the Metric Reporter, the Resource Manager and the Appli-
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cation Submitter, that are respectively responsible for collecting the current performance

metrics, provisioning/relinquishing cloud resources and submitting the streaming appli-

cation to DSMS according to the specific deployment plan.

On top of the profiling environment, P-Deployer has an iterative working flow to

implement the MAPE loop, with each iteration proposing a concrete deployment plan

and then validating its capability through the profiling of deployed application. This

iterative process continues until the desirable deployment plan is found, or the cost of

resource provisioning has already exceeded the user budget. Specifically, by retrieving

the output of the Metric reporter, the Monitoring Module measures how the streaming

application is performing under the profiling load. The Performance Analyser conducts

some boundary checks on the set of metrics and determines whether the performance

target has been met or not. If further adjustment is required, it hands in the collected

runtime information to the Deployment Planer and indicates the possible cause of per-

formance issue. Then, the Deployment Planer, as shown in the grey box, will update the

inaccurate model inputs and make a new deployment plan in an attempt to remedy the

performance bottleneck. The executors of P-Deployer are embedded within the cloud

platform, following the deployment plan’s instruction to control the speed of data gener-

ation, manage the cloud resources, and re-submit the streaming application for the next

round of evaluation.

The essence of P-Deployer lies in the planning phase of the MAPE loop, which is

to propose a holistic deployment plan based on the profiled runtime information. We

briefly summarise this phase in three steps:

1. Building task profile: modelling the characteristics of each operator by profiling one

of its tasks. The task profile essentially depicts the relationship between the de-

sired performance behaviour and the estimated resource consumption at task level,

which is the most fine-grained level of DSMS. Note that all the tasks of a single

operator share the same task profile due to their homogeneity.

2. Operator parallelisation: deciding the parallelism degree for each operator based on

its stream load and the profile of its tasks. The result of this step is a set of tasks

along with their requested resource consumptions.
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Figure 6.5: Translating the performance demand of a streaming application into the esti-
mated resource consumption through its task profiles

3. Resource estimation and task mapping: formulating the deployment optimization prob-

lem as a bin-packing variant, the solution to which will estimate the overall resource

demands and produce the mapping result at the same time. The goal is to minimise

the number of used machines while satisfying the resource needs of collocating

tasks.

6.5 Deployment Plan Generation

In this section, we discuss in detail how the planning steps are carried out to holistically

decide operator parallelisation, resource provisioning and task mapping.

6.5.1 Building Task Profile

As introduced in Sec. 6.3, we consider two types of resources in this work — memory

and CPU, which are separately measured in megabytes and a point-based approach. A

deployment plan is considered feasible only if the aggregated resource demands of col-

located tasks in each node can be satisfied in both dimensions. Therefore, based on the

analysis of collected information, we build a profile for each task to reflect the relation-

ship between the performance behaviour and the corresponding resource consumption.

It allows us to estimate how many resources this task would require to reach a specific

performance target, i.e. to process a certain size of stream load and to send/receive a
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certain amount of messages remotely.

The intuition behind task profile is illustrated in Fig. 6.5. Performance-oriented de-

ployment has a prerequisite to properly translate the performance demand of a stream-

ing application into its predicted resource consumption. However, there is no theoretical

model nor empirical work that capable of directly achieving this goal, mainly because

the layered application structure has much complicated the relationship between perfor-

mance and resource usages. To fill in the gap, we establish this translation by building

up a profile for each task, leading to a working process as follows: through operator

parallelisation, we break down the operators in topology into a set of tasks, meanwhile

the application-level performance demand is also decomposed into the performance re-

quirement of each task according to the stream balancing assumption we have made; as

the task profile has modelled the resource consumption individually for each task, we

estimate the overall resource consumption of the entire application as a result of task

mapping by aggregating the resource needs of collocated tasks.

Table 6.1: The attributes of a task profile

Symbol Description

tsoj Sojourn time of a tuple for being processed
cp CPU consumption of processing a tuple
ct CPU consumption of transmitting a tuple

mpt Memory consumption of processing & transmitting a tuple
ni, no Number of input (output) streams

Sk Size (throughput) of the input stream k, k = 1, ..., ni

S
′
k Size (throughput) of the out stream k, k = 1, ..., no

Table. 6.1 enumerates the attributes of a task profile. Sojourn time tsoj is a period of

time that a tuple stays within the task for being processed; since we model each task

as a single-thread entity, the sojourn time of different tuples cannot be overlapped. The

CPU consumption of handling a tuple consists of two parts: the processing cost cp that is

spent on executing the streaming semantic, and the transmission cost ct that is consumed

for network-related activities, such as serialisation/deserialisation, message buffering

and performing the actual send/receive operation. Note that we only count the inter-

node communication in the calculation of transmission cost. This is because intra-node

communication normally happens within the shared memory and is backed up by high-
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performance thread-messaging libraries (e.g. LMAX Disruptor), thus incurring negligi-

ble overhead compared to the network-based communication.

On the other hand, mpt denotes the memory footprints of handling a tuple. It is not

necessary to differentiate whether the memory is consumed by data processing or trans-

mission, because there is little memory allocated for internal message buffers in order to

avoid high queuing latency. Only memory-intensive computations, such as large win-

dowed joins or cache-based analytic algorithms, can result in a considerable amount of

memory usages that might define the machine characteristics of provisioned resources.

Modelling task resource consumption

For task τ that has ni input streams with sizes denoted as {S1, S2, ..., Sni} and no output

streams of sizes in {S′1, S
′
2, ..., S

′
no
}, its CPU consumption Cτ can be modelled in Eq. 6.1:

Cτ =
ni

∑
k=1

Skcp + ( ∑
k∈Θ

Sk + ∑
k∈Θ

S
′
k)ct

Cτ,min =
ni

∑
k=1

Skcp

Cτ,max =
ni

∑
k=1

Skcp + (
ni

∑
k=1

Sk +
no

∑
k=1

S
′
k)ct

(6.1)

where Θ indicates the set of inter-node communication, i.e. k ∈ Θ means that the

input stream k is received from (or the output stream k is sent to) a task that locates in

another node. Depending on the final location of task τ, its CPU consumption varies

from the minimum value Cτ,min, when Θ is empty, to the maximum value Cτ,max, when

all its communication happens across network.

Analogously, we model the memory consumption of this task in Eq. 6.2:

Mτ = (
ni

∑
k=1

Sk +
no

∑
k=1

S
′
k)mpt (6.2)

6.5.2 Operator Parallelisation

In light of the observation that over-parallelisation hurts the operator performance (see

Sec. 6.3), we adopt a minimal parallelism strategy that each operator only spawns the

least number of tasks to keep up with its performance requirement. Therefore, the paral-
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lelism degree of an operator is determined by two factors: the stream load of this opera-

tor under the profiling input, which can be seen as a performance requirement obtained

from the monitoring module; and the maximum processing capacity of its constituent

task, which can be calculated using the task profile established in the previous step.

Specifically, the maximum processing capacity of a task refers to the largest stream

load it can sustain during the runtime, which is determined by the implementation of

the stream logic as well as the capability of the execution environment. Having mod-

elled the resource consumption on a per tuple basis, the task profile reveals the confining

resources that prohibit the entity from achieving higher throughput on this particular

platform. In this sense, we provide a classification for different tasks based on the type

of confining resources, and then discuss how to parallelise an operator op with tasks in

one of these categories to achieve the minimal parallelism objective. The symbols used

in this subsection are summarised in Table. 6.2:

Table 6.2: Symbols used for operator parallelisation.

