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Abstract

In recent years, the Internet of Things (IoT) paradigm is being rapidly adopted in

the creation of applications for various smart-city, healthcare, Industry 4.0, and Agtech-

based Cyber-Physical Systems (CPS). Usually, the IoT-enabled CPSs reside at a multi-

hop distance from the Cloud datacentres. As a consequence, the Cloud-centric execu-

tion of IoT applications often fails to meet their Quality of Service (QoS) requirements

in real-time. Fog computing, an extension of Cloud at the edge network, can execute the

IoT applications closer to the data sources. Thus, it can improve the application service

delivery time and reduce network congestion. However, the Fog computing nodes are

highly distributed, heterogeneous, and most of them are constrained in resources and

spatial sharing. Therefore, without efficient management of applications, it is compli-

cated to harness the capabilities of Fog computing for different IoT-driven use cases.

Application management is as an integral part of computing resource management.

It can be ensured by finding suitable placement options for the applications within the

computing infrastructure. In IoT-enabled CPSs, different entities including, applica-

tions, Fog nodes, IoT devices, users, and service providers, continuously interact with

each other. This thesis focuses on application placement in Fog environments consider-

ing a. the characteristics of the applications, b. the communication delay among the Fog

nodes, c. the context of the IoT devices, d. the service expectations of the users, and e.

the operational cost of the providers. It demonstrates how the placement of applications

from the perspectives of different system entities can improve the application’s QoS, the

user’s Quality of Experience (QoE), and the provider’s profit. This thesis advances the

state-of-the-art by making the following contributions:

1. A comprehensive taxonomy and literature review on application management ap-

proaches in Fog computing environments.
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2. An application characteristics-driven model that facilitates application classifica-

tion and selection for Fog-based placement at the gateway level.

3. A latency-aware application management policy that deals with the service de-

livery deadline and the inter-nodal communication delay simultaneously while

placing the applications over distributed Fog nodes.

4. A context-aware application management policy that optimizes the service time

of applications by coordinating the sensing frequency and data size of IoT devices

with the capacity of Fog nodes.

5. A QoE-aware application management policy that prioritizes the placement of ap-

plications in Fog environments based on user expectations.

6. A pricing model for integrated Fog-Cloud environments that enhances the profit

of providers for executing the applications in the proximity of end-users.
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Chapter 1

Introduction

The Internet of Things (IoT) paradigm has changed the structure of physical environ-

ments by connecting numerous computing components, digital machines and animals

with the Internet. It enables them to perceive the external ambiance as sensors and trig-

ger any action based on the given commands using actuators [1]. Thus, it creates a novel

type of interaction among different real-world entities in ingenious ways. The ongoing

advancement in the field of hardware and communication technology is consistently

improving and expanding the applicability of IoT. It consequently helps in realizing the

theory of smart city, remote healthcare, Industry 4.0 and smart agriculture [2]. Recently,

various Cyber-Physical Systems (CPS) for smart environments such as indoor locators,

digital health recorder and robot-assisted supply chain manager have been developed

through the widespread deployment of IoT devices. Moreover, according to the current

trend of practising IoT, it is expected that by 2030, there will be 1.2 trillion active IoT

devices with potential economic impact of $15 trillion per year [3].

IoT devices can generate data incessantly or periodically. Different types of applica-

tions are used to process these data [4]. As most of the IoT devices are equipped with

limited energy, computing and networking capabilities, they are considered ill-suited to

execute heavyweight applications [5]. Moreover, based on the working environment of

the CPSs, applications are often forced to process data within a defined time frame. Their

data-driven interactions with IoT devices also demand a less-congested network. The

computing paradigm executing the applications for IoT-enabled CPSs needs to observe

these issues so that the desired responsiveness of the CPSs can be ensured.

1
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Figure 1.1: Geographical coverage of different Cloud service providers

1.1 Fog: A New Computing Paradigm

Cloud computing has been the backbone for hosting subscription-oriented resources

and application services. It is also used to execute the applications for different IoT-

enabled CPSs [6]. Cloud datacentres consist of data and computing servers to facilitate

users with storage and virtualized computing instances [7]. As shown in Figure 1.1,

these datacentres are located at a multi-hop distance from the IoT devices 1. Therefore,

an extended period is required to transfer data and command between the IoT devices

and the applications executing on the Cloud instances. It degrades the application ser-

vice delivery time. When a large number of IoT devices initiate data-driven interactions

with remote applications, it adds substantial load to the network and creates severe

congestion. It also increases the computational overhead on Cloud datacentres [8]. Con-

sequently, the Cloud-centric application execution model fail to meet the performance

threshold for different IoT-enabled CPSs, especially in latency-sensitive use cases. To

address such limitations, an extension of Cloud computing named Fog computing was

introduced by CISCO in 2012 [9].

1Source: https://www.atomia.com/2016/11/24/comparing-the-geographical-coverage-of-aws-azure-
and-google-cloud/
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Figure 1.2: An illustration of application execution in Fog environments

1.1.1 Benefits of Fog Computing

Fog manages an intermediate layer between end-user devices and Cloud datacentres

by utilizing the computing components within the edge network [10]. In Fog envi-

ronments, these computing components; for example personal computers, gateways,

Raspberry PIs, nano-servers and micro-datacentres, are commonly known as Fog nodes.

As shown in Figure 1.2, Fog nodes can execute various IoT applications in the prox-

imity of data sources. Hence, Fog computing resists end-user devices to send a huge

amount of data towards Cloud datacentres that decreases the data propagation delay.

As a consequence, the service latency of different applications improves [11]. Moreover,

it conserves network bandwidth that reduces the scope of network congestion. Further-

more, providers can migrate the computational load from Cloud datacentres to network

edge through Fog computing. As Fog nodes are less expensive, it lowers the operational

cost of providers and saves the energy in Cloud datacentres. Additionally, Fog comput-

ing supports robust location-awareness to simplify the communication with mobile and

energy-constrained end-user devices [12]. Because of the features mentioned above, Fog

computing is considered very promising to meet the application service requirements

for different IoT-enabled CPSs.
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1.1.2 Initiatives for Realizing Fog Computing

Taking the benefits of Fog computing into cognizance, several technology giants such

as Amazon, Alphabet and Microsoft have already started integrating Fog services with

their Cloud infrastructure [13]. To standardize the theory of Fog computing, an associa-

tion of academic and industrial bodies, named Industrial Internet Consortium, has been

formed recently [14]. Moreover, Cisco has developed IOx-enabled networking devices

and begun to market them as multi-purpose Fog nodes across the globe [15]. Following

Cisco, different hardware manufacturers such as Intel and Dell have also approached to

build compatible machines for Fog computing [16].

There exists other companies like SONM and NEC Laboratories which are engaged

in making dedicated software systems for Fog computing environments. The develop-

ment of FogFlow framework is regarded as a successful attempt to this direction [17].

Similarly, start-up initiatives like FogHorn Systems and Drofika Labs, have launched

different Fog computing-based IoT solutions to simplify the day to day life of users [18].

The Fog computing-based real-time remote patient monitoring and critical care manage-

ment offered by Tata Consultancy Services is one of the recent inclusions in this domain

[19]. With such a pace of advancement, Fog computing is expected to add $5.7 billion

more to the global market of utility computing by 2025 [20].

1.1.3 Challenges of Fog Computing

The challenges of application management in Fog computing environments are dis-

cussed below.

• Resource and energy-constrained, distributed and heterogeneous Fog nodes: Most of the

Fog nodes are constrained in processing power, networking capability, storage and en-

ergy capacity. Their resource architecture, communication standards and operating sys-

tems also vary from one to another. Additionally, they are deployed in distributed order

at the edge network. As a consequence, time-optimized and platform-independent ap-

plication execution becomes tedious to ensure in Fog.

•Absence of business model: Fog environments is a relatively new computing paradigm

that lacks a unanimous business model. This limitation of Fog computing significantly
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affects the cost and budget management of providers and users respectively. Addition-

ally, Fog infrastructure is less flexible than Cloud in terms of sharing resources. For

example, the Fog resources located in California cannot be harnessed for the CPSs in

Melbourne due to the geographical distribution. Due to localized supply and uneven

demand, subscription-oriented business models are difficult to develop for Fog com-

puting environments.

• Subjected to uncertain failures: Although Fog computing reduces application service

delivery time, Fog nodes are highly prone to get affected by anomalies, power failures

and out of capacity faults. It obstructs the execution of applications assigned to them.

Due to the latency constraints, it also becomes difficult to recover the system from fault

without degrading the system performance.

• Standard-less integration: In some cases, the applications executing in Fog environ-

ments need the services offered by different computing paradigms. For example, the

Fog-based health data analytic applications require the Cloud-based storage service to

facilitate location-independent medical report sharing. To manage applications during

such scenarios, integration of Fog infrastructure with other services is necessary. Never-

theless, the absence of efficient frameworks and standards often resist the Fog environ-

ments to provide this assistance to the applications.

• Lack of interoperability: Due to various benefits of Fog computing, it is expected to

execute most of the IoT applications in Fog environments. Regrettably, it requires an ex-

tensive programming effort to customize the existing Cloud-based IoT applications so

that they can execute in Fog environments. It happens due to lack of application interop-

erability. Moreover, it is hard to solve because of the differences in resource architecture,

management operations, service orchestration and security measures of Fog and Cloud

computing environments.

• Inefficient task distribution: Fog computing environment is decentralized in nature.

Therefore, it is tough to orchestrate the services offered by Fog environments and syn-

chronize the Fog nodes while assigning applications to them for execution. Further-

more, the coexistence of multiple decision-making entities increase the application man-

agement complexity in Fog environments that ultimately results in poor distribution of

application tasks over the Fog nodes.
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• Less secured: The outcomes of Fog-based applications can be used by different par-

ties simultaneously. For example, the services of a Fog-based healthcare application are

relevant to hospitals, insurance companies and employer organization. In such cases,

Fog environments require to ensure on-demand and secure access to application out-

comes as a part of application management. However, due to the resource scarcity and

dynamics of Fog environments, it is hard to apply compute-intensive and complex se-

curity measures on Fog nodes.

In this thesis, we address the challenges of executing applications through resource-

constrained, heterogeneous and distributed Fog nodes by identifying their suitable place-

ment options in Fog environments. Here, we propose a taxonomy on application man-

agement in Fog computing and review the existing application management strategies

and their limitations. Furthermore, we develop a set of application placement policies

to enable the efficient management of applications in Fog environments.

1.2 Research Questions and Objectives

In smart systems, numerous IoT devices, applications and Fog nodes continuously inter-

act with each other. These interactions are mostly driven by the service exceptions of the

users and the monetary aspects of the infrastructure providers. This thesis investigates

the placement of applications in Fog environments from the perspectives of different

entities interacting with the IoT-enabled smart systems. The objective of this thesis is to

enhance the application’s Quality of Service (QoS), user’s Quality of Experience (QoE)

and provider’s profit by harnessing the Fog nodes. We formulate the application place-

ment problem and attain the objective by exploiting the following research questions:

• Q1. What are the QoS dominating factors for the applications in Fog environments? : To

answer this question, we first analyse the characteristics of the applications such

as their latency-sensitivity, data load and frequency of external interactions. The

intensity of these characteristics depends on the service delivery deadline, the size

of the input and the sensing frequency of IoT devices and they play vital roles in

defining the QoS requirements of the applications. Moreover, if the application

is distributed across multiple Fog nodes, the inter-nodal communication delay



1.2 Research Questions and Objectives 7

among them becomes crucial to meet the application QoS. Similarly, for mono-

lithic applications, per unit time computing and networking resource occupancy

help in determining the overhead of Fog nodes which consequently denotes their

suitability for meeting the QoS of the applications.

• Q2. Why the enhancement of user’s QoE through Fog computing is essential? : The

user expectations in terms of application responsiveness, resource requirements

and service access can vary from one to another. If Fog computing is unable to

deal with them, the relinquish rate of users will increase. Additionally, the accept-

ability and QoE for the application will degrade even when the Fog computing

meets its QoS. For example, an application’s QoS can guarantee downloading of a

file in maximum 5 minutes. On a particular scenario, two users may require that

file within 3 and 7 minutes respectively. If the application downloads the file in

exact 5 minutes, the expectation of the second user will be met; however, it will be

failed for the first user. As a consequence, despite of meeting the QoS, QoE of both

users will not be the same for that application. Hence, it is required to manage the

applications in Fog environments according to user expectations.

• Q3. How should the pricing of Fog resources be modelled to increase the provider’s profit?

: From the perspective of infrastructure providers, the successful realization of

Fog computing largely depends on its monetary aspects. In most of the cases,

the explicit intention of maximizing revenue leads the providers to overlook the

stringent QoS requirements of the applications and the budget constraints of the

users. As a result, the Service Level Agreement (SLA) violates. In such cases, the

commitment of providing compensation to users for SLA violation can backfire

and affect the profit accumulation of providers. The uneven expenses of operating

heterogeneous Fog nodes can make it even more complicated for the providers. An

efficient pricing model for the Fog resources can solve this issue to a great extent. It

should be set according to the scale of performance improvement for executing the

applications in Fog environments. Hence, it will arouse the necessity of satisfying

the SLA that will consequently increase the provider’s profit.
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1.3 Thesis Contributions

Based on the research questions mentioned above, the contributions of this thesis are:

1. Proposes a taxonomy on application management in Fog computing and reviews

the existing application architecture, placement and maintenance approaches.

2. Investigates efficient application management policies that ensure QoS satisfied

service delivery for different types of applications in Fog environments (addresses

the Q1).

• A framework that distributes the application management tasks across the

gateway and the infrastructure level of Fog environments.

• A procedure to select applications for Fog-based placement according to their

QoS requirements.

• A latency-aware approach for placing distributed applications over Fog nodes.

• A module forwarding strategy that re-locates applications to optimize the

number of Fog nodes without degrading their QoS.

• A context-aware approach that optimizes application service delivery time.

• A strategy to manage the network congestion and computation overhead of

Fog nodes while executing the applications.

3. Exploits an expeditious technique that enhances the QoE of users by managing the

applications according to their expectations (addresses the Q2).

• An innovative approach to prioritize service expectations of different users in

Fog environments.

• A policy to classify the Fog nodes based on their capabilities of satisfying user

demand.

• An optimization model that ensures maximum QoE-gain of the users through

resource-constrained Fog nodes.

4. Develops a novel scheme that increases the profit of providers in integrated Fog-

Cloud computing environments (addresses the Q3)
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Figure 1.3: The thesis structure

• A placement policy that enhances the provider’s profit and meets applica-

tion’s QoS simultaneously.

• A pricing model for Fog resources that increases revenue according to the

level of performance improvement.

• A compensation method that supports both the user’s and the provider’s

economic interests through an inverse relationship between compensation

amount and QoS satisfaction rate.

1.4 Thesis Organization

The structure of this thesis is shown in Figure 1.3. The remaining part of this thesis is

organized as follows:
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in Fog Computing Environments”, Journal of Parallel and Distributed Computing

(JPDC), Volume 132, Pages: 190-203, ISSN: 0743-7315, Elsevier Press, Amsterdam,

The Netherlands, October 2019.

• Chapter 7 proposes a pricing model for integrated Fog-Cloud environments that

enhances the profit of service providers for placing and executing the applications

in the proximity of users. This chapter is derived from:

- Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and

Rajkumar Buyya, ”Profit-aware Application Placement for Integrated Fog-Cloud

Computing Environments”, Journal of Parallel and Distributed Computing (JPDC),

Volume 135, Pages: 177-190, ISSN: 0743-7315, Elsevier Press, Amsterdam, The

Netherlands, January 2020.

• Chapter 8 concludes the thesis by summarizing the findings and offers directions

for future research.





Chapter 2

A Taxonomy and Review on
Application Management

This chapter investigate the existing application management approaches in Fog computing and

review them in terms of architecture, placement and maintenance. Based on in-depth analysis of

the literature, a taxonomy on application management in Fog computing environments is proposed.

The detailed survey of existing approaches is conducted according to the taxonomy. A perspective

model for managing applications in Fog environments is also presented. Finally, the research gaps

for further improvement of Fog computing concept is highlighted.

2.1 Introduction

Fog computing creates a wide distribution of infrastructure and platform services . In-

frastructure services include on-demand exploitation of computing, networking (band-

width and firewalls) and storage resources, whereas platform services facilitate appli-

cation runtime environments, operating systems and programming interfaces [21]. Fog

resource management denotes the administrative operations such as deployment, virtu-

alization and monitoring of Fog nodes that foster the Fog-based infrastructure and plat-

form services [22]. Fog resource management also functions load balancing, dynamic

This chapter is derived from:

• Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya, ”Fog Computing: A Taxon-
omy, Survey and Future Directions”, Internet of Everything: Algorithms, Methodologies, Technologies and
Perspectives, B. DiMartino, K. Li, L. Yang, A. Esposito (eds), Pages: 103-130, ISBN 978-981-10-5860-8,
Springer, Singapore, 2018.

• Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya, ”Application Management
in Fog Computing Environments: A Taxonomy, Review and Future Directions”, ACM Computing
Surveys (in second revision).
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provisioning and auto-scaling to ensure service availability and multi-tenancy [23].

Efficient Fog resource management assists IoT-enabled CPSs to operate multiple ap-

plications simultaneously. However, the characteristics of these applications vary from

one CPS to another. For example, the expected application service delivery time for a

CPS that remotely monitors the respiratory functions of critical patients is quite stringent

compared to a CPS, which measures the environmental parameters [24]. Moreover, an

application that assists a CPS to perform virtual reality operations handles huge amount

of data in per unit time compared to an application which helps in tracking the empty

parking slots. Such diversified characteristics play vital roles in defining the Quality

of Service (QoS) requirements of the applications that cannot be met only through Fog

resource management. This perception also urges to develop different application man-

agement strategies according to the preferences of the applications. Usually, an appli-

cation management strategy refers to a collection of algorithms, mathematical models,

empirical analysis and recommendations that regulate the implementation, installation

and execution of applications in a computing environment. Moreover, application man-

agement strategies practice admission control, location transparency, data maintenance

and service resiliency as per the demands of the corresponding system [25]. Neverthe-

less, there are three research questions that become crucial while developing application

management strategies for Fog computing environments. They are listed as:

• How should the applications be composed?

To address this question, an application management strategy requires to specify

the features of applications such as their programming model, functional layout,

service type, workload type so that they can be aligned with the Fog-based infras-

tructure and platform services.

• How should the applications be placed?

To address this question, an application management strategy requires to find suit-

able placement options for the applications in Fog environments. At the same

time, the strategy needs to make a balance between application-centric QoS re-

quirements.

• How should the applications be maintained?
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To address this question, an application management strategy requires to facilitate

security and resiliency support during application execution in Fog environments.

Moreover, the strategy needs to monitor the performance of the applications in

consistent manner.

Investigating the operational responses to these questions, a notable number of ap-

plication management strategies has already been developed for Fog computing envi-

ronments. They predominantly focus on the modularization of applications to deal with

the resource constraints of Fog nodes [26] [27] [28]. These strategies also adopt the web

service-based communication techniques to simplify the interactions between different

components of modular applications hosted on distributed Fog nodes [29] [30]. While

assigning the applications to the Fog nodes, the existing application management strate-

gies give much emphasis on meeting the service delivery deadline and optimizing the

cost and energy consumptions [31] [32] [33]. Most of them operate discretely and apply

strict synchronization measures over the Fog nodes to mitigate the effect of interference

[34]. The application management strategies also incorporate both proactive and reac-

tive fault tolerance techniques to support the reliable execution of the applications in

Fog environments [35] [36] [37]. However, in the literature, very few initiatives have

been found that categorize the application management strategies in a systematic way

[10] [38]. Therefore, in this chapter, we identify three important aspects of application

management in Fog computing environments namely application architecture, applica-

tion placement and application maintenance, as shown in Fig. 2.1 and present separate

taxonomy for each of them. Based on the proposed taxonomy, we also review the ex-

isting application management strategies and denote the associated research gaps. We

also discuss a framework that is logically distributed and helps adaptive and holistic

management of applications in Fog computing environments.

The rest of the chapter is organized as follows: The the differences between Fog com-

puting and other contemporary computing paradigms along with the description of re-

lated surveys are illustrated in Section 2.2. In Section 2.3, a discussion on application

architecture in Fog environments is presented. Section 2.4 highlights the existing tech-

niques to place applications in Fog computing. Section 2.5 explores application main-

tenance operations. Section 2.6 demonstrates a perspective framework for Fog-based
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Figure 2.1: Aspects of application management

application management. Finally, Section 2.7 concludes the chapter.

2.2 Background Study

Fog computing is a very recent inclusion in the domain of computing paradigms. In

this section, the evolution of Fog computing and its differences with the contemporary

computing paradigms are discussed. Additionally, the existing literature survey and the

various aspects of application management in Fog computing are highlighted.

2.2.1 Evolution of Fog Computing

The perception regarding distributed computation has been continuously updating since

its origin. As a consequence, different computing paradigms based on distributed com-

putation have emerged from time to time as shown in Figure 2.2. In 1967, Cluster com-

puting was first introduced where a set of computers, tightly coupled with each other

through Local Area Network (LAN), work together like a single system to perform the

same tasks [39]. In most of the cases, these cluster computers are homogeneous, and

they are controlled and managed by a software running on a specific entity within the

cluster. The further expansion of Cluster computing is made in form of Grid computing

during early 1990s [40]. It connects computers and clusters from different administra-

tive domains to process non-interactive workloads. The computing components in Grid

environments are loosely coupled, geographically dispersed and heterogeneous. They

are managed in decentralized manner and set to perform different tasks. At the begin-

ning of 2000s, Grid computing is improvised to Cloud computing that offers not only

infrastructure services but also platform and software services as utility over the Internet
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[7]. In Cloud environments, remote datacentres host virtualized computing resources,

and a centralized system manages their operations and ensures their on-demand access

to users. Unlike Grid and Cluster computing, Cloud computing is widely adopted in

numerous domains including industry, healthcare, education and research due to its

service oriented architecture, high resource availability, scalability, guaranteed services

and location independence.

Cluster computing Grid computing

Cloud Fedaration Cloud Radio Access Network Mobile Cloud computing Fog computing

Cloud computing

Fog Radio Access NetworkMobile Edge computing

Scope: Database and 

WebLogic operations
Scope: Automation, Predictive 

modelling and Engineering design

Scope: Large scale Enterprise, Academic, 
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Service integration 
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storage for smart phones

Scope: Internet of 

Things (IoT) applications

Scope: Socially-aware cellular 

networking, Less complex fronthaul 

Scope: Network Function 

Virtualization, 5G

Figure 2.2: Evolution of Fog computing

Recently, different extensions of Cloud computing have been developed. In Feder-

ated Cloud computing, Cloud services from multiple providers are inter-connected to

balance the computational load among them and accommodate the spikes of user’s de-

mand [41]. It supports providers to expand their geographic footprints and business,

and assists users to access different Cloud environments using single credential. More-

over, during 2009-2012, the number of smart phone users, their application and cellular

service requirements, and the practice of IoT technology began to proliferate signifi-

cantly. To handle this situation, Cloud services are augmented with traditional cellular

and sensor network architecture, and the concept of Mobile Cloud computing (MCC),

Cloud Radio Access Network (C-RAN) and Fog computing are proposed [42] [43].

Through MCC, users are facilitated to offload compute and data intensive smart

phone-based applications to Cloud for execution. Thus, it overcomes the limitations of

smart phones in terms of energy, storage and computation, and improves user experi-
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ence. Sometimes, MCC is designed with an additional computing layer constructed with

Cloudlets in between smart phones and Cloud datacentres. Hence, it offers a three-tier

computing environment and reduces application offloading delay to meet their latency

constraints [44]. Conversely, C-RAN moves the radio signal processing from cellular

base stations to Cloud datacentres and helps to reduce cost of the providers. It improves

resource utilization and simplifies the coordination among cellular base stations. C-

RAN is also considered as the foundation for Software-Defined Networking (SDN) [45].

SDN separates control (IP routing table, Routing protocol) planes from distributed net-

working devices and places them to an centralized entity so that holistic administration

can be enabled in the networking architecture.

Although C-RAN promotes the realization of 2G,3G and 4G, it has limitations in

assisting Ultra Reliability and Low latency Communication (URLLC) service for the

fifth generation cellular network standard, commonly known as 5G. To complement

C-RAN in dealing with 5G related issues, European Telecommunications Standards In-

stitute (ETSI) brought the idea of Mobile Edge Computing (MEC) [46]. In MEC, a virtu-

alized server is set at the cellular base station to ensure flexible and rapid deployment

of new cellular services for the users. It offers real-time access to radio network infor-

mation to endorse Tactile Internet, interactive gaming and virtual reality applications

through 5G. Moreover, MEC plays an important role in Network Function Virtualiza-

tion (NFV) [47]. NFV technique shifts the operations of forwarding and management

plane such as packet transfer, security maintenance, address translation and mobility

management from purpose build hardware to virtualized instances that consequently

improves network response time.

Among the available extensions of Cloud computing, Fog is more focused on serv-

ing IoT applications [9]. By extending the computation facilities closer to users, it en-

sures reduced application service delivery time for different IoT-enabled CPSs with less

network congestion. Similar to MCC, Fog computing creates multi-tier application ex-

ecution platform between IoT devices and Cloud datacentres through deployment of

Fog nodes in different networking level and assists data processing within the com-

munication channel. It is highly scalable and convenient for device to device interac-

tions. Moreover, the Fog computing-enabled Radio Access Network (FRAN) enhances
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the responsiveness of socially-aware networking and simplifies the complexity in cel-

lular communication [48]. Additionally, to harness the capabilities of Fog computing,

various specialized networking components namely Cisco IOx-enabled devices have

already been launched. They can support NFV and promote the realization of MEC.

Hence, it is widely accepted that Fog computing not only complements IoT-enabled

CPSs but also endorses the basic operations of different Cloud-extensions. Several as-

sociation of academic and industrial bodies such as Industrial Internet Consortium and

FogHorn Systems are currently working to standardize such concepts of Fog computing

across the world. Apart from them, some initiatives are also taken to engage other com-

puting paradigms for solving various IoT-related issues. For example, MEC has recently

been redefined as Multi-access Edge Computing so that it can assist IoT-enabled CPSs

as well. This sort of activities are going to make the research and marketplace of Fog

computing quite challenging in the upcoming years.

2.2.2 Comparison among Mist, Edge and Fog computing

Likewise Fog computing, Edge and Mist computing support application execution in

proximity of data sources as shown in Fig. 2.3. More precisely, Mist computing enables

the IoT devices to process data within themselves whereas Edge computing performs
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the processing operations at the gateways of IoT devices [49] [50]. For instance, smart

watches can be considered as IoT devices. Users connect these smart watches to their

smart phones via Bluetooth Low Energy (BLE) networking so that they can receive mo-

bile notifications while walking or driving. Here, the smart phones act as the IoT gate-

ways for the smart watches. At the same time, the smart watches sense blood pressure,

heart beat and oxygen saturation rate of the users. If a watch executes the application

to process the generated data, then it is regarded as Mist computing [51]. Conversely,

when the watch forwards the data to a smart phone-based application for processing,

then it becomes Edge computing [52]. However, compared to them, Fog computing not

only harnesses the IoT gateways but also engage other computing components within

the edge network such as smart routers, personal computers, Raspberry Pi devices and

even micro-datacentres to process the IoT data [8].

Although Mist and Edge computing can solve many IoT-related issues, they have

certain limitations. The computing components in Mist are not abundant in process-

ing, networking and energy capacity. They are less capable of executing large-scale and

complex applications for a longer period of time [53]. On the other hand, the manage-

ment of Edge nodes are very much user-centric with only reactive fault-tolerant facili-

ties. In Edge environments, it is also tedious to ensure the fairness among multiple users

[54]. Fog computing overcomes these limitations of Mist and Edge by leveraging com-

paratively powerful resources at the user premises level and lessening the burdens of

resource and application service management from the users. Moreover, Fog comput-

ing maintains a seamless communication with Cloud datacentres that eventually offers

an extensive execution platform for the IoT applications [55]. The notable differences

between Mist, Edge and Fog computing are listed in Table 2.1.

However, Mist, Edge and Fog are relatively new computing paradigms and their

evolution processes are still ongoing. Therefore, many researchers and industries adopt

different approaches to define them. For instance, there are several research works in the

literature that consider Edge computing as a subset of Fog computing [24]. Oppositely,

in other works, Edge computing is regarded as a superset embracing all paradigms

where the computation is moved to the edge network, including Fog computing, Mo-

bile Cloud computing and Mobile Edge computing [49]. There are also some examples
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Facts Mist Edge Fog

Place of operation IoT devices, sensors and
actuators

Gateway devices and
set-top boxes

Specialized networking
and general-purpose
computing machines

Elementary Hardware Microcontroller Programmable logic
controller

Single-board computer

Wireless standards Zigbee, Bluetooth LE and
Zwave

Bluetooth and WiFi WiFi and LTE

Policy manager Manufacturer Users Service providers

Application
deployment

Programmed Installed by user Requested by user to
service providers

Resource assignment Dedicated Shared Shared or virtualized

Application-user
mapping

Single application, single
user

Multiple application,
single user

Multiple application,
multiple user

Resource orientation Standalone,
homogeneous cluster

Peer to Peer, Ad-hoc Cloud of Things

Cloud communication Incoherent or through
mediator

Event-driven Seamless

Fault tolerance
techniques

Replacement User-defined exception
handling

Proactive and reactive

Extended from Wireless sensor network,
embedded systems

Personalized computing
environments

Cloud computing

Table 2.1: Summary of Mist, Edge and Fog computing

where Fog and Edge computing are used interchangeably [56]. Moreover, in certain

cases, Edge computation is regarded as a service model which is offered by different

paradigms namely Dew, Mist and Fog computing. According to this concept, Dew

computing happens in the IoT devices and Mist computing occurs at the IoT gateways

[57]. Nevertheless, among these contemporary paradigms, Fog computing is considered

highly feasible due to its widespread support for the IoT applications.

2.2.3 Related Surveys

In the context of Fog computing, the resource and the application service management

are equally important. In fact, it is difficult to leverage the capabilities of Fog resources

without efficient application service management and vice versa. Nevertheless, in the

existing Fog-based literature surveys, application service management is considerd as a
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part of Fog resource management. Among these surveys, [58], [59], [55] and [10] pro-

vided the general discussion on Fog computing. They reviewed the researches on Fog

computing from the architectural perspective and highlight the key technologies and

limitations of Fog computing. Moreover, they illustrated the benefits of Fog computing

over Cloud computing and clearly distinguished its concept from other related comput-

ing paradigms such as Mobile Cloud Computing and Mobile Edge Computing. Other

Fog-based literature surveys including [23], [60] [38] and [61] explored the basic resource

management approaches in Fog environments. They investigated various management

frameworks, scheduling techniques and provisioning algorithms for Fog resources. Fur-

thermore, they reviewed the resource orchestration techniques in layered Fog environ-

ments and studied the resource management policies in accordance with the application

service requirements. There exist some other literature surveys that focused on a spe-

cific aspect of Fog resource management. For example, Osanaiye et al. addressed the

virtual computing instances migration methods in Fog computing [62] and Baccarelli et

al. inspected energy-efficient Fog resource management [63].

Moreover, Bellavista et al. [64], Nath et al. [65] and Puliafito et al. [12] conducted sur-

veys to conceptualize the application service management in Fog environments. They

discussed the communication, security, data and actuation management as part of appli-

cation service management. Besides, they highlighted different application specific Fog

architecture and gave an overview to realize them for various IoT-enabled CPSs. Nev-

ertheless, there are some other literature surveys that target particular Fog computing-

based applications and their service management issues. For example, Aazam et al. [66]

studied computation offloading techniques in Fog computing environments. Similary,

Kraemer et al. [67], Mukherjee et al. [68] and Perera et al. [69] investigated the existing

approaches that enable Fog computing in smart health care, advanced networking and

smart city-based applications respectively. On the other hand, Roman et al. [70], Shirazi

et al. [71] and Zhang et al. [72] discussed the security aspects from both resource and

application management perspectives for Fog computing.

In Table 2.2, a summary of existing Fog literature surveys and their comparative

study with respect to our work is presented. As noted, the existing surveys do not

explore application service management in Fog environments comprehensively. More
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specifically, they barely discuss about application architecture, placement and mainte-

nance in collective manner and illustrate the literature taxonomy accordingly. In this

work, we address these shortcomings. We also identify the associate research gaps,

demonstrate a perspective framework for distributed application management and pro-

vide future direction for the improvement of Fog computing concept. The following

sections of this chapter present the detail review of existing application management

strategies in Fog computing.

2.3 Application Architecture

The complexities of executing IoT applications in distributed, heterogeneous and re-

source constrained Fog nodes can be addressed if the architecture of applications is de-

fined as per the specifications of corresponding Fog environment. An elastic architecture

also helps interoperability between different versions of an applications. Moreover, the

elements of application architecture such as programming model and workload type

are used to determine the placement strategy and resource consumptions of the appli-

cations. The service type of an application denotes the scope of its external exposure

that assists in application maintenance. Fig. 2.4 provides a taxonomy on application

architecture highlighting the main elements. These elements are described below.

2.3.1 Functional Layout

An application performs different types of operations. For example, an image process-

ing application reduces noises from an image, converts colors, extracts features and com-

pares the results with predefined thresholds. The functional layout of an application de-

fines the arrangement of these operations. It assists in realizing the possible distribution

of applications in constrained Fog environments. The functional layout of applications

can be classified into two types; Monolithic and Distributed.
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Surveys Issues

Discusses
application
architecture

Investigates
application
placement
techniques

Explores
application
maintenance
operations

Provides
taxonomy on
application
management

Conceptualizes
application
management
framework

Relates
application
and resource
management

[58] ∂ ∂ X

[55] X X ∂ ∂

[59] ∂ X X

[10] X X ∂

[23] ∂ X ∂ X

[60] ∂ ∂ ∂

[61] X ∂ X

[38] ∂ ∂ X X X

[64] X ∂ X X

[65] ∂ X ∂ X

[12] ∂ X X

[62] ∂ X X

[63] X ∂ X X

[66] ∂ X ∂ X

[67] ∂ X

[68] ∂ X X X

[69] X X X

[70] ∂ X X

[71] X X X

[72] ∂ X X X

This
survey

X X X X X X

X denotes broad discussion on the respective issue.
∂ denotes partial discussion on the respective issue.

Table 2.2: Summary of literature surveys in Fog computing

Monolithic:

In monolithic applications, all computational operations are encapsulated in a single

program. These applications function independently to each other. Within such appli-

cations, developer specific parallelism tchniques are applied so that they can run over

multiple processing cores of the host Fog node. The monolithic architecture of Fog-based
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Figure 2.4: Taxonomy on application architecture

applications is discussed in [73], [35], [74], [75], [76], [56], [77], [78], [79] and [80].

Distributed:

In distributed applications, each computational operation is organized as a separate pro-

gram. They can be executed in a single Fog node or can be operated by several Fog nodes

in collaborative manner. Compared to monolithic applications, distributed applications

are easier to expand. Based on the interactions of computational operations, distributed

applications are classified into two categories.

•Module-based: In module-based distributed applications, the application programs

are tightly coupled and dependent to each other. They are devotedly provisoned for

serving data of a particular source. The module-based functional layout for applications

is highlighted in [81], [82], [83], [84], [26], [85], [27], [86], [87] and [28].

• Micro-services: Through micro-service-based implementation, the computational

operations of an application are shared among different entities to process their data

simultaneously. Unlike application modules, micro-services are loosely coupled and

function independently. Furthermore, due to explicit isolation, a micro-service of an

application can be easily attached to other applications as per the requirements. The

micro-service-based implementation of IoT applications is discussed in [88], [89], [90],

[91], [92], [93], [94], [30], [95] and [96].
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2.3.2 Program Model

It defines the execution order of computing operations in an application. It guides to

provision resources for application as per their dimension and predicted life cycle. Three

different types of application program models have been widely adopted in Fog.

Thread

To ensure simultaneous execution of independent computational operations within an

application, thread program model is used. It is one of the primitive program mod-

els that helps to achieve concurrency in resource constrained Fog nodes. The thread

model is adopted in [97], [56], [98], [99], [100] and [101] to compose IoT applications.

The advanced versions of thread model such as map-reduce and dataflow are also used

predominantly in Fog computing.

Map-Reduce

Through this model, the large-volume inputs for an application is divided into multiple

chunks so that its all operations can run in parallel over the given inputs. Later, the

processing outcomes of each chunk are combined to generate the overall output of the

application. Such program model for Fog-based applications is discussed in [102], [103],

[104], [105], [106], [107] and [108].

Dataflow

In dataflow program model, the output of a computational operation is fed to another

operation as input and this process continues for the subsequent operations. Dataflow

program model binds all computational operations of an application through a Directed

Acyclic Graph (DAG). The size of input data handled through this model is not usually

as large as that of the map-reduce model. Dataflow program model for the Fog-based

applications is considered in [109], [110], [111], [112], [113], [85], [114], [94], [30] and [95].
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2.3.3 Service Type

The service type of an application refers to its outcome that is delivered to the corre-

sponding and requesting entities. The size of output of an application depends on its

service types which helps to model the data propagation delay. Based on the working

environment, application service outcomes can vary. The services of different IoT appli-

cations can be classified into four types.

Invocation

An IoT application can invoke the execution of another application as its service. For

example, the IoT application monitoring forest fire can initiate a robotic application to

meet the emergency requirements. Usually, in this type of services, an initiation com-

mand along with necessary arguments are forwarded from the source application to the

requested application. Such application service type is discussed in [82], [75] and [90].

Display

There exist several IoT applications such as virtual reality gaming and smart surveillance

that visualize the service outcomes to the users. The quality of such application services

explicitly depends on the networking condition between the users and the associated

Fog nodes. This type of application service is discussed in [74], [26], [115], [27], [116],

[117], [118] and [94].

Actuation

After processing incoming data, several IoT applications trigger actuators to initiate the

required physical action. For example, the remote patient monitoring system can ac-

tuate the Oxygen supply engine during emergency situations. Actuation is considered

in [73], [81], [87], [119], [90], [109], [110] and [103] as a service type for the Fog-based

applications.
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Storage

For long-term data collection or crowd sourcing, IoT applications are often used. These

applications aggregate these data and store in Cloud or Fog nodes for future analysis by

other applications. Storage is mentioned in [81], [86] and [79] as an application service

type for Fog.

2.3.4 Interaction Method

While processing data in a collaborative manner, the computing operations within an

application require to interact with each other for sharing and storing the intermediate

outcomes for further usages. It is also applicable for different applications pursuing a

common goal. However, this interaction becomes very crucial when it operates across

multiple Fog nodes. In the following subsections, different interaction methods for Fog-

based applications are discussed.

Shared Database

It is one of the primitive methods of sharing data. In this method, data is stored in

a particular location and all the applications and computing operations requiring the

data have direct access to it. This method also supports multi-level distribution of data

from local and global perspectives for large-scale systems. The shared database-driven

interaction is discussed in [74], [79], [102] and [113].

Message-based

In this interaction method, the host Fog nodes of computing operations or applications

exchange lightweight messages to notify the current sate of data processing. In most of

the cases, this message transmission is supervised by a dedicated entity and follows the

publish and subscribe protocol for machine to machine communication. Unlike shared

database-driven interaction, this method is often used for small-scale systems. Message-

based interaction is considered in [31], [120], [91] and [111].
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Representational State Transfer

It offers a web service-based communication between the host Fog nodes on the top

of http protocol. It allows data exchange through several stateless commands such as

get and post, and often follows the push and pull approach during device level inter-

action. The representational state transfer is used in [29], [92], [94] and [24]. Due to the

speed and ease of scalability, this method is being widely used by the IoT applications

compared to shared database and message-based interactions.

2.3.5 Workload Type

Workload denotes the characteristics of input processed by an application. The knowl-

edge on workload type is very important to set the appropriate configuration of host

Fog node in terms of network bandwidth, processing cores and memory. The workload

type for IoT applications are broadly classified into two categories as listed below.

