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Abstract

A fundamental problem in building large scale Grid resourcesharing system is the
need for efficient and scalable techniques for discovery andprovisioning of resources
for delivering expected Quality of Service (QoS) to users’ applications. The current ap-
proaches to Grid resource sharing based on resource brokersare non-coordinated since
these brokers make scheduling related decisions independent of the others in the system.
Clearly, this worsens the load-sharing and utilisation problems of distributed Grid re-
sources as sub-optimal schedules are likely to occur. Further, existing brokering systems
rely on centralised information services for resource discovery. Centralised or hierar-
chical resource discovery systems are prone to single-point failure, lack scalability and
fault-tolerance ability. In the centralised model, the network links leading to the server
are very critical to the overall functionality of the system, as their failure might halt the
entire distributed system operation.

In this thesis, I propose a new federated Grid system, calledGrid-Federation that aims
towards decentralised and coordinated coupling of distributed Grid resources as a part of
single cooperative system. The Peer-to-Peer (P2P) networkmodel forms the basis for
the design of decentralised protocols for scheduling and resource discovery in the Grid-
Federation. The decentralised organisation enhances the scalability and reliability of the
system. Two levels of decentralised coordination is presented in this thesis: (i) a Ser-
vice Level Agreement (SLA) based broker-to-broker coordination protocol that inhibits
the brokers from over-provisioning the resources and also gives every site the admission
control capability; and (ii) a P2P tuple space based coordination protocol that coordinates
the scheduling process among the distributed resource brokers. The thesis demonstrates
the effectiveness of the proposed Grid-Federation based decentralised protocols in coor-
dinating scalable and robust resource management through extensive simulation studies.

Thesis Contributions: To support the thesis that Grid-Federation model along with
its decentralised protocols for scheduling and coordination is the best possible way to
implement new generation Grid resource sharing system I have:

• outlined key taxonomies for decentralised Grid resource sharing systems,

• proposed, modeled, and evaluated a decentralised resourcesharing system called
Grid-Federation, which aims toward policy based cooperative and coordinated cou-
pling of distributed cluster resources,

• proposed, modeled, and evaluated an SLA based broker-to-broker service contract
negotiation protocol,



• proposed, modeled, and evaluated the extension of Distributed Hash Tables (DHTs)
such as Chord, Pastry using a spatial publish/subscribe index to support decen-
tralised resource discovery protocols in the Grid-Federation,

• proposed, modeled, and evaluated a DHT-based tuple space for coordinating the
application schedules among distributed brokers,

• designed and implemented the Alchemi-Federation softwaresystem, that supports
a coordinated federation of Alchemi cluster over a DHT-based resource discovery
system.
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Chapter 1

Introduction

This chapter introduces the context of the research themes explored in this thesis. It starts

with a high-level overview of Grid computing and analyses the current system design

approaches being practiced for Grid resource management and application scheduling.

Then, it puts forward the fundamental motivations behind decentralised and coordinated

organisation of Grid systems; including resource brokers and resource discovery systems.

The chapter thereafter provides discussion on the thesis outline and contributions. It ends

with a summary of the published materials that were partially or fully utilised for compil-

ing the thesis.

1.1 Grid Computing

The last few years have seen the emergence of a new generationof distributed systems

that scale over the Internet, operate under decentralised settings and are dynamic in their

behavior, where participants can leave or join the system atany time. One such system is

referred to as Grid Computing and other similar systems include P2P Computing [122],

Semantic Web [127], Pervasive Computing [149] and Mobile Computing [17, 68]. Grid

Computing [71] provides the basic infrastructure required for sharing diverse sets of re-

sources including desktops, computational clusters, supercomputers, storage, data, sen-

sors, applications and online scientific instruments. GridComputing offers its vast com-

putational power to solve highly challenging problems in science and engineering such

as protein folding, high energy physics, financial modeling, earthquake simulation, cli-

1
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mate/weather modeling, aircraft engine diagnostics, earthquake engineering, virtual ob-

servatory, bio-informatics, drug discovery, digital image analysis, astrophysics and multi-

player gaming.

The notion of Grid Computing goes well beyond the traditionalParallel and Dis-

tributed Computing Systems (PDCS) as it involves various resources that belong to differ-

ent administrative domains and are controlled by domain specific resource management

policies. Furthermore, grids in general have evolved around complex business and ser-

vice models where various small sites (resource owners) collaborate for computational

and economic benefits. The task of resource management and application scheduling over

a grid is a complex undertaking due to resource heterogeneity, domain specific policies,

dynamic environment, and various socio-economic and political factors.

Grids can be primarily classified [180] into various types, depending on the nature of

their emphasis:- computation, data, application service,interaction, knowledge and util-

ity. Accordingly, grids are proposed as the emerging cyber infrastructure to power utility

computing applications. Computational grids aggregate computational power of globally

distributed computers (e.g., TeraGrid, ChinaGrid, and APACGrid). Data grids emphasize

on a global-scale management of data to provide data access,integration and processing

through distributed data repositories (e.g. LHCGrid, GriPhyN). Application Service (pro-

visioning) grids focus on providing access to remote applications, modules and libraries

hosted on data centers or computational grids (e.g. NetSolve and GridSolve). Interac-

tion grids focus on interaction and collaborative visualization between participants (e.g.

AccessGrid). Knowledge grids aim towards knowledge acquisition, processing, manage-

ment and provide business analytic services driven by integrated data mining services.

Utility grids focus on providing all the Grid services including compute power, data and

service to end users as IT utilities on subscription basis. Furthermore, they provide the

infrastructure necessary for negotiation of required QoS and handle the establishment and

management of contracts and allocation of resources to meetcompeting demands. To

summarize, these grids follow a layered design with computational grid being the bottom

most layer while the utility grid is the top most layer. A gridat a higher-level utilises

the services of grids that operate at lower layers in the design. For example, a data grid

utilises the services of computational grid for data processing and hence builds on it. In
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addition, lower-level grids focus heavily on infrastructure aspects whereas higher-level

ones focus on users and quality of service delivery.

In this work, we focus on designing efficient techniques of discovery and provisioning

of resources in computational grids. Computational grids enable aggregation of different

types of compute resources including clusters, supercomputers and desktops. In general,

compute resources have two types of attributes: (i) static attributes such as the type of

operating system installed, network bandwidth (both LocalArea Network and Wide Area

Network interconnection), processor speed and storage capacity (including physical and

secondary memory); and (ii) dynamic attributes such as processor utilisation, physical

memory utilisation, free secondary memory size, current usage price and network band-

width utilization.

1.2 Project Motivation

The fundamental objective behind the emergence of Grid computing systems is to fa-

cilitate a coordinated resource and problem sharing [71] environment among collabora-

tive administrative domains. Grid resource brokering or superscheduling [151] activity

is defined as scheduling of jobs across resources that belongto distinct administrative

domains. Brokering in computational grids is facilitated byspecialised resource bro-

kers such as NASA-Scheduler [152], Nimrod-G [3] and Condor-G[75]. The main chal-

lenges involved with Grid brokering include: (i) querying Grid resource information ser-

vices (GRIS) [10, 33, 54, 97, 150] for locating resources thatmatch the job requirements;

(ii) coordinating and negotiating SLAs; and (iii) job scheduling. The Grid resources are

managed by their respective Local Resource Management System (LRMS) such as Con-

dor [113], PBS [26], SGE [84], Legion [39], Alchemi [117] and LSF [185]. The LRMS

manages job queues, initiating and monitoring their execution. A key consideration in-

volved with the Grid brokering is thedistributed ownership. As a result, brokers do not

have any control over the resources. Further, there isincomplete system-wide state in-

formationavailable at brokers, in particular about the arrival pattern, service pattern and

composition of jobs across the system.

However, existing techniques to scheduling in a Grid environment are non-coordinated.
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Figure 1.1: Non-Coordinated resource brokering in Grids.

In a non-coordinated system, application schedulers perform scheduling related activities

independent of the other schedulers in the system. They directly submit their applications

to the responsible LRMS managing the resourceswithout taking into account the current

load, priorities and utilisation scenarios of other application level schedulers. Clearly, this

can lead to over-utilisation or bottleneck of some valuableresources while leaving others

largely underutilised. Furthermore, these brokering systems do not have a coordination

(or cooperative) mechanism and this exacerbates the load sharing and utilisation problems

of distributed resources because sub-optimal schedules are likely to occur. Fig. 1.1 shows

such a scenario in which the Nimrod-G, Condor-G and Gridbus [171] resource brokers

are over-provisioning the resources at the Site-1 and Site-2 due to lack of coordination.

At the same time, resources at Site-3 are left under-provisioned.

Another competing approach to the ad-hoc Grid resource assembling is the creation of

a distributed Virtual Organisation (VO) [72] environment that includes scientific research

groups working on collaborative scientific projects. Fig. 1.2 shows a VO based Grid

architecture involving three research institutes. Membership to a specific VO is subject

to the particular problem solving or project domain. An individual research institute can

organise its own resources using a centralised broker whichconnects to the global VO

wide broker. Various VO brokers connect in hierarchy to forma distributed scheduling
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architecture. A VO user can submit jobs to either its centralised local resource broker or to

the VO broker. This solution is fault-tolerant, but a hierarchic connection between VO’s

can impose serious performance limitations as the number ofVOs increases. Further,

there is no defined topology in which various institutes can connect with each other. The

autonomy of an institute is dependent on the VO broker to which it connects. Any VO

specific job migration and resource allocation admission control decision is also taken

care of by the VO broker.

VO Broker

Institute - A

VO Broker

Insitute - C

Local Broker

     SGE      PBS

VO Users

VO Broker

Institute- B

     PBS

VO Users

     SGE

Virtual Organisation

GIIS

GRIS
GRIS

Figure 1.2: Virtual Organisation based Grid organisation.

Furthermore, end-users or their application-level schedulers submit jobs to a LRMS

without having the knowledge about response time or serviceutility. The main reason

for this being the lack of admission control decision makingsupport between brokers and

LRMSes. Sometimes these jobs are queued for relatively excessive times before being

actually processed, leading to degraded QoS. To mitigate such long processing delays and

enhance the value of computation, a scheduling strategy canuse priorities from competing
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user jobs that indicate varying levels of importance. To be effective, the schedulers require

knowledge of how users value their computations in terms of QoS requirements, which

usually varies from job to job. LRMS schedulers can provide a feedback signal that

prevents the user from submitting unbounded amounts of work.

Site 2 (Alchemi enabled)

  Alchemi

    GFA

Peer-to-Peer Query System

Site 3 (Condor enabled)

    GFA

Condor

Site 1 (Globus enabled)

  SGE Globus

    GFA

Users

Site 4 (Legion enabled)

    GFA

Users

       PBS

Figure 1.3: Proposed solution: Grid-Federation resource sharing system.

To address the lack of coordination between the broker-to-broker and broker-to-LRMS,

we have proposed a mechanism for coordinated sharing of distributed Grid resources (in

particular compute clusters and supercomputers) based on ascalable P2P query system.

The resulting environment, calledGrid-Federation [136, 137], allows the transparent

use of resources from the federation when local resources are insufficient to meet its

users’ requirements. Fig. 1.3 shows an abstract model of ourproposed Grid-Federation.

Grid-Federation consists of cluster resources that are distributed over multiple organi-

sations and control domains. Each site in the federation instantiates a Grid-Federation

Agent (GFA) resource management system that exports the local resources to the feder-

ation. P2P network model forms the basis for organising the distributed GFA network.
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In this case the P2P system provides a decentralised database with efficient updates and

range query capabilities. This decentralised organisation of the system gives the provider

more autonomy and additionally makes the system highly scalable. Further, to establish

accountability between application schedulers and resource providers on service guar-

antee and delivery we have proposed an SLA-based schedulingand resource allocation

algorithms [138]. A computational economy metaphor [3, 63,162, 172] is utilised in

negotiating and establishing the SLA contracts between thedistributed brokers.

Traditionally, Grid computing systems such as resource brokers have evolved around a

centralised Client-Server (CS) model. The responsibilitiesof the key functionalities such

as resource discovery [67, 183] and resource provisioning coordination [120] in current

Grid scheduling systems are delegated to the centralised server machines. In the cen-

tralised CS model, the network links leading to the server arevery critical to the overall

functionality of the system, as their failure might halt theentire distributed system opera-

tion. Current Grid systems have started showing the bad symptoms of centralised organi-

sation in terms of bandwidth capacity and scalability as thenumber of brokers, users and

providers increase in the system. Recent studies conducted by Zhang et al. [183] verified

that existing systems including RGMA [183], Hawkeye [182] and MDS-2,3,4 [67]) fail to

scale beyond 300 concurrent users, after which the throughput begins to decline below ac-

ceptable levels. With regards to the response time performance metric, MDS-2 performs

the worst, superseded by R-GMA and Hawkeye.

Grids including APACGrid1, LCGGrid, ChinaGrid are organised based on VO [71]

hierarchical resource sharing model (refer to Fig. 1.2). The APAC (Australian Partner-

ship for Advanced Computing) Grid interconnects various Grid sites distributed across

Australian Institutions and Universities. The APACGrid uses a hierarchical information

service, MDS-2. VPAC (Victorian Partnership for Advance Computing), which is a part

of the APACGrid, hosts the centralised GIIS (Grid Index Information Service:-a compo-

nent MDS-2), while the remaining Grid sites run the GRIS (GridResource Information

Service) that connects to the VPAC GIIS. A Grid resource broker who wishes to access

the APACGrid has to contact the VPAC GIIS, as contacting one ofthe other Grid sites

running a GRIS would only allow access to information about that particular resource.

1http://grid.apac.edu.au/
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This isolation in resource information organisation in grids and among grids leads to the

resource fragmentation problem. In this case, Grid users get access to only small pool of

resources. Further, the institution hosting the root GIIS service are central point of contact

for the overall system. Failure of the root GIIS can partition the system, and can lead to

significant performance bottlenecks.

To overcome the limitations of centralised and hierarchical information services, we

have proposed a decentralised Grid resource information service based on a spatial pub-

lish/subscribe index. It utilises a Distributed Hash Table(DHT) routing substrate for

delegation ofd-dimensional service messages. DHTs have been proven to be scalable,

self-organising, robust and fault-tolerant. The proposedGrid resource discovery service

organises data by maintaining a logicald-dimensional publish/subscribe index over a net-

work of distributed Grid brokers/Grid sites. The spatial nature of the publish/subscribe

index has the capability to respond to complex Grid resourcequeries such as range queries

involving various attribute types including, those that have a spatial component.

Further, the resource discovery system is extended to provide the abstraction/facility

of a P2P tuple space for realising a decentralised coordination network. The P2P tuple

space [111] can transparently support a decentralised coordination network for distributed

brokering services. The P2P tuple space provides a global virtual shared space that can

be concurrently and associatively accessed by all participants in the system and the access

is independent of the actual physical or topological proximity of the tuples or hosts. The

Grid peers maintaining the tuple space undertake activity related to job load-balancing

across the Grid-Federation resources.

1.3 Outline and Contributions

In this section, the outline and contributions of the various chapters of the thesis are set

out.

• Chapter 2 discusses the core state of art relevant to the work in this thesis. Compre-

hensive taxonomies related to decentralised scheduling, objective functions, coor-

dination and security are presented and are later utilised for classifying the current

state of the art. The key motivation behind Chapter 2 is to analyse the effectiveness
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of the current solutions in facilitating a decentralised and coordinated Grid resource

provisioning environment.

• Chapter 3 reviews and provides taxonomies for the second mainarea P2P Networks,

which is utilised as a model for decentralising the proposedGrid resource manage-

ment system. Specifically, Chapter 3 explores the area of complex Grid resource

queries over DHTs. This chapter contributes towards providing comprehensive

survey and taxonomy of DHT based indexing approaches that can support thed-

dimensional Grid resource queries. Chapter 3 contributes byproviding a qualitative

comparison of the existing indices with respect to scalability and load-balancing.

The presented comparison can be utilised by the Grid system developers with re-

spect to deciding the kind of indexing system they should follow.

• Chapter 4 presents a novel model for coordinated coupling of distributed computa-

tional resources as a part generalised Grid resource sharing environment. The key

contributions of Chapter 4 include the proposed new distributed resource manage-

ment model called Grid-Federation, which provides: (i) a market-based coordina-

tion protocols for Grid scheduling; (ii) decentralisationvia a P2P query system that

gives site autonomy and scalability; (iii) ability to provide admission control facil-

ity at each site in the federation; (iv) incentives for resource owners to share their

resources as part of the federation; and (v) access to a larger pool of resources for all

users. The proposed approach provides better autonomy to the resource providers

in the system as compared to existing VO based systems.

• Chapter 5 contributes in providing Service-Level Agreements (SLAs) based GFA-

to-GFA and GFA-to-LRMS service negotiation algorithms. Thebrokers in the

Grid-Federation system form acontract net, where the job migration in the net

is facilitated through the SLA contracts. The main contributions of this work are:

(i) an SLA bid based Grid scheduling approach; (ii) a Greedy back-filling cluster

scheduling approach for LRMS that focuses on maximising the resource owners’

payoff function; and (iii) allowing resource owners to havea finer degree of control

over resource allocation decisions.
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• Chapter 6 proposes a decentralised Grid resource discovery system based on a spa-

tial publish/subscribe index. The proposed Grid resource discovery system organ-

ises data by maintaining a logicald-dimensional publish/subscribe index over a net-

work of distributed Grid brokers. The main contributions ofthis work include: (i)

extension of the DHTs with Grid resource discovery capability; (ii) a decentralised

Grid resource discovery system based on a spatial and P2P publish/subscribe index;

and (iii) overcoming the design limitations of current centralised and hierarchical

Grid information services. Extensive simulation based study is conducted in order

to prove the feasibility of the proposed resource discoverytechnique.

• Chapter 7 presents a new generation P2P tuple space that helpsdistributed Grid ap-

plication schedulers and resource providers with coordinating application schedul-

ing and resource allocation. The resource discovery systemproposed in Chap-

ter 6 forms the basis for the P2P tuple space. The main contributions of this work

are: (i) a proposal for facilitating a P2P coordination space among administratively

and topologically distributed Grid application schedulers and resource providers;

and (ii) a decentralised load-distribution algorithm withfocus on curbing the over-

provisioning of resources and enhancing the overall utility of the system. Extensive

simulations are conducted for evaluating the feasibility and performance of the pro-

posed approach.

• Chapter 8 presents the design and implementation of a software system which par-

tially prototypes the ideas presented in this thesis. The Grid-Federation scheduling

framework has been developed using the Alchemi [117] desktop resource assem-

bling system. The P2P resource discovery service utilises the Application Program-

ming Interfaces (APIs) of the FreePastry software with respect to the Internet based

message routing. The software was implemented strictly considering the Object

Oriented Design (OOD) methodology. The developed framework is flexible enough

to support other wide-area application services such as distributed auction network,

storage trading environment.

• Chapter 9 presents the conclusion reached in this thesis, along with possible future

research directions that can be built on this research work.
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Chapter 2

An Overview of Decentralised Grid

Systems

This chapter presents an overview of decentralised Grid brokering approaches with major

focus on coordinated resource management. In other words, we focus on the brokering

systems that aim towards coupling distributed Grid resources as part of a single cooper-

ative resource sharing system such as afederationor virtual organisation. A distributed

system configuration is considered as decentralised “if none of the participants in the sys-

tem are more important than the others, in case that one of theparticipants fails, then

it is neither more nor less harmful to the system than caused by the failure of any other

participant in the system”.

Decentralisation of Grid computing systems based on P2P network model can cer-

tainly overcome the current limitations of centralised andhierarchical model in scalabil-

ity, single point failure, autonomy and trustworthiness. However, complete decentralised

nature of the system raises other serious challenges in domains of application schedul-

ing, resource allocation, coordination, resource discovery, security, trust and reputation

management between participants.

Comprehensive taxonomy related to decentralised scheduling, objective function, co-

ordination and security are presented and are later utilised for classifying the current state-

of-the-art. This study contributes by providing better understanding of existing Grid re-

source management systems with respect to the degree of decentralisation and coordina-

13
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tion that they can support. Further, we have briefly looked atthe current security solutions

available for building such decentralised Grid systems. Wealso looked at some of the rep-

resentative systems that are based on the decentralised network models and aim towards

cooperative resource management. Finally, in Table 2.1 we present the classification of

the surveyed systems based on the taxonomy presented in thischapter.

2.1 Taxonomy

2.1.1 Scheduling

In this taxonomy (refer to Fig. 2.2), we categorise Grid superscheduling into online and

offline approaches. We further consider the centralised anddecentralised decision control

with either online or offline settings. In the centralised superscheduling organisation [13],

all the system-wide decision making is coordinated by a central controller. This scheduler

organisation is conceptually able to produce very efficientschedules, because the central

instance has all the necessary information about every job currently in the queue and the

status of resources. Centralised organisation is simple to implement, easy to deploy and

presents few management hassles. However, this scheme raises serious concerns when

subjected to larger system size. Note that, throughout the thesis I have used the terms

Grid superscheduling (superscheduler) and resource brokering (broker) inter-changeably.

The decentralised scheduler organisation negates the obvious limitation of the cen-

tralised organisation with respect to fault-tolerance, scalability and autonomy (facilitating

domain specific resource allocation policies). This approach scales well for both, a small

scale resource sharing environment (e.g. resource sharingunder same administrative do-

main) to a large scale environment (e.g. the Internet). However, this approach raises

serious challenges in the domain of distributed information management, enforcing sys-

tem wide coordination, security, resource consumer authenticity and resource provider’s

policy heterogeneity. Systems including [29, 61, 76, 174] use this scheme.

The decentralised scheduling is further classified into twocategories namely, coordi-

nated decentralised [16, 29, 152, 174] and non-coordinateddecentralised [3, 75]. In the

decentralised non-coordinated scheme, application schedulers perform scheduling related
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activities independent of the other schedulers in the system. Condor-G resource broker-

ing system performs non-coordinated or non-cooperative scheduling by directly submit-

ting jobs to the condor pools without taking into account their load and utilization status.

Non-coordinated approach followed by these brokers exacerbates the load sharing and uti-

lization problems of distributed resources since sub-optimal schedules are likely to occur.

Fig. 2.1 shows the decentralised non-coordinated scheduling approach in Tycoon resource

sharing system. Auctioneers advertise the resource availability and configuration to the
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discovery service. Client agents query the discovery service to gather information about

available auctioneers in the system. In Fig. 2.1, both the Client agents end up bidding to

the auctioneern because of lack of coordination among them.

On the other hand, decentralised coordinated scheduling schemes negotiates resource

conditions with the local site managers in the system if not with the other application

level schedulers. Legion-Federation system coordinates scheduling decision with other

sites in the distributed environment through job query mechanism. A job query request

(containing job type and composition) is sent tok remote sites for bidding. Each remote

site Grid scheduler then contacts its LRMS to obtain job completion time on their local

resource and sends this information back to the initiator’ssite. Finally, the site who bids

with the least projected job completion time is selected forjob scheduling.

2.1.2 Objective Function

Grid resources are dynamic in nature whose state can change in very small interval of time,

hence it warrants scheduling and resource allocation policies that can adapt to changing

conditions. Resources belong to different domains and are controlled by diverse resource

management policies. Further, the Grid Participants (GPs)including resource providers

and resource consumers associate diverse objective functions with resource allocation

and scheduling processes. The resource owners in a grid forma group of participants

who make rational choices independently or based on the strategic analysis of what others

in the group might do [27]. They like to dictate the access privilege for their resources

through diverse sharing policies. Thus, a resource owner enforces the pricing policy,

admission control policy and domain specific resource allocation strategy.

Similarly, the resource consumers in a grid associate QoS-based utility constraints

to their applications and expect that the constraints are satisfied within the acceptable

limits. Every resource owner makes the policy related decision independently that best

optimizes his objective function. Likewise, resource consumers have diverse QoS-based

utility constraints, priority and demand patterns. Exact composition of a GP’s objective

function is determined by the mechanism design principles [58], [64]. A Grid system

based on system centric mechanism defines relatively simpleobjective function. A system
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Figure 2.3: Grid scheduling and resource allocation objective function taxonomy.

centric scheduler focuses on maximising resource throughput on the owner side while

minimizing overall user’s application makespan.

Grid and PlanetLab systems including Tycoon, Bellagio, OurGrid, Sharp, and Nimrod-

G apply market-based economic mechanism for resource management and application

scheduling. Market driven scheduling mechanisms define user’s objective functions based

on QoS parameters. These QoS parameters include reputation, budget spent, response

time or combination of all. Exact combination of QoS parameters is determined by the

applied economic model. Some of the commonly used economic models [31] in resource
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allocation includes the commodity market model [176], the posted price model, the bar-

gaining model, the tendering/contract-net model, the auction model, the bid-based pro-

portional resource sharing model, the bartering model and the monopoly model. Systems

including OurGrid and Sharp are based on bartering of resources among cooperative do-

mains. In this case, the focus of each participant is on maximizing its bartering reputation

in the system. In bartered system, a participant is the consumer as well as the provider

at the same time. In cooperative market model, such as the bartered economy, there is

singleton objective function shared by both consumer and provider.

Competitive market models including commodities market, bid-based proportional

sharing, and auction warrants separate objective functions for providers and consumers (re-

fer to Fig. 2.3). Resource owners define objective function with focus on maximizing

profit. For this purpose, they can adjust the resource prices[155] dynamically based on

supply and demand pattern.

2.1.3 Coordination

Decentralised design of Grid system can effectively overcome the limitations of cen-

tralised and hierarchical VO-based traditional approaches. But the effectiveness of the

resulting decentralised system depends on the level of coordination and cooperation [4]

among the participants. Decentralised participants are pools of diverse peers or brokers

sharing and controlling resources and which have agreed to co-operate for enhancing the

overall utility of the system. Realising such a co-operationamong dynamic and selfish

participants warrants robust mechanism for coordination and negotiation policies. Coor-

dinated application scheduling and resource management involves dynamic information

exchange between various Grid schedulers and LRMSes in the system. In general, a co-

ordination process can include a sequence of QoS inquiry andQoS guarantee negotiation

message exchange between Grid schedulers and LRMSes. In Fig.2.4 we present the

coordination methods taxonomy.

Negotiation among all the participants can be based on well-known agent coordina-

tion mechanism called contract net protocol [157]. Contractnet partitions the coordi-

nation space into two distinct domains including amanagerand acontractor. Domain
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membership in the contract net is governed by the role playedby a participant. A re-

source broker in a decentralised Grid system can adhere to the role of a contractor that

negotiates SLAs with resource providers. Effectively, resource providers work as a man-

ager that export its local resources to the outside contractors and is responsible for de-

cision relating to the admission control based on negotiated SLAs. Contract net based

approaches to Grid scheduling have been widely explored in some of the recent works in-

cluding [55, 130, 138]. The work in [102] studies the effect of contract net communication

overhead on job execution time in a multi-agent Grid computing environment.

Distributed negotiation has substantial message overheadand it can worsen as sys-

tem scales to a large number of participants. Traditionally, contractors in contract net

broadcast call-for proposal (CFP) request to all managers inthe system. Following this,

managers reply with bid offers to the contractor. The contractor selects a winner based on

its requirement and acknowledges with accept message to winner manager, while a bid

reject message is sent to remaining managers. Communicationprotocols based on one-to-

all broadcast are very expensive in terms of number of messages and network bandwidth

usage. Similar negotiation protocol has been proposed in the work NASA-Scheduler and

Legion-Federation for decentralised Grid scheduling. Condor-Flock P2P Grid system

proposed selective broadcast to the flocks currently indexed by the Pastry routing table.

The SLA-based Grid superscheduling approach proposed in [138] advocates one-to-

one negotiation among contractors and managers. Some approaches including Bellagio
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Figure 2.5: Centralised coordination in Bellagio.

and AMDLoad [86] advocate coordinating resource activity among decentralised partici-

pants based on centralised coordinators. Fig. 2.5 shows centralised coordination method-

ology applied by Bellagio system. Resource agents register the resource configuration

with the Sword [128] resource discovery service. Client agents query the Sword to locate

available resources in the system. Once the resource lists are obtained, Client agents bid

for resources with the centralised auction coordinator. The bid parameters include the sets

of resources desired, a time for which application would be deployed on resources, and

the amount of virtual money clients are ready to spend.
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2.1.4 Security and Trust

The decentralised organisation of Grid systems raises serious challenges in the domains

of security and trust management. Implementing a secure decentralised Grid system re-

quires solutions that can efficiently facilitate the following [37]: preserve the privacy of

participants, ensure authenticity of the participants, robust authorization, securely route

messages between distributed services, and minimise loss to the system due to malicious

participants. In Fig. 2.6, we present the taxonomy for security and trust management in

Grid and P2P systems.

The privacy of the participants can be ensured through secret key-based symmetric

cryptographic algorithms such as 3DES, RC4, etc. These secretkeys must be securely

generated and distributed in the system. Existing key management systems such as pub-

lic key algorithms (including DH, RSA, elliptic), Kerberos (trusted third party) can be

utilised for this purpose. Authentication of the participants can be achieved through trust

enforcement mechanisms such as X.509 certificates (Public Key Infrastructure) [93], and

Kerberos (third party authentication), distributed trustand SSH. Authentication based on

X.509 certificates warrants a trusted Certifying Authority (CA) in the system.

A Grid participant presents a X.509 certificate along with anassociated private key (the

combination of these entities forms a system wide unique credential) in order to authen-

ticate itself with a remote service. A system can have a single CA, which is trusted by

all the participants. However, single CA approach has limited scalability. An alternative

to this is to have multiple CAs combining together to form a trust chain. In this case, a

certificate signed by any CA in the system has global validity.The GSI [175] implementa-

tion of PKI supports dynamic trust chain creation through the Community Authorization

Service (CAS) [132]. This is based on the policy that two participants bearing proxy

certificates, signed by the same user, will inherently trusteach other. Kerberos based im-

plementation has significant shortcomings as it requires synchronous communication with

the ticket granting server in order to setup communication between a client and server. If

the ticket granting server goes offline or has a security breach then there is no way the sys-

tem can operate. In case of X.509 based implementation, a CA can certify the credentials

offline.
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Figure 2.6: Security and trust taxonomy.

Having said that, a majority of implementations do rely on centralised trust enforce-

ment entities such as a CA or a ticket granting authority. The JXTA [178] system provides

a completely decentralised X.509 based PKI. Each JXTA peer is its own CA and issues a

certificate for each service it offers. Peer CA certificates are distributed as part of the ser-

vice advertisement process. Each of the CA certificate is verified via thePoblano: “web

of trust” [178], a distributed reputation management system. A similar distributed trust

mechanism called PeerReview [60] has also been proposed. These distributed trust man-

agement systems deter malicious participants through behavioral auditing. An auditor

nodeA checks if it agrees with the past actions of an auditee nodeB. In case of disagree-

ment,A broadcasts an accusation ofB. Interested third party nodes verify evidence, and

take punitive action against the auditor or the auditee.

The SSH based authentication scheme is comparatively easier to implement as it does
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not require trusted third party certification. However, it does not allow the creation of

a dynamic trust chain and in case a participant’s private keyis compromised, it requires

every public key holder to be informed about this event. PlanetLab utilises SSH based

authentication wherein the centralised PlanetLab Central service is responsible for dis-

tribution or copying of the keys. Unlike X.509 and Kerberos implementation, SSH does

not support certificate translation mechanism (i.e. from X.509 to Kerberos or vice versa).

Transport layer security protocols such as TLS [45], and SSL[44] are used for message

encryption and integrity checking as they are transported from one host to the other on the

Internet.

Table 2.1: Classification based on taxonomies.

System
Name

Scheduling
Model

Objective Function Coordination
Model

Security
Model

Bellagio Centralised User centric, Bid-
based proportional
sharing

Centralised SSH

Tycoon Decentralised
non-coordinated

User centric, Auction One-to-All
broadcast

N.A.