Symbol Description

Sop Monitored stream load of operator op
Pop Parallelism degree (number of tasks) of op{

cp, ct
mpt, tsoj

}
Task profile attributes that shared between all tasks
constituting operator op

α
Upper limit on the CPU usages for a single I/O-bound
task to perform data transmission

β
Upper limit on the memory usages for a single
memory-bound task to occupy

• CPU-bound: task of this kind consumes a considerable amount of CPU resources

to process a single tuple, such as multiplying small matrices for machine learning

algorithms or performing iterative calculation for optimization purposes. CPU-

bound task can utilise at most 100 point CPU resources for covering the processing

cost cp due to its single-thread nature, meaning that the maximum processing ca-

pacity is reached once it has fully occupied the CPU core for processing streams.

Therefore, for an operator op whose tasks are CPU-bound and has a stream load of

Sop, its parallelism degree can be decided as follows:
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Pop(CPU-bound) =
⌈

Sop

100/cp

⌉
• I/O-bound: contrary to CPU-bound, I/O-bound tasks spend more time on waiting

for the I/O operation rather than performing the actual computation. Its distinc-

tive identifying characteristic is that ct outweighs cp significantly in the task profile.

Event log processing, for example, incorporates typical IO-bound tasks that ingest

a large size of log stream while only applying filtering or some other trivial trans-

formations on it. The previous best practice in platform-oriented deployment has

shown that a CPU core should host several IO-bound tasks to make efficient use of

the network connection5, therefore, we model the maximum processing capability

for this kind of tasks by limiting the CPU resources it can get for data transmission.

If the threshold, denoted as α, is set to 0.1, then at most 10 I/O-bound tasks are

permitted to occupy a CPU core for data transmission. Accordingly, we calculate

the parallelism degree for I/O-bound operators as follows:

Pop(I/O-bound) =
⌈

Sop

α/ct

⌉
• Sojourn time-bound: some tasks need to invoke an external service to complete a

tuple transaction, such as connecting to a remote database or calling a third-party

API. These operations often require no CPU and memory consumption but may

result in a substantial sojourn time for each tuple to be processed. In such case, the

maximum processing capacity of each task is bound by the wall clock time, and

thus the operator parallelisation is conducted as follows:

Pop(Sojourn time-bound) =
⌈
Sop ∗ tsoj

⌉
• Memory-bound: as the stream load increases, some tasks may use a significant amount

of memory to maintain a large window cache or store enormous intermediate re-

sults. Similar to the IO-bound task, we limit the maximum memory usage for a

single task (denoted as β) and in turns deduce that how many tasks are needed for

5http://www.slideshare.net/ptgoetz/scaling-apache-storm-strata-hadoopworld-2014
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a memory-bound operator to sustain a stream load of Sop:

Pop(Memory-bound) =
⌈

Sop

β/mpt

⌉
Apart from the decision on the number of tasks, Operator Parallelisation also models

the resource consumption of each spawned task by taking into account of its share of

stream load as well as the associated task profile. However, there is only a range estima-

tion in terms of the CPU usages, as the actual value varies depending on the task location

due to different inter-node communication costs.

6.5.3 Resource Estimation and Task Mapping

The problem we are trying to solve is to assign tasks to machines such that (1) the aggre-

gated resource consumption of collocated tasks is satisfied, and (2) the cost of resource

provisioning is minimised. Specifically, each task can be considered as an item of multi-

dimensional volumes that are characterised by its resource requirements, while each ma-

chine is a bin of the same size as per Assumption 3 made in Sec. 6.3.1. The optimization

target of this problem is to minimise the number of used machines. Therefore, this is a

variant of bin-packing problem that can be formalised in the linear programming form.

Table. 6.3 summarizes the newly introduced symbols in this subsection.

Table 6.3: Symbols used for resource estimation and task mapping.

Symbol Description

Wc CPU capacity of provisioned machine
Wm Memory capacity of provisioned machine
n Number of tasks
τi Tasks to be assigned, i = 1, ..., n
K Upper bound on the number of machines used

Symbols used in Eq. 6.3, 6.4 and shown in Fig. 6.6

opk Upstream operator k of op, (k = 1, .., ni)
op
′
k Downstream operator k of op, (k = 1, .., no)

Sk Size of input stream k between opk and op, (k = 1, .., ni)
S
′
k Size of output stream k between op and opk

′, (k = 1, .., no)
Adjk Number of tasks of opk collocating with task τi

Adj
′
k Number of tasks of op

′
k collocating with task τi
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Problem Definition

Given a positive integer number of machines (bins) with CPU capacity Wc and memory

capacity Wm, and a list of n tasks (items) τ1, τ2, ..., τn with their CPU demands and mem-

ory demands denoted as Cτi , Mτi (i ∈ 1, 2, .., n), respectively, the problem is formulated

as follows:

minimise
K

∑
k=1

yk

subject to
K

∑
k=1

xi,k = 1, i = 1, ..., n,

n

∑
i=1

Cτi xi,k ≤Wcyk, k = 1, ..., K,

n

∑
i=1

Mτi xi,k ≤Wmyk, k = 1, ..., K,

where K is an upper bound on the number of machines needed, and the variables yk, xi,k

are:

yk =


1 if machine k is used,

0 otherwise;

xi,k =


1 if task i is assigned to machine k,

0 otherwise;

The uniqueness of this problem lies in the fact that packing two communicating

tasks together on the same machine will result in less resource consumption than the

sum of their individual demands. This characteristic is reflected in the calculation of

Cτi as shown in Eq. 6.3, which is derived from Eq. 6.1 but making use of the monitored

stream loads and the result of operator parallelisation to deduce the sizes of input/output

streams for task τ:

Cτi =
ni

∑
k=1

Sk
Popk∗Pop

cp +

(
ni

∑
k=1

Sk
Popk∗Pop

(Popk−Adjk)+
no

∑
k=1

S
′
k

P′opk
∗Pop

(P
′
opk
−Adj

′
k))ct

(6.3)

The variables used in Eq. 6.3 are illustrated in Fig. 6.6: τi is the examined task affiliated

with operator op. According to the application topology, op has ni upstream operators

{op1, ..., opni} and no downstream operators {op
′
1, ..., op

′
no
}. The size of input stream k
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Figure 6.6: The illustration of variables used in the calculation of resource consumption
for task τi, where tasks in grey indicate that they are collocated on the same machine.

between operator opk and op is denoted as Sk, and it can be equally partitioned into

communications between constituent tasks of opk and op based on the stream balancing

assumption. The parallelism degree of opk is denoted as Popk , and Adjk is the number

of spawned tasks among them that are collocating with τi on the same node. Similar

notations also apply to the downstream operators for the convenience of presentation.

Using the notations illustrated in Fig. 6.6, we also present the formulation of memory

consumption for task τ as below:

Mτi = (
ni

∑
k=1

Sk +
no

∑
k=1

S
′
k)

mpt

Pop
(6.4)

In order to minimise Cτi , putting successive tasks on the same node is always en-

couraged as long as the target node still has sufficient capacity to accommodate their

aggregated resource demands. Therefore, by modelling the problem as a special case of

two-dimensional vector bin-packing, we have already considered the common require-

ment of task placement — reducing the inter-node communication whenever possible.

The solution to this problem should be a trade-off between consolidating tasks and pre-

venting resource contention in each node.

As for the problem complexity, the classical bin-packing is already NP-Hard as re-

duced from the PARTITION problem [57]. However, with overlapping tasks whose re-

source consumption depends on the packing result, our task mapping problem is a more

complicated variant that must rely on the use of approximation algorithms to make it

tractable.
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Heuristics for Solving Bin-packing Problem

We opt for heuristic methods mainly because of efficiency considerations. The scale of

the problem increases along with the application performance requirement, which may

involve thousands of tasks to be assigned. Having such a huge solution space, it is com-

putational infeasible to search for the optimal result by the use of exact algorithms such as

bin completion (BC) [55] and branch-and-price (BCP) [40]. Additionally, packing speed is

of crucial importance for the fast deployment of streaming application. P-Deployer may

need to invoke the bin-packing process multiple times, with each time the result being

verified through profiling as satisfying the model constraint does not necessarily guar-

antee that it can satisfy the performance requirement. Therefore, we prioritise execution

efficiency in the heuristic design, and present a lightweight implementation to make it a

good fit for the real-time streaming context.