Event-driven

It refers to the non-interactive inputs of an application. Once accumulated from multiple

sources, the event-driven workload is submitted to the application for batch processing.

The dispatch order of the inputs in such workload can be shuffled as per the availability

of resources to ensure the desired performance of the application. The event-driven

workload for Fog-based applications is considered in [112], [103], [121], [122], [101],

[114], [11], [118], [123] and [96].

Stream

This type of workload is generated by different sources in periodic manner. There-

fore, while developing real-time IoT solutions, the stream workload is preferred more

than the event-driven workload. The specification and processing requirements of such

workload can change with the course of time. It largely depends on the sensing fre-

quency of associated IoT devices and the intermediate time between two consecutive
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input explicitly defines the idle time of host Fog nodes. The stream workload for Fog-

based applications is discussed in [120], [102], [124], [125], [93], [126], [127], [94], [80] and

[95].

2.3.6 Research Gaps in Application Architecture

Table 2.3 summarizes the existing concepts related to application architecture in Fog

computing. Although there are a notable number of works, some issues related to this

aspect of application management are yet to be investigated. They are listed as:

1. The execution of one application having particular programming model can trig-

ger another application with different programming model. In such cases, the dynamic

reconfiguration of Fog nodes is required. However, in existing works, only the static

configuration of Fog nodes have been discussed [128].

2. The varying service type of applications can affect the networking capabilities

of the host Fog nodes and degrade the service time the applications. Nevertheless, the

existing approaches barely consider multiple service types of an applications simultane-

ously while determining a suitable placement options for them [129].

3. There are some research works denoting that the higher sensing frequency of IoT

devices is required for better accuracy [24]. However, they have not considered that the

high streaming rate of data creates immense processing burden on the Fog nodes.

4. Although, monolithic applications alleviate the constraints of inter-nodal com-

munication delay, they are less modular. Conversely, the distributed application offer

scalability but their service often gets affected by the limitations of underlying network.

Although dynamic modularization of applications as per the context of Fog network is

required, current researches only focus on the fixed functional layouts [26].
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Works Application Architecture Works Application Architecture

Program

Model

Service

Type

Workload

Type

Interaction

Method

Functional

Layout

Program

Model

Service

Type

Workload

Type

Interaction

Method

Functional

Layout

[73] Actuation Event-

driven

Monolithic [82] Invocation Module

[35] Stream Monolithic [97] Thread Stream

[81] Dataflow Actuation,

Storage

Event-

driven

Module [74] Display Stream Shared

Database

Monolithic

[130] Stream Monolithic [26] Dataflow Display Module

[84] Dataflow Module [115] Display Event-

driven

[75] Event-

driven

Monolithic [83] Dataflow Invocation,

Display

Stream Module

[76] Event-

driven

Monolithic [27] Dataflow Display Module

[56] Thread Event-

driven

Monolithic [116] Display Event-

driven

[86] Dataflow Storage Module [87] Actuation Event-

driven

Module
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[131] Stream Monolithic [77] Event-

driven

Monolithic

[79] Storage Stream Shared

Database

Monolithic [132] Dataflow Module

[78] Stream Monolithic [133] Dataflow Stream Module

[98] Dataflow,

Thread

Stream [88] Dataflow µ-service

[117] Dataflow Display Stream Module [119] Dataflow Actuation Module

[89] Dataflow µ-service [90] Invocation,

Actuation

µ-service

[99] Thread Event-

driven

[134] Stream Monolithic

[31] Stream Message [135] Dataflow Stream Module

[29] Dataflow REST Module [136] Event-

driven

Monolithic

[120] Stream Message [100] Thread Display Event-

driven

Monolithic

[91] Dataflow Event-

driven

Message µ-service [102] Map-

Reduce

Display Stream Shared

Database

Monolithic

[109] Dataflow Actuation [124] Stream Monolithic



2.3
A

pplication
A

rchitecture
33

[125] Thread Stream [110] Dataflow Actuation Module

[111] Dataflow Message Module [28] Display Module

[92] REST µ-service [93] Stream µ-service

[112] Dataflow Event-

driven

Module [126] Stream Monolithic

[113] Dataflow Shared

Database

Module [103] Map-

Reduce

Actuation Event-

driven

[85] Dataflow Module [127] Stream Monolithic

[121] Event-

driven

Monolithic [122] Event-

driven

Monolithic

[101] Thread Event-

driven

[114] Dataflow Event-

driven

[11] Event-

driven

Monolithic [118] Display Event-

driven

Monolithic

[94] Dataflow Display Stream µ-service [30] Dataflow REST µ-service

[80] Stream Monolithic [123] Event-

driven

Monolithic

Table 2.3: Summary of existing concepts on application architecture
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2.4 Application Placement

The task distribution problem in Fog computing can be solved to a great extent if the ap-

plications are placed considering the future processing commitments of the Fog nodes.

Additionally, the opportunistic placement of the applications can be a potential factor to

standardize the Fog and Cloud integration. Moreover, while placing the applications,

the resource orientation and their status are studied extensively. Such studies can play

a vital role to update the application architecture dynamically and ensure proactive ap-

plication maintenance. Fig. 2.5 depicts a taxonomy of various elements relevant to the

application placement. Their descriptions are given below.

Application 

Placement

Mapping 

Technique
Placement 

Strategy

Resource 

Type

Placement 

Metric

Resource 

Estimation

Offloading 

Approach

Placement 

Controller

Predictive

On Demand
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Hybrid
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Top-Down

End Device

Distributed

Centralized

Broker

Optimization

Priority-based
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Dynamic

Static
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Virtual Machine

Bare Metal

Profit

Time, Deadline

Resource 

Orientation
Clustered

Client-Server
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User Experience
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Energy

External Context

Resource Status

Mobility

Master-Slave

Figure 2.5: Taxonomy on application placement

2.4.1 Resource Estimation

The approximate resource consumption of an application is needed to estimate while

placing the application in a resource-constrained Fog environment. It assists in defining



2.4 Application Placement 35

the characteristics of an application; whether it is compute intensive, I/O intensive or

disk intensive. Three different types of resource estimation techniques are discussed for

Fog computing.

Profiling

When a limited number of Fog nodes reside in a Fog environment and the specifications

of requested applications remain static, the profiling technique is predominantly used

to estimate the resources for an application. In this technique, an application is executed

separately on each Fog node and associated performance parameters such as processing

time, propagation time and energy consumption are monitored. Based on the accumu-

lated information, the suitable resources for the subsequent executions of the application

are selected.. Application profiling is discussed in [115], [119], [137], [127], [96] and [138].

Predictive

In this technique, based on the past execution patterns, the appropriate resources for an

application are determined. This technique is highly applicable when a Fog environ-

ment supports dynamic provisioning of its component Fog nodes and the specifications

of requested application vary. Compared to the profiling of applications, this technique

is highly scalable, however, its results can be less precise. On the other hand, profiling

depends on the physical deployment whereas prediction relies on the mathematical im-

plications. The predictive resource estimation for Fog is discussed in [139], [140], [86],

[95] and [141].

On Demand

In some cases, the resource provisioning is conducted based on the expectations of user

and their instant demand. This technique differs from profiling or predictive techniques

where the resource estimation depends on the application characteristics. On-demand

estimation of resources is considered in [130], [142], [143], [11] and [24].
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2.4.2 Offloading Approach

An offloading approach helps to manage the applications and their associated data as

per the up-link and down-link network overhead of the host Fog nodes. In literature,

three types of offloading approaches have been found for the Fog-based applications.

Bottom-Up

It is the most generic approach for offloading. in this approach, the requests regrading

application services and relevant data are directly forwarded to the Fog nodes from the

IoT devices or users. This approach for Fog-based applications is highlighted in [134],

[144], [29], [124], [145], [121], [34] and [146].

Top-Down

Unlike bottom-up offloading, the top-down approach pushes the workload and pro-

grams of an application from Cloud to Fog nodes as per the requests of the end-users. It

is often applied when Fog nodes are used for the content distribution. This offloading

approach is discussed in [147], [148], [119], [149], [150], [151] and [152].

Hybrid

Apart from the aforementioned offloading approaches, Fog nodes can share application

programs among themselves. During such interactions, the offloading follows a hybrid

pattern of top down and bottom up. This approach is considered in [120], [37], [122],

[153], [80], [154], [155] and [96] for Fog computing environments.

2.4.3 Resource Orientation

It signifies how the computing resources are arranged in Fog environments. When

different applications are working collaboratively or deployed in distributed manner

across multiple Fog nodes, the inter-nodal communication delay becomes very impor-
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tant factor to ensure their QoS. It largely depends on the resource orientation. There are

four types of resource orientation in Fog.

Hierarchy

In this orientation, Fog nodes are arranged in hierarchical levels between the commu-

nication path of IoT devices and Cloud datacentres. In the lower level, the number Fog

nodes is higher compared to that of the higher levels. Conversely, as the level number

goes higher, the inter-nodal communication delay increases. This orientation assists in

vertical scaling of the resources. Hierarchical resource orientation is highlighted in [73],

[81], [156], [157], [74], [84], [75], [26], [158] and [138].

Clustered

In clustered resource orientation, all Fog nodes are directly or logically connected to each

other and share the information among themselves with high throughput communica-

tion channels. In most of the cases, the external communication, resource management

and resource discovery operations within a Fog cluster are supervised by a dedicated

Fog node. The clustered orientation provides more scope for horizontal scaling than the

hierarchical orientation. This type of resource orientation is discussed in [35], [76], [116],

[133], [88], [98], [159], [89], [100] and [99].

Client-Server

It enables a set of Fog nodes to work as the servers while lets others to act as the clients.

The client Fog nodes request the server Fog nodes to process their forwarded data. This

interaction can took place both in vertical and horizontal directions. This orientation is

often regarded as a combination of clustered and hierarchical orientation. The client-

server-based resource orientation is discussed in [160], [161], [148], [83], [162], [115],

[140] and [56].
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Master-Slave

In this orientation, a master Fog node distribute the data processing responsibilities to

other slave Fog nodes and explicitly manages their operations. After receiving the ser-

vice outcomes from the slave nodes, the master node accumulates them and forward the

final results to the destination as per the service type. This orientation is more efficient

in distributing the computing responsibilities than the client-server orientation. Master-

Slave resource orientation is considered in [163], [142], [78], [92], [102], [30], [152] and

[24].

2.4.4 Placement Controller

It defines the logical location of an entity that manages the overall application manage-

ment operations in Fog computing. Furthermore, it assists in estimating the waiting

time from requesting to placing an application in Fog environment which consequently

drives the overall performance of the system. There are two types of placement con-

troller widely visible in Fog computing.

Centralized

This type of placement controller locates in a commonly accessible place by the Fog

nodes and poses a global view of the Fog environment. Generally, they are hosted in

Cloud datacentres and supervise the Fog nodes residing at the edge network. The cen-

tralized placement controller for Fog-based applications is dissussed in [86], [119], [149],

[92], [164], [102], [165], [166], [145] and[121].

Distributed

Unlike the centralized controller, the distributed placement controllers manage the Fog

nodes based on a local view of the Fog environments. They are broadly classified into

two categories.

• End Device: In this type of distributed placement controller, the IoT devices and

the Fog nodes not only perform their predefined responsibilities such as data sensing
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and data processing, but also take the application management decisions for other Fog

nodes. End devices are used in [167], [99], [134], [31], [135], [144], [136], [168], [120] and

[169] as application placement controllers for Fog environments.

• Broker: In contrast to end devices, this type of controllers are considered dedi-

cated for application management operations in Fog environments. The brokers reside

in proximity of the Fog nodes and interact with the external entities on behalf of the

Fog nodes and vice-versa. The broker based placement controller for IoT applications is

discussed in [170], [36], [78], [171], [79], [143], [137], [124], [91] and [172].

2.4.5 Mapping Technique

Based on different parameters, an application placement policy provides the mapping

of the applications with respect to the Fog nodes and their virtualized instances. The

complexity of the adopted mapping technique defines the runtime of the policy which

consequently denotes its responsiveness. Three different types of mapping techniques

are commonly used in Fog computing.

Priority-based

This technique prioritizes an application placement on particular Fog node or virtual-

ized instances. Generally, the heuristic approaches such as best fit and first fit are com-

monly used for prioritization of the applications. The priority-based mapping technique

is discussed in [161], [82], [128], [100], [92], [136], [169], [137], [125] and [85].

Optimization

This technique either maximizes or minimizes one particular objective function while

placing the applications in Fog environments. Although optimization provides the best

mathematical solution of a problem, this technique takes more time to operate than

prioritization. Different types of optimization approaches such linear, non-linear and

constrained are widely studied in Fog computing. This type of mapping technique is

applied in [84], [115], [26], [139], [87], [165], [121] and [138].
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Multi-objective Trade-off

Unlike optimization, the multi-objective trade-off can maximize or minimize two or

more objectives such as time-energy, time-cost and cost-QoE simultaneously while plac-

ing the applications. Different metaheuristic approaches such as particle swarm, evolu-

tionary algorithms, game theory and multiobjective optimization are used for making

trade-off among various application placement metrics. The multi-objective trade-off for

placing applications in Fog environments is highlighted in [81], [163], [76], [140], [164],

[124], [122], [153] and [96].

2.4.6 Placement Strategy

The iterative execution of applications in Fog environments on the arrival of their in-

puts, or data processing life cycle. The placement algorithms need to consider these

issues so that it can detect suitable hosts for different application. Placement strategy

helps to define how frequently the placement algorithms are required to be executed for

subsequent execution of an application. There are three types of placement strategies.

Static

In this strategy, placement algorithm is executed once for each application and at the

host, the application is kept running. Inputs of an application are directly sent to its

host from the IoT devices as the processing destination remain same for all of them. The

static application placement strategy for Fog is discussed in [160], [156], [148], [87], [131],

[173], [133], [79], [149] and [167].

Dynamic

In Fog, an application can have multiple replica running or can be terminated by pro-

cessing a single input. For both cases, the placement algorithm requires to be executed

for each arrival of its input to determine where to schedule the input or where to execute

the application next. Such dynamic of placement strategy is highlighted in [73], [147],

[157], [88], [159], [89], [164], [165], [172] and [174].
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Event-driven

An application often requires to be relocated from one host to another. It can be occurred

by mobility of the source and destination, preemption, Fog node consolidation and ser-

vice migration. In such cases, after initial placement, further scheduling of applications

is conducted occasionally based on the occurrence of the event. Event driven strategy

for Fog-based application placement is considered in [74], [75], [26], [100], [166], [121],

[34], [30], [175] and [96].

2.4.7 Resource Type

Fog nodes contain necessary resources such as processing cores, memory and band-

width to assist the execution of applications. They can also support multi-tenancy. Re-

source type denotes the internal features of the host of the applications. It helps in vali-

dating the scope of dynamic allocation of resources during application run-time. Three

different types of resource type is discussed in Fog computing.

Bare Metal

In this type of resources applications are directly placed to the Fog nodes. Applica-

tions access its physical hardware through the host operating system. It can support

multi-tenancy without explicit isolation of the application execution unit. Bare metal is

considered in [115], [75], [26], [142], [56], [131], [176], [159], [168] and [124].

Virtual Machine

In contrast to bare metal resources, virtual machines exploits hardware level virtualiza-

tion so that multiple operating systems can run independently on a single Fog node.

They run on top of an abstraction layer named hypervisor that enables the sharing of

hardware among different virtual machines. Such type of resources is highlighted in

[130], [177], [170], [173], [167], [135], [144] and [164].
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Container

This type of virtualized resources is lightweight compared to virtual machines and offers

operating-level virtualization. In opposition to bare metals, containers isolate processes

with required application packages and they are highly portable across multiple Fog

nodes. Containers are used in [163], [143], [31], [92], [29], [120], [166], [91], [101] and [30]

for application placement in Fog.

2.4.8 Placement Metric

The main intention of placing applications in Fog can vary according to the requirements

of users, service providers and working environments. Placement metric refers to the

parameters that set the objectives of application placement in Fog environments. A wide

variety of placement metrics are noted in Fog computing. They are described bellow.

Time, Deadline

It signifies the aim of minimizing application service delivery time and meeting the spec-

ified deadline. It can also incorporate the computation time, data propagation time and

service deployment time while setting the placement objective. This placement metric

is used in [161], [115], [26], [158], [33], [176], [119], [167], [99] and [159].

Profit

Service providers get benefited when the applications are deployed in Fog with a view

to maximizing their profit and revenue. It often leads the providers to offer application

execution in Fog as an utility. Profit is used in [35], [177], [121] and [152] as a placement

metric for the applications in Fog.

User Experience

Service requirements of users and their affordability level can change with the course of

time. If these issues are not met during the application placement, user experience can
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degrade. It can also resist users to execute the applications through Fog in future. This

placement metric is used in [147], [128], [142], [170] and [144].

Cost

There are different monetary costs such as infrastructure deployment cost, operational

cost and instance rental cost are associated with Fog computing. Cost as placement met-

ric refers to its minimization during the application placement in Fog. Cost is considered

in [74], [83], [76], [116], [133], [88], [144] and [138] to place the applications in Fog.

External Context

There exist several external parameters including the relinquish rate and the activity of

users, reliability of Fog nodes, the popularity of application services, data size and the

sensing frequency of IoT devices that drive the decision of application placement in Fog.

Such external contexts are discussed in [148], [97], [82], [140], [86], [77], [95], [168], [178]

and [96] while placing the applications in Fog.

Energy

Fog nodes can utilize both renewable and non-renewable energy to operate. However,

the energy consumptions of Fog nodes are subjected to the environmental and supply-

demand related issues. There are some researches including [81], [160], [157], [82], [84],

[162], [142], [140], [56] and [171] that highlight energy as one of the dominant factors for

making application placement decisions in Fog computing.

Resource Status

Fog nodes are widely heterogeneous in terms of their processing power, networking in-

terfaces, storage capacity and operational platform. Assessment of these status param-

eters is very important to efficiently manage the applications over them. The resource
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status is given higher preference in [73], [156], [157], [128], [130], [75], [163], [139], [140]

and [87] while placing the applications in Fog environments.

Mobility

In the context of Fog computing, both the IoT devices and the Fog nodes can move from

one location to another very frequently. This feature of Fog computing can affect the

service delivery and occur migration of application execution among the Fog nodes.

Taking cognizance of these issues, mobility is considered in [170], [36], [29], [165], [85],

[166], [121], [175] and [96] as an application placement metric.

2.4.9 Research Gaps in Application Placement

Table 2.4 summarizes the existing application placement techniques in Fog computing.

Although an extensive amount of research has been conducted on this aspect of appli-

cation management, there are still some gaps. They are listed below.

1. For remote areas, many researches suggest to use renewable power sources to run

the Fog nodes as the grid-based energy is costly to facilitate [124]. However, very few of

them consider that the availability of renewable energy is subjected to uncertainty and

environmental context and take the required measures to solve the problem.

2. The distribution of application placement tasks across multiple entities can re-

duce the management overhead. However, the existing works have not considered the

elevation in decision-making time that can occur due to such distribution [122].

3. Most of the existing works prefer Cloud to place applications when there is no

resource available in the corresponding Fog infrastructure [35]. However, they have not

discussed the confederation of Fog infrastructure owned by different service providers.

As a consequence, the scope of performance improvement lessens and the providers fail

to harness the monetary benefits.

4. The consolidation of Fog nodes can save the energy. However, this operation can

alter the topology and orientation of Fog resources and affect the collaborative execution

of applications. Despite of such impact, current researches barely look into this issue

[170].
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Works Application Placement

Mapping

Technique

Resource

Estimation

Offloading

Approach

Resource

Orientation

Placement

Controller

Placement

Strategy

Resource

Type

Placement

Metric

[73] Hierarchy Centralized Dynamic VM Time, Resource

[81] Trade-off Bottom-Up Hierarchy Broker Bare Metal Time, Energy

[160] Optimization Bottom-Up Client-Server Broker Static Bare Metal Time, Energy

[147] Optimization Top-Down Dynamic QoE

[156] Optimization Hierarchy End Device Static Bare Metal Time, Resource

[157] Bottom-Up Hierarchy End Device Dynamic VM Energy, Resource

[161] Priority Client-Server Centralized Dynamic VM Time

[148] Top-Down Client-Server Centralized Static Bare Metal Context

[35] Optimization Cluster Centralized Static VM Profit

[97] Bottom-Up Broker Dynamic VM Context

[82] Priority Predictive Dynamic Bare Metal Context, Energy

[74] Optimization Hierarchy Event-driven VM Cost

[128] Priority Bottom-Up Client-Server Broker Dynamic VM QoE, Resource
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[130] Optimization On Demand Hybrid Client-Server End Device,

Broker

VM Time, Resource

[83] Optimization Client-Server End Device Static Time, Cost

[84] Optimization Hierarchy Bare Metal Time, Energy

[162] Optimization Bottom-Up Client-Server Broker Static Time, Energy

[115] Optimization Profiling Bottom-Up Client-Server Static Bare Metal Time

[75] Hierarchy Broker Event-driven Bare Metal Time, Resource

[163] Trade-off Bottom-Up Master-Slave End Device Container Resource

[26] Optimization Hierarchy Event-driven Bare Metal Time

[142] Priority On Demand Master-Slave Broker Bare Metal Time, QoE, Energy

[139] Optimization Predictive Event-driven Bare Metal Resource

[76] Trade-off Cluster Bare Metal Time, Cost

[158] Priority Profiling Hierarchy Static Bare Metal Time

[177] Optimization Hybrid Centralized Dynamic VM Time, Profit

[140] Trade-off Predictive Client-Server End Device Context, Energy,

Resource

[170] Optimization Broker Event-driven VM QoE, Resource,

Mobility
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[36] Optimization Hierarchy Broker Event-driven VM Mobility

[56] Optimization Bottom-Up Client-Server End Device Static Bare Metal Time, Energy

[116] Priority Cluster Centralized Static VM Time, Cost

[86] Predictive Hierarchy Centralized Event-driven Bare Metal Context

[87] Optimization Hierarchy Static Time, Resource

[131] Hierarchy Static Bare Metal Time, Energy

[77] Hierarchy Dynamic Bare Metal Time, Context

[95] Priority Predictive Hierarchy End Device Event-driven Context

[78] Master-Slave Broker Bare Metal Cost, Resource

[33] Optimization Hierarchy Bare Metal Time

[171] Priority Bottom-Up Client-Server Broker Dynamic Bare Metal Time, Energy

[176] Optimization Bottom-Up Client-Server End Device Dynamic Bare Metal Time

[173] Optimization Hierarchy Static VM Time, Cost

[133] Optimization Cluster Static Bare Metal Time, Cost

[79] Optimization Profiling Hierarchy Broker Static Bare Metal Time, Cost

[88] Optimization Cluster End Device Dynamic Bare Metal Cost, Energy
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[98] Priority Hybrid Cluster End Device Dynamic Bare Metal Time, Resource

[119] Optimization Profiling Top-Down Centralized Event-driven Time

[143] On Demand Broker Container Cost

[159] Optimization Hybrid Cluster End Device Dynamic Bare Metal Time

[89] Priority Cluster Dynamic Bare Metal Resource

[149] Optimization Top-Down Hierarchy Centralized Static Cost

[100] Priority Hybrid Cluster End Device Event-driven Resource

[167] Bottom-Up Hierarchy End Device Static VM Time

[99] Optimization Hybrid Cluster End Device Static Bare Metal Time

[134] Optimization Bottom-Up End Device Bare Metal Time, Cost, Energy

[31] Hierarchy End Device Container Time, Resource

[135] Hierarchy End Device VM Energy

[92] Priority Master-Slave Centralized Container Resource

[144] Optimization Bottom-Up Hierarchy End Device Dynamic VM QoE

[29] Bottom-Up Client-Server End Device Dynamic VM,

Container

Resource, Mobility

[136] Priority Client-Server End Device Dynamic Time
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[168] Client-Server End Device Bare Metal Context

[120] Optimization Hybrid Hierarchy,

Cluster

End Device Container Energy

[164] Trade-off Client-Server Centralized Dynamic VM Time, Energy

[102] Master-Slave Centralized Bare Metal Energy

[169] Priority Hierarchy End Device Resource

[109] Optimization Client-Server Bare Metal Time

[137] Priority Profiling Client-Server Broker VM Time

[124] Trade-off Bottom-Up Hierarchy Broker Bare Metal Time, Cost, Energy

[125] Priority Hierarchy End Device VM Energy

[165] Optimization Client-Server Centralized Dynamic Bare Metal Mobility

[85] Priority Hierarchy Container Mobility

[37] Hybrid Cluster End Device Bare Metal

[166] Centralized Event-driven Container Mobility

[179] Priority Hierarchy Bare Metal Resource

[91] Priority Cluster Broker VM,

Container

Time, Resource
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[126] Optimization Cluster End Device Time, Cost

[172] Optimization Hierarchy Broker Dynamic Time, Energy

[113] Priority Cluster Bare Metal Cost

[145] Optimization Bottom-Up Centralized Bare Metal Time, Energy

[180] Optimization Cluster Bare Metal Time

[101] Priority Broker VM,

Container

Resource

[93] Optimization Profiling Cluster Broker Time, Resource

[127] Profiling Cluster Broker Dynamic Time, Resource

[121] Optimization Bottom-Up Hierarchy Centralized Event-driven Profit, Mobility

[34] Bottom-Up Client-Server Broker Event-driven Time, Cost

[178] Optimization Hierarchy Broker Time, Context

[122] Trade-off Hybrid Client-Server End Device Time, Energy

[146] Bottom-Up Client-Server Broker Bare Metal

[30] Master-Slave End Device Event-driven Container Resource

[114] Priority Hierarchy Static Bare Metal Time

[150] Top-Down Client-Server Centralized Dynamic Container
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[153] Trade-off Hybrid End Device Static Bare Metal Time, Energy

[11] Optimization On Demand Client-Server VM Time, Cost

[118] Optimization Client-Server End Device Container Time

[80] Priority Hybrid Centralized Static Context, Resource

[103] Cluster Static Bare Metal Resource

[94] Optimization Cluster Bare Metal Energy, Resource

[154] Hybrid Client-Server Bare Metal Time, Cost, Energy

[141] Priority Predictive Cluster Centralized Dynamic Energy

[174] Optimization Client-Server End Device Dynamic Bare Metal Time

[132] Trade-off Cluster Broker VM Time, Cost, Energy

[175] Optimization Cluster Event-driven Mobility

[151] Optimization Top-Down Hierarchy Centralized Dynamic Bare Metal Resource

[155] Optimization Hybrid Client-Server End Device Bare Metal Energy

[123] Optimization Top-Down Client-Server Centralized Time, Cost

[152] Priority Top-Down Master-Slave Centralized Dynamic Profit

[96] Trade-off Profiling Hybrid Client-Server Broker Event-driven Container Time, Context,

Mobility
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[24] On Demand Bottom-Up Master-Slave Broker Dynamic Bare Metal

[138] Optimization Profiling Hierarchy Broker Bare Metal Cost

[181] Priority Bottom-Up Hierarchy End Device Event-driven Bare Metal Time, Mobility

[182] Priority Cluster End Device Bare Metal Context

[183] Priority Hybrid Hierarchy Broker Time, Energy

[184] Predictive Hierarchy Dynamic VM Resource

[185] Optimization End Device Static VM,

Container

Energy, Resource

[186] Priority On Demand Cluster Centralized Resource

[187] Priority Hierarchy,

Cluster

Broker Bare Metal Time, Resource

[188] Optimization Top-Down Centralized Container Context

[189] Optimization Hierarchy Broker Time, Energy

[190] Priority Hierarchy Broker Static Time, Cost

[32] Predictive Hierarchy Broker VM Time, Cost

[191] Hybrid Hierarchy End Device Bare Metal Energy

[129] Optimization Bottom-Up Master-Slave Broker Bare Metal Cost
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[192] Hybrid Broker Event-driven Container Energy, Context

[193] Priority Hybrid Hierarchy End Device Static Bare Metal Time, Resource

[194] Hierarchy Centralized Bare Metal Time, Mobility

[195] Priority Top-Down Centralized VM Energy, Resource

[196] Optimization On Demand Dynamic Container Mobility

[197] Trade-off Hierarchy End Device Bare Metal Time, Energy

Table 2.4: Summary of existing application placement techniques
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Figure 2.6: Taxonomy on application maintenance

2.5 Application Maintenance

Robust application maintenance operations are required to secure the access of all le-

gitimate users to the application outcomes in Fog environments. Additionally, if these

operations are conducted in both proactive and reactive manner, the uncertain failure of

Fog nodes and the performance degradation of applications can be mitigated to a certain

extent. The demand of application maintenance can also trigger the necessity to intro-

duce additional features such as check pointing and partitioning to the functional layout

of application architecture. Moreover, the requirements of operator migration can initi-

ate the event-driven application placement. Fig. 2.6 illustrates a taxonomy of different

elements of application maintenance. In following subsections, they are discussed in

detail.

2.5.1 Security Feature

Fog computing functions at the edge network. The attackers can access the Fog infras-

tructure easily and resist the smooth execution of applications by generating security

threats including information impairment, identity disclosure, replay and Denial of Ser-

vice (DoS) attacks. Therefore, it is required to specify the security features while exe-

cuting the applications. Three different types of security features are widely used in

Fog.
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Data Integrity

In some cases, various sensitive data and their processing outcomes; for instance, the

electronic health report and the patient’s conditions are consistently analysed by differ-

ent parties including hospitals and insurance companies. Fog computing needs to offer

easy access to those data with a guarantee of no alteration. It helps to ensure the data

integrity of the applications in Fog environments. This security feature is discussed in

[24], [169] and [85] for maintaining applications in Fog.

Encryption

In Fog computing, extensive data exchange operations are conducted between the IoT

devices, Fog nodes and Cloud datacentres. Encryption not only hides the details of the

transferred data, but also protects the credentials of legitimate users to access the Fog

resources. Encryption is used in [148], [27], [86], [37] and [126] as a security feature.

Authentication

It helps to identify the legitimate user of application services and Fog resources. Some-

times, authentication is robustly applied at the receiver side to control the data access

rate of different entities. Authentication is considered in [86], [31], [120], [169], [178],

[146] and [150] for application maintenance in Fog.

2.5.2 Performance Monitor

A continuous performance monitoring of resources is required to take the management

decisions during application run-time. Consequently, it helps to maintain the execu-

tion flow of the applications at the desired level. Two different types of performance

monitoring techniques are widely used in Fog computing.
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Implication-based

In this technique, the current synthesis of application and resources are implied to pre-

dict the future performance trends. Implication-based performance monitoring assists

in maintaining the execution of the applications in a proactive manner. Implication-

based performance monitoring for Fog is discussed in [147], [130], [139], [167], [137],

[28] and [121].

Threshold-based

When an application is executed in a Fog node, its key performance indicator such as

processor usage and memory consumption are compared with a dynamically set or pre-

defined threshold value. If the state of the indicator does not match with the threshold,

necessary decisions are taken to continue the execution of the application in Fog environ-

ments. Unlike the implications, this approach helps in reactive application maintenance.

Threshold based performance monitoring is applied in [128], [115], [75], [87], [77], [117],

[88], [159], [112], [111], [28] and [101].

2.5.3 Monetary Support

It defines how Fog service providers nurture the economic interests of the users while

executing their requested applications. It helps providers to attain the trust of the users

that controls the relinquish rate. Three types of monetary supports are studied in Fog.

Compensation

Due to some uncertain events such as node failure and security threats, the service level

agreement between the users and the providers can be violated. In these cases, provider

offers compensation to users so that they can rely on the Fog based execution of their

requested applications. It also helps providers in quantifying the aim of reducing service

violations. Compensation as a monetary support is discussed in [198], [199] and [143].
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Incentives

At the edge network, there exist different idle computing components that can be used

as potential Fog nodes. Fog service provider often harness those resources to meet the

additional demand of users by providing incentives to the owner of the resources. In

some cases, for relaxing the stringent requirements, the users also receive incentives

from the service providers. This type of moetary support is adopted in [78], [176], [149],

[154] and [152].

Reservation

It denotes that users can provision of a certain number of applications at any given time

on fixed charges despite of the current load of the Fog infrastructure. In this case, Fog

computation acts as a subscription based utility. Reservation is considered in [77], [200]

and [201].

2.5.4 Resiliency Strategy

It denotes how Fog computing continues application execution after the occurrences of

uncertain events and failures. It is one of the main features of application maintenance

that assists in enhancing the reliability of the system. Three types of resilience strategies

are widely adopted in Fog computing.

Backup-Restore

Here, the intermediate results and different execution phase of an application are con-

tinuously stored so that the execution of the application can be re initiated soon after the

anomaly without starting it from the very beginning. It is performed by setting some

check points and temporary storage operations during application run-time. Backup-

restore is feasible when a one-to-one interaction happens between the users and the

applications. It is used in [115], [168], [90], [37], [110] and [111] as a resiliency strategy

for application maintenance.
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Replication

In this resiliency strategy, multiple instances of an application are run across different

Fog nodes. It ensures the satisfaction of user requests through the application even after

the failure of its several instances. Unlike backup-restore, replication is well-suited for

supporting the one-to-many interactions between the users and the applications. Repli-

cation is discussed in [97], [75], [163], [87], [33], [110], [126] and [34] for Fog computing

environments.

Operator Migration

In case of node failure or mobility of the requesting entities, the execution of applications

is often shifted from one node to another Fog node. It happens dynamically so that ap-

plication execution continues without interrupting the user experience. As a resiliency

strategy, operator migration differs from the backup-restore and replication because of

its ease of scalability. It is considered in [170], [36], [95], [137], [166], [85], [127], [121] and

[150].

2.5.5 Research Gaps in Application Maintenance

Table 2.5 summarizes the existing application maintenance operations in Fog comput-

ing. Although extensive research initiatives have been taken, there are still some issues

that require to be investigated for efficient application maintenance in Fog computing.

They are listed as below.

1. In many research works, compute intensive algorithms are used to secure the data

transmission within Fog environments [202]. However, they have not considered that

heavyweight security techniques slow down the legitimate access to application services

and resources.

2. Streaming applications require reserved resources so that their processing desti-

nations do not change very frequently. However, while making such arrangements, the

existing works barely consider the waiting time of the other less-interactive applications

[200].
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3. There are a good number of research works that mention check pointing and repli-

cation as the means of fault tolerance in Fog computing [110]. However, to deal with the

scarcity of resources, they have not provided any concrete model that can dynamically

tune the frequency of check points within an application and change the number of

replications in Fog environments.

2.6 A Perspective Application Management Framework

Fog computing provides a scope to distribute the application management operations

across different tiers of the computing infrastructure, however, in other paradigms, this

scope is very limited. To illustrate this feature of Fog, a perspective framework is de-

picted in Fig. 2.7. At each infrastructure level, the components of this framework per-

forms some specific operations related to application management. They are summa-

rized below.

2.6.1 Cyber Physical System Level

At this level, IoT-enabled CPSs reside that request the Fog environment for the services

of different applications. In this case, the IoT Application Brokers (IABs) deployed at

the Fog gateway level assist the CPSs. While making the requests, the CPSs forward the

specification of the applications including the workload type, the frequency of incoming

data, the form of application services and the QoS requirements such as service dead-

line, budget and user expectations to the IABs. Additionally, the CPSs can host some

components of the requested applications for data pre-processing.

2.6.2 Fog Gateway Level

In Fog Gateway Level, an IAB consists of CPS Manager, Application Placement Engine

(APE) and Workload Scheduler. The CPS manager contains the meta-data of multi-

ple versions of an application having different programming models, functional layouts

and interaction methods. The CPS manager also interacts with the APE to get the state

of resources such as their orientation and type within the Fog infrastructure and Cloud
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Figure 2.7: A perspective model for application management in Fog

level. Based on the accumulated information from different levels, the CPS manager

determines the most suitable architecture of the applications for placement. Later, the

APE estimates the resources of executing the application, identifies the placement met-

rics as per the application QoS requirements of the CPSs and sets the mapping technique

accordingly. To place the applications physically over the resources, the APE commu-

nicates with the Fog Resource Manager (FRM) and Cloud Resource Manager (CRM) of

the Fog infrastructure and Cloud level. After placement, the Workload Scheduler finds

out the feasible placement strategy to dispatch the inputs to the applications based on

the dynamics of the Fog environment.
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2.6.3 Fog Infrastructure and Cloud Level

The FRMs and CRMs of Fog infrastructure and Cloud datacenter store the application

executables and they are responsible for allocating resources for application execution.

They also monitor the status and performance of the resources and conduct applica-

tion maintenance operations including service backup and replication. Additionally,

they deal with the uncertain node failures, resource outage and security attacks to en-

sure reliability during application execution. Based on their implications, the CPSs and

IABs tune the specifications of the application architecture and modify the placement

approaches.

Nevertheless, this framework only provides a abstract view of distributing applica-

tion management operations in different infrastructure levels within the Fog computing

environments. This framework can also contribute to develop new policies for runtime

service orchestration, multi-level resource provisioning, application execution migration

and Fog standardization.
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[147] Implication [148] Encryption

[97] Replication [128] Threshold

[130] Implication [115] Threshold Backup-

Restore

[75] Threshold Replication [163] Replication

[139] Implication [27] Encryption

[170] Migration [36] Migration

[86] Encryption,

Authentication

[87] Threshold Replication

[77] Threshold Reservation [117] Threshold

[95] Migration [78] Incentives

[33] Replication [176] Incentives

[88] Threshold [119] Threshold

[143] Compensation [200] Reservation

[159] Threshold [149] Incentives
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[100] Threshold [167] Implication

[31] Authentication Threshold [168] Backup-

Restore

[120] Authentication [201] Reservation

[90] Backup-

Restore

[112] Threshold

[137] Implication Migration [37] Encryption Backup-

Restore

[110] Backup-

Restore,

Replication

[111] Threshold Backup-

Restore

[24] Integrity [28] Implication,

Threshold

[166] Migration [169] Integrity,

Authentication

[85] Integrity Migration [126] Encryption Replication

[199] Compensation [101] Threshold

[127] Migration [121] Implication Migration

[34] Threshold Replication [178] Authentication
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[146] Authentication [150] Authentication Migration

[94] Replication [154] Incentives

[198] Compensation [175] Migration

[155] Threshold [152] Incentives

Table 2.5: Summary of existing application maintenance operations
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2.7 Summary

Fog computing is gradually turning into an integral component of smart systems be-

cause of its wide-spread features for supporting IoT-driven use cases. In both academia

and industry, numerous initiatives are taken to standardize the Fog computing concept

for managing IoT applications. In this chapter, the existing application management ap-

proaches in Fog computing from the perspectives of application architecture, placement

and maintenance are reviewed. Separate taxonomy for each of the aspects of application

management and discussed their associated research gaps are presented. A perspective

model for managing applications in Fog environments is also highlighted.





Chapter 3

Edge Affinity-based Application
Management

The selection of applications for Fog-based placement becomes more complicated when the appli-

cation characteristics in terms of urgency, size and flow of inputs are considered simultaneously.

In this chapter, a policy for Fog environments is proposed that distributes application management

tasks across the gateway and the infrastructure level. It classifies and places applications according

to their Edge affinity. Edge affinity of an application denotes the relative intensity of different at-

tributes coherent with its characteristics which are required to be addressed within Fog environments

to meet its Quality of Service (QoS). The proposed policy also minimizes the service delivery time

of applications in Fog infrastructure. Its performance is compared with existing application man-

agement policies in both iFogSim-simulated and FogBus-based real environments. The experiment

results show that this policy outperforms others in combined QoS enhancement, network relaxation

and resource utilization.