AMDload Centralised User centric, Auction Centralised N.A.
VO-Ranka Centralised (VO) User centric Centralised PKI
NASA-
Scheduler

Decentralised
coordinated

System centric One-to-All
broadcast

N.A.

Legion-
Federation

Decentralised
coordinated

System centric One-to-All
broadcast

N.A.

Trader-
Federation

Decentralised
coordinated

User centric,
Commodity market

One-to-All
broadcast

N.A.

Agent-
Federation

Decentralised
coordinated

User centric,
Commodity market

One-to-All
broadcast

N.A.

CondorFlock
P2P

Decentralised
coordinated

System centric Selective
broadcast

N.A.

MOSIX-Fed Centralised System centric Centralised N.A.
Multi-
Request

Decentralised
coordinated

System centric Selective
broadcast

N.A.

Sharp Decentralised
coordinated

User centric,
bartering

One-to-one
negotiation

PKI

Nimrod-G Decentralised
non-coordinated

User centric,
Commodity market

N.A. PKI

Condor-G Decentralised
non-coordinated

System centric N.A. PKI

Authorization deals with the verification of an action that aparticipant is allowed to

undertake after a successful authentication. In a Grid, site owners have the privilege to

control how their resources are shared among the participants. The resource sharing policy
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takes into account the participant’s identity and membership to groups or virtual organ-

isations. Globus based Grid installation defines the accesscontrol list using a Gridmap

file. This file simply maintains a list of the distinguished names of the Grid users and

the equivalent local user account names that they are to be mapped to. Access control

to a resource is then left up to the local operating system andapplication access control

mechanisms.

Implementing a secure and trusted routing [37] primitive requires a solution to the

following problems: secure generation and assignment of nodeIds, securely maintaining

the integrity of routing tables, and secure message transmission between peers. Secure

nodeId assignment ensures that an attacker or a malicious peer cannot choose the value of

nodeIds that can give it membership of the overlay. If the node assignment process is not

secure, then an attacker could sniff into the overlay with a chosen nodeId and get control

over the local objects, or influence all traffic to and from thevictim node. The nodeId

assignment process is secured by delegating this capability to a central, trusted authority.

A set of trusted certification authorities (CAs) are given thecapability to assign nodeIds

to peers and to sign nodeId certificates, which bind a random nodeId to the public key

that uniquely identifies a peer and an IP address. The CAs ensure that nodeIds are chosen

randomly from the id space, and prevent nodes from forging nodeIds. Furthermore, these

certificates give the overlay a public key infrastructure, suitable for establishing encrypted

and authenticated channels between nodes. Secure message forwarding on the Internet

can be achieved through secure transport layer connectionssuch as TLS and SSL.

2.1.5 Resource Discovery

Chapter 3 presents a comprehensive taxonomy and survey on decentralised resource dis-

covery in computational Grid environment.
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2.2 Related Systems

2.2.1 Legion-Federation

The work [174] proposes a federated model for distributed cooperative resource manage-

ment. The model proposes federated resource sharing using Legion [39] LRMS. It consid-

ers two levels of application schedulers in the system namely, Local Site (LS) Scheduler

and Wide-Area (WA) scheduler. Every member site has to instantiate these scheduling

services. LSes or LRMSes are responsible for managing and controlling the set of re-

sources assigned to them (domain specific). Various WA schedulers in conduction with

respective LSes coordinate and enable WA application scheduling. WA scheduler has two

functional components including a Scheduling Manager (SM)which is an interface to LS,

and a Grid Scheduler (GS) which connects to other SMes in the federated system. The

connection topology between GSes is a fully connected graphstructure. The distributed

information between various SMes is managed though a staticfile (containing addresses

of other SMes). When a job arrives at a SM, a set ofk sites out of totalm sites are se-

lected as future candidates. Following this, a job query request (containing job type and

composition) is sent tok remote sites to initiate bidding on completion time. Each remote

GS then contacts its LS through components to obtain job completion time on the local

resource. The projected job completion time is returned to the initiator SM. The initiator

SM then schedules the job on the remote site which had bided with the least projected job

completion time.

2.2.2 AMDLoad

The work [86] proposes the load balancing framework based onthe mechanism design

theory. The Algorithmic Mechanism Design (AMD) theory is specification of outputs

and payments to agents that lead them to behave in a way that results in system-wide

equilibrium [64]. This work considers the AMD problem for one parameter agents in

which, (i) a finite set of outputs is given, (ii) each agent hasa privately known parameter

ti called true value, (iii) each agent’s goal is to maximize itsprofit, and (iv) the goal of

the mechanism is to select an output that optimizes a given cost function. So, the work
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designs a truthful mechanism for solving the static load balancing problem in heteroge-

neous distributed system. Each computer in the distributedsystem is characterized by

its processing rateµi, and only computeri knows the true value of its processing rate.

The cost in each computer is proportional to its utilizationand the payment is given for

the provided utilization. The profit is defined as the difference between the payment and

the cost. Under this static environment, they analyse and design the optimal algorithm

to find the fraction of loadλi that is allocated to each computeri such that the expected

execution time is minimized. The proposed framework is based on a centralized model so

that a dispatcher decides the allocation and payment of eachcomputer. For a given static

job arrival rate, the dispatcher sends a request for bid messages to each computer. When

a computer receives the bid request, it replies with its bid (1/µi) to the dispatcher. After

the dispatcher collects all the bids, it computes the optional allocation and payment for

each computeri. The dispatcher executes this protocol periodically or when the total job

arrival rate is changed.

2.2.3 Trader-Federation

The work [73, 74] highlights the necessity of coordinated resource management in dis-

tributed systems. It presents a scheme called federation ofdistributed resource traders,

which couples various autonomous resources or resource providers. A resource trader

entity acts as an intermediary between consumers and providers. Every trader has local

users, clients and resources who are members of the local resource domain. Federation of

traders enables the participants to trade resources at bothlocal and the Internet levels. Var-

ious traders cooperate within the federation to maximise a trading function. The trader

presents two interfaces, local interface for its local users, and local resource providers,

while remote interface to other traders in the federation. The federation works as a market

place where various traders can negotiate for QoS parameter(response time, accuracy and

details for a request) requested by the local users. The request routing within the federa-

tion is based on a trading graph. The trading graph defines different communication paths

between traders. A resource request along with its QoS parameters is exchanged among

traders. If a trader on the routing path cannot satisfy the request locally, then the request
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is forwarded to other traders in the federation. Every trader maintains a service offer on

behalf of its local resource provider. Every incoming request is matched against the local

service offer. In case the match occurs, the message is removed from the system and the

initiator trader is informed about the deal.

2.2.4 Sharp

Sharp [76] is a framework for secure distributed resource management. Participant sites

can trade their resources with peering partners or contribute them to a peer federation

according to the local site sharing policies. Sharp framework relies on the bartering econ-

omy as the basis to exchange resources between resource domains. A cryptographically

signed object called Resource Tickets (RTs) is issued by eachparticipating site. These

RTs are exchanged between the participating sites for facilitating coordinated resource

management. In Sharp framework, every participating site is completely autonomous and

holds all the rights over the local resources. Sharp framework considers collection of

logical sites or domains, each running local schedulers forphysical resources (e.g. pro-

cessors, memory, storage, network links, sensors) under its control. The fundamental

resource management software entities in Sharp include site authority, service manager

and agents. These entities connect to each other based on a peer-to-peer network model.

The resources at each site are managed by a site authority, which maintains the hard state.

The site authority accepts the resource claims presented byremote sites in the system.

Resource agents mediate between site authorities and resource consumers (service man-

agers). A resource is allocated to the service manager at a Sharp site using the two-phase

negotiation process. Initially, a service manager obtainsa resource claim in the form of a

ticket from an agent. In the second phase, the service manager presents the ticket to the

appropriate site authority to redeem it. The authority may reject the ticket or it may honor

the request by issuing a lease for any subset of resources or terms specified in the ticket.

A lease is hard claim over concrete resources, and is guaranteed valid for its term unless

a failure occurs.
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2.2.5 Agent-Federation

The work in [130] proposes a multi-agent infrastructure that applies an SLA protocol for

solving the Grid superscheduling problem. The SLA negotiation protocol is based on the

Contract Net Protocol [156]. The system models three types ofagents: User agent (UA),

Local Scheduler agent (LSA) and Superscheduler agent (SSA). Every active site in the

system instantiates these agents. The UAs are the resource consumers who submit jobs to

SSA for execution on the Grid platform. The UA also specifies SLA based QoS param-

eters such as expected response time, budget and preferred hosts associated with the job.

The LSA functionality is similar to LRMS, managing job execution within an adminis-

trative domain. LSA obtains jobs from the SSA that are submitted by local and remote

UAs. The SSA agents are responsible for coordinating job superscheduling across differ-

ent sites in the system. The SSA agents negotiate SLA parameters with the local LSA and

remote SSA before scheduling the job. The model defines two kinds of SLAs: Meta-SLA

and Sub-SLA. Meta-SLA refers to the initial SLA parameters submitted by the UA to

its SSA. A Meta-SLA presents high-level job requirements and it can be refined during

negotiation process with the SSA, while the Sub-SLA refers to the SLA parameters that

are negotiated between SSA and remote site SSA. The SSA decomposes the Meta-SLAs

to form Sub-SLAs. The Sub-SLA can contain much low-level resource description such

as the amount of physical memory required and the number of processors required.

2.2.6 Multi-Request

The work in [163] presents a Grid superscheduling protocol based on multiple job SLA

negotiation scheme. The key factor motivating this work is redundantly distributing the

job execution requests to multiple sites in a Grid instead ofjust sending to most lightly

loaded one. The authors argue that placing job in the queue atmultiple sites increases the

probability that the back-filling strategy will be more effective in optimizing the schedul-

ing parameters. The superscheduling parameters include resource utilization and the job

average turn around time. In other words, the scheduling parameters are system centric.

The LRMSes at various Grid sites apply First Come First Serve (FCFS) policy with Easy

Back-filling [65] approach for resource allocation. Further, the system proposes dual
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queuing systems at each site. One queue for local jobs, whileother queue for remote

jobs. The easy back-filling resource allocation scheme gives higher priority to the local

job queue than the remote job queue.

2.2.7 VO-Ranka

The work [98] proposes and investigates a framework that enables policy based resource

management in Grid computing. It considers a scheduling strategy that controls the re-

quest assignment to resources by adjusting resource usage accounts or by assigning vary-

ing request priorities. Proposed approach also supports reservation based Grid resource

allocation. The system can provide different levels of QOS by assigning varying levels

of privileges to users, groups and requests. The work considers Grid environment as a

collection of virtual organizations (VOs), which is a groupof consumers and producers

collaborating together to facilitate usage of high-end computational resources. Further,

these organizations can be distributed nationwide or worldwide, may participate in one or

more virtual organizations by sharing some or all of their resources. Resource providers

and resource consumers who are part of VO, share resources bydefining how resource

usage takes place in terms of where, what, who and when. It represents the policies in

a three dimensional space consisting of resource provider,resource consumer and time.

A resource provider is considered as an entity, which sharessome particular physical re-

sources within the context of VO and grid. Further, each resource provider is augmented

by a list of resource configuration such as CPU, memory, storage space, bandwidth, etc.

A resource consumer is defined as an entity that consumes a resource.

2.2.8 NASA-Scheduler

The work [152] models a Grid superscheduler architecture and studies three different

distributed job migration algorithms. Each computationalresource site has a Grid su-

perscheduler (GS) and a local scheduler (LRMS). Scheduling in the Grid environment is

facilitated through cooperation between site specific LRMS and the GS. Resource man-

agement and job scheduling activities related to the local resources is handled by LRMS.

While the GS is responsible for resource discovery, monitoring system status (utilization,
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network condition), coordinating job migration related information with other GS in the

system. The distributed scheduling parameters influencinga job migration decision in the

system include approximate wait time (AWT), expected run time (ERT) and resource uti-

lization status (RUS). The GS considers three job migrationalgorithms including sender-

initiated, receiver-initiated and symmetrically-initiated. Details about these algorithms

can be found in [152]. A job migration process includes a series of job specific and

resource specific coordination inflammation exchange between GSes. A job is selected

for migration if the local GS determines that AWT for a given job on the local resource is

above some prefigured threshold valueφ. A GS initiates a job migration process by query-

ing all of its partner resources about ERT, AWT of the job and the resulting RUS. ERT

varies between various computational resources dependingon the hardware and software

types. Based on the query response, a GS calculates the potential turnaround cost (TC) of

itself and each partner. Further optimal TC is computed by summing up AWT and ERT.

If the minimum TC is within a small tolerance limit for multiple machines, then the site

with the lowest RUS is chosen for job migration.

2.2.9 MOSIX-Fed

MOSIX is a cluster management system that applies process migration to enable a loosely

coupled Linux cluster to work like a shared memory parallel computer. Recently, it has

been extended to support a Grid of clusters to form a single cooperative system [16].

Basic feature of the federated environment includes automatic load balancing among par-

ticipant clusters (owned by different owners) while preserving the complete autonomy.

Proposed resource coupling scheme can be applied to form a campus or an enterprise

Grid. MOSIX federation aims toward hierarchical coupling of cluster resources under

same administrative domain. Resource discovery in such an arrangement is facilitated

by hierarchical information dissemination scheme, that enables each node to be aware of

the latest system wide state. Key features of MOSIX federation include dynamic, Grid-

wide preemptive process migration. Scheduling decisions are based on adaptive on-line

scheduling algorithm that tries to optimise the system centric parameters (throughput, uti-

lization). Additionally, scheduling decision also considers the information gathered as
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a result of hierarchical dissemination scheme. Such information helps in allocating the

processes to appropriate nodes in the grid. The MOSIX federation supports dynamic par-

titioning of cluster nodes based on ownership. This means that the ownership of nodes

in a cluster changes over a period of time reflecting the resource demand pattern. Each

user is allowed to create his processes on the nodes belonging to his partition. However,

to support dynamic load balancing a user, specifically a nodeowner, can configure to host

remote processes thus contributing to the federated Grid. In this case, an owner can make

two sets of machines, one for home users, while other for remote users. Thus, this allows

a resource owner to clearly define what is shared and what is not.

2.2.10 CondorFlock P2P

The work [29] presents a scheme for connecting existing Condor work pools using P2P

routing substrate Pastry [143]. Inherently, P2P substrateaids in automating the resource

discovery in the Condor Flock Grid. Resource discovery in the flock is facilitated through

resource information broadcast to the pools whose ids appear in the Pastry node’s rout-

ing table. The contacted pools reply with the message confirming their willingness about

resource sharing. This information is saved for future scheduling decisions. However, it

implies that a Condor pool in the flock is only aware of the subset of resources available in

the system. Note that, the proposed P2P-based overlay network facilitates only resource

discovery, while other decisions such as resource sharing policy is controlled by the pool

managers. The proposed scheme periodically compares the metrics such as queue lengths,

average pool utilization and resource availability scenario, and based on these statistics a

sorted list of pools from most suitable to least suitable is formulated. Using this list, a

Condor pool chooses appropriate pools for flocking. Core CondorLRMS has also been

extended to work with Globus [70], the new version is called Condor-G resource bro-

ker, which enables creation of global Grids and is designed to run jobs across different

administrative domains. This system basically interacts with the resources managed by

Globus system. This enables general purpose Globus toolkitto solve a particular problem

(i.e., high-throughput computing) on the Grid. Its features include a full-featured queu-

ing service, credential management and enhanced fault-tolerance mechanism (local crash,
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network failure, remote crash).

2.2.11 OurGrid

OurGrid [9] provides a Grid superscheduling middleware infrastructure based on the

JXTA routing overlay. The OurGrid community is a collectionof a number of OurGrid

Peers (OGPeers) that communicate using JXTA protocols. Every site in the system hosts

OG Peer service. A resource consumer (user) runs a brokeringsystem called OGBro-

ker (an application-level scheduler). Every OGBroker connects to OurGrid community

through its local OGPeer. A resource provider runs the software system called Swan, that

facilitates access to his resource for any user in the OurGrid community. To summarise,

a site in the OurGrid system has following software components Swan, OGBroker and

OGPeer. The resource sharing in OurGrid is based on P2P file-sharing model such that

every participant contributes as well as consumes resources to/from the community. To

negate free-riding in a computational Grid environment, the model defines a new trust and

reputation management scheme calledNetwork of Favors[8]. A user submits his applica-

tion to his OGBroker. Depending on the user’s application requirement, OGBroker sends

the request for Grid machines to other OGPeers though the JXTA overlay. Depending on

the resource availability pattern and initiator site’s reputation, the OG Peers reply to the

resource query. In other words, superscheduling in OurGridis primarily driven by the

site’s reputation in the community.

2.2.12 Bellagio

Bellagio [13] is a market-based resource allocation system for federated distributed com-

puting infrastructures. Users specify resources of interest in the form of combinatorial

auction bids. Thereafter, a centralised auctioneer allocates resources and decides pay-

ments for users. The Bellagio architecture consists ofresource discoveryand resource

market. For resource discovery of heterogeneous resources, Bellagio uses SWORD [128].

For resource market, Bellagio uses a centralised auction system, in which users express

resource preferences using a bidding language, and a periodic auction allocates resources

to users. A bid for resource includes sets of resources desired, processing duration, and
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the amount of virtual currency which a user is willing to spend. The centralised auctioneer

clears the bid every hour. The resource exchange in the current system is done through

virtual currency. Virtual currency is the amount of credit asite has, which is directly

determined by the site’s overall resource contribution to the federated system. Bellagio

employs Share [48] for resource allocation in order to support a combinatorial auction

for heterogeneous resources. Share uses thethreshold rule[106] to determine payments.

Once the payment amount of each winning bid has been determined by the threshold rule,

the winning bidders receive resource capabilities after charging the appropriate amount.

2.2.13 Tycoon

Tycoon [109] is a distributed market-based resource allocation system. Application schedul-

ing and resource allocation in Tycoon is based on decentralised isolated auction mecha-

nism. Every resource owner in the system runs its own auctionfor his local resources.

In addition to this, auctions are held independently, thus clearly lacking any coordina-

tion. Tycoon system relies on centralised Service LocationServices (SLS) for indexing

resource auctioneers’ information. Auctioneers registertheir status with the SLS every 30

seconds. In case an auctioneer fails to update its information within 120 seconds then SLS

deletes its entry. Application level superschedulers contact the SLS to gather information

about various auctioneers in the system. Once this information is available, the super-

schedulers (on behalf of users) issue bids for different resources (controlled by different

auctions) constraint to resource requirement and available budget. In this setting, various

superschedulers might end up bidding for small subset of resources while leaving the rest

underutilized. In other words, superscheduling mechanismclearly lacks coordination.

2.2.14 Nimrod-G

Nimrod-G [3, 30] is a resource management system (RMS) that serves as a resource bro-

ker and supports deadline and budget constrained algorithms for scheduling task-farming

applications on the platform. It allows the users to lease and aggregate resources de-

pending on their availability, capability, performance, cost and users QoS constraints.

Application scheduling is based on user-centric parameters. The broker is capable of dy-
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namically leasing Grid services/resource at runtime depending on their cost, capabilities,

availability and users’ requirements. Nimrod-G gathers resource information by querying

the MDS-1/2/3 information services of the Globus system. The Nimrod-G resource bro-

kering suffers from a lack of coordination, i.e., it does notconsider the presence of other

Nimrod-G brokers in the system while formulating application schedules.

2.3 Summary and Conclusion

There are different projects that aim toward assembling Grid resources as part of a large

scale resource sharing environment. Every approach has adopted different network mod-

els for resource information and broker organisation. Brokering approaches including

Nimrod-G, and Condor-G can be combined together to form a non-coordinated decen-

tralised broker network that utilises the resource indexing services of centrally or hier-

archically organised information services such as RGMA [183], MDS-2/3, and Hawk-

eye [182]. These brokering systems do not focus towards enabling a large scale coopera-

tive environment.

VO-based approaches such as LHC Data Grid network, and VO-Ranka connect both

resource brokers and information services in hierarchy. VO-based approaches are supe-

rior to the resource brokering approaches with respect to the system-wide coordination.

Mosix-Fed connects the departmental clusters in hierarchyand performs load-adaptive

process migration. The scalability of the Mosix-Fed environment to Grid scale has not

been explored yet.

Other approaches to Grid resource assembling including Sharp, Tycoon, Bellagio,

OurGrid, NASA-Scheduler, CondorFlock P2P, Multi-Request, Trader-Federation, AMD-

Load, Agent-Federation, Legion-Federation focuses on enabling a single and cooperative

resource sharing environment. These systems utilised different types of methodology in

coordinating application scheduling and resource allocation. The finer details on schedul-

ing and coordination protocols are discussed in the relevant taxonomy section. The next

chapter presents a comprehensive study on P2P based complexGrid resource queries. It

discusses the taxonomies related to the Grid resource and P2P network organisation.
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Peer-to-Peer Grid Resource

Discovery: State of the Art

Efficient Resource discovery mechanism is one of the fundamental requirement for Grid

computing systems, as it aids in resource management and scheduling of applications. Re-

source discovery activity involve searching for the appropriate resource types that match

the user’s application requirements. Various kinds of solutions to Grid resource discov-

ery have been suggested, including the centralised and hierarchical information server

approach. However, both of these approaches have serious limitations in regards toscal-

ability, fault-tolerance and network congestion. To overcome these limitations, indexing

resource information using a decentralised (such as P2P) network model has been actively

proposed in the past few years.

This chapter investigates various decentralised resourcediscovery techniques primar-

ily driven by P2P network model. To summarise, this chapter presents a: (i) resource

taxonomy with focus on computational Grid paradigm; (ii) P2P taxonomy with focus on

extending the current structured systems (such as Distributed Hash Tables) for indexingd-

dimensionalGrid resource queries; (iii) detailed survey of existing works that can support

d-dimensional Grid resource queries; and (iv) classification of the surveyed approaches

based on the proposed P2P taxonomy.

35
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3.1 Introduction

Traditionally, resource brokers [105] including Nimrod-G, Condor-G and Tycoon [109]

used services of centralised information services (such asR-GMA [183], Hawkeye [182],

GMD [181], MDS-1 [67]) to index resource information. Undercentralised organisation,

the schedulers send resource queries to a centralised resource indexing service. Simi-

larly, the resource providers update the resource status atperiodic intervals using resource

update messages. This approach has several design issues including: (i) highly prone to

a single point of failure; (ii) lacks scalability; (iii) high network communication cost at

links leading to the information server (i.e. network bottleneck, congestion); and (iv) the

machine running the information services might lack the required computational power

required to serve a large number of resource queries and updates.

To overcome the above shortcomings of centralised approaches, a hierarchical organ-

isation [182] of information services has been proposed in systems such as MDS-3 [54]

and Ganglia [145]. MDS-3 organises VO [71] specific information directories in a hierar-

chy. A VO includes a set of GPs that agree on common resource sharing policies. Every

VO in a grid designates a machine that hosts the information services. A similar approach

has been followed in the Ganglia system, which is designed for monitoring resources sta-

tus within a federation of clusters. Each cluster designates a node as a representative to the

federated monitoring system. This node is responsible for reporting cluster status to the

federation. However, this approach also has similar problems as the centralised approach

such as one-point of failure, and does not scale well for a large number of users/providers.

3.1.1 Decentralised Resource Indexing

Recently, proposals for decentralising a GRIS have gained significant momentum. The

decentralisation of GRIS can overcome the issues related to current centralised and hi-

erarchical organisations. An early proposal for decentralising Grid information services

was made by Iamnitchi and Foster [97]. The work proposed a P2Pbased approach for

organising the MDS directories in a flat, dynamic P2P network. It envisages that every

VO maintains its information services and makes it available as part of a P2P based net-

work. In other words, information services are the peers in aP2P network based coupling
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of VOs. Application schedulers in various VOs initiate a resource look-up query which is

forwarded in the P2P network using flooding (an approach similar to one applied in the un-

structured P2P network Gnutella [41], [119]). However, this approach has a large volume

of network messages generated due to flooding. To avoid this,a Time to Live (TTL) field

is associated with every message, i.e. the peers stop forwarding a query message once the

TTL expires. To an extent, this approach can limit the network message traffic, but the

search query results may not be deterministic in all cases. Thus, the proposed approach

can not guarantee to find the desired resource even though it exists in the network.
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Figure 3.1: Brokering and resource queries.

Recently, organising a GRIS over structured P2P networks has been widely explored.

Structured P2P networks offer deterministic search query results with logarithmic bounds

on network message complexity. Structured P2P look-up systems including Chord [161],

CAN [140], Pastry [143] and Tapestry [184] are primarily based on Distributed Hash Ta-

bles (DHTs). DHTs provide hash table like functionality at the Internet scale. A DHT is
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a data structure that associates a key with a data. Entries inthe distributed hashtable are

stored as a (key,data) pair. A data can be looked up within a logarithmic overlay routing

hops if the corresponding key is known. Fig. 3.1 shows an abstract model for organising

resource brokering systems over a P2P query system. The brokers access the resource

information by issuing lookup queries. The resource providers register the resource infor-

mation through update queries.

It is widely accepted that DHTs are the building blocks for next-generation large

scale decentralised systems. Some of the example distributed systems that utilizes DHT

routing substrate include distributed databases [95], group communication [38], E-mail

services [123], resource discovery systems [15, 42, 128, 150, 168] and distributed stor-

age systems [56]. Current implementations of DHTs are known to be efficient for1-

dimensional queries [95] such as “find all resources that match the given search point”. In

this case, distinct attribute values are specified for resource attributes. Extending DHTs

to supportd-dimensional range queries such as finding all resources that overlap a given

search space is a complex problem. Range queries are based on range of values for at-

tributes rather than on a specific value. Current works including [10, 24, 33, 42, 52, 128,

134, 150, 159, 168] have studied and proposed different solutions to this problem.

3.1.2 Conceptual Design of a Distributed Resource Indexing System

A layered architecture to build a distributed resource indexing system is shown in Fig. 3.2.

The key components of a Internet-based resource indexing system includes:

• Resource layer:This layer consists of all globally distributed resources that are di-

rectly connected to the Internet. The range of resources include desktop machines,

files, supercomputers, computational clusters, storage devices, databases, scientific

instruments and sensor networks. A computational resourcecan run variants of op-

erating systems (such as UNIX or Windows) and queuing systems (such as Condor,

Alchemi, SGE, PBS,LSF).

• Lookup layer: This layer offers core services for indexing resources at the Inter-

net scale. The main components at this layer are the middlewares that support
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Figure 3.2: Distributed resource indexing: a layered approach.

Internet-wide resource look-ups. Recent proposals at this layer have been utiliz-

ing structured P2P protocols such as Chord, CAN, Pastry and Tapestry. DHTs of-

fer deterministic search query performance while guaranteeing logarithmic bounds

on the network message complexity. Other, middlewares at this layer includes

JXTA [173], Grid Market Directory (GMD) [181] and unstructured P2P substrates

such as Gnutella [41] and Freenet [49].

• Application layer: This layer includes the application services in various domains

including: (i) Grid computing; (ii) distributed storage; (iii) P2P networks; and (iv)

Content Delivery Networks (CDNs) [148], [131]. Grid computing systems includ-

ing Condor-Flock P2P [29] uses services of Pastry DHT to indexcondor pools

distributed over the Internet. Grid brokering system such as the Nimrod-G uti-

lizes directory services of Globus [70] for resource indexing and superscheduling.

The OurGrid superscheduling framework incorporates JXTA for enabling commu-

nication between OGPeers in the network. Distributed storage systems including

PAST [59] and OceanStore [107] utilizes services of DHTs such as Pastry and
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Tapestry for resource indexing.

The rest of this chapter is organised as follows. Section 3.2presents taxonomies

related to general computational resources’ attributes, look-up queries and organisation

model. Section 3.3 discusses taxonomies for P2P network organisation,d-dimensional

data distribution mechanism and query routing mechanism. Section 3.4 summarizes vari-

ous algorithms that model GRIS over a P2P network. Section 3.5compares the surveyed

algorithms based on their scalability and index load-balancing capability. Section 3.6 pro-

vides recommendation on utilising the surveyed approachesin implementing a resource

discovery system. Finally, the chapter with discussion on open issues in Section 3.7 and

conclusion in Section 3.8.

3.2 Resource Taxonomy

The taxonomy for a computational Grid resource is divided into the following (refer to

Fig. 3.3): (i) resource organisation; (ii) resource attribute; and (iii) resource query.

Resource

Resource Organisation

Taxonomy

Taxonomy

Taxonomy

Taxonomy
Resource Attribute

Resource Query

Figure 3.3: Resource taxonomy.

3.2.1 Resource/GRIS organisation

The taxonomy defines GRIS organisation as (refer to Fig. 3.4) :

• Centralised: Centralisation refers to the allocation of all query processing capability

to single resource. The main characteristics of a centralised approach include con-

trol and efficiency. All look-up and update queries are sent to a single entity in the
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system. GRISes including RGMA [183] and GMD [181] are based on centralised

organisation.

• Hierarchical: A hierarchical approach links GRIS’s either directly or indirectly, and

either vertically or horizontally. The only direct links ina hierarchy are from the

parent nodes to their child nodes. A hierarchy usually formsa tree like structure.

GRIS system including MDS-3 [54] and Ganglia [145] are based on this network

model.

• Decentralised: No centralised control, complete autonomy, authority and query pro-

cessing capability is distributed over all resources in thesystem. The GRIS or-

ganised under this model is fault-tolerant, self-organising and is scalable to large

number of resources. More details on this organisation can be found in Section 3.3.

There are four fundamental challenges related to differentorganisation models in-

cluding: (i) scalability; (ii) adaptability; (iii) availability; and (iv) manageability.

Centralised models are easy to manage but do not scale well. When network links

leading to the central server get congested or fail, then theperformance suffers.

Hence, this approach may not adapt well to dynamic network conditions. Further,

it presents a single point of failure, so overall availability of the system degrades

considerably. Hierarchical organisation overcomes some of these limitations in-

cluding scalability, adaptability and availability. However, these advantages over a

centralised model comes at the cost of overall system manageability. In this case,

every site specific administrator has to periodically ensure the functionality of their

local daemons. Further, the root node in the system may present a single point

failure similar to the centralised model. Decentralised systems, including P2P, are

coined as highly scalable, adaptable to network conditionsand highly available. But

manageability is a complex task in P2P networks as it incurs alot of network traffic.

3.2.2 Resource Attribute

A compute Grid resource is described by a set of attributes which is globally known to the

application superschedulers. The superscheduler which isinterested in finding a resource
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Figure 3.4: Resource organisation taxonomy.
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to execute a user’s job issues queries to GRIS. The queries area combination of desired

attribute values or their ranges, depending on the user’s job composition. In general, com-

pute resources have two types of attributes: (i) static or fixed value attributes such as: type

of operating system installed, network bandwidth (both LANand WAN interconnection),

network location, CPU speed, CPU architecture, software library installed and storage

capacity (including physical and secondary memory); and (ii) dynamic or range valued

attributes such as CPU utilisation, physical memory utilisation, free secondary memory

size, current usage price and network bandwidth utilisation. Figure 3.5 depicts the re-

source attribute taxonomy.
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3.2.3 Resource Query

The ability of superschedulers such as MyGrid, Grid-Federation Agent, Nimrod-G, NASA-

Scheduler, Condor-Flock P2P to make effective application scheduling decision is directly

governed by the efficiency of GRIS. Superschedulers need to query a GRIS to compile

information about resource’s utilisation, load and current access price for formulating the

efficient schedules. Further, a superscheduler can also query a GRIS for resources based

on selected attributes such as nodes with large amounts of physical and secondary mem-

ory, inter-resource attributes such as network latency, number of routing hops or physical

attributes such as geographic location. Similarly, the resource owners query a GRIS to

determine supply and demand pattern and accordingly set theprice. The actual seman-

tics of the resource query depends on the underlying Grid superscheduling model or Grid

system model.