The proposed solution is analogous to First Fit Decreasing (FFD), which is one of the

most natural heuristics for bin-packing and is known to be effective in 1-dimensional

cases as it is guaranteed to produce a result using less than 11
9 OPT + 1 bins (OPT is the

optimal solution). FFD is essentially a greedy algorithm that sorts the items in a particular

order (normally by descending sizes) and then sequentially places them in the first bin

that has sufficient capacity. However, in order to cope with the multi-dimensional and

overlapping nature of our problem, this process has to be generalised in three aspects

which is shown in Algorithm 6.1.

As CPU and memory are measured in different metrics, Algorithm 6.1 first normalises

the task resource demands Cτ and Mτ with regards to machine resource availability Wc

and Wm for the ease of comparison in resource scarcity. After this step, each machine can

be considered as a bin of unit size and each task is denoted by a 2-d decimal vector.

Secondly, there are two functions introduced to make different tasks comparable in

terms of their packing priority. These include: (1) a resource saving function s(τ, m) that

calculates the amount of resource savings if task τ is to be placed on machine m; and (2) a

priority function p(τ, m) that assigns task τ a scalar considering not only the intuition of

putting the “largest” item first, but also the inclination to maximise the potential resource

savings.

Lastly, since the calculation of s(τ, m) actually depends on what have already been



6.5 Deployment Plan Generation 181

Algorithm 6.1: The task mapping and resource estimation algorithm
Input: A task set ~τ = {τ1, τ2, . . . , τn} to be assigned
Output: A machine set ~m = {m1, m2, . . . , mnm} with each machine hosting a

disjoint subset of ~τ, where nm is the number of used machine
1 Normalise resource demands for ~τ
2 nm ← 0
3 while there are tasks remaining in ~τ to be placed do
4 Start a new machine m
5 Insrease nm by 1
6 while there are tasks that fit in machine m do
7 foreach τ ∈ ~τ do
8 Calculate s(τ, m) (Eq. 6.5)
9 Calculate p(τ, m) (Eq. 6.6)

10 Place the task with the largest p(τ, m) into machine m
11 Remove the task from ~τ
12 Update the remaining capacity of machine m

13 return ~m

put into machine m, we adopt a different view to implement this FFD variant. Contrary

to the classical “item-centric” FFD implementations that require all tasks to be sorted

beforehand and then packed strictly in the pre-calculated order, we implement a different

perspective of FFD, called “bin-centric”, which allows the packing priority of remaining

tasks to be dynamically updated after each task assignment in order to take the current

system status into consideration. The task with the largest priority at the moment will be

packed next and varied definition of priority would lead to a different FFD heuristic.

Implemented in this way, there is only one machine opened at any time and the al-

gorithm keeps filling it with suitable tasks until there is not enough capacity for any

remaining task. The rest of this subsection explains in detail how the algorithm decides

the priority order among those “suitable tasks”.

Calculating s(τ, m): when task τ is to be placed on machine m, any previously

packed task on this machine that is adjacent to τ will benefit from this assignment by

increasing 1 to a particular position of its ~Adj list, which causes their CPU consumption

to decrease according to Eq. 6.3. Note that ~Adj is initialised to all zeros for every task,

implying that all unpacked tasks are considered to be external by default when calculat-

ing Eq. 6.3. Analogously, the CPU demand of τ is also reduced due to task allocation.

Therefore, s(τ, m) can be formulated as follows, where τk ∈ ℘(m) represents the tasks
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that have already been packed in machine m:

s(τ, m) = Cτ,max − Cτ + ∑
τk∈℘(m)

(C
~Adj

τk − C
~Adj+1

τk ) (6.5)

Calculating p(τ, m): the task priority function is designed based on the following

considerations:

1. Resource saving is prioritised as it encourages communicating tasks to be packed

in a tightly manner.

2. If resource savings are similar or there is no saving from the placement of the rest

tasks, the heuristic picks the one that best fills the remaining capacity of the opened

machine.

3. Each resource dimension is properly weighted to reflect the relative scarcity, so that

when the mapping problem is in essence confined by one type of resource, the

heuristic will be dominated by this dimension and reduced to 1-d FFD when neces-

sary. This can be achieved by assigning a larger coefficient to the scarce dimension.

Therefore, p(τ, m) is formulated as follows:

p(τ, m) = ar · s(τ, m)− ac(Cτ−rcpu
m )2 − am(Mτ−rmem

m )2 (6.6)

rcpu
m , rmem

m represent the remaining capacities of machine m, and ar, ac, am are weight co-

efficients that adjust the importance of each term. While ar is chosen as a user pa-

rameter, ac, am can be calculated as the average task demand in each dimension: ac =

1
n

n
∑

k=1
Cτk , ac =

1
n

n
∑

k=1
Mτk .

6.6 Implementation

The setup of the profiling environment has been briefly introduced in Sec. 6.4. More

specifically, the Message Generator in Fig. 6.4 is a Java program that reads the workload

file on-demand to emit a particular size of profiling stream; while the Message Queue is

a distributed queueing system implemented on Twitter Kestrel6 that enables controllable
6https://github.com/twitter-archive/kestrel
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Figure 6.7: The integration of P-Deployer into Apache Storm

message buffering. The use of Thrift interface of Kestrel allows P-Deployer to easily

retrieve the length of the message queue and further determine whether the streaming

application has been overwhelmed by the profiling data.

Following the MAPE working process, Fig. 6.7 describes how P-Deployer is inte-

grated with Apache Storm in our prototype. Apache Storm is selected as our target DSMS

not only because it is widely adopted in both academia and industry, but also it offers a

built-in metric system and Flux – an external configuration reader that greatly facilitates

the application of versatile deployment schemes.

Monitor: the Metric Reporter in Fig. 6.4 is actually implemented by two components

that collect system level and application level metrics, respectively. The collected infor-

mation is then stored in MongoDB7 and processed in order to determine the task profile

attributes listed in Table 6.1. The Low Level Metric Reporter running in each Worker

Node consists of an external statistics collection daemon — collectd8 and several ex-

tended Storm modules. Specifically, collectd runs alongside the Supervisor daemon to

probe the CPU and memory utilisation of the Worker Process with a resolution of 10

seconds. In the storm-core, we implement the Task Wrapper that encapsulates the task

execution with the logic of sampling and reporting resource consumption at the task

level: the CPU consumption of operators’ execute method (cp) is probed using the Thread-

7https://www.mongodb.com/
8https://collectd.org/
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MXBean class, while the memory consumption (mpt) is obtained through retrieving the

size of the operator state. Recalling the fact that we classify the overall CPU consump-

tion obtained at the process level into processing cost and transmission cost, the CPU

consumption of tuple transmission (ct) is a derived metric that requires the comparison

between the task level statistics and the process level statistics. To avoid excessive pro-

filing overhead, P-Deployer sets the default sampling rate to 0.05, i.e. selecting 1 out of

20 tuples to collect and report metrics. Also, we provide the Topology Adapter in storm-

core that seamlessly hides the adaptation effort on the application level to leverage this

profiling framework.

The High Level Metric Reporter, on the other hands, collects metrics on the applica-

tion performance. Some of them are directly obtained from the UI daemon on Nimbus,

such as the stream load between different operators (Sk, S
′
k), the sojourn time of task pro-

file (tsoj), and the application complete latency (average time taken for a tuple and all

its offspring to be completely processed by the topology). Some metrics, however, need

specific post-processing. For example, there is no default definition for throughput, there-

fore, the reporter calculates the overall throughput of a streaming application based on

its monitoring interval as well as the observations on the accumulative number of ac-

knowledgements or emitted data, depending on whether the application adopts reliable

message processing or not.