3.1 Introduction

Due to resource scarcity, it is difficult to accommodate every IoT application within Fog

infrastructure. Inclusion of more nodes to resolve this issue can affect the economic

aspects of Fog computing and intensify the communication complexities. In such a con-

strained scenario, infrastructure providers are often instigated to offer execution of IoT

This chapter is derived from:

• Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya, ”Edge Affinity-based Man-
agement of Applications in Fog Computing Environments”, Proceedings of the 12th IEEE/ACM In-
ternational Conference on Utility and Cloud Computing (UCC’19), IEEE Press, Pages: 61-70, Auckland,
New Zealand, December 2-5, 2019.
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applications in Fog as a utility. It also urges users to provision a certain number of ap-

plications through Fog instances such as virtual machines and containers according to

their affordability. Nevertheless, a system that deals with various applications; in par-

ticular, for a health monitoring system, it becomes complicated to select the applications

for Fog-based placement. Assurance of their time-optimized service delivery also turns

into a challenging task. However, these cases can be efficiently addressed in Fog by

managing the applications based on their Quality of Service (QoS) requirements [158].

Distinctive characteristics of IoT applications help to identify their different QoS re-

quirements. For example, user-defined deadline indicates whether an application is

latency-sensitive or tolerant. Reduced data propagation delay is required for latency-

sensitive applications to ensure their QoS [93]. Similarly, based on the data sensing

frequency of associated IoT devices, execution of an application can be event-driven or

stream-oriented. Streaming applications demand congestion-less data propagation so

that their QoS can improve [203]. Moreover, applications that deal with images, au-

dios, videos and large text files are required to process a huge amount of data per input

than trivial applications addressing boolean data and short messages. They are usually

known as data-intensive applications and encapsulate multiple data pre-processing op-

erations such as data filtration, conversion and consolidation along with the actual data

analysis operation [2]. Therefore, it is expected to execute them closer to data sources.

Otherwise, the amount of data to be transferred through global Internet will increase,

and both the computation and communication load on remote computing resources will

aggravate. As a consequence, QoS of these applications will degrade. However, for a

particular application, these characteristics are independent, and their intensity can vary

from one to another. Therefore, it is not feasible to take management decision for differ-

ent IoT applications based on a single characteristic.

There exist several policies that focus on service time, resource and workload-aware

management of IoT applications in Fog computing environments [76] [204] [205]. They

barely explore different application characteristics simultaneously and investigate their

influence on application QoS requirements. In some cases, the Fog gateway devices

that reside at the user premises and connect the IoT devices to Fog infrastructure, are

assumed to perform all required tasks for managing the applications such as their selec-
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tion and placement [127] [206]. When a large number of gateway devices interact with

a Fog infrastructure, it is time-consuming to share the status of Fog instances among

all gateways. For a gateway, it is also difficult to cope up with the dynamism of Fog

infrastructure. Consequently, the synchronization problem amplifies, and the overhead

of resource-constrained gateways increases.

Taking cognizance of these issues, we propose an application management policy for

Fog environments that exploits the characteristics of applications in terms of urgency, in-

put size and flow for their classification and placement. The core innovation of the policy

is to handle these multi-dimensional characteristics and their uneven level of dominance

through the non-dominated sorting of application’s Edge affinity. Here, Edge affinity is

the relative intensity of various attributes coherent with an application’s characteristics

such as user-defined deadline, amount of data per input and sensing rate of IoT devices;

those need to be supported within network edge for its enhanced QoS. Our policy also

places applications on Fog instances using an integer linear programming model and

ensures their time-optimized service delivery. Furthermore, it facilitates application

management task distribution by selecting the competent applications for Fog-based

placement at the gateway level and identifying the actual application-instance mapping

at the infrastructure level. The major contributions of this work are:

• Proposes a policy for Fog environments that manages applications based on mul-

tiple characteristics and requirements across the gateway and the infrastructure

level.

• Defines an innovative way to apply non-dominated sorting for application classi-

fication in Fog environments.

• Selects applications for Fog-based placement as per their character-driving attributes

and optimizes their service delivery time in Fog infrastructure.

The rest of this chapter is organized as follows: after discussing related work in Sec-

tion 3.2, the application context and system model are presented in Section 3.3. Section

3.4 proposes the Edge affinity-based application management policy. Section 3.5 eval-

uates the performance of the proposed policy in respect to existing policies. Finally,

Section 3.6 concludes the chapter.
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3.2 Related Work

Different application management policies have already been developed for Fog envi-

ronments. Binh et al. [76] and Choudhari et al. [116] modeled separate policies to op-

timize execution time and cost by prioritizing applications based on user expectations

and service deadline respectively. Nan et al. [207] conducted trade-off among service

time and request loss rate while placing the applications. Venticinque et al. [93] modeled

a policy that classifies applications as per their resource and energy requirements, and

maximizes QoS by meeting deadline. Stavrinides et al. [205] prioritized applications

based on workload and ensures least completion time. The policy in [208] optimizes ap-

plication service time and enhances the user experience. Skarlat et al. [91] also explored

time-optimized execution of applications with high resource utilization.

Furthermore, Xu et al. [209] discussed a framework that classifies applications based

on deadline, and assists service migration and load distribution. The application man-

agement policy in [210] optimizes energy usage of instances while executing the appli-

cations. Taneja et al. [204] also developed a policy that prioritizes application placement

on robust Fog nodes to enhance resource utilization. The policy in [211] allocates re-

sources according to user-driven popularity of applications and executes them locally

as per a threshold of computing cost. Similarly, Guerrero et al. [95] placed the most

requested applications in Fog and improved network utilization and service latency.

A summary of related works along with the proposed policy is given in Table 3.1.

In existing works, different characteristics of applications are not exploited simultane-

ously to identify their QoS requirements. User-defined deadline, amount of data to be

processed and sensing rate of IoT devices are also disregarded while placing the appli-

cations. Consequently, they fail to leverage the capabilities of Fog computing in dealing

with different sorts of applications. Here, we classify applications and facilitate their

placement based on the relative intensity of different attributes those are coherent with

their characteristics and required to be supported through Fog infrastructure for meet-

ing their QoS. Our proposed policy also optimizes service delivery time of applications

in Fog environments.
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Work Application characteristics Prioritized
selection

Optimizes

Data flow Input size Urgency Time Load

[76] X X X

[116] X X X

[207] X X X X

[93] X X X X

[205] X X X X

[208] X X X X

[91] X X X X

[210] X X X

[209] X X X

[204] X X X X

[211] X X X X

[95] X X X

Edge
affinity
(This work)

X X X X X X

Table 3.1: Summary of related work for Edge affinity-based management

3.3 Application and System Overview

The detailed description of the application and the system model for this chapter are

given below.

3.3.1 Motivating Scenario

To clarify the application context considered in this chapter, we have used the content

service delivery of Netflix as an analogy. This analogy has no direct relation with the

proposed application management policy but can help to understand why the efficient

classification and selection of the applications is required. As noted, Netflix is a stream-

ing service where based on the category of subscription, a user can watch one, two or

three different media contents at a time. Netflix-users do not care about what sorts of

resources are used to enable these media contents; all that matters to them is whether

they can access the allowable number of contents on demand. If a user asks for more
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media contents at the same time, the user usually sets the preferences according to the

quality of contents on Netflix and obtain the extra contents from other streaming ser-

vices like YouTube or Stan. Such service provisioning is economical for users and assists

providers to manage their resources efficiently [212]. We extend this scenario from a lo-

calized perspective where Netflix resembles the Fog infrastructure and media contents

are the applications. Users can execute a certain number of applications through Fog in-

frastructure based on their requirements, affordability and resource availability. When

more applications are needed to be executed, the allowable number of applications for

Fog-based placement are selected from them. Our proposed Edge affinity-based man-

agement policy is capable of dealing with such application context in Fog environments.

It facilitates the selection of applications having stringent QoS requirements so that the

capabilities of Fog infrastructure can be harnessed extensively. Moreover, it forwards

the applications with unmet demand to other Fog or Cloud infrastructure for execution.

3.3.2 Fog Environments

Different providers can deploy cluster of Fog nodes in various locations. Fig. 3.1 presents

the Fog Clusters (FCs) deployed by provider A and B on location L. Providers can adopt

any existing business models to manage the capital and operating expenses of such

Fog infrastructure. FCs are accessible through Fog Gateways (FGs) located at the user

premises. Each Fog node within an FC is capable of hosting different number of Fog

instances such as virtual machines and containers as per its capacity. In an FC, the as-

signment of applications on Fog instances is managed by a specialized node named Fog

Resource Manager (FRM) [213]. FRMs maintain a persistent communication with FGs

that helps to bind the IoT devices with FCs. FGs receive placement requests for appli-

cations from the users. These applications are monolithic and can work independently.

The placement request for an application includes the details of its character-driving at-

tributes such as user-defined deadline, average amount of data per input and sensing

frequency of IoT devices. Conversely, FRMs extract the developer-specified minimum

resource requirements of applications along with the necessary meta-data from a cata-

logue service [24]. The allowable number of applications for provisioning on an FC is
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Figure 3.1: Fog environments for Edge affinity-based application management

set according to the resource availability on that FC and the affordability level of users

so that it does not violate the capacity and budget constraints. Whenever the number of

placement requests surpasses the allowable limit on an FC, the FGs communicate with

the FRM of other FCs or remote Cloud datacentres to forward the references of addition-

ally requested applications as per the subscriptions of users. The notations used in this

chapter are shown in Table 3.2.

3.3.3 Definition of Edge Affinity

Fig. 3.2 presents the characteristics of different applications in a three-dimensional space

of user-defined deadline, amount of data per input and sensing frequency of IoT devices.

When the placement request for any application q is received, the values of its character-

driving attributes are represented by the FG as a vector φq. For example, if user-defined

deadline δq = 0.250 seconds, average amount of data per input ψq = 300 kilobytes and

data sensing frequency of IoT devices λq = 7 input per seconds for application q, its
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φq =< 0.250, 300, 7 >. Numerical domain and unit of these attributes are different.

Therefore, their values are normalized within [0,1] by FGs using Eqs. 3.1, 3.2 and 3.3

in terms of maximum and minimum value for the respective attribute in all placement

requests.

δq =
δq −min(δ∀q′∈Q)

max(δ∀q′∈Q)−min(δ∀q′∈Q)
(3.1)

ψq = 1−
ψq −min(ψ∀q′∈Q)

max(ψ∀q′∈Q)−min(ψ∀q′∈Q)
(3.2)

λq = 1−
λq −min(λ∀q′∈Q)

max(λ∀q′∈Q)−min(λ∀q′∈Q)
(3.3)

For application q, if the normalized user-defined deadline δq, normalized average

amount of data per input ψq and normalized sensing frequency of IoT devices λq re-

main closer to 0, then application q is considered more latency-sensitive, data-intensive

and stream-oriented than other requested applications. Conversely, if they are closer to

1, then application q is regarded as more latency-tolerant, trivial and event-driven com-

pared to others. By definition, vector ηq =< δq, ψq, λq > refers to the Edge affinity of

application q that contains relative intensity of different character-driving attributes for

q in respect of other applications. For any two applications q and q′, if Edge affinity are

specified as ηq =< 0.10, 0.15.0.20 > and ηq′ =< 0.75, 0.80.0.90 > respectively, then ap-

plication q should get higher priority for Fog-based placement compared to application

q′ because of its stringent QoS requirements.

However, for a single application q, its δq can be closer to 1 whereas value of other

two attributes ψq and λq can be closer to 0. Similarly, for any two applications q and

q′, λq can be greater than λq′ , although both δq and ψq can be smaller than δq′ and ψq′

respectively. These conflicting requirements can resist efficient management of applica-

tions in Fog environments. Hence, they need to be handled deliberately while making

the management decisions.
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Sign Definition

P Set of available Fog instances in an FC

Γ Set of all applications selected for placement on an FC

G Set of all FGs interacting with an FC

Qg Set of applications requested to an FG g for placement

R Set of resources such as CPUs, RAM and Bandwidth

Ωr
p Availability of resource r ∈ R in instance p ∈ P

ωr
q Minimum requirements of resource r ∈ R for application q ∈ Qg

φq Vector of character-driving attributes for application q ∈ Qg

ηq Edge affinity of application q ∈ Qg

δq User-defined service delivery deadline for application q ∈ Qg

ψq Average amount of data per input for application q ∈ Qg

λq Sensing rate of associated IoT devices for application q ∈ Qg

τi Set of ith order non-dominated applications, τi ⊂ Qg

υq Number of applications that dominate application q ∈ Qg

Υq Set of applications dominated by application q ∈ Qg, Υq ⊂ Qg

χcg Set of applications selected for placing on FC c by FG g, χcg ⊂ Qg

N Total number of non-dominated application order

ϑq Value of bottleneck character-driving attribute for application q ∈ Qg

µq Number of instructions in application q ∈ Γ

σq Output data size of application q ∈ Γ

Φp Downlink speed of instance p ∈ P

Λp Processing speed of instance p ∈ P

Ψp Uplink speed of instance p ∈ P

tι
pq Input propagation time for application q ∈ Γ on instance p ∈ P

te
pq Execution time of application q ∈ Γ on instance p ∈ P

to
pq Output propagation time for application q ∈ Γ on instance p ∈ P

ρcg Number of applications allowable for FG g to provision in FC c

xpq Equals to 1 if application q ∈ Γ is mapped to p ∈ P, 0 otherwise.

Table 3.2: Notations for Edge affinity-based management
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Figure 3.2: Variations of IoT applications

3.4 Edge Affinity-based Application Management

The proposed Edge affinity-based application management policy functions in distributed

manner across the gateway and the infrastructure level of Fog environments (Fig. 3.3).

It is divided into three phases. At first, FGs classify applications according to their Edge

affinity. Later, the allowable number of applications for Fog-based placement are se-

lected. FGs forward the references of selected applications to the FRM of subscribed

FCs. Finally, FRMs determine the time-optimized application-instance mapping and

assign them accordingly. These phases are described as follows.
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3.4.1 Classification of Applications

At any FG g, the proposed policy sorts the requested applications in non-dominated

order of their Edge affinity. Non-dominated sorting is applied to identify Pareto op-

timal solutions for multi-objective optimization problems. It also organizes the solu-

tions in different ranks as per the dominance relationship [214]. Our policy adopts

non-dominated sorting to deal with the conflicting cases in Edge affinity of different

applications and classify them in numerical order so that their prioritized selection can

be made for Fog-based placement. According to the adopted non-dominated sorting

approach, an application q dominates another application q′ when their Edge affinity ηq

and ηq′ respectively meet the following conditions.

1. ηq is not greater than ηq′ for all normalized character-driving attributes.

2. ηq is strictly smaller than ηq′ for at least one normalized character-driving attribute.

If an application is not dominated by any other applications, its QoS requirements

are considered more stringent than theirs. Set of such applications are known as first-

order non-dominated applications τ1. The ApplicationClassification procedure shown in

Algorithm 1 determines the non-dominated order of different applications based on the

dominance conditions. It takes the set Qg of all applications requested to FG g for place-

ment as arguments (line 1) and consists of two parts:

1. The set of first-order non-dominated applications τ1 is initialized (line 2). For

each application q ∈ Qg, another set Υq and a variable υq are introduced (line 3-5). Υq

refers to the applications dominated by q. On the other hand, υq counts the number

of applications that dominate q. If all normalized character-driving attributes such as

δq, ψq and λq of application q are not greater than the same attributes of an application

q′ ∈ Qg and one of the attributes is strictly smaller than that of application q′, then

q′ is considered dominated by q. Hence, it is included in Υq (line 6-8). Conversely, if

application q′ dominates q, υq is incremented by 1 (line 9-10). After checking with all

q′ ∈ Qg, if υq still holds the initial value, it signifies application q as non-dominated

in respect of the rest. Therefore, application q is added to the set of first-order non-

dominated applications τ1 (line 11-12).
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Figure 3.3: Flowchart for proposed Edge affinity-based application management

2. ApplicationClassification procedure exploits the dominance relationship between

ith order non-dominated applications and others to determine the set of (i + 1)th order

non-dominated applications τi+1. It starts from τ1 by setting i = 1 (line 11). However,

τi+1 is initialized only when τi exists (line 14-15). Since each q′ ∈ Υq is dominated by

application q ∈ τi, implicit isolation of q will surely decrease the value of υq′ by 1. For

each application q ∈ τi, this technique is applied to all q′ ∈ Υq (line 16-18). After such

operation, if υq′ becomes 0 for any q′ ∈ Υq, then it defines q′ to be dominated by only

application q. Hence, q′ is marked as the next ordered non-dominated application to that

of application q and q′ is added to the set for τi+1 (line 19-20). After exploring all q ∈ τi,
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Algorithm 1 Algorithm for classifying applications
1: procedure APPLICATIONCLASSIFICATION(Qg)
2: τ1 ← ∅
3: for q := Qg do
4: Υq ← ∅
5: υq ← 0
6: for q′ := Qg do

7: if
(

δq < δq′ & ψq ≤ ψq′ & λq ≤ λq′
)
||(

δq ≤ δq′ & ψq < ψq′ & λq ≤ λq′
)
||(

δq ≤ δq′ & ψq ≤ ψq′ & λq < λq′
)

then

8: Υq ← Υq ∪ q′

9: else if
(

δq′ < δq & ψq′ ≤ ψq & λq′ ≤ λq

)
||(

δq′ ≤ δq & ψq′ < ψq & λq′ ≤ λq

)
||(

δq′ ≤ δq & ψq′ ≤ ψq & λq′ < λq

)
then

10: υq ← υq + 1

11: if υq = 0 then
12: τ1 ← τ1 ∪ q
13: i← 1
14: while τi 6= ∅ do
15: τi+1 ← ∅
16: for q := τi do
17: for q′ := Υq do
18: υq′ ← υq′ − 1
19: if υq′ = 0 then
20: τi+1 ← τi+1 ∪ q′

21: i← i + 1

i is incremented by 1 so that the set of following non-dominated ordered applications

can be traversed in similar way (line 21).

Thus, Algorithm 1 classifies the applications. For illustration, we consider five appli-

cations with ηq1 =< 0.84, 0.60, 0.61 >, ηq2 =< 0.33, 0.7, 0.79 >, ηq3 =< 0.68, 0.38, 0.39 >,

ηq4 =< 0.14, 0.12, 0.25 > and ηq5 =< 0.19, 0.16, 0.67 >, and find Algorithm 1 specifying

q4 as first-order, q3 and q5 as second order, and q1 and q2 as third order non-dominated

application. In worst-case, it can have O(N · |Qg|2) iterations where N and |Qg| denote

the number of non-dominated orders and applications respectively.
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3.4.2 Selection of Applications

After classification, FG g executes the ApplicationSelection procedure shown in Algorithm

2 to select the allowable ρcg number of applications for provisioning on a particular FC c.

It takes the sets of all different ordered non-dominated applications as arguments (line

1) and contains two parts:

1. A list χcg and a variable ϕχ are initialized to refer and count the selected appli-

cations respectively (line 2-3). A boolean variable κ is also marked with f alse (line 4).

Later, the set τi of each ith order non-dominated applications starting from i = 1 are

explored (line 5). If selection of all applications in τi does not surpass the number of

allowable applications ρcg, τi is appended to χcg and ϕχ is updated with the cardinality

of τi (line 6-8). Otherwise, it is regarded that all applications in τi cannot be selected for

placement in FC c. Hence, κ is updated with true and exploitation of other application

sets are postponed (line 9-11). Later, based on the state of κ, τi is traversed further to

identify which applications from τi are competent for selection (line 12-13).

2. For each application q ∈ τi, value of its bottleneck character-driving attribute ϑq

is identified (line 14). For example, if δq = 0.10, ψq = 0.15 and λq = 0.20 for application

Algorithm 2 Algorithm for application selection

1: procedure APPLICATIONSELECTION({τ1, τ2, τ3, ...., τN})
2: χcg ← ∅
3: ϕχ ← 0
4: κ ← f alse
5: for i = 1.....N do
6: if ϕχ + |τi| ≤ ρcg then
7: ϕχ ← ϕχ + |τi|
8: χcg ← χcg ∪ τi

9: else
10: κ ← true
11: break
12: if κ = true then
13: for q := τi do
14: ϑq ← f indMinimum(δq, ψq, λq)

15: τ̂i ← ascendingSort(τi, ϑ∀q∈τi )

16: for q := τ̂i do
17: if ϕχ + 1 ≤ ρcg then
18: ϕχ ← ϕχ + 1
19: χcg ← χcg ∪ q
20: else
21: break
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q, ϑq is set to 0.10. It happens because δq is the most stringent attribute of q. Later, all

application q ∈ τi are sorted to τ̂i in ascending order of their ϑq (line 15). For each

application q ∈ τ̂i, it is checked whether its inclusion for placement in FC c surpasses

the allowable number ρcg (line 16-17). If it is negative, application q is selected and

other parameters are updated accordingly (line 18-19). Otherwise, it is regarded that the

allowable number of applications are already selected. Hence, their further exploitation

is postponed (line 20-21).

Low complexity techniques can be used to perform the operations mentioned in line

14-15. Apart from them, there will be O(N + |Qg|) iterations in Algorithm 2 during

worst case scenarios. Here, N and |Qg| denote the number of non-dominated orders

and requested applications respectively. However, after executing Algorithm 2, FG g for-

wards the references of selected applications χcg to the FRM of FC c for placing them in

Fog instances. The applications which are not selected for placement in c are forwarded

to other FCs following the same approach or sent to Cloud. If a user is subscribed with

multiple FCs, at the FG, their order of exploitation is set based on the preferences of that

user.

3.4.3 Placement of Applications

Each FG g ∈ G interacting with an FC c forwards a reference list of selected applications

χcg to the corresponding FRM. The FRM accumulates the received application lists in Γ

using Eq. 3.4. Thus, Γ refers to the set of all applications selected for placement on FC c.

Γ =
⋃
∀g∈G

χcg (3.4)

In FC c, before placing an application q ∈ Γ on an instance p ∈ P, FRM calculates the

input propagation time tι
pq, execution time te

pq and output transfer time to
pq of q on that

instance using Eqs. 3.5, 3.6 and 3.7 respectively. They explicitly depend on the downlink

speed Φp, processing speed Λp and uplink speed Ψp of instance p, and the average input

data size ψq, number of instruction µq and output data size σq of application q. Based on

them, the expected service delivery time tpq of q on instance p is also determined using
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Eq. 3.8.

tι
pq =

ψq

Φp
(3.5)

te
pq =

µq

Λp
(3.6)

to
pq =

σq

Ψp
(3.7)

tpq = tι
pq + te

pq + to
pq (3.8)

An FRM aims to place an application on that instance which minimizes its service

delivery time. For the set of all selected applications Γ, this objective is formulated using

a constrained Integer Linear Program (ILP) model as shown in Eq. 3.9. Solution of the

ILP model is defined by a binary decision variable xpq that becomes 1 if application q

is mapped to instance p and 0 otherwise. Constraints of the ILP model ensure that an

application will not be placed to multiple instances (Eq. 3.10), its service delivery time

will meet the deadline (Eq. 3.11) and its host instance will have sufficient resources to

meet its minimum requirements (Eq. 3.12).

min ∑
q∈Γ

xpqtpq (3.9)

subject to,

xpq ≤ 1; ∀q ∈ Γ (3.10)

tpq ≤ δq; ∀q ∈ Γ (3.11)

ωr
q ≤ Ωr

p; ∀q ∈ Γ, ∀r ∈ R (3.12)

The optimization problem in Eq. 3.9 deals with fixed number of applications and

instances. They are set according to the resource availability in an FC and the capacity

of FRM in solving the problem within acceptable time limit using any ILP solvers like

Solving Constraint Integer Programs (SCIP) [215]. However, if an application misses

placement for the constraints, another application is selected by the FG using Algorithm

2.
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3.5 Performance Evaluation

The performance of the proposed policy is evaluated in both real-world and simulated

Fog environments. It is also compared with several existing application management

policies. Among them, the Time-aware management policy [76] optimizes application

service time in respect of user’s budget. The Resource-aware management policy [204]

reduces the scope of resource over provisioning while placing applications on Fog in-

stances and meets their minimum requirements. The Workload-aware management pol-

icy [205] schedules less compute-intensive applications with high bandwidth require-

ments in Fog infrastructure as per their deadline constraints. We have implemented the

basic concepts of these policies separately. Moreover, we use different sets of perfor-

mance metrics for both experimental setup so that the efficacy of the policies can be an-

alyzed from diverse perspectives. Details of the experiment environments, performance

metrics and results are discussed below.

3.5.1 Experiments in a Real Environment

Fig. 3.4 presents a sample setup of the real Fog environment. We organize the envi-

ronemnt using FogBus framework [24]. FogBus helps to integrate IoT devices and Fog

infrastructure through a dedicated software system and supports the creation of scalable

Fog environments. In our real experimental setup, eight different smart phones act as

IoT devices. They are connected with an AMD Dual-Core M320 2.10 GHz 2.00 GB RAM

configured computer which is regarded as an FG. The FG communicates with a clus-

ter of computers that plays the role of FC. Within the cluster, there exists two Intel Core

i7-6700T 2.80 GHz 16.00 GB RAM and three Intel Core i7-7700T 3.80 GHz 16.00 GB RAM

configured computers acting as Fog nodes along with an Intel Core i3-2350M 2.30 GHz

4.00 GB RAM configured computer performing the duty of FRM. The Fog nodes are ca-

pable of hosting twelve different Fog instances through VirtualBox [216]. The instances

adapt the bridged networking mode so that they can be accessed by all components

within the Local Area Network (LAN). Using NetLimiter [217] software the uplink and

downlink speed within Fog infrastructure are controlled and its resource utilization is

monitored by Process Explorer [218] software.
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Figure 3.4: Real experimental setup for Edge affinity-based application management

Moreover, we profile the execution time of two applications in this environment.

One of the applications analyses histogram of an image file whereas another counts the

number of words in a text file. We define three different file sizes for their inputs. Each

smart phone launches placement requests to the FG for placing these applications in Fog

infrastructure with inputs having any of the defined file sizes. Besides, a placement re-

quest denotes the data sensing frequency and expected application service delivery time

of the associated smart phone. Since application service requirements vary from one re-

quest to another, we treat each request as the demand for a separate application. We

also enforce the FG to provision at most ten such applications in the Fog infrastructure.

Different settings of this environment are listed in Table 3.3.

Performance Metrics

The following metrics are used to evaluate the proposed policy in this experimental

setup.

• Average Amount of Data Handled (Avg. ADH): If an application management

policy utilizes the Fog infrastructure extensively, value of this metric increases. It also

denotes the lower amount of load sent to other computing infrastructure.

• Average Management Load (Avg. ML): It denotes the average CPU usage of FG

and FRM while classifying, selecting and identifying application-instance map. The

balanced Avg. ML between FG and FRM reflects the efficacy of a policy in distributing

the management tasks across the gateway and the infrastructure level.
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Total instances: 12

CPUs: 6 instances with 1 core

5 instances with 2 cores

1 instance with 4 cores

Bandwidth: 3 instances with 2 MBPS

5 instances with 3 MBPS

4 instances with 4 MBPS

RAM: 7 instances with 2 GB

3 instances with 4 GB

2 instances with 8 GB

Total requested applications: 16

Allowable applications in Fog 10

Average size of text files (MB) S1 = 0.20, S2 = 0.50, S3 = 0.80

Average size of image files (MB) I1 = 0.38, I2 = 0.74, I3 = 1.10

Amount of data per input: 2 applications with S1

4 applications with S2

2 applications with S3

3 applications with I1

3 applications with I2

2 applications with I3

Sensing frequency of phones: 2 applications with 0.25 input/sec

4 applications with 0.50 input/sec

5 applications with 1 input/sec

3 applications with 2 input/sec

2 applications with 3 input/sec

Deadline: 2 applications with 0.40 sec

3 applications with 0.70 sec

4 applications with 1 sec

4 applications with 1.20 sec

3 applications with 1.50 sec

Table 3.3: Settings of real Fog environment for Edge affinity-based management
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Figure 3.5: Average delay from request to placement for different management policies

•Average Delay from Request to Placement (Avg. ADRP): Lower value of this metric

points to the enhanced performance of a policy in reducing waiting of IoT devices while

accessing Fog infrastructure services and initiating data processing.

Result Analysis

The Time-aware policy applies evolutionary algorithm to determine application-instance

map. Compared to Time-aware policy, our policy performs better in improving Avg.

ADRP as it conducts low complexity approaches to classify and select applications for

Fog-based placement and reduces the dimension of optimization problem. As the Work-

load and the Resource-aware policy adapt simplified earliest deadline first and earliest

completion time first, and conduct multi-phase sorting and searching for placement map

identification respectively, they perform well in terms of Avg. ADRP than all others (Fig.

3.5)

As the proposed policy explicitly prioritizes applications for Fog-based placement

according to their input data size, it increases Avg. ADH in Fog infrastructure (Fig. 3.6).

By reducing the scope of resource over-provisioning, the Resource-aware policy also

improves Avg. ADH compared to the rest. However, for enhancing application service
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Figure 3.6: Average amount of data handled by different management policies

delivery time and deadline-prioritized placement, the Time and the Workload-aware

policy often places applications having small amount data on powerful computing in-

stances. As a result, they fail to increase Avg. ADH like other policies.

In addition, to illustrate the efficacy of our policy in distributing application manage-

ment tasks, we compare its performance with two more variations namely Infrastructure

only and Gateway only. In Infrastructure only, all management tasks are executed by the

FRM whereas in Gateway only, the opposite happens. Nevertheless, our policy facili-

tates balanced Avg. ML on both gateway and infrastructure while conducting applica-

tion management tasks (Fig. 3.7). Hence, it neither increases computational burden on

resource poor FGs like Gateway only approach nor overwhelms the FRMs with addi-

tional responsibilities as Infrastructure only approach.

3.5.2 Experiment in a Simulated Environment

Besides the real setup, several experiments are also conducted in iFogSim-simulated

[219] Fog environment so that we can demonstrate the large-scale comparisons between

ours and the other application management policies easily. Since the practical workload

is not available for simulating different scenarios in Fog, we model a synthetic work-

load for the experiments. Its parameters are listed in Table 3.4 and they are aligned with
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Figure 3.7: Average management load in different management setup

the settings of real Fog environment discussed in Section 3.5.1. Here, the arrival rate

of placement requests for applications and numerical value of their character-driving

attributes follow the Poison distribution. Furthermore, there exists a linear relationship

between the number of instructions of an application and its input data size. In the sim-

ulated setup, if an application is not selected for Fog-based placement, it is forwarded to

a Cloud datacentre for execution. The simulation experiments are conducted on an Intel

Core 2 Duo CPU @ 2.33-GHz 2GB-RAM configured computer and the Fog environment

is considered virtualized.

Performance Metrics

The following metrics are used in the simulation experiments:

• Percentage of QoS Satisfied Applications (Per. QSA): Increased value of this met-

ric refers to the enhanced performance of management policies in meeting application

service delivery deadline. This metric explicitly depends on the communication and

computation latency of an application. If Y and Z denote the set of deadline satisfied

and the set of placed applications in both Fog and Cloud instances respectively, Per.
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Parameter Value

Instance:

Computing capacity 3-7 CPUs

Downlink bandwidth 4-20 MBPS

Uplink bandwidth 2-14 MBPS

RAM 6-10 GB

Processing speed 4000-12000 MIPS

Application:

Computation requirements 2-5 CPUs

Network requirements 6-12 MBPS

Memory requirements 2-8 GB

Number of instructions 300 - 1300 MI

Input data size 0.300-1.5 MB

Output data size 0.100-1 MB

Service deadline 0.300-1.2 seconds

Sensing frequency of IoT devices 1-8 input/second

Simulation time 200 Seconds

Number of instances 30

Sensing duration of IoT devices 1-4 Seconds

Arrival rate of placement requests 15-35 requests/second

Table 3.4: Simulation parameters for Edge affinity-based management

QSA is calculated using Eq. 3.13:

Per. QSA =
|Y|
|Z| × 100% (3.13)

• Average Network Relaxation Time (Avg. NRT): Increased value of this metric

signifies reduced communication overhead among the instances that consequently de-

creases the possibility of network congestion. If ζp is the set of all placed applications on

instance p during the simulation round, Avg. NRT is referred by Eq. 3.14:

Avg. NRT =
1
|P| ∑

∀p∈P

∑
∀q∈ζp

1
λq
− tι

pq

|ζp|
(3.14)



90 Edge Affinity-based Application Management

• Average Resource Utilization Ratio (Avg. RUR) of Fog instances: Higher value of

this metric denotes improved performance of a placement policy in increasing resource

utilization of Fog instances. If F is the set of all Fog instances (F ⊂ P), Avg. RUR is

determined through Eq. 3.15:

Avg. RUR =
1
|F| ∑
∀p∈F

∑
∀q∈ζp

λq×µq
Λp

|ζp|
(3.15)

Result Analysis

In this chapter, the results of simulation experiments are analysed in two phases.

• Impact of Varying Number of Placed Applications: The Workload-aware management

policy mainly focuses on delivering application services within the deadline. Therefore,

for increased number of placed applications, it performs better in terms of Per. QSA than

the proposed policy. However, our policy not only considers application deadline but

also exploits their input size and sensing frequency of IoT devices during application

placement (Fig.3.8). Conversely, the Time-aware policy optimizes service time for all

applications regardless their deadline criticality and the Resource-aware policy targets

to meet the minimum resource requirements of applications without explicitly prioritiz-

ing them. Hence, with the increasing number of placed applications, these policies fail

to achieve the same level of Per. QSA as the proposed policy.

Furthermore, our policy places applications having high frequency of IoT devices

and larger data size in Fog instances. Thus, it reduces the overhead of distant commu-

nication even when the number of placed applications in computing environments is

increasing. Consequently, it helps to offer improved Avg. NRT than others (Fig. 3.9).

Moreover, due to exploiting Fog instances with lower possibility of resource over provi-

sioning and facilitating the applications having high bandwidth requirements, the Re-

source and the Workload-aware policy perform nearly as the proposed policy. On the

other hand, the Time-aware policy fails to improve Avg. NRT like others since it barely

considers the data flow characteristics of applications while placing them in Fog infras-

tructure.
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Figure 3.8: Percentage of QoS satisfaction for varying number of placed applications

Figure 3.9: Average network relaxation for varying number of placed applications

Moreover, the huge amount of data handled by our policy helps to increase Avg.

RUR of Fog instances as the number of placed applications increases. It also works in

favour of the Resource-aware policy (Fig. 3.10). However, for executing less compute in-

tensive applications in Fog environments and optimizing application service time with-
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Figure 3.10: Average resource utilization for varying number of placed applications

Figure 3.11: Percentage of QoS satisfaction for varying number of Fog instances

out setting any precedence, the Time and the Workload-aware policy often fail to exploit

the Fog instances comprehensively. As a result, Avg. RUR degrades for these policies

compared to others.

• Impact of Varying Number of Fog Instances: As the number of Fog instances increases,
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Figure 3.12: Average network relaxation for varying number of Fog instances

Figure 3.13: Average resource utilization for varying number of Fog instances

the scope of placing applications in proximity of data sources expands. It reduces the

data propagation delay for a large portion of applications and increases Per. QSA for all

application management policies. However, due to prioritizing applications based on

their deadline constraints, the proposed and the Workload-aware application manage-
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ment policy performs better in this case compared to the other policies (Fig. 3.11).

Additionally, the increased number of Fog instances resists the transfer of huge amount

of data to other infrastructure. Although it elevates the data exchange rate at the edge

of network, it is still trivial compared to the reduction in distant communication over-

head. Hence, Avg. NRT increases for all policies (Fig. 3.12). Since our policy and the

Workload-aware policy explicitly handle the data flow and bandwidth issues of appli-

cations, they perform better than others in improving Avg. NRT with the increment of

Fog instances.

Furthermore, the decreased idle time of instances refers to their higher utilization

rate. The proposed and the Resource-aware policy engage the increased number Fog

instances in executing the applications having high data load and stringent resource

requirements. It helps both the policies to reduce the idle of the instances significantly

compared to others. As a result, the Avg. RUR improves for these policies (Fig. 3.13).

3.6 Summary

Multidimensional constraints resist the accommodation of every IoT applications in Fog

environments. It urges to determine the competent set of applications for Fog-based

placement. In this chapter, we proposed an application management policy that explores

application characteristics in terms of urgency, input size and flow, and identifies their

necessity for Fog-based placement in form of Edge affinity. Edge affinity of an applica-

tion depends on its service delivery deadline, amount of data per input and sensing fre-

quency of IoT devices. Our policy classifies applications through non-dominated sorting

of their Edge affinity and selects a set of applications with stringent QoS requirements

for placement in Fog instances. An ILP model ensures their minimized service time in

Fog environments. Performance evaluation conducted in both real and simulated setup

illustrate that our policy outperforms others in enhancing QoS, network relaxation and

resource utilization. In future, we plan to extend the policy to boost providers profit and

user experiences.



Chapter 4

Latency-aware Application
Management

To fully leverage the capabilities of the Fog nodes, large scale applications that are decomposed into

inter-dependent Application Modules, can be deployed orderly over the nodes based on their latency

sensitivity. In this chapter, we propose a latency-aware Application Module management policy for

Fog environment that meets the diverse service delivery latency and amount of data signals to be

processed in per unit time for different applications. The policy aims to ensure applications Quality

of Service (QoS) in satisfying service delivery deadline and optimize resource usage in Fog environ-

ment. We model and evaluate our proposed policy in iFogSim-simulated Fog environment. Results of

the simulation studies demonstrate significant improvement in performance over alternative latency-

aware strategies.

4.1 Introduction

Typically, different IoT applications carry out some common activities such as receiving

data from IoT devices, pre-processing and analysis of the received data, handling event

of interests, etc. [1]. An Application Module contains necessary instructions so that one

of these aspects for the respective application can be attained. For a given input, an Ap-

plication Module performs some specific operations to generate corresponding output.

Later, based on data-dependency, the output is sent to another module as input. In order

This chapter is derived from:

• Redowan Mahmud, Kotagiri Ramamohanarao, and Rajkumar Buyya, ”Latency-aware Application
Module Management for Fog Computing Environments”, ACM Transactions on Internet Technology
(TOIT), Volume 19, No. 1, Article 9, Pages: 1-21, ISSN:1533-5399, ACM Press, New York, USA,
January 2019.
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to process input within a fixed timeframe, each module requires a certain amount of re-

sources, e.g. CPU, memory, bandwidth, etc. Hence, Application Modules together with

their allocated resources constitute the data processing elements for different applica-

tions. This sort of decomposition is effective for distributed development of large scale

applications. In literature, similar concept is used to divide Component-based applica-

tions into multiple Application Components [220]. However, while executing applica-

tions in distributed manner, latency related issues such as node to node communication

delay, application service delivery deadline and service access frequency often become

predominant and influence Quality of Services (QoS) and resources utilization. In dif-

ferent computing paradigms although various latency-aware management strategies for

distributed applications are proposed [221] [222] [223][224], the aforementioned latency

issues have not been addressed simultaneously. Besides, due to dependency towards

centralized management and lack of latency-sensitive application prioritization, the ex-

isting policies often get interrupted to meet the challenges of IoT-enabled real-time inter-

actions [225]. Therefore, in this chapter, we propose a latency-aware Application Mod-

ule management policy for Fog computing environment that considers different latency

aspects of distributed applications in a body with decentralized co-ordination. The ob-

jective of the policy is to manage latency-sensitive and latency-tolerant IoT-applications

in different ways so that deadline driven QoS provision can be ensured for all types of

applications while optimizing resources in Fog computing. The main contributions of

this work are:

• A latency-aware approach for placing Application Modules on distributed Fog

nodes that ensures deadline satisfied service delivery for different types of appli-

cations.

• Explored latency-aware Application modules forwarding strategy that re-locates

modules in order to optimize number of computationally active Fog nodes.

• Our proposed latency-aware policy is applied in iFogSim-simulated Fog environ-

ment and compared with other latency-aware policies from different perspectives.

The performance results show significant improvement in favor of our policy.

The rest of the chapter is organized as follows. In Section 4.2, we highlight several
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related works. In Section 4.3, different event-driven IoT-application scenarios are dis-

cussed with a general application model. Section 4.4 provides the system overview. The

proposed latency-aware Application Module management policy is presented in Section

4.5. Section 4.6 reflects the simulation environment and the performance evaluation. Fi-

nally, Section 4.7 concludes the chapter.