Resource Query Type

Superscheduling or brokering systems require two basic types of queries: (i) resource

look-up query (RLQ); and (ii) resource update query (RUQ). AnRLQ is issued by a su-

perscheduler to locate resources matching a user’s job requirements, while an RUQ is an

update message sent to a GRIS by a resource owner about the underlying resource condi-

tions. In Condor-flock P2P system, flocking requires sending RLQs to remote pools for

resource status and the willingness to accept remote jobs. Willingness to accept remote

jobs is a policy specific issue. After receiving an RLQ message, the contacted pool man-

ager replies with an RUQ that includes the job queue length, average pool utilization and

number of resources available. The distributed flocking is based on the P2P query mech-

anism. Once the job is migrated to the remote pool, basic matchmaking [135] mechanism

is applied for resource allocation. In Table 4.1, we presentRLQ and RUQ queries in some

well-known superscheduling systems.
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An Example Superscheduling Resource Query

In this section we briefly analyse the superscheduling querycomposition in the super-

scheduling system called Tycoon [109]. The Tycoon system applies market-based prin-

ciples, in particular an auction mechanism, for resource management. Auctions are com-

pletely independent without any centralised control. Every resource owner in the system

coordinates its own auction for local resources. The Tycoonsystem provides a centralised

Service Location Service (SLS) for superschedulers to index resource auctioneers’ infor-

mation. Auctioneers register their status with the SLS every 30 seconds. If an auctioneer

fails to update its information within 120 seconds then the SLS deletes its entry. Applica-

tion level superschedulers contact the SLS to gather information about various auctioneers

in the system. Once this information is available, the superschedulers (on behalf of users)

issue bids for different resources (controlled by different auctions), constrained by re-

source requirement and available budget. A resource bid is defined by the tuple (h, r, b, t)

whereh is the host to bid on,r is the resource type,b is the number of credits to bid, and

t is the time interval over which to bid. Auctioneers determine the outcome by using a

bid-based proportional resource sharing economy model.

Auctioneers in the Tycoon superscheduling system send an RUQ to the centralised

GRIS (referred to as service local services). The update message consists of the total

number of bids currently active for each resource type and the total amount of each re-

source type available (such as CPU speed, memory size, disk space). An auctioneers RUQ

has the following semantics:

total bids = 10 && CPU Arch = “pentium” && CPU Speed =

2 GHz && Memory = 512

Similarly, the superscheduler, on behalf of the Tycoon users, issues an RLQ to the

GRIS to acquire information about active resource auctioneers in the system. A user re-

source look-up query has the following semantics:

return auctioneers whose CPU Arch = “i686” && CPU Speed ≥
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1 GHz && Memory ≥ 256

Table 3.1: Resource query in superscheduling or brokering systems.

System
Name

Resource Lookup Query Resource Update Query GRIS Model

Condor-
Flock P2P

Query remote pools in the rout-
ing table for resource status and
resource sharing policy

Queue length, average pool
utilization and number of
resources available

Decentralised

Grid-
Federation

Query decentralised federation
directory for resources that
matches user’s job QoS require-
ment (CPU architecture, no. of
processors, available memory,
CPU speed)

Update resource access price and
resource conditions (CPU
utilisation, memory, disk space,
no. of free processors)

Decentralised

Nimrod-G Query GMD or MDS for
resources that matches jobs
resource and QoS requirement

Update resource service price
and resource type available

Centralised

Condor-G Query for available resource
using Grid Resource Information
Protocol (GRIP), then individual
resources are queried for
current status depending on
superscheduling method

Update resource information to
MDS using GRRP

Centralised

Our-Grid MyPeer queries OGPeer for
resources that match user’s job
requirements

Update network of favors credit
for OurGrid sites in the
community

Decentralised

Gridbus
Broker

Query GMD or MDS for
resources that matches jobs
resource and QoS requirement

Update resource service price
and resource type available

Centralised

Tycoon Query for auctioneers that are
currently accepting bids and
matches user’s resource
requirement

Update number of bids currently
active and current resource
availability condition

Centralised

Bellagio Query for resources based on
CPU load, available memory,
inter-node latency, physical and
logical proximity

Update resource conditions
including CPU , memory and
network usage status

Decentralised

Mosix-Grid Information available at each
node throughgossiping
algorithm

Update CPU usage, current load,
memory status and network
status

Hierarchical

In Fig. 3.6, we present the taxonomy for GRIS RLQ and RUQ. In general, the re-

source queries [142] can be abstracted as lookups for objects based on a single dimen-

sion or multiple dimensions. Since, a Grid resource is identified by more than one at-

tribute, an RLQ or RUQ is alwaysd-dimensional. Further, both the1-dimensional and

d-dimensional query can specify different kinds of constraints on the attribute values. If
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Figure 3.6: Resource query taxonomy.

the query specifies a fixed value for each attribute then it is referred to as ad-dimensional

Point Query(DPQ). However, in case the query specifies a range of values for attributes,

then it is referred to as ad-dimensional Window Query(DWQ) or d-dimensional Range

Query(DRQ). Depending on how values are constrained and searched for, these queries

are classified as:

• Exact match query: The query specifies the desired values forall resource at-

tributes sought. For example, Architecture=‘x86’ and CPU-Speed=‘3 Ghz’ and

type=‘SMP’ and price=‘2 Grid dollars per second’ and RAM=‘256 MB’ and No. of

processors=10 and Secondary free space=‘100 MB’ and Interconnect bandwidth=‘1

GB/s’ and OS=‘linux’. (Multiple Dimension Exact Match Query).

• Partial match query: Only selected attribute values are specified. For example, Ar-

chitecture=‘sparc’ and type=‘SMP’ and No. of processors=10. (Multiple Dimen-

sion Partial Match Query).

• Range queries: Range values for all or some attributes are specified. For exam-

ple, Architecture=‘Macintosh’ and type=‘Cluster’ and ‘1 GHz’ ≤ CPU-Speed≤ ‘3

GHz’ and ‘512MB’≤ RAM ≤ ‘1 GB’. (Multiple Dimension Range Query).

• Boolean queries: All or some attribute values satisfying certain boolean condi-

tions. Such as, ((not RAM≤ ‘256 MB’) and not No. of processors≤ 5). (Multiple

Dimension Boolean Query).
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3.3 P2P Taxonomy

The taxonomy for P2P based GRIS is divided into the following (refer to Fig. 3.7): (i)

P2P network organisation; (ii) data organisation; and (iii) d-dimensional query routing

organisation.

Taxonomy
P2P

P2P Network

Organisation

Organisation

Data

d-dimensional

Query Routing

Figure 3.7: Peer-to-Peer network taxonomy.

3.3.1 P2P Network Organisation

The network organisation refers to how peers are logically structured from the topological

perspective. Fig. 3.8 shows the network organisation taxonomy of general P2P systems.

Two categories are proposed in P2P literature [122]: unstructured and structured. An un-

structured system is typically described by a power law random graph model [23, 50], as

peer connections are based on the popularity of content. These systems do not put any

constraints on placement of data items on peers and how peersmaintain their network con-

nections. Detailed evaluation and analysis of network models [34, 101] for unstructured

systems can be found in [118]. Unstructured systems including Napster, Gnutella and

Kazaa offer differing degrees of decentralisation. The degree of decentralisation refers

to the extent peers can function independently with respectto efficient object look-up

and query routing. Our taxonomy classifies unstructured systems asdeterministicor non-

deterministic[118].

Deterministic system means that a look-up operation will besuccessful within prede-

fined bounds. Systems including Napster, BitTorrent fall into this category. In these sys-

tems, the object lookup operation is centralised while download is decentralised. Under
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Figure 3.8: Peer-to-Peer network organisation taxonomy.

centralised organisation, a specialised (index) server maintains the indexes of all objects

in the system (e.g Napster, BitTorrent). The resource queries are routed to index servers

to identify the peers currently responsible for storing thedesired object. The index server

can obtain the indexes from peers in one of the following ways: (i) peers directly inform

the server about the files they are currently holding (e.g. Napster); or (ii) by crawling

the P2P network ( an approach similar to a web search engine).The look up operations

in these systems is deterministic and is resolved with a complexity of O(1). We classify

JXTA as an unstructured P2P system that offers deterministic search performance. At

the lowest level JXTA is a routing overlay, not unlike routers that interconnect to form

a network. Hence there is no structure, but there is a routingalgorithm that allows any

router to router communication. In JXTA both object look-upand download operations
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are completely decentralised.

Other unstructured systems including Gnutella, Freenet, FastTrack and Kazaa offer

non-deterministic query performance. Unlike Napster or BitTorrent, both object lookup

and download operation in these systems are decentralised.Each peer maintains indexes

for the objects it is currently holding. In other words, indexes are completely distributed.

The Gnutella system employs a query flooding model for routing object queries. Every

request for an object is flooded (broadcasted) to the directly connected peers, which in

turn flood their neighboring peers. This approach is used in the GRIS model proposed

by [97]. Every RLQ message has a TTL field associated with it (i.e. maximum number

of flooding hops/steps allowed). Drawbacks for flood-based routing include high network

communication overhead and non-scalability. This issue isaddressed to an extent in Fast-

Track and Kazaa by introducing the notion of super-peers. This approach reduces network

overhead but still uses a flooding protocol to contact super-peers.

Structured systems such as DHTs offer deterministic query search results within log-

arithmic bounds on network message complexity. Peers in DHTs such as Chord, CAN,

Pastry and Tapestry maintain an index forO(log (n)) peers wheren is the total number

of peers in the system. Inherent to the design of a DHT are the following issues [14]: (i)

generation of node-ids and object-ids, called keys, using cryptographic/randomizing hash

functions such as SHA-1 [103, 133]. The objects and nodes aremapped on the overlay

network depending on their key value. Each node is assigned responsibility for managing

a small number of objects; (ii) building up routing information (routing tables) at vari-

ous nodes in the network. Each node maintains the network location information of a

few other nodes in the network; and (iii) an efficient look-upquery resolution scheme.

Whenever a node in the overlay receives a look-up request, it must be able to resolve

it within acceptable bounds such as inO(log (n)) time. This is achieved by routing the

look-up request to the nodes in the network that are most likely to store the information

about the desired object. Such probable nodes are identifiedby using the routing table

entries. Though at the core various DHTs (Chord, CAN, Pastry etc.) are similar, still

there exists substantial differences in the actual implementation of algorithms including

the overlay network construction (network graph structure), routing table maintenance

and node join/leave handling. The performance metrics for evaluating a DHT include
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fault-tolerance, load-balancing, efficiency of lookups and inserts and proximity aware-

ness [115]. In Table-3.2, we present the comparative analysis of Chord, Pastry, CAN and

Tapestry based on basic performance and organisation parameters. Comprehensive details

about the performance of some common DHTs under churn can be found in [110].

Table 3.2: Summary of the complexity of structured P2P systems.

P2P
System

Overlay
Structure

Lookup
Protocol

Network
parameter

Routing
table size

Routing
complexity

join/leave
overhead

Chord 1-
dimensional,
circular-ID
space

Matching
key and
NodeID

n= number of
nodes in the
network

O(log(n)) O(log n) O((log n)2)

Pastry Plaxton-
style mesh
structure

Matching
key and
prefix in
NodeID

n= number
of nodes in
the network,
b=base of the
identifier

O(logb(n)) O(b logb(n)+
b)

O(log n)

CAN d-
dimensional
ID space

key,value
pairs map
to a point
P in the d-
dimensional
space

n= number
of nodes in
the network,
d=number of
dimensions

O(2 d) O(d n1/d) O(2 d)

Tapestry Plaxton-
style mesh
structure

Matching
suffix in
NodeID

n= number
of nodes in
the network,
b=base of the
identifier

O(logb(n)) O(b logb(n)+
b)

O(log n)

Other classes of structured systems such as Mercury do not apply randomising hash

functions for organising data items and nodes. The Mercury system organises nodes into

a circular overlay and places data contiguously on this ring. As Mercury does not apply

hash functions, data partitioning among nodes is non-uniform. Hence it requires an ex-

plicit load-balancing scheme. In recent developments, newgeneration P2P systems have

evolved to combine both unstructured and structured P2P networks. We refer to this class

of systems as hybrid. Structella [36] is one such P2P system that replaces the random

graph model of an unstructured overlay (Gnutella) with a structured overlay, while still

adopting the search and content placement mechanism of unstructured overlays to support

complex queries. Other hybrid P2P design includes Kelips [89] and its variants. Nodes in

Kelips overlay periodically gossip to discover new membersof the network, and during
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this process nodes may also learn about other nodes as a result of lookup communication.

Other variant of Kelips [87] allows routing table entries tostore information for every

other node in the system. However, this approach is based on assumption that system

experiences low churn rate [110]. Gossiping and one-hop routing approach has been used

for maintaining the routing overlay in the work [158]. In Table 3.3, we summarize the

different P2P routing substrate that are utilized by the existing algorithms for organising

a GRIS.

3.3.2 Data Organisation

Traditionally, DHTs have been efficient for1-dimensional queries such as finding all re-

sources that match the given attribute value. Extending DHTs to support DRQs, to index

all resources whose attribute value overlap a given search space, is a complex problem.

DRQs are based on ranges of values for attributes rather than on specific values. Com-

pared to1-dimensional queries, resolving DRQs is far more complicated, as there is no

obvious total ordering of the points in the attribute space.Further, the query interval has

varying size, aspect ratio and position such as a window query. The main challenges in-

volved in enabling DRQs in a DHT network [80] include efficient: (i) data distribution

mechanisms; and (ii) data indexing or query routing techniques. In this section, we dis-

cuss various data distribution mechanisms while we analysedata indexing techniques in

the next section.

A data distribution mechanism partitions thed-dimensional [20, 77] attribute space

over the set of peers in a DHT network. Efficiency of the distribution mechanism directly

governs how the query processing load is distributed among the peers. A good distribution

mechanism should possess the following characteristics [80]:

• Locality: tuples or data points nearby in the attribute space should be mapped to the

same node, hence limiting the lookup complexity.

• Load balance: the number of data points indexed by each peer should be approxi-

mately the same to ensure uniform distribution of query processing [25, 139].

• Minimal metadata: prior information required for mapping the attribute space to the

peer space should be minimal.
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• Minimal management overhead: during peer join and leave operation, update poli-

cies such as the transfer of data points to a newly joined peershould cause minimal

network traffic.

In the current P2P indexing literature (refer to section 3.4), d-dimensional data dis-

tribution mechanisms based on the following structures have been proposed (refer to

Fig. 3.10): (i) space filling curves; (ii) tree-based structures; and (iii) variant of SHA-1/2

hashing. In Table 3.4, we summarise various data structuresused in different algorithms

for d-dimensional data distribution. Further, in Table 3.5, we present a classification of

the existing algorithms based on the number of routing overlays utilized for managing

d-dimensional data.
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Figure 3.9: An example2-dimensional data organisation in Squid based on Hilbert SFC.

The Space Filling Curves data structure (SFCs) [11, 99] includes the Z-curve [129]

and Hilbert’s curve [100]. SFCs map the givend-dimensional attribute space into a1-

dimensional space. The work in [10] utilises space-filling curves (SFC), in particular

the reverse Hilbert SFC for mapping a1-dimensional attribute space to a two-dimensional

CAN P2P space. Similarly, the work in [150] uses the Hilbert SFC to map ad-dimensional

index space into a1-dimensional space. The resulting1-dimensional indexes are contigu-

ously mapped on a Chord P2P network. The approach proposed in [80] utilises Z-curves
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for mappingd-dimensional space to1-dimensional space. SFCs exhibit the locality prop-

erty by mapping the points that are close ind-dimensional space to adjacent spaces in the

1-dimensional space. However, as the number of dimensions increases, locality becomes

worse since SFCs suffer from “curse of dimensionality” [104]. Further, SFC based map-

ping fails to uniformly distribute the load among peers if the data distribution is skewed.

Hence, this leads to a non-uniform query processing load forpeers in the network. In

Fig. 3.92-dimensional attribute space is contiguously mapped to the1-dimensional Chord

space. Hilbert SFC index forms the basis for transforming ad-dimensional attribute space

to a 1-dimensional key space. The attribute point with Hilbert SFC index value25 is

mapped to the Node32 in the Chord space.

Some of the recent works [52, 81, 134, 166] utilize tree-based data structures for

organising the data. The approach proposed in [166] adopts the MX-CIF quadtree [147]

index for P2P networks. A distributed quadtree index assigns regions of space (a quadtree

block) to the peers. If the extent of a spatial object goes beyond a quadtree block, then

recursive subdivision of the that block can be performed. With a good base hash function

one can achieve a uniform random mapping of the quadtree blocks to the peers in the

network. This approach will map two quadtree blocks that areclose to each other to to-

tally different locations on the Chord space. Another recentwork called DragonFly [108],

uses the same base algorithm with an enhanced load balancingtechnique called recursive

bisection [21]. Recursive bisection works by dividing a cell/block recursively into two

halves until a certain load condition is met. The load condition is defined based on two

load parameters known as the load limit and the load threshold. Hence, this approach has

better load balancing properties as compared to the SFC-based approaches in the case of

a skewed data set.

DragonFly builds ad-dimensional Cartesian space based on the Grid resource at-

tributes, where each attribute represents a single dimension. The logicald-dimensional

index assigns regions of space to the peers. If a peer is assigned a region (index cell) in

thed-dimensional space, then it is responsible for handling allthe activities related to the

subscription and publication associated with the region. Each cell is uniquely identified

by its centroid, termed as thecontrol point.

Other approaches including [33, 168] manipulate existing SHA-1/2 hashing for map-
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ping d-dimensional data to the peers. MAAN addresses the1-dimensional range query

problem by mapping attribute values to the Chord identifier space via a uniform locality

preserving hashing scheme. A similar approach is also utilized in [170]. However, this

approach shows poor load balancing characteristics when the attribute values are skewed.

To conclude, the choice of data structure is directly governed by the data distribution

pattern. A data structure that performs well for a particular data-set may not do the same

in case the distribution changes. Additional techniques such as peer virtualization (as

proposed in Chord) or multiple realities (as proposed in CAN) may be utilized to improve

the query processing load.
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Figure 3.10: Data structure taxonomy.

3.3.3 D-dimensional Query Routing

DHTs guarantee deterministic query lookup with logarithmic bounds on network message

cost for1-dimensional queries. However, Grid RLQs are normally DPQ orDRQ. Hence,

existing routing techniques need to be augmented in order toefficiently resolve a DRQ.
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Various data structures that we discussed in previous section effectively create a logical

d-dimensional index space over a DHT network. A look-up operation involves searching

for a index or set of indexes in ad-dimensional space. However, the exact query rout-

ing path in thed-dimensional logical space is directly governed by the datadistribution

mechanism (i.e. based on the data structure that maintains the indexes).

In this context, various approaches have proposed different routing/indexing heuris-

tics. Efficient query routing algorithm should exhibit the following characteristics [80]:

• Routing load balance: every peer in the network on the averageshould route for-

ward/route approximately same number of query messages.

• Low per-node state: each peer should maintain a small numberof routing links

hence limiting new peer join and peer state update cost. In Table 3.4, we summarize

the query look-up complexity involved with the existing algorithms.

Resolving a DRQ over a DHT network that utilises SFCs for data distribution con-

sists of two basic steps [150]: (i) mapping the DRQ onto the setof relevant clusters of

SFC-based index space; and (ii) routing the message to all peers that fall under the com-

puted SFC-based index space. The simulation based study proposed in [80] has shown

that SFCs (Z-curves) incur constant routing costs irrespective of the dimensionality of

the attribute space. Routing using this approach is based on askip graph, where each

peer maintainsO(log(n)) additional routing links in the list. However, this approach has

serious load balancing problems that need to be fixed using external techniques [79].

Routing DRQs in DHT networks that employ tree-based structures for data distribu-

tion requires routing to start from the root node. However, the root peer presents a single

point of failure and load imbalance. To overcome this, the authors in [166] introduced the

concept of fundamental minimum level. This means that all the query processing and the

data storage should start at that minimal level of the tree rather than at the root. Another

approach [80] utilises a P2P version of a Kd-tree [19] for mapping d-dimensional data

onto a CAN P2P space. The routing utilises the neighboring cells of the data structure.

The nodes in this network that manage a dense region of space are likely to have large

number of neighbors, hence leading to an unbalanced routingload.
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Search_
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Figure 3.11: An example for single-attribute-dominated query resolution in MAAN ap-
proach.

Other approaches based on variants of standard hashing schemes (such as MAAN) ap-

ply different heuristics for resolving range queries. The single-attribute dominated query

routing (SAQDR) heuristic abstracts resource attributes into two categories: (i) dominant

attribute; and (ii) non-dominant attribute. The underlying system queries for the node that

maintains the index information for the dominant attribute. Once such a node is found, the

node searches its local index information looking at satisfying the values for other non-

dominant attributes in the DRQ. The request is then forwardedto the next node which

indexes the subsequent range value for the dominant attribute. This approach compre-

hensively reduces the number of routing steps needed to resolve a DRQ. However, this

approach suffers from routing load-imbalance in the case ofa skewed attribute space.
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Fig. 3.11 shows an example of single attribute dominated routing in MAAN. This

MAAN network has the identifier space in the range [0, 26]. The attribute ranges and

corresponding locality preserving hash functions are alsoshown in the figure. The node

A initiates asearch request(1) with hash value of lower bound of the dominated attribute

(CPU-Speed). Thesearch request(1) has following semantics in the Chord key space:

look up ( 50.4, CPU-Speed, (4.0GHz, 5.0GHz), Memory-Size∈ [768MB, 1024MB],{

EMPTY }). The look-up request is routed to the current successor node G using the

standard Chord method. NodeG currently owns the key related to both the attribute

values CPU-Speed and Memory, it augments the corresponding value to the result set

X and forwards the query in the network to look-up for the upperbound on the CPU-

Speed. The query finally terminates at NodeA which happens to be initiator node as

well. In Table 3.6, we present the classification of the existing algorithms based on query

resolution heuristic, and data locality preserving characteristics.

Table 3.3: Classification based on P2P routing substrate.

Routing Substrate Network Organisation Distributed Indexing Algorithm Name
Chord Structured PHT [134], MAAN [33], Dgrid [168], Adap-

tive [81], DragonFly [108], QuadTree [166],
Pub/Sub-2 [170], P-tree [52], Squid [150]

Pastry Structured XenoSearch [159], AdeepGrid [42],
Pub/Sub-1 [165]

CAN Structured HP-protocol [10], Kd-tree [80],Meghdoot [88],
Z-curve [80], Super-P2P R*-Tree [114]

Bamboo Structured SWORD [128]
Epidemic-DHT [87] Hybrid XenoSearch-II [158]

Others Unstructured Mercury [24], JXTA search [85], P2PR-tree [124]
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Table 3.4: Classification based on data structure applied forenabling ranged search and
look-up complexity.

Algorithm Name Data Structure Lookup Complexity
PHT [134] Trie O(log |D|); D is the total number of bits in the binary

string representation, for1-dimensional range query
MAAN [33] Locality preserving

hashing
O(n × log n + n × smin), smin is the minimum range
selectivity per dimension;n total peers

Dgrid [168] SHA-1 hashing O(log
2
Y ) for each dimension,Y is the total resource

type in the system
SWORD [128] N.A. N.A.
JXTA search [85] RDBMS N.A.
DragonFly [108] QuadTree O(E[K]× (log2n+ fmax− fmin)) ; n is the total peers

in the network;fmax is the maximum allowed depth of
the tree,fmin is the fundamental minimum level,E[K]
is the mean number disjoint path traversed for a window
query, its distribution is function of the query size

QuadTree [166] QuadTree O(E[K]× (log2n+ fmax− fmin)) ; n is the total peers
in the network;fmax is the maximum allowed depth of
the tree,fmin is the fundamental minimum level,E[K]
is the mean number disjoint path traversed for a window
query, its distribution is function of the query size

Pub/Sub-2 [170] Order preserving
hashing

1/2 × O(log n); Equality query,n is total peers,1/2 ×
O(ns log n), ns is step factor; for ranged query, in a
1-dimensional search space

P-tree [52] Distributed B-+ tree O(m + logd n); n is total peers,m is number of peers in
selected range,d is order of the1-dimensional
distributed B-tree

Pub/Sub-1 [165] SHA-1 hashing O(nr log n); n is total peers,nr is the number of range
intervals searched in a1-dimensional search space

XenoSearch [159] SHA-1 hashing N.A.
XenoSearch-II [158] Hilbert space filling

curve
N.A.

AdeepGrid [42] SHA-1 hashing N.A.
HP-protocol [10] Reverse hilbert space

filling curve
N.A.

Squid [150] Hilbert space filling
curve

nc ×O(log n); nc is the total no. of isolated index
clusters in the SFC based search index space,n is the
total number of peers

Mercury [24] N.A. O((log n)/k); k Long distance links;n is total peers, in
a1-dimensional search space

Adaptive [81] Range search tree O(log Rq); Rq is range selectivity, in a1-dimensional
search space

Kd-tree [80] Kd-tree, skip pointer
based on skip graphs

N.A.

Meghdoot [88] SHA-1 hashing O(dn
1

d ), n is the total peers in the network,d is the
dimensionality of CAN space

Z-curve [80] Z-curves, skip
pointer based on skip
graphs

N.A.

P2PR-tree [124] Distributed R-tree N.A.
Super-P2P R*-
Tree [114]

Distributed R*-tree O(E[k] × (d/4)(n1/d)); E[k] is the mean number of
MBRs indexed per range query or NN query,d is the
dimensionality of the indexed/CAN space,n is the
number of peers in the system.
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Table 3.5: Classification based on No. of routing overlays ford-dimensional search space.

Single Multiple
JXTA search [85], Dragon-
Fly [108], XenoSearch-II [158],
SWORD [128], Squid [150], Kd-
tree [80],
Meghdoot [88], Z-curve [80],
QuadTree [166], Dgrid [168],
P2PR-tree [124], AdeepGrid [42],
Super-P2P R*-Tree [114]

PHT [134], Adaptive [81],
Pub/Sub-2 [170], P-tree [52],
XenoSearch [159], Pub/Sub-
1 [165], MAAN [33], Mercury [24],
HPPROTOCOL [10]

Table 3.6: Classification based on query resolution heuristic, data distribution efficiency
and data locality preserving characteristic.

Algorithm Name Heuristic Name Preserves
Data Local-
ity (Yes/No)

PHT [134] Chord routing N.A.
MAAN [33] Iterative resolution, single attribute

dominated routing based on Chord
N.A.

Dgrid [168] Chord routing N.A.
SWORD [128] Bamboo routing No

JXTA search [85] Broadcast . N.A.
DragonFly [108] Generic DHT routing No
QuadTree [166] Generic DHT routing No
Pub/Sub-2 [170] Chord routing N.A.

P-tree [52] Generic DHT routing N.A.
Pub/Sub-1 [165] Pastry routing N.A.

XenoSearch [159] Generic DHT routing N.A.
XenoSearch-II [158] Generic DHT routing N.A.

AdeepGrid [42] Single shot, recursive and parallel
searching based on Pastry

No

HP-protocol [10] Brute force, controlled flooding,
directed controlled flooding based
on CAN

N.A.

Squid [150] Generic DHT routing Yes
Mercury [24] Range-selectivity based routing N.A.
Adaptive [81] Generic DHT routing N.A.
Kd-tree [80] Skip pointer based routing Yes

Meghdoot [88] CAN based routing Yes
Z-curve [80] Skip pointer based routing Yes

P2PR-tree [124] Block/group/subgroup pointer
based routing

Yes

Super-P2P R*-Tree [114] CAN based routing Yes
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3.4 Survey of P2P based Grid Information Indexing

3.4.1 Pastry Based Approaches

Pub/Sub-1: Building Content-Based Publish/Subscribe Systems with Distributed Hash

Tables

The Publish/Subscribe system [165] is implemented on top ofthe topic-based Scribe [38]

system. The system defines different schema for publicationand subscription messages

for each application domain (such as a stock market or an auction market). When a

request (publication or subscription) is submitted to the system, it is parsed for various

index digests. An index digest is a string of characters thatis formed by concatenating the

attribute type, name, and value of each attribute in the index. An example index digest is

[USD : Price : 100 : Inch : Monitor : 19 : String : Quality : Used]. The system

can support both point and range queries through different query resolution heuristics.

The system handles range values by building a separate indexhash key for every attribute

value in the specified range. This method has serious scalability issues. The proposed

approach to overcome this limitation is to divide the range of values into intervals and a

separate hash key is built for each such index digest representing that interval. However,

this approach can only handle range values of single attribute in a index digest (does not

support multi-attribute range value in a single index digest).

XenoSearch: Distributed Resource Discovery in the XenoServer Open Platform

XenoSearch [159] is a resource discovery system built for the XenoServer [90] execution

platform. The XenoSearch indexes the resource informationthat are advertised periodi-

cally by the XenoServers. An advertisement contains information about the identity, own-

ership, location, resource availability, and access prices of a XenoServer. The XenoSearch

system converts these advertisements to points in ad-dimensional space, wherein differ-

ent dimensions represent different attributes (such as topological location, QoS attributes

etc). The XenoSearch system is built over the Pastry [143] overlay routing protocol. A

separate Pastry ring operates for each dimension with XenoSearch nodes registering sep-

arately in each ring. A XenoServer registers for each dimension and derives the overlay
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key by hashing its co-ordinate position in that dimension. Effectively, in different dimen-

sions a XenoServer is indexed by differentkeys. Thed-dimensional range searches are

performed by making a series of search requests in each dimension and finally computing

their intersection. Recently, XenoSearch has been enhancedwith new search and data

placement technique [158]. The new approach puts emphasis upon both the location and

resource constraints associated with a search entity.

AdeepGrid: Peer-to-Peer Discovery of Computational Resources for Grid Applica-

tions

The proposed [42] GRIS model hashes thed-dimensional static and dynamic resource

attributes to the Pastry ID space. The system augments additional32-bits to the ID or key

size ( hence resulting key is160-bit long) as compared to128-bit in the standard Pastry

ring. In this case, the first128-bits are used to encode the static attributes while the re-

maining32-bits for the dynamic attributes. The static part of the Resource ID is mapped

to a fixed point while the dynamic part is represented by potentially overlapping arcs on

the overlay. Resolving RLQ involves locating the node that currently hosts the desired re-

source attributes (Resource ID). This is accomplished by utilizing standard Pastry routing.

Three different heuristics for resolving the RLQs are proposed: (i) single-shot searching;

(ii) recursive searching; and (iii) parallel searching.

3.4.2 Chord Based Approaches

DGRID: A DHT-Based Grid Resource Indexing and Discovery Scheme

Work by Teo et al. [168] extends Chord DHT with the GRIS capability. The unique

characteristic about this approach is that the resource information is maintained in the

originating domain. Every domain in DGRID designates an index server to the Chord

based GRIS network. The index server maintains state and attribute information for the

local resource set. The proposed approach intelligently manipulates the existing Chord

ID generation scheme to enable a GRIS network. The search or look-up operation in the

DGRID is based on Chord look-up primitives. Given a keyp, is mapped to a particular

virtual index server on the overlay network using the queryget(p). The DGRID indexing
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approach also supports domain specific resource type search. Overall, the look-up cost is

bounded by the underlying Chord protocol i.e.O(log N). In general the look-up cost for

a particular resource typet is O(log Y ), Y is the total number of resource types available

in the network.

Adaptive: An Adaptive Protocol for Efficient Support of Range Queries in DHT-

based Systems

The work in [81] presents an algorithm to support range queries based on a distributed

logical Range Search Tree (RST). Inherently, the RST is a complete and balanced binary

tree with each level corresponding to a different data partitioning granularity. The system

abstracts the data being registered and searched in the network as a set of attribute-value

pairs (AV-pairs). It utilizes the Chord for distributed routing and network management is-

sues. A typical range query with lengthRq is resolved by decomposing it intoO(log(Rq))

sub-queries. These sub-queries are then sent to the nodes that index the corresponding

data. The system supports updates and queries for both static and dynamic resource at-

tributes.