Analyse and Plan: P-Deployer, implemented as a single Java program, comprises

both the analytical and planning functionalities. It queries the MongoDB for the latest

metrics and applies a set of boundary check rules to define the current application state

and update the task profile accordingly. The newly updated task profile will trigger the

planning phase to be performed again, resulting in a deployment plan that specifies the

number of machines used and the assignment location of each task.

Execute: changes to the virtual infrastructure are made possible by using Apache

jclouds9, where any new provisioned machine is initialised from a image that already

has Storm pre-configured. For actual application deployment, P-Deployer uses an exter-

nal YAML file to specify the parallelism degrees of operators and submit the streaming

application to Nimbus by invoking the Storm CLI. The extended Meta-based scheduler

9http://jclouds.apache.org/
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guarantees that each task is assigned to its designated Supervisor and Work Node.

6.7 Performance Evaluation

To validate the correctness and efficiency of the proposed prototype, we have conducted

three different sets of experiments:

1. The applicability evaluation validates whether P-Deployer is capable of deploying

a variety of streaming applications towards their pre-defined performance targets.

The test applications incorporate different topology structures in order to verify the

applicability and robustness of P-Deployer.

2. The scalability evaluation shows the runtime behaviour of P-Deployer using rela-

tive large test cases, where the application to be deployed has a more complicated

topology structure or a higher performance target. The runtime overhead of P-

Deployer is also assessed in this experiment.

3. The cost efficiency evaluation compares P-Deployer with the state-of-the-art platform-

oriented method in terms of resource usages, as they endeavour to achieve the same

performance target in deployment.

6.7.1 Experiment Setup

The experiment environment is set up on a private cloud supported by OpenStack, which

is located in CLOUDS lab at the University of Melbourne. The environment consists of

three IBM X3500 M4 machines, and each machine is equipped with 2 x Intel Xeon E5-2620

Processor (6 core@2.0GHz), 64 GB RAM and 2.1 TB HDD. The virtual cluster deployed on

the physical environment is composed of a Nimbus Node, a ZooKeeper Node and several

on-demand Worker Nodes. All machines are provisioned from the same “m1.medium”

template (2 VCPU and 4 GB RAM).

The used streaming applications (a.k.a topologies) and the evaluation methodology

are discussed below.
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Figure 6.8: The synthetic Micro-benchmark topologies, the structures of which are refer-
enced from R-Storm [124].

Testing topologies

There are five testing topologies — three synthetic and two drawn from the real-world

streaming scenarios.

Micro-benchmark: the synthetic topologies, collectively called micro-benchmark, eval-

uate how P-Deployer generalises to different topology structures. As shown in Fig. 6.8,

micro-benchmark includes three common structures: Linear, Diamond, and Star, cover-

ing the cases where an operator has (1) one-input-one-output, (2) multiple-outputs or

multiple-inputs, and (3) multiple-inputs-multiple-outputs, respectively.

The execute method of each operator is implemented in one of the four patterns in

order to reflect different operator types. Specifically, CPU bound operators invoke a

random number generation method Math.random() 30000 times to generate a significant

amount of CPU consumption, while I/O bound operators only apply a JSON parse op-

eration on the incoming tuple for fast processing; Sojourn time-bound operators sleep

for 10 milliseconds upon any tuple receipt, and Memory-bound operators temporarily

store any message received, maintaining a sliding window with 300 seconds length and

60 seconds sliding interval.

To satisfy the stream balancing assumption, all operators are connected through shuffle-

grouping — a stream routing mechanism that evenly partitions internal streams across

the receiving tasks. Besides, to generate a relative large internal stream for I/O bound

operators to mimic saturated network usages, each operator has a function implemented

to adjust its operator selectivity10 using an external configuration file.

Word Count: please see Sec. 6.3 for its description.

10Selectivity is an operator property that denotes the number of stream data produced per data consumed.
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Figure 6.9: The Twitter Sentiment Analysis topology

Twitter Sentiment Analysis: This topology, as shown in Fig. 6.9, is adapted from a

mature open-source project hosted on Github11. It has 11 operators constituting a tree

style topology that has 8 stages in depth. In terms of processing logic, once a new tweet

is pulled into the system (through Op1, a Kestrel Spout), it is first preserved by a file

writer (Op2) and examined by a language detector (Op3) to identify which language it

uses. If it is written in English, there is a sentiment analysis operator (Op4) that splits

the sentence and calculates the sentimental score for the whole content using AFINN12,

which contains a list of words with their pre-computed sentiment valence from minus

five (negative) to plus five (positive). There are also several operators to count the average

sentiment result (Op5, Op6) and to rank the most frequent hashtags occurring over a

specific time window (Op7 ∼ Op11).

Note that all the above-mentioned topologies process the same type of workload, as

the profiling stream is generated from the same workload file containing 159,620 tweets

in JSON format that collected from 24/03/2014 to 14/04/2014. Topologies are also con-

figured with acknowledgements enabled so as to track the complete latency during the

runtime.

Evaluation Methodology

For quantitative comparison of different deployment plans, we introduce the metrics con-

sidered as well as the measurement method in our experiments.

Deployment Metrics: throughput and complete latency are the two performance

metrics that evaluate the quality of deployment. We deem a deployment plan to be per-

formance satisfactory, as long as it results in a higher throughput than the pre-defined

target whilst meeting the latency constraint.

The number of used machines is the only metric that evaluates the cost-efficiency of

the proposed deployment plan. In this platform, the user budget of deployment is set to

11https://github.com/kantega/storm-twitter-workshop
12http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010

https://github.com/kantega/storm-twitter-workshop
http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=6010
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16 Worker Nodes, which is the maximum capacity of our private cloud if we make sure

that each VCPU corresponds to a physical core.

Measurement Method: the application is first deployed on the Storm cluster accord-

ing to its designated plan. During this process, the number of tasks is set to be same

as the number of executers and each Worker Node has only one Worker Process, which

conforms to the recommendation settings provided by the Storm community13. The de-

ployed topology will execute for 15 minutes to sufficiently stabilise before any measure-

ments are taken. To obtain an average performance result, performance data are collected

every 30 seconds for consecutively 5 minutes. Therefore, each iteration of the MAPE loop

has a timespan of 20 minutes.

The performance metric needs to report the maximum throughput sustained by the

deployed application. To this end, the profiling environment feeds the application with

enough size of inputs, lifting the performance to the highest stable point before compar-

ing it with the desired target.

For clarity, the settings of model parameters used in the deployment plan generation

are summarised in Table 6.4.

Table 6.4: Parameter settings used in the deployment planning model

Parameter Value

α (Upper limit on CPU usages for I/O bound task) 0.1
β (Upper limit on memory usages for Mem-bound task) 512 (MB)
ar (Coefficient in Eq. 6.6) 1

6.7.2 Applicability Evaluation

In this evaluation, we use P-Deployer to deploy all the five topologies towards a desig-

nated performance target — a throughput of 2000 tweets/second and a maximum com-

plete latency of 500 ms.

To better examine the applicability of P-Deployer, we have configured the micro-

benchmark topology with different time and resource complexities. In particular, the

Linear topology includes only CPU-bound operators so that the whole topology is bound

13http://storm.apache.org/releases/current/FAQ.html
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Figure 6.10: The monitored throughputs of topologies in the applicability evaluation.
Each MAPE iteration corresponds to a plotted box that contains 10 readings of through-
puts. P-Deployer finalises the deployment once the performance target denoted by the
horizontal line is reached.

by computation; the Star topology, on the contrary, is bound by communication for be-

ing made of I/O bound operators with comparatively large internal streams; while the

Diamond topology incorporates all types of operators in the middle so as to simulate a

hybrid case.