4.2 Related Work

Famaey et al. [226] proposed a dynamic and latency-aware distributed service place-

ment policy over multiple homogeneous servers. Their policy assigns services with a

utility-driven priority value. A server applies the policy to determine whether it can

execute a request with the service placed within it or should forward the request to an-

other service hosted in the nearby servers. While forwarding the service, server to server

latency is taken into account. The policy shuffles active services within a server so that

resources can be accommodated to execute the newly requested services and the service

forwarding latency can be mitigated.

Kang et al. [221] proposed an Iterative Sequential co-deployment algorithm for dis-

tributed services. Based on user’s proximity, their algorithm at first generates some

virtual random placement for the services, and then performs iterative re-placement to

improve user’s service access and inter-service (nodal) communication time. The algo-

rithm deals with both latency-sensitive and latency-tolerant services in the same way.

After deployment of services, to handle dynamic changes of users and their access pat-

tern, authors recommend to rerun the deployment process periodically.

Takouna et al. [224] indicated towards communication latency and energy-aware

placement of parallel applications in virtualized datacentres. Their policy dynamically

identifies the bandwidth demand and communication characteristics of the distributed

applications and re-allocates the applications through migration if the current placement

fails to handle the issues. A migration manager supervises the operations at the time of

migration. The migration manager sorts the virtualized instances based on their current

traffic and selects an instance as migration target by checking the resource availability.

Gupta et al. [227] proposed a transfer-time aware workflow scheduling policy for
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multi-Cloud environment. It prioritizes inter-dependent tasks for scheduling to the

multi-Clouds based on the computation cost and communication time. Within the clouds,

the tasks are mapped considering earliest start and finish time. The policy aims to en-

hance service delivery time. The operations are handled by a global Cloud manager.

Fan et al. [228] discussed data placement in geo-distributed multi-Clouds. Their

placement policy sorts data chunks in non-ascending order according to the collective

access probability from all the users and merge them into larger data segments based

on the capacity of the servers. Later it iteratively searches for appropriate servers where

placement cost of such data segment gets reduced. The placement cost is calculated

centrally considering service access latency, energy consumption of the servers and the

network. The algorithm also iteratively turns-off of the free servers.

Based on the requirements during development, deployment and management of

component-based IoT applications, Yangui et al. [220] proposed a Platform as a Service

(PaaS) architecture to facilitate application provisioning in hybrid Cloud-Fog environ-

ment. Being a centralized coordinator, the PaaS architecture allows developing appli-

cations according to the target domain; discovering, initiating, configuring and scaling

resources for deploying and executing the application components; managing execution

flow between of the components; monitoring SLA and component migration; providing

resource and component management interfaces. In evaluation, different component

placement scenarios are discussed based on the end-to-end latency.

Taneja et al. [204] presented a Module Mapping Algorithm to place distributed ap-

plications in Cloud-Fog environment. It aims to ensure proper resource utilization. The

algorithm is aware of the network issues. It sorts both the nodes and application mod-

ules according to the available capacity and requirements and maps the modules when

the constraint satisfies. In one sense, it prioritizes the modules based on the resource

expectation. The policy reflects the way to reduce resource under-utilization for dis-

tributed IoT application. It also highlights how Fog-Cloud inter-operation can minimize

end-to-end latency compared to the Cloud-based approaches.

Ottenwalder et al. [223] proposed a plan-based operator placement and migration

policy for Mobile Complex Event Processing (MigCEP) applications. It supports mo-

bility of the users and creates time-graph model to identify possible migration targets.
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Considering the shortest path from data source, it selects the appropriate target instance

from the time graph model. On the selected instance, the policy applies coordination to

accommodate the migrating operator. The main intentions of the proposed policy are to

reduce network overhead and end-to-end delay.

Nishio et al. [222] discussed latency-aware application deployment for Mobile Cloud

Computing (MCC). In their proposed system, a coordinator manages all incoming re-

quests and resources in order to meet service latency for different applications. While

sharing resources, smaller amount of tasks are forwarded from one node to another

node under supervision of the coordinator. Policies running in the system trade-offs

utility gain and energy consumption for resource optimization.

A cost optimized offline and online service placement policy for Mobile Micro Cloud

(MMC) is discussed in [229]. The policy determines an optimal configuration of service

instances that minimize the average cost over time. A centralized controller predicts the

cost and computes the service instance configuration for the next time slots. The cost

function can include resource consumption, service access latency and other monetary

issues. The policy supports mobility of the entities and migration of the services ac-

cordingly. The authors also consider the errors while predicting the cost and develop a

method to identify the optimal look-ahead window size.

Chamola et al. [230] considered Software Defined Network (SDN) enabled commu-

nication of multiple Cloudlets to place services at the proximity of the mobile users. The

task assignment solution can improve the QoS in respect of service delivery and service

access time. According to the proposed policy, if a Cloudlet gets overloaded, the tasks

offloaded to it, are processed on another relaxed Cloudlet of the network. Necessary

operations to conduct the policy are supervised by a central Cloudlet manager.

To facilitates latency-aware scheduling of applications in virtual machines, Xu et al.

[231] introduced a scheduler named vSlicer. vSlicer nurture the concept of differentiated-

frequency microslicing. Unlike, traditional scheduler, vSlicer divides a CPU slice into

many microslices and according to microslices, it schedules applications in higher fre-

quency. By doing so it increases CPU access probability of applications.

Table 4.1 provides a brief summary of state-of-the-art for latency-aware application

or service placement in distributed servers, multi-Cloud, Mobile-Cloud and Cloud-Fog
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Work Distributed
application

Meets latency Forwards
application

Optimizes
resources

Decentralized
management

Prioritized
placement

Service
access

Service
delivery

Inter
nodal

[226] X X X X X

[221] X X X X

[224] X X X X

[227] X X X X

[228] X X X X

[220] X X X X

[204] X X X X

[223] X X X X

[222] X X X X

[229] X X X

[230] X X X

Latency-
aware
(This
work)

X X X X X X X X

Table 4.1: Summary of related work for latency-aware management

environment. Compared to the existing works, the unique aspect of our work is that we

have considered service access delay, service delivery time and inter-nodal communi-

cation delay simultaneously while placing and forwarding inter-dependent application

modules over distributed Fog nodes. Besides, the proposed policy decentrally coordi-

nates the placement and forwarding operation to overcome the constraints of central-

ized supervision for example; application management overhead, single point of fail-

ure, additional communication and decision making delay etc. Our policy can place the

modules both horizontally and vertically and in order to facilitate low energy usage, can

optimize resources by forwarding all the modules from one node to the others. More-

over, it enhances priority of latency-sensitive applications to place closer to the data

source by deploying latency-tolerant applications in the upper level Fog nodes. Simula-

tion results support the applicability of our policy in terms of QoS satisfaction, resource

optimization, module placement and forwarding time.
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4.3 Application Scenarios

4.3.1 IoT-enabled Systems

In advanced healthcare and smart home based system, the structure of different IoT

applications reflects through some common operations. Two such application scenarios

and their basic operations on the received data can be described as follows.

Patient Respiratory Monitoring System

In order to monitor breathing and oxygen level of asthma patients, Pulse Oximeters are

widely used at the hospitals. Usually Pulse Oximeters are connected to the bed-side

monitors, and continuously shows oxygen level carried in the body, heart beat rate and

changes in blood volume of the skin [232]. The bed-side monitors provide the interface

for authentication, aggregate data signals and usually forward the sensed data to Cloud

or other computational entities for further processing to detect Hypoxemia, Hypercap-

nia and sleep apnea of the patients. Since, some Pulse Oximeter generated data signals

can be irrelevant, incomplete and diverse in format; data filtering techniques are applied

in this context. Later, different data analytics in respect of Hypoxemia, Hypercapnia,

etc. operate on the filtered data. Sometimes, the analysed outcome can indicate to an

emergency situation. Based on the outcome, required actions for example ventilation,

injection, medication, etc. are triggered at the patient’s bed-side actuators. For critical

asthma patients, corresponding application has to perform the aforementioned opera-

tions in real-time that Cloud-based placement of the application often fails to deal with.

In addition, placement of such large-scale applications in distributed and heterogeneous

Fog nodes is not as simple as the Cloud-based placement.

Visitor Identification System

To identify a visitor in smart-home based system, usually entrance-side cameras take

the pictures of the visitors and send to Cloud or other computing entities for image pro-

cessing [233]. Sometimes due to weather conditions and other external effects, the taken
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pictures get a lots of noise. In this context, image filtration techniques are required to

apply for selecting the most appropriate picture and reducing its noises. Image analyt-

ics in respect of face and gesture recognition, object detection, etc. are also applied to

the filtered pictures for identifying the visitor and the hand held objects. Once the vis-

itor is identified and the hand held objects are found allowable, necessary information

is parsed from the respective databases. The information can include contact number,

address and access rights of the visitor. If the visitor is authorized to enter the house,

entrance-side actuators open the door otherwise create notification to the residents con-

taining the details of the visitor. During urgent period, corresponding application of

Visitor Identification System is required to coordinate the aforementioned operations

within a reasonable time that may not be possible if the application is placed in distant

Cloud. Besides, necessary resources to execute this kind of compute intensive applica-

tions in resource constrained Fog nodes are often difficult to manage.

4.3.2 Application Model

Based on the aforementioned scenarios and data-operations, we have considered the

following application model for the associate event-driven applications. We assume that

each application is composed of Client Module (provides initial application interface),

Data Filtering Module (applies data filtering techniques), Data Analysing Module (executes

data analytics) and Event Handler Module (generates appropriate response to the event).

Data dependency exists among the modules of same application which can be expressed

through a sequential unidirectional dataflow as shown in Fig. 4.1. After placement of

an Application Module, from the respective dataflow the next module is identified for

placement. To foster concurrency, the modules can be replicated. Besides, if a module

is allocated resources according to its requirements, it is expected that the module will

execute its operation within a fixed time.

Client Module is the entrance module for each application. Application initializ-

ing information such as authentication, data signal sensing frequency, service delivery

deadline, meta-data of subsequent modules and their inter-dependency are notified to

the system through the Client Module. After deployment of all modules, Client Module
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Figure 4.1: Dataflow model for a distributed application

of a particular application directly communicates with respective IoT devices to grab

the data signals and forwards in form of aggregated data to the subsequent modules for

further operations. If the ultimate analysed outcome of a forwarded data signal invokes

any event of interest, Event Handler Module sends corresponding response towards the

Client Module. This response is eventually considered as the final application service for

an IoT-data signal. Based on the response, Client Module triggers action in the actuators.

Since Client Module plays the role of root module for the applications and closely

associates with the IoT devices and the actuators, this particular module for every ap-

plication is expected to be placed at the proximity of the users.

4.4 System Model and Assumptions

The detailed description of the system model and the associated assumptions are dis-

cussed in the following subsections.

4.4.1 Organization of Fog Layer

In this work, Cloud is considered as a standalone computational platform and IoT de-

vices only generate data signals without further processing due to resource and energy

constraints. In this circumstance, Fog computing acts as an intermediate layer in be-

tween Cloud and IoT devices. Within this layer, nodes are organized in a hierarchical

order as shown in Fig. 4.2.



104 Latency-aware Application Management

Cloud

Iot devices and 

sensors

Fog Nodes

Fog 

Cluster

Figure 4.2: Fog environments for latency-aware application management

Lower level Fog nodes are closer to the IoT devices. As the level number goes higher,

distance of Fog nodes from IoT devices increases which can be reflected in lower level

to higher level uplink latency and delay in service delivery. Compute, storage and net-

working capabilities of lower level Fog nodes are less compared to that of higher level

nodes [234]. Each node in a particular level is directly associated with a node of im-

mediate upper level. Fog nodes can form clusters among themselves and rapidly com-

municate with each other through Constrained Application Protocol (CoAP) or Simple

Network Management Protocol (SNMP). [235]. Therefore, maximum nodal communica-

tion delay εC within a Fog cluster C is negligible and does not impact on service delivery

time extensively. We assume that at lower Fog levels, if two nodes from the same level

are connected with identical uplink node and experience approximately equal amount

of uplink latency, the nodes can belong to the same cluster. Besides, in a reliable IoT-

enabled system, it is expected that the Fog infrastructure providers have applied efficient
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networking techniques to ensure persistent communication among the nodes through

less variable inter-nodal latency [236].

4.4.2 Fog node architecture

Recently, the OpenFog Consortium has proposed a reference architecture for Fog nodes

where the computation, management and networking operations are conducted on dis-

crete components [20]. Based on the reference architecture, we assume that a Fog node

is composed of Controller Component, Computational Component and Communication Com-

ponent (Fig. 4.3).

Computational Component provides resources to execute Application Modules. In-

side Computational Component, modules are assigned to Micro Computing Instances,

MCI where resources e.g. CPU, memory, bandwidth, etc. are allocated according to the

requirements. Due to resource constraints, each Fog node can configure a certain num-

ber of individually working MCIs at a time. In a Fog node when no MCIs are running, its

Computational Component is turned off. In this case, the node only serves networking

functionalities like routing, packet forwarding, etc. through its Communication Com-

ponent. If the load of applications increases in Fog, Computational Component of that

node can be reactivated to handle the event. Controller Component of a Fog node mon-

itors and manages the operations of Computational and Communication Component.

Moreover, Controller Component maintains several data structures. Among them,

the Module Sleeping Block (MSB) contains non-executing Application Modules. When an

Application Module has no input to process, it is withdrawn from the assigned MCI

and placed to the MSB. Application Modules forwarded from another node also reside

inactively in the MSB while they are waiting for scheduling. In addition, a Fog node

tracks the Application Modules that are deployed within it using the Placement List (PL)

and stores route related information of other Application Modules in its Routing List

(RL). After the execution of a module, to determine host (both node and MCI) of the next

module, either PL or RL of corresponding Fog node is referred to. Besides, a Fog node

preserves meta-data of the placed modules even when they are no longer associated

with it and the context information of other nodes in a Data container.
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Figure 4.3: Fog node components for latency-aware management

The relevant notations and definitions used in modeling the system are listed in Table

4.2.

4.4.3 Latency Model

Due to data-dependency, generated output of an Application Module is sent to another

module as input. The tolerable inter-module data dependency delay δm′m
a of module m

in application a refers to the maximum amount of time that the module can wait without

affecting the application’s service delivery deadline to get the input from the previous

module m′ for a particular data signal. For any application a, the service delivery dead-

line can be set according to ∑ δm′m
a ; ∀m ∈ Ma.

Here, δClientFilter
a + δ

FilterAnalysis
a + δ

AnalysisEvent
a < δEventClient

a is assumed so that tolera-

ble inter-module data dependency delay-aware placement of Data Filtering, Analysing

and Event Handler module can spontaneously justify the placement of Client module.

However, inter-module data dependency delay of a module m placed in node n can

be estimated (γm′m
a ) based on the input processing time φm′

n′ of the previous module m′

placed in node n′ and the inter-nodal communication delay ∆n′n between their host

nodes. In some cases, input scheduling delay of the previous module can also contribute

to the estimated inter-module data dependency delay of the respective module.

In addition, the service access rate of data signals for an application and replication

number of the previous module play an important role to the input receiving frequency

of a particular Application module. The input receiving frequency fm of a module m

itself helps to identify the possible idle period of module m. For example, if fm = 2/ms
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Symbol Definition

N Set of all Fog nodes.

A Set of all Applications.

M Set of all Application Modules.

R Set of all resources (e.g. CPU, memory, bandwidth, etc.).

Ma Set of all Application Modules belong to application a ∈ A; Ma ⊂ M.

Mn Set of all Application Modules placed in node n ∈ N; Mn ⊂ M.

γm′m
a Estimated inter-module data dependency delay of module m from its previous module

m′ on the dataflow of application a; m′, m ∈ Ma

δm′m
a Tolerable inter-module data dependency delay of module m from its previous module m′

on the dataflow of application a; m′, m ∈ Ma

∆n′n inter-nodal communication delay between node n′ and n; n, n′ ∈ N.

f m Input receiving frequency of module m; m ∈ M.

Tm
n′n Required time to forward module m ∈ M from node n′ to n; n′, n ∈ N.

φm
n Input processing time of module m ∈ M in node n ∈ N

rm
req Requirement of resource r ∈ R for module m ∈ M.

ψnr Capacity of node n ∈ N for resource r ∈ R.

rn
avail Available resource r ∈ R in node n ∈ N.

Cn Cluster to which node n ∈ N belongs.

εC Maximum communication delay within Cluster C of Fog nodes

tnow Current timestamp.

tlast
m Timestamp when module m ∈ M received last input.

µm
n Assigned MCI to module m ∈ M in node n ∈ N.

yn ∈ {0, 1} Equals to 1 if node n ∈ N is computationally active, 0 otherwise.

xmn ∈ {0, 1} Equals to 1 if module m ∈ M is mapped to node n ∈ N, 0 otherwise.

x′mn ∈ {0, 1} Equals to 1 if module m ∈ M was earlier deployed in node n ∈ N, 0 otherwise.

Table 4.2: Notations for latency-aware management

and φm
n = 0.2 ms in node n, then it can be expected that after processing an input,

module m in node n will be remain idle for the next 0.3 ms. Within this idle period of

module m, its assigned MCI µm
n can be allocated to other module for input processing.
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4.4.4 Module Management Problem

Usually lower level Fog nodes are not resource enriched like upper level nodes although

placement of applications on lower level nodes facilitate faster service access and de-

livery. Besides, not all applications show identical response to latency related issues.

For latency-sensitive applications, service delivery deadline so as to module’s tolera-

ble data dependency delay is stringent compared to latency-tolerant applications. In

this case, placement of latency-tolerant applications in limited number of lower level

Fog nodes can obstruct many latency-sensitive applications to meet their requirements.

Conversely, by considering lower Fog level scalable, if all applications are placed there,

upper-level nodes will remain under-utilized. Therefore, an efficient module placement

policy is required that can prioritize applications to place in closer proximity of data

source meeting necessary latency-related issues. More precisely, the policy should iden-

tify which applications (modules) should be placed at lower Fog level and which are

required to move towards upper level.

Moreover, to minimize energy usage and expenses in Fog environment, the num-

ber of computationally active nodes can be optimized. In this case, some modules are

required to forward from one node to another. The selection of source and destination

node for such module forwarding is very crucial. In addition, while forwarding mod-

ules, constraints on nodes capacity, service delivery deadline and forwarding cost (e.g

forwarding time) should be observed simultaneously.

In distributed environment like Fog, if the decisions regarding application manage-

ment is taken decentrally, both application placement time and overhead from the cen-

tralized controller will be reduced. Thus application management can be done without

relying on a single entity although it will be very difficult to coordinate the nodes.

4.5 Proposed Application Module Management Policy

Our proposed latency-aware Application Module management policy runs on the Con-

troller Component of each Fog nodes without supervision of any external entity. This

management policy basically targets application module placement to ensure deadline
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satisfied QoS and resource optimization in the Fog layer.

4.5.1 Assuarnce of QoS

To initiate any application a in Fog, the corresponding IoT devices subscribe with a Fog

node. This node acts as the Application gateway node for application a. Usually during

subscription, the Client Module of application a is by default placed on its Application

gateway node. Therefore, Application gateway nodes of different applications are lo-

cated at the lower Fog level. However, placement of the module next to Client Module

also initiates from Application gateway node. In order to initiate placement of a module,

Fog node executes the PlaceAppModules procedure given in Algorithm 3.

PlaceAppModules procedure takes the to be placed Application Module, m, its pre-

vious module, m′ and observed network delay, ω as arguments.

As shown in Algorithm 3, PlaceAppModules procedure basically consists of 4 steps:

At first, the procedure inquires context of the current node (line 2). If the current node is

Cloud, rest unassigned modules will be placed there, otherwise the procedure inquires

context of the corresponding uplink node and host node of m′ (line 3-7). Then the fol-

lowing steps are executed:

1) Sum of the input processing time of previous module m′, observed network de-

lay from host node of m′ to the current node and the current node’s uplink latency is

checked with tolerable inter-module data dependency delay of the to be placed Appli-

cation Module, m (line 9). If it is feasible to route module m to the uplink node, the

current node updates its RL for the module. At the uplink node, deployment process of

the module is re-initiated by invoking its PlaceAppModules procedure with an updated

value of observed network delay, ω (line 10-14).

2) If it is not efficient to route module m to the uplink node, the current node intends

to place the module within itself. In order to do so, the resource availability of the current

node is checked with the requirement of module m. If the resource availability supports

requirements of module m, the current node update its PL for module m (line 15-16).

However, as the module is deployed in a computationally active node, boolean variable

η is set to true (line 17) and availability of the resources in the current node is updated
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Algorithm 3 Module placement algorithm

1: procedure PLACEAPPMODULES(m, m′, ω)
2: p← this node
3: if p = Cloud then
4: place rest modules in cloud
5: return
6: q← p.uplinkNode
7: z← m′.hostNode
8: if m 6= null then
9: if φm′

z + ∆pq + ω < δm′m
a then

10: ω ← ω + ∆pq
11: p.RL.add(m, q)
12: q.PlaceAppModules(m, m′, ω)
13: else
14: η ← f alse
15: if rm

req < rp
avail , ∀r ∈ R then

16: p.PL.add(m)
17: η ← true
18: p.update(rp

avail)
19: else
20: for u := Cp.activeNodes do
21: if rm

req < ru
avail , ∀r ∈ R then

22: p.RL.add(m, u)
23: u.PL.add(m)
24: η ← true
25: u.update(ru

avail)
26: break
27: if η = f alse then
28: select node v ∈ Cp.inactiveNodes
29: p.RL.add(m, v)
30: v.PL.add(m)
31: v.update(rv

avail)

32: m′ ← m
33: m← m′.getNext
34: p.DeployAppModules(m, m′, εCp )

35: else
36: return

(line 18).

3) Another computationally active node from the same cluster as the current node

is selected to place the module m if available resources at the current node do not meet

the module’s requirements. This selection is also conducted based on the resource avail-

ability of other cluster nodes. In this case, current node updates its RL and the selected

cluster node updates its PL, resource availability for module m (line 20-25).

4) If all computationally active cluster nodes fail to allocate resources for deploying

module m, an arbitrary computationally inactive node from the cluster will be selected
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to place the module. RL and PL of the respective nodes will be updated for the module

(line 27-31).

Step 2-4 of the algorithm operate on the same cluster. Therefore, placement pro-

cess of the next Application Module can be initiated from any node of the cluster. In this

algorithm, current node is selected to do so as it simplifies management of routing infor-

mation. Since, Fog nodes residing in same cluster are connected with faster networking

protocols (e.g. CoAP, SNMP, etc.), observed network delay ω in this case is considered

negligible and set equal to ε of the Cluster.

Algorithm 3 can be extended to handle the scenario when there exist no inactive

nodes to host a module within a cluster. In this case, the module can be bypassed to

the proximate clusters provided that the tolerable inter module data-dependency delay

is not violated. If still the module is failed to deploy, it can be sent either to the uplink

nodes or to the proximate cluster nodes where tolerable inter module data-dependency

delay gets less violated. It is done so that even if the deadline cannot be meet, service

delivery time remain as low as possible. However, if the Fog infrastructure is unable

to allocate resources for all the modules of an application, it notifies the user through

Application gateway node to flexible the deadline so that it can be placed to the Cloud.

In a reliable IoT-system where the requirements of modules assist them to process

input within a fixed amount of time, The proposed Algorithm 3 helps the applications

to meet their service delivery deadline. It implicitly deals with latency-sensitive and

tolerant applications in different way. According to the policy latency-tolerant applica-

tions (modules) are placed vertically whereas latency-sensitive applications (modules)

are placed horizontally across the cluster and in lower Fog level resources are preserved

for future latency-sensitive applications.

4.5.2 Optimization of Resources

Generally, if all deployed Application Modules of a particular Fog node are re-located to

other nodes for further execution, Computational Component of that node can be turned

off. Hence, the number of computationally active Fog nodes can be reduced. In Fog, this

sort of optimization can be handled in terms of both Integer Linear Programming (ILP)
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and heuristic based approaches.

Formulation of a Integer Linear Programming problem

A constrained ILP problem is formulated in Eq. 4.1 to minimize the number of compu-

tationally active Fog nodes. It helps to identify possible target Fog node n for re-locating

Application Module m through a binary decision variable xmn. Binary variables x′mn and

x′mn′ tracks whether module m had been available in node n or n′ since the last place-

ment. The constraints ensure that a module will not be mapped to multiple nodes (Eq.

4.2), resources of the target node satisfy the module’s requirements (Eq. 4.3), placement

of the module to target node does not affect the tolerable inter-module data dependency

delay of the next module (Eq. 4.4) and the required time to forward the module from

source node to target node fits within the input arrival interval of that module (Eq. 4.5).

min ∑
n∈N

yn (4.1)

subject to,

∑
n∈N

xmn = 1; ∀m ∈ M (4.2)

∑
m∈M

rreq
m xmn ≤ ψnryn; ∀n ∈ N, ∀r ∈ R (4.3)

xmnγmm′′
a ≤ δmm′′

a ; ∀n ∈ N, ∀a ∈ A, ∀m ∈ Ma (4.4)

Tm
n′nx′mn′(xmn − x′mn) ≤

1
f m ; ∀n, n′ ∈ N, ∀m ∈ M (4.5)

This ILP problem is required to be solved periodically to optimize the number of

computationally active nodes. Any integer programming solver e.g. SCIP [215] can be

used in this case. However, based the solution of ILP problem, modules can be re-located

in optimal number of nodes and Computational Component of other active nodes can

be turned off.
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Proposed heuristic solution

In a Fog environment with large number of computationally active nodes, the afore-

mentioned ILP problem takes much time to be solved. As a consequence, in making

real-time forwarding decisions the ILP-based solution will not be acceptable. Therefore,

here we propose a heuristic based solution to the problem.

In the heuristic approach, we consider that after latency-aware Application Module

placement of any application a, Fog nodes belonging to the same cluster share their con-

text (e.g. PL, RL, Data container information, etc.) with each other. This sort of context

sharing among the nodes is conducted within Ts amount of time which is termed as con-

text sharing period. After context sharing period, different Fog nodes are found hosting

different number of Application Modules. Based on a predefined threshold percentage

of allocated resources, some nodes are identified as highly-occupied while others are

considered under-occupied.

Due to step 2 and 3 of Algorithm 1, the number of under-occupied nodes in a cluster

is comparatively less than highly-occupied nodes. Moreover, to make an under occupied

node computationally inactive, only a few Application Modules will be required to re-

locate. For example, let us assume, there is a cluster of four nodes, each of them can host

up to three Application Modules with similar resource requirements. At a particular

time, two of them are occupied with two modules each and rest are occupied with one

module. The resource allocation threshold for each node is set to 60%. In this case re-

location of two Application Modules from a highly-occupied node to other nodes make

only one node computationally inactive whereas re-location of Application Modules

from two under-occupied nodes can make two nodes computationally inactive. Taking

this concept into account, the proposed heuristic approach aims at re-locating modules

from under-occupied nodes to other highly-occupied cluster nodes.

In order to conduct re-location of Application Modules from an under-occupied

node, nu to other highly-occupied cluster nodes, at first nu forwards the modules in

non-executing form to each of the nodes. Within the highly-occupied cluster nodes, for-

warded modules reside in MSB. If a highly-occupied node accommodates any of the

forwarded modules in its Computational Component, the RL of nu is updated for that

module. In this case, other cluster nodes discard the module from their MSB. Otherwise,
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at highly-occupied cluster nodes, forwarded modules are required to be scheduled in

MCIs of other Application Modules.

After forwarding non-executing form of all placed modules, an under-occupied node

nu usually tries not to execute the modules in its Computational Component. In this

case, if nu receives input τ for module m of application a, it either routes the input to new

host node of the respective module or asks a suitable highly-occupied node to schedule

the module through ForwardAppModules procedure (Algorithm 4).

Algorithm 4 is consisted of two basic steps. After finding the context of current node

(line 2), the following steps are executed:

1) In the RL of current node, if reference of new host node for module m is found,

input τ will be sent to that node (line 3-6).

2) To identify a suitable host module and its assigned MCI for scheduling Applica-

tion Module m, Algorithm 4 takes each highly occupied cluster nodes into account (line

Algorithm 4 Module forwarding algorithm
1: procedure FORWARDAPPMODULES(m, a, τ)
2: p← this node
3: q← p.RL.get(m)
4: if q 6= null then
5: send τ to m on node q
6: return
7: m′′ ← m.getNext
8: hostn ← null
9: hostm ← null

10: for n′ := Cp.highNodes do
11: for m′ := Mn′ do
12: n′.getIn f o(m′)
13: if tnow > tlast

m′ + φm′
n′ then

14: if tlast
m′ + 1

fm′
− tnow > φm

n′ then

15: if rm′
req ≥ rm

req, ∀r ∈ R then
16: if xmn′ = 1&γmm′′

a ≤ δmm′′
a then

17: if λm′ = f alse then
18: hostn ← n′

19: hostm ← m′

20: λm′ ← true
21: n′.updateIn f o(m′)
22: break
23: if hostn && hostm 6= null then
24: break
25: if hostn && hostm 6= null then
26: schedule m in µhostm on node hostn
27: send τ to m on node hostn
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10-11), parse relevant information (line 12) and checks the following conditions:

i. host module is not currently processing any input (line 13). It ensures that, m will

be scheduled in MCI of host module only when it is idle.

ii. host module will not receive any input until module m finishes input processing

(line 14). This condition ensures that re-location process will not discard any input of

host module.

iii. the assigned MCI to host module meets the resource requirements of module

m(line 15).

iv. Placement and execution of module m on the host node will not affect the tolerable

inter-module data dependency delay of its next module (line 16).

v. no other under-occupied nodes have selected the MCI assigned to host module for

scheduling their Application Modules (line 17). For any host module, m′ this condition

is observed through boolean variable λm′ . After identifying the host node, necessary

information are updated (line 18-21). As soon as scheduled Application Module finishes

input processing, λm′ is set to false again.

Here, Algorithm 4 employs first fit solution to schedule Application Module m.

However, after re-location of modules from under-occupied nodes to highly-occupied

nodes, there will be an observation period. Within this period if no anomaly (e.g. fail-

ure in scheduling forwarded modules, QoS degradation, etc.) is detected, soon after the

observation period, Computational Component of under occupied nodes will be turned

off. Hence, the number of computationally active nodes from the Fog can be reduced.

Besides, the proposed policy dynamically determines host node and host module for

the forwarded modules which helps to deal with sudden changes in input receiving

frequency (e.g. due to add new replica) of the modules.

Our proposed heuristic based resource optimization through latency-aware Appli-

cation Module forwarding operates within clusters. In this approach, usually a small

number of Application Modules from under-occupied nodes are forwarded to highly-

occupied cluster nodes. Since highly-occupied cluster nodes contain many potential

host modules, there will be always a possibility of finding suitable MCI to schedule

less amount of forwarded modules. Moreover, cluster nodes are connected with each

other with faster communication protocols. Therefore, communication latency during
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module forwarding is negligible and does not obstruct application QoS. However, for

a forwarded module if no suitable host node and host module is found, the module

will be executed in its initial placement. In that case, there will be no further scope of

forwarding data signal endlessly without being accepted.

4.6 Performance Evaluation

The performance of the proposed Application Management policy is evaluated in two

phases; At first, the proposed latency-aware module placement is compared with the

approarches mentioned in [221] and [222]. In [221], a latency-aware iterative algorithm

is introduced to place applications whereas in [222], a centralized resource coordinator-

based Service Oriented Resource Sharing (SORS) is discussed. In this phase, deployment

time of modules, percentage of deadline satisfied data signals are considered as the per-

formance metrics.

Later, the proposed heuristic based solution for resource optimization is compared

with the solution of ILP problem. In solving the ILP problem, SCIP solver [215] is used.

The proposed latency-aware Application Module forwarding is also compared with

MigCEP [223] and Peer VMs Aggregation (PVA) [224]. In MigCEP, to forward applica-

tions time-graph models are generated, algorithms for shortest path and co-ordination

are executed whereas in PVA, a migration manager handles necessary steps to forward

applications. In this phase, number of reduced Fog nodes, required time for identifying

the target nodes and forwarding the modules are considered as performance metrics.

Moreover, when scheduling of forwarded modules are required at the target nodes, the

performance of the proposed approach in reducing the number of context switching is

compared with vSlicer [231] and earliest start time-based scheduling [227]. Increasing

number of context switching can incur high service waiting time and cost.

In addition, the performance of the proposed policy is discussed in terms of varying

application contexts such as variable input processing and communication time of the

modules along with sudden changes in application service access rate.
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Parameter Value

Simulation Duration 120- 240sec

Status sharing and observation period 10sec

Uplink latency:

IoT device to LL nodes 10-15 ms

LL nodes to ML nodes 30-40 ms

ML nodes to HL nodes 60-80 ms

HL nodes to Cloud 140-160 ms

Processing time:

Client Module 20-40 ms

Filter Module 10-20 ms

Analysis Module 150-200 ms

Event handler Module 20-40 ms

Applications service delivery deadline 350 - 750 ms

Delay to connect with centralized manager at ML 45-60 ms

Maximum nodal communication delay within Fog clus-
ter

3-5 ms

Applications data receiving frequency 3/sec -
7/sec

Table 4.3: Simulation parameters for latency-aware management

4.6.1 Simulation Environment

To evaluate the performance of the proposed policy, a Fog environment is simulated in

iFogSim [237]. iFogSim is built upon CloudSim [238] framework that is used widely for

simulating different computing paradigms [239] [240]. The simulation parameters are

summarized in Table 4.3.

In the modelled environment, we assume that Fog layer consist of three levels e.g.

lower level (LL), mid level (ML), higher level (HL) and every node is heterogeneous to

each other in terms of resource capacity and application execution environment. To con-

duct the experiments, we have used synthetic workload as compatible real workload for

the proposed Application Management policy is not currently available. The value of

simulation parameters within a specific range is determined by a pseudo random num-

ber generator. Here, application initiation request can be originated from any location
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at any time. We consider that due to incompleteness of data, deployed applications dis-

card 2-3% of received signals during data filtration and 65% of the placed applications

are comparatively more latency-sensitive than the rest.

4.6.2 Performance in Application Module deployment

In Iterative algorithm, at first modules are deployed temporarily in different nodes.

Then, for reducing service latency, modules are gradually re-located to suitable nodes

through iterations. As the application number increases, required time for iteration also

gets high. In SORS policy, to place modules, each time resource coordinator is required

to be asked for suitable nodes. In the proposed module placement approach, neither

iteration nor supervised resource discovery is applied. Therefore, to place increasing

number of applications, the proposed requires less time compared to others (Fig. 4.4).

This experiment also reflects that application placement decisions taken centrally can

linger the placement of the applications in distributed Fog environment.
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Figure 4.4: Module deployment time for varying number of applications

Fig. 4.5 depicts the percentage of deadline satisfied data signals for increasing num-

ber of applications. Iterative algorithm treats both latency-sensitive and tolerant appli-

cations in a similar way. As a result, in some cases, percentage of deadline satisfied data



4.6 Performance Evaluation 119

signals for sensitive applications degrades. In SORS, for sending input to each modules

of an application, resource coordinator is sent request for finding the host nodes. Addi-

tional time is required to conduct this operation which adversely affects the percentage

of deadline satisfied data signals. In our proposed approach, host nodes send input from

one module to another and due to place modules based on latency-endurance, neither

latency sensitive nor tolerant applications are penalized in meeting deadline for pro-

cessing the received data signals. This experiment result indicates that when in a system

diversified applications in respect of latency-endurance exist, it is always a good policy

to handle them separately.
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Figure 4.5: Percentage of QoS satisfaction for varying number of applications

4.6.3 Performance in Application Module forwarding

Fig. 4.6 shows the comparison of ILP based solution and the proposed heuristic solution

in optimizing the number of computationally active Fog nodes. From the experimental

results, it is found that the proposed heuristic solution is very much closer to the optimal.

In this experiment, every after 10 seconds,the ILP problem has been solved.

In Fig. 4.7, required time to identify possible target nodes for module forwarding

is depicted for both ILP and heuristic based solution. The heuristic based solution can

find suitable target nodes within a cluster by executing a simple threshold compari-
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Figure 4.7: Required time for generating ILP and heuristic solutions

son. When all clusters in Fog applies the heuristic approach in contemporary basis, less

amount of time will be required to identify possible target nodes from the whole system.

However, in ILP based solution, required time for identifying target nodes exponentially

increases as the number of nodes increases. This experiment result defines that in a sys-

tem where real-time interactions happen very frequently, solving a time consuming ILP

problem for forwarding modules is not very efficient.

A comparative study of the proposed module forwarding approach, MigCEP and
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PVA is depicted in Fig. 4.8. In MigCEP, several operations such as time-graph model

generation, shortest path identification and co-ordination are conducted to forward mod-

ules. In PVA, identification of target nodes, competence checking and communication

management during module forwarding are observed by a migration manager. Due

to aforementioned reasons, both approaches require higher amount of time. In the

proposed approach, rather than identifying a suitable node, modules are forwarded

to every competent nodes in the cluster. As cluster nodes are connected with each

other through faster networking standard, this type of module forwarding requires less

amount of time compared to others. Although it brings additional cost for storage, for

management of real time applications, it can be overlooked. Besides, this experiment

signifies that formation of high-speed clusters among Fog nodes can contribute exten-

sively to forward modules so as to optimize resources.
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Figure 4.8: Required time for module forwarding

Fig. 4.9 depicts how input receiving frequency of host module influences context

switching when a forwarded module is scheduled in host module’s MCI. In the pro-

posed approach, if the host module’s frequency increases, number of context switching

decreases whereas in vSlicer scheduler, this number remains the same (here, 16 context

switching per second) and for early arrival time-based scheduling it increases. Rapid

context switching increases overhead and waiting time at the host node node. In the
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Figure 4.10: Performance of the proposed policy for varying application context

proposed approach, a forwarded module only get access to the host module’s MCI when

the module is idle. Therefore no data signal of both host and scheduled module waits

for long time and additional overhead of context switching is reduced. This experiment

highlights that module forwarding decisions in distributed Fog environment should be

taken dynamically based on the context of the nodes.

Fig. 4.10 represents how the proposed policy deals with varying application context.
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The application context can be varied in terms of input processing and communication

time of the modules and the service access rate of the data signals. The experiment result

shows that, if the processing time of the modules varies with course of time for most of

the applications, percentage of QoS-satisfied data signals will be reduced. However, for

varying inter-communication among the modules (inter-nodal communication latency),

this QoS degradation rate is higher compared to processing time variations of the mod-

ules since in distributed placement, inter-nodal communication delay is considered as

the dominating factor. Moreover, if the service access rate of the applications so as to the

modules changes dynamically, initially QoS-degrades specially for the forwarded mod-

ules. When the percentage of varying applications gets increased, according to the pol-

icy, no modules are forwarded. As a consequence, QoS-satisfaction rate increases. The

experiment is conducted by varying one parameter at a time and the results signifies

that the proposed policy works well for reliable IoT enabled system where inter-nodal

communication delay does not vary significantly and all the modules are allocated with

resources according to their requirements.

4.7 Summary

The Fog computing paradigm has a great potential to support a wide variety of IoT ap-

plications. We propose a latency-aware Application Module management policy that

targets both deadline based QoS of applications and resource optimization. The pro-

posed management policy meets the latency in service delivery for applications having

rigorous deadline. Besides, it investigates how to optimize number of resources without

violating QoS of the applications. Two algorithms have been developed in support of

our proposed application management policy. The first is about Application Module

placement and the second one simplifies a constrained based optimization problem in

forwarding modules towards the inactive resources of idle modules. We also conducted

simulation experiments in iFogSim, which shows the potential of the proposed policy.