Pub/Sub-2: Content-based Publish-Subscribe Over Structured P2P Networks

The work in [170] presents a content-based publish-subscribe indexing system based on

the Chord DHT. The system is capable of indexingd-dimensional index space by having

a separate overlay for each dimension. Everyi-th dimension i.e. a resource attribute has

a distinct data-type, name and value. A attribute name is normally a string, whereas the

value can be a string or numeric in any range constrained by the minimum and maximum

value along with the attribute’s precision. An attribute ina subscription is placed on a node

obtained by hashing its value based on the Chord method. A subscription can declare a

range of values in the attribute’s range. The query is resolved in set of steps, where a

step is computing using the maximum, minimum and precision values for the attribute. In

the subsequent steps the previous attribute value is incremented by the precision value and

mapped to the corresponding Chord node. Updating the range values is done by following

the same procedure for all Chord nodes that store the given range of values. The overall

message routing complexity depends on the type of constraints defined over the attributes.



3.4. Survey of P2P based Grid Information Indexing 63

In case of equality constraints, the average number of routing hops isO(1/2 log(n)).

When the constraint is a range then the complexity involved isO(ns×1/2 log(n)), where

ns is the step factor.

QuadTree: Using a Distributed Quadtree Index in the Peer-to-Peer Networks

The work in [166] proposes a distributed quad-tree that adopts an MX-CIF quadtree in-

dex [147] for accessing spatial data or objects in P2P networks. The work builds upon

the region quad-tree data structure. In this case, by applying the fundamental quad-tree

decomposition property the underlying two-dimensional square space is recursively de-

composed into four congruent blocks until each block is contained in one of the objects

in its entirety or is not contained in any of the objects. The distributed quad-tree index

assigns regions ofd-dimensional space to the peers in a P2P system. Every quad-tree

block is uniquely identified by its centroid, termed as the control point. Using the control

point, a quad-tree block is hashed to a peer in the network. The Chord method is used for

hashing the blocks to the peers in the network. If a peer is assigned a quad-tree block, then

it is responsible for processing all query computations that intersects the block. Multiple

control points (i.e. quad-tree blocks) can be hashed to the same peer in the network. To

avoid a single point of failure at the root level of the quad-tree the authors incorporate a

technique calledfundamental minimum level,fmin. This technique means that objects are

only allowed to be stored at levelsl ≥ fmin and therefore all the query processing starts at

levelsl ≥ fmin. The scheme also proposes the concept of afundamental maximum level,

fmax, which limits the maximum depth of the quad-tree at which objects are inserted.

DragonFly: A Publish-Subscribe Scheme with Load Adaptability

The work in [108] proposes a content-based publish-subscribe system with load adaptabil-

ity. They apply a spatial hashing technique for assigning data to the peers in the network.

The system supports multi-attribute point and range queries. Each distinct attribute is

assigned a dimension in ad-dimensional Cartesian space. Thed-dimensional Cartesian

space is arranged as a tree structure with the domain space mapped to the root node of the

tree. In particular, the tree structure is based on a quad tree [147]. To negate a single point

of failure at the root node, system adopts a technique calledthe fundamental minimum
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level. More details about this technique can be found in [166]. This technique recursively

divides the logical space into four quadrants. With each recursion step on a existing quad-

rant, four new quadrants are generated. Hence, multiple recursion steps basically create a

mutli-level tree data structure. Note that, the quad-tree decomposition method is followed

only at thefmin level, beyond this the index cell is divided depending on itscorresponding

publish/subscribe load. The tree based organisation of DragonFly introduces parent-child

relationships between tree cells. Another important feature of DragonFly is the diagonal

hyperplane. In2-d space, the diagonal hyperplane is a line spanning from thenorth-west

to the south-east vertices of the rectangular space. The hyperplane forms the basis for

mapping the subscription and publication objects.

MAAN: A Multi-Attribute Addressable Network for Grid Informa tion Services

Cai et al. [33] present a multi-attribute addressable network (MAAN) approach for en-

abling a GRIS. They extend the Chord [161] protocol to support DRQs. MAAN ad-

dresses thed-dimensional range query problem by mapping the attribute values to the

Chord identifier space via a uniform locality preserving hashing. Note that, for every

attribute dimension a separate Chord overlay is maintained.For attributes with the nu-

merical values, MAAN applies locality preserving hashing functions to assign an iden-

tifier in them-bit identifier space. The total routing complexity involved in resolving a

1-dimensional range query isO(log N + K), whereO(log N) is the underlying Chord

routing complexity andK is the number of nodes that store values in attribute’s range.

MAAN also supports multi-attribute query resolution by extending the single-attribute

range query routing algorithm.

Squid: Flexible Information Discovery in Decentralised Distributed Systems

Schmidt et al. [150] proposed a GRIS model that utilizes SFCs for mappingd-dimensional

attribute space to a1-dimensional search space. All data elements are describedusing

a sequence of attributes such as memory, CPU speed and networkbandwidth. The at-

tributes form the coordinates of ad-dimensional space, while the data elements are the

points. This mapping is accomplished using a locality-preserving mapping called Space

Filling Curves (SFC) [11], [99]. SFCs are used to generate a1-dimensional index space
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from thed-dimensional attribute space, whered is the number of different attribute types.

Any range query or query composed of attributes, partial attributes, or wild-cards, can be

mapped to regions of the attribute space and subsequently tothe corresponding clusters in

the SFC. The Chord protocol is utilized to form the overlay network of peers. Each data

element is mapped, based on its SFC-based index or key, to the first node whose identifier

is equal to or follows the key in the identifier space. The look-up operation involving par-

tial queries and range queries typically requires interrogating more than one node, since

the desired information is distributed across multiple nodes. The look-up queries can con-

sist of combination of a attributes, partial attributes or wildcards. The result of the query

is a complete set of data elements that matches the user’s query.

P-tree: Querying Peer-to-Peer Networks Using P-trees

Crainniceanu et al. [52] propose a distributed, fault-tolerant P2P index structure called P-

tree. The main idea behind the proposed scheme is to maintainparts of semi-independent

B+−trees at each peer. The Chord protocol is utilized as a P2P routing substrate. Every

peer in the P2P network believes that the search key values are organised in a ring, with the

highest value wrapping around to the lowest value. Whenever apeer constructs its search

tree, the peer pretends that its search key value is the smallest value in the ring. Each peer

stores and maintains only theleft-most root-to-leaf pathof its correspondingB+− tree.

The remaining part of the sub-tree information is stored at asubset of other peers in the

overlay network. Furthermore, each peer only stores tree nodes on the root-to-leaf path,

and each node has at most2d entries. In this case, the total storage requirement per peer

is O(d logdN). The proposed approach guaranteesO(logd N) search performance for

equality queries in a consistent state. Hered is the order of the sub-tree andN is the total

number of peers in the network. Overall, in a stable system when no inserts or deletes

operation is being carried out, the system providesO(m + logdN) search cost for range

queries, wherem is the number of peers in the selected range in1-dimensional space.
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3.4.3 CAN Based Approaches

One torus to rule them all (Kd-tree and Z-curve based indexing)

The work in [80] proposes two approaches for enabling DRQs over the CAN DHT. Thed-

dimensional data is indexed using the well known spatial data structures: (i) z-curves; and

(ii) Kd-tree. First scheme is referred to as SCRAP: Space Filling Curves with Range Parti-

tioning. Resolving DRQs in SCRAP network involves two basic steps: (i) mapping DRQ

into SRQ using the SFCs; and (ii) routing the1-dimensional range queries to the peers

that indexes the desired look-up value. For routing query in1-dimensional space the work

proposes a scheme based on skip graph [12]. Other approach referred to asd-dimensional

Rectangulation with Kd-trees (MURK). In this scheme,d-dimensional space (for instance

a 2-d space) is represented as “rectangles” i.e. (hypercuboids in high dimensions), with

each node maintaining one rectangle. In this case, these rectangles are used to construct

a distributed Kd–tree. The leaf node in the tree are stored bythe peers in the network.

Routing in the network is based on the following schemes: (i) CAN DHT is used as basis

for routing the DRQs; (ii) random pointers–each peer has to maintain skip pointers to

random peers in the network. This scheme provides similar query and routing efficiency

as multiple realities in CAN; and (iii) space–filling skip graph-each peer maintain skip

pointers toO(log(n)) other peers at exponentially increasing distances from itself in the

network.

Meghdoot: Content-Based Publish/Subscribe over P2P Networks

The work in [88] proposes a content-based Pub/Sub system based on CAN routing sub-

strate. Basic models and definitions are based on the scheme proposed in the work [146].

The model is capable of indexing ad-dimensional attribute space in a CAN routing space.

An indexing space consisting ofd attributes is always mapped to a CAN space of2d di-

mensions. An attributeAi with domain value[Li, Hi] corresponds to dimensions2i − 1

and2i in a 2d-dimensional Cartesian space. The2d dimensional logical space is parti-

tioned among the peers in the system. A subscriptionS for d attributes is mapped to the

point < l1, h1, l2, h2, . . . , ld, hd > in the2d dimensional space which is referred to as the

subscription point. Pub/Sub applications submit their subscription to a randomly cho-
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sen peerP0. A origin peerP0 routes the subscription request to the target peerPt using

the basic CAN routing scheme. The peerPt owns a point in thed-dimensional space to

which a subscriptionS maps. The overall complexity involved in routing a subscription

is O(d n1/d), wheren is the number of peers in the system andd is the dimensionality

of the Cartesian space. Similarly every publish event is mapped to a particular point in

thed-dimensional space, also referred to as the event point/event zone. The event is then

routed to thePt from the origin peer using the standard CAN routing. All the peers that

own the region affected by a event are notified accordingly. Following this, all the peers

in the affected region matches the new event against the previously stored subscriptions.

Finally, the event is delivered to applications that have subscribed for the event.

HP-protocol: Scalable, Efficient Range Queries for Grid Information Services

Andrejak et al. [10] extend the CAN routing substrate to support 1-dimensional range

queries. They apply the SFC in particular the Hilbert Curves for mapping a1-dimensional

attribute space (such as no. of processors) to ad-dimensional CAN space. For each re-

source attribute/dimension a separate CAN space is required. To locate a resource based

on multiple attributes, the proposed system iteratively queries for each attribute in dif-

ferent CAN space. Finally, the result for different attributes are concatenated similar to

“join” operation in the database. Given a range queryr with lower and upper bounds

∈[l, u], a query message is routed to an information server which isresponsible for the

point l+u
2

. Once such a server is located, then the request is recursively flooded to all its

neighbors until all the IKs are located. Three different kinds of message flooding scheme

are presented including the brute force, controlled flooding and directed control flood-

ing. Each of these scheme has different search strategy and hence have different message

routing complexities.

Super-P2P R*-Tree: Supporting Multi-dimensional Queries in P2P Systems

The authors in the work [114] extend thed-dimensional index R*-tree [18], for supporting

range andk-Nearest Neighbour (kNN ) queries in a super-peer [177] based P2P system.

The resulting distributed R*-tree is referred to as a NR-tree.Routing in the distributed

d-dimensional space is accomplished through the CAN protocol. The d-dimensional
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distributed space is partitioned among the super-peer networks based on the Minimum

Bounding Rectangle (MBR) of objects/points. Each partition (super-peer network) refers

to a index-cluster (i.e. a MBR), and can be controlled by one or more super-peer. Effec-

tively, a index-cluster includes a set of passive peers and super-peers. Evey index-cluster

maps to a zone in the CAN based P2P space. The functionality of asuper-peer is similar

to a router, it keep tracks of other index-clusters, performs inter-cluster routing, indexes

data in other super-peer partition and maintains cluster-specific NR-tree. Every passive

peer joins the network by contacting any available super-peer. The contacted super-peer

routes the join request to other super-peer, which is responsible for the zone indexed by

the passive peer. Every passive peer maintains a part of the cluster-specific NR-tree. The

bulk of query processing load is coordinated by super-peers. Super-peers can forward

query to its passive-peers, in case the indexed data is managed by them.

3.4.4 Miscellaneous

SWORD: Distributed Resource Discovery on PlanetLab

SWORD [128] is a decentralised resource discovery service that supports multi-attribute

queries. This system is currently deployed and tested over PlanetLab [47] resource sharing

infrastructure. It supports different kind of query composition including per-node charac-

teristics such as load, physical memory, disk space and inter-node network connectivity

attributes such as network latency. For each resource attributeAi, a corresponding DHT

key ki is computed using the standard SHA-1 scheme. A keyki is computed based on

the corresponding value ofAi at the time attribute value is sent. Each attribute is hashed

to a 160-bit DHT key. The mapping function convert attribute valuesfrom their native

data-type (String) and range (numeric) to a range of DHT keys. On receiving the attribute

value tuple, the server node stores the tuple in the local table. In case, these values are

not updated within timeout interval then are deleted (assuming node has probably left the

network or owner of the key has changed due to change in attribute values). SWORD

resolves multi-attribute range query similar to [24].
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Mercury: Supporting Scalable Multi-Attribute Range Queries

Mercury [24] is a distributed resource discovery system that supports multi-attribute based

information search. Mercury handles multi-attribute lookups by creating a separate rout-

ing hub for every resource dimension. Each routing hub represents a logical collection

of nodes in the system and is responsible for maintaining range values for a particular

dimension. Note that, while the notion of a circular overlayis similar to DHTs, Mercury

do not use any randomizing cryptographic hash functions forplacing the nodes and data

on the overlay. In contrast, Mercury overlay network is organised based on set of links.

These links include the: i) successor and predecessor linkswithin the local attribute hub;

ii) k links to other nodes in the local attribute hub (intra-hub links); and iii) one link per

hub (inter-hub link) that aids in communicating with other attribute hubs and resolving

multi-attribute range queries. Note that,k intra-hubs links is a configurable parameter

and could be different for different nodes in the attribute overlay. In this case, the total

routing table size at a node isk + 2. When a nodenk is presented with message to find

a node that maintains a range value[li, ri], it chooses the neighborni such that the clock-

wise distanced(li, v) is minimized, in this case the nodeni maintains the attribute range

value[li, ri]. Key to message routing performance of Mercury is the choiceof k intra-hub

links. To set up each linki, a node draws a numberx ∈ I using the harmonic probability

distribution function:pn(x) = 1
n log x

. Following this, a nodeni attempts to add the node

n‘ in its routing table which manages the attribute range valuer + (Ma−ma)× x; where

ma andMa are the minimum and maximum values for attributea.

PHT: Prefix Hash Tree

The work in [134] presents a mechanism for implementing range queries over DHT based

system via a trie-based1 scheme. The bucket in the trie is stored at the DHT node obtained

by hashing its corresponding prefixes. In the PHT, every vertex corresponds to a distinct

prefix of the data domain being indexed. The prefixes of the nodes in the PHT form a

1A trie is a multi-way retrieval tree used for storing stringsover an alphabet in which there is one node
for every common prefix and all nodes that share a common prefixhang off the node corresponding to the
common prefix.
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universal prefix set2. The scheme associates a prefix label with each vertex of the tree.

Given a vertex with labell, its left and right child vertices’s’s are labeled asl0 and l1

respectively. The root of the tree is always labeled with theattribute name and all the

subsequent vertexes are labeled recursively. This logicalPHT is distributed across nodes

in the DHT-based network. Using the DHT look-up operation, aPHT node with labell

is thus assigned to a node with identifier closest to HASH(l). Look-up for a range query

in PHT network is performed by locating the node corresponding to the longest common

prefix in the range. When such a node is found, then parallel traversal of its sub-tree is

done to retrieve all the desired items.

JXTA: JXTA Search

JXTA Search [173] is an open framework based on the JXTA [85] routing substrate. JXTA

search network consists of search hubs, information providers and information consumers.

The network message communication protocol is based on the XML format. In the JXTA

network, search hubs are organised intoN distinct groups. These groups are referred

to asadvertisement groups. These search hubs act as point of contact for providers and

consumers. Further each search hub is a member of a network ofhubs which has at least

one representative of hubs from every advertisement group.These groups are termed as

query groups. Hence, in this case there is100% reachability to all stored information in

the network. Every information provider in the network registers its resource information

with its local search hub. Each hub periodically sends update message (new additions and

deletions of registrations) to all the hub in its advertisement group. Whenever an infor-

mation consumer wishes to look for data on the search network, it issues an information

request query to the hub it knows or has membership. The hub that receives this query

first searches its local index and then other hubs in its advertisement group. If a match is

found in the same advertisement group, then the query is forwarded to that hub. In case

the query cant be resolved in the local advertisement group then it is broadcasted to all

remaining advertisement groups using a query group membership information.

2A set of prefix is a universal prefix set if and only if for any infinite binary sequenceb there is exactly
one element in the set which is a prefix ofb.
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P2PR-Tree: An R-Tree Based Spatial Index for P2P Environments

The work in [124] presents a scheme for adopting the R-tree [77] in a P2P setting.

P2PR-tree statically divides thed-dimensional attribute space (universe) into a set of

blocks (rectangular tiles). The blocks formed as a result ofinitial division of the space

forms level 0 of the distributed tree. Further, each block isstatically divided into a set of

groups, which constitute level 1 in the tree. Any further division on the group level ( and

subsequently on the subgroup) is done dynamically and are designated as subgroups at

level i (i ≥ 2). When a new peer joins the system, it contacts one of the existing peers

which informs it about the Minimum Bounding Rectangle (MBR) of the blocks. Using

this overall block structure information, a peer decides which block(s) it belongs to. A

queryQL for a object is propagated recursively top down starting from level 0. When a

query arrives at any peerPi in the system,Pi checks whether its MBR covers the region

indexed by the query. If so, thenPi searches its own R-tree and returns the results and the

search is terminated at that point. Otherwise the peer forwards the query to the relevant

block, group, subgroup or peer using its routing table pointers. This process is repeated

untill the query block is located or the query reaches dead end of the tree.

3.5 Comparision of surveyed techniques: scalability and

load-balancing

A majority of the surveyed approaches utilise a logical index structure that distributes the

data among peers in a decentralised GRIS. The logical structure maintains ad-dimensional

(whered ≥ 1) index space over the DHT key space and forms the basis for therouting and

indexing of data objects. Some approaches (refer to Table 3.3) support only1-dimensional

queries for every distinct routing space. MAAN, Pub/Sub-1 and Pub/Sub-2 utilise variants

of the SHA-1 hashing scheme for range partitioning1-dimensional data over the DHT key

space. We call these approaches variants of SHA-1, as they create a logical index space

over the DHT key space which is utilised by the query routing heuristics. These algo-

rithms did not consider the case of data skewness that can lead to routing load imbalance

among the peers.
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P-tree and Adaptive proposed a distributed version of B-+ tree index as the basis for

range partitioning1-dimensional data. The PHT approach uses a Trie based structure

for enabling1-dimensional range queries in a peer-to-peer network. XenoSearch organ-

ises resource information in the form of a logical tree wherethe leaves are the individual

XenoServers. Query routing in XenoSearch is based on aggregation points (APs). An

AP is managed by a XenoServer node in the system and is responsible for all the query

computation for ranges of values covered by the AP. The Pastry Ids for the XenoServer

responsible for an AP can be computed algorithmically. An APowner in the system is

similar to a super-peer which is responsible for handling all query computation intersect-

ing its region of ownership. The Adaptive approach considered the case of data skewness

and proposed a solution based on Load Balancing Matrix (LBM) while PHT, P-tree and

XenoSearch did not propose any solution to this problem.

HPProtocol uses the inverse Hilbert mapping to map1-dimensional index space to

CAN’s d-dimensional key space. Mercury directly operates on the attribute space along

with random sampling technique utilised for facilitating query routing and load-balancing.

A serious limitation of all the above approaches is the message overhead involved in

maintaining a separate routing space for each attribute dimension. Further, searching in

a d-dimensional space requires querying every dimension separately and then finding an

intersection. This leads to high message communication overhead for lookup and update

queries. Clearly, these are not scalable ways to organise a Grid resource attribute dataset

that has many dimensions.

The JXTA system does not create a logical index space over thedistributed search

network:- instead, search is based on query broadcast amongthe advertisement group.

This might prove costly in terms of number of messages generated. The Sword and Dgrid

systems use a variant of SHA-1 hashing that partitions the DHT key space among dif-

ferent attribute types. Both Sword and Dgrid systems store all the attribute values in a

single DHT ring. The Sword query resolution scheme is similar to MAAN, and so it is

also costly in terms of routing hops and messages generated.The AdeepGrid approach

encodes all the resource attributes into a single object andthen performs SHA-1 hashing

to generate a Pastry ring identifier. However, in this case the authors do not address the is-

sue of data skewness. Further, the proposed search techniques are not capable of returning
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deterministic results in all cases.

There are also some approaches that have utilised spatial indices for distributing the

data among the peers (refer to Table 3.4). Spatial indices including Hilbert curves [150],

Z-curves [80], k-d tree [80], MX-CIF Quad-tree [166], R-tree [124] and R*-tree [114]

have the capability to logically organise ad-dimensional index space over a single DHT

key space. SFC based indices including Hilbert curves and Z-curves have issues with rout-

ing load-balance in case of a skewed index distribution. However, as the authors point out,

SFC index load can be balanced through external techniques.In the case of Hilbert curves,

dynamic techniques such as node virtualisation, load-partitioning with neighbor peers etc.

are utilised for this purpose. In XenoSearch-II system, Hilbert curves are utilised for map-

ping thed-dimensional index space to the1-dimensional key space of Chord. However,

XenoSearch-II does not propose any technique to counter load-imbalance among peers.

Indexing approach based on Z-curves required an external load-balancing technique.

In the same work, they introduced a P2P version of a k-d tree. This approach also has

routing load-balance issues that need to be addressed. In another recent work, a MX-CIF

Quad tree based spatial index has been proposed. DragonFly utilises an index similar to

the MX-CIF Quad tree with the difference that it does not allowrecursive decomposition

of index space. Instead, the index cells are split as they exceed the pre-configured load

threshold value (similar to Meghdoot). The authors argue that their approach does not

require explicit load-balancing algorithms in contrast tothat of the others. The P2P based

R*-tree index in [114] uses CAN as the routing space. The index space is partitioned

among super peers and passive peers. The bulk of the query load is handled by the super

peers in the network similar to the Gnutella [41] system.

Meghdoot does not utilise any spatial index for organising ad-dimensional data set.

Instead, it utilises a basic2d CAN space for indexing ad-dimensional data set. Further,

Meghdoot incorporates dynamic technique to counter the data skewness issue. The load-

balancing technique in Meghdoot splits an overloaded indexcell (zone) among the lightly

loaded peers. The P2P R-tree index divides thed-dimensional attribute space into a set of

blocks (similar to MX-CIF Quad tree index), these blocks formthe root of the distributed

index tree. The work also includes a dynamic load division technique in case a peer index

cell gets overloaded. However, this is an early work and it does not provide any bounds
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on messages and routing hops required in ad-dimensional index search.

To summarise, spatial indices are better suited for handling the complexity of Grid

resource queries compared to1-dimensional data indices (as proposed in P-tree, MAAN,

XenoSearch etc.). However, even spatial indices have routing load-balance issues in case

of skewed data set. Nevertheless, they are more scalable in terms of the number of hops

and messages generated while searching in ad-dimensional space.

3.6 Recommendations

The surveyed DHT-based index services provides the basic platform for organising and

maintaining a decentralised Grid resource discovery system. A Grid system designer

should follow a layered approach such as OPeN [166] in architecting and implementing a

resource discovery system. The OPeN architecture consistsof three layers: theApplica-

tion layer,Core Serviceslayer andConnectivitylayer. The application layer implements

all the logic that encapsulates the query requirements of the underlying Grid computing

environment such as the computational grids, the data gridsetc. The Core services layer

undertakes the tasks related to consistency management of virtual d-dimensional indices.

The Connectivity layer provides services related to Key-based routing, overlay manage-

ment and replica placement. The Application service, in conjunction with the Core ser-

vices, undertakes the resource discovery tasks including distributed information updates,

lookups and virtual index consistency management. The management of Application and

Core services layer can be delegated to a component of broker software. We refer to this

broker component as aGrid peerservice. While the maintenance of connectivity layer

can be left to the basic DHT implementations such as FreePastry3 and OpenDHT [141].

We recommend to the Grid system developers that for implementing the Core services

layer they utilise the spatial indices surveyed in this article. Overall, spatial indices are su-

perior to1-dimensional indices as they incur lesser number of messages ford-dimensional

object lookups and updates. However, there are different trade offs involved with each of

the spatial indices, but basically they can all support scalability and Grid resource index-

ing. Some spatial index would perform optimally in one scenario but the performance

3FreePastry is an open source implementation of Pastry. http://freepastry.rice.edu/FreePastry.



3.7. Open Issues 75

could degrade if the data distribution changed significantly.

3.7 Open Issues

P2P based organisation of the Grid resource discovery services promises an attractive

and efficient solution to overcome the current limitations associated with the centralised

and hierarchical model. However, the P2P nature of the system raises other serious chal-

lenges including, security [154], trust, reputation and inter-operational ability between

distributed services. Enforcing trust among the peers (a component of Grid broker ser-

vice) that host the indexing services warrants robust models for: (i) managing a peer’s

reputation; and (ii) secure communication. A majority of the current solutions for secu-

rity and trust management rely on centralised trust management entities such as CAs and

ticket granting authorities. Achieving a completely decentralised security infrastructure is

certainly a challenging future research direction. Recent efforts in this direction include

emergence of distributed trust management systems such as PeerReview and Poblano.

However, these trust management systems rely on behavioural auditing of the partici-

pant and the distributed auditing process can take a while untill a malicious participant is

identified and shunted out of the system. This delay can allowample opportunity to the

malicious participant to effect significant harm to the system.

3.8 Summary and Conclusion

In the recent past, we have observed an increase in the complexity involved with Grid

resources including their management policies, organisation and scale. Key elements

that differentiate a computational Grid system from a PDCS include: (i) autonomy; (ii)

decentralised ownership; (iii) heterogeneity in management policies, resource types and

network inter-connect; and (iv) dynamicity in resource conditions and availability. Tra-

ditional Grid systems [3, 13, 75] based on centralised information services are proving

to be bottleneck with regard to scalability, fault-tolerance and mechanism design issues.

To address this, P2P based resource organisation is being advocated. P2P organisation is

scalable, adaptable to dynamic network conditions and highly available.
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In this work, we presented a detailed taxonomy that characterizes issues involved in

designing a P2P GRIS. We classified the taxonomies into two sections: (i) resource taxon-

omy; and (ii) P2P taxonomy. Our resource taxonomy highlighted the attributes related to

a computational Grid resource. Further, we summarized different kinds of queries that are

being used in current computational Grid systems. In general, Grid superscheduling query

falls under the category ofd-dimensional point or window query. However, it still remains

to be seen whether a universal Grid resource query composition language is required to

express different kinds of Grid RLQs and RUQs.

We presented classification of P2P approaches based on threedimensions including:

(i) P2P network organisation; (ii) approaches to distribution of the data among the peers;

and (iii) routing ofd-dimensional queries. In principle, data distribution mechanism di-

rectly dictates how a query is routed among the relevant peers. D-dimensional resource

index is distributed among peers by utilizing the data structures such as SFCs, quad-

trees, R-trees and Kd-trees. Some of the approaches have alsomodified existing hashing

schemes to facilitate the1-dimensional range queries in a DHT network. Every approach

has its own merits and limitations. Some of these issues werehighlighted in the resource

and P2P network organisation taxonomy section.



Chapter 4

Grid-Federation

To overcome the limitations of current non-coordinated Grid brokering approaches, this

chapter presents a mechanism for coordinated sharing of distributed clusters based on

computational economy. The resulting environment, calledGrid-Federation, allows the

transparent use of resources from the federation when localresources are insufficient to

meet its users’ requirements. The use of computational economy methodology in coordi-

nating resource allocation not only facilitates the QoS based scheduling, but also enhances

utility delivered by resources. We show by simulation, while some users that are local to

popular resources can experience higher cost and/or longerdelays, the overall users’ QoS

demands across the federation are better met. Also, the federation’s average case message

passing complexity is seen to be scalable, though some jobs in the system may lead to

large numbers of messages before being scheduled.

4.1 Introduction

Clusters of computers have emerged as mainstream parallel and distributed platforms

for high-performance, high-throughput and high-availability computing. Grid comput-

ing [71] extends the cluster computing idea to wide-area networks. A grid consists of

cluster resources that are usually distributed over multiple administrative domains, man-

aged and owned by different organisations having differentresource management policies.

With the large scale growth of networks and their connectivity, it is possible to couple

these cluster resources as a part of one large Grid system. Such large scale resource cou-

77
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pling and application management is a complex undertaking,as it introduces a number of

challenges in the domain of security, resource/policy heterogeneity, resource discovery,

fault tolerance, dynamic resource availability and underlying network conditions.

The resources on a Grid (e.g. clusters and supercomputers) are managed by local

resource management systems (LRMSes) such as Condor [113] andPBS [26]. These

resources can also be loosely coupled to form campus Grids using multi-clustering [2]

systems such as SGE [84] and LSF [185] that allow sharing of clusters owned by the

same organisation. In other words, these systems do not allow their combination similar

to autonomous systems, to create an environment forcooperative federationof clusters,

which we refer as Grid-Federation.

Other related concept called Virtual Organisation (VO) [71] based grid resource shar-

ing has been proposed in the literature. Effectively, a VO isformed to solve specific scien-

tific problem. All the participants follow the same resourcemanagement policies defined

by a VO. Hence, a VO represents a socialist world, wherein theparticipants have to adhere

to community-wide agreed policies and priorities. In contrast, proposed Grid-Federation

is a democratic world with complete autonomy for each participant. Further, a partici-

pant in the federation can behave rationally as we propose the use of economic model

for resource management. Grid-Federation users submit their job to the local scheduler.

In case local resources are not available or are not able to meet the requirement then job

is transparently migrated to a remote resource (site) in thefederation, although this job

migration is constraint to user’s QoS requirements. In a VO,user jobs are managed by a

global scheduler which enforces resource allocation basedon VO-wide policies.

Recall that, majority of existing approaches to resource brokering or superschedul-

ing [151] in a Grid environment are non-coordinated. Superschedulers such as Nimrod-

G [3], Gridbus broker, and Condor-G [75] perform scheduling related activities indepen-

dent of the other superschedulers in the system. They directly submit their applications to

the underlying resourceswithouttaking into account the current load, priorities, utilization

scenarios of other application level schedulers. Clearly, this can lead to over-utilization

or a bottleneck on some valuable resources while leaving others largely underutilized.

Furthermore, these superschedulers do not have a coordination [1] mechanism and this

exacerbates the load sharing and utilization problems of distributed resources because
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sub-optimal schedules are likely to occur.

Currently, system-centric approaches such as NASA-Scheduler [152], Legion [39,

174], Condor, Condor-Flock [29], AppLes [22], PBS and SGE provide limited support for

QoS driven resource sharing. These system-centric schedulers, allocate resources based

on parameters that enhance system utilization or throughput. The scheduler either focuses

on minimizing the response time (sum of queue time and actualexecution time) or maxi-

mizing overall resource utilization of the system and theseare not specifically applied on

a per-user basis (user oblivious). System centric schedulers treat all resources with the

same scale, as if they are worth the same and the results of different applications have

the same value; while in reality the resource provider may value his resources differently

and has a different objective function. Similarly, a resource consumer may value various

resources differently and may want to negotiate a particular price for using a resource.

Hence, resource consumers are unable to express their valuation of resources and QoS

parameters. Furthermore, the system-centric schedulers do not provide any mechanism

for resource owners to define what is shared, who is given the access and the conditions

under which sharing occurs [72].