Fig. 6.10 demonstrates that P-Deployer has been able to steadily improve the topol-

ogy throughputs and finally realise the pre-defined performance target. The evaluated

topologies, despite their different topology structures and resource complexities, have

shown a similar scaling pattern during the deployment process: in the first iteration,

the micro-benchmark topologies respectively achieve 78%, 68%, and 75% of the perfor-

mance target; while the Twitter Sentiment Analysis delivers a average throughput of

1237 tweets/second that only accounts for 62% of the requirement. The following MAPE

iterations essentially lead to a horizontal scaling up process. P-Deployer gradually ex-

aggerates the unit resource consumption reflected in tasks profiles, resulting in a higher

operator parallelism and more Worker Nodes to be added into the Storm cluster. The bin-

packing nature of the task mapping algorithm guarantees that only a necessary amount

of machines would be introduced and efficiently utilised in the next MAPE iteration. Tak-

ing the Linear topology as an example, it initially has a parallelism degree of (1,1,1,1)14

running on 3 Worker Nodes, but at the end of the scaling process, it spreads over 6 ma-

chines with a parallelism degree of (1,2,2,2), and P-Deploy took care not to collocate CPU-

bound tasks to fulfil its performance requirement. We also observe that platform scaling

is the major source of performance improvement. In case of the Star topology, the perfor-

mance boost in the third iteration is significantly larger (10.3 x) than the previous one, as

14From left to right, each number corresponds to the number of tasks for each operator in the Linear topology
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it involves a new machine to be added rather than merely adjusting the operator paral-

lelism and task allocation.

There are two reasons why the task profiles tend to be underestimated in the first

place. (1) The overhead of DSMS and operating system to run the streaming applica-

tion has not been explicitly considered in our resource consumption model due to the

complexity of formulation and measurement. Therefore, as the throughput grows, the

increasing overheads of acknowledgement and thread scheduling need to be amortized

onto the unit resource consumption. (2) Some operators, especially those performing

batch processing or window slide at set intervals, demonstrate a periodical spiky pattern

of resource usages even when processing a steady size of stream. Though we should

allocate resources to satisfy the peak need of the operator, the spiky period is very short

and thus hard to be captured accurately. As a compromise, we enlarge the average value

in task profiles so as to ensure the smooth flow of execution.

Another finding from these experiments is that the complete latency consistently

grows as the throughput increases. In our measurement, the average complete latency of

the Linear topology is 89 ms in the first iteration, but it raises to 159 ms after the deploy-

ment process is finalised. We understand the result in the sense that the complete latency

is strongly correlated to the number of unacknowledged tuples that are allowed in the

system. As there is no latency violation identified in these experiments, P-Deployer cur-

rently does not have the ability to throttle the data source. However, such function can

be readily implemented using the built-in rate-limiting mechanism15.

6.7.3 Scalability Evaluation

Two separate experiments have been conducted to evaluate the scalability of P-Deployer.

In the first experiment, the application to be deployed is the Linear topology that con-

sists of various operator types. We further extend the depth of the topology to 5 and 10

so as to generate more complicated topology structures, but the performance target of

deployment remains the same as the applicability evaluation.

In the second experiment, we attempt to deploy the Twitter Sentiment Analysis to-

wards higher throughput targets of 3000 tweets/second and 6000 tweets/second, respec-

15In Apache Storm, we refer to max.spout.pending option for details.
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Figure 6.11: The monitored throughputs of topologies in the scalability evaluation. Each
MAPE iteration corresponds to a plotted box that contains 10 readings of throughputs. P-
Deployer finalises the deployment once the performance target denoted by the horizontal
line is reached.

tively.

Fig. 6.11 shows that the increasing depths of the Linear topology have little impact

on the convergence speed of the P-Deployer, which is the number of iterations required

to achieve the desired performance. P-Deployer consistently improves the throughput

performance by gradually scaling out the task distribution and solving any bottlenecks

caused by resource contention.

However, it takes more efforts for the Twitter Sentiment Analysis to realise a higher

performance target and the number of used machines does not linearly scale with it

(reaching 3000 tweets/seconds requires 5 nodes while realising 6000 tweets/seconds re-

quires 14 nodes). We also observe a throughput oscillation at the iteration 6 when target-

ing at the higher throughput. This result is not beyond our expectation due to the fact

that P-Deployer works on a best-effort basis and thus cannot guarantee the performance

bottleneck to be necessarily solved by the adjustment of deployment. Some DSMS con-

currency settings, such as the size of the thread pool and the number of the acker tasks,

are also influencing the topology behaviour [51], but they have not been considered in

P-Deployer due to the hardness of generalisation. Despite this, P-Deployer is still quali-

fied to be a practical deployment tool in the situation where the default settings of DSMS

suffice for the performance goal.

During the deployment process in which the Twitter Sentiment Analysis reaches the

6000 tweets/second target, we assessed P-Deployer’s runtime overhead, including the

profiling cost (the percentage decrease in average throughput after enabling the profiling

mechanism) and the running time of the task mapping and resource estimation algo-

rithm. The result is shown in Table. 6.5, which demonstrates that our profiling mecha-
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Figure 6.12: Comparison of P-Deployer and the Metis scheduler against the resource
costs required to reach the same performance target

nism is low-overhead and the FFD heuristic is sufficiently fast for solving the overlapping

bin-packing problem.

Table 6.5: The profiling cost (Pc) and the running time of Algorithm 6.1 (Rt) when deploy-
ing the Twitter Sentiment Analysis topology

Iteration 1 2 3 4 5 6 7

Pc 2.68% 3.14% 3.48% 4.11% 3.72% 2.95% 3.3%

Rt 0.213 0.245 0.312 0.338 0.331 0.351 0.359

6.7.4 Cost Efficiency Evaluation

Comparable Method

We choose a state-of-the-art platform-oriented approach — Metis scheduler as our com-

parable method, which outperforms the greedy scheduler [5] in major metrics such as

throughput and resource utilisation [50]. In general, the Metis scheduler uses the num-

ber of machines in the platform as the parallelism degree of each operator; it then builds

the task communication graph based on the monitoring of internal streams and translates
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the task mapping problem into a graph partitioning problem. Metis16 is used as an ex-

ternal service that solves the partitioning problem with a goal to balance the CPU usage

and bandwidth consumption across the platform.

Result and Analysis

In order to make the result comparable, we control the performance target of deploy-

ment and compare P-Deployer and the Metis scheduler against the minimal number of

machines required to achieve the same target. The test applications include the Word

Count topology and the Micro-benchmark topology with different types of operators.

Fig. 6.12 demonstrates that, in most cases, P-Deployer occupies less resources than

the Metis scheduler does. As seen in the deployment of the Word Count topology, P-

Deployer is able to use 1 less Worker Nodes than that of Metis scheduler to reach the

6000 tweets/second target. When the Metis scheduler is applied, we observed that the

capacities17 of the last three operators reached up to 0.808, 0.494, and 0.505, respectively,

but the CPU utilisation of each Worker Node barely exceeded 35%. This leads to a con-

clusion that the operator parallelism is underestimated using the number of available

machines, and the insufficient operator parallelisation would in turn impede the high

utilisation of the underlying platform.

On the other hand, disregarding the operator type in task mapping also caused signif-

icant performance degradation. We have compensated the insufficient parallelism (mul-

tiplied by 5) for Sojourn time-bound operators when using the Metis schedule to deploy

the synthetic topologies, yet still the cost of processing is noticeably higher than that of

P-Deployer, with 2 ∼ 3 more machines required in each case to reach the highest target.

The performance disparity is attributed to load imbalance that resulted from the inac-

curate workload modelling. The Metis scheduler only approximates the Worker Node

load by counting the number of tuples being transmitted, as compared to our approach

that firstly models the resource consumption on the fine-grained task level, and then de-

duces the workload of each machine by additively accruing the resource consumption of

collocating tasks.