Chapter 5

Context-aware Application
Management

In this chapter, Industry 4.0 is considered as a use case for Fog computing. The fourth industrial

revolution, widely known as Industry 4.0, is realizable through widespread deployment of Internet

of Things (IoT) devices across the industrial ambiance. Fog computing focuses on harnessing edge

resources to place and execute different IoT applications assisting Industry 4.0. Since most of the

Fog nodes are resource-constrained, it is challenging to place Industry 4.0-Oriented Applications

(I4OAs) over them ensuring time-optimized service delivery. Diversified data sensing frequency

of industrial IoT devices and their data size further intensify the application placement problem. To

address this, we propose a context-aware application placement policy that coordinates the IoT device-

level contexts with the capacity of Fog nodes and minimizes the service delivery time of various

I4OAs. It also ensures that the streams of input data neither congest the network nor increase the

computing overhead of host Fog nodes. Our policy offers overall 16% improvement in service latency,

network relaxation and computing overhead management compared to other placement policies.

5.1 Introduction

Device to device connectivity, real-time data access, and advanced automation are rapidly

leading the current industrial practice towards its fourth revolution named Industry 4.0.

It focuses on building smart industries by enabling robotic assistance, digital twin, and

This chapter is derived from:

• Redowan Mahmud, Adel Nadjaran Toosi, Kotagiri Ramamohanarao, and Rajkumar Buyya,
”Context-aware Application Placement for Industry 4.0 in Fog Computing Environments”, IEEE
Transactions on Industrial Informatics (in press, DOI: 10.1109/TII.2019.2952412, accepted on Novem-
ber 5, 2019).
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proactive failure management [241]. Internet of Things (IoT) is one of the key elements

for Industry 4.0 [242]. Industrial IoT devices generate a huge amount of data per unit

time. These data require real-time processing through various Industry 4.0-Oriented

Applications (I4OAs) so that different aspects of Industry 4.0 can be achieved [243]. For

example, image processing and navigation applications help to launch robotic assistance

in the industries. If these applications fail to deliver their services in due time, the per-

formance of industrial robots will degrade significantly. Since Cloud data centers reside

at multi-hop distance from IoT devices, processing of industrial IoT-data using Cloud-

based I4OAs is not feasible. It increases data propagation delay, network congestion,

and application service delivery time. Therefore, Fog computing aims to overcome such

limitations of Cloud-centric IoT-models by harnessing the edge resources [244].

In Fog-enabled industries, machines with computing processors such as Raspberry

PIs, computers, routers, and micro-data centers act as Fog nodes. These nodes offer In-

frastructure as a Service (IaaS) like Cloud data centers to assist the execution of different

I4OAs [245]. However, Fog nodes are deployed in a distributed manner, and they are

heterogeneous in processing speed and networking standards. Additionally, the fea-

tures of IoT devices such as their data sensing frequency and size of data differ from

one to another [242]. These features play vital roles in defining application characteris-

tics. For example, the compute intensity of an I4OA has a proportional relationship with

its input data size. Similarly, the network intensity of an I4OA changes based on how

frequently the associated IoT devices are sending data to that application [246]. Con-

sequently, these features of IoT devices incite the computational and networking load

of host Fog nodes during application execution. If the available capacity of Fog nodes

fails to deal with them, network congestion can occur, and the computing overhead of

Fog nodes can increase drastically. It also affects the deadline-satisfied service deliv-

ery of I4OAs. Hence, it is important to consider these issues while finding the suitable

placement option for an I4OA in Fog environments.

Different application placement policies for Fog and other computing paradigms

have already been proposed in the literature [247] [248] [127]. They narrowly exploit

data size and sensing frequency of IoT devices while making placement decisions for

applications. As a result, they often fail to grasp the characteristics of applications and
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manage the resources efficiently. In some cases, an application is placed on multiple

computing nodes, and input data are scheduled to them under the supervision of a cen-

tralized entity [247]. When the arrival rate of inputs becomes high, such an application

placement policy increases overhead on the centralized entity. It also impels to change

the processing destinations of input data very frequently. However, as an alternative,

IoT devices themselves can schedule the input data to different replicas of an applica-

tion. Nevertheless, it increases communication and computation burden for low-energy

IoT devices [249]. Thus, in both approaches, application service delivery time degrades.

To address these shortcomings, in this work, a context-aware application placement pol-

icy for Fog environments is proposed.

Context awareness denotes the ability of a system to deal with the state or contextual

information of different entities interacting with the system at any given time and adapt

its performance accordingly [250]. In industrial environments, IoT devices, Fog nodes,

and I4OAs seamlessly interact with varying data size and sensing frequency, comput-

ing and networking capacity, and QoS requirements. Therefore, without context-aware

approaches, it is challenging to improve the efficiency of decision-making operations

in Industry 4.0. In our proposed placement policy, the sensing frequency and data size

of IoT devices are regarded as the device-level contextual information because of their

direct impact on Fog node functionalities and application characteristics. Here, based

on their implications, the processing and the propagation time of input data for corre-

sponding I4OAs are determined. The proposed policy jointly considers the computation

and networking capacity of Fog nodes and the QoS requirements of applications, includ-

ing their service delivery deadline during application placement. Additionally, it resists

the increment of computing overhead on the host Fog nodes and prevents the streams

of input data from congesting the network. Thus, it helps to improve service reliability

and service time for different I4OAs in Fog environments. The main contributions of

the work are:

• Proposes a placement policy for Industry 4.0-Oriented Applications (I4OAs) in Fog

environments that optimizes their service time by coordinating IoT device-level

contexts with the capacity of Fog nodes.
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• Ensures processing of input data streams through placed applications by manag-

ing network congestion and computation overhead of host Fog nodes.

• Evaluates the performance of proposed policy in FogBus-enabled real [24] and

iFogSim-based simulated Fog environments [219], and compares it with existing

policies in respect of service delivery time, network relaxation and computing

overhead management.

The rest of the chapter is organized as follows. In Section 5.2, related researches are

reviewed. Section 5.3 provides the system overview and the software architecture of a

Fog gateway node. Section 5.4 describes the implication of contextual information in

the modeled system, formulates the application placement problem, and discusses our

solution. The performance of our policy is evaluated in Section 5.5. Finally, Section 5.6

concludes the chapter.

5.2 Related work

In the literature, there exist several works that highlighted the applicability of Fog com-

puting in Industry 4.0 [245] [251]. Additionally, different placement policies for I4OAs

are proposed. For example, Verba et al. [127] profiled I4OAs as per their inputs. It helps

to place applications with enhanced service time and minimizes the effect of context-

variation. Lin et al. [252] proposed a Fog node deployment policy in a hierarchical plat-

form that meets the latency and capacity constraints of applications. Similarly, Chekired

et al. [253] prioritized the placement of I4OAs based on their latency sensitivity. Wan et

al. [254] also developed a policy that balances the application execution load on manu-

facturing components and relates their energy usage with data size.

Not only in Industry 4.0, but the concept of Fog computing has also been extended to

other IoT-enabled systems including Healthcare 4.0 [255] and digital agriculture [256].

There exist some application placement policies for such systems. For example, Minh et

al. [248] proposed a context-aware framework for IoT-Fog-Cloud infrastructure that con-

siders location, application deadline, and resource availability. The application place-

ment policy proposed in [257] deals with the variations of device-level contexts and net-



5.2 Related work 129

Work IoT contexts Meets QoS Manages
overhead

Stable
placement

Sensing rate Data size

[247] X X

[248] X X X

[127] X X X

[249] X X X

[252] X X X

[253] X X X

[254] X X X

[257] X X X

[258] X X X

[259] X X X X

[260] X X X

Context-
aware
(This
work)

X X X X X

Table 5.1: Summary of related work for context-aware management

work topology and places the applications accordingly. Moore et al. [258] also provided

a placement policy that engages a centralized entity for context analysis and assists low-

latency service delivery of the applications. Afzal et al. [259] considered data size and

sensing rate of end devices while transferring inputs to applications in energy-efficient

and timely manner.

Apart from Fog computing, various application placement policies are also discussed

for other computing paradigms. For example, Haferkamp et al. [247] developed a pol-

icy for cyber-physical systems that exploits payload size and deadline to prioritize the

scheduling operations. Lee et al. [249] proposed another policy for Mobile Comput-

ing that predicts the launching time of applications and improves the energy usage of

smartphones. Gu et al. [260] explored the local and remote computation capabilities

along with the network condition and latency constraints while placing applications in

Mobile Edge Computing environments.

Table 5.1 presents a summary comparison of related works with the proposed pol-
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icy. During application placement, IoT device-level contexts such as sensing frequency

and size of data are not exploited thoroughly in existing works along with the capacity

of Fog nodes and application QoS requirements. Furthermore, context parameters are

not leveraged to determine the network and computing overhead of Fog nodes. Con-

sequently, they often fail to assist data streams and lead different input of a particular

stream to be processed on different Fog nodes. In this work, we address these issues by

developing a placement policy for I4OAs. It applies IoT device-level contexts to deter-

mine the overhead of Fog nodes and takes the application placement decision accord-

ingly. It ensures application QoS and manages the computational load of Fog nodes.

Furthermore, it offers stable placement that resists the changing of processing destina-

tion for a particular stream until any context alteration occurs. The proposed policy can

also run on different Fog nodes without the supervision of a centralized entity.

5.3 System Overview

5.3.1 Organization of Fog Computing Environments

In industry, IoT devices and Fog Computing Nodes (FCNs) are arranged in the con-

ceptual hierarchical order, as shown in Fig. 5.1. At the lowest level, IoT devices re-

side. They sense industrial ambiance and forward data to FCNs for processing through

placed I4OAs. Computing capabilities and peer-to-peer communication standards vary

from one FCN to another. The applications placed on an FCN can directly access its

physical resources through the host operating system. Based on the service outcome

of these applications, IoT devices can trigger physical actions through actuators. In ei-

ther case, service outcomes can be stored for further operations in the future. FCNs can

form several clusters among themselves using faster communication protocols such as

Constrained Application Protocol (CoAP) and Simple Network Management Protocol

(SNMP). In Fog environments, there also exist some Fog Gateways (FGs) that assist the

interfacing of IoT devices with the Fog Clusters.

IoT devices can subscribe with any of the FGs to launch placement requests for as-

sociate applications. They also notify the device-level contexts, such as the sensing fre-
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Figure 5.1: Computing environment in a industry

quency and size of data to the FGs. FGs communicate with different FCNs within Fog

Clusters to grasp their capacity staus using RESTful APIs. Later, based on received

contextual information of IoT devices, capacity status of FCNs, and QoS requirements

of requested applications, FGs identify service delivery time optimized application-

FCN placement map. If an FCN is accessible through multiple FGs, their operations

on that node are synchronized by the FCN. Whenever the Fog environment becomes

overloaded or any latency-tolerant application is requested, the FGs communicate with

Cloud data centers to assist them using remote resources. Cloud data centers also help

FCNs by offering scalable storage to preserve their accumulated data.

The system model mentioned above facilitates simplified third-party access to I4OAs

and Fog Clusters. Consequently, it can get affected by security and privacy threats such

as impairment of information, disclosure of device identity, replay, and Denial of Service

(DoS) attacks. These threats resist Fog computing to support I4OAs with guaranteed

performance. Therefore, we consider the existence of an edge network-based security

framework [261] in the modeled Fog environment for securing the application services

and infrastructure. We also deem that the system supports preemptive operator migra-
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tion, request re-submission, and data replication through existing proactive and reactive

fault tolerance techniques [262] [263] to resist different anomalies, including request time

out, node failure, response error, and application breakdown, and ensures reliability.

5.3.2 Software Architecture for Fog Gateways (FGs)

Fig. 5.2 presents the software architecture of FGs for context-aware application place-

ment. Its details are given below.

IoT device Handler: It grasps the context of IoT devices such as the sensing frequency

and average size of data, and stores them in a repository. It also narrates the placement

requests to a catalogue service and monitors the contextual changes of IoT devices.

Context Repository: It stores the contextual information of IoT devices and the ca-

pacity status of accessible FCNs. It also connects Cloud data centers for large-scale stor-

age and maintains a data structure called PlacementMap to track which application is

placed on which FCN.

Application Catalogue: It contains the details of different I4OAs, including their

execution model, time and space complexity, dependency, and resource requirements.

For various inputs, it can also enable the profiling information of an application, such as

its processing time and the number of instructions on different FCNs.

Application Placement Engine: It assesses the compatibility of FCNs to host the re-

quested I4OAs based on the contextual information of IoT devices and the capacity sta-

tus of FCNs. It also initiates the application placement command for the host FCN. Once

an application is placed to an FCN, its information is updated on the Context Repository.

5.4 Proposed Application Placement Policy

Based on the implications of contextual information, our proposed context-aware ap-

plication placement policy identifies application-FCN map and ensures time-optimized

service delivery for the requested applications. In a Fog environment, it is executed by

the FGs. Basic notations to realize the policy are given in Table 5.2. We have discussed
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different aspects of our policy in the following subsections.

5.4.1 Implications of Contextual Information

The context of IoT devices along with FCN and application-centric information help to

determine the data propagation time and processing time for I4OAs. Let R and C be

the set of I4OAs and the set of accessible FCNs for an FG respectively. Data propagation

time prc to an FCN c ∈ C for an application r ∈ R is formulated as Eq. 5.1, where average

input data size lr is extracted from IoT device-level context and λc denotes the network

bandwidth of FCN c ∈ C.

prc =
lr

λc (5.1)

Similarly, data processing time qrc for application r ∈ R on FCN c ∈ C is calculated

using Eq. 5.2. In this case, based on the average size of input data lr, the number of

instructions sr in application r is extracted from its profiling information and µc refers to

the instruction execution speed of FCN c.

qrc =
sr

µc (5.2)

Since, the ultimate service delivery of an application ends with either a storage or actua-

tion command, its transferring time within reliable Fog network is considered negligible.

Therefore, the service delivery time trc of application r ∈ R on FCN c ∈ C for a single
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input data is written as Eq. 5.3

trc = prc + qrc (5.3)

These calculations refer that an application requires to occupy networking and com-

puting resources of an FCN for prc and qrc amount of time to receive and process an

input data. Networking resource occupancy αrc of application r on FCN c denotes the total

amount of time when application r occupies networking resources of that FCN for re-

ceiving all its input data sensed in per unit time. It is calculated using Eq. 5.4 where f r

signifies the data sensing frequency of IoT devices for application r. Likewise, using Eq.

5.5, its Computing resource occupancy βrc is calculated. It refers the total time that appli-

cation r requires to process f r amount of input data occupying computing resources of

FCN c.

αrc = f r × prc (5.4)

βrc = f r × qrc (5.5)

According to Eqs. 5.4 and 5.5, total Networking and Computing resource occupancy (Φc

and Ψc respectively) for all placed applications r′ ∈ Zc on FCN c is calculated as Eqs. 5.6

and 5.7.

Φc = ∑
r′∈Zc

αr′c (5.6)

Ψc = ∑
r′∈Zc

βr′c (5.7)

5.4.2 Identification of Placement Map

The applications requested for placement in an industrial scenario can have a diversi-

fied level of computing and network intensity. Additionally, their QoS requirements can

vary from one to another. Therefore, it is required to focus on a generalized objective

for all applications during their collective placement. The proposed context-aware ap-

plication placement policy resolves this issue by minimizing the service delivery time of

applications for each input data. It also helps the policy to deal with the characteristic

variations of different applications as the computing and network intensity of appli-
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Sign Definition

C Set of FCNs accessible through an FG.

R Set of applications requested for placement to an FG.

Zc Set of applications placed on FCN c ∈ C.

f r Data sensing frequency of IoT devices for application r ∈ R.

lr Average input data size for application r ∈ R.

σr Amount of data dealt by application r ∈ R in per unit time.

sr Number of instructions in application r ∈ R based on lr .

δr Service delivery deadline for application r ∈ R.

µc Instruction execution speed of FCN c ∈ C

λc Network bandwidth of FCN c ∈ C

prc Data propagation time to FCN c ∈ C for application r ∈ R

qrc Data processing time of application r ∈ R on FCN c ∈ C

trc Service delivery time of application r ∈ R on FCN c ∈ C

αrc Networking resource occupancy of application r ∈ R on FCN c ∈ C for receiving f r input
data.

βrc Computing resource occupancy of application r ∈ R on FCN c ∈ C for processing f r

input data.

Φc Total networking resource occupancy ∀r ∈ Zc on FCN c ∈ C

Ψc Total computing resource occupancy ∀r ∈ Zc on FCN c ∈ C

Nτ
r Set of inputs for application r received in τ amount of time

mc CPU usage of FCN c per unit time interval

Mτ
c Set of mc values of FCN c monitored for τ amount of time

xrc Equals to 1 if FCN c ∈ C is hosting application r ∈ R, 0 otherwise.

Table 5.2: Notations for context-aware management

cations directly influence the service delivery time. Moreover, the application service

delivery time on specific FCN does not vary significantly for each input when the IoT

device-level contexts and the load on FCNs remain unchanged. However, in the real-

world, the placement of multiple applications on a single FCN without considering the

effect of different IoT device-level contexts can congest the network and increase the

computational overhead of the FCN. As a consequence, service delivery time for all of

its occupant applications degrade. Therefore, a balance between their input data admit-

tance and processing on that FCN is required. Furthermore, the application service for
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each input should be delivered within the deadline to meet QoS. Depending on such

facts, we formulate the context-aware application placement as a multi-constrained In-

teger Linear Programming (ILP) problem as described below.

Formulation of Application Placement Problem

Eq. 5.8 signifies the objective function of proposed application placement policy. It min-

imizes application’s service delivery time for each input data and identifies application-

FCN mapping through a binary decision variable xrc. Constraints of this ILP problem

ensure that an application will not be placed to multiple FCNs (Eq. 5.9) and its service

delivery time will meet the deadline (Eq. 5.10). Furthermore, Eqs. 5.11 and 5.12 re-

fer that Networking and Computing resource occupancy of all applications placed on

an FCN should not surpass the duration of per unit time. Thus it maintains a balance

between per unit time data admittance and processing through the applications.

min ∑
r∈R

xrctrc (5.8)

subject to,

xrc ≤ 1; ∀r ∈ R (5.9)

trc < δr; ∀r ∈ R (5.10)

Φc + αrc ≤ 1; ∀c ∈ C (5.11)

Ψc + βrc ≤ 1; ∀c ∈ C (5.12)

Any ILP solver, for example, SCIP [215] can be used to solve this optimization problem

and identify the mapping of applications and FCNs. However, in Fog environments,

when an FG maintains connections with large number of FCNs and receives placement

requests for numerous I4OAs, a longer period of time is required by ILP solvers to solve

such optimization problem. It is not acceptable during real-time interactions. Therefore,

we propose a heuristic solution to solve the application placement problem.
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Heuristic Solution for Application Placement

The heuristic solution for application placement is immanent in PlaceApplication proce-

dure presented in Algorithm 5. It identifies the FCN for placing an application which

ensures least service delivery time for its input. Details of Algorithm 5 is discussed here.

PlaceApplication procedure takes the set of accessible FCNs C and set of applications

R requested to an FG g for placement as arguments. It consists of 3 steps:

1. For each application r ∈ R, the amount of data σr that an FCN requires to deal with

in per unit time for hosting the application is calculated (line 2-3). It refers to the data

load of the application which depends on the average size of input data lr and sensing

frequency of corresponding IoT devices f r. An application that deals with huge data

load is considered heavyweight and is more likely to promote network congestion and

computing overhead compared to lightweight applications having less data load. To

reduce the scope of any impediments, it is preferable to place heavyweight applications

in earliest convenience than lightweight applications. Therefore, Algorithm 5 sorts all

Algorithm 5 Application Placement algorithm
1: procedure PLACEAPPLICATION(C, R)
2: for r := R do
3: σr ← f r × lr

4: R′ ← descendingSort(R, σ∀r∈R)
5: for r := R′ do
6: Υr ← ∞
7: Xr ← null
8: for c := C do
9: prc ← lr

λc

10: qrc ← sr

µc

11: trc ← prc + qrc
12: αrc = f r × prc
13: βrc = f r × qrc
14: if trc < Υr then
15: if trc < δr then
16: if Φc + αrc ≤ 1 then
17: if Ψc + βrc ≤ 1 then
18: Υr ← trc
19: Xr ← c
20: if Xr 6= null then
21: g.PlacementMap(r, Xr)
22: ZXr ← ZXr ∪ r
23: ΦXr ← ΦXr + αrXr

24: ΨXr ← ΨXr + βrXr
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application r ∈ R on R′ in descending order of their σr (line 4).

2. For each application r ∈ R′, two variables Υr and Xr are initialized (line 5-7). Υr

stores the minimum service delivery time for application r and Xr tracks the reference of

the FCN which delivers the application service in Υr amount of time. Later, for each FCN

c ∈ C, input data propagation time prc, processing time qrc, service delivery time trc, Net-

working resource occupancy αrc and Computing resource occupancy βrc are calculated

(line 8-13). Based on these calculations, it is checked whether the service delivery time

trc of application r on FCN c is the least or not (line 14)). Subsequently other constraints

noted in Eqs. 5.10, 5.11 and 5.12 are also verified (line 15-17). When all constraints are

met, Υr is updated with trc and Xr is set to c (line 18-19).

3. For an application r ∈ R′, if Xr refers to an FCN, then r is placed to that FCN. FG

g updates its PlacementMap for application r and r is added to the set of applications

placed on the host FCN (line 20-22). The total Networking and Computing resource

occupancy for all placed applications on that FCN are also updated (line 23-24).

Whenever an FG receives placement requests for a set of applications, PlaceApplica-

tion procedure is executed. If an application is placed to an FCN, it will not be replaced

to other FCNs until any device-level contextual parameter for that application is altered.

If any alteration happens, the placement request is relaunched. Thus, the procedure

helps stabilized placement of applications. However, from line 5 to 24 of Algorithm

5, there are O(|R′| · |C|) iterations, where |R′| denotes the number of applications re-

quested to FG g for placement and |C| is the number of accessible FCNs through FG g.

If any simplified sorting approach such as binary sorting is used to conduct the opera-

tion noted in line 4, then the proposed context-aware application placement policy can

function with polynomial time complexity.

5.5 Performance evaluation

The performance of the proposed policy is evaluated through practical and simulation

experiments conducted in FogBus-enabled [24] real-world and iFogSim-based [219] sim-

ulated Fog environments respectively. In the FogBus-enabled setup, a realistic appli-

cation case scenario is considered that can assist Industry 4.0. However, in simulated
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setup, synthetic workloads in align with this realistic application case scenario are used.

The efficacy of our policy is compared with the deadline prioritized [247], resource op-

timized [248], and service time enhanced [127] application placement policies in both

the experimental setup. We have executed the policies separately in a conceptual FG. In

deadline prioritized placement, the applications having stringent deadlines are placed

faster compared to others. The resource optimized placement reduces the idle time of

FCNs during application execution and the service time enhanced placement sched-

ules the applications over FCNs by applying the first-come-first-serve principle and im-

proves their service time. In the following subsections, the application scenario, perfor-

mance metrics, and the details of both experiments are discussed.

5.5.1 Application Case Scenario

One of the essential aspects of Industry 4.0 is robotic assistance. In smart industries, for

emergency management, different sorts of surveillance equipment such as analog and

IP cameras are deployed. Image from these cameras are analyzed by Industrial robots

to extract the important features of emergency events and take decisions [264]. Since

the image quality of analog cameras is ordinary compared to IP cameras, several image

processing applications and their services are required to enhance the quality of images

before feeding them in robot-embedded image analysis programs. In this work, we

consider different image processing applications such as histogram equalization, image

noise reduction and linear contrast adjustment as I4OAs [265]. After processing images

using these applications, the enhanced images are forwarded to the Industrial robots for

further analysis and harnessing robotic assistance in an industry.

5.5.2 Performance Metrics

As performance metrics, Average Service Delivery Time (Avg. SDT), Average Comput-

ing Resource Overhead (Avg. CRO) and Average Network Relaxation Ratio (Avg. NRR)

are used in the experiments. The reduced value of Avg. SDT denotes the higher poten-

tial of application placement policy. Similarly, the decreased value of Avg. CRO refers

to the enhanced performance of the policy in managing computing overhead of FCNs.
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Figure 5.3: Real experimental setup for context-aware application management

Conversely, the increased value of Avg. NRR signifies that the policy keeps a stable bal-

ance between networking load and networking capacity of FCNs. Avg. SDT and Avg.

CRO are determined by following Eqs. 5.13 and 5.14 respectively where τ = 100 sec-

onds. Nevertheless, Avg. NRR for an FCN is calculated using Eq. 5.15. Moreover, the

Percentage of Deadline Satisfied Inputs (Per. DSI) and Time to Identify the Placement

Map (TIPM) are also used here to evaluate the performance of a policy.
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1
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λc − ∑
∀r∈Zc

σr

λc (5.15)

5.5.3 Experiments on Real Setup

Fig. 5.3 presents a sample illustration of real experimental setup. Here, different android

smart phones are used as the camera-enabled IoT devices. They can capture images in

different frequencies and resolution using a customized application. The smart phones

are connected to a computer which performs the activities of an FG. Furthermore, we
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Duration of experiment : 20 minute

Number of FCNs : 15 Raspberry PIs

Configuration of FG:

Processor RAM Clock Uplink Downlink

Intel Celeron 2 GB 1.60 GHz 2 MBPS 2 MBPS

FCN type⇒
Configuration ⇓

Raspberry PI 3
A+

Raspberry PI 3 B+ Raspberry PI 3 Raspberry PI 2

System-on-a-chip Broadcom
BCM2837B0

Broadcom
BCM2837B0

Broadcom
BCM2837

Broadcom
BCM2836

RAM 512 MB 1 GB 1 GB 1 GB

Clock 1.4 GHz 1.4 GHz 1.2 GHz 0.9 GHz

Uplink 2 MBPS 2 MBPS 1.5 MBPS 1 MBPS

Downlink 2 MBPS 2 MBPS 1.5 MBPS 1 MBPS

Amount 3 5 4 3

Workload type⇒
Attributes ⇓

VGA HD FHD QHD

Resolution (Pixel) 640x480 1280x720 1920x1088 2560x1440

Average size
(MB)

0.106 0.230 0.358 0.420

Frequency 4 3 2 1

Deadline (sec-
ond)

0.240 0.320 0.460 0.700

Table 5.3: Settings of real Fog enviornment for context-aware management

deploy several Raspberry PIs as FCNs to form a Fog Cluster, and execute the image

processing applications. The uplink and downlink speed of FG and FCNs are tuned

using the Wondershaper software and they are set to follow a linear relationship with

the clock speed of corresponding Fog nodes. Table 5.3 presents the details of this setup.

To conduct the experiments in aforementioned setup, we profile the propagation and

processing time of all applications on different FCNs for varying inputs. For instance,

Table 5.4 shows the profiling information of histogram equalizing application on Rasp-

berry PI 3 B+. These information are directly used by the proposed policy while making

the placement decisions for any requested applications. The results of experiments are

discussed as follows.
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r = histogram equalizing application

Image type⇒
FCN c ∈ C ⇓

VGA HD FHD QHD

Raspberry PI 3 B+ prc=0.052
qrc=0.085

prc=0.118
qrc=0.154

prc=0.185
qrc=0.226

prc=0.218
qrc=0.308

Table 5.4: Application profiling information for context-aware management

Impact of Varying the Number of Applications

As the number of applications placed in a certain number of FCNs increases, the Avg.

SDT of applications and the Avg. CRO of FCNs elevate (Figs. 5.4 and 5.5). It happens

due to simultaneous sharing of resources among various applications. However, the

proposed policy sorts applications in descending order of their per unit time data load

σr that implicitly places heavyweight applications on computationally powerful FCNs.

As a consequence, the Avg. SDT of applications for this policy remains in the lower

values than others. Moreover, our policy makes a balance between the admittance rate

of inputs and their processing on an FCN which helps to improve the Avg. CRO of

FCNs. Although the service time enhanced placement shows the similar trend like ours,

it often increases the load on computationally powerful FCNs by placing most of the

applications over them. Additionally, the deadline prioritized placement often leads

the latency tolerant applications with higher σr to be executed in less computationally

powerful FCNs. Both degrade the Avg. SDT of applications and Avg. CRO of FCNs. On

the other hand, while dealing with the applications having higher frequency of data, the

resource optimized placement significantly increases the computing overhead of FCNs

and affects the Avg. SDT and Avg. CRO.

The proposed policy also explicitly measures the effect of data sensing frequency of

IoT devices on the networking capacity of FCNs during application placement. Conse-

quently, it helps to offer improved Avg. NRR than other policies where such analysis is

narrowly attended. Fig. 5.6 depicts this aspect of our proposed policy for the increasing

number of applications in Fog computing environments.
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Figure 5.4: Average service delivery time for varying number of applications
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Figure 5.5: Average resource overhead for varying number of applications

Impact of Varying the Number of FCNs

With the increasing number of FCNs, Avg. SDT of applications and Avg. CRO of FCNs

decreases, and Avg. NRR increases (Figs. 5.7, 5.8 and 5.9). For higher number of FCNs,

most of the policies exhibit similar trend. However, when there are comparatively lower

number of FCNs for application placement, the proposed policy outperforms others. It

places applications on limited number of FCNs considering input data size and data

sensing frequency of associated IoT devices simultaneously that consequently meets
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Figure 5.6: Average network relaxation for varying number of applications
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Figure 5.7: Average service delivery time for varying number of Fog nodes

computational and networking commitment of FCNs with their capacity. Thus, despite

of having lower number of options for placing applications, computing overhead of

FCNs and their networking load do not increase significantly and service delivery time

of applications remain in lower values.
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Figure 5.8: Average resource overhead for varying number of Fog nodes

Observation on Stream Processing

In our evaluation, we monitor application service delivery time for a set of inputs be-

longing to a particular stream (Fig. 5.10). In context-aware application placement, ser-

vice delivery time of inputs do not vary significantly from one to another. Since the

proposed context-aware application management reduces the scope of computing over-

head and network congestion, the service times for different inputs of a stream remain

almost same.

5.5.4 Experiments in Simulated Setup

Different parameters used in modelling the simulated setup are listed in Table 5.5. The

workload attributes are aligned with the specification of real experimental setup as

shown in Table 5.3. Additionally, the configuration of FCNs are set according to the

processor benchmarking data provided in [266]. Linear relations are maintained among

the parameters of different inputs and FCNs while setting their values from the given

range. The simulation experiments are conducted on an Intel Celeron, 1.60 GHz, 2 GB

RAM configured computer. The results of these experiments are discussed below.
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Figure 5.9: Average network relaxation for varying number of Fog nodes
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Figure 5.10: Service delivery time for different inputs of a stream

Impact of Varying the Arrival Rate of Requests

As the arrival rate of placement request increases, the Per. DSI decreases (Fig. 5.11). It

happens because of the rising number of applications waiting in the queue for execution.

However, the deadline prioritized placement performs better in this case as it immedi-

ately executes the deadline-critical applications. Compared to the service time enhanced

placement, our proposed policy offers improved Per. DSI as it does not increase the com-

munication and computation overhead of FCNs unevenly. Conversely, the intention of
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Parameter Value

Simulation time 200 Seconds

Sensing duration of IoT devices 1-3 Seconds

Arrival rate of placement requests 10-30 requests/second

Number of FCNs 50

Configuration of FCNs:

Processing speed 1000-4500 MIPS

RAM 1-2 GB

Downlink bandwidth 1-3 MBPS

Uplink bandwidth 1-3 MBPS

Workload attributes:

Number of instructions 100 - 1200 MI

Input data size 0.120-0.500 MB

Service deadline 0.300-0.700 seconds

Sensing frequency of IoT devices 1-4 input/second

Table 5.5: Simulation parameters for context-aware management
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Figure 5.11: Percentage of deadline satisfaction for varying request arrival rate

reducing FCN’s idle time often lead the resource optimized placement to disregard the

deadline criticality of applications. As a result, Per. DSI degrades remarkably for this

policy.



148 Context-aware Application Management

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Arrival rate of placement requests: 20 per second

Average time to identify 
placement map

Average service 
delivery time

Ti
m

e 
(in

 s
ec

on
ds

)

 Context-aware (solving ILP)
 Context-aware (heuristic)
 Service time enhanced
 Resource optimized
 Deadline prioritized

Figure 5.12: Average service and placement time for different placement policies

Comparison between Solution Approaches

The proposed context-aware application placement can be performed either by solving

the optimization problem in Eq. 5.8 through any ILP solver or applying the heuristic

method of Algorithm 5. Avg. SDT of applications in ILP-based approach is always lower

than the heuristic implementation of proposed policy. However, at any arrival rate of

placement requests, the heuristic implementation takes less TIPM compared to the ILP-

based approach. Fig. 5.12 depicts such a scenario when the request arrival is 20 per

second. Since the operations of heuristic implementation and the deadline prioritized

placement are almost similar, their TIPM does not very significantly. The TIPM of service

time enhanced policy is lower than others as it does not include any additional sorting

operations. Conversely, the resource optimized placement poses high TIPM because of

its extensive search for suitable applications that can reduce the idle time of FCNs.

5.6 Summary

I4OAs require to offer services in real-time. During the execution of I4OAs, the contexts

of IoT devices such as their data size and sensing frequency play influential roles in

defining the computing and networking intensity of the applications and help in mea-

suring the processing and communication load of the host Fog nodes. Failure to support
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them with the capacity of Fog nodes can degrade the application service time. Therefore,

in this work, we proposed a policy that implies the IoT device-level contexts to place the

applications in Fog environments. It also ensures that the flow of data towards the appli-

cations neither increases overhead of Fog nodes nor congests the network deliberately.

Thus, it reduces application’s service delivery time, relaxes network, manages comput-

ing overhead, and increases service reliability. Additionally, the experimental results

derived from both real and simulated Fog environments demonstrate the efficiency of

our policy.

In last three chapters, we discuss a framework that distributes the application man-

agement tasks across the gateway and the infrastructure level of Fog environments, a

procedure to select applications for Fog-based placement, a latency-aware approach for

placing distributed applications over Fog nodes, a module forwarding strategy to op-

timize the number of Fog nodes, a context-aware approach to optimize the service de-

livery time of applications and a strategy to manage the network congestion and com-

putation overhead of Fog nodes are discussed. These concepts collectively ensure QoS

satisfied service delivery for different types of applications in Fog environments.





Chapter 6

Quality of Experience (QoE)-aware
Application Management

Placement of applications to compatible Fog instances based on user expectations can enhance

Quality of Experience (QoE) regarding the system services. In this chapter, we propose a QoE-aware

application placement policy that prioritizes different application placement requests according to

user expectations and calculates the capabilities of Fog instances considering their current status. In

Fog computing environment, it also facilitates placement of applications to suitable Fog instances so

that user QoE is maximized in respect of utility access, resource consumption and service delivery.

The proposed policy is evaluated by simulating a Fog environment using iFogSim. Experimental

results indicate that the policy significantly improves data processing time, network congestion, re-

source affordability and service quality.

6.1 Introduction

To attain certain service level objectives in Fog, different application placement policies

are required. Quality of Service (QoS) [267][158], resource [268], situation-aware [85] ap-

plication placement in Fog have already been exploited. However, the impact of Quality

of Experience (QoE) in Fog-based application placement is yet to be investigated exten-

sively. In some cases, QoS and QoE can complement each other, although subtle differ-

ences between them often lead towards separate policy-based service management.

This chapter is derived from:

• Redowan Mahmud, Satish Narayana Srirama, Ramamohanarao Kotagiri, and Rajkumar Buyya,
”Quality of Experience (QoE)-aware Placement of Applications in Fog Computing Environments”,
Journal of Parallel and Distributed Computing (JPDC), Volume 132, Pages: 190-203, ISSN: 0743-7315,
Elsevier Press, Amsterdam, The Netherlands, October 2019.

151



152 Quality of Experience (QoE)-aware Application Management

QoE is widely accepted as the user centric measurement of different service aspects.

It observes user requirements, intentions and perceptions regarding a service in partic-

ular context [269]. Since QoE deals with user interests, QoE-aware policies can enhance

user loyalty and decrease service relinquish rate. In Fog, QoE-aware policies have al-

ready been used for optimizing service coverage [270] and resource estimation [271].

Additionally, the consideration of QoE while placing applications can help in improv-

ing the data processing time, resource consumption and network quality. However, in

real-time environment like Fog, user interests regarding different system services vary

from one to another and QoE dominating factors change very frequently. Therefore,

developing efficient QoE-aware policies for Fog is a challenging task.

Currently different techniques are applied to identify and measure QoE. Feedback-

based approaches such as Mean Opinion Scores (MOS), Standard deviation of Opinion

Scores (SOS) and Net Promoter Score (NPS) [271][272] are commonly used to define user

QoE. In IoT, where human interventions are limited and real-time interactions happen

very often, giving feedback after every certain interval to notify QoE, is not feasible.

Similarly, prediction-based QoE models [273] [274] also fail when QoE dominating fac-

tors vary significantly. Evaluation of QoE after placing applications creates complexi-

ties, if any placement modification based on the evaluation is required to be made. In

this sense, prior to application placement, it is more viable to identify QoE dominat-

ing factors and their combined impact on user QoE. Later, applications can be placed to

suitable computing instances by meeting the factors so that user QoE does not degrade.

Thus, discrepancy between user feedback and QoE on specific service attribute can be

monitored.

In this chapter, several user expectation parameters are identified that can influence

the QoE. The user Expectation Metric includes parameters regarding service access rate

of the application user, required resources to run the application and expected data pro-

cessing time. Based on user Expectation Metric, each application placement request is

prioritized. Fog computing instances are also classified according to their Status Metric

parameters (proximity, resource availability and processing speed). Finally, prioritized

application placement requests are mapped to competent computing instances so that

user QoE regarding the system services gets maximized.
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The main contributions of this work are:

• A QoE-aware application placement policy comprising of separate Fuzzy logic

based approaches that prioritizes different application placement requests and

classifies Fog computational instances based on the user expectations and current

status of the instances respectively.

• A linearly optimized mapping of application placement requests to Fog computing

instances that ensures maximized QoE-gain of the user.

• The proposed policy is evaluated through simulation using iFogSim [237]. The ex-

perimental results show significant improvement in QoE enhancement compared

to other QoE and QoS-aware policies.

The rest of the chapter is organized as follows. In Section 6.2, relevant research works

are reviewed. In Section 6.3 and 6.4, the motivation and the addressed problem of this

research are discussed. Section 6.5 represents the system overview and assumptions.

The proposed QoE-aware application placement policy and an illustrative example are

described in Section 6.6 and 6.7 respectively. Section 6.8 enlightens the simulation envi-

ronment and the performance evaluation. Finally Section 6.9 concludes the chapter.

6.2 Related Work

A summary of several QoS/QoE-aware application management policies in different

computing paradigms is shown in Table 6.1. Mahmud et al. [240] proposed a context-

aware application scheduling policy in Mobile Cloud Computing (MCC) to enhance

user’s QoE. The policy runs in a centralized Cloudlet and prioritizes users requests

based on battery level of the requesting device and signal to noise ratio of the network.

It ensures users to get response of their requests before terminating access to the service

due to poor connectivity or device failure. It also focuses on QoE gain through differ-

ences between service delivery deadline and actual service delivery time.
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Work Observes User Expectations in Meets Instances Status regarding Prioritized
Placement

Compound
QoE Gain

Service
Access

Resource
Requirement

Processing
Time

Proximity/
Response
Rate

Resource
Availability

Processing
Speed

[240] X X X X X

[275] X X X X

[276] X X X X X

[277] X X X

[278] X X X

[279] X X X X

[267] X X X X X

[158] X X X

[270] X X X X X

[271] X X X

[280] X X X X

QoE-
aware
(This
work)

X X X X X X X X

Table 6.1: Summary of related work for QoE-aware management

Zhou et al. [275] proposed a MCC-based QoE-aware cache management policy for

multi-media applications. The policy finds the best data streaming bit rate in different

scenarios. It ranks the user’s video streaming requests based on the access rate and then

allocates available resources at the caching server according to the rank of the requests.