4.1.1 Grid-Federation

To overcome these shortcomings of non-coordinated, system-centric scheduling systems,

we propose a new distributed resource management model, called Grid-Federation. Our

Grid-Federation system is defined as a large scale resource sharing system that consists

of a coordinated federation (the term is also used in the Legion system and should not

be confused with our definition), of distributed clusters based on policies defined by their

owners (shown in Fig. 4.1). Fig. 4.1 shows an abstract model of our Grid-Federation

over a shared federation directory. To enable policy based transparent resource sharing

between these clusters, we define and model a new RMS system, which we call Grid Fed-

eration Agent (GFA). In this chapter, we assume that the directory information is shared

using some efficient protocol (e.g. a P2P protocol [96, 125]). In this case the P2P system

provides a decentralised database with efficient updates and range query capabilities. In-

dividual GFAs access the directory information using the interface shown in Fig. 4.1, i.e.
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Figure 4.1: Grid-Federation resource sharing system.

subscribe, publish, unsubscribe. In this chapter, we are not concerned with the specifics of

the interface although we do consider the implications of the required message-passing,

i.e. the messages sent between GFAs to undertake the scheduling work. In Chapter 6, we

present design, modeling and evaluation of a P2P publish/subscribe based Grid resource

discovery service.

Our approach considers the emerging computational economymetaphor [3, 63, 162,

172] for Grid-Federation. In this case resource owners: canclearly define what is shared

in the Grid-Federation while maintaining a complete autonomy; can dictate who is given

access; and receive incentives for leasing their resourcesto federation users. We adopt the

market based economic model from [3] for resource allocation in our proposed frame-

work. Some of the commonly used economic models [31] in resource allocation in-

cludes the commodity market model, the posted price model, the bargaining model, the
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Table 4.1: Superscheduling technique comparison.

Index System
Name

Network Model Scheduling
Parameters

Scheduling
Mechanism

1 NASA-
Scheduler

Random System-centric Partially
coordinated

2 Condor-Flock
P2P

P2P (Pastry) System-centric Partially
coordinated

3 Grid-
Federation

P2P (Decentralised
directory)

User-centric Coordinated

4 Legion-
Federation

Random System-centric Coordinated

5 Nimrod-G Centralised User-centric Non-coordinated
6 Condor-G Centralised System-centric Non-coordinated
7 Our-Grid P2P System-centric Coordinated
8 Tycoon Centralised User-centric Non-coordinated
9 Bellagio Centralised User-centric Coordinated

tendering/contract-net model, the auction model, the bid-based proportional resource shar-

ing model, the community/coalition model and the monopoly model. We focus on the

commodity market model [176]. In this model every resource has a price, which is based

on the demand, supply and value in the Grid-Federation. Our economy model driven re-

source allocation methodology focuses on: (i) optimising resource provider’s objective

functions, and (ii) increasing end-user’s perceived QoS value based on QoS level indica-

tors and QoS constraints.

The rest of this chapter is organised as follows. In Section 4.2 we summarise our

Grid-Federation and Section 4.3 deals with various experiments that we conducted to

demonstrate the utility of our work. Section 4.4 explores various related projects. We

end this chapter with some concluding remarks in Section 4.5.

4.2 Grid-Federation

Grid Federation Agent

We define our Grid-Federation (shown in Fig. 4.1) as a mechanism that enables logical

coupling of cluster resources. The Grid-Federation supports policy based [40] transpar-

ent sharing of resources and QoS [98] based job scheduling. We also propose a new

computational economy metaphor for cooperative federation of clusters. Computational
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economy [3, 162, 172] enables the regulation of supply and demand of resources, offers

incentive to the resource owners for leasing, and promotes QoS based resource allocation.

The Grid-Federation consists of the cluster owners as resource providers and the end-users

as resource consumers. End-users are also likely to be topologically distributed, having

different performance goals, objectives, strategies and demand patterns. We focus on op-

timising the resource provider’s objective and resource consumer’s utility functions by

using a quoting mechanism. The Grid-Federation consists ofcluster resources distributed

across multiple organisations and administrative domains. To enable policy based coordi-

nated resource sharing between these clusters, we define andmodel a new RMS system,

which we call Grid Federation Agent (GFA). A cluster can become a member of the fed-

eration by instantiating a GFA component. GFA acts as a resource co-coordinator in the

federated space, spanning over all the clusters. These GFAsin the federation inter-operate

using an agreed communication primitive over the shared federation directory.

This section provides comprehensive details about our proposed Grid-Federation, in-
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cluding models used for budget and deadline calculations inthe simulations of the next

section. The model defines the following functional modulesof a GFA:

Grid Resource Manager(GRM )

The Grid resource manager is responsible for superscheduling the locally submitted

jobs in the federation. Further, it also manages the execution of remote jobs in conjunction

with the LRMS on the local resource.Local jobs refers to the jobs submitted by the

local population of users, whileremote jobsrefers to the incoming jobs from remote Grid

resource managers. A Grid resource manager provides admission control facility at each

site in the federation. Fig. 4.2 shows the Grid-Federation superscheduling architecture

that we propose. In Fig. 4.2, a GFAi in the federation with modules GRM, LRMS and

DIM is shown. The GRM component of GFA is connected to the federation queue which

accepts the incoming remote jobs (from the federation) as well as local jobs. All the

remote jobs are transferred to the local queue which is controlled by the GFA’s LRMS

module. A GRM can also export the locally submitted jobs to other sites in the federation

depending on the user specified QoS requirements. The job submission and migration

process is represented by a dashed arrow in the Fig. 4.2.

A local user submits his job to the GRM which then places it in the federation queue.

GRM analyses the user’s QoS specification and then sends a query message to the DIM.

The DIM returns the I-st fastest or I-st cheapest machine as specified in the QoS require-

ments. If the returned machine is the local resource then thejob is transferred to the local

queue. Otherwise, the job is transferred to a remote site in the federation. GRMs un-

dertake one-to-one negotiation before submitting a job to aremote site. The GRM local

to the submitted job sends admission control negotiate message to the remote GRM re-

questing a guarantee on the total job completion time. Following this, the contacted GRM

queries its LRMS. If the LRMS reports that the job can be completed within the spec-

ified deadline, then the admission control acceptance message is sent to the requesting

GRM. On receiving the acceptance, the GRM sends the job. The inter-site GRM-to-GRM

negotiation scheme prevents the GRMs from submitting unlimited amount of jobs to the

resources. Further, this approach allows autonomy for every resource domain, as they
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Table 4.2: Resource and workload notations.

Symbol Meaning
n number of Grid Federation Agents (GFAs) in the Grid network.
nu number of users over all clusters (

∑n
k=1 nk, nk number of users

at GFAk).
Ri configuration of thei-th resource in the system.
Ik incentive earned by resource ownerk over simulation period.
ρi resource utilisation for resource at GFAi.
xi processor architecture for resource at GFAi.
ci resource access cost for resource at GFAi.
pi number of processors for reosurce at GFAi.
φi operating system type for resource at GFAi.
µi processor speed at GFAi.
ui,j ith user fromjth GFA/resource.
Ji,j,k i-th job from thej-th user ofk-th GFA.
pi,j,k number of processor required byJi,j,k.
bi,j,k assigned budget toJi,j,k.
di,j,k assigned deadline toJi,j,k.
φi,j,k operating system type required byJi,j,k.

D(Ji,j,k, Rk) time function (expected response time forJi,j,k at resourcek).
B(Ji,j,k, Rk) cost function (expected budget spent forJi,j,k at resourcek).

de
i,j,k effective deadline forJi,j,k.

li,j,k job length forJi,j,k (in terms of million instructions)
αi,j,k communication overhead forJi,j,k

τ(Ji,j,k) returns next SLA bid interval∆tnegi,j,k,p
for Ji,j,k.

tnegi,j,k
total SLA bid interval/delay forJi,j,k.

∆tnegi,j,k,p
total delay forp-th SLA bid forJi,j,k.

nj total jobs in the federation (
∑n

(k,ui)=1 nk, ui).
tsi,j,k

job submission delay (user to GFA).
tri,j,k

finished job return delay (GFA to user) .
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Table 4.3: Queuing and resource discovery service notations.

Symbol Meaning
λSLAi

SLA arrival rate at GFAi.
µSLAi

SLA satisfaction rate at GFAi.
λin total incoming RLQ/RUQ arrival rate at a network queuei.
λout outgoing RLQ/RUQ rate at a network queuei.
µni

average network queue service rate at a Grid peeri.
Qm,t set of jobs that have been assigned but not accepted at GFAm at

time t.
Qa

m,t set of jobs that have been accepted at GFAm at timet.
Qs

m,t set of jobs sorted in decreasing order of incentive it provides to
the resource owner at GFAm at timet.

µr average query reply rate for index service at GFA/peeri.
λin

u incoming RUQ (publish) rate at a application servicei.
λin

l incoming RLQ (subscribe) rate at a application servicei.
λin

a incoming query rate at a Chord routing servicei from the local
application service.

λin
index incoming index query rate at a application servicei from its local

Chord routing service.
ri,j,k an RLQ forJi,j,k.
Ui an RUQ for thei-th GFA/peer/resource.

dim dimensionality or number of attributes in the Cartesian space.
fmin minimum division level ofd-dimensional resource attribute space.
fmax maximum allowed depth of thed-dimensional index tree.

d number of dimensions for the CAN.
b base of the identifier space for Pastry.
K network queue size.

gindexi object encapsulating details on a GFA’s IP address, serviceport
number etc.

M random variable denoting number of of messages generated in
mapping an RLQ or RUQ.

T random variable denoting number of disjoint query path under-
taken in mapping an RLQ or RUQ.
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have capability to perform per job-basis admission controldecision. All migrated jobs are

queued in the federation queue, then subsequently transferred to the local queue for final

execution process.

The proposed Grid-Federation mechanism can leverage services of Grid-Bank [6] for

credit management. The participants in the system can use Grid-Bank to exchange Grid

Dollars.

Local Resource Management System(LRMS )

In our proposed Grid-Federation distributed resource sharing system, we assume that

every cluster has a generalized RMS, such as a SGE or PBS that manages cluster wide re-

source allocation and application scheduling. Most of the available RMS packages have a

centralised organisation similar to the master-worker pool model. In the centralised organ-

isation, there is only one scheduling controller (master node) which coordinates system-

wide decisions. Grid resource manager queries LRMS to acquire information about local

job queue size, expected response time for a job, and resource utilisation status.

Distributed Information Manager (DIM )

The DIM performs tasks like resource discovery and advertisement through well de-

fined primitives. It interacts with an underlying shared federation directory (shown in

Fig. 4.1). Recall that we assume the directory information isshared using some efficient

protocol (e.g. a P2P protocol). In this case, the P2P system provides a decentralised

database with efficient updates and range query capabilities. Individual GFAs access the

directory information using the interface shown in Fig. 4.1, i.e. subscribe, quote, unsub-

scribe and query. In this chapter, we are not concerned with the specifics of the interface

(which can be found in Chapter 6). The resource discovery function includes searching

for suitable cluster resources while resource advertisement is concerned with advertising

resource capability (with pricing policy) to other clusters in the federation. The federation

directory maintains quotes or advertised costs from each GFA in the federation.

In Table 4.2 and 4.3, we present the various notations and model parameters that are
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utilised in this thesis. Each quote consists of a resource descriptionRi, for clusteri, and a

costci for using that resource configured by respective cluster owners. UsingRi andci, a

GFA can determine the cost of executing a job on clusteri and the time taken, assuming

that the clusteri has no load. The actual load of the cluster needs to be determined

dynamically and the load can lead to changes in time taken forjob completion. In this

work, we assume thatci remains static throughout the simulations. Each GFA can query

the federation directory to find thek-th fastest cluster or thek-th cheapest cluster. We

assume the query process is optimal, i.e. that it takesO(log n) messages [33] to query the

directory, when there aren GFAs in the system. Although, we consider the number of

additional messages that are used to satisfy our Grid-Federation scheduling process.

4.2.1 Decentralised Market Place and Grid-Federation

Grid computing assembles resources that are well managed, powerful and well connected

to the Internet. Grids present a platform for Grid Participants (GPs) to collaborate and co-

ordinate resource management activities. Key GPs include theproducers(Grid resource-

owners) andconsumers(Grid users). GPs have different goals, objectives, strategies, and

supply and demand functions. GPs are topologically distributed and belong to differ-

ent administrative domains. Controlled administration of Grid resources gives an ability

to provide a desired QoS in terms of computational and storage efficiency, software or

library upgrades. However, such controlled administration of resources gives rise to vari-

ous social and political issues on which these resources aremade available to the outside

world.

A resource owner invests a significant amount of money in establishing the resource

such as, initial cost of buying, setting up, maintenance cost including hiring the admin-

istrator and expense of timely software and the hardware upgrades. There is a complex

diversity in terms of resources’ usage policies, loads and availability. Resource owners in

a grid behave as rational participants having distinct stake holdings with potentially con-

flicting and diverse utility functions. In this case, resource owners apply resource sharing

policies that tend to maximize their utility functions [64,86]. Similarly, the resource

consumers in a grid associate QoS based utility constraintsto their applications and ex-
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pect that the constraints are satisfied within the acceptable limits. Every resource owner

makes the policy related decision independently that best optimizes his objective func-

tion. Likewise, resource consumers have diverse QoS based utility constraints, priorities

and demand patterns.

To capture the above dynamics and complexity of Grid resource sharing environment,

Grid-Federation applies market based economy principles for resource allocation and ap-

plication scheduling. In particular, we adopt commodity market model. In this model,

every resource owner sets up a fixed price based on the demand for his resources in the

decentralised market place. Resource owner advertises its resource access cost through

its local GFA service. Analysing different pricing algorithm based on supply and de-

mand function is a vast research area. Investigating how thecluster owners determine the

price [43, 155, 176] of their commodity is subject of future work.

4.2.2 General Grid-Federation Superscheduling Technique

In this section we describe our general Grid-Federation scheduling technique. In Fig. 4.1

a user who is local to GFA3 is submitting a job. If the user’s job QoS can not be satisfied

locally then GFA3 queries the federation directory to obtain the quote of the1-st fastest or

1-st cheapest cluster. In this case, the federation directory returns the quote advertised by

GFA 2. Following this, GFA3 sends a negotiate message (enquiry about QoS guarantee

in terms of response time) to GFA2. If GFA has too much load and cannot complete the

job within the deadline then GFA3 queries the federation directory for the2-nd cheap-

est/fastest GFA and so on. The query-negotiate process is repeated until GFA3 finds a

GFA that can schedule the job (in this example the job is finally scheduled on site3).

Every federation user must express how much he is willing to pay, called abudget, and

required response time, called adeadline, for his job numberj. In this work, we say that a

job’s QoS has been satisfied if the job is completed within budget and deadline, otherwise

it is not satisfied. Every cluster in the federation has its own resource setRi which contains

the definition of all resources owned by the cluster and readyto be offered.Ri can include

information about the CPU architecture, number of processors, RAM size, secondary

storage size, operating system type, etc. In this work,Ri = (pi, µi, γi) which includes the
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number of processors,pi, their speed,µi and underlying interconnect network bandwidth

γi. We assume that there is always enough RAM and correct operating system conditions,

etc. The cluster owner chargesci per unit time or per unit of million instructions (MI)

executed, e.g. per 1000 MI.

We write Ji,j,k to represent thei-th job from thej-th user of thek-th resource. A

job consists of the number of processors required,pi,j,k, the job length,li,j,k (in terms of

instructions), the budget,bi,j,k, the deadline or maximum delay,di,j,k and the communica-

tion overhead,αi,j,k.

To capture the nature of parallel execution with message passing overhead involved

in the real application, we considered a part of total execution time as the communication

overhead and remaining as the computational time. In this work, we consider the network

communication overheadαi,j,k for a parallel jobJi,j,k to be randomly distributed over the

processes. In other words, we don’t consider the case e.g. when a parallel program written

for a hypercube is mapped to a mesh architecture. We assume that the communication

overhead parameterαi,j,k would scale the same way over all the clusters depending onγi.

The total data transfer involved during a parallel job execution is given by

Γ(Ji,j,k, Rk) = αi,j,k γk (4.1)

The time for jobJi,j,k = (pi,j,k, li,j,k, bi,j,k, di,j,k, αi,j,k) to execute on resourceRm is

D(Ji,j,k, Rm) =
li,j,k

µm pi,j,k

+
Γ(Ji,j,k, Rk)

γm

(4.2)

D(Ji,j,k, Rm) =
li,j,k

µm pi,j,k

+
αi,j,k γk

γm

(4.3)

and the associated cost is

B(Ji,j,k, Rm) = cm
li,j,k

µm pi,j,k

. (4.4)

If si,j,k is the time thatJi,j,k is submitted to the system then the job must be completed

by timesi,j,k + di,j,k.
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4.2.3 QoS Driven Resource Allocation Algorithm for Grid-Federation

We consider a deadline and budget constrained (DBC) scheduling algorithm, or cost-

time optimisation scheduling. The federation user can specify any one of the following

optimisation strategies for their jobs:

• optimisation for time (OFT) – give minimum possible response time within the

budget limit;

• optimisation for cost (OFC) – give minimum possible cost within the deadline.

For each job that arrives at a GFA, called the local GFA, the following is done:

1. Setr = 1.

2. If OFT is required for the job then query the federation directory for ther-th fastest

GFA; otherwise OFC is required and the query is made for ther-th cheapest GFA.

Refer to the result of the query as the remote GFA.

3. The local GFA sends a message to the remote GFA, requestinga guarantee on the

time to complete the job.

4. If the remote GFA confirms the guarantee then the job is sent, otherwiser := r + 1

and the process iterates through step 2.

Recall that we assume each query takesO(log n) messages and hence in this work we

use simulation to study how many times the iteration is undertaken, on a per job basis

and on a per GFA basis. The remote GFA makes a decision immediately upon receiving

a request as to whether it can accept the job or not. If the job’s QoS parameters cannot

be satisfied (after iterating up to the greatestr such that GFA could feasibly complete the

job) then the job is dropped.

Effectively, for jobJi,j,k that requires OFC then GFAm with Rm is chosen such that

B(Ji,j,k, Rm) = min1<m′≤n{B(Ji,j,k, Rm′)}, andD(Ji,j,k, Rm) ≤ si,j,k + di,j,k. Similarly,

for OFT then GFAm is chosen such thatD(Ji,j,k, Rm) = min1<m′≤n{D(Ji,j,k, Rm′)},

andB(Ji,j,k, Rm) ≤ bi,j,k.



4.3. Performance Evaluation 91

4.2.4 Quote Value

We assumeci remains static throughout the simulations. In this work, weare only in-

terested in studying the effectiveness of our Grid-Federation superscheduling algorithm

based on the static access chargeci. In simulations, we configureci using the function:

ci = f(µi) (4.5)

where,

f(µi) =
c

µ
µi (4.6)

c is the access price andµ is the speed of the fastest resource in the Grid-Federation.

4.2.5 User Budget and Deadline

While our simulations in the next section use trace data for job characteristics, the trace

data does not include user specified budgets and deadlines ona per job basis. In this case

we are forced to fabricate these quantities and we include the models here.

For a user,j, we allow each job from that user to be given a budget (using Eq. 4.4),

bi,j,k = 2 B(Ji,j,k, Rk). (4.7)

In other words, the total budget of a user over simulation is unbounded and we are

interested in computing the budget that is required to schedule all of the jobs.

Also, we let the deadline for jobi (using Eq. 4.2) be

di,j,k = 2 D(Ji,j,k, Rk). (4.8)

we assign two times the value of total budget and deadline forthe given job, as com-

pared to the expected budget spent and response time on the originating resource.
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Table 4.4: Workload and resource configuration.

Index Resource
/ Cluster
Name

Trace Date Processors MIPS
(rat-
ing)

Total
Jobs in
Trace

Quote NIC to Network
Bandwidth
(Gb/Sec)

1 CTC SP2 June96-May97 512 850 79,302 4.84 2
2 KTH SP2 Sep96-Aug97 100 900 28,490 5.12 1.6
3 LANL CM5 Oct94-Sep96 1024 700 201,387 3.98 1
4 LANL Origin Nov99-Apr2000 2048 630 121,989 3.59 1.6
5 NASA iPSC Oct93-Dec93 128 930 42,264 5.3 4
6 SDSC Par96 Dec95-Dec96 416 710 38,719 4.04 1
7 SDSC Blue Apr2000-Jan2003 1152 730 250,440 4.16 2
8 SDSC SP2 Apr98-Apr2000 128 920 73,496 5.24 4

4.3 Performance Evaluation

4.3.1 Workload and Resource Methodology

We used trace based simulation to evaluate the effectiveness of the proposed system and

the QoS provided by the proposed superscheduling algorithm. The workload trace data

was obtained from [66]. The trace contains real time workload of various supercomput-

ers/resources that are deployed at the Cornell Theory Center (CTC SP2), Swedish Royal

Institute of Technology (KTH SP2), Los Alamos National Lab (LANL CM5), LANL Ori-

gin 2000 Cluster (Nirvana) (LANL Origin), NASA Ames (NASA iPSC) and San-Diego

Supercomputer Center (SDSC Par96, SDSC Blue, SDSC SP2) (See Table 4.4). The work-

load trace is a record of usage data for parallel jobs that were submitted to various resource

facilities. Every job arrives, is allocated one or more processors for a period of time, and

then leaves the system. Furthermore, every job in the workload has an associated ar-

rival time, indicating when it was submitted to the scheduler for consideration. As the

experimental trace data does not include details about the network communication over-

head involved for different jobs, we artificially introduced the communication overhead

element as 10% of the total parallel job execution time.

The simulator was implemented using GridSim [32] toolkit that allows modeling and

simulation of distributed system entities for evaluation of scheduling algorithms. Grid-

Sim offers a concrete base framework for simulation of different kinds of heterogeneous

resources, brokering systems and application types. This toolkit can simulate resource

brokering for resources that belong to a single administrative domain (such as a cluster)
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or multiple administrative domain (such as a grid). The coreof simulation is based on

simjava [94], a discrete event simulation package implemented in java. The main classes

of GridSim includes GridResource, GridSim, Gridlet, AllocPolicy and GridInformation-

Service. These classes communicate using discrete messagepassing events. To enable

parallel workload simulation with GridSim, we extended theexisting AllocPolicy and

SpaceShared entities.

Our simulation environment models the following basic entities in addition to existing

entities in GridSim:

• local user population – models the workload obtained from trace data;

• GFA – generalized RMS system;

• GFA queues (federation and local) – placeholder for incoming jobs from local user

population and the federation;

• GFA shared federation directory – simulates an efficient distributed query process

such as P2P.

For evaluating the QoS driven resource allocation algorithm, we assigned a synthetic

QoS specification to each resource including the Quote value(price that a cluster owner

charges for service), having varying MIPS rating and underlying network communication

bandwidth. The simulation experiments were conducted by utilizing workload trace data

over the total period of2 days (in simulation units) at all the resources. Hence, effectively

our simulation considers only a fraction of jobs per computing site as compared to the total

number of jobs that were submitted. For example, originally79302 jobs were submitted

to CTC SP2 over a period of1 year, while our simulation considers only417 jobs (no. of

jobs submitted over2 days). We consider the following resource sharing environment for

our experiments:

• independent resource:- Experiment 1;

• federation without economy:- Experiment 2;

• federation with economy:- Experiments 3, 4, and 5.
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Table 4.5: Workload processing statistics (Without Federation).

Index Resource
/ Cluster
Name

Average
Resource
Utilization
(%)

Total Jobs Total Job Ac-
cepted(%)

Total Job Re-
jected(%)

1 CTC SP2 53.492 417 96.642 3.357
2 KTH SP2 50.06438 163 93.865 6.134
3 LANL CM5 47.103 215 83.72 16.27
4 LANL Origin 44.55013 817 93.757 6.24
5 NASA iPSC 62.347 535 100 0
6 SDSC Par96 48.17991 189 98.941 1.058
7 SDSC Blue 82.08857 215 57.67 42.3255
8 SDSC SP2 79.49243 111 50.45 49.54

4.3.2 Experiment 1 – independent resources

In this experiment the resources were modeled as an independent entity (without feder-

ation). All the workload submitted to a resource is processed and executed locally (if

possible). In Experiment 1 (and 2) we consider, if the user request can not be served

within requested deadline, then it is rejected otherwise itis accepted. In original trace, as

jobs were supposed to be scheduled on the local resource so they were queued in untill the

required number of processors became available. Effectively, no job was rejected in the

original trace. During Experiment 1 (and 2), we evaluate theperformance of a resource

in terms of average resource utilization (amount of real work that a resource does over

the simulation period excluding the queue processing and idle time), job acceptance rate

(total percentage of jobs accepted) and conversely the job rejection rate (total percentage

of jobs rejected). The result of this experiment can be foundin Table 4.5 and Fig. 4.3. Ex-

periment 1 is essentially the control experiment that is used as a benchmark for examining

the affects of using federated (with and without economy) sharing of resources.

4.3.3 Experiment 2 – with federation

In this experiment, we analyzed the workload processing statistics of various resources

when part of the Grid-Federation but not using an economic model. In this case the

workload assigned to a resource can be processed locally. Incase a local resource is not

available then online scheduling is performed that considers the resources in the federation

in decreasing order of their computational speed. We also quantify the jobs depending on
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Table 4.6: Workload processing statistics (With Federation).

Index Resource
/ Cluster
Name

Average
Resource
Utilization
(%)

Total
Job

Total
Job Ac-
cepted(%)

Total
Job Re-
jected(%)

No. of
Jobs
Pro-
cessed
Locally

No. of
Jobs
Mi-
grated
to Fed-
eration

No. of
Remote
jobs
pro-
cessed

1 CTC SP2 87.15 417 100 0 324 93 72
2 KTH SP2 68.69 163 99.38 0.61 110 52 35
3 LANL CM5 67.20 215 90.69 9.30 145 50 70
4 LANL Origin 77.62 817 98.89 1.10 733 75 81
5 NASA iPSC 78.73 535 99.81 0.18 428 106 129
6 SDSC Par96 79.17 189 100 0 143 46 30
7 SDSC Blue 90.009 215 98.60 1.39 105 107 77
8 SDSC SP2 87.285 111 97.29 2.70 54 54 89

whether they are processed locally or migrated to the federation. Table 4.6 and Fig. 4.3

describes the result of this experiment.

4.3.4 Experiment 3 – with federation and economy

In this experiment, we study the computational economy metaphor in the Grid-Federation.

In order to study economy based resource allocation mechanism, it was necessary to fab-

ricate user budgets and job deadlines. As the trace data doesnot indicate these QoS pa-

rameters, so we assigned them using Eqs. 5.8 and 5.9 to all thejobs across the resources.

We performed the experiment under11 different combination of user population profile:

OFT = i andOFC = 100− i for i = 0, 10, 20, . . . , 100.

Fig. 4.4, 4.5, 4.6, 4.7 and 4.8 describes the result of this experiment.

4.3.5 Experiment 4 – message complexity with respect to jobs

In this experiment, we consider total incoming and outgoingmessages at all GFA’s. The

various message type includes negotiate, reply, job-submission (messages containing ac-

tual job) and job-completion (message containing job output). We quantify the number

of local messages (sent from a GFA to undertake a local job scheduling) and remote mes-

sages (received at a GFA to schedule a job belonging to a remote GFA in the federation).

The experiment was conducted for the same user populations as explained in experiment

3. Fig. 4.9 describes the result of this experiment.



96 Chapter 4. Grid-Federation

4.3.6 Experiment 5 – message complexity with with respect to system

size

This experiment measures the system’s performance in termsof the total message com-

plexity involved as the system size grows from 10 to 50. In this case, we consider the

average, max and min number of messages (sent/recv) per GFA/per Job basis. Note that,

in casen messages are undertaken to schedule a job then it involves traversing (ifn > 2

then(n − 2)/2, elsen/2) entries of the GFA list. To accomplish larger system size, we

replicated our existing resources accordingly (shown in Table 4.4). The experiment was

conducted for the same user populations as explained in experiment 3. Fig. 4.10 and 4.11

describe the result of this experiment.

4.3.7 Results and observations

Justifying Grid-Federation based resource sharing
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Figure 4.3: Resource utilization and job migration plot.

During experiment 1 we observed that 5 out of 8 resources remained underutilized

(less than 60%). During experiment 2, we observed that overall resource utilization of

most of the resources increased as compared to experiment 1 (when they were not part of

the federation), for instance resource utilization of CTC SP2 increased from 53.49% to

87.15%. The same trends can be observed for other resources too (refer to Fig. 4.3(a)).
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There was an interesting observation regarding migration of the jobs between the re-

sources in the federation (load-sharing). This characteristic was evident at all the re-

sources including CTC SP2, KTH SP2, NASA iPSC etc. At CTC, which had total 417

jobs to schedule, we observed that 324 (refer to Table 4.6 or Fig. 4.3(b)) of them were

executed locally while the remaining 93 jobs migrated and executed at some remote re-

source in the federation. Further, CTC executed 72 remote jobs, which migrated from

other resources in the federation.

The federation based load-sharing also lead to a decrease inthe total job rejection

rate, this can be observed in case of resource SDSC Blue where the job rejection rate

decreased from 42.32% to 1.39% (refer to Table 4.5 and Table 4.6). Note that, the average

job acceptance rate, over all resources in the federation, increased from 90.30% (without

federation) to 98.61% (with federation). Thus, for the given job trace, it is preferable to

make use of more resources, i.e. to migrate jobs. In other words, the job trace shows the

potential for resource sharing to increase utilization of the system.

Resource Owner Perspective

In experiment 3, we measured the computational economy related behavior of the system

in terms of its supply-demand pattern, resource owner’s incentive (earnings) and end-

user’s QoS constraint satisfaction (average response timeand average budget spent) with

varying user population distribution profiles. We study therelationship between resource

owner’s total incentive and end-user’s population profile.

The total incentive earned by different resource owners with varying user population

profile can be seen in Fig. 4.4(a). The result shows as expected that the owners (across all

the resources) earned more incentive when users sought OFT (Total Incentive2.30× 109

Grid Dollars) as compared to OFC (Total Incentive2.12 × 109 Grid Dollars) . During

OFT, we observed that there was a uniform distribution of thejobs across all the resources

(refer to Fig. 4.5(a)) and every resource owner earned some incentive. During OFC, we

observed a non-uniform distribution of the jobs in the federation (refer to Fig. 4.5(a)). We

observed that the resources including CTC SP2, LANL CM5, LANL Origin, SDSC par96

and SDSC Blue earned significant incentives. This can also be observed in their resource

utilization statistics (refer to Fig. 4.5(a)). However, the faster resources (e.g. KTH SP2,
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Figure 4.4: Resource owner perspective.

NASA iPSC and SDSC SP2) remained largely underutilized and did not get significant

incentives.
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Figure 4.5: Resource owner perspective.

Furthermore, the results indicate an imbalance between theresource supply and de-

mand pattern. As the demand was high for the cost-effective resources compared to the

time-effective resources, these time-effective resources remained largely underutilized.

In this case, the majority of jobs were scheduled on the cost-effective computational re-

sources (LANL CM5, LANL Origin, SDSC Par96 and SDSC Blue). Thisis the worst
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case scenario in terms of resource owner’s incentive acrossall the resources in the fed-

eration. Although, when the majority of end-users sought OFT (more than 50%), we

observed uniform distribution of jobs across resources in the federation. Every resource

owner across the federation received significant incentive(refer to Fig. 4.4(a)) and had

improved resource utilization (refer to Fig. 4.5(a)). These scenarios show balance in the

resource supply and demand pattern.

Further, in this case (the majority of users sought OFT (morethan 50 percent)), the

average resources in terms of cost/time effectiveness (SDSC Par96 and SDSC Blue) made

significant incentive (which can also be seen in their average utilization) as compared to

when OFC users constituted the majority population. Probably, this is due to computa-

tional strength of cost-effective resources (Since LANL Origin and LANL CM5 offered

2048 and 1024 nodes, therefore collectively they satisfied the majority of end-users). So,

when OFT users formed the majority it resulted in increased inflow of the remote jobs to

these average resources. Similar trends can be identified intheir respective total remote

job service count (refer to Fig. 4.4(b)). Note that, total remote job service count for cost-

effective computational resources (LANL Origin, LANL CM5) decreased considerably

as the majority of end-users sought OFT(refer to Fig. 4.4(b)).
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Figure 4.6: Resource owner perspective.