16http://glaros.dtc.umn.edu/gkhome/views/metis
17Capacity represents the percentage of the time in the observation time window that the operator spent

executing inputs.
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6.8 Related Work

There is a rich body of literature on the deployment of streaming applications, each asso-

ciated with different optimization targets.

Some papers aim to improve the throughput and resource utilisation. Fisher et al.

employed Bayesian optimization to tune the operator parallelisation and other configu-

rations for achieving higher throughputs [51]. However, treating the streaming applica-

tion as a blackbox function does not properly take advantage of the domain knowledge,

and it results in a comparatively long convergence time. The Metis scheduler, proposed

by the same group, avoids the convergence problem by building up a task communica-

tion graph and solving it with full-fledged partitioning software [50]. Nevertheless, as

shown in our experiments, the resource utilisation and workload balancing could still

suffer without considering the operator type and parallelism holistically. There is also a

resource-aware scheduler that allows users to specify the resource demand for each task

in order to optimise workload distribution and inter-node communication [124]. How-

ever, our experience has suggested that the resource demand of a task strongly correlates

to its stream load and communication pattern, which can only be obtained at runtime

through application profiling.

Some works, on the other hand, investigated adaptive deployment to build elastic

streaming applications. To maintain high resource utilisation, Vanderveen et al. [162]

employed MAPE loops to elastically scale the streaming application along with the work-

load changes. But the adopted threshold method much resembles the auto-scaling policy

in Amazon Web Services (AWS) and is inadequate to model the particularity of target

applications. To honour the latency constraint during scaling, Fu et al. [54] proposed a

dynamic resource scheduler that tailors the deployment plan to the fluctuating workload.

The performance model is a rigorous queueing network that ignores network transmis-

sion costs, which makes it only applicable to computationally intensive streaming appli-

cations.

Workload estimation and latency modelling has also been discussed in the literature

to make the adaptation process more pro-active, yet still the issue of cost-efficient scaling

remains without optimizing the deployment holistically. Zacheilas et al. [177] predicted

the workload characteristics in order to choose the appropriate transitions on parallelism,
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but they did not consider the operator communication pattern to reduce network over-

head. Li et al. [100] presented a predictive scheduling framework, utilising Support Vec-

tor Regression to predict the complete latency under certain deployment arrangement.

But they left out operator parallelisation, and the proposed scheduling algorithm is essen-

tially an exhaustive search to traverse all feasible solutions. Nevertheless, the established

optimization techniques can be integrated with P-Deployer to choose the right time of

scaling and minimise the negative impacts of dynamic workload adaptation. With the

knowledge of predicted workload distribution, Mayer et al. [115] investigated dynamic

stream partitioning using queueing theory models and time series analysis. Their work

can be integrated with our operator parallelisation model to dynamically adjust the oper-

ator parallelism, providing probabilistic guarantees on the buffering limit. By modelling

the latency spike created by operator movements, Heinze et al. [66] proposed an elastic

placement algorithm that reduces the number of latency violations. This work can be

used in tandem with P-Deployer, replacing the proposed bin-packing model that solely

commits to reducing the resource cost. Cardellini et al. [19] investigated the optimal op-

erator placement as an Integer Linear Programming problem. The computed result can

be used to evaluate the quality of our heuristic solution. Also, to speed up the process of

finding optimal solutions to resource allocation/placement problems, evolutionary algo-

rithms [48, 56] and machine learning based frameworks[100, 185] have been investigated

in the literature.

There are also several papers on reducing inter-node communication [5, 19, 29, 173]

and improving system manageability and energy-efficiency [10, 37]. However, all the

above-mentioned efforts fall short when the deployment of streaming application has

been commissioned with a specific performance target, the case of which is commonly

seen in the cloud computing context.

6.9 Summary

In this chapter, we proposed P-Deploy – an automated, cost-efficient and performance-

oriented deployment framework for running streaming applications on cloud. Inspired

by the observations that drawn from real experiments, P-Deployer adopts a Monitor-
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Analyze-Plan-Execute (MAPE) architecture working in a profiling environment that grad-

ually scales the streaming application to approach its performance target. In each itera-

tion, P-Deployer builds the relationship between performance behaviour and resource

consumption at the fine-grained task level, decides the operator parallelism based on its

profile and performance demand, and then solves the task mapping and resource estima-

tion problem as a variant of bin-packing. The evaluations demonstrated that P-Deployer

is able to deploy a variety of streaming applications towards their performance target,

and it outperforms the state-of-the-art platform-oriented approach in terms of cloud re-

source usages.



Chapter 7

Conclusions and Future Directions

This chapter provides a summary of thesis contributions towards realising robust resource man-

agement in distributed stream processing systems. The summary of research findings and working

experiences of extending the state-of-the-art data stream management systems also leads to a discus-

sion that identifies promising research directions to be explored in the future.

7.1 Summary and Conclusions

STREAM processing is an emerging in-memory computing paradigm that deals with

the velocity characteristic of big data. By applying on-the-fly analytic as standing

continuous queries, input streams are processed upon arrival to yield real-time insights

with sub-second latencies.

Resource management in a stream processing system refers to the continuous adjust-

ment of the deployment stack over a set of distributed resources. It applies a collection

of profiling, modelling, and decision-making techniques to ensure that the system meets

its functional and non-functional requirements with minimal resource costs.

Particularly, robust resource management is concerned with guaranteeing a certain

level of performance and reliability with minimum additional resources. The importance

of maintaining a satisfactory system performance stems from the fact that dynamic data

streams are transient and volatile in nature. Failing to meet the latency constraints or han-

dle the required throughput is not considered as a deterioration of Quality of Experience

This chapter is partially derived from:
• Xunyun Liu and Rajkumar Buyya, “Resource Management and Scheduling in Distributed Stream

Processing Systems: A Taxonomy, Review and Future Directions,” ACM Computing Surveys, ACM
Press, 2018 (under review).
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(QoE), but rather a stability issue that eventually affects the correctness and sustainabil-

ity of the processing logic. On the other hand, reliability becomes a prominent concern

as the infrastructure scales out horizontally with commodity hardware, which requires

proper resource management to mask possible partial failures that impair the execution

of streaming entities and the availability of intermediate states.

Robust resource management also tackles the ongoing trend of migration where the

deployment platform shifts from on-premise clusters to computing clouds. As a further

step towards utility computing, cloud computing is committed to provide seemingly

endless computing resources through a subscription-based service. The pay-as-you-go

billing model allows users to rent computing power on-demand, paying bills on a usage

basis similar to other utilities such as water, gas and electricity. Specifically, the adoption

of the cloud computing model is beneficial to the practice of resource management in

the following aspects: (1) it provides an elastic resource pool for the stream processing

system to scale out/in dynamically under the fluctuating workload. The remote resource

pool eliminates the upfront investments in hardware and licences, as well as the need for

routine operation and maintenance of the infrastructure. (2) It offers a consistent entry

point for conducting autonomous resource management. With a self-service user portal

and a set of programming APIs, the application developers can manage resources uni-

laterally to cope with the continuously shifting stream processing requirements. (3) It

provides various types of resources that are customisable in specification and location to

suit the requirements and the particularity of the continuous queries. So developers have

more flexibility to decide where and how the long-standing stream logic is executed in a

distributed environment.

However, there are many challenges present to realise robust resource management

in clouds for the distributed stream processing systems to exhibit required performance

and reliability. In this thesis, we have conducted a thorough literature review, proposed

novel resource management mechanisms, and implemented prototype systems to im-

prove the current state-of-the-art in these fields. Particularly, Chapter 1 identifies the

challenges of robust resource management and breaks them into five major categories —

application profiling, operator parallelisation, task scheduling, state management, and

resource provisioning. The thesis objectives are then defined accordingly with a list of
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formulated research questions in these areas, achieving an overall target of maintaining

the SLA in performance and reliability with minimal amount of resources. Afterwards,

it explains the evaluation methodology used throughout the thesis and summarises the

contribution of the conducted research. A graph illustrating thesis organisation is also

included at the end to help users navigate the thesis structure.