The relationship between user provided feedback and server response rate determines

the enhanced QoE of the users. End device, base stations and cache servers participate

simultaneously to conduct the policy.

Peng et al. [276] proposed a QoE-aware application management framework for

Mobile Edge Computing (MEC) by applying network function virtualization and soft-

ware defined networking. Due to proximity of MEC instances, the proposed framework

inherently meets user’s expectation regarding service access. Besides, it takes user’s re-

source requirements and the global view of the available resources into account while

managing the applications through a centralized orchestrator. The developed MEC eco-
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system is capable of enhancing user’s QoE in both uplink and downlink directions.

A QoE-aware transcoding policy for MEC is discussed in [277]. According to the

policy, a centralized edge orchestrator assesses the user’s expected service processing

time (tolerable buffering delay) and adjusts the video processing speed (encoding rate)

so that user’s QoE in respect of service responsiveness does not degrade. After a fixed

time interval, the policy checks whether the encoding rate is acceptable for the user or

further operations are required. The policy enforces edge content customization based

on user expectations.

A QoE-aware bandwidth scheduling policy for wireless communication is discussed

in [278]. It takes user’s service access rate and tolerance towards packet processing delay

into account while defining the user QoE indicator for the network. The policy operates

in a decentralized manner over the gateway, core network and traditional wireless net-

working equipment. The policy enhances the QoE in terms of attained and committed

ratio of the networking resources.

Anand et al. [279] proposed a QoE-optimized scheduler for multi-class system (e.g.

web interactive, file downloads, etc.) in wireless networks. Their policy models QoE as a

cost function of mean flow delay and prioritizes the service requests accordingly. In ad-

dition, the policy addresses resource allocation among different classes considering the

sensitivity towards flow delay. The scheduler is an extension of Gittin index scheduler.

In Fog computing paradigm, different QoS and QoE-aware application management

policies are also studied. A Fog service placement problem is formulated in [267] that

targets QoS-aware application placement on virtualized Fog resources. It considers

deadline satisfaction of the applications as QoS-metric and follows the earliest dead-

line prioritization while executing the applications. The proposed policy runs through a

colony based orchestration among the Fog nodes and conciliates resource requirements

of the applications with available resources of the system. Each colony connects Cloud

through a middleware for additional resources.

Another QoS-aware application placement policy is developed in [158]. The policy

deals with responsiveness and processing speed of the infrastructure in association with

monetary issues. It is used to place multi-component IoT applications in hierarchical

Fog environment. Driven by the policy, a Java based tool named FogTorch is developed.
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The tool can be applied at any level of a application’s life-cycle.

Three factors (response time, network congestion, service coverage) that dominate

user’s QoE while playing interactive games are identified in [267]. It discusses a lightweight

system named Cloud-Fog to extend service coverage for the users. It prioritizes service

requests according to the tolerance towards latency. To maintain the games continuity

even in congested network, a video encoding rate adaptation strategy is applied in that

system. Besides, deadline-satisfied game state scheduling improves the service response

delay. In both the approaches, data packets are dropped to a certain extent.

A QoE-based Fog resource estimation policy, named MEdia FOg Resource Estima-

tion (MeFoRE), is discussed in [271]. The policy considers user’s history of service giving

up (Relinquish Rate) and QoE (NPS) while prioritizing service requests and estimating

Fog resources. It aims at maximizing resource utilization and QoS. Service Level Agree-

ment (SLA) violations are tracked though poor NPS values given by a user. Number of

resources is increased based on the degree of SLA violations so that the user’s loyalty

can be re-gained.

A model for Fog-based Internet access networks that assist dynamic placement of

Cloud or Web content at the edge networks have been developed in [280]. The model

facilitates proactive caching and enforcement of traffic policies so that network infras-

tructures can interact with external applications smoothly. According to the authors,

the model bears great potentiality in optimizing network usage, latency and QoE and in

some cases preserve resources for authorized users.

Our proposed QoE-aware application placement policy for Fog differs from the afore-

mentioned works since we have considered multiple user expectation parameters such

as service access rate, amount of required resources and sensitivity towards data pro-

cessing delay simultaneously. The policy prioritizes application placement requests

based on user expectations. In addition, the policy investigates resource availability,

proximity and processing capabilities of Fog computational instances concurrently to

identify their competency for meeting expectations of the users. The policy aims at

maximizing compound QoE gain of the users in respect of less congested network, ad-

equate resource allocation and reduced application processing time. Besides, we have

developed the policy in decentralized manner so that it gets less prone to single point
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failure and management overhead. In fact, for Fog computing, the proposed policy can

encapsulate and deal with those multidimensional aspects of QoE-aware application

placement which the existing solutions cannot address individually.

6.3 Motivation and Requirements

6.3.1 Scope of Quality of Experience

In Fog-enabled IoT system, the scope of QoE can be very diverse and complex. To un-

derstand the scope of QoE, it can be compared with QoS. According to International

Telecommunication Union (ITU), QoS refers to the overall features of system services

which help to meet the stated and implied needs of the users [281]. Conversely, ITU

defines QoE as the total acceptability of a service that is determined by subjective per-

ception of the users [282]. Moreover, QoE encapsulates user’s requirement, intentions

and perceptions while provisioning system services (network, application execution

platform) whereas, QoS drives through an agreement between user and provider that

strongly monitors technical attributes (cost, service delivery deadline, packet loss ratio,

jitter, throughput, etc.) of system services. In addition, QoE is the subjective measure-

ment of system services that can be expressed through both qualitative and quantitative

parameters; on the contrary, QoS is more focused on objective parameters of the under-

lying network and application execution platform [283].

The definitions of QoS and QoE highlights that they are fundamentally different to

each other. However, sometimes user’s expectation for enhanced QoE can help system

services to improve their QoS [284]. For example, in an Internet-enabled system, on fixed

charge, a user can expect less buffering while viewing multimedia contents. In order to

enhance the user’s QoE regarding that system, the network service providers can allo-

cate sufficient bandwidth and maintain acceptable jitter that can significantly improve

the QoS of the corresponding service. Conversely, the perceived QoE can degrade the

acceptability of a service greatly even when the QoS regarding the service is maintained

[285]. It actually happens due to diversified characteristics of the users. Extending the

aforementioned example, let’s assume, on fixed charge, the Internet-enabled system pro-
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visions the network service in such way so that the QoS guarantees downloading of a

particular file in maximum 5 minutes time. Now, two users require that file in 3 and 7

minutes respectively. If the system downloads the file in exact 5 minutes time, the ex-

pectation of the second user will be met; however, for the first user it will be failed. As a

consequence, QoE of both users will not be the same for that system although the system

maintains the QoS. Moreover, in QoS-assured 5 minute time it may happen that a partic-

ular user’s QoE becomes higher when the file is downloaded within 1 minute and gets

lower when the file is downloaded in 4 minutes. Therefore, it is often very difficult to

apply the same technique to meet both QoS and QoE regarding a system service. Since

the inclusion of QoE makes service response more stringent and complicated, it requires

separate treatment in comparison to QoS.

6.3.2 Application Scenario

In real-world, users interact with different Fog-enabled IoT applications in diversified

ways. For example, to play Electroencephalogram (EEG) Tractor Beam game [286], a user

requires wearing a MINDO-4S wireless EEG headset and connecting the smart phone to

a local Fog node. The game initiates as a mobile application at each user’s smart phone

and with the connected Fog nodes; users exchange information with each other. Dur-

ing the game, wearable IoT-device sensed EEG data streams are sent to the Fog nodes

through the user’s smart phones. For each user, real-time EEG signal analysis and brain

state (concentration) prediction are conducted at the Fog nodes. On the display, the

multi-user game shows that all the players are on a ring surrounding a target object

and exerting an attractive force onto the target in proportion to the level of their con-

centration. The user, who pulls the object towards him/her by exercising concentration,

finally wins the game. In this game, for real-time interactions, Fog service access rate of

the users is required to be fast and timely. Since it is a multi-user game, the amount of

required resources to run the service in Fog will be large. Moreover, in such competitive

scenario, the expected service delivery time for each user can become stringent.

Unlike the multi-player virtual reality game applications, there also exist compara-

tively less interactive IoT applications. Fog Computing based face identification [287]
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can be mentioned here as an example that captures facial image of a user by vision sen-

sors or cameras. Later, the images are sent to the Fog nodes from end devices with

a view to extract the facial region by using efficient face detection algorithms. Image

pre-processing algorithms are also applied to improve the quality and reduce the noises

of the extracted image segment. Through specific feature extraction algorithms or pat-

tern recognition techniques, feature vector of the facial image segment is then identified.

Finally, the feature vector is either sent to system database for storage or stored data is

used to compare the feature vector for identifying a registered user. This kind of applica-

tion is event driven that often does not require consistent access to Fog services. As, the

application does not deal with multi-user simultaneously, associate services consume

fewer amounts of Fog resources compared to the multi-user applications. In addition,

the expected service delivery time for the application will not get stringent until any

emergency situation arises.

The aforementioned examples represent that in a Fog environment, multiple appli-

cations with different user interests and requirements can run together. In such case, a

general placement policy for every application, cannot guarantee the enhanced QoE for

all the users. It is also very difficult to ensure the convergence of user’s multiple expec-

tations to the system’s affordability for the higher gain of QoE. Therefore, an efficient

QoE-aware application placement strategy for Fog computing is required to develop

that can meet the diversified user expectations and the system status for enhanced QoE

of all the application users.

6.4 Problem Description

6.4.1 Exploration of Expectation and Status Metrics

From the discussion of Section 6.3, it is realized that user’s expectations can vary from

application to application. Different expectation parameters have individual impact on

user’s overall QoE and can drive the QoS of multiple system components e.g. network,

application execution platform etc. simultaneously. In this work, user expectations

while accessing the services, requiring computational resources and processing data sig-
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nals through the applications, are investigated. The target of meeting user’s expectation

for faster service access can help improving the responsiveness of network. The per-

formance of application execution platform in on-demand resource provisioning and

low-latency service delivery can get enhanced if it aims at satisfying user expectations

of high computational resources and processing data signals within rigid time-frame.

However, the expectation parameters are subjective and can be expanded to multiple

levels. For example, user service access rate for different applications can be slower,

normal or faster. Besides, the priority of different applications based on multiple expec-

tation parameters is difficult to determine while developing a QoE-aware application

placement policy for Fog computing.

In addition, Fog is a distributed computing paradigm closer to the edge network.

In this environment, heterogeneous and resource constraint Fog nodes are deployed in

hierarchical order with a view to execute IoT applications in real-time. Moreover, it

is considered that the lower-level Fog nodes are more resource constraint compared to

the higher-level nodes [20]. Extending the aforementioned characteristics of Fog envi-

ronment, we have considered three different status parameters of Fog instances while

identifying their capacity towards satisfying user expectations. Different round-trip-

time status of the Fog instances meets the hierarchical and distributed orientation of the

Fog environment along with the networking capabilities. Besides, diversified resource

availability and processing speed status signify the heterogeneity among Fog instances

in respect of resource capacity and application run-time environment. Since, different

status parameters of Fog instances facilitate different aspects of user expectations, it is

required to calculate the QoE-enhancement capabilities of Fog instances based on all the

status parameters. Besides, the calculation should be more generalized so that it can

cope up with any computational improvement of the Fog instances.

6.4.2 Enhancement of Quality of Experience

The main challenge of QoE-aware application placement is to determine which applica-

tions will be placed to which Fog instances. This mapping of applications and instances

should be done in such a way that user’s QoE gain in all aspects get maximized and
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system QoS in respect of packet loss rate, service cost and deadline satisfaction get ob-

served. In this case, the priority of user expectations regarding the applications and

capability of instances in meeting user expectations can be considered actively. For

simplicity of the mapping, their calculation can be aligned through a generalized ap-

proach. However, in real-time and resource constraint Fog environment, mapping of

applications and instances along with associated calculations should not take signifi-

cant amount of time and computation effort that can obstruct the ultimate goal of the

proposed policy.

6.5 System Overview

6.5.1 Application Model

Fog-enabled IoT applications are usually divided into multiple interconnected Applica-

tion Modules [237]. The module running at the end-user devices (e.g. smart phone, set

top boxes, bed-side monitors, etc.), initiates the system and offers interfaces for authenti-

cation, sensing frequency calibration, data aggregation, local data storage and outcome

representation. Among the Fog nodes, the subsequent Application Modules are either

extended from Cloud to meet the latency issues [220] or offloaded from the end-user de-

vices due to resource constraints [288]. For simplicity, here we assume that, Fog-enabled

IoT applications are composed of two Application Modules; Client Module and Main

Application Module.

The Client Module runs at the user’s proximate devices. It grasps the user’s prefer-

ences and the contextual information; and delivers output (acknowledgement/instruction)

of the Main Application Module to the users. The Main Application Module conducts

all data operations of the application and output of the Main Application Module is

regarded as final product of the Fog-enabled IoT systems. The data operations within

Main Application Module can include data filtration, data analysis, event processing,

etc. Besides, execution of the Main Application Module can be ended with notification

and storage operation based on the results of overall data operations. Since, the place-

ment of Client Module is predefined, here we mainly focus on placing Main Application
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Module over Fog node. For simplicity, in rest of the chapter, by the term ”application”

we refer to the Main Application Module of Fog-enabled IoT systems.

6.5.2 Organization of Fog Layer

In the system model, Cloud datacentres are the superior computational platform and

IoT devices exclusively generate data signals. IoT devices do not process data due to

resource and energy constraints. Fog operates as an intermediate computing paradigm

between Cloud datacentres and IoT devices. In Fog, nodes are organized in hierarchi-

cal order as shown in Fig. 6.1. Here, Fog nodes are classified into two categories; Fog

Gateway Nodes (FGNs) and Fog Computational Nodes (FCNs) [289].

Cloud

Iot devices and sensors

Fog Computational Nodes

Fog Gateway Nodes

Fog

nsors

Figure 6.1: Organization of Fog environments

The lowest level of Fog nodes, known as Fog Gateway Nodes (FGNs), reside closer

to the users. Through FGN, IoT devices and associate applications get subscribed to

Fog environment for being monitored, placed and executed. The upper level Fog nodes,

called as Fog Computational Nodes (FCNs), provide resources to the applications for

processing and analysing the data signals. According to OpenFog Consortium [20],
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Figure 6.2: Architecture of a Fog computational node

there exists differences in computation intensity and resource capacity between FGNs

and FCNs. However, we assume, each FGN has minimum ability to perfrom its as-

signed operations during QoE-aware application placement. Moreover, by applying ex-

isting Fog computing standards [290] [291], each Fog node can offer RESTful services or

Application Program Interface to the applications for querying and provisioning com-

putation facilities. Fog infrastructure providers can apply port knocking, privileged port

authentication, attribute-based encryption and other techniques to secure the commu-

nication daemon running on different Fog nodes for receiving requests and responses.

Due to such security concerns, each node gets accessible to only a set of Fog nodes. We

assume that a Fog node maintains rapid and dynamic communication with all of its

accessible nodes through efficient protocols such as CoAP and SNMP [235].

However, the distance between Fog node and IoT devices in hierarchical setting is

reflected through the round-trip delay of the data signals. The computation capability

and resource availability of lower level Fog nodes are less than that of upper level Fog

nodes. There also exist diversity among Fog nodes of the same level. Thus, in the system,

heterogeneity of the Fog nodes in capacity and efficiency always gets intensified.

6.5.3 Architecture of Fog nodes

Fog Computational Nodes (FCNs)

Recently, the OpenFog Consortium has proposed a reference architecture for Fog nodes

where the computation, management and networking operations are conducted on dis-

crete components [20]. Based on the reference architecture, we assume that an FCN is
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Figure 6.3: Architecture of a Fog gateway node

composed of Controller Component, Computational Component and Communication Compo-

nent (Fig. 6.2).

Computational Component is equipped with resources (e.g. CPU, memory, band-

width, etc.) to run different applications. In Computational Component, resources

are virtualized among Micro Computing Instances (MCIs), where the applications are as-

signed for execution [55]. Additional resources for an MCI can be dynamically provi-

sioned from either un-allocated resources or other MCIs without degrading the service

quality. All configured MCIs in an FCN operate independently. Communication Com-

ponent serves traditional networking functionalities like routing, packet forwarding, etc.

Controller Component is responsible for monitoring and managing the overall activities

of Computational Component and Communication Component. In Controller Compo-

nent, there is data container that stores meta-data regarding the running applications

and Status Metric parameters of the MCIs. In Controller Component, we propose a Ca-

pacity Scoring Unit to determine a capacity index for each MCI based on associate Status

Metric parameters so that MCIs can be ranked according to their competence.

Fog Gateway Nodes (FGNs)

User’s premises equipment (set top boxes, cable modems) and hand-held devices (tablets,

smart phones) are well suited to be used as FGNs. Extending the concept of IoT-gateway

[292], a general architecture of FGNs is represented in Fig. 6.3. Sometimes, like FCNs,

FGNs facilitate the computation of incoming data signals from IoT devices. For a par-

ticular Fog-enabled IoT system, we assume corresponding FGNs run the Client Module

and assists to place the subsequent module to upper level FCNs. In this approach, at
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first connections between IoT devices and FGNs are established. The Application Initi-

ation Unit of FGNs initiates the Client Module, through which a user conveys expecta-

tions regarding the application to FGNs. At FGN, the capacity index of MCIs at upper

level FCNs are obtained through RESTful services and kept in a data container. In ad-

dition, the data container stores QoS attributes and user Expectation Metric regarding

the applications for further processing. However, in FGN, we propose inclusion of two

separate units named Expectation Rating Unit and Application Placement Unit. For each

application placement request, Expectation Rating Unit calculates a priority value by

taking user Expectation Metric into account. Besides, the Application Placement Unit of

FGN conducts mapping of applications to suitable Fog instances based on the priority

value of application placement requests and the capacity index of MCIs respectively.

Relevant notations and definitions used in system model and problem formulation

are represented in Table 6.2.

6.6 QoE-aware Application Placement

The flowchart of the proposed QoE-aware application placement policy is depicted in

Fig. 6.4. The basic steps of the policy are to calculate a priority value named Rating of

Expectation (RoE) of each application placement request based on the user expectation

parameters, identify a capacity index named Capacity Class Score (CCS) of MCIs in FCNs

according to the status parameters and ensure QoE maximized placement of the appli-

cations to competent MCIs using associate RoE and CCS values. In order to conduct the

steps, Expectation Rating Unit, Application Placement Unit of FGNs and Capacity Scor-

ing Unit of FCNs actively participate. Details of the steps are discussed in the following

subsections.

6.6.1 Calculation of Rating of Expectation (RoE)

After subscribing to an FGN m, the IoT device user apprises the Eam ∈ {U
am
ω , Uam

γ , Uam
λ }

regarding an application am to the system through Application Initiation Unit. The Eam

is stored in data container and forwarded to Expectation Rating Unit of FGN m. For
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Symbol Definition

M Set of all FGNs.

N Set of all FCNs.

Am Set of all application placement requests in FGN m ∈ M.

In Set of all MCIs in FCN n ∈ N.

ω Access rate parameter in Expectation Metric.

γ Resource requirement parameter in Expectation Metric.

λ Processing time parameter in Expectation Metric.

Ω Round trip time parameter in Status Metric.

Γ Resource availability parameter in Status Metric.

Λ Processing speed parameter in Status Metric.

Eam Expectation Metric for application a ∈ Am.

Sin Status Metric for instance i ∈ In.

ηam RoE of application a ∈ Am.

υam Data signal size for a ∈ Am.

τin CCS of instance i ∈ In.

Uam
x Expectation (value) of parameter x for application a ∈ Am;

x ∈ {ω, γ, λ}

Vin
y Status (value) of parameter y for instance i ∈ In;

y ∈ {Ω, Γ, Λ}

µx Fuzzy membership function for any Eam parameter x.

µ′y Fuzzy membership function for any Sin parameter y.

Fr Fuzzy output set for RoE calculation.

F′c Fuzzy output set for CCS calculation.

φ fam Singleton value for a Fuzzy output (RoE) fam ∈ Fr of a ∈ Am,

Φ f ′in Singleton value for a Fuzzy output (CCS) f ′in ∈ F′c of i ∈ In,

µr Membership function for any Fuzzy output in RoE calculation.

µ′c Membership function for any Fuzzy output in CCS calculation

zam
in ∈ {0, 1} Equals to 1 if a ∈ Am mapped to i ∈ In, 0 otherwise.

Qδ,ζ ,ρ QoS parameter for service delivery time, service cost, data signal loss rate respectively.

Ar, Rr, Pt Fuzzy set for service access rate, resource requirement, processing time respectively.

Rtt, Ra, Ps Fuzzy set for round-trip time, resource availability, processing speed respectively.

Table 6.2: Notations for QoE-aware management
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every parameter in Eam , the range and unit of the numerical values are not the same. In

order to simplify further calculation, the numerical value of each parameters in Eam is

normalized to fall in the interval [−1, 1] using the Eq. 6.1:

Uam
x = 2

(
Uam

x − αx

βx − αx

)
− 1 (6.1)

Here, Uam
x is the exact numerical value of parameter x within the range [αx, βx]. For

each parameter, [αx, βx] is set according to the scope for that parameter offered in the

Fog environment. If numerical value of any Expectation Metric parameter does not fit

within the associate range, the application will be discarded from placing in Fog. In

this case, Cloud or other computing facilities can be pursued for placing the application.

However, in Expectation Rating Unit, to calculate the ηam of the application from the

normalized parameters in Eam , a Fuzzy logic based approach is followed. Fuzzy logic

usually includes three phases; fuzzification, fuzzy inference and defuzzification.

In fuzzification, the normalized value Uam
x of any Eam parameter x is converted into

equivalent fuzzy dimension by using associate membership function µx. In this work,

membership functions of different Expectation Metric parameters form three distinct

fuzzy sets over the normalized range [−1, 1]. The fuzzy sets are listed as:

• Access rate: Ar ∈ {Slow, Normal, Fast}
• Required resources: Rr ∈ {Small, Regular, Large}
• Processing time: Pt ∈ {Stringent, Moderate, Flexible}
Based on observations, the membership degree, µx(Uam

x ) for any normalized value of

parameter x on the respective fuzzy set is shown in Fig. 6.5.

During fuzzy inference, fuzzy inputs are mutually compared to determine the cor-

responding fuzzy output. A set of fuzzy rules assist in this case. Here, the fuzzy output

set for RoE is listed as; Fr ∈ {High, Medium, Low} and the applied fuzzy rules are rep-

resented in Fig. 6.6. For instance, the rule to determine the fuzzy output fam ∈ Fr for

application am with normal access rate, large resource requirements and moderate pro-

cessing time expectation is interpreted as:

If access rate (ω) is normal or resource requirement (γ) is large or processing time expec-

tation (λ) is moderate then RoE ( fam ) is high.
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Figure 6.4: Flowchart for QoE-aware management

While setting the fuzzy rules, comparatively rigid expectation parameters (e.g. large

resource requirements) are given higher weight. As a consequence, exact value of RoE

for the requests become more aligned with the rigid expectation parameters compared to

the relaxed parameters (e.g. normal service access rate, moderate processing time). Such

characteristics of fuzzy rules ensure that even having two relaxed expectation parame-

ters, the RoE of an application placement request can get increased due to a single rigid

expectation parameter. Since the Expectation Metric parameters are independent and

not closely coupled, the logical or operator is used in associate fuzzy rules to compare

the Expectation Metric parameters and determine the fuzzy output. Generally, in logical

or operation, the membership degree of fuzzy output is set according to the maximum

membership degree of the compared parameters. For application am, the membership
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Figure 6.5: Membership function for expectation metrics
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Figure 6.6: Fuzzy rules for RoE calculation

degree of fuzzy output, µr( fam) is determined using Eq. 6.2:

µr( fam) = max(µω(Uam
ω ), µγ(Uam

γ ), µλ(U
am
λ )) (6.2)
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In fuzzy inference, based on the Expectation Metric parameters, any j number of

fuzzy rules can be triggered. In this case, membership degrees of associate fuzzy output

are required to be combined together. Through defuzzification, the exact RoE of an

application placement request is calculated from such combined membership degrees

of the fuzzy output. A set of singleton values assist in this calculation. For each fuzzy

output, fam of application am, there is a singleton value φ fam that refers to the maximum

rating of the application for that fuzzy output. The singleton values are determined in

such a way so that logical distinction of different fuzzy output becomes clearly visible.

For defuzzification, we have used the discrete center of gravity equation as shown in Eq.

6.3.

ηam =
∑

k=j
k=1 µr( f k

am
)× φ

fam
k

∑
k=j
k=1 µr( f k

am
)

(6.3)

ηam is the exact RoE for application am obtained by applying Fuzzy logic on differ-

ent parameters of Eam . Later, ηam is used by Application Placement Unit to place the

application in a suitable Fog computing instance.

6.6.2 Calculation of Capacity Class Score (CCS)

After calculating RoE of different application placement requests, FGN m queries acces-

sible FCNs about available MCIs and associated CCS values. For each MCI in in an FCN

n, the CCS is calculated in Capacity Class Scoring unit from the corresponding Status

Metric, Sin ∈ {V
in
Ω , Vin

Γ , Vin
Λ }. Like Expectation Metric parameters of application place-

ment request, Status Metric parameters are heterogeneous in numeric range and unit.

Therefore, using Eq. 6.4 different parameter y of Sin have been normalized to [−1, 1].

Vin
y = 2

(Vin
y − α′y

β′y − α′y

)
− 1 (6.4)

The exact numeric value Vin
y of parameter y remains with in the range of [α′y, β′y]. The

range is set according to the capacity of Fog environment for that parameter. In Capacity

Scoring Unit, to calculate the CCS of instances based on multiple status parameters,
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Figure 6.7: Membership function for status parameters

another Fuzzy logic based approach is applied.

For parameter y, the membership degree of normalized Vin
y value to associate fuzzy

sets is determined by the membership function µ′y. The fuzzy input sets for different

parameters of Status Metric are listed as:

• Round trip time: Rtt ∈ {Short, Typical, Lengthy}
• Resource availability: Ra ∈ {Poor, Standard, Rich}
• Processing speed: Ps ∈ {Least, Average, Intense}
Based on observations, the membership degree, µ′y(V

in
y ) for any normalized value of

parameter y on the respective fuzzy set is shown in Fig. 6.7.

The fuzzy rules applied for determining the fuzzy output for CCS calculation is rep-

resented in Fig. 6.8. Here, the associate fuzzy output set is listed as; F′c ∈ {Higher, Medial, Lower}.
For the instance with lengthy round trip delay (experienced from the FGN), standard re-

source (number of processing cores) availability and average per core processing speed,

the rule to determine the fuzzy output, f ′in
∈ F′c is interpreted as:

If round-trip time (Ω) is lengthy and resource availability (Γ) is standard and processing

speed (Λ) is average then CCS ( f ′in
) is lower.

In fuzzy rules for calculating CCS, comparatively impediment status parameters (e.g.

lengthy round trip delay) are given higher weight. As a consequence, exact CSS value of

the instances highlight the limitations more, rather than the convenience (e.g. standard
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Figure 6.8: Fuzzy rules for CCS calculation

resource availability, average processing speed). Besides, in hierarchical orchestration,

location of FCNs influences different parameters of Status Metric. Generally, MCIs of

lower level FCNs support shorter amount of round trip delay compared to the upper

level FCNs. Conversely, MCIs of upper level FCNs are well-stuffed in processing ca-

pabilities than the lower FCNs. On the basis of location, the Status Metric parameters

can be coupled with each other. Therefore, in fuzzy rules while comparing different

Status Metric parameters, logical and operator has been used. In logical and operation,

the membership degree of fuzzy output is set according to the minimum membership

degree of the compared parameters. For computing instance in, the membership degree

of fuzzy output, µ′c( f ′in
) is determined using Eq. 6.5:

µ′c( f ′in
) = min(µ′Ω(V

in
Ω ), µ′Γ(V

in
Γ ), µ′Λ(V

in
Λ )) (6.5)

In order to calculate the exact CCS τin of the instance in, the membership degrees of

the output, generated by triggering any j number of fuzzy rules, are combined together
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using the discrete center of gravity equation as shown in Eq. 6.6.

τin =
∑

k=j
k=1 µ′c( f ′kin

)×Φ
f ′in
k

∑
k=j
k=1 µ′c( f ′kin

)
(6.6)

Here, the singleton value Φ f ′in refers to the maximum score of an instance for the fuzzy

output f ′in
. The exact CCS of the instance τin , obtained through the aforementioned fuzzy

approach, is forwarded to the querying FGN to conduct the following application place-

ment steps.

6.6.3 Mapping of applications to Fog instances

The product of RoE of an application and CCS of a computing instance is called Rat-

ing Gain for placing the application on that instance. The mapping of applications to

computational instance is done in such a way so that total Rating Gain of the applica-

tions get maximized. The maximum Rating Gain promotes the QoE-aware placement

of the applications. The high RoE of the applications denotes the high combined in-

tensity of associate Expectation Metric parameters. Similarly, the higher CCS refers to

the higher capability of the instances to meet different user expectations even within

the limitations. Both RoE and CCS are calculated under identical environment vari-

ables that enhances resemblance among the values. Since RoE of an application is the

representative parameter for all of its expectation parameters, maximized Rating Gain

of that application ensures the best possible convergence of the expectation parameters

to corresponding status parameters of the instances. As a consequence, the possibility

to manage Fog facilities (service accessibility, computational resources, application run-

time), without degrading the user expectations, increases and the QoE regarding the

application gets optimized.

In an FGN m, the mapping of applications to computing instances is conducted in the

Application placement unit through the following multi-constraint objective function:

max ∑
∀am∈Am

∑
∀n∈N

∑
∀in∈In

zam
in
(ηam × τin) (6.7)



174 Quality of Experience (QoE)-aware Application Management

subject to,

∑
am∈Am

zam
in

= 1; ∀n ∈ N, ∀in ∈ In (6.8)

δam ≤ Qδ (6.9)

ζam ≤ Qζ (6.10)

ρam ≤ Qρ (6.11)

The objective function in Eq. 6.7 maximizes the Rating Gain for all application placement

requests received by the FGN that subsequently enhances the overall user QoE. The

constraint in Eq. 6.8 ensures one to one mapping between applications and instances.

Besides, constraints in Eqs. 6.9, 6.10 and 6.11 maintains the QoS of the application in

terms of service delivery time, service cost and packet loss rate respectively. If an FGN

fails to arrange constraint-satisfied placement of the applications, it re-queries the nodes

for further instances.

The formulated objective function is a decentralized optimization problem. When

application placement requests are submitted to an FGN, the optimization problem is

solved and placement of the applications are conducted. By using any integer pro-

gramming solver e.g. SCIP [215], the FGN can solve this multi-constraint optimization

problem. To solve the optimization problem, FGN considers a local view of the Fog sys-

tem. Due to localized operation, the probability of receiving large number of application

placement requests by an FGN on a particular time is low. Therefore, the solution to this

optimization problem can be found in a reasonable amount of time.

6.6.4 Rationality of the Applied Techniques

In this chapter, we have used Fuzzy logic to determine the Rating of Expectation of

application placement requests based on multiple user expectation parameters and Ca-

pacity Class Score of Fog instances according to their different status parameters. In

a real-time system, where the dominance of multiple parameters is significant, Fuzzy

logic based reasoning is considered among the best possible solutions. Fuzzy logic and

its mathematical implication are simple and easy to understand. It has a great potential
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to manage uncertain and linguistic information and can assist efficiently in converting

qualitative data to quantitative data [293]. By tuning associated Fuzzy sets and rules,

Fuzzy logic based solutions can be scalable according to context of the system. It re-

quires less amount of data to train the system for future operations. Besides, in a Fuzzy

logic-enabled system, stable results can be determined very quickly [294].

After determining RoE and CCS of application placement request and Fog instances,

we have applied a multi-constraint single objective optimization technique on them to

maximize the QoE Gain and deploy the applications according to the solution. Single-

objective multi-constraint optimization problem often acts linearly and can be solved

using any light-weight optimization solver within a shorter period of time [215].

However, rather than using Fuzzy logic and single objective optimization, in the pro-

posed policy, multi-objective optimization can be applied. To conduct multi-objective

optimization, often huge computational effort is required [295]. In most of the cases,

multi-objective optimization problem is designed to meet a particular scenario which

makes them less adaptive and scalable. Besides, solving a multi-objective optimization

problem is time consuming and complex. Therefore, in real-time environment like Fog,

where computation is done in resource constrained nodes, solving a multi-objective op-

timization problem often gets obstructed and affect the stringent service requirements

[296]. Considering these challenges of multi-objective optimization, we rather preferred

to apply Fuzzy logic and single objective optimization in our proposed policy.

6.7 Illustrative Example

In order to numerically illustrate the basic steps of proposed QoE-aware application

placement policy, we have considered a Fog environment as depicted in Fig. 6.9.

In this Fog environment, at any time t, the FGN m receives five application place-

ment requests with υam = 1000 ∼ 2000 instructions (∀am ∈ Am). The scope in the Fog

for different expectation parameters of application placement requests is represented in

Table. 6.3

The exact expectation parameters of the requests along with normalized values, de-

gree of membership to different fuzzy sets and RoE are shown in Table. 6.4. Here, the
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Figure 6.9: Illustrative Fog environment

Parameter Value

[αω , βω ] [2, 10] per sec

[αγ, βγ] [1, 8] CPU cores

[αλ, βλ] [30, 120] ms

Table 6.3: Scope of expectation parameters

singleton values are set as; φHigh = 10, φMedium = 5, φLow = 2 and the degree of mem-

bership to a particular fuzzy set is represented in the similar order of the set elements as

listed in Section 6.6.1.

The FGN m can query each FCNs of the system about MCIs. There are seven in-

stances in the system (two at lower level, two at mid level and three at upper level).

Different Status Metric parameters of the instances remains within the range shown in

Table. 6.5.

On time t, the exact status parameters of the instances along with normalized values,

degree of membership to different fuzzy sets and CCS are shown in Table. 6.6. Here,

the singleton values are set as; ΦHigher = 10, ΦMedial = 5, ΦLower = 2 and the degree

of membership to a particular fuzzy set is represented in the similar order of the set

elements as listed in Section 6.6.2.

By applying Eq. 6.7 on RoE of the requests and CCS of the instances, the FGN m

calculates the maximized Rating Gain of the applications. It also provides the optimal

mapping of applications and instances. In this illustrative example we use SCIP solver

to solve the optimization problem. The solution is represented in Table. 6.7. Here the

constraints (Qδ = 250∼750 ms, Qζ = 0.1∼0.15 $ per min, Qρ = 3∼5 % data signals) are as-
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Id ω γ λ η

app#1 U1
ω = 2 U1

γ = 2 U1
λ = 120 5.69

U1
ω = −1.0 U1

γ = −0.71 U1
λ = 1.0

µω(U1
ω)→ Ar : µγ(U1

γ)→ Rr : µλ(U1
λ)→ Pt :

{1.0, 0.0, 0.0} {0.89, 0.11, 0.0} {0.0, 0.0, 1.0}

app#2 U2
ω = 5 U2

γ = 5 U2
λ = 70 6.69

U2
ω = 0.0 U2

γ = 0.14 U2
λ = −0.11

µω(U2
ω)→ Ar : µγ(U2

γ)→ Rr : µλ(U2
λ)→ Pt :

{0.0, 1.0, 0.0} {0.0, 0.83, 0.18} {0.14, 0.86, 0.0}

app#3 U3
ω = 3 U3

γ = 3 U3
λ = 90 6.21

U3
ω = −0.75 U3

γ = −0.43 U3
λ = 0.33

µω(U3
ω)→ Ar : µγ(U3

γ)→ Rr : µλ(U3
λ)→ Pt :

{0.94, 0.06, 0.0} {0.54, 0.46, 0.0} {0.0, 0.59, 0.41}

app#4 U4
ω = 7 U4

γ = 8 U4
λ = 60 7.28

U4
ω = 0.25 U4

γ = 1.0 U4
λ = −0.33

µω(U4
ω)→ Ar : µγ(U4

γ)→ Rr : µλ(U4
λ)→ Pt :

{0.0, 0.69, 0.31} {0.0, 0.0, 1.0} {0.41, 0.59, 0.0}

app#5 U5
ω = 8 U5

γ = 3 U5
λ = 50 7.03

U5
ω = 0.5 U5

γ = −0.43 U5
λ = −0.56

µω(U5
ω)→ Ar : µγ(U5

γ)→ Rr : µλ(U5
λ)→ Pt :

{0.0, 0.38, 0.63} {0.54, 0.46, 0.0} {0.7, 0.3, 0.0}

Table 6.4: Parameters of application placement requests

Parameter Value

[αΩ, βΩ] [100, 600] ms

[αΓ, βΓ] [1, 10] CPU cores

[αΛ, βΛ] [10, 70] TIPS

Table 6.5: Scope of status parameters

sumed to be met. Based on the optimization solution, after exploring the expectation and

the status parameters (from Tables. 6.4 and 6.6) of mapped applications and instances,

it is found that, for almost every parameters, user expectations have been satisfied.

In the illustrative example, numeric values of Fog instances are extended from the
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Id Ω Γ Λ τ

ins#1 V1
Ω = 100 V1

Γ = 3 V1
Λ = 20 3.41

V1
Ω = −1.0 V1

Γ = −0.56 V1
Λ = −0.67

µ′Ω(V1
Ω)→ Rtt : µ′Γ(V

1
Γ )→ Ra : µ′Λ(V

1
Λ)→ Ps :

{1.0, 0.0, 0.0} {0.70, 0.30, 0.0} {0.84, 0.16, 0.0}

ins#2 V2
Ω = 100 V2

Γ = 2 V2
Λ = 20 2.62

V2
Ω = −1.0 V2

Γ = −0.78 V2
Λ = −0.67

µ′Ω(V2
Ω)→ Rtt : µ′Γ(V

2
Γ )→ Ra : µ′Λ(V

2
Λ)→ Ps :

{1.0, 0.0, 0.0} {0.97, 0.03, 0.0} {0.84, 0.16, 0.0}

ins#3 V3
Ω = 200 V3

Γ = 4 V3
Λ = 40 4.50

V3
Ω = −0.6 V3

Γ = −0.33 V3
Λ = 0.0

µ′Ω(V3
Ω)→ Rtt : µ′Γ(V

3
Γ )→ Ra : µ′Λ(V

3
Λ)→ Ps :

{0.75, 0.25, 0.0} {0.41, 0.59, 0.0} {0.0, 1.0, 0.0}

ins#4 V4
Ω = 300 V4

Γ = 5 V4
Λ = 30 3.79

V4
Ω = −0.20 V4

Γ = −0.11 V4
Λ = −0.33

µ′Ω(V4
Ω)→ Rtt : µ′Γ(V

4
Γ )→ Ra : µ′Λ(V

4
Λ)→ Ps :

{0.25, 0.75, 0.0} {0.14, 0.86, 0.0} {0.41, 0.59, 0.0}

ins#5 V5
Ω = 400 V5

Γ = 6 V5
Λ = 50 4.64

V5
Ω = 0.20 V5

Γ = 0.11 V5
Λ = 0.33

µ′Ω(V5
Ω)→ Rtt : µ′Γ(V

5
Γ )→ Ra : µ′Λ(V

5
Λ)→ Ps :

{0.0, 0.75, 0.25} {0.0, 0.86, 0.14} {0.0, 0.59, 0.41}

ins#6 V6
Ω = 500 V6

Γ = 8 V6
Λ = 70 5.00

V6
Ω = 0.60 V6

Γ = 0.56 V6
Λ = 1.0

µ′Ω(V6
Ω)→ Rtt : µ′Γ(V

6
Γ )→ Ra : µ′Λ(V

6
Λ)→ Ps :

{0.0, 0.25, 0.75} {0.0, 0.30, 0.70} {0.0, 0.0, 1.0}

ins#7 V7
Ω = 500 V7

Γ = 6 V7
Λ = 60 4.74

V7
Ω = 0.60 V7

Γ = 0.11 V7
Λ = 0.67

µ′Ω(V7
Ω)→ Rtt : µ′Γ(V

7
Γ )→ Ra : µ′Λ(V

7
Λ)→ Ps :

{0.0, 0.25, 0.75} {0.0, 0.86, 0.14} {0.0, 0.16, 0.84}

Table 6.6: Parameters of computing instances

literature [297][298]. The values explicitly represent the computational limitations of

Fog instances compared to the Cloud instances. The illustrative example also exhibits

how our proposed policy/model can deal with the lower computational capabilities
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application instance Rating Gain

app#1 ins#4 21.57

app#2 ins#5 31.04

app#3 ins#3 27.95

app#4 ins#6 36.40

app#5 ins#7 33.32

Table 6.7: Solution of the optimization problem

of different Fog instances and distinguish them through CCS while meeting the well-

known features of the Fog environment. In addition, the configuration of FGN m used in

this example is Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz 2GB DDR2 RAM. On this

configuration, FGN m takes 20ms to calculate RoE of the application placement requests

and 8ms to solve the optimization problem.