Fig. 4.6 shows job migration characteristics at various resources with different popu-

lation profile. We observed that the most cost-efficient resource (LANL Origin) experi-
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enced increased job migration rate in the federation as the majority of its users opted for

OFT. Conversely, for the most time-efficient resource (NASA iPSC) we observed slight

reduction in the job migration rate.

Thus, we conclude that resource supply (number of resource providers) and demand

(number of resource consumers and QoS constraint preference) pattern can determine

resource owner’s overall incentive and his resource usage scenario.

End Users Perspective

We measured end-users QoS satisfaction in terms of the average response time and the

average budget spent under OFC and OFT. We observed that the end-users experienced

better average response times (excluding rejected jobs) when they sought OFT for their

jobs as compared to OFC (100% users seek OFC). At LANL Origin (excluding rejected

jobs) the average response time for users was7.865 × 103 simulation seconds which re-

duced to6.176×103 for OFT (100% users seek OFT) (refer to Fig. 4.7(a)). The end-users

spent more budget in the case of OFT as compared OFC (refer to Fig. 4.7(b)). This shows

that users get more utility for their QoS constraint parameter response time, if they are

willing to spend more budget. Overall, the end-users acrossall the resources in the feder-

ation experienced improved response time when the majorityconstituted OFT population.

Although, the end-users belonging to resource LANL CM5 did not had significant change

in their response time even with OFT preference. It may be dueto their job arrival pat-

tern, that may have inhibited them from being scheduled on the time-efficient resources

(though we need to do more investigation including job arrival pattern and service pattern

at various resources in order to understand this ).

Note that, Fig. 4.8(a) and Fig. 4.8(b) include the expected budget spent and response

time for the rejected jobs assuming they are executed on the originating resource. Fig. 4.5(b)

depicts the number of jobs rejected across various resources during economy scheduling.

During this experiment, we also quantified the average response time and the average bud-

get spent at the fastest (NASA iPSC) and the cheapest resource(LANL Origin) when they

are not part of the Grid-Federation (without federation). We observed that the average re-

sponse time at NASA iPSC was1.268 × 103 (without federation) simulation seconds as

compared to1.550×103 (refer to Fig. 4.8(a)) simulation seconds during OFT (100% users
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seek OFT) (as part of federation). Accordingly, at LANL Origin the average budget spent

was4.851 × 105 (without federation) Grid Dollars as compared to5.189 × 105 (refer to

Fig. 4.8(b)) Grid Dollars during OFC (100% users seek OFC) (aspart of the federation).

Note that, the plots Fig. 4.8(a) and Fig. 4.8(b) do not include the average response time

and budget spent for without federation case.
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Figure 4.7: Federation user perspective: excluding rejected jobs.
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Figure 4.8: Federation user perspective: including rejected jobs.

Clearly, this suggests that although federation-based resource sharing leads to better

optimisation of objective functions for the end-users across all the resources in the feder-
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ation, sometimes it may be a disadvantage to the users who belong to the most efficient

resources (in terms of time or cost).
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(a) No. of remote messages vs. user population pro-
file
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Figure 4.9: Remote-Local message complexity.

Remote and Local Message Complexity

In experiment 4, we measured the total number of messages sent and received at various

GFA’s in the federation with varying user population profiles. Fig. 4.9 shows the plot of

the local and remote message count at various GFAs in the federation during economy

scheduling. When 100% users seek OFC, we observed that resource LANL Origin re-

ceived maximum remote messages (6.407× 103 messages) (refer to Fig. 4.9(a)) followed

with LANL CM5 (the second cheapest). LANL Origin offers the least cost, so in this
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case every GFA in the federation attempted to migrate their jobs to LANL Origin, hence

leading to increased inflow of the remote messages. While when100% users seek OFT,

we observed maximum number of remote messages at the resource NASA iPSC (refer

to Fig. 4.9(a)) followed by SDSC SP2 (the second fastest). Since, these resources were

time-efficient, therefore all the GFAs attempted to transfer their jobs to them. The total

messages involved during this case was1.948 × 104 as compared to1.024 × 104 during

OFC. This happened because the resources LANL Origin and LANLCM5 had 2048 and

1024 computational nodes and a fewer number of negotiation messages were undertaken

between GFA’s for the job scheduling.

Fig. 4.9(b) shows total number of local messages undertakenat a resource for schedul-

ing work. The results shows, as more users sought OFT, it resulted in increased local mes-

sage count at cost-effective resources (LANL Origin, LANL CM5). Conversely, faster

resources experienced greater remote message count. With 50% seek OFC and 50% seek

OFT, we observed uniform distribution of local and remote messages across the federation

(refer to Fig.4.9(a)).

To summarise, we observed linear increase in the total message count with increasing

number of the end-users seeking OFT for their jobs (refer to Fig. 4.9(c)). Hence, this

suggests that the resource supply and demand pattern directly determines the total number

of messages undertaken for the job scheduling in the computational economy based Grid

system.

Overall, it can be concluded that the population mix of usersin which 70% seek OFC

and 30% seek OFT seems most suitable from the system and a resource owner perspective.

In this case, we observed uniform distribution of jobs, incentives across the resources.

Further, this population mix does not lead to excessive message count as compared to

other population mix having greater percentage of users seeking OFT.

System’s Scalability Perspective

In experiment 5, we measured the proposed system’s scalability with increasing numbers

of resource consumers and resource providers. The first partof this experiment is con-

cerned with measuring the average number of messages required to schedule a job in the

federation as the system scales. We observed that at a systemsize of 10, OFC scheduling
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Figure 4.10: System’s scalability perspective: message complexity per job with increasing
system size.

required an average 5.55 (refer to Fig. 4.10(b)) messages ascompared to 10.65 for OFT

(Fig. 4.10(b)). As the system scaled to 50 resources, the average message complexity

per job increased to 17.38 for OFC as compared to 41.37 duringOFT. This suggests that

OFC job scheduling required less number of messages than OFTjob scheduling, though

we need to do more work to determine whether this is due to other factors such as bud-

gets/deadlines assigned to jobs. We also measured the average number of (sent/received)

messages at a GFA while scaling the system size (refer to Fig.4.11). During OFC with

10 resources, a GFA sent/received an average2.836 × 103 (refer to Fig. 4.11(b)) mes-

sages to undertake scheduling work in the federation as compared to6.039× 103 (refer to

Fig. 4.11(b)) messages during OFT. With 40 resources in the federation, the average mes-
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sage count per GFA increased to8.943× 103 for OFC as regards to2.099× 104 messages

for OFT.

0% OFT
10%OFT
20% OFT
30% OFT
40% OFT
50% OFT

60% OFT
70% OFT
80% OFT
90% OFT

100% OFT
 0

 2000

 4000

 6000

 8000

 10000

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

Log (base 10) of the system size

m
in

 m
e

s
s
a

g
e

 p
e

r 
G

F
A

(a) Min message per GFA vs. system size

0% OFT
10%OFT
20% OFT
30% OFT
40% OFT
50% OFT

60% OFT
70% OFT
80% OFT
90% OFT

100% OFT

 0

 5000

 10000

 15000

 20000

 25000

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

Log (base 10) of the system size
a

v
e

ra
g

e
 m

e
s
s
a

g
e

 p
e

r 
G

F
A

(b) Average message per GFA vs. system size

30% OFT

40% OFT

50% OFT

0% OFT

10%OFT

20% OFT

60% OFT

70% OFT

80% OFT

90% OFT

100% OFT

 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000

 1  1.1  1.2  1.3  1.4  1.5  1.6  1.7

m
a

x
 m

e
s
s
a

g
e

 p
e

r 
G

F
A

Log (base 10) of the system size

(c) Max message per GFA vs. system size

Figure 4.11: System’s scalability perspective: message complexity per GFA with increas-
ing system size.

Figures 4.10(b) and 4.11(b) suggests that the user population including 10%, 20% or

30% OFT seekers involves less number of messages per job/perGFA basis in compari-

son to 0% OFT seekers. However, with further increase in OFT seekers generates more

messages per job/per GFA basis.

From Fig. 4.10(b) and 4.11(b), note that the average messagecount grows relatively

slowly to an exponential growth in the system size. Thus, we can expect that the average

message complexity of the system is scalable to a large system size. More analysis is

required to understand the message complexity in this case.However, the maximum
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message count suggests that some parts of the system are not scalable and we need to do

more work to avoid these worst cases, e.g. by incorporating more intelligence into the

shared federation directory.

Overall, we averaged the budget spent for all the users in thefederation during OFC

and without federation (independent resources). We observed that during OFC, the aver-

age budget spent was8.874 × 105 Grid Dollars (we included the expected budget spent

of rejected jobs on the originating resource) as compared to9.359 × 105 during without

federation. However, at most popular resource (LANL Origin) the average budget spent

for local users during OFC was5.189 × 105 as compared to4.851 × 105 during without

federation. Similarly, we averaged the response time for all the users in the federation dur-

ing OFT and without federation. We observed that during OFT,the average response time

was1.171×104 simulation units (we included the expected response time ofrejected jobs

on the originating resource ) as compared to1.207×104 during without federation. But at

the most popular resource (NASA iPSC) the average response time for local users during

OFT was1.550 × 103 as compared to1.268 × 103 during without federation. Clearly,

this suggests that while some users that are local to the popular resources can experience

higher cost or longer delays during the federation based resource sharing but the overall

users’ QoS demands across the federation are better met.

4.4 Related Work

Resource management and scheduling for parallel and distributed systems has been in-

vestigated extensively in the recent past (AppLes, NetSolve [35], Condor, LSF, SGE, Le-

gion, Condor-Flock, NASA-Superscheduler, Nimrod-G and Condor-G). In this chapter,

we mainly focus on superscheduling systems that allow scheduling jobs across wide area

distributed clusters. We highlight the current schedulingmethodology followed by Grid

superscheduling systems including NASA-superscheduler,Condor-Flock (based on P2P

substrate Pastry [143]), Legion-based federation and Resource Brokers. Furthermore, we

also discuss some computational economy based cluster and Grid systems.

The work in [152] models a Grid superscheduler architectureand presents three dif-

ferent distributed job migration algorithms. In contrast to this superscheduling system,
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our approach differs in the following (i) the job-migrationor the load-balancing in the

Grid-Federation is driven by user specified QoS constraintsand resource owners’ sharing

policies; (ii) our approach gives a resource owner completeautonomy over resource al-

location decision; and (iii) our superscheduling mechanism utilizes decentralised shared

federation directory for indexing and querying the resources.

The work in [29] presents a superscheduling system that consists of Internet-wide

Condor work pools. They utilize Pastry routing substrate to organize and index the Con-

dor work pool. The superscheduling mechanism is based on system-centric parameters.

In comparison to this work, Grid-Federation is based on decentralised shared federation

directory. Further, our superscheduling scheme considersuser-centric parameters for job

scheduling across the federation.

OurGrid [9] provides a Grid superscheduling middle-ware infrastructure based on the

P2P network paradigm. The OurGrid community is basically a collection of a number

of OurGrid Peer (OG Peer) that communicate using P2P protocols. Superscheduling in

OurGrid is primarily driven by the site’s reputation in the community. In contrast, we pro-

pose more generalized resource sharing system based on real-market models. Further, our

superscheduling system focuses on optimising resource owners and consumers objective

functions.

Bellagio [13] is a market-based resource allocation system for federated distributed

computing infrastructures. Resource allocation in this system is based on bid-based pro-

portional resource sharing model. Bids for resources are cleared by a centralised auction-

eer. In contrast, we propose a decentralised superscheduling system based on commodi-

ties markets. Resource allocation decision in our proposed system is controlled by the

concerned site , hence providing complete site autonomy.

Tycoon [109] is a distributed market-based resource allocation system. Application

scheduling and resource allocation in Tycoon is based on decentralised isolated auction

mechanism. Every resource owner in the system runs its own auction for his local re-

sources. Furthermore, auctions are held independently, thus clearly lacking any coordi-

nation. In contrast, we propose a mechanism for cooperativeand coordinated sharing of

distributed clusters based on computational economy. We apply commodity market model

for regulating supply and demand of resources in the Grid-Federation.
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Nimrod-G [3] is an resource management system (RMS) that serves as a resource bro-

ker and supports deadline and budget constrained algorithms for scheduling task-farming

applications on the platform. The superscheduling mechanism inside the Nimrod-G does

not take into account other brokering systems currently present in the system. This can

lead to over-utilization of some resources while under-utilization of others. To overcome

this, we propose a set of distributed brokers having a transparent coordination mechanism.

Other systems including Libra [153] and REXEC [46] apply market methodologies

for managing cluster resources within a single administrative domain. Finally in Ta-

ble 4.1, we summarise various superscheduling systems based on underlying network

model, scheduling parameter and scheduling mechanism.

4.5 Conclusion

We proposed a new computational economy based distributed cluster resource manage-

ment system called Grid-Federation. The federation uses agents that maintain and access

a shared federation directory of resource information. A cost-time scheduling algorithm

was applied to simulate the scheduling of jobs using iterative queries to the federation

directory. Our results show that, while the users from popular (fast/cheap) resources have

increased competition and therefore a harder time to satisfy their QoS demands, in general

the system provides an increased ability to satisfy QoS demands over all users. The result

of the QoS based resource allocation algorithm indicates that the resource supply and de-

mand pattern affects resource provider’s overall incentive. Clearly, if all users are seeking

either time/cost optimisation then the slowest/most expensive resource owners will not

benefit as much. However if there is a mix of users, some seeking time and some seeking

cost optimisation then all resource providers gain some benefit from the federation.

We analyzed how the resource supply and demand pattern affects the system scalabil-

ity/performance in terms of total message complexity. In general, the cost-time scheduling

heuristic does not lead to excessive messages, i.e. to excessive directory accesses and we

expect the system to be scalable. Overall, the proposed Grid-Federation, in conjunction

with a scalable, shared, federation directory, is a favourable model for building large scale

Grid systems.



Chapter 5

SLA-driven Coordination Between Grid

Brokers

This chapter presents an SLA based Grid superscheduling approach that promotes co-

operative resource sharing. Superscheduling is facilitated between administratively and

topologically distributed Grid sites via Grid schedulers such as resource brokers and work-

flow engines. The proposed market-based broker-to-broker SLA mechanism is based on

a well-known agent coordination protocol, calledcontract net. The key advantages of this

approach are that it allows: (i) enhanced one-to-one coordination among distributed Grid

resource brokers; (ii) resource owners to have finer degree of control over the resource

allocation, which is something that is not possible with traditional mechanisms; and (iii)

brokers to bid for SLA contracts in the contract net, with focus on completing a job within

a user specified deadline. Trace based simulation study is conducted in order to prove the

feasibility of the proposed SLA-based coordination protocol.

5.1 Introduction

In this chapter, we propose an SLA [5, 51, 55, 130] based coordinated superscheduling

scheme for federated Grid systems. An SLA is the agreement negotiated between a su-

perscheduler (resource consumer) and LRMSes (resource provider) about acceptable job

QoS constraints. These QoS constraints may include the job response time and budget

109
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spent. Inherently, an SLA is the guarantee given by a resource provider to a remote site

job superscheduler for completing the job within the specified deadline, within the agreed

budget or satisfying both at the same time. A SLA-based coordinated job superschedul-

ing approach has several advantages: (i) it inhibits superschedulers from submitting un-

bounded amounts of work to LRMSes; (ii) once an SLA is reached,users’ are certain

that agreed QoS shall be delivered by the system; (iii) job queuing or processing delay is

significantly reduced, thus leading to enhanced QoS, otherwise a penalty model [179] is

applied to compensate them; and (iv) gives LRMSes more autonomy and better control

over resource allocation decisions.

Our SLA model incorporates an economic mechanism [13, 31, 109] for job super-

scheduling and resource allocation. The economic mechanism enables the regulation of

supply and demand of resources, offers incentive to the resource owners for leasing, and

promotes QoS based resource allocation. Recall from Chapter 4, we mainly focus on

the decentralised commodity market model [176]. In this model every resource has a

price, which is based on the demand, supply and value. An economy driven resource al-

location methodology focuses on: (i) optimizing resource provider’s payoff function; and

(ii) increasing end-user’s perceived QoS value; and (iii) guarantees that the advertised or

negotiated resource behavior are delivered to the consumers else providers are penalized.

Note that our proposed superscheduling approach is studiedas part of the Grid-Federation

scheduling system (refer to Chapter 4). Finer details about this system is presented in

Chapter 4.

Our SLA model considers a collection of computational cluster resources as a contract

net [157]. As jobs arrive, the Grid superschedulers undertake one-to-one contract negoti-

ation with the LRMSes managing the concerned resource. The SLA contract negotiation

message includes: (i) whether a job can be completed within the specified deadline; and

(ii) SLA bid expiration time (maximum amount of time a superscheduler is willing to wait

before finalizing the SLA). The SLA bid expiration time methodology we apply here is

different from that adopted in the Tycoon system [109]. In Tycoon, the SLA bid expiration

time at a resource is the same for all the jobs irrespective oftheir size or deadline. In this

case, the total bid-processing delay is directly controlled by the local resource auction-

eer. In our model, the superscheduler bids with an SLA bid expiration time proportional
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to the job’s deadline. The focus is on meeting the job’s SLA requirements, particularly

the job’s deadline. The SLA contract negotiation in NASA-Scheduler and Condor-Flock

P2P [29] is based on general broadcast and limited broadcastcommunication mechanism

respectively. Hence, these approaches have the following limitations: (i) high network

overhead; and (ii) scalability problems.

Site 1 Site 2

Resource Resource

GRM DIM

LRMS
GFA

GRM DIM

LRMS
GFA

Greedy Backfil l ing
allocation policy Greedy Backfilling

allocation policy

µSLA
µSLA

λSLA
λSLA

Figure 5.1: SLA bid queues in the Grid-Federation.

Our time constrained SLA bid-based contract negotiation approach gives LRMSes

finer control over the resource allocation decision as compared to traditional First-Come-

First-Serve (FCFS) approach. Existing superscheduling systems including Nimrod-G,

NASA-Scheduler, Condor-Flock P2P, Condor-G and Legion-Federation [174] assume ev-

ery LRMS allocates the resources using FCFS scheduling scheme. In this work, we

propose a Greedy Back-filling LRMS scheduling that focuses on maximizing resource

owner’s payoff function. In this case, a LRMS maintains a queue of SLA bid requests

generated by various superschedulers in the system at a timet. Every SLA bid has an

associated expiry time. If the concerned LRMS does not reply within that expiry period,

then the SLA request is considered to be expired. Greedy back-filling is based on well

known Greedy or Knapsack method [23, 50, 78]. A LRMS periodically iterates through

the local SLA bids and finalizes the contract with those that fit the resource owner’s payoff
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function.

Fig. 5.1 shows the queue of SLA bids at each site in the federation. Every incoming

SLA bid is added to the GRM request queue,Qm,t and a bid expiration timeout event is

scheduled after time intervalτ(Ji,j,k). Every resourcei has a different SLA bid arrival

rate,λSLAi
and SLA bid satisfaction rate,µSLAi

.

The rest of this chapter is organised as follows. Section 5.2.1 presents details about

our proposed bid-based SLA contract negotiation model. In Section 5.2.2, we give details

about our proposed Greedy backfilling LRMS scheduling approach. In Section 5.3, we

present various experiments and discuss our results. Section 5.4 presents some of the

related work in negotiation-based superscheduling. We endthis chapter with concluding

remarks in Section 5.5.

5.2 Models

5.2.1 SLA model

The SLA model we consider is that of a set of distributed cluster resources each offering

a fixed amount of processing power. The resources form part ofthe federated Grid en-

vironment and are shared amongst the end-users, each havingits own SLA parameters.

SLAs are managed and coordinated through an admission control mechanism enforced

by GFA at each resource site. Each user in the federation has ajob Ji,j,k. We writeJi,j,k to

represent thei-th job from thej-th user of thek-th resource. A job consists of the number

of processors required,pi,j,k, the job length,li,j,k (in terms of millions of instructions), the

communication overhead,αi,j,k and SLA parameters, i.e., the budget,bi,j,k, the deadline

or maximum delay,di,j,k. More details about the job model can be found in Chapter 4.

SLA bid with expiration time

The collection of GFAs in the federation are referred to as a contract net, and job-migration

in the net is facilitated through the SLA contracts. Each GFAcan take on two roles either

amanageror contractor. The GFA to which a user submits a job for processing is referred

to as the manager GFA. The manager GFA is responsible for superscheduling the job in
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tri,j,k

di,j,k

de
i,j,k

effective deadlinetnegi,j,ktsi,j,k

∆tnegi,j,k,1

∆tnegi,j,k,2

∆tnegi,j,k,n

Figure 5.2: Job superscheduling timeline.

the net. The GFA which accepts the job from the manager GFA andoverlooks its execu-

tion is referred to as the contractor GFA. Individual GFAs are not assigned these roles in

advance. The role may change dynamically over time as per theuser’s job requirements.

Thus, the GFA alternates between these two roles or adheres to both over the course of

superscheduling.

As jobs arrive at a GFA, the GFA adopts the role of a manager. Following this, the

manager GFA queries the shared federation directory to obtain the quote for the con-

tractor GFA that matches the user specified SLA parameters. Note that, users can seek

optimization for one of the SLA parameters i.e. either response time (OFT) or the budget

spent (OFC). Once, the manager obtains the quote for the desired contractor, it undertakes

one-to-one SLA contract negotiation with the contractor. The SLA contract negotiation

message includes: (i) whether the jobJi,j,k can be completed within the specified dead-

line; and (ii) SLA bid expiration time∆tnegi,j,k,l. The contractor GFA has to reply within

the bid time∆tnegi,j,k,l, otherwise the manager GFA undertakes SLA contract negotiation

with the next available contractor in the net. Algorithm SLAbidding mechanism (refer

to Fig. 5.3) depicts various events and corresponding superscheduling actions undertaken

by a GFA.

Our SLA contract model considers a part of the total job deadline as the SLA contract

negotiation time (refer to Eq. 5.1). The manager GFA bids with a different SLA expiration

interval given by Eq. 5.2. In Fig. 5.2 we show the job superscheduling timeline. The time-

line includes the job submission delay,tsi,j,k
, total SLA contract negotiation delay,tnegi,j,k

,

expected response time (computed using Eq. 5.1) and finishedjob return delay,tri,j,k
. The

total SLA contract bidding delay available to the manager GFA for superscheduling job

Ji,j,k is given by:
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PROCEDURE: SLABIDDING MECHANISM1

begin2

begin3

SUB-PROCEDURE: EVENTUSERJOB SUBMIT (Ji,j,k)4

call SLA BID (Ji,j,k).5

end6

begin7

SUB-PROCEDURE: SLABID (Ji,j,k)8

Send SLA bid for jobJi,j,k to the next available contractor GFA (obtained by querying9

the shared federation directory).
end10

begin11

SUB-PROCEDURE: EVENTSLA BID REPLY (Ji,j,k)12

if SLA Contract Acceptedthen13

Send the jobJi,j,k to accepting GFA.14

end15

else16

call SLA BID TIMEOUT (Ji,j,k).17

end18

end19

begin20

SUB-PROCEDURE: SLABID TIMEOUT(Ji,j,k)21

if τ (Ji,j,k) ≥ 0 then22

call SLA BID (Ji,j,k).23

end24

else25

Drop the jobJi,j,k.26

end27

end28

end29

Figure 5.3:SLA bidding mechanism.

tnegi,j,k
= di,j,k − tsi,j,k

− de
i,j,k − tri,j,k

(5.1)

The total SLA contract bid negotiation delaytnegi,j,k
assumes a finite number of values

∆tnegi,j,k,1
, ∆tnegi,j,k,2

,...,∆tnegi,j,k,n
in superscheduling a jobJi,j,k (refer to Fig. 5.2). We

define the value of∆tnegi,j,k,l
by

∆tnegi,j,k,l
=

tnegi,j,k
−

∑l−1
p=1 ∆tnegi,j,k,p

2
, l > 0 (5.2)

Note that, the value for∆tnegi,j,k,l
can be given by other distributions [7] such as

uniform or random. We intend to analyze various distributions for an SLA bid interval

and study its effect on our proposed superscheduling approach in our future work. For

simplicity, in this work we use the distribution given by Eq.5.2.
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As the superscheduling iteration increases, the manager GFAs give less time to the

contractor to decide on the SLA in order to meet the user’s jobdeadline. This approach

allows a large number of scheduling iterations to the manager GFA. However, if the user’s

SLA parameters cannot be satisfied (after iterating up to thegreatestr such that GFA could

feasibly complete the job), then the job is dropped. To summarise, an SLA bid for job

Ji,j,k includes:

• l-th SLA bid expiry intervaltnegi,j,k,l
(computed using Eq. 5.2);

• expected response time (de
i,j,k) (computed using Eq. 5.1).

We consider the function:

τ : Ji,j,k −→ Z
+ (5.3)

which returns the next allowed SLA bidding time interval∆tnegi,j,k,p
for a job Ji,j,k

using Eq.5.2.

5.2.2 Greedy backfilling: (LRMS scheduling model)

Most of the existing LRMSes apply system-centric policies for allocating jobs to re-

sources. Some of the well-known system-centric policies include: (i) FCFS; (ii) Conser-

vative back-filling [160]; and (ii) Easy back-filling [65]. Experiments [144] have shown

that the job back-filling approach offers significant improvement in performance over the

FCFS scheme. However, these system centric approaches allocate resources based on

parameters that enhance system utilization or throughput.The LRMS either focuses on

minimizing the response time (sum of queue time and actual execution time) or maximiz-

ing overall resource utilization of the system, and these are not specifically applied on a

per-user basis (user oblivious). Further, the system centric LRMSes treat all resources

with the same scale, thus neglecting the resource owner’s payoff function. In this case,

the resource owners do not have any control over resource allocation decisions. While

in reality the resource owner would like to dictate how his resources are made available

to the outside world and apply a resource allocation policy that suits his payoff function.

To summarize, the system-centric approaches do not providemechanisms for resource

owners to dictate resource: (i) sharing; (ii) access and; (iii) allocation policies.
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To address this, we propose a Greedy method based resource allocation heuristic for

LRMSes. Our proposed heuristic focuses on maximizing the payoff function for the re-

source owners. The heuristic is based on the well-known Greedy method [23], [50]. The

Greedy method for solving optimization problems considersgreedily maximizing or min-

imizing the short-term goals and hoping for the best, without regard to the long-term

effects. This method has been used to solvethe knapsack problem[78]. Greedy method

considers a setS, consisting ofn items, with each itemi having a positive benefitbi,

a positive weightwi. Given the knapsack capacityW the Greedy heuristic focuses on

maximizing the total benefit
∑

i∈Sa bi(xi/wi) with constraint
∑

i∈Sa xi ≤ W , such that

Sa ⊆ S. In this case,xi is the portion of each itemi which the Greedy method selects.

The LRMS scheduler iterates through the SLA bid queue in case any of the following

events occur: (i) new SLA bid arrives to the site; (ii) job completion; or (iii) an SLA bid

reaches its expiration time. Procedure Greedy Back-filling (refer to Fig. 5.4) depicts vari-

ous events and corresponding scheduling actions undertaken by the LRMS.

5.2.3 Integer linear programming (ILP) formulation of scheduling

heuristic

Queue,Qm,t, maintains the the set of job SLA bids currently negotiated with the LRMS

at GFAm by timet. We consider the SLA bid acceptance variablexi,j,k

• Definition of variable:

xi,j,k = 1 if the SLA request for jobJi,j,k is accepted;

xi,j,k = 0 otherwise.

The Greedy Back-filling heuristic accepts SLA requests constrained to the avail-

ability of number of processors requested for jobJi,j,k and expected response time

de
i,j,k.

• Definition of the constraints:
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PROCEDURE: GREEDYBACKFILLING1

begin2

r = pm3

c = 04

Qm,t ← φ5

Qa
m,t ← φ6

Qs
m,t ← φ7

begin8

SUB-PROCEDURE:EventSLA Bid ARRIVAL( Ji,j,k)9

A SLA request message for the jobJi,j,k that arrives at a GFAQm,t← Qm,t ∪ {Ji,j,k}10

Schedule the SLA bid timeout event afterτ(Ji,j,k) time units11

call STRICTGREEDY()12

end13

begin14

SUB-PROCEDURE:EventSLA Bid Timeout(Ji,j,k)15

A SLA bid for job Ji,j,k that reaches timeout period16

if (r ≥ pi,j,k andde
i,j,k ≥ D(Ji,j,k, Rm)) then17

Call RESERVE(Ji,j,k)18

end19

else20

Reject the SLA bid for jobJi,j,k21

ResetQm,t← Qm,t − {Ji,j,k}22

end23

end24

begin25

SUB-PROCEDURE:EventJobFinish(Ji,j,k)26

A job Ji,j,k that finishes at a GFA Resetr = r + pi,j,k27

call STRICTGREEDY()28

end29

begin30

SUB-PROCEDURE: RESERVE(Ji,j,k)31

Reservepi,j,k processors for the jobJi,j,k32

Resetr = r − pi,j,k, Qm,t← Qm,t − {Ji,j,k}, Qa
m,t← Qa

m,t ∪ {Ji,j,k}33

end34

begin35

SUB-PROCEDURE: STRICTGREEDY()36

Resetc = 037

Sort the SLA bids inQm,t in decreasing order of incentives and store inQs
m,t38

Get the next SLA bid for jobJi,j,k from the listQs
m,t, c=c+139

if (r ≥ pi,j,k andde
i,j,k ≥ D(Ji,j,k, Rm)) then40

Call RESERVE(Ji,j,k)41

end42

else43

if c < sizeof(Qs
m,t) then44

Iterate through step 1.3945

end46

end47

end48

end49

Figure 5.4:Greedy-Backfilling resource allocation algorithm.
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∑

1≤i≤nj

1≤j≤nu

1≤k≤n

pi,j,k ≤ pm (5.4)

pm total number of processors available at a LRMS (GFA)m. pi,j,k denotes number

of processor requested during the SLA bid for jobJi,j,k. All the accepted SLA bids

for jobs are maintained in the queueQa
m,t.

• Payoff or Objective function: The LRMS scheduler accepts SLAbids for the jobs

such that it maximizes the resource owners’ payoff functions by applying the Greedy

backfilling heuristic

Im = max(
∑

1≤i≤nj

1≤j≤nu

1≤k≤n
1≤m≤n

B(Ji,j,k, Rm)) (5.5)

5.2.4 Economic parameters

Setting price (ci)

The resource owners configure the resource access costci to reflect its demand in the

federation. A resource owner can varyci depending on the resource demandλSLAi
and

resource supplyµSLAi
pattern. In case,λSLAi

> µSLAi
, then the resource owner can in-

creaseci. However,λSLAi
depends on the user population profile. If the majority of users

are seeking optimization for response time then time-efficient resources may increaseci

until λSLAi
= µSLAi

. Furthermore, to find the bounds ofci, it is mandatory to consider

the amount of budget available to the users.

For simplicity, in this work we assume thatci remains static throughout the simula-

tions. We intend to analyze different pricing algorithms [43], [155], [176] based on the

supply and demand function, as future work. Using the staticprice ci, we quantify how

varying the SLA bid time affects the federated superscheduling systems’ performance. In

simulations, we configureci using the function:

ci = f(µi) (5.6)
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where,

f(µi) =
c

µ
µi (5.7)

c is the access price andµ is the speed of the fastest resource in the Grid-Federation.

Details about how users are charged on per job basis can be found in Chapter 4.