Chapter 2 presented a literature review of existing work falling into the scope of ro-

bust resource management. This chapter first defined the resource management problem

by introducing the hierarchical structure of stream processing systems, and then identi-

fied the specific research topics involved in the deployment process to address the perfor-

mance and reliability concerns. The storyline of the chapter is built following a compre-

hensive taxonomy of resource management and scheduling, which covers various topics

such as resource type/estimation/adaptation, parallelism calculation/adjustment, and

scheduling objective/method. The rest of the chapter is a complete survey that enriches

the taxonomy with thorough discussions and comparison of related work, which con-

cludes with a tabular review of key works as a quick summary of the state-of-the-art.

Chapters 3 to 5 focused on specific subdivisions of robust resource management. Par-

ticularly, Chapter 3 presented a fine-grained profiling mechanism for deciding operator

parallelism, Chapter 4 discussed resource-efficient task scheduling, and Chapter 5 inves-

tigated replication-based state management. In these chapters, not only novel algorithms

and frameworks are introduced, but also prototype systems are implemented and evalu-

ated to demonstrate improvements in performance and reliability aspects.

Chapter 3 proposed a stepwise profiling approach to optimise application perfor-

mance at runtime in an IaaS cloud platform. It automatically scales up the distributed

computations over streams by increasing the parallelism degrees of streaming opera-

tors, which takes into consideration the application features and the processing power of

provisioned resources. Designed and implemented as a Monitor-Analyse-Plan-Execute

(MAPE) architecture, the proposed profiler also models the relationship between the

amount of provisioned resources and the monitored application performance. This re-

lationship model is revised iteratively to ensure the efficiency of scaling and the balance

between data source and data sinks is achieved through proper resource allocation.

Chapter 4 modeled the scheduling problem as a bin-packing variant and proposed
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a heuristic-based algorithm to solve it with minimised inter-node communication. The

scheduling algorithm is built on top of the fine-grained profiling information provided by

the profiler discussed in Chapter 3, aiming to reduce the resource consumption through

proper task consolidation without causing resource contention. A prototype scheduler

named D-Storm is also extended on Apache Storm implementing a self-adaptive MAPE

architecture, which validates the efficacy and efficiency of the proposed scheduling algo-

rithm through comparison to a state-of-the-art resource-aware scheduler [124]

Chapter 5 proposed a replication-based state management system that actively main-

tains multiple state backups on different worker nodes to mask possible node crash and

JVM failures. The exiting checkpointing framework involves a remote data store for state

preservation and access, resulting in significant overheads to the performance of error-

free execution. In contrast, the proposed state management system harnesses unused

memory resources to maintain multiple state replicas and eliminate the needs for cum-

bersome state synchronisation. A prototype system, E-Storm, is built on top of Apache

Storm with extensions of monitoring and recovery modules, which speeds up the recov-

ery process through concurrent inter-task state transfer and avoids unnecessary band-

width consumption during recovery by making use of inter-process locks.

Chapter 6 is a comprehensive work aiming to incorporate performance awareness

into the resource management process. The current deployment practices are mostly

platform-oriented, meaning that the deployment configuration is tuned to a static resource-

set environment and does not fit the on-demand resource pool in clouds. This chapter

proposed a deployment framework that enables streaming applications to run on IaaS

clouds with satisfactory performance and minimal resource consumption, regardless of

the initial resource allocation that the system has prior to the application submission.

It achieves performance-oriented, cost-efficient and automated deployment by holisti-

cally optimising the decisions of operator parallelisation, resource provisioning, and task

mapping. Using a Monitor-Analyze-Plan-Execute (MAPE) architecture, the prototype re-

source management system iteratively builds the relationship between performance out-

come and resource consumption through fine-grained task profiling. Extensive experi-

ments using both synthetic and real-world streaming applications have demonstrated the

correctness and scalability of the proposed approach, as well as its superiority compared
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Figure 7.1: Future research directions

to platform-oriented methods in terms of cost efficiency.

7.2 Future Directions

Although many research efforts have investigated the resource management and schedul-

ing problem in distributed streaming systems, there are still several gaps and challenges

to be explored in the future adapting to unpredictable workload fluctuations while hid-

ing the intrinsic complexity to developers and operators. This section gives some in-

sights into promising research topics and fields, which are orgainsed following the well-

known Monitor-Analyse-Plan-Execute (MAPE) architecture in Fig. 7.1 to achieve the self-

managing characteristics of distributed computing resources.

7.2.1 Fine-Grained Profiling

Accurate profiling of application and system metrics plays an important role in the decision-

making process as they reflect the current state of the streaming system and indicate

whether the desired SLA requirements have been satisfied. However, most of the ex-
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isting works have based their deployment decisions on coarse-grained metrics such as

application throughput, end-to-end latency, operator capacity and the volume of internal

streams. These metrics collected at the operator or application level are too general to

reveal the actual bottleneck of the data stream, so that the amendments can only be made

on a best-effort basis with little guarantee on the adjustment effects. In order to capture

the real culprit that throttles the application performance, a fine-grained profiling mech-

anism is required to fulfil the following expectations. (1) It should be installed at the task

level to obtain fine-grained information such as the lengths of input/output queue, the

task capacity on different infrastructure, and the average resource cost for processing a

single tuple. (2) the application metric collected from the DSMS layer should be cross-

validated with the system metrics to identify the probable cause and the severity of the

processing bottleneck, allowing accurate amendments to be made in the next adjustment

cycle. (3) proper sampling and quantisation techniques should be employed to reduce

the profiling overhead while providing strong enough guarantee on result accuracy.

7.2.2 Straggler Mitigation

A straggler is a slow running entity that adversely impacts the performance of the whole

streaming system. It could be a streaming task enduring severe resource contention or

data skew, or it could be a computing node that is over-utilised or subjected to the perfor-

mance variation of the host cloud instance. In either case, the local performance degrada-

tion caused by the straggler will soon propagate throughout the topology structure due

to the publisher-and-subscriber streaming model — the upstream operator will be throt-

tled because of the accumulated backlogs, and the downstream operators will stagnate

without receiving sufficient inputs. Worse yet, a single task that becomes straggler will

result in the whole operator being throttled. This is because the particular mechanism

of stream routing has led to performance correlation between sibling tasks of the same

operator. If one of these tasks becomes a straggler and performs significantly worse than

the others, the logic of tuple emitting will also reduce the volume of stream sent to the

other sibling tasks to not overwhelm the straggler. Note that this could lead to under-

utilisation on other nodes as the healthy sibling tasks could have been placed in different

places waiting for more inputs.
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A straggler mitigation mechanism needs to quickly identify the root cause of the per-

formance deterioration and cuts the chain of propagation with active intervention. A

straggling computing node can be detected by its soaring resource usages and slow re-

sponse time, while a straggler streaming task is revealed by the extended average tuple

processing time or the sudden rise in resource consumption. In the context of resource

management and scheduling, the measures that can be taken to mitigate stragglers in-

clude provisioning new resources, adding more parallelism, or rescheduling the place-

ment of the straggler on a different infrastructure, while a comprehensive solution may

involve all of these to avoid causing new stragglers during the adjustment process.

7.2.3 Managing Fluctuating Resource Availability

The existing work have often falsely assumed that, once provisioned, the same amount

of resources will be made available to the streaming system throughout its standing life-

cycle. Therefore, few of them has considered the consequences of fluctuation in node

resource availability.