6.8 Performance Evaluation

The proposed QoE-aware application placement policy is compared with different QoS

and QoE-aware policies. The QoS-aware application placement policy in [267] meets

execution deadline of the applications. Among the QoE-aware policies, Cloud-Fog [270]

optimizes service coverage, response time and network congestion whereas MeFoRE

[271] ensures efficient resource estimation based on user’s feedback. However, while

comparing the proposed policy with the aforementioned policies; network congestion,

amount of allocated resources, reduced processing time and percentage of QoS-satisfied

data signals are considered as performance metrics.

6.8.1 Simulation Environment

To evaluate the proposed policy, a Fog environment is simulated using iFogSim [237].

iFogSim is an extention of CloudSim [238] framework which has been widely used for

simulating different computing paradigms. In iFogSim, varying configuration and count

of FCNs, different number of applications have been placed. In simulation, we consider
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Parameter Value

Expectation Metrics:

Access rate 2-10 per sec

Resource requirement 1-8 CPU cores

Processing time 30-120 ms

Status Metrics:

Round trip time 100-600 ms

Resource availability 1-10 CPU cores

Processing speed 10-70 TIPS

Applications service delivery deadline 250 - 750 ms

Data signal loss rate of the network 3-5 %

Service cost 0.1-0.15 $ per min

Number of accessible FCN per FGN 4-10

Data signal size 1000-2000 instructions

Table 6.8: Simulation parameters for QoE-aware management

synthetic workload as compatible real workload for the proposed application placement

policy is not currently available. For each application, the workload includes computa-

tion for different tasks such as data filtration, analysis and event processing. Table 6.8

represents the details of workload and system parameters.

6.8.2 Experiment and Discussion

The applicability of the proposed QoE-aware application placement policy has been val-

idated through simulation experiments on network congestion, resource allocation, pro-

cessing time, application placement time and QoS satisfaction rate. To demonstrate the

potentiality of the proposed QoE-aware policy in handling network congestion, we have

calculated average Network Relaxation Ratio (NRR) for the applications placed by any

FGN m at time t using Eq. 6.12:

avg(NRRm) =
1
|At

m|
∑

∀am∈Am

2

Uam
ω ×Vin

Ω

(6.12)
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Figure 6.10: Network relaxation for varying number of applications

subject to, zam
in

= 1 and Vin
Ω in second.

Any value of NRR > 1 for an application refers to less possibility of network con-

gestion. For example, an application with Uam
ω = 2 per second, in every service access

receives a data signal to process. Intermediate delay between receiving two data signals

for that application will be 0.5 sec. Let us assume the application has been placed in an

instance where Vin
Ω = 0.3 sec. In that case, roughly even after propagating a data sig-

nal to the application, the network will remain free upto 0.35 sec and the NRR for that

application will be 3.33. As a consequence, there will be lesser possibility of network

congestion. The proposed QoE-aware policy actively participates in relaxing network

(Fig. 6.10). As the number of applications increase, the data transmission load over

the network increases and avg(NRR) declines, which is natural. However, compared

to other approaches the declining rate of avg(NRR) in the QoE-aware policy is lower.

Among other approaches Cloud-Fog performs well as it discards data signals of increas-

ing applications to mitigate network congestion. MeFoRE prefers application placement

to upper level FCNs to meet increasing user demand based on the feedback that even-

tually increases data transmission time and chance of network congestion. Similarly, in

the QoS-aware placement, additional time is required to maintain intra-inter communi-

cation within the colonies that adversely affect network flexibility.
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Figure 6.11: Resource gain for varying number of applications

Resource Gain (RG) of applications refers to the QoE of users in respect of resource

consumption. Here, the average RG for the applications placed by FGN m at time t has

been calculated using Eq. 6.13:

avg(RGm) =
1
|At

m|
∑

∀am∈Am

Vin
Γ

Uam
γ

(6.13)

subject to, zam
in

= 1.

If an application with Uam
γ = 2 processing cores, is placed to a computing instance

having Vin
Γ = 3 cores, the RG for the application will be 1.5. Any value of RG > 1 refers

that by paying almost same cost, the user is consuming additional resources. The pro-

posed QoE-aware policy ensures higher avg(RG) for the application, although with the

increasing number of applications, avg(RG) declines (Fig. 6.11). Re-provisioning of the

resources for additional applications contribute in this case. However, avg(RG) in other

policies are competitively low. Since Cloud-Fog changes operations on data according

to the load, it can run the applications even with less resources compared to expecta-

tion. MeFoRE resists resource under-utilization that ultimately reduces avg(RG). In

QoS-aware policy, additional resources are only allocated when users ask for them, that

affects the fixed-cost RG of the applications.
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In the experiments, reduction in processing time of the applications has been repre-

sented through Processing Time Reduction Ratio (PTRR). average PTRR of the applica-

tions placed by FGN m at time t has been calculated using Eq. 6.14:

avg(PTRRm) =
1
|At

m|
∑

∀am∈Am

Uam
λ ×Vin

Λ
υam

(6.14)

subject to, zam
in

= 1 and Uam
λ in second.

If an application, with Uam
λ = 0.12 sec and υam = 1000 instructions, is placed to

a computing instance having Vin
Λ = 30 Thousand Instructions Per Second (TIPS), the

PTRR for the application will be 3.6. Any value of PTRR > 1 ensures faster data

process than the expectation. The QoE-aware policy increases avg(PTRR) for the ap-

plications although it declines with the number of applications (Fig. 6.12). Compared

to other policies, avg(PTRR) in the proposed policy is much higher. Cloud-Fog main-

tains better avg(PTRR) by discarding data signals although incentive based resource

sharing during high computational load fails to retain the higher avg(PTRR). MeFoRE

increases avg(PTRR) by iteratively placing applications in upper level FCN. It happens

only when user feedback in respect of application processing time gets poor. The QoS-

aware policy concentrates more on optimizing processing time in priority basis rather

than maintaining higher avg(PTRR) for all the applications.

Fig. 6.13 represents the average application placement time in different approaches.

In the proposed QoE-aware policy, placement decision is taken at the FGN. Since nec-

essary calculations in other entities can be done in parallel, the required time to place

applications gets lower. With the increasing number of applications, placement time

increases. Time to find the solution of optimization problem for increasing number of

applications contributes in this case. However, in Cloud-Fog, remote Cloud interferes

in application placement, in MeFoRE iterative approach is used for placing application

and in QoS-aware policy a controller node places the application over the Fog cells. All

these facts adversely affect the application placement time.

The percentage of QoS-satisfied data signals in the proposed QoE-aware policy is

higher as it considers multiple QoS parameters (cost, deadline, packet loss rate) while
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Figure 6.12: Processing time reduction for varying number of applications
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Figure 6.13: Application placement time for varying number of applications

placing the applications (Fig. 6.14). In QoS-aware policy only deadline has been con-

sidered as the QoS metric. In that policy, for many data signals the deadline satisfied

QoS cannot be ensured when the overhead in controller node increases significantly.

To maintain congestion free network and tolerable response delay, Cloud-Fog discards

large number of data packets that eventually degrades QoS. Since MeFoRE prefers to

place application in upper level FCNs, it often fails to maintain cost and deadline satis-

fied QoS requirement of the data signals.
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Figure 6.14: Percentage of QoS satisfaction
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Figure 6.15: QoE Gain of applications from different service aspects

In the QoE-aware policy three different aspects of QoE (service accessibility, resource

affordability and service processing time) have been maintained simultaneously. Since,
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intensity of expectations for different applications are diversified, it is not possible to en-

sure maximized QoE gain (NRR, RG, PTRR) for every application. Fig.6.15 represents

that among the placed applications on different experiments, how many applications

achieved the QoE gain in every aspect. According to the results almost 92% applications

gets higher PTRR. In respect of RG and NRR, this percentage belongs to 88% and 80%

respectively.

6.9 Summary

As a computing paradigm, Fog has a significant potential to support IoT applications.

To exploit benefits of Fog, different application placement policies are required to be

investigated. In this work, we have discussed about QoE-aware application placement

in Fog that considers both expectations of user regarding the applications and status

of the Fog computing instances while placing the applications. We have applied two

separate fuzzy logic models to simplify the mapping of applications to compatible in-

stances by calculating application’s Rating of Expectations and Capacity Class Score of

the instances. The developed linear optimization problem ensures the best convergence

between user expectations and scope within the Fog environment that eventually max-

imizes the QoE. The simulation results demonstrate that our proposed policy performs

well in attaining the objective compared to the other policies.



Chapter 7

Profit-aware Application
Management

The integration of Fog and Cloud paradigm aims at harnessing both edge device and remote

datacentre-based computing resources to meet the Quality of Service (QoS) requirements of various

smart systems. Due to lack of instance pricing and revenue maximizing techniques, it becomes diffi-

cult for service providers to make comprehensive profit from such integration. Conversely, the rigid

revenue maximizing intention of providers affects user’s budget and system’s service quality. To ad-

dress these issues, we propose a profit-aware application placement policy for integrated Fog-Cloud

environments. It simultaneously enhances profit and ensures QoS. Furthermore, it provides com-

pensation to users for any violation of Service Level Agreement (SLA) and sets the price of instances

according to their ability of reducing service delivery time. The performance of proposed policy is

evaluated in a simulated Fog-Cloud environment using iFogSim and the results demonstrate that it

outperforms other placement policies in increasing provider’s profit and user’s QoS satisfaction rate.

7.1 Introduction

Fog nodes have less computational capabilities than Cloud datacentres that resist ac-

commodation of every IoT application at the edge level [55]. Therefore, different Cloud

providers such as Amazon, Microsoft and Google initiate integrating Fog and Cloud

infrastructure to offer extensive placement options for IoT applications [13]. The in-

This chapter is derived from:

• Redowan Mahmud, Satish Narayana Srirama, Kotagiri Ramamohanarao, and Rajkumar Buyya,
”Profit-aware Application Placement for Integrated Fog-Cloud Computing Environments”, Journal
of Parallel and Distributed Computing (JPDC), Volume 135, Pages: 177-190, ISSN: 0743-7315, Elsevier
Press, Amsterdam, The Netherlands, January 2020.
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clusion of Fog computing to current Cloud-centric IoT model is expected to add US$

203.48 million more in their combined marketplace by 2022 [299]. It will also increase

the operational cost in computing environments for consuming additional energy, de-

ploying Fog infrastructure and utilizing more network bandwidth [300]. In this case,

without revenue maximization, it will be difficult for providers to make profit from in-

tegrated environments. Contrariwise, firm intention of maximizing revenue often in-

stigates providers to compromise application Quality of Service (QoS) that increases

Service Level Agreement (SLA) violations. The imprecise price of Fog instances that is

set for revenue maximization can also add overhead to user’s budget [301]. Hence, it

becomes challenging to enhance provider’s profit in integrated environments as it urges

to make a balance among expectations of users, expenses of providers and performance

of Fog-Cloud infrastructure. Failure to ensure such balance inhibits providers and users

to realize the potential of integrated computation [302].

In integrated environments, placement of applications on suitable instances is very

crucial to enhance profit of providers and meet application QoS for users. Although

different application placement policies for Fog computing are proposed prioritizing

deadline, completion time and revenue [207] [177] [303], it is critical for these policies to

attain the aforementioned objectives individually for integrated environment. Diversi-

fied affordability level of users, uneven expenses of operating heterogeneous instances

and commitment of providing compensation to users for service failure further intensify

the complexity of such application placement problem [2]. Therefore, it is demanding

to develop an application placement policy for integrated Fog-Cloud environments that

can comply with their economic and performance-based attributes simultaneously.

In Internet economics, providers are encouraged to charge users more for improved

services [212]. Since Fog instances upgrade application service delivery time, it creates

a scope for providers to charge users an extra amount for these instances on top of their

actual Cloud-based price. To users, providers can advertise this additional charge as the

price for extending the instance from Cloud to Fog infrastructure. However, it should

be justified with the scale of performance improvement and user budget constraint. It is

also required for clarifying the impreciseness of instance pricing and assisting users to

identify how much they need to pay for executing applications in Fog. Additionally, to
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attain loyalty, providers can offer compensation to users on SLA violations. With such

instance pricing model and compensation method, an application placement policy in

integrated environments can boost the revenue and arouse the necessity of meeting ap-

plication QoS that will consequently enhance provider’s profit. However, in existing

works such policy has not been explored yet. Therefore, we propose a profit-aware ap-

plication placement policy for integrated Fog-Cloud environments that increases rev-

enue and reduces their number of failures in meeting application’s service delivery

deadline. It also sets price of Fog instances in accordance with their capabilities of im-

proving service quality and provides compensation to users based on SLA violation rate

of computing environments.

The major contributions of this chapter are:

• Proposes an application placement policy for integrated Fog-Cloud environments

based on an Integer Linear Programming (ILP) model that enhances provider’s profit

and meets application’s QoS simultaneously.

• Presents a pricing model for Fog instances which increases provider’s revenue by

incorporating their Cloud-based pricing with the service delivery time improve-

ment ratio of applications placed on those instances.

• Develops a user compensation method that supports both user’s and provider’s

interest through inverse relationship between compensation amount and perfor-

mance of the computing environments in observing SLA requirements.

• Demonstrates the performance of proposed policy in enhancing profit, satisfying

QoS and managing waiting time via simulation on iFogSim [219] and compares

them with the outcomes of existing policies.

The rest of the chapter is organized as follows. Section 7.2 highlights several relevant

works form literature. Section 7.3 provides the architecture of integrated environments

along with revenue estimation, pricing model and compensation method. The proposed

application placement policy and its illustrative example are presented in Section 7.4

and 7.5 respectively. Section 7.6 presents the simulation environment and performance

evaluation of the proposed policy. Finally, Section 7.7 concludes the chapter.
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7.2 Related Work

Provider’s profit and cost maintenance have already been studied extensively in Cloud

computing [304] [305]. However, Fog computing is different from Cloud as it is more

distributed and composed of numerous resource-constrained and heterogeneous Fog

nodes. Service expectations of users from Fog-based applications, their anticipated run-

time and budget for execution are also diversified compared to that of Cloud-based

applications. Therefore, it is very complicated to develop interoperable resource and

application management policies for both Fog and Cloud computing and tedious to cus-

tomize any existing Cloud policy for Fog computing [2]. Nevertheless, there exists sev-

eral works that discuss about financial aspects of integrated Fog-Cloud environments.

Nan et al. [207] provided an online solution that minimizes task completion time and

provider’s cost in integrated environments. It also reduces overall response time by dis-

carding infeasible applications directly from the queue. A trade-off is made between

power consumption and transmission delay in [131]. It solves the placement problem

distributively and allocate resources at the Fog to complement Cloud for improving

performance. Moreover, Pham et al. [306] conducted a trade-off between execution

time and cost of Cloud-based processing while placing applications in integrated en-

vironment. Their Cost-Makespan-aware placement policy meets application deadline

constraints. Yu at al. [199] also focused on reducing processing cost in Cloud by plac-

ing applications in Fog. Their policy saves bandwidth cost by serving users with Fog

resources and compensates Fog providers for processing data on behalf of Cloud.

The efficacy of Fog has also been extended to other computing paradigms. Lin et al.

[252] minimized the expenses in Fog assisted Cyber Physical System (CPS) considering

instance deployment, data uploading and inter-nodal communication cost. To over-

come high complexity, their policy linearizes the cost-minimization problem then solves

it through a two-phase linear program-based heuristic algorithm. Likewise, Yang et

al. [307] explored cost-efficient service placement and load distribution in Fog enabled

Mobile Cloud Computing (MCC) environments. Their algorithms make trade-off be-

tween the average response delay and the expenses of providers by considering mobil-

ity and service access pattern of users. Yao et al. [308] considered instance deployment



7.2 Related Work 191

Work Decentralised
Decision

Provides
Compensation

Considers
Budget

Maintains
QoS

Enhances
Profit

Models
Price

Targets
Cost

Fog Cloud

[207] X X X X

[131] X X X X

[306] X X

[199] X X X

[300] X X X

[307] X X

[308] X X

[309] X X X

[177] X X X X

[303] X X X X X X

[200] X X X X X

[310] X X X X

Profit-
aware
(This
work)

X X X X X X X X

Table 7.1: Summary of related work for profit-aware management

cost and diverse mobility pattern of the users while placing applications on heteroge-

neous Fog nodes (Cloudlets). Their greedy solution, at first, generates candidate set of

Cloudlets that meets user’s requirements, then selects a Cloudlet from the candidate set

to place the applications with minimum deployment cost. Kiani et al. [309] proposed

an auction-based profit maximization policy for Fog enabled Mobile Edge Computing

(MEC) environment. Their policy is developed on a binary linear programming model

and incorporates a two-time scale technique while allocating both the computing and

communications resources to the mobile users.

In literature, profit and budget-aware resource estimation for Fog computing are also

studied. Fan et al. [177] discussed deadline-aware application placement that enhances

provider’s profit and user’s QoS satisfaction. It exploits provider’s owned Fog resources

and rented Cloud instances. Neetu et al. [303] explored the competition between Fog

providers in setting service price and minimizing their cost through Equilibrium Con-
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straints model. It aims at enhancing the profit and balancing the service requirements

between providers and users by facilitating incentivization. A dynamic resource esti-

mation and pricing policy for Fog computing was developed in [200]. While allocating

resources and charging services, their policy considers user’s behavior, provider’s profit

and mobility pattern of IoT devices. Ni et al. [310] proposed a resource provisioning

policy that enables users to meet demand from a set of reserved resources. It consid-

ers cost and deadline along with user’s affordability and features of Fog nodes during

resource allocation.

Table 7.1 provides a summary of different application placement policies that investi-

gate monetary issues and service objectives of integrated environments. In these works,

enhancement of profit and maintenance of QoS are not simultaneously ensured during

application placement. They barely apply performance-driven instance pricing model

and compensation method to promote provider’s revenue and subsidize user’s losses.

In comparison, the proposed policy contains two important features; a). sets price of

Fog instances based on their competency of improving application’s service time and

b). offers compensation according to the SLA-violation rate of computing environments.

Both jointly offer a systematic way to support user’s and provider’s interests. The profit-

aware application placement problem is also formulated as a function of application’s

service delivery deadline that resists their QoS degradation. These aspects form the core

innovation part of the policy that helps to overcome the limitation of existing placement

policies. Additionally, the proposed policy deals with various Fog and Cloud-based

costs and works in decentralized manner so that it can be synthesized with distributed

Fog nodes.

7.3 System Overview

7.3.1 Features of Integrated Fog-Cloud environments

As a supplement to IoT, Fog computing executes latency-sensitive applications in prox-

imate of data sources to offer services in real time. Conversely, as an extension of Cloud

computing, Fog conducts IoT-data pre-processing so that communication and compu-



7.3 System Overview 193

Cloud 

Paradigm

Fog 

Paradigm

Computing 

Nodes

Gateway

IoT 

Devices

Computing Platform 

of Service Provider 

A on Location L

Fog 

Cluster

Virtualization Layer

Instance #6

Cloud-based 

Physical Resource 

Virtualization Layer

Fog-based Physical 

Resource 

Instance #4

Instance #1 Instance #2

Instance #3 Instance #5

Computing Platform 

of Service Provider 

B on Location L
. . .

Extending Computing

 Instances from Cloud

Figure 7.1: Integrated Fog-Cloud environments

tation overhead from Cloud datacentres can be reduced. Thus, Fog computing main-

tains an intermediate layer between IoT and Cloud computing [207] [199]. Based on

this concept, the Computing Platforms for IoT applications are considered to be expanded

across the Fog and Cloud infrastructure of integrated environments. Different providers

deploy such platforms on various locations with their owned physical resources (Fog

nodes and Cloud datacentres), for example, Fig. 7.1 shows the Computing Platforms

deployed by provider A and B on location L. At the Fog part of each platform, provider-

specific Gateways are deployed, and their number can be scalable as per the load of

external connections with the platform. When multiple Gateways are associated to a

Computing Platform, their operations are synchronized, and monetary calculations are

performed in collective manner. Within a Fog cluster, the communication is maintained

by faster Constrained Application Protocol and Simple Network Management Protocol.

Since Gateways and Fog clusters are localized, their data exchange delay is considered

negligible. In Fog clusters, cybersecurity frameworks are used to identify and moni-

tor malicious Fog nodes that defend the Fog part of platforms from uncertain attacks

in future [311]. Fog clusters can extend different types of virtualized instances (virtual

machines and containers) from Cloud datacentres for application execution [199] [148].

While making application placement decisions in Fog infrastructure, the Cloud-based

attributes of extended instances such as their configurations, price and cost model are
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used extensively along with other performance parameters [312] [313].

Moreover, it is regarded that most of the IoT devices are cramped of performing

large-scale data processing and maintaining direct communication with Cloud because

of their resource scarcity and bandwidth limitations. In such circumstance, Bottom-up

interaction among IoT, Fog and Cloud computing plays an important role where IoT de-

vices at first communicate with Fog infrastructure and notify their service requirements.

Fog infrastructure tries to meet these requirements with its available resources. If it is in-

feasible, Fog infrastructure asks Cloud to deal with the issue [306] [200]. To enable such

interaction in the devised integrated environments, IoT devices are configured with the

Gateways of any accessible Computing Platforms and the reliable links between Fog

and Cloud part of Computing Platforms help the Gateways to reach out Cloud-based

services via Fog clusters on behalf of the IoT devices. However, due to mobility of IoT

devices, their associated Gateway and Computing Platform can change with the course

of time. Therefore, to maintain connectivity and deal with data traffic, related network

Service Function Chains (SFCs) are transferred from one place to another. In integrated

environments, efficient SFC migration approaches are applied to support this operation

with reduced reconfiguration cost [314].

While configuring an IoT device with a Gateway, the placement request for corre-

sponding application is narrated. A placement request comprises specifications of the

application including its number of instructions, input packet size, data receiving fre-

quency, expected service delivery time limit and user’s budget for its execution. How-

ever, IoT device and user-driven contexts can vary from time to time. Therefore, inte-

grated environments endorse time series analytic frameworks for dependable data ex-

traction so that varying contexts of these entities can be tracked and placement requests

for the applications can be updated [315]. After assimilation of an application placement

request, the associated Gateway grasps status such as processing speed, bandwidth, per

unit time costs and price of available instances [200]. Based on these parameters, the

Gateway finds suitable placement option for the application. If any instance satisfies

minimum resource requirements of an application, its deployment time on that instance

becomes trivial.

Unremitting application placement requests received by a Gateway can intensify its
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management overhead. Therefore, Gateways conduct placement of applications after a

certain interval, for example 0.100 seconds. It helps to manage the overhead of Gate-

ways, simplifies their synchronization with a Computing Platform and resists unnec-

essary reporting. However, it can increase resource wastage and redundancy to some

extent. Their effect can be mitigated by setting the interval between two placement

rounds to a minimum value or dynamically tuning it according to the average run-

time of applications. In devised integrated environment, providers can follow any of

these approaches so that placement round intervals neither burden the Gateways nor

decrease resource utilization [240]. Within this interval, Gateways receive new place-

ment requests and instances execute the applications placed at previous round. Before

initiating a placement round k, available instances Ck and requested applications Rk for

that round are identified. Later, the Gateway estimates profit of the platform provider

for executing each application. During placement, a single instance can host at most one

application. A placement request is successful if the application is mapped to a com-

puting instance, and its service is ensured to be delivered within the deadline. For kth

placement round, the set of successful applications is noted as Rχ
k . If an application is

not scheduled in a placement round, it is considered for scheduling in the next round

along with newly received placement requests. This process continues unless the appli-

cation is placed, or its estimated service delivery time surpasses the deadline. During a

billing period, a Gateway can run numerous placement rounds targeting the Comput-

ing Platform. However, after a billing period, compensation for users based on the SLA

violation rate of corresponding platform is determined and total profit of its provider is

calculated. Relevant notations for these calculations are shown in Table 7.2.

7.3.2 Gross Profit Estimation for Providers

Before placing an application r ∈ Rk on instance c ∈ Ck, Gross profit er
c of provider for ex-

ecuting the application is estimated. Usually, Gross profit is calculated by deducting the

cost of production from the revenue. Here, the revenue refers to the service charge of in-

stance that is collected by provider from user to execute the application. Conversely, the

cost of production is the operating cost of instance that is paid by provider to others for
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Symbol Definition

K Total number of placement rounds per billing period on a Computing Platform.

Υ Total Gross profit of providers from a Computing Platform per billing period.

Ik Gross profit of providers from a Computing Platform during kth placement round.

Ck Set of all computational instances during kth placement round on a Computing Platform.

Rk Set of all requested applications during kth placement round on a Computing Platform.

Rχ
k Set of successful applications during kth placement round on a Computing Platform. Rχ

k ⊆ Rk .

er
c Estimated Gross profit for executing the application r ∈ Rk on instance c ∈ Ck .

mr
c

Profit Merit (PM) of an application r ∈ Rk on any instance c ∈ Ck .

lr Input packet size for the application r ∈ Rk .

sr Number of instructions in the application r ∈ Rk .

zr Minimum resources required for hosting the application r ∈ Rk , z ∈ {processing cores, memory}.

ψr Users budget for executing the application r ∈ Rk .

δr User expected service delivery time limit for the application r ∈ Rk .

ξr Latency sensitivity index for the application r ∈ Rk .

µc Processing speed of a computing instance c ∈ Ck .

λc Network bandwidth of a computing instance c ∈ Ck .

Zc Available resources on a computing instance c ∈ Ck , Z ∈ {processing cores, memory}.

ωc Cloud-based price of a computing instance c ∈ Ck for per unit time.

αc Cost of computing instance c ∈ Ck for processing resource consumption per unit time.

βc Cost of computing instance c ∈ Ck for network resource consumption per unit time.

εc Additional price of a computing instance c ∈ Ck for per unit time.

τr
a Arrival time stamp of placement request for application r ∈ Rk .

τr
ϑ Placement time stamp of application r ∈ Rk .

τ Current time stamp.

P Net profit for the provider per billing period.

ρ Compensation given for SLA violation per billing period on a Computing Platform.

Φ Set of all requested applications per billing period on a Computing Platform. Rk ⊂ Φ

φ Set of all QoS-satisfied applications per billing period on a Computing Platform. Rχ
k ⊂ φ

ϕ Set of all SLA-violated applications per billing period on a Computing Platform.

tp
rc Input processing time on computing instance c ∈ Ck for application r ∈ Rk .

tn
rc Input propagation time to computing instance c ∈ Ck for application r ∈ Rk .

trc Total time required to complete the execution of application r ∈ Rk on instance c ∈ Ck .

υrc Performance improvement grade of application r ∈ Rk for extending instance c ∈ Ck form Cloud to Fog.

Ωrc Service charge to users for executing the application r ∈ Rk on instance c ∈ Ck .

Γrc Operational cost of providers for executing the application r ∈ Rk on instance c ∈ Ck .

ηc ∈ {0, 1} Equals to 1 if computing instance c ∈ Ck is running in remote Cloud, 0 otherwise.

xrc ∈ {0, 1} Equals to 1 if the application r ∈ Rk is mapped to c ∈ Ck , 0 otherwise.

Table 7.2: Notations for profit-aware management
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application execution. For Gross profit estimation, input packet size lr and number of

instructions in the application sr are extracted from the placement request. Processing

speed µc and network bandwidth λc of the instance are also considered. Input pro-

cessing time tp
rc and input propagation time tn

rc are calculated for the application using

Eqs.(7.1) and (7.2);

tp
rc =

sr

µc , (7.1)

tn
rc =

lr

λc . (7.2)

If the instance is deployed in Cloud part, service charge of the instance for executing

the application depends on its per unit time price ωc and the summation of input pro-

cessing time tp
rc and input propagation time tn

rc. Its operating cost also relies on tp
rc and

tn
rc along with its per unit time processing cost αc and networking cost βc. In αc and βc,

providers encapsulate certain portion of various expenses such as deployment, migra-

tion, energy and security management costs separately. The Gross profit for executing

the application in Cloud-based instance is estimated using Eq. (7.3);

er
c∈Cloud = ωc(tp

rc + tn
rc)− (tp

rcαc + tn
rcβc). (7.3)

However, if the instance resides in Fog part, input propagation time tn
rc becomes neg-

ligible. Therefore, its impact on service charge and operational cost are omitted while

estimating the Gross profit. To align with the characteristics of Internet economy [212],

providers can also charge users εc price per unit time on top of ωc for ensuring improved

service through Fog-based placement of applications. It is usually advertised to users

as the price for extending the instance from Cloud to Fog. Hence, the Gross profit for

application execution on Fog-based instance is estimated by Eq. (7.4);

er
c∈Fog = tp

rc(ω
c + εc)− tp

rcαc. (7.4)

Combining Eqs. (7.3) and (7.4), a general narration of Gross profit for executing an

application is shown in Eq. (7.5);

er
c = (tp

rc + ηctn
rc){ωc + (1− ηc)ε

c} − (tp
rcαc + ηctn

rcβc). (7.5)
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Here, the binary variable ηc tracks whether the instance is deployed in Cloud or ex-

tended to Fog part of the Computing Platform. Based on Eq. (7.5), Gross profit of

provider per placement round and per billing period from a Computing Platform in

respect of a Gateway is given by Eqs. (7.6) and (7.7);

Ik = ∑
r∈Rχ

k

er
c, (7.6)

Υ =
K

∑
k=1

Ik. (7.7)

7.3.3 Pricing Model for Fog Instances

To increase provider’s Gross profit from Fog-based placement of applications in inte-

grated environment, the following condition needs to be satisfied;

er
c∈Fog > er

c∈Cloud.

One of the possible ways to satisfy this condition is to raise provider’s revenue from

the Fog instance. It can be achieved by setting a higher εc value while charging users

for the instance. Providers can set this value as per their interest with no guarantee

of user acceptance. To attain user’s acknowledgement, εc should reflect the value of

improving performance for placing applications on Fog instances. Therefore, in defining

εc, the performance improvement grade υrc of application r ∈ Rk is used that denotes per

unit time improvement in service delivery of the application for extending its assigned

instance c ∈ Ck from Cloud datacentre to Fog cluster.

When instance c remains in Cloud, service delivery time of application r is the sum-

mation of input processing time tp
rc and input propagation time tn

rc. However, if the

instance is extended to Fog, service delivery time of application r becomes dependent

to input processing time tp
rc and its rough improvement is equivalent to tn

rc compared to

Cloud-based placement. Hence, the performance improvement grade υrc of application

r can be narrated as Eq. (7.8);

υrc =
tn
rc

tp
rc

. (7.8)
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Moreover, providers save a larger portion of networking cost when the application is

executed in Fog [9]. It is also observed in assessing the value of εc. Considering per-

formance improvement and cost saving attributes, to boost the revenue from Fog-based

application placement, providers should set the value of εc satisfying the following con-

dition;

εc > υrc(ω
c − βc).

This condition can also be certified with the help of Eqs. (7.3) and (7.4). In proposed

profit-aware application placement policy, it is applied by adding of a very small charge

∂ per unit time, for example, 0.005 $/s, with εc as shown in Eq. (7.9);

εc = υrc(ω
c − βc) + ∂. (7.9)

7.3.4 Compensation Method and Net Profit Calculation

SLA of an application r ∈ Rk violates when the Computing Platform fails to assist it in

meeting the service delivery deadline. This deadline is determined by adding the user’s

expected service delivery time limit δr with the request’s arrival time stamp τr
a . If service

of the application is delivered within deadline, its QoS to users is satisfied. In a Comput-

ing Platform, per billing period users are only charged for the set of QoS satisfied appli-

cations φ and compensated for the set of SLA-violated applications ϕ. The compensation

is given as a percentage of average Gross profit of providers that is accumulated from

QoS-satisfied applications [316]. It is calculated using the ratio of SLA-violated and total

number of requested applications |Φ| per billing period; where |Φ| = |φ|+ |ϕ|. Hence,

the total amount of compensation ρ given by the provider is shown in Eq. (7.10);

ρ = |ϕ| × Υ
|φ| ×

|ϕ|
|Φ| . (7.10)

This compensation method works as per the performance of Computing Platform. If

the Computing Platform assists to increase the number of QoS satisfied applications, the

total compensation reduces. Conversely, if its performance degrades, increased amount

of compensation helps to retain the user’s loyalty. This inverse relationship balances the
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financial support of Computing Platform for both users and providers [317]

After determining the compensation, Net profit P of provider from the Computing

Platform for a billing period is assessed. Net profit is calculated by deducting the non-

operational cost from the total Gross profit. Here, the non-operational cost of providers

refers to the amount of compensation that is repaid to the users. Repaying the compen-

sation ρ by applying Eq. (7.11), the residual portion of Gross profit Υ per billing period

is regarded as the provider’s Net profit P;

P = Υ− ρ. (7.11)

7.4 Profit-aware Application Placement

7.4.1 Problem Formulation

According to Eq. (7.11), provider’s Net profit P from a Computing Platform enhances

if the Gross profit Υ per billing period increases and the amount of compensation ρ

decreases. To support these conditions during placement rounds, the proposed Profit-

aware Application Placement policy prioritizes each application r ∈ Rk in terms of esti-

mated Gross profit er
c for execution on any instance c ∈ Ck and latency sensitivity index

ξr. On current time stamp τ , ξr refers to the remaining time from application’s service

delivery deadline as shown in Eq. (7.12);

ξr = τr
a + δr − τ. (7.12)

In the proposed policy, based on er
c and ξr, Profit Merit (PM) mr

c of application r ∈ Rk is

calculated using Eq. (7.13);

mr
c =

er
c

ξr . (7.13)

On an instance c ∈ Ck, if the estimated Gross profit er
c remains same ∀r ∈ Rk, the ap-

plication having stringent deadline will have the higher PM value. Conversely, if two

applications have identical latency sensitivity index, the application estimating elevated

Gross profit for execution will have the higher PM value. According to these two cases,
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in other scenarios, the PM value of an application r on any instance c signifies the rel-

ative weight of estimated Gross profit for execution and latency sensitivity index. Ad-

ditionally, latency sensitivity index ξr of an application decreases with the course of

time. As a result, if an application is placed at kth round, its PM value on particular in-

stance increases by k + 1th round. Based on these features of PM, the objective function

of profit-aware application placement for any placement round k is formulated as Eq.

(7.14), where a binary decision xrc helps to identify optimal mapping of an application

r ∈ Rk to an instance c ∈ Ck;

max ∑
r∈Rk

xrcmr
c. (7.14)

subject to,

∑ xrc ≤ 1; ∀r ∈ Rk. (7.15)

xrczr ≤ Zc; ∀r ∈ Rk, ∀Z, ∀z. (7.16)

(tp
rc + ηctn

rc) ≤ ξr; ∀r ∈ Rk. (7.17)

Ωrc ≤ ψr; ∀r ∈ Rk, (7.18)

where,

Ωrc = (tp
rc + ηctn

rc){ωc + (1− ηc)ε
c}. (7.19)

Eq. (7.14) is a constrained ILP model that maximizes the total PM of applications during

kth placement round and Eqs. (7.15), (7.16), (7.17) and (7.18) specify its constraints. This

objective function is required to solve at the beginning of each placement round. It can

be solved with any ILP solver such as SCIP [215]. The constraints of Eq. (7.14) are

discussed in the following subsections.

Placement Constraint

To deliver uninterrupted services, an application r ∈ Rk requires exclusive access to the

assigned instance c ∈ Ck. The constraint presented in Eq. (7.15) supports this condi-
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tion by compelling a computing instance to host at most one application per placement

round.

Resource Constraint

A computing instance c ∈ Ck can host the application r ∈ Rk, if its available resources

Zc such as processing cores and memory meet minimum resource requirements zc of

the application. Eq. (7.16) enforces this constraint signifying that minimum resources to

host an application is always available on its assigned computing instance.

QoS Constraint

Placement of the application r ∈ Rk on an instance c ∈ Ck will not be successful unless

its QoS satisfaction is ensured. QoS of the application is satisfied when the propagation

and processing of input data are completed within the remaining time from service de-

livery deadline. Eq. (7.17) imposes this constraint to the proposed application placement

policy.

Budget Constraint

Total service charge Ωrc of executing the application in r ∈ Rk on an instance c ∈ Ck

should be within the affordability of the user. If user’s budget is not sufficient compared

to the total service charge, execution of that application will trigger negative gearing for

the provider. Eq. (7.18) defines this constraint during application placement.

7.4.2 Enhancement of Profit

Complexity of solving the optimization problem noted in Eq. (7.14) using an ILP solver

is very high. Through this method, it is not feasible to identify the application-instance

mapping within stringent time frame for profit-aware application placement. Therefore,

a heuristic-method to solve the placement problem is proposed. The heuristic is imma-

nent in the EnhanceProfit procedure presented in Algorithm 6. It identifies the best-fit
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Algorithm 6 Profit enhancement algorithm
1: procedure ENHANCEPROFIT(τ, Ck, Rk)
2: for c := Ck do
3: if !c.allocated then
4: Mc ← −∞
5: Xc ← null
6: for r := Rk do
7: if !r.placed then
8: tp

rc ← sr

µc

9: tn
rc ← lr

λc

10: υrc ← tn
rc

tp
rc

11: ξr ← τr
a + δr − τ

12: trc ← tp
rc + ηctn

rc
13: Ωrc ← trc[ωc + (1− ηc){υrc(ωc − βc) + ∂}]
14: Γrc ← tp

rcαc + ηctn
rcβc

15: er
c ← Ωrc − Γrc

16: mr
c ←

er
c

ξr

17: if zr ≤ Zc then
18: if trc ≤ ξr then
19: if Ωrc ≤ ψr then
20: if Mc < mr

c then
21: Mc ← mr

c
22: Xc ← r
23: if Xc 6= null then
24: c.assignedApplication← Xc
25: Xc.placed← true
26: c.allocated← true
27: τXc

ϑ ← τ
28: φ.add(Xc)

solution in terms of Profit Merit (PM) for placing applications to instances. Details of

the EnhanceProfit procedure is described as follows.

To determine the application-instance mapping for the kth placement round, Enhan-

ceProfit procedure takes the current time stamp τ, set of available instances Ck and set

of requested applications Rk as arguments. While identifying the mapping, at first Fog-

based instances and later, the Cloud-based instances are considered. As shown in Algo-

rithm 6, EnhanceProfit procedure consists of 4 steps:

1) For each instance c ∈ Ck, firstly, it is checked whether the instance has already

been allocated to any application or not (line 2-3). If the instance is not allocated, two

variables Mc and Xc are initialized (line 4-5). Mc tracks the maximum PM value associate

with the instance c and Xc stores the application which is responsible for the value in Mc.