User budget and deadline

While our simulations in the next section use trace data for job characteristics, the trace

data does not include user specified budgets and deadlines ona per job basis. In order to

study our proposed SLA model and superscheduling approach,we are forced to fabricate

these quantities and we include the models here.

For a user,j, we allow each job from that user to be given a budget,

bi,j,k = 2 B(Ji,j,k, Rk). (5.8)

In other words, the total budget of a user over simulation is unbounded and we are

interested in computing the budget that is required to schedule all of the jobs.

Also, we let the deadline for jobJi,j,k be

di,j,k = 3 D(Ji,j,k, Rk). (5.9)

We assign three times the expected response time for the given job, as compared to

expected response time on the originating resource. We use the multiplying constant as3,

for allowing the superschedulers ample time during SLA bidding. However, as a future

work we intend to analyse how does the system performance change when multiplying

constant approaches1 and infinity. Details about the budget and time function can be

found in Chapter 4.
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Table 5.1: Workload and resource configuration.

Index Resource
/ Cluster
Name

Trace Date Processors MIPS
(rat-
ing)

Total
Jobs in
Trace

Quote NIC to Network
Bandwidth
(Gb/Sec)

1 CTC SP2 June96-May97 512 850 79,302 4.84 2
2 KTH SP2 Sep96-Aug97 100 900 28,490 5.12 1.6
3 LANL CM5 Oct94-Sep96 1024 700 201,387 3.98 1
4 LANL Origin Nov99-Apr2000 2048 630 121,989 3.59 1.6
5 NASA iPSC Oct93-Dec93 128 930 42,264 5.3 4
6 SDSC Par96 Dec95-Dec96 416 710 38,719 4.04 1
7 SDSC Blue Apr2000-Jan2003 1152 730 250,440 4.16 2
8 SDSC SP2 Apr98-Apr2000 128 920 73,496 5.24 4

5.3 Performance Evaluation

5.3.1 Workload and resource methodology

We performed real workload trace driven simulation to evaluate the effectiveness of the

proposed SLA based superscheduling approach. We utilised the same traces and resources

as described in Chapter 4. For reference, in Table 5.1 we outline the resource character-

istics utilised for modeling the simulation environment. Similar to the Chapter 4, our

simulation environment models the following basic entities in addition to existing entities

in GridSim:

• local user population – models the workload obtained from trace data;

• GFA – generalized RMS system;

• GFA queue – placeholder for incoming jobs from local user population and the

federation;

• GFA shared federation directory – simulates an efficient distributed query process

such as P2P.

For evaluating the SLA based superscheduling, we assigned asynthetic QoS specifi-

cation to each resource including the Quote value (price that a cluster owner charges for

service), with varying MIPS rating and underlying network communication bandwidth.

The simulation experiments were conducted by utilizing workload trace data over the to-

tal period of four days (in simulation units) at all the resources. We consider federation
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with computational economy mechanism as the resource sharing environment for our ex-

periments.

5.3.2 Experiment 1 - Quantifying scheduling parameters related to

resource owners and end-users with varying total SLA bid time

We quantify the following scheduling parameters related toresource owners and end-

users:

• resource owner: payoff function (total earnings, earningsper processor), resource

utilization (in terms of total MI executed);

• end-users: QoS satisfaction (average response time, average budget spent), number

of jobs accepted.

We performed the simulations which comprised of end-users seeking OFT for their

jobs (i.e. 100% users seek OFT). We vary the total SLA bid from 0% to 50% of total

allowed job deadline. In case, no SLA bid delay is allowed (i.e. 0% of total allowed dead-

line) then the contacted GFA has to immediately make the admission control decision.

In this case, we simulate FCFS based strategy for finalizing the SLA. However, in other

cases we consider a Greedy Back-filling SLA approach.

5.3.3 Experiment 2 - Quantifying message complexity involved with

varying total SLA bid time

In this experiment we consider the message complexity involved in our proposed super-

scheduling approach, using the following superschedulingparameters:

• average number of messages per job at a resourcei: the number of SLA bid requests

undertaken at a resource on the average before the job was actually scheduled;

• local message count: number of SLA bid scheduling messages undertaken for local

jobs at a resourcei;

• remote message count: number of SLA bid scheduling message overhead for remote

jobs at a resourcei.
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Figure 5.5: Federation perspective.

5.3.4 Results and observations

Federation perspective

In experiment 1, we measure how varying of the total time for SLA bids coupled with

Greedy backfilling resource allocation strategy affects the Grid participants across the fed-

eration. We quantify how the additional decision making time given to the LRMSes before

finalizing the SLA contracts affects the overall system performance in terms of resource

owner’s and end-user’s objective functions. We observed that when the LRMSes across

the federation applied FCFS technique for finalizing the SLAs(i.e. no decision making

time was given, so the LRMSes have to reply as soon as the SLA request was made), the
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resource owner’s made4.102× 109 Grid dollars as incentive (refer to Fig.5.5(a)).

We observed that with an increase in the total SLA bidding time (i.e. as the LRMSes

were allowed decision making time before finalizing the SLAshence they applied Greedy

Back-filling scheduling on the queue of SLA bids), the resource owners earned more

incentive as compared to the FCFS case. When 10% of the total deadline was allowed

for SLA bids, the total incentive earned across the federation increased to4.219 × 109

Grid dollars. While, in case 50% of total job deadline was allowed for the SLA bids, the

total incentive accounted to4.558× 109 Grid dollars. Hence, the resource owners across

federation experienced an increase of approximately 10% in their incentive as compared

to the FCFS case.

However, we observed that with an increase in the total SLA bid delay, the end-users

across the federation experienced degraded QoS. During theFCFS case, the average re-

sponse time across the federation was1.183 × 104 sim units (refer to Fig.5.5(b)). How-

ever, in case of 10% SLA bid delay the average response time increased to1.344 × 104

sim units. Finally, when 50% of the total job deadline was allowed as SLA bid delay the

average response time further increased to1.956 × 104 sim units. Furthermore, in this

case the end-users end up spending more budget as compared tothe FCFS case (refer to

Fig.5.5(c)).

Hence, we can see that although the proposed approach leads to better optimization of

resource owners’ payoff function, it has degrading effect on the end-user’s QoS satisfac-

tion function across the federation.

Resource owner perspective

In experiment 1, we quantified how varying the total SLA bid time/delay affects the in-

dividual resource owners in the federation. We analyzed, how the proposed approach

affects the superscheduling parameters related to the resource owner’s payoff function.

The most time-efficient resources in the federation i.e. NASA-iPSC, SDSC-SP2, Kth-

SP2 and CTC-SP2 (refer to Table 5.1) experienced substantial increase in the total incen-

tive earned with an increase in total decision making time. When no time was allowed

for decision making (the FCFS case), these resources earned1.764 × 106, 1.61 × 106,

1.458× 106, 1.377× 106 and9.464× 105 Grid dollars (refer to Fig. 5.6(c)) per processor.
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(c) total SLA bid delay vs. total earnings per proces-
sor

Figure 5.6: Resource owner perspective.

When the jobs in the system were allowed 30% of their total deadline as SLA bid time or

admission control decision making time, these resources earned1.946×106, 1.957×106,

1.799 × 106, 1.622 × 106 and9.996 × 105 Grid dollars per processing unit. Same trends

can be observed in the plots for total earnings (refer to Fig.5.6(b)) and number of machine

instructions executed during the simulation period (referto Fig. 5.6(a)).

Thus, we can see that when LRMSes are given decision making time, they have better

control over resource allocation/admission control decision. Furthermore, we can see that

Greedy Back-filling approach leads to better optimization ofowner’s payoff function as

compared to the FCFS approach.
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End-users perspective
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Figure 5.7: End-users perspective.

In experiment 1, we also quantified the QoS satisfaction parameters for end-users

across all the resources in the Grid-Federation. When LRMSes across the federation

applied FCFS scheduling, end-users at the resource NASA-iPSC experienced1.719×103

sim units as average response time (refer to Fig.5.7(b)). They also spent1.143 × 105

Grid dollars on the average to get their job done in the federation (refer to Fig.5.7(a)).

However, when the user’s allowed50% of the total job deadline as SLA bid time, the

average response time at NASA-iPSC increased to3.170 × 103 sim units. In this case,

end-users paid1.14928× 105 Grid dollars. Fig.5.7(c) depicts the plot for number of jobs

accepted for users across resources in the federation with increasing SLA bid time.
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Thus, we can see that FCFS based LRMS SLA contract allocation approach is better

as far as end-user’s QoS satisfaction is concerned as compared to Greedy Back-filling.

However, such an approach is difficult to realize into today’s Internet based system where

resource owners have rational goals and focus on maximizingtheir payoff function, while

delivering an acceptable level of QoS to the end-users.

System message complexity perspective
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(c) total SLA bid delay vs. no. of local messages

Figure 5.8: System’s scalability perspective.

In experiment 2, we quantified the message complexity involved with our proposed

superscheduling approach. We measure the number of SLA bid messages required on

average across the federation to schedule a job. This metricalso includes the messages
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for sending the executable and receiving the output. Fig.5.8(a), 5.8(b) and 5.8(c) depicts

the plots for scheduling message complexity involved with our approach.

Our simulations show that when no SLA bid delay was allowed, the average SLA bid

message per job across the federation was 9.12 (refer to Fig.5.8(a)). As the system allowed

40% of the total job deadline as SLA bid delay, the SLA message/job remained almost the

same at about 9.32. Thus, we can see that our proposed superscheduling approach does

not incur any additional communication overhead.

In Fig.5.8(b), we quantify the remote superscheduling message complexity at various

resources in the Grid-Federation. We observed that the mosttime-efficient resource i.e.

NASA-iPSC received the maximum number of remote messages followed by SDSC-SP2

and KTH-SP2. The same characteristic holds for all cases i.e. as the total SLA bid time

increases from 0% to 50% of the allowed job deadline.

In Fig.5.8(c), we quantify the local superscheduling message complexity at various re-

sources in the Grid-Federation. Results show that the resources LANL-Origin and LANL-

CM5 were subjected to maximum local superscheduling messages. Both the resources

were cost-efficient and all their local users were seeking OFT. Hence these resources un-

dertook SLA bid negotiation with time-efficient resources,causing a large number of su-

perscheduling messages (note that the number of jobs at LANL-Origin and LANL-CM5

were 1706 and 1287) respectively.

5.4 Related work

In this section, we briefly summarize Grid superscheduling approaches that apply a SLA-

based or a negotiation-based job superscheduling process.

The work in [130] proposes a multi-agent infrastructure that applies a SLA protocol

for solving the Grid superscheduling problem. The SLA negotiation protocol is based on

the Contract Net Protocol [156]. In contrast: (i) we propose aSLA-based coordination

scheme based on computational economy; and (ii) our work considers site autonomy

issues, and propose a Greedy Back-filling resource allocation strategy for a LRMS to

maximize resource provider payoff function.

The work in [163] presents a Grid superscheduling techniquebased on a multiple job
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SLA negotiation scheme. The key factor motivating this workis redundantly distributing

the job execution requests to multiple sites in the grid instead of just sending a request

to least loaded one. The authors argue that placing a job in the queue at multiple sites

increases the probability that the backfilling strategy will be more effective in optimiz-

ing the scheduling parameters, which includes resource utilization and job average turn

around time. In other words, the scheduling parameters are system centric. In contrast to

this superscheduling system, our approach differs in the following: (i) job-migration or

SLA-based coordination is based on user centric schedulingparameters; (ii) our approach

gives a LRMSes more flexibility over resource allocation decision; and (iii) our cluster

resource allocation mechanism i.e. Greedy Back-filling algorithm focuses on maximizing

resource owners payoff function.

The work in [152] models a Grid superscheduler architecture. Each Grid site has a

Grid scheduler (GS), Grid middleware (GM) and a local scheduler (LRMS). Three dif-

ferent cooperative superscheduling schemes are presentedfor distributed load-balancing.

Effectively, the information coordination in this approach is based on complete broad-

cast communication approach that may generate a large number of network messages.

Such an approach has serious scalability concerns. Further, each GS in the system allo-

cates resources to the remote and local jobs in a FCFS manner without considering any

site-specific objective function. In contrast to this superscheduling system, our approach

differs in the following: (i) the SLA coordination in Grid-Federation is based on one-to-

one SLA negotiation mechanism hence effectively limiting the network communication

overhead; and (ii) we apply a Greedy backfilling approach at Grid sites for maximizing

resource owner payoff function.

The work in [29] presents a superscheduling system that consists of Internet-wide

Condor work pools (often referred as flock). A superscheduling manager or pool manager

in the flock periodically compares metrics such as queue lengths, average pool utiliza-

tion and resource availability scenario, and formulates a sorted list of pools based on

these statistics. Using this list, the pool manager choosesappropriate pools for flock-

ing. Further, a condor work pool accepts a remote job if it hasfree resources. The issues

related to site specific resource allocation policy is not considered. In contrast: (i) we con-

sider the site autonomy issues through Greedy Back-filling LRMS scheduling approach;
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(ii) our SLA bidding approach gives resource owner more control before finalizing the

SLA agreements; (iii) we consider a one-to-one SLA coordination mechanism for su-

perscheduling, hence largely limiting the network communication overhead; and (iv) our

approach incorporates an economic mechanism for superscheduling.

Tycoon [109] is a distributed market-based resource allocation system. Job scheduling

and resource allocation in Tycoon is based on a decentralised isolated auction mechanism.

Every resource owner in the system runs its own auction for its local resources. In con-

trast: (i) our superscheduling approach is based on decentralised commodity markets; and

(ii) we consider a Greedy Back-filling resource allocation heuristic for LRMSes.

The work in [179] proposes SLA based cluster resource allocation. The SLA acts as

a contract between the end-user and the cluster provider whereby the provider pays the

penalty amount if the negotiated SLA is not satisfied. In contrast: (i) our work is targeted

for computational grids where different site with different resource management policies

collaborate together; (ii) we are interested in quantifying the affect of SLA negotiation

intervals on end-users and providers objective function; and (iii) our SLA parameter in-

cludes the users’ deadline, budget and timeout (the total amount of time superscheduler

is willing to wait before SLA agreement is reached). In this,work we assume once SLA

agreement is reached it will be satisfied. We do not consider any compensation or penalty

model.

5.5 Conclusion

In this chapter, we presented an SLA-based superschedulingapproach based on the Con-

tract Net Protocol. The proposed approach models a set of resource providers as a con-

tract net while job superschedulers work as managers, responsible for negotiating SLA

contracts and job superscheduling in the net. Superschedulers bid for SLA contracts in

the net with a focus on completing the job within the user specified deadline. We analyzed

how the varying degree of SLA bidding time (i.e. admission control decision making time

for LRMSes) affects the resource providers’ payoff function. The results show that the

proposed approach gives resource owners finer control over resource allocation decisions.

However, the results also indicate that the proposed approach has a degrading effect on
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the user’s QoS satisfaction. However, we need to do more research on abstracting the

user’s QoS requirement. We need to analyse how the deadline type for the user jobs can

be abstracted into different types such as into urgent and relaxed deadline. In these cases,

jobs with an urgent requirement can be given a preference while finalizing SLA contracts

hence providing improved QoS satisfaction to users. We analysed how varying the bid

time for SLA contracts affects the system scalability and performance in terms of total

message complexity. In general, the proposed superscheduling heuristic does not incur

excessive messages on a per job basis as compared to the FCFS case.



Chapter 6

Decentralised Resource Discovery

Service for Federated Grids

This chapter presents a decentralised Grid resource discovery system based on a spa-

tial publish/subscribe index. It utilises a Distributed Hash Table (DHT) routing substrate

for delegation ofd-dimensional service messages. Our approach has been validated us-

ing a simulated publish/subscribe index that assigns regions of ad-dimensional resource

attribute space to the grid peers in the system. We generatedthe resource attribute dis-

tribution using the configurations obtained from the Top500 Supercomputer list. The

simulation study takes into account various parameters such as resource query rate, index

load distribution, number of index messages generated, overlay routing hops and system

size.

6.1 Introduction

Recently, Internet-scale services including distributed resource brokering [75], distributed

gaming, content distribution networks, P2P storage, and distributed auctions have received

significant research interest both from researchers and industry. Concurrently, resource

sharing platform such as grids [71] and PlanetLab [47] have emerged as the defacto means

for hosting these distributed services. One of the main challenges involving a planetary

scale deployment of these services is locating the appropriate set of nodes that match the

131
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service’s requirement.

An efficient resource discovery mechanism is a mandatory requirement of Grid sys-

tems (such as desktop grids, resource brokers, work-flow engines), as it aids in resource

management and scheduling of applications. Traditionally, Grid resource brokering ser-

vices such as Nimrod-G, Condor-G, Tycoon, Grid workflow engine, Gridbus Broker

used services of centralised and hierarchical informationservices (such as R-GMA [183],

Hawkeye [182], MDS-2,3,4 [67]). The limitations of these existing approaches have al-

ready been discussed in Chapter 1 and Chapter 3.

Last few years have seen the rapid growth in the e-Science applications and design

of custom schedulers such as workflow engines for successfully harnessing the compu-

tational Grid resources. In order to tackle this growth, we need to design scalable in-

frastructure solutions. We envisage decentralisation of grids [69, 91, 164] as a viable

way to realise an efficient Grid computing infrastructure. Decentralisation can be accom-

plished through an Internet-wide Grid resource look-up system along the same lines as

the Domain Name Service (DNS). In other words, there is a needto build a scalable Grid

resource information service that will allow and promote all existing Grid resources to

combine together into a single cooperative system. Such a system would solve the prob-

lems associated with centralised or hierarchical organisation, resource fragmentation and

conflicting application schedules. Fig. 6.1 shows such a Grid computing environment

organisation based on a decentralised resource discovery system.

One of the possible ways to overcome the limitation of a centralised or hierarchical

approach, is to partition the resource index space across the set of dedicated database

servers [128]. For achieving fault-tolerance these database servers can be replicated across

multiple machines. Further, the index space can be partitioned across servers based on

attribute types and values. However one of the major drawbacks of this scheme is that

satisfying a range query would require sending simultaneous messages to set of servers.

This might prove costly in terms of the number of messages generated in the system.

Further, if the number of users increase rapidly then upgrading the hardware infrastructure

can prove to be an expensive process.

An other possible way to tackle this problem is to organise the index space using a

Distributed Hash Table (DHT) method [161]. In this case, commodity machines such as
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Figure 6.1: Grid brokers and Grid sites with their Grid peer service and some of the
hashings to the Chord ring.

desktops can be used to host the DHT and indexing services. DHTs are inherently self-

organising, fault-tolerant and scalable. Further, DHT services are light-weight and hence,

do not warrant an expensive hardware infrastructure. A majority of Google’s data center

services are hosted by the commodity machines, and this is a case in point.

In this work, we present a decentralised Grid resource discovery service building on

the DHT-based spatial publish/subscribe index reported in[108]. The publish/subscribe [62]

way of communication adheres well to the needs of Grid computing. The completely de-

coupled nature of publish/subscribe communication adaptswell to Grid participants who

are dynamic and are separated in time and space. In general, apublish/subscribe sys-

tem conveys published information from any provider to all interested information con-

sumers who have previously subscribed for the same. In this setting the publisher or the

subscriber do not use source/destination identifiers/addresses. Further, the spatial [147]

nature of the publish/subscribe index has the capability torespond to complex Grid re-
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source queries (refer to Chapter 3) such as range queries involving various attribute types

including those that have a spatial component.

Table 6.1: Summary of the complexity of structured P2P systems.
DHT Routing

table size
Routing
complexity

join/leave
overhead

Chord O(log n) O(log n) O((log n)2)
Pastry O(logb n) O(b logb n + b) O(log n)

CAN O(2 d) O(d n1/d) O(2 d)
Tapestry O(logb n) O(b logb n + b) O(log n)

The proposed Grid resource discovery service organises data by maintaining a logical

d-dimensional publish/subscribe index over a network of distributed Grid brokers/Grid

sites. These brokers create a Chord overlay [161], which collectively maintain the logi-

cal publish/subscribe index to facilitate a decentralisedresource discovery process. Note

that, basically any DHT could be utilised for routing ofd-dimensional index. Depend-

ing on the DHT (such as Pastry [143], CAN [140]) the complexityfor routing table size,

look-up, and peer join/leave would be different (refer to Table 6.1). But basically they

can all support the proposed resource discovery service. Wepresent more details about

the publish/subscribe index in Section 6.3. Fig. 6.1 depicts the proposed resource discov-

ery system involving Grid brokers and Grid Sites (shown as dark coloured blocks on the

Chord ring). Resource brokering services such as a GFA, Condor-G etc. issue a Resource

Lookup Query (RLQ) by subscribing for a publication object that matches a user’s ap-

plication requirement. Grid resource providers update their resource status by publishing

information at periodic intervals through a Resource UpdateQuery (RUQ).

The RLQs and RUQs are mapped as subscribe and publish objects in the system (shown

as light coloured block in Fig. 6.1 on the Chord ring). Dark dots are the Grid peers that are

currently part of Chord based Grid network. The index publication/subscription process

is facilitated by a Grid PeerService, which is a component of the broker service. The

Grid Peer Service is responsible for distributed information publication, subscription and

overlay management processes. More details about the Grid brokering service model that

we consider can be found in Chapter 4.

The rest of this chapter is organised as follows. In Section 6.2, we present details
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on the indexing requirements of Grid-Federation resource sharing model. Section 6.3

presents details about the underlyingd-dimensional publish/subscribe index that we lever-

age for this work. In section 6.4, we summarise the average message and routing hop com-

plexity involved with routing of RLQ/RUQ objects. Section 6.5 presents the simulation

model that we utilise for evaluating the performance of Gridresource discovery system.

In Section 6.6, we present various experiments and discuss our results. Section 6.7 sum-

marises current state of the art in resource discovery system design. We end this chapter

with conclusion in Section 6.8.

6.2 Grid Resource Brokering Service and Queries

In general, a GFA service requires two basic types of queries: (i) an RLQ, a query issued

by a broker service to locate resources matching the user’s application requirements; and

(ii) an RUQ, is an update query sent to a resource discovery service by a Grid site owners

about the underlying resource conditions. Since, a Grid resource is identified by more than

one attribute, an RLQ or RUQ is alwaysd-dimensional. Further, both of these queries

can specify different kinds of constraints on the attributevalues. If a query specifies a

fixed value for each attribute then it is referred to as ad-dimensional Point Query(DPQ).

However, in case the query specifies a range of values for attributes, then it is referred to

as ad-dimensional Window Query(DWQ) or ad-dimensional Range Query(DRQ). In

database literature, a DWQ or an DRQ is also referred to as aspatial range query.

Recall that, compute Grid resources have two types of attributes: (i) static attributes–

such as the type of operating system installed, network bandwidth (both Local Area Net-

work (LAN) and Wide Area Network (WAN) interconnection), processor speed and stor-

age capacity (including physical and secondary memory); and (ii) dynamic attributes–

such as processor utilization, physical memory utilization, free secondary memory size,

current usage price and network bandwidth utilization.

Every GFA in the federation publishes its local resource information with the decen-

tralised resource discovery system. An RUQ or a publish object consists of a resource

descriptionRi, for a clusteri. Ri includes information about the CPU architecture, num-

ber of processors, RAM size, secondary storage size, operating system type, resource
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usage cost etc. In this work,Ri = (pi, xi, µi, øi, ρi, ci) which includes the number of

processors,pi, processor architecture,xi, their speed,µi, their utilization,ρi, installed op-

erating system type,øi, and a costci for using that resource, configured by the site owner.

A site owner chargesci per unit time or per unit of million instructions (MI) executed,

e.g. per 1000 MI. A GFA publishes theRi into distributed resource discovery system by

encapsulating it into an RUQ object,Ui.

A job in the Grid-Federation system is written asJi,j,k, to represent thei-th job from

thej-th user of thek-th resource. A job specification consists of the number of processors

required,pi,j,k, processor architecture,xi,j,k, the job length,li,j,k (in terms of instructions),

the budget,bi,j,k, the deadline or maximum delay,di,j,k, and operating system required,

øi,jk. A GFA aggregates these job characteristics includingpi,j,k, xi,j,k, øi,j,k with a con-

straint on maximum speed, cost and resource utilization into an RLQ object,ri,j,k and

sends it as a subscription object to the resource discovery system. More details about the

job model can be found in Chapter 4.

6.2.1 An Example RUQ and RLQ

Every GFA periodically sends an RUQ to the distributed resource discovery system. The

publish, or resource update object includes a resource description setRi:

Publish: Total-Processors= 100 && Processor-Arch=“pentium“ && Processor-Speed=

2 GHz && Operating-System = Linux && Utilization= 80 && Access-Cost=1 Dol-

lar/min.

Note that, the above RUQ is a DPQ. However, an RUQ can also be compiled as a DRQ

depending on a Grid site configuration. As jobs arrive the GFAs (on behalf of the Grid-

Federation users) issue an RLQ to the distributed resource discovery system to acquire

information about active resource providers in the system.An RLQ has the following

semantics:

Subscribe: Total-Processors≥ 70 && Processor-Arch=“pentium“ && 2 GHz≤
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Processor-Speed≤ 5GHz && Operating-System = Solaris && 0.0≤ Utilization ≤ 90

&& 0 Dollar/min ≤ Access-Cost≤ 5 Dollar/min .

6.2.2 Handling Dynamic Resource Information

The proposed resource discovery service handles dynamic information such as the num-

ber of available processors, memory utilisation etc. It allows GFA to tag these dynamic

resource information in the RUQ objects. Next, the RUQ messages containing the objects

are periodically sent in the decentralised DHT space. In this way, the dynamism of the

resources are truly reflected to the decentralised look-up space. This methodology enables

the dynamic and scalable resource discovery and selection in a distributed Grid resource

sharing environment.

6.3 P2P-Based Spatial Publish/Subscribe Index

In this section, we describe the features of the P2P-based publish/subscribe index that we

utilise for our Grid resource discovery system.

There are many different kinds of spatial indices such as Space Filling Curves (SFCs)
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(including Hilbert curves [150], Z-cruves [80]), k-d tree [80], MX-CIF Quad-tree [167],

and R*-tree [114] that could be utilised for organising a P2P publish/subscribe based Grid

resource discovery system. SFC based indices including Hilbert curves and Z-curves have

issues with routing load-balance in case of skewed index distribution. However, as authors

point out SFC index load can be balanced through external techniques. In case of Hilbert

curves dynamic techniques such as node virtualisation, load-partitioning with neighbor

peers etc are utilised for this purpose. The authors in the work utilising Z-curves have

also proposed an external load-balancing technique. In thesame work they introduce a

P2P version of a k-d tree. This approach also has routing load-balance issues that need to

be addressed.

In other recent work, a MX-CIF Quad tree based spatial index has been proposed. The

authors argue that their approach does not require explicitload-balancing algorithms in

contrast to others. The P2P based R*-tree index in [114] uses CAN as the routing space.

The index space is partitioned among super peers and passivepeers. The bulk of query

load is handled by the super peers in the network similar to the Gnutella [41] system.

To summarise, there are different trade offs involved with each of the spatial indices, but

basically they can all support scalability and Grid resource indexing functionality.

In this work, we utilise the spatial publish/subscribe index proposed in the work [108].

The publish/subscribe index uses a logicald-dimensional domain space for mapping sub-

scription and publication objects. The MX-CIF Quad-tree spatial hashing technique [147]

is used to hash the logicald-dimensional index onto a DHT network.

The index that organises the publish/subscribe events/objects is similar to the one pro-

posed in the work [167], with the only difference being recursive subdivision of space

does not follow the regular MX-CIF Quad-tree approach beyondthefmin level. Instead

it is based on the relevant publish/subscribe load on the index cells. Further, no external

load-balancing technique is required to balance the index routing load among the Grid

peers. The message routing process uses a key-based routing(KBR) protocol, such as

Chord, that supports the delegation ofd-dimensional service messages. We have chosen

this publish/subscribe index for simplicity, and our approach would work with other spa-

tial indices but the analysis for message complexity, routing hops, index latency and finer

points of load-balancing would be different.
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The publish/subscribe index utilises a content-based approach. It builds ad-dimensional

Cartesian space based on the Grid resource attributes, whereeach attribute represents a

single dimension. The logicald-dimensional index assigns regions of space to the Grid

peers in the resource discovery system. If a Grid peer is assigned a region (cell) in thed-

dimensional space, then it is responsible for handling all the activities related to the RLQs

and RUQs associated with the region. More details on this spatial hashing technique can

be found in the article [166].

Each cell is uniquely identified by its centroid, termed as the control point. Fig. 6.2

depicts some control points and some example hashings usingthe Chord method. Thed-

dimensional coordinate values of a cell’s control point is used as the key and hashed onto

the Chord. Dark dots are the Grid peers that are currently partof the network. Light dots

are the control points hashed on the Chord. For this figure,fmin = 1, dim=2. RLQ/RUQ

objects are inserted into the distributed structure by mapping them to index cells and

hashing the control points of these cells on to the Chord. In this example, the control

point C is hashed to the Grid peert and the RLQ objectX is stored with that control

point. The Cartesian space has a tree structure due to two types of division process,

explained as follows:

6.3.1 Minimum Division (fmin)

This process divides the Cartesian space into multiple indexcells when thed-dimensional

publish/subscribe index is first created. The cells resulted from this process remain con-

stant throughout the life of the publish/subscribe domain and serve as entry points for

subsequent RLQ (subscribe) and RUQ (publish) processes. Thenumber of cells produced

at the minimum division level is always equal to(fmin)dim, wheredim is dimensionality

of the Cartesian space. Every Grid peer in the network has basic information about the

Cartesian space coordinate values, dimensions and minimum division level.

6.3.2 Load Division

This process is performed by the cells (atfmin) when their storage capacities are under-

mined by heavy RLQ workload. An overloaded cell subdivides itself to produce multiple



140 Chapter 6. Decentralised Resource Discovery Service for Federated Grids

child cells, which collectively undertake the workload. This is a dynamic process that is

repeated by the child cells, if they also become overloaded.This growing process intro-

duces the parent-child relationship, where a cell at levelm is always a child of a particular

cell at levelm-1. To minimise the amount of information that needs to be knownby the

cells for correct routing, the parent-child relationship is limited at one level. It means

that every cell only has a direct relationship with its childcells. Note that, the maxi-

mum depth (fmax) of the distributed index tree is curbed by constraining theload division

process after a certain number of executions. Although sucha constraint provides con-

trollable performance benefits, it may lead to query load-imbalance in some cases.

6.3.3 Query Mapping.

This action involves the identification of the cells in the Cartesian space to map an RLQ

or RUQ. For mapping RLQs, the search strategy depends whetherit is a DPQ or DRQ.

For a DPQ type RLQ, the mapping is straight forward since everypoint is mapped to only

one cell in the Cartesian space. For a DRQ type RLQ, mapping is notalways singular

because a range look-up can cross more than one cell. To avoidmapping a range RLQ

to all the cells that it crosses (which can create many unnecessary duplicates) a mapping

strategy based on diagonal hyperplane of the Cartesian spaceis utilised. This mapping

involves feeding an RLQ candidate index cells as inputs into amapping function,Fmap.

This function returns the IDs of index cells to which given RLQshould be mapped (refer

to Fig. 6.3). Spatial hashing is performed on these IDs (which returns keys for Chord

space) to identify the current Grid peers responsible for managing the given keys. A Grid

peer service uses the index cell(s) currently assigned to itand a set of known base index

cells obtained at the initialisation as the candidate indexcells.

Similarly, the RUQ/publish process also involves the identification of the cell in the

Cartesian space using the same algorithm. An RUQ is always associated with an event

region and all cells that fall fully or partially within the event region will be selected to

receive the corresponding RUQ. The calculation of an event region is also based upon the

diagonal hyperplane of the Cartesian space.
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begin1

index cell(s) =Fmap(candidate index cells)2

if (index cell is not null)then3

ID = spatialhash(index cell)4

Lookup Grid peer through Chord routing network based on ID,5

to either store the subscription or match the publication tostored subscriptions.6

end7

end8

Figure 6.3:Subscribing or publishing.