In fact, there are several reasons as to why it is common and inevitable to experience

fluctuating resource availability in a distributed cloud environment. (1) Multitenancy:

multiple tenants of a shared platform may experience performance interference as they

compete for limited resources, despite separation mechanisms such as virtualisation and

cgroups have provided a certain level of isolation for resource allocation; (2) Background

activity: unexpected background events, such as scheduled system backup, security up-

date, and initialisation of another collocated application could take a portion of resources

that were occupied by the streaming system previously.

Resource-availability-aware management is particularly useful when there are no

spare resources for the system to scale out due to the limitation of budget or other per-

formance constraints. In that case, we are interested in changing the mapping of tasks

to underlying resources in order to amortise the local resource shortage over the whole

platform. The basic idea is that, if tasks of different operators in the topology process less

workload accordingly, their resource consumption is expected to be reduced proportion-

ally. Therefore, there is a possibility that a new task mapping can be found that satis-

fies the updated resource allocation constraints affected by the fluctuation of availability.
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Such informed scheduling decision can allow the application performance to degrade

gracefully without causing straggler problems discussed in Section 7.2.2.

7.2.4 Handling Increasing Heterogeneity

To improve application performance and provide new functions, an increasing number

of heterogeneous hardware elements and network facilities have been employed in the

deployment platform. However, the coordination of different types of resources also

imposes new challenges to the design and implementation of a heterogeneity-aware re-

source provisioner and task scheduler. The potential challenge is that it would be im-

possible to describe the computing capability and the network capacity of heterogeneous

resources using a unified measure. For example, we can hardly assert that a VM provi-

sioned in clouds is always ten times faster than a mobile device regardless of the work-

load characteristics, either can we be certain about the exact bandwidth difference be-

tween a LAN and a wireless connection across regions when routing internal streams.

Therefore, the anticipated heterogeneity-aware management framework should incorpo-

rate a customised resource model for each component to track its current resource usage

and availability individually. This means that the profiling method should be customised

for each device and the results are not necessarily shared across the whole deployment

platform. As a consequence, a gossip-like negotiation protocol is also required for differ-

ent components to converge to a scheduling plan that best suits their current situation.

7.2.5 Transparent State Management

An integrated state management system consists of two parts: (1) State elasticity, which

allows dynamically scaling up and down the operator parallelism with a state repar-

titioning and migration mechanism, supporting the relocation of the operator internal

state and providing a guarantee on the semantic correctness during the scaling process.

(2) State persistence, which backups the computational states to persistent storage or a

different node in order to mask the loss of states caused by JVM or node crashes. There

are some preliminary efforts from both academia and industry towards achieving trans-

parent state management [23,24,110], however, significant gaps still present in the follow-
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ing aspects. First, there is limited support for the diverse representation of operator state.

In most existing state management frameworks, the abstraction and presentation of op-

erator states are limited to key-value mapping for the ease of implementation. However,

computational states can be organised in other forms such as graphs, hashes and trees

that can hardly be indexed by certain keys. One promising research direction would be

supporting arbitrary data structure for operator state representation while keeping the

repartitioning and migration process entirely transparent to the end-users. The second

gap is to reduce the excessive overhead of state migration, which could be overwhelm-

ing if the adaptation of resource provisioning, operator parallelism, and task scheduling

have not considered the current state placement. Particularly, there is little research on

gradual, stepwise task scheduling that eventually converges to the state satisfying the

SLA requirements without incurring too much state migration overhead over a short ad-

justment period. In contrast, most scheduling algorithms in existence determine a new

task mapping from scratch by re-applying the scheduling heuristic, re-invoking a graph

partitioning algorithm, or re-conducting an exhausting search in the solution space.

7.2.6 Improving Energy Efficiency

Apart from reducing the total energy consumption through active workload consolida-

tion, it is also of great interests to reduce the proportion of brown energy consumption

through a proper resource management process. In the recent years, the energy supply of

the infrastructure of streaming systems has been enriched by the green power generated

from renewable sources such as sun, wind, water and biomass waste. Energy-efficient re-

source management intends to reduce the carbon emission and other negative impacts on

our environment by scheduling computational-intensive tasks on nodes driven by green

power, and assigning a large chunk of communication on links powered by green energy.

In some cases, these two goals may conflict with each other when deciding the placement

of particular streaming tasks, so a theoretical or empirical model on energy consumption

is required to evaluate and compare different scheduling and resource provisioning plans

and achieve the overall optimal in reducing the use of brown energy.
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7.2.7 Improving Cost Efficiency with Different Pricing Models

The monetary cost of resource usages in clouds largely depends on the actual pricing

and billing model selected by the users. Apart from the on-demand pricing model that

has been intensively studied in the literature, a variety of alternative pricing models are

also offered by mainstream cloud service provider like Amazon, Google and Microsoft to

help users tailor their choices on resource provisioning and reduce the operational cost.

To start with, reserved instances requiring a fixed-term contract are much cheaper than

the on-demand instances, which makes them a good fit to host the baseline workload

while leaving the on-demand instances for scaling out when needed. Also, the bidding

price model can lower the cost of resource usage significantly as the instances are often

hosted on the spare compute capacity in the cloud. However, with the price-bidding in-

stances the streaming system needs to be prepared for interruptions under a fairly short

notice, which imposes great challenges for the real-time system to adapt task placement

and migrate the associated computational state accordingly. A comprehensive resource

provisioning and task scheduling model combining the use of on-demand, reserved, and

price-bidding resources is a promising research topic that would be welcomed by indus-

try users.

7.2.8 Container-based Deployment

Containerisation of clouds allows the services and applications to adapt efficiently and

operate at an unprecedented scale. Containers offer a logical packaging mechanism that

decouples the applications from the environment in which they actually run, so there

is a clean separation of concerns by clearly differentiating the procedures of application

development and deployment. The ability of containers to run virtually anywhere and

the isolation of the CPU, memory, storage, and network resources at the OS-level make it

profitable to host streaming applications that are dynamic in nature [13].

However, resource management and scheduling in streaming systems over contain-

ers would require an overhaul in the design and implementation of existing DSMSs. The

most prominent challenge is that transparent state management is hard to achieve over

the container cloud that is initially designed to host state-less micro-services. The state-
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ful streaming tasks may have to store their computational state externally which could

raise new concerns about the performance of state access. Also, the flexibility of arbitrary

placement and dynamic scaling of containers makes it hard to keep track of the destina-

tion of each internal stream, so that the tuple emitting logic needs to be refined to make

sure that the provisioned containers are coordinated properly in sending and receiving

real-time messages.

7.2.9 Integration of Different DSMSs

The diverse user requirements may require different DSMSs to be deployed at the same

time to tackle different use cases. It then raises the questions of how to avoid perfor-

mance interference between collocated DSMSs and how to select the appropriate mid-

dleware that best improves the user experience. There are some preliminary efforts to

enable federated execution on top of different streaming engines [44, 102], however, they

all lack the ability to theoretically formulate an engine selection problem for the arriv-

ing continuous queries, where the objective function and the resource and performance

constraints that are caused by DSMS collocation are clearly defined. It is also interesting

to investigate how to concatenate different DSMSs together to host a single streaming

application, where each DSMS can handle the part of workload or streaming logic that it

excels at processing.

7.3 Final Remarks

The wide adoption of cloud computing model has called for novel resource management

methods to provide performance and reliability guarantees. In this thesis, we explored

problems of robust resource management in distributed stream processing systems to

ensure the articulated SLA with minimal resource consumption. It proposed a series of

frameworks and prototypes to tackle challenges in application profiling, task schedul-

ing, state management, and performance-oriented deployment. The research outcome of

this thesis is instrumental in building the next generation of Data Stream Management

Systems, which enables self-managing, SLA-aware, and robust resource management for

stream processing systems deployed in computing clouds and Edge/Fog environments.
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