2) For the instance c, the placement request of each application r ∈ Rk is exploited
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(line 6). If the application has not been placed yet (line 7), the following parameters are

determined for its placement in respect of instance c.

i. input data processing time tp
rc through Eq. (7.1) (line 8).

ii. input data propagation time tn
rc applying Eq. (7.2) (line 9).

iii. performance improvement grade υrc by Eq. (7.8) (line 10).

iv. latency sensitivity index ξr according to Eq. (7.12) (line 11).

v. required time trc to complete the application execution based on tp
rc and tn

rc(line 12) .

vi. service charge Ωrc for users to execute the application using Eq. (7.19) (line 13). The

value of εc is derived from Eq. (7.9).

vii. operational cost Γrc for executing the application considering its input data propa-

gation time tn
rc and processing time tp

rc along with per unit time networking cost βc and

processing cost αc (line 14).

viii. Gross profit er
c for application execution by deducting operational cost Γrc from ser-

vice charge Ωrc (line 15).

ix. PM mr
c by applying Eq. (7.13) (line 16).

3) Based on the calculation of step 2, resource, QoS and budget constraint for the

placement are explored (line 17-19). The estimated mr
c is also compared with Mc pro-

vided that the constraints are satisfied (line 20). If mr
c is higher than Mc, then Mc is

updated with the value of mr
c and Xc is set to r (line 21-22). The intuition for performing

these operations is to select an application r for placing on instance c which meets all

the imposed constraints and has the maximum relative weight of estimated Gross Profit

and latency sensitivity index on c. It not only increases the proportion of Gross Profit for

executing application r on instance c but also reduces the scope of SLA violation for r.

Consequently, it enhances the Net profit of providers.

4) If Xc refers to any application (line 23), that application is assigned to instance c

(line 24). To ensure the placement constraint, Xc.placed and c.allocated are set true (line

25-26). The placement time τXc
ϑ of Xc is also set to current time stamp τ and Xc is added

to the set of QoS satisfied application placement requests φ (line 27-28).

For each placement round of a billing period, EnhanceProfit procedure is required

to be executed. However, from lines 2 to 28 in Algorithm 6, there are O(|Ck| · |Rk|) iter-

ations, where |Ck| is the number of available computing instance and |Rk| denotes the
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Figure 7.2: Illustrative integrated Fog-Cloud environments

number of received application placement requests during kth placement round. There-

fore, while identifying application-instance mapping per placement round, Algorithm

6 functions with polynomial time complexity. Theoretically, it also takes less amount of

time to operate than ILP solvers. In addition, the proposed heuristic-method simultane-

ously enhances the Net profit of providers, ensures the QoS satisfaction of applications

and meets the budget constraint of users which makes the method more effective for

profit-aware application placement.

7.5 Illustrative Example

To numerically illustrate the basic steps of proposed profit-aware application placement

policy, we have considered an integrated Fog-Cloud environment as depicted in Fig. 7.2.

Here, the Computing Platform offers 4 instances: two instances (ins#1, ins#2) are ex-

tended from Cloud to Fog part and two instances (ins#3, ins#4) remain at Cloud part.

Configuration of the instances are summarized in Table 7.3. Here, Kilo byte per sec-

ond (KB/s) and Thousand instruction per second (TI/s) refers to the unit of network

bandwidth and processing speed for the instances respectively.
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Instances λc(KB/s) µc(TI/s) ωc($/s) αc($/s) βc($/s)

ins#1 840.00 190.00 0.0380 0.0085 0.0065

ins#2 824.00 167.00 0.0364 0.0064 0.0050

ins#3 820.00 162.00 0.0360 0.0060 0.0047

ins#4 845.00 193.00 0.0386 0.0088 0.0068

Table 7.3: Parameters of computing instances

Requests lr(KB) sr (TI) ψr ($) δr (sec) τr
a

app#1 110.00 27.00 0.9054 0.5838 0.0170

app#2 80.00 23.00 0.8062 0.5115 0.0190

app#3 140.00 30.00 0.8915 0.6115 0.0330

app#4 90.00 26.00 0.9797 0.6075 0.0340

app#5 100.00 28.00 0.8384 0.6719 0.0360

app#6 130.00 21.00 0.9210 0.5448 0.0410

Table 7.4: Parameters of applications

At time τ = 0.0 second, the Gateway g starts receiving placement requests and the

placement round interval is set to 0.100 seconds. Thus, the first placement round occurs

at τ = 0.100 second. Details of requested applications before the first placement round

are given in Table 7.4.

For the first placement round, entries of Table 7.3 and 7.4 are denoted as C1 and R1,

and as part of EnhanceProfit procedure, the input data processing time tp
rc and propa-

gation time tn
rc, ∀r ∈ R1 on each c ∈ C1 are determined. The value of tp

rc and tn
rc for this

round are shown in Table 7.5. Later, ∀r ∈ R1, the performance improvement grade υrc

are determined. They are figured out in respect of ins#1 and ins#2 those are extended

from Cloud to Fog part of the platform. Since ins#3 and ins#4, remain in Cloud part,

according to the proposed policy, performance improvement grade of applications re-

garding them are irrelevant. Moreover, execution service charge Ωrc and operational

cost Γrc of applications on each c ∈ C1 are estimated. Here, ∂ is set to 0.005 $/s. These es-

timations are presented in Table 7.6 and 7.7. Additionally, the PM values of each r ∈ R1

on different c ∈ C1 are calculated and they are listed in Table 7.8.

The proposed policy selects that instance for placing an application which ensures
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Input data processing time tp
rc

Instances→
Applications ↓

ins#1 ins#2 ins#3 ins#4

app#1 0.1421 0.1617 0.1667 0.1399

app#2 0.1211 0.1377 0.1420 0.1192

app#3 0.1579 0.1796 0.1852 0.1554

app#4 0.1368 0.1557 0.1605 0.1347

app#5 0.1474 0.1677 0.1728 0.1451

app#6 0.1105 0.1257 0.1296 0.1088

Input data propagation time tn
rc

Instances→
Applications ↓

ins#1 ins#2 ins#3 ins#4

app#1 0.1310 0.1335 0.1341 0.1302

app#2 0.0952 0.0971 0.0976 0.0947

app#3 0.1667 0.1699 0.1707 0.1657

app#4 0.1071 0.1092 0.1098 0.1065

app#5 0.1190 0.1214 0.1220 0.1183

app#6 0.1548 0.1578 0.1585 0.1538

Table 7.5: Input data processing and propagation time

Instances→
Applications ↓

ins#1 ins#2

app#1 0.9215 0.8257

app#2 0.7867 0.7049

app#3 1.0556 0.9458

app#4 0.7830 0.7015

app#5 0.8078 0.7238

app#6 1.4002 1.2546

Table 7.6: Performance improvement grade υrc for Fog instances
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Total service charge Ωrc

Instances→
Applications ↓

ins#1 ins#2 ins#3 ins#4

app#1 0.0102 0.0109 0.0108 0.0104

app#2 0.0082 0.0088 0.0086 0.0083

app#3 0.0120 0.0128 0.0128 0.0124

app#4 0.0093 0.0099 0.0097 0.0093

app#5 0.0101 0.0108 0.0106 0.0102

app#6 0.0096 0.0102 0.0104 0.0101

Total operational cost Γrc

Instances→
Applications ↓

ins#1 ins#2 ins#3 ins#4

app#1 0.0012 0.0010 0.0016 0.0021

app#2 0.0010 0.0009 0.0013 0.0017

app#3 0.0013 0.0011 0.0019 0.0025

app#4 0.0012 0.0010 0.0015 0.0019

app#5 0.0013 0.0011 0.0016 0.0021

app#6 0.0009 0.0008 0.0015 0.0020

Table 7.7: Total service charge and operational cost

Instances→
Applications ↓

ins#1 ins#2 ins#3 ins#4

app#1 0.0180 0.0197 0.0184 0.0166

app#2 0.0167 0.0183 0.0170 0.0152

app#3 0.0196 0.0213 0.0200 0.0182

app#4 0.0150 0.0164 0.0152 0.0137

app#5 0.0145 0.0159 0.0148 0.0133

app#6 0.0179 0.0193 0.0182 0.0167

Table 7.8: PM of applications for first placement round
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Instances Applications

ins#1 app#3

ins#2 app#1

ins#3 app#6

ins#4 app#2

Table 7.9: Placement map for first round

Instances→
Applications ↓

ins#1 ins#2 ins#3 ins#4

app#4 0.0237 0.0260 0.0242 0.0217

app#5 0.0217 0.0237 0.0221 0.0198

Table 7.10: PM of applications for second placement round

maximum PM value (in red color on Table 7.8) for the application satisfying all con-

straints. The placement map for the first round is shown in Table 7.9.

In this example, the second placement round is supposed to occur at τ = 0.200

second. Since all instances were busy on that time in executing previously placed appli-

cations, the second round occurs at τ = 0.300 second. By this time all instances become

available for C2 and due to not receiving new requests, R2 encapsulates only app#4 and

app#5. The PM values of each r ∈ R2 on ∀c ∈ C2 are shown in Table 7.10. According to

them, the placement map for the second round is shown in Table 7.11.

The illustrative example shows that the PM value of applications waiting for longer

period of time gradually increases. However, the aforementioned operations for each

placement round are conducted on Gateway g of the Computing Platform. We imple-

ment Gateway g with Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz 2GB DDR2 RAM.

On this configuration, Gateway g takes 0.008 seconds on average to identify placement

map for each round.

Instances Applications

ins#1 app#4

ins#2 app#5

Table 7.11: Placement map for second round
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7.6 Performance Evaluation

In this section, performance of the proposed profit-aware application placement policy

is compared with the basic concept of Completion time [207], Deadline [177] and Revenue-

prioritized placement policies [303]. In Deadline-prioritized placement policy, deadline-

critical applications are placed on computationally powerful instances in higher prece-

dence whereas in Revenue-prioritized placement policy, it is done for economically

beneficial applications. Alternatively, through Completion time-prioritized placement

policy, applications are placed on those instances which collectively ensure minimized

application execution time. The profit-aware application placement problem for the

proposed policy is also solved by following two approaches; in Optimized Profit-aware

placement, the gateway runs SCIP [215] to find solution for Eq. (7.14), and in Heuristic

Profit-aware placement the gateway executes EnhanceProfit procedure from Algorithm 6

to identify application-instance map during each placement round.

7.6.1 Simulation Environment

The experiments for performance evaluation of proposed policy are conducted in a sim-

ulated Fog-Cloud environment using iFogSim [219]. Instances of this environment are

containerized and their specifications such as network bandwidth, processing speed and

expenses are extracted from real-world references [318]. Since the instances offer short-

term services, their per unit time price is comperatively higher than the instances pro-

visioned for long-term services [319]. Additionally, to model the placement requests,

synthetic workload is used since real-world workload for large number of different IoT

applications are not currently available. The arrival pattern of these requests is Pois-

son distributed and their parametric standards are congruent with the configuration of

instances. Numerical values of simulation attributes are determined from their given

range in Table 7.12 through discrete uniform distribution.
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Parameter Numerical Specification

Simulation Duration 500 sec

Interval between placement rounds 0.020 – 0.180 sec

Total number of instances 50

Frequency of request arrival 10 – 50 applications/s

Instance:

Network bandwidth 700 – 1000 KBPS

Processing speed 120 – 220 TIPS

Price 0.025 – 0.06 $/s

Cost of processing 0.005 – 0.01 $/s

Cost of networking 0.002 – 0.007 $/s

Application:

Input packet size 80 – 140 KB

Number of instructions 20 – 30 TI

User’s budget 0.80 – 1.00 $ per application

Service delivery time limit 0.500 – 0.700 sec

Table 7.12: Simulation parameters for profit-aware management

7.6.2 Performance Metrics

In experiments, the following metrics are used to evaluate the performance of proposed

application placement policy.

1. Percentage of QoS-satisfied applications: The percentage of QoS satisfied applications

φ℘ is calculated as the ratio between number of QoS-satisfied applications |φ| and total

number of requested application |Φ| per billing period using Eq. (7.20);

φ℘ =
|φ|
|Φ| × 100%. (7.20)

The higher percentage denotes the improved performance of integrated environment.

2. Average waiting time of applications: Waiting time of an application is defined as

the interval between its requesting and placement time. The average waiting time τ̄w of
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QoS-satisfied applications per billing period is calculated using Eq. (7.21);

τ̄w =
1
|φ| ∑
∀r∈φ

τr
ϑ − τr

a . (7.21)

The lower the waiting time signifies the higher the performance of integrated environ-

ment.

3. Total Gross profit of providers from a Computing Platform: Per billing period, this

metric is calculated using Eq. (7.7). The increased total Gross profit refers to higher

balance between service charge and operational cost. It also reflects the efficiency of

providers in setting price of the instances.

4. Net profit of providers from a Computing Platform: This metric is calculated by Eq.

(7.11) after each billing period. Enhanced Net profit signifies improved performance of

the platform in reducing SLA violation and compensation.

Besides, Percentage of compensation to Gross profit is calculated in the experiments by

Eq. (7.22);

ρ℘ =
ρ

Υ
× 100%. (7.22)

Proportional relation between ρ℘ and the rate of SLA violation helps to support fi-

nancial aspects of both users and providers. Moreover, Average application completion time

and Average service charge for Fog and Cloud instances are analysed during experiments

to demonstrate the improvement in application’s service delivery and justify the appli-

cability of proposed pricing model. Average time to identify placement map is also used as

an performance metric. Reduced time to identify the placement map denotes the higher

feasibility of applying corresponding approach for solving the placement problem.

The aforementioned performance metrics can have a significant impact on any real-

world IoT-enabled system. For example, a remote health management system can re-

quest an integrated computing environment to place various IoT applications for mea-

suring heartbeat, determining oxygen saturation level, monitoring electrocardiogram

pattern and analysing sleep apnea data of different patients [2]. In such circumstance,

high percentage of QoS satisfied applications is required for ensuring that the comput-

ing environment can offer services for most of the requested applications within their

deadline. Similarly, the computing environment should guarantee lower waiting time
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Figure 7.3: Impact of varying number of applications on (a) percentage of QoS satisfac-
tion (b) waiting time (c) Gross profit (d) Net Profit

for all applications so that their execution can initiate in quicker time. Both will help the

IoT-enabled system to deal with emergency situations of critical patients. However, the

computing environment would need to manage the applications for remote health man-

agement system in such a way that can maximize Gross and Net profit of providers.

Otherwise, the computing environment will be beneficial only for the IoT-system op-

erators and patients, and there will be no financial support for the providers. Apart

from these issues, the high percentage of compensation for increased number of SLA

violations will assist the computing environment to attain loyalty of other IoT-enabled

systems that can eventually work in favour of the providers.
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Figure 7.4: Impact of varying percentage of Fog instances on (a) percentage of QoS sat-
isfaction (b) waiting time (c) Gross profit (d) Net profit

7.6.3 Experimental Results

The experiments for performance evaluation are conducted by varying the number of

requested applications, the number of instances, the percentage of Fog instances and the

interval between placement rounds separately. For each variation of these parameters,

simulation is run for 500 seconds and the performance metrics are calculated only when

the simulation is over. For simplicity, results of all homogeneous variations for a specific

metric are combined in a single two-dimensional graph. These graphs are described in

the following subsections.
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Impact of varying number of applications

Due to receiving placement requests at higher frequency compared to the available rate

of instances, the percentage of QoS satisfied applications decreases (Fig. 7.3.a). In Profit-

aware application placement, this down trend is slower and closer to the Deadline-

prioritized placement policy. The proposed policy schedules applications in precedence

of their service delivery deadline. It raises the QoS satisfaction percentage compared to

the Completion time and the Revenue-prioritized application placement where prior-

ity of applications largely depends on their program size and prospect of earning rev-

enue. Moreover, average waiting time of placed applications prolongs as the number

of requested application increases (Fig. 7.3.b). In this experiment, the proposed policy

performs better than the Deadline-prioritized and the Revenue-prioritized policy since it

increases the PM value of applications per placement round. However, it awaits latency-

tolerant and less economical applications for a longer period of time. Conversely, the

Completion time-prioritized placement policy releases instances quickly that helps to

place more applications in next rounds and reduces their waiting time.

Since Net profit is accumulated from Gross profit, it always remains greater than

Net profit. However, the instance pricing model of the proposed policy helps providers

to increase revenue from Fog-based placement of applications that consequently boosts

their Gross profit. Hence, the amount of Gross profit with the increasing of applications

becomes higher for the proposed policy compared to Completion time and Deadline-

prioritized placement policy (Fig. 7.3.c). Moreover, the proposed policy ensures QoS

satisfaction for significant percentage of applications that resists SLA violations and as-

sists providers to pay less compensation. For this reason, provider’s Net profit elevates

at higher rate in favour of the proposed policy compared to others as the number of

applications increases (Fig. 7.3.d). Lower mount of Gross profit also results in reduced

Net profit for Completion time and Deadline-prioritized placement policy. Neverthe-

less, the Revenue-prioritized placement policy performs almost similar to the proposed

policy in increasing provider’s Gross profit. Since the percentage of SLA violation rises

for the Revenue-prioritized placement policy with the increasing of applications, it leads

provider’s to pay high compensation. Therefore, despite of elevating Gross profit, it of-

fers less Net profit than the proposed policy.
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Figure 7.5: Impact of varying placement round interval on (a) percentage of QoS satis-
faction (b) waiting time (c) Gross profit (d) Net Profit

The impact of varying number of requested applications on different performance

metrics signify that placement request receiving frequency of a Computing Platform

should be congruent with the availability rate of instances. It helps to maintain accept-

able level of provider’s profit and waiting time of applications with higher QoS satisfac-

tion of users.

Impact of varying percentage of Fog instances

In a Computing Platform, if the percentage of Fog instances rises, the percentage of QoS

satisfied application increases (Fig. 7.4.a). The higher number of Fog instances assist

more applications to reduce their input propagation delay and to meet QoS. Besides, for
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explicitly dealing with the service delivery deadline, the proposed and the Deadline-

prioritized placement policy performs better in this case compared to the others.

Similarly, as the number of Fog instances increases, average waiting time of appli-

cations increases (Fig. 7.4.b). Due to charging additional price for using Fog instances,

Cloud instances remain as the only option to place low-budget applications. When the

number of Cloud instances becomes less, these applications wait for a longer period of

time. In this case, compared to other policies, the Completion time-prioritized place-

ment policy performs better as it releases all kinds of instances quickly. Moreover, in-

creased number of Fog instances elevates both Gross and Net profit for providers (Fig.

7.4.c and 7.4.d). In these experiments, for concurrently maximizing revenue and reduc-

ing SLA violations, the proposed policy performs better than others.

However, results of the aforementioned experiments signify that a balanced ratio of

Fog and Cloud instances assists both profit enhancement and waiting time management.

Impact of varying placement round interval

As the interval between two placement rounds increases, the percentage of QoS satis-

faction decreases and waiting time of applications increases (Fig. 7.5.a and 7.5.b). This

interval halts placement of applications even when the instances are already available

and resists applications to meet service delivery deadline. However, for considering

deadline during application placement, the proposed policy performs better in this ex-

periment than others specially in terms of QoS satisfaction. Moreover, lower QoS satis-

faction occurred form increased placement round interval decrease both Gross and Net

profit of providers from a Computing Platform (Fig. 7.5.c and 7.5.d). Since the proposed

policy offers compensation as a variable percentage of provider’s total Gross profit, it

ensures moderate Net profit despite of higher SLA violation than others.

Outcomes of these experiments recommend tuning the placement round interval

in such way that neither creates overhead on gateway by invoking placement process

frequently nor degrades the percentage of QoS satisfied requests.
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Figure 7.6: Required time to find placement map varying (a) number of requests (b)
number of instances (c) placement round interval

Feasibility of placement problem solving approaches

In aforementioned results, the Optimized Profit-aware placement performs slightly bet-

ter than the Heuristic Profit-aware placement. However, as the number of requested

applications increases or the number of instances increases, or both happens due to

increasing the placement round interval, the Optimized Profit-aware placement takes

longer period of time to identify the application-instance map than the heuristic ap-

proach (Fig 7.6.a, 7.6.b and 7.6.c). Thus, the Optimized Profit-aware placement increases

overhead on gateways and degrades their performance. Since the outcomes of both

Optimized and Heuristic Profit-aware placement do not vary significantly, for in-time

performance, it is feasible to apply the heuristic approach instead of the optimized one
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Figure 7.7: Comparison between (a) fixed and variable compensation (b) average ap-
plication completion time (c) average charge for Fog and Cloud instances

to implement the proposed policy.

Justification for compensation and instance pricing

The proposed policy facilitates compensation according to the performance of Comput-

ing Platform. It ensures high compensation for higher percentage of SLA violation and

vice versa (Fig. 7.7.a). Conversely, in fixed rate compensation method (10% of total

revenue), the percentage of compensation to Gross profit remain static despite of per-

formance improvement or degradation [320]. As a result, the Computing Platform fails

to show its financial support to both providers and users. Besides, in such method, the

distribution of compensation amount is uniform among the affected users on different
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SLA violation rate. Therefore, the variable rate compensation method of the proposed

policy is more conducive to build a financially supportive computing environments for

both users and providers than the fixed rate compensation method.

Moreover, it is already proven that Fog-based placement of an application deliver

services in reduced time compared to its Cloud-based placement. It happens due to less

or negligible input propagation delay while executing an application in Fog instance.

The experiment result shown in Fig. 7.7.b also certifies this fact with almost 55% im-

proved completion time of applications for their Fog-based placement in context of the

devised computing environment and proposed placement policy. For this experiment,

a candidate set of applications is placed through the proposed policy on fixed num-

ber of Fog and Cloud instances separately. Identical configuration is maintained for

each instances and workload of the applications are kept unchanged during the exper-

iment. Thus, its fairness and validity are ensured. On same experimental setup, it is

also observed that Fog instances charge additional 20% on average in contrast to Cloud

instances (Fig. 7.7.c), which is quite less compared to the scale of performance improve-

ment. Hence, it is realized that instance pricing model applied in the policy is justified

and reflects an acceptable value for improving performance.

7.7 Summary

A profit-aware application placement policy for integrated Fog-Cloud environments is

proposed in this work. The policy simultaneously increases provider’s Gross and Net

profit by placing applications on suitable instances without violating their deadline con-

straint. It incorporates a pricing model that tunes the service charge of Fog instances

according to their capability of reducing application service delivery time. The policy

follows a compensation method to mitigate the effect of SLA violation on users. The

compensation method depends on the performance of computing environments and

supportive for both providers and users. The proposed policy can identify application-

instance map by using any ILP solver or best-fit heuristic approach. To demonstrate the

efficacy of proposed policy, we applied the heuristic approach in an iFogSim-simulated

environment and compared its performance with several existing application placement
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policies. The experimental results show improvements in Gross and Net profit, waiting

time and QoS satisfaction rate for the proposed policy. They also manifested that heuris-

tic implementation of the policy finds closer to optimal solution within minimal time,

and pricing of the Fog instances are justified to their performance.





Chapter 8

Conclusions and Future Directions

This chapter concludes the thesis and discusses a summary of works and key contributions. Then,

it highlights several future research directions for further improvement of Fog computing concepts.

8.1 Summary of Contributions

In recent years, the number of Internet of Things (IoT) devices has increased to a great ex-

tent. Fog computing has been introduced to support the computational demand of real-

time latency-sensitive applications of geographically distributed IoT devices. Fog com-

puting environments reside closer to the IoT devices and extend the Cloud-based com-

puting, storage and networking facilities to the users. It has already drawn significant

attention from both industry and academia. However, most of the Fog nodes are not re-

source enriched. Therefore, large scale application development in resource-constrained

nodes are not quite easy compared to traditional datacentres. Additionally, the SLA be-

tween users and service providers in Fog computing explicitly depends on the QoS re-

quirements of the applications, the expectations of the users and profit of the providers.

Therefore, in a particular scenario, it is quite difficult to specify the application service

management metrics and the corresponding Service Level Objectives (SLOs). Moreover,

the management of applications in Fog environments is subjected to dynamic scalabil-

ity, interoperability and reliability-related issues. In Fog environments, these issues can

be resolved by identifying suitable placement options for the applications. In this thesis,

we investigated the placement of applications over resource-constrained, heterogeneous

and distributed Fog nodes.

Chapter 1 presented the basic concept of Fog computing and highlighted its chal-
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lenges. It also outlined the research questions addressed in this thesis. Then, Chap-

ter 2 investigated the existing application management approaches in Fog computing

from the perspectives of architecture, placement and maintenance. Later, it presented

a taxonomy and reviewed the literature based on the taxonomy. It also highlighted a

perspective model for application management in Fog environments.

Chapter 3 discussed an Edge affinity-based application management policy for Fog

environments. Edge affinity denotes the relative intensity of user-defined deadline,

amount of data per input and sensing frequency of IoT devices that defines the applica-

tion characteristics. These characteristics help in identifying the necessity of an applica-

tion for Fog-based placement to meet its QoS requirements. This policy is applicable for

different types of applications including latency-sensitive, data-intensive and streaming

applications. When a user has multiple applications and limited Fog resources to al-

locate them, our policy assists in classifying and selecting the applications as per their

Edge affinity at the gateway level. Additionally, it determines the placement of an appli-

cation to that Fog node which ensures the minimum application service delivery time.

Chapter 4 presented a latency-aware application management policy for Fog envi-

ronments. The policy facilitates the placement of distributed applications which can be

decomposed as a collection of inter-dependent Application Modules. Fog nodes are of-

ten organized in a hierarchical order. Our proposed policy places the latency-sensitive

applications at the lower levels. It also forwards the latency-tolerant application to the

higher levels based on the inter-module data dependency delay the inter-nodal com-

munication delay of the Fog nodes. Additionally, the proposed policy consolidates the

number of active Fog nodes through a module forwarding technique. It schedules the

execution of modules on Fog nodes as per their input receiving frequency. Consequently,

it assists in managing energy usage and application’s QoS in the Fog environments.

Chapter 5 proposed a context-aware application management policy for Fog com-

puting environments. The policy exploits the sensing frequency of IoT devices and the

size of their generated data to determine the suitable placement options for the applica-

tions. The novel contribution of this policy is to support multi-tenancy on bare-metal

without congesting the network and increasing the computational overhead signifi-

cantly. It assists different streaming applications to leverage the capabilities of their host
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Fog nodes. At the same time, it ensures that streaming applications are not required

to alter their input processing destinations very frequently. Thus, the proposed policy

helps in meeting the QoS of the applications in Fog environments. In this thesis, we

discussed this policy from the perspective of Industry 4.0.

Chapter 6 discussed QoE-aware application management in Fog computing environ-

ments. The policy places the applications according to the user expectations. It is widely

accepted that placement of applications based on user expectations helps to enhance the

QoE of the user. This chapter explicitly distinguishes QoS and QoE from the user’s per-

spective. The novelty of our proposed QoE-aware policy is to quantify the subjective

measurement of user expectations. Moreover, this chapter incorporates an illustrative

example to depict the numerical operations of the proposed policy and calculate the

compound QoE gain of the users.

Chapter 7 investigated a profit-aware application management policy for Fog com-

puting environments. It includes a pricing model for executing applications in Fog en-

vironments according to the level of performance improvement. Consequently, it en-

hances the profit of service providers form the Fog-based placement of the applications.

Additionally, it facilitates compensation to users for the SLA violations. The compen-

sation amount maintains an inverse relation with the QoS satisfaction percentage that

observes the economic benefit for both the service providers and users.

The chapters mentioned above collectively present an IoT application management

system for Fog computing environments that simultaneously improves application’s

QoS, user’s QoE and provider’s profit. It is indeed a timely contribution to the state-

of-the-art.

8.2 Future Research Directions

In this thesis, we addressed several challenges of application management in Fog com-

puting environments. However, there exist some other issues that require to be investi-

gated more comprehensively. This section gives some insights into these challenges for

future work in this area.
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8.2.1 Trade-off between energy and accuracy

The accuracy level of an application largely depends on the sensing rate of the IoT de-

vices especially during smart surveillance. Conversely, it elevates their energy consump-

tion significantly. When the renewable energy sources power the IoT devices, energy

management becomes even more complicated. To deal with such cases, the dynamic

tuning of the accuracy level and the sensing frequency of the IoT devices can be a po-

tential solution.

8.2.2 User demand-driven application management

Users’ service demand can change during application execution. It is also difficult to

grasp and predict the users’ dynamics in real-time. If they are overlooked while exe-

cuting the applications, the QoE can degrade. A dynamic demand-driven application

management policy from the user’s perspective can be helpful to address this issue.

8.2.3 Artificial intelligence-based application management

Currently, artificial intelligence is receiving significant attention due its ability of solving

complex problems. A huge amount of training data set is required to build an artificial

intelligence-based system, which is very easy to accumulate in Fog. It will also help

to predict the future resource requirements, context variation and nodal failures more

precisely, and manage the applications accordingly.

8.2.4 Pricing and detailed estimation of Fog resources

The Cloud-based pricing models for subscription-oriented services cannot be directly

applied to Fog computing due to the localized demand and distributed deployment

of the IoT-enabled systems. For the same reasons, resource over-provisioning can also

occur in Fog computing environments. Therefore, detailed estimation of resources in

Fog computing is needed considering the number of IoT devices within the CPS and

their application service requirements simultaneously. It will also help to develop an
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efficient business model for the Fog computing environments without relying on the

Cloud-based pricing attributes.

8.2.5 Trusted service orchestration in Fog

The Fog infrastructure can be private or public. The publicly available Fog infrastructure

is highly exposed to security threats. On the other hand, service of private-owned Fog

infrastructure is subjected to lack of transparency. In this case, a trusted service orches-

tration policy is required to ensure the collaboration and reliability between different

types of Fog computing infrastructure.

8.2.6 Fog node consolidation and scaling

Fog nodes are resource-constrained. Inclusion of more Fog nodes can help to alleviate

this limitation to some extent. However, it also increases the deployment cost, commu-

nication interference and energy consumption at the edge network. In this situation,

dynamic consolidation and scaling of Fog nodes as per the demand can be helpful.

8.2.7 Lightweight security features

Due to the distributed nature of blockchain, it is regarded as one of the crucial elements

to enable security in Fog computing. However, the blockchain feature in Fog itself intro-

duces significant computation overhead to resource-constrained Fog nodes. Therefore,

it is required to develop a lightweight blockchain technique for Fog environments.

8.2.8 Application-specific management

Fog computing is intended to support various sensitive IoT applications from different

domains including smart healthcare, transport, city, agriculture and industry. These IoT

applications have specific requirements and need specialized management. Application-

specific management can be helpful in dealing with sensitive applications in Fog.
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8.3 Final Remarks

Fog computing has already attracted significant attention because of its feasibility for

IoT-driven use cases. However, the QoS-aware management of applications is a major

concern for Fog computing. In this thesis, we investigated how the service quality of

IoT applications can be enhanced by placing them efficiently over resource-constrained,

heterogeneous and distributed Fog nodes. The algorithms, mathematical models, and

system architectures proposed in this thesis optimizes the service delivery time of appli-

cations, enhances the QoE of users, and increases the profit of providers. These research

outcomes also provide opportunities for further innovation and development in the do-

main of IoT and Fog computing.
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[202] W. Yánez, R. Mahmud, R. Bahsoon, Y. Zhang, and R. Buyya, “Data allocation

mechanism for internet of things systems with blockchain,” IEEE Internet of

Things Journal, pp. 1–1, 2020.

[203] A. da Silva Veith, F. R. de Souza, M. D. de Assunção, L. Lefèvre, and J. C. S. dos
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[223] B. Ottenwälder, B. Koldehofe, K. Rothermel, and U. Ramachandran, “Migcep: Op-

erator migration for mobility driven distributed complex event processing,” in

Proceedings of the 7th ACM International Conference on Distributed Event-based

Systems, ser. DEBS ’13. New York, NY, USA: ACM, 2013, pp. 183–194.

[224] I. Takouna, R. Rojas-Cessa, K. Sachs, and C. Meinel, “Communication-aware and

energy-efficient scheduling for parallel applications in virtualized data centers,” in

2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,

Dec 2013, pp. 251–255.



256 Conclusions and Future Directions

[225] M. Afrin, M. R. Mahmud, and M. A. Razzaque, “Real time detection of speed

breakers and warning system for on-road drivers,” in 2015 IEEE International WIE

Conference on Electrical and Computer Engineering (WIECON-ECE), Dec 2015,

pp. 495–498.

[226] J. Famaey, W. De Cock, T. Wauters, F. De Turck, B. Dhoedt, and P. Demeester,

“A latency-aware algorithm for dynamic service placement in large-scale over-

lays,” in Integrated Network Management, 2009. IM’09. IFIP/IEEE International

Symposium on. IEEE, 2009, pp. 414–421.

[227] I. Gupta, M. S. Kumar, and P. K. Jana, “Transfer time-aware workflow scheduling

for multi-cloud environment,” in Computing, Communication and Automation

(ICCCA), 2016 International Conference on. IEEE, 2016, pp. 732–737.

[228] Y. Fan, J. Chen, L. Wang, and Z. Cao, Energy-Efficient and Latency-Aware Data

Placement for Geo-Distributed Cloud Data Centers. Cham: Springer Interna-

tional Publishing, 2018, pp. 465–474.

[229] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung, “Dynamic

service placement for mobile micro-clouds with predicted future costs,” IEEE

Transactions on Parallel and Distributed Systems, vol. 28, no. 4, pp. 1002–1016,

2017.

[230] V. Chamola, C.-K. Tham, and G. S. Chalapathi, “Latency aware mobile task

assignment and load balancing for edge cloudlets,” in Pervasive Computing

and Communications Workshops (PerCom Workshops), 2017 IEEE International

Conference on. IEEE, 2017, pp. 587–592.

[231] C. Xu, S. Gamage, P. N. Rao, A. Kangarlou, R. R. Kompella, and D. Xu, “vslicer:

Latency-aware virtual machine scheduling via differentiated-frequency cpu slic-

ing,” in Proceedings of the 21st International Symposium on High-Performance

Parallel and Distributed Computing, ser. HPDC ’12. New York, NY, USA: ACM,

2012, pp. 3–14.

[232] P. S. Addison, J. N. Watson, M. L. Mestek, J. P. Ochs, A. A. Uribe, and S. D. Bergese,



BIBLIOGRAPHY 257

“Pulse oximetry-derived respiratory rate in general care floor patients,” Journal of

Clinical Monitoring and Computing, vol. 29, no. 1, pp. 113–120, Feb 2015.

[233] M. Sahani, C. Nanda, A. K. Sahu, and B. Pattnaik, “Web-based online em-

bedded door access control and home security system based on face recogni-

tion,” in International Conference onCircuit, Power and Computing Technologies

(ICCPCT). IEEE, 2015, pp. 1–6.

[234] T. H. Ashrafi, M. A. Hossain, S. E. Arefin, K. D. J. Das, and A. Chakrabarty, IoT

Infrastructure: Fog Computing Surpasses Cloud Computing. Springer Singa-

pore, 2018, pp. 43–55.

[235] M. Slabicki and K. Grochla, “Performance evaluation of coap, snmp and net-

conf protocols in fog computing architecture,” in NOMS 2016 - 2016 IEEE/IFIP

Network Operations and Management Symposium, April 2016, pp. 1315–1319.

[236] J. Kempf, J. Arkko, N. Beheshti, and K. Yedavalli, “Thoughts on reliability in the

internet of things,” in Interconnecting smart objects with the Internet workshop,

vol. 1, 2011, pp. 1–4.

[237] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit

for modeling and simulation of resource management techniques in the inter-

net of things, edge and fog computing environments,” Software: Practice and

Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[238] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya, “Cloudsim:

a toolkit for modeling and simulation of cloud computing environments and eval-

uation of resource provisioning algorithms,” Software: Practice and experience,

vol. 41, no. 1, pp. 23–50, 2011.

[239] W. Lin, C. Liang, J. Z. Wang, and R. Buyya, “Bandwidth-aware divisible task

scheduling for cloud computing,” Software: Practice and Experience, vol. 44,

no. 2, pp. 163–174, 2014.

[240] R. Mahmud, M. Afrin, M. A. Razzaque, M. M. Hassan, A. Alelaiwi, and M. Alruba-

ian, “Maximizing quality of experience through context-aware mobile application



258 Conclusions and Future Directions

scheduling in cloudlet infrastructure,” Software: Practice and Experience, vol. 46,

no. 11, pp. 1525–1545, 2016, spe.2392.

[241] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry 4.0,”

Business & Information Systems Engineering, vol. 6, no. 4, pp. 239–242, Aug 2014.

[242] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Industrial Inter-

net of Things: Challenges, Opportunities, and Directions,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 11, pp. 4724–4734, Nov 2018.

[243] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, and B. Yin, “Smart Factory of Industry

4.0: Key Technologies, Application Case, and Challenges,” IEEE Access, vol. 6, pp.

6505–6519, Dec 2018.

[244] M. Aazam, S. Zeadally, and K. A. Harras, “Deploying Fog Computing in In-

dustrial Internet of Things and Industry 4.0,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 10, pp. 4674–4682, Oct 2018.

[245] K. Sato and S. Azuma, “Secure Real-Time Control Through Fog Computation,”

IEEE Transactions on Industrial Informatics, vol. 15, no. 2, pp. 1017–1026, Feb 2019.

[246] A. Singhvi, S. Banerjee, Y. Harchol, A. Akella, M. Peek, and P. Rydin, “Granular

Computing and Network Intensive Applications: Friends or Foes?” in 16th ACM

Workshop on Hot Topics in Networks, Palo Alto, CA, USA, 2017, pp. 157–163.

[247] M. Haferkamp, B. Sliwa, C. Ide, and C. Wietfeld, “Payload-Size and Deadline-

Aware scheduling for time-critical Cyber Physical Systems,” in Wireless Days,

Porto, Portugal, Mar 2017, pp. 4–7.

[248] Q. T. Minh, E. Kamioka, and S. Yamada, “CFC-ITS: Context-Aware Fog Comput-

ing for Intelligent Transportation Systems,” IT Professional, vol. 20, no. 6, pp. 35–

45, Nov 2018.

[249] J. Lee, K. Lee, E. Jeong, J. Jo, and N. B. Shroff, “CAS: Context-Aware Background

Application Scheduling in Interactive Mobile Systems,” IEEE Journal on Selected

Areas in Communications, vol. 35, no. 5, pp. 1013–1029, May 2017.



BIBLIOGRAPHY 259

[250] B. Gu, X. Wang, Y. Qu, J. Jin, Y. Xiang, and L. Gao, “Context-Aware Privacy

Preservation in a Hierarchical Fog Computing System,” in IEEE International

Conference on Communications, Shanghai, China, May 2019, pp. 1–6.

[251] X. Yao, H. Kong, H. Liu, T. Qiu, and H. Ning, “An Attribute Credential Based Pub-

lic Key Scheme for Fog Computing in Digital Manufacturing,” IEEE Transactions

on Industrial Informatics, vol. 15, no. 4, pp. 2297–2307, Apr 2019.

[252] C. Lin and J. Yang, “Cost-Efficient Deployment of Fog Computing Systems at

Logistics Centers in Industry 4.0,” IEEE Transactions on Industrial Informatics,

vol. 14, no. 10, pp. 4603–4611, Oct 2018.

[253] D. A. Chekired, L. Khoukhi, and H. T. Mouftah, “Industrial IoT Data Scheduling

Based on Hierarchical Fog Computing: A Key for Enabling Smart Factory,” IEEE

Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4590–4602, Oct 2018.

[254] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, “Fog Computing for Energy-

Aware Load Balancing and Scheduling in Smart Factory,” IEEE Transactions on

Industrial Informatics, vol. 14, no. 10, pp. 4548–4556, Oct 2018.

[255] A. Kumari, S. Tanwar, S. Tyagi, and N. Kumar, “Fog computing for Health-

care 4.0 environment: Opportunities and challenges,” Computers & Electrical

Engineering, vol. 72, pp. 1 – 13, Nov 2018.

[256] N. Ahmed, D. De, and I. Hussain, “Internet of Things (IoT) for Smart Precision

Agriculture and Farming in Rural Areas,” IEEE Internet of Things Journal, vol. 5,

no. 6, pp. 4890–4899, Dec 2018.
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