6.3.4 Query Routing.

Using the query mapping policies, the resource discovery service searches for a cell (from

minimum division) in the Cartesian space that overlaps with area sought by an RLQ.

When this cell is found, the service starts the RLQ mapping process by contacting the

peer (in the network) that owns the cell. When the cell receives an RLQ, two cases are

considered:

• In the first case, the cell has undergone a load division process and it routes the RLQ

to the child cell that is responsible for the region in which the RLQ is mapped.

• In the second case, the cell has not undergone any load division process. Hence,

there will be no further routing and the cell keeps the RLQ for future event notifi-

cation.

6.4 Message Complexity and Routing Hop Analysis

In this section, the complexity analysis for message and routing hop is presented. We

denote the number of messages generated in mapping a DRQ by a random variableM .

The distribution ofM is the function of the problem parameters including query size,

dimensionality of search space, query rate, division threshold and data distribution. As

the dimensionality increases, the order of the tree increases and each tree node has more

children. If the height of the tree is kept constant, then increasing the Cartesian space

dimensions does not increase the maximum hop length. However, constraining the max-

imum height of the tree, may lead to load imbalance at some Grid peers. Note that, the

derivation presented in this chapter assumes that the Chord method is used for delegation
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of service messages in the network.

Essentially, a control point at thefmin level of the logicald-dimensional Cartesian

space can be reached inO(log n) routing hops with high probability (using the Chord

method). Since each Grid peer atfmin level of the index tree controls its division with

the child cells, therefore every control point owner can maintain a cache of IP address

for its child cells. The child cells are created as a result ofdynamic load division process.

Hence, the number of routing hops required to delegate an index message beyond thefmin

reduces toO(1). However, under high churn conditions when the Grid peer membership

changes, the Chord stabilisation process and transfer of index keys delays the caching

of IPs. During such periods the cache miss can occur and in this case the routing may

have to be done using the standard Chord method. Since, we consider Grid sites to be

well provisioned and well connected to the Internet. Therefore, we do not expect a highly

dynamic behaviour (high join, leave, and failure rate) in contrast to the traditional P2P file

sharing systems.

Based on above discussion, in order to compute the worst case message lookup and

routing complexity one additional random variableT is considered.T denotes the number

of disjoint query path undertaken in mapping an RLQ or RUQ. In the worst case, every

disjoint query ends up at the maximum allowed depth of the tree i.e. fmax. Hence every

disjoint path would undertakeΘ(log n+fmax−fmin) routing hops with high probability.

Hence, the expected value ofM is given by:

E[M ] = Θ(E[T ]× (log n + fmax − fmin))

6.5 Simulation Model

In this section, we present simulation model for evaluatingthe performance of our re-

source discovery system. The proposed model is applicable to large networks of the scale

of the Internet. The simulation model considers the messagequeuing and processing de-

lays at the intermediate peers in the network. In a centralised system, the index look-up

latency is essentially zero, assuming the computation delay due to processing of local in-

dices is negligible. For the P2P system, assuming negligible computation delay for index
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processing logic at intermediate peers, the time to complete an RLQ or RUQ is time for

the query to reach all the cells (including both parent and child cells) that intersect with

the query region.
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Figure 6.4: Network message queueing model at a Grid peeri.

In our message queueing model, a Grid peer node (through its Chord routing service)

is connected to an outgoing message queue and an incoming link from the Internet (as

shown in Fig. 6.4). The network messages delivered through the incoming link (effec-

tively coming from other Grid peers in the overlay) are processed as soon as they arrive.

Further, the Chord routing service receives messages from the local publish/subscribe in-

dex service. Similarly, these messages are processed as soon as they arrive at the Chord

routing service. After processing, Chord routing service queues the message in the lo-

cal outgoing queue. Basically, this queue models the networklatencies that a message

encounters as it is transferred from one Chord routing service to another on the overlay.

Once a message leaves an outgoing queue it is directly delivered to a Chord routing ser-

vice through the incoming link. The distributions for the delays (including queueing and

processing) encountered in an outgoing queue are given by the M/M/1/K [7] queue steady

state probabilities.

Our simulation model considers an interconnection networkof n Grid peers whose
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overlay topology can be considered as a graph in which each peer maintains connection

to aO(log n) other Grid peers (i.e. the Chord overlay graph). As shown in Fig. 6.4, every

Grid peer is connected to a broker service that initiates lookup and update queries on

behalf of the users and site owner. We denote the rates for RLQ and RUQ byλin
l andλin

u

respectively. The queries are directly sent to the local index service which first processes

them and then forwards them to the local Chord routing service. Although, we consider

a message queue for the index service but we do not take into account the queuing and

processing delays as it is in microseconds. Index service also receives messages from

the Chord routing service at a rateλin
index. The index messages include the RLQs and

RUQs that map to the control area currently owned by the Grid peer, and the notification

messages arriving from the the network.

6.6 Performance Evaluation

In this section, we perform simulations to capture the interplay among various Grid re-

source query and P2P network parameters and their contribution to the overall perfor-

mance of Grid resource discovery system.

6.6.1 Experiment Setup

We start by describing the test environment setup.

Broker Network Simulation:

Our simulation infrastructure is modeled by combining two discrete event simulators

namelyGridSim[32], andPlanetSim[82]. GridSim offers a concrete base framework for

simulation of different kinds of heterogeneous resources,services and application types.

The core of GridSim is based on theSimJava[94], a discrete event simulation package.

PlanetSim is an event-based overlay network simulator. It can simulate both unstruc-

tured and structured overlays. However, in this work we utilise the services of the Chord

implementation of the PlanetSim. To enable event time synchronisation between Planet-

Sim and GridSim, we modified the basic PlanetSim classes includingNode, Network and
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EndPointto extend the coreGridSimclass. We model the resource brokering service (i.e.

a GFA inside the GridSim) that initiates RLQs and RUQs on behalf of users and resource

providers. Every GFA connects to a local publish/subscribeindex service which runs on

a Chord node in the PlanetSim. Every instance of the index service in the network is

responsible for managing and indexing a region in the logical d-dimensional space. Our

simulation considers message queueing delay, processing delay, and packet loss at the

intermediate overlay Chord nodes.

Simulation Configuration

This section explains the distributions for simulation parameters.

Network configuration: The experiments were conducted using a32 bit Chord over-

lay i.e. 32 bit node and key ids. The network size,n, was fixed at128 broker nodes/Grid

sites for experiment 1. In experiment 2, the system size is scaled from100 to 500 in steps

of 100. The network queue message processing rate,µn, at a Grid peer was fixed at 500

messages per second. We vary the value for network message queue size,K, as102, 103,

and104 in experiment 1. While in experiment 2, we fixedK to 104. In experiment 2

we basically simulate a large message queue size such that nomessage is dropped by the

resource discovery system.

Query rate configuration: We vary the RLQ rate,λin
l , and RUQ rate,λin

u , from 1

to 100 queries per simulation second. At every step the RLQ rate is always equal to the

RUQ rate. In experiment 2, the RLQ and RUQ rate are fixed at1 query per second for

different system sizes.

Publish/subscribe index configuration:The minimum division,fmin of the logical

d-dimensional publish/subscribe index was set to3, while the maximum height of the

index tree,fmax, was also limited to3. This means we basically do not allow the parti-

tioning of index space beyond thefmax level. In this case, a cell at a minimum division

level does not undergo any further division. Hence, no RLQ/RUQ object is stored beyond

thefmax level. The index space resembles a Grid-like structure where each index cell is
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randomly hashed to a Grid peer based on its control point value. The publish/subscribe

Cartesian space had6 dimensions including number of processors,pi, resource access

cost,ci, processor speed,mi, processor utilisation,ρi, processor architecture,xi, and op-

erating system type,φi. Hence, this configuration resulted to729 (36) Grid index cells

at thefmin level. On an average,7 index cells are hashed to a Grid peer in a network

comprising of128 Grid sites.

Indexed data distribution: We generated an uniform resource type distribution us-

ing the resource configuration obtained from the Top500 Supercomputer list1. The list

included 22 distinct processor types, so in our simulated Grid resource index space, the

probability of occurrence of a particular processor type is1/22. We utilised the resource

attributes including processor architecture, its number,its speed, and installed operating

system from the Supercomputer list. The values forci andρi were fabricated. The values

for ci andρi were uniformly distributed over the interval[0, 10] and [5, 80] respectively.

Every RLQ was constrained such that it always subscribed for the operating system type,

processor architecture, maximum number of processors required which was also available

on the local site. An RLQ is thrashed from the system, once it matches with an RUQ. Fol-

lowing this, a match event notification is sent to the concerned broker service. A load of

200 RLQ and 200 RUQ objects is injected into the resource discovery system by a broker

service over the simulation period during experiment 1. While in case of experiment 2 we

configured a broker service to inject only 50 RLQ and 50 RUQ objects.

6.6.2 Effect of Query Rate

The first set of experiments measured the RLQ/RUQ query performance with an increas-

ing incoming query rate across the Grid peers in the broker network. We started from a

RLQ/RUQ rate of1 query per second and increased it till100 queries per second. We con-

figured the other input parameters as followingn=128,fmin=3, fmax = 3, µn=500, and

dim=6. All the broker nodes join the system at the same time, stabilise their finger tables

and initialize their logical index space. Over the simulation period, we do not consider a

Grid peer join or leave activity. We identified six metrics tomeasure the RLQ/RUQ query

1Top 500 Supercomputer List, http://www.top500.org/
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(a) query rate (RLQ + RUQ) (per sec) vs. lookup
latency (secs)
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(b) query rate (RLQ + RUQ) (per sec) vs% of suc-
cessful RLQs

Figure 6.5: Simulation: Effect of query rate.

performance including latency,% of successful RLQs, response time, routing hops, total

number of messages generated for mapping RLQs/RUQs, and the total number of mes-

sages in the system over the simulation period. Measurements for parameters including

latency, response time, routing hops is averaged over all the broker services in the system.

While the measurements for the remaining parameters are computed by summing up their

values across the broker services.

Fig. 6.5 and Fig. 6.6 show the plots for these parameters withan increasing query

rate across the system. Fig. 6.5(a) shows results for the average RLQs/RUQs latency,

Fig. 6.5(b) shows results for the% of successful RLQs and Fig. 6.6(a) shows the aver-

age response time for the RLQs across the system. These measurements were conducted

for different values of network message buffer capacity i.e. K. Results show that for

lower values ofK (i.e. 102, 103) network drops significant number of messages (re-

fer to Fig. 6.6(b)). Fig. 6.6(b) shows total number of messages generated in the system

over the simulation period for different query rates and message queue sizes. Hence, for

these message queue sizes successful RLQs/RUQs encounter comparatively lower traffic

hence leading to almost same latency (refer to Fig. 6.5(a)) and response time (refer to

Fig. 6.6(a)). But the downside of this is that at higher rates significantly larger number

RLQs are dropped by the system (refer to Fig. 6.5(b)). However, this is not true for the

case when the network has higher buffering capability (i.e.K = 104), in this case the
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messages encounter significantly more traffic thus worsening the queuing and processing

delays. Second, with a larger message queue size system experiences much higher query

success rates (refer to Fig. 6.5(b)).
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(a) query rate (RLQ + RUQ) (per sec) vs response
time (secs)
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(b) query rate (RLQ + RUQ) (per sec) vs message
count

Figure 6.6: Simulation: Effect of query rate.

Our results state that the average number of routing hops forRLQs and RUQs remain

constant irrespective of the query rate in the system (referto Fig. 6.7(a)). The main reason

for this is, having the same value for both the index tree depth parameters i.e.fmin=fmax.

Thus, we do not allow the partition of index cell or load distribution between Grid peers

beyondfmin. With different query rates the height of the distributed index tree remained

constant, hence leading to a similar number of routing hops.Fig. 6.7(b) shows the results

for the total number of messages generated in the system for all RLQs/RUQs. As expected

the number of messages generated for the RLQs/RUQs remained constant, since the data

distribution was same for all query rates.

Thus, it is evident that at higher query rates, the messages experience greater queuing

and processing delays. This can be directly observed in the RLQ/RUQ latencies which

have significantly larger values at moderately higher queryrates.

6.6.3 Effect of System Size

In our second experiment, we examine the resource discoverysystem’s scalability in terms

of the number of participating Grid sites. We used the same resource distribution as
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(a) query rate (RLQ + RUQ) (per sec) vs. routing
hops
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(b) query rate (RLQ + RUQ) (per sec) vs. message
count

Figure 6.7: Simulation: Effect of query rate.

before, but scaled it such that the probability of occurrences of particular resource types

remained constant. We started from a system size of100 and increased it till500. We fixed

the RLQ/RUQ rate to1 query per second, across the Grid peers in the broker network. We

configured the other input parameters as followingfmin=3,fmax = 3, µn=500,K=104 and

dim=6. All the Grid peers join the system at the same time, stabilise their finger tables

and initialize their logical index space. Over the simulation period, we do not consider a

Grid peer join or leave activity.
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(a) system size vs. lookup latency (secs)
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(b) system size vs. routing hops

Figure 6.8: Simulation: Effect of system size.

Fig. 6.8(a) shows the growth of the RLQ/RUQ latency as a function of increasing Grid
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network size. As expected, the query latencies do not increase significantly, because the

growth rate of latency is a logarithmic function of the Grid network sizen. That is on av-

erage an RLQ or RUQ encountersO(log n) Grid peers before being finally mapped. Sim-

ilarly, in Fig. 6.8(b) we observed that the number of routinghops undertaken RLQ/RUQ

increased marginally with the system size. At the system size of 100, the RLQs/RUQs

undertook4.12 routing hops on an average. For a system size of500, the average query

path increased to5.39 hops i.e. increased by about30%.

Fig. 6.9(a) shows the results for the number of messages generated for RLQs/RUQs

and Fig. 6.9(b) shows the results for the total number of messages generated as the sys-

tem scaled from100 to 500 sites. As expected the number of messages generated for

RLQs/RUQs increased with system size. A system compromisingof 100 Grid sites pro-

duced109007 RUQ messages, which increased to336579.4 messages when the system

scaled to500 Grid sites (refer to Fig.6.9(a) ). We observed a similar growth for RLQ mes-

sages as well with an increase in the system size. The total messages generated (including

RLQ and RUQ) increased significantly as the system scaled from100 to 500 sites (refer

to Fig. 6.9(b)). Further, in this case we observed575% increase in the total number of

messages generated in the system. The main reason for this being, as the broker network

size increases the total number of messages generated in thesystem grows asΘ(n log n).

In other words, the number of messages generated is the function of number of brokers,

number of RLQ/RUQs sent and number of routing hops undertakento map the queries.

Hence, in this case we expect linear or close to linear growthin the total message count.

6.7 Related Work

The approach [97] involved a drawback of generating a large volume of network mes-

sages due to flooding. This system can not guarantee to find thedesired resource even

though it exists in the network due the Time to Live (TTL) fieldassociated with query

messages. SWORD [128] system creates a separate search segment for each attribute

and hence the query routing needs to be augmented with external techniques for resolv-

ing d-dimensional queries. In contrast, our resource discoverysystem utilises a spatial

publish/subscribe index that hashes ad-dimensional index space to a1-dimensional key
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(b) system size vs. message count

Figure 6.9: Simulation: Effect of system size.

space of Chord overlay. The publish/subscribe index does notrequire any additional query

resolution and load-balancing heuristic. JXTA Search [173] does not apply any index for

organising the distributed data. A cross-domain search operation in JXTA involves a query

broadcast to all the advertisement groups using the query group membership information.

The OurGrid system utilises JXTA for organising its brokering service. In contrast, our

resource discovery is based on a deterministic routing substrate Chord. Our system does

not require a broadcast primitive for data discovery in a Grid network, hence is more effi-

cient in terms of number of messages generated in the system.Squid [150] system applies

Hilbert space filling curves for mapping ad-dimensional index space to a1-dimensional

key space. Squid maps these contiguousd-dimensional indices to the overlay key space.

The approach has issues with index load balance which is fixedusing external technique.

In contrast, our proposed resource discovery system utilises a spatial publish/subscribe

index that does not need any external load-balancing.

6.8 Conclusion

In this chapter, we presented a decentralised Grid resourcediscovery system. It utilises

a P2P spatial publish/subscribe index for organisingd-dimensional Grid resource data.

We analysed experimentally how the query arrival rate and Grid system size affects the

system performance. We reached to the following conclusions in this chapter: (i) the
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resource query rate i.e. RLQ and RUQ rate directly affects theperformance of the decen-

tralised resource discovery system. At higher rates, Grid resource queries can experience

considerable latencies; and (ii) contrary to what one may expect, the Grid system size

does not have a significant impact on the performance of the resource discovery system,

in particular the query latency and the number of message routing hops. Encouraged,

by the results obtained in this chapter, in the next chapter we propose a P2P tuple space

model that builds on the resource discovery system. The resulting tuple space is utilised

for enhanced coordination among GFAs and system-wide load-balancing.



Chapter 7

Peer-to-Peer Tuple Space based

Coordinated Resource Provisioning

This chapter proposes a novel approach to facilitate coordination among distributed appli-

cation schedulers in a wide-area resource leasing environment such as grids and Planet-

Lab. The resource types in these environments include computational resources (such as

supercomputer, clusters, desktops) that offer processingpower, storage resources, sensors

and network links. The resources are: (i) highly dynamic in behaviour, where their status

can change in a small time period, (ii) controlled and administered by different domains,

and (iii) topologically separated over the Internet. The fundamental goal of our work is

to develop decentralised coordination among users (in caseof the PlanetLab) and among

resource brokers (in case of the grids) to curb the over-provisioning of resources that leads

to degraded resource performance and user QoS satisfaction.

7.1 Introduction

Several research projects including Bellagio, Tycoon, NASA-Scheduler, OurGrid, Sharp,

Condor-Flock and Grid-Federation (refer to Chapter 4) have proposed federated sharing

of topologically distributed networked computing resources to facilitate a cooperative and

coordinated sharing environment. In a federated resource sharing environment, every par-

ticipant gets access to a larger pool of resources, and resource providers get economic or

153
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bartering benefits depending upon the resource leasing policy. Distributed resource shar-

ing systems including Bellagio and Tycoon have been deployedand tested over PlanetLab

environment, while the Grid-Federation, NASA-Scheduler,Condor-Flock and OurGrid

are targeted towards computational grid environments.

However, the effectiveness of federated resource sharing environments can not be op-

timally achieved without a proper coordination mechanism between the schedulers; re-

source brokers in case of grids and slice initiators in case of PlanetLab. The coordination

mechanisms in NASA-scheduler, OurGrid, and Condor-Flock P2P are based on general

broadcast and limited broadcast communication mechanismsrespectively. Hence, these

approaches have the following limitations: (i) high network overhead; and (ii) scalabil-

ity problems. Resource allocation coordination in Tycoon isbased on a decentralised,

isolated auction mechanism. Every resource owner in the system runs its own auction

on behalf of their local resources. In this case, a schedulermight end-up bidding across

a large number of auctions. On the other hand, resource allocation in Bellagio system

is based on the bid-based proportional resource sharing model. Bids for resources are

periodically cleared by a centralized auction coordinator. Clearly, the coordination mech-

anisms followed by Bellagio and Tycoon are neither efficient nor scalable. The Sharp

architecture coordinates resource allocation among various competing schedulers through

pair-wise peering arrangement. For example, siteA may grant to siteB a claim on its

local resources in exchange for a claim that enables access to B resources. This pair-wise

approach may work well for a small system size, but can prove to be serious bottleneck

as the system scales out.

One of the possible ways to solve this problem is to host a coordinator service on a

centralised machine [83, 120, 169]. Every application scheduler is required to submit his

demands to the coordinator (similar to the Bellagio system).Similarly, resource providers

update their resource usage status periodically with the coordinator. The centralised re-

source allocation coordinator performs system wide load-distribution primarily driven by

resource demand and availability. However, this approach has several design limitations

including: (i) single point of failure; (ii) lacks scalability; (iii) high network communica-

tion cost at links leading to the coordinator (i.e. network bottleneck, congestion); and (iv)

computational power required to serve a large number of participants.
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Another possible way to tackle this problem is to distributethe role of the centralised

coordinator among a set of machines based on a P2P network model. New generation

P2P routing substrates such as DHTs [143, 161] can be utilised for efficiently managing

such decentralised coordination network. DHTs have been proven to be self-organising,

fault-tolerant and scalable.

We advocate organising Grid schedulers (and users in case ofPlanetLab) and Grid

resources based on a DHT overlay. Application schedulers post their resource demands

by injecting aResource Claimobject into the decentralised coordination space, while re-

source providers update the resource supply by injecting aResource Ticketobject (similar

terminologies have been used by the Sharp system). These objects are mapped to the

DHT-based coordination services using a spatial hashing technique. The details on spatial

hashing technique and object composition are discussed in Section 7.3. A decentralised

coordination space is managed by a software service (a component of the Grid peer ser-

vice) known as a coordination service. It undertakes activities related to decentralised

load-distribution, coordination space management etc.

A coordination service on a DHT overlay is made responsible for matching the pub-

lished resource tickets to subscribed resource claims suchthat the resource ticket issuers

are not overloaded. Resource tickets and resource claims aremapped to the coordina-

tion space based on distributed spatial hashing technique.Every coordination service

in the system owns a part of the coordination space governed by the overlay’s hashing

function (such as SHA-1). In this way, the responsibility ofload-distribution and coordi-

nation is delegated to a set machines instead of delegating it to one. The actual number of

machines and their respective coordination load is governed by the spatial index’s load-

balancing capability. Note that, both resource claim and resource ticket objects have their

extent ind-dimensional space.

1-dimensional hashing provided by current implementation of DHTs are insufficient to

manage complex objects such as resource tickets and claims.DHTs generally hash a given

unique value/identifier (e.g. a file name) to a peer key space and hence they cannot support

mapping and lookups for complex objects. Management of those objects whose extents

lie in d-dimensional space warrants embedding a logical index structure in place of the

1-dimensional DHT key space. Spatial indices such as Space Filling Curves (SFC) [150],
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k-d Tree [80], R-Tree [114], and MX-CIF Quadtree [166] can be utilised for managing

such complex objects over a DHT key space.

In this work, we utilise the P2P publish/subscribe based Grid resource discovery sys-

tem, described in Chapter 6, for managing and indexing the resource claim and resource

ticket objects. The decentralised resource discovery system utilises ad-dimensional spa-

tial index to maintain complex Grid resource look-up (resource claim) and update queries (re-

source ticket). More details on the spatial index can found in Chapter 6, and details on how

we utilise it for distributed load-distribution and coordination among application sched-

ulers can be found in Section 7.3.2.

The rest of chapter is organised as follows: in Section 7.2, we present the background

information on shared-spaces based coordinated communication. Section 7.3 discusses

the P2P tuple space model that we propose in this chapter. In Section 7.4 and 7.5, we

present the finer details on the application scheduling and resource provisioning algo-

rithms. Section 7.7, we present various experiments and discuss our results. We end this

chapter with concluding remarks in Section 7.8.

7.2 Background and State-of-the-Art

7.2.1 Shared-space Based Coordinated Communication

The idea of implementing globally accessible “data-space”or “coordination-space” for

communication between distributed services goes back to the blackboard systemspro-

posed by the Artificial Intelligence research community in early 1970s. The blackboard

system was utilised as a global slate by experts to collaborate on solving the difficult

problems. Experts would search the blackboard for problemsof their expertise and post

the solutions. The idea of global slate was implemented in the systems including JavaS-

paces [121], TSpaces [120] and XMLSpaces [169]. These implementations were based on

the centralised CS-model which has limited scalability. Initially, the slates were utilised

for coordinating parallel application execution between acluster of computers. Tradition-

ally, these blackboard systems supportedRead() andWrite() primitive for information

coordination between services.
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The shared-space based coordination approach or model was proposed by the Linda [83]

system, which defined a centralised tuple space that provided abstraction of a shared mes-

sage store for supporting generative communication. Lindadefines a tuple as an ordered

sequence of typed fields and a tuple space as a shared repository that includes a set of

tuples which can be accessed by several distributed processes synchronously. The Linda

system also defines separate tuple access primitives for reading, writing and destroying.

Tuples are written to the shared space through execution ofout(t) primitive, read using

the non-destructive primitiverd(t), and extracted using the destructive primitivein(t).

7.2.2 State-of-the-Art

In recent times, there have been proposals for organising a coordination space based

on a decentralised network model, the representative systems being Lime [126], Peer-

Ware [53], PeerSpace [28] and Comet [111]. Systems includingLime and PeerWare

support a global coordination space using a distributed index called Global Virtual Data

Structure (GVDS). The focus of Lime system is to provide coordination among partici-

pants in mobile environments. The global data space is builtby combining the local data

spaces of participating peers. The changes made in the localdata space are reflected in

the global data space. The data structure managed by PeerWare is organised as a graph

composed of nodes and documents which are collectively referred to as items. Every peer

in the system maintains a local graph structure, which are superimposed on each other to

form the GVDS. The management of such a global data structurein a highly dynamic and

large distributed system is not scalable.

The most related state of the art to this research is Comet System, that utilises DHTs

as the basis for organising the GVDS. The advantage of utilising the DHT is that updates,

inserts and deletes on the local tuples (keys) are not required to be communicated to the

global tuple space. The changes to the tuple space due to these operations (insert, delete,

and update) are handled by the logical mapping structure that forms the basis for tuple

space management. A Hilbert SFC index, proposed in Squid [150], is utilised as the

mapping structure from the logical tuple space to the Chord identifier space. In contrast,

our mapping structure is based on the spatial publish/subscribe index whose details can
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be found in Chapter 6.

7.3 Peer-to-Peer Tuple Space Model

In this section we first describe the communication, coordination and indexing models

which are utilised to facilitate the P2P tuple space. Then welook at the composition of

tuples, access primitives that form the basis for coordinating the application schedules

among the decentralised and distributed resource brokers.

E.g. Coordination Service

 Tuples/Objects are  inserted/deleted/
queried.

Core  Services  Layer

Coordination Service

Resource Discovery  Service

E.g.  Indexing Logic 
(such as publish/subscribe index)

Logical index space initialisation and 
 management.

Application   Layer
E.g. Brokering  Service, Auction Service
Workflow Engine, MPI-G

RLQs and RUQs are inserted/deleted/
queried.

Connectivity  Layer

E.g. Key-based Routing 

Message routing between peers and 
repl ica management.

Figure 7.1: A schematic overview of the Coordination servicearchitecture.
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7.3.1 Layered Design of the Coordination Space

Fig. 7.1 shows the layered design of the proposed P2P tuple space based coordination

service. The OPeN architecture proposed in prior work [166]is utilised as the base model

in architecting and implementing the proposed service. TheOPeN architecture consists

of three layers: theApplication layer,Core Serviceslayer andConnectivitylayer. Grid

Services such as resource brokers work at Application layerand insert objects including

Resource Lookup Query (RLQ) and Resource Update Query (RUQ) to the Core services

layer.

We have implemented the Coordination service as a sub-layer of the Core services

layer. The Coordination service accepts the application objects such as RLQs/ RUQs.

These objects are then wrapped with some additional logic toform a coordination tuple

or object. The coordination logic, in this case the resourceprovisioning logic, are exe-

cuted by the Coordination service on these tuples or objects.However, the calls between

the Coordination service and Resource discovery service are done through the standard

publish/subscribe mechanism. The Resource discovery service is responsible for manag-

ing the logical index space and communicating with the Connectivity layer. The details

on the workings of the Resource discovery service can be foundin Chapter 6. Note that,

the proposed tuple space does not strictly follow the standard Linda primitive, instead

it exposes the APIs such aspublish(ticket), subscribe(claim) andunsubscribe(claim)

that suites the requirements of the Application layer brokering service.

The Connectivity layer is responsible for undertaking key-Based routing in the DHT

space such as Chord, CAN, Pastry etc. The actual implementation protocol at this layer

does not directly affect the operations of the Core services layer. In principle, any DHT

implementation at this layer could perform the desired task. However, in this chapter

the simulation models the Chord substrate at the Connectivitylayer. Chord hashes the

peers and objects (such as fileIds, logical indices etc) to the circular identifier space and

guarantees that an object in the network can be located inO(log n) steps with high

probability. Each peer in the Chord network is required to maintain the routing state of

only O(log n) other peers, wheren is the total network size.
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7.3.2 Coordination Tuples/Objects

This section gives details about the resource claim and ticket objects that form the basis

for enabling decentralised coordination mechanism among the brokers/GFAs in a Grid

system. These coordination objects include:- Resource Claimand Resource Ticket. We

start with the description of the components that form the part of a Grid-Federation re-

source ticket object.

Resource Ticket

Distributed  2-dimensional 
             Tree Index

Index node i

Site s

Resource ticket Coordinator 
        for index node i

GFA

GFA

GFA

GFA

Site u

Site p
Site l

  Resource Claim p

  Resource Ticket u

Chord Overlay

  Resource Claim l

Spatial Hash (index node i)

Figure 7.2: Resource allocation and application schedulingcoordination across Grid sites.

Every GFA in the federation publishes its resource ticket with the local Coordination
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service. A resource ticket objectUi consists of a resource descriptionRi, for a clusteri.

A Ri can include information about the CPU architecture, number of processors, RAM

size, secondary storage size, operating system type, resource usage cost etc. In this work

Ri = (pi, xi, µi, øi, ρi, ci), which includes the number of processors,pi, processor archi-

tecture,xi, their speed,µi, their utilization,ρi, installed operating system type,øi, and a

costci for using that resource. A site owner chargesci per unit time or per unit of million

instructions (MI) executed, e.g. per 1000 MI. The ticket publication process can be based

on time intervals or resource load triggers. Recall from Chapter 6 that a resource ticket

object has similar semantics to the RUQ object.

Resource Ticket: Total-Processors= 100 && Processor-Arch= Pentium &&

Processor-Speed= 2 GHz && Operating-System = Linux && Utilization=0.80 && Acess-

Cost=1 Dollar/min.

Resource Claim

A resource claim object encapsulates the resource configuration needs of a user’s job.

In this work, we focus on the job types whose needs are confinedto computational grid or

PlanetLab resources. Users submit their application’s resource requirements to the local

GFA. The GFA service is responsible for searching the resources in the federated sys-

tem. An user job in the Grid-Federation system is written asJi,j,k, to represent thei-th

job from thej-th user of thek-th resource. A job consists of the number of processors

required,pi,j,k, processor architecture,xi,j,k, the job length,li,j,k (in terms of instructions),

the budget,bi,j,k, the deadline or maximum delay,di,j,k and operating system required,

øi,jk. A GFA aggregates these application characteristics includingpi,j,k, xi,j,k, øi,j,k with

constraint on maximum speed, cost and resource utilizationinto a resource claim object,

ri,j,k. Recall from Chapter 6 that a resource claim object has similarsemantics as an RLQ

object and isd-dimensional in composition.

Resource Claim: Total-Processors≥ 70 && Processor-Arch= pentium && 2 GHz≤

Processor-Speed≤ 5GHz && Operating-System = Solaris && 0.0≤ Utilization≤ 0.90
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&& 0 Dollar/min ≤ Access-Cost≤ 5 Dollar/min .

The resource ticket and claim objects are spatially hashed to an index celli in thed-

dimensional coordination space. Similarly, coordinationservices in the Grid network hash

themselves into the space using the overlay hashing function (SHA-1 in case of Chord

and Pastry). The details on index cell mapping to the coordination services is described

in Chapter 6. In Fig. 7.2, resource claim objects issued by site p and l are mapped to

the index celli, and are currently hashed to the sites. In this case, sites is responsible

for coordinating the resource sharing among all the resource claims that are mapped to

the celli. Subsequently, siteu issues a resource ticket (shown as dot in Fig. 7.2) which

falls under the region of space currently required by users at sitep andl. In this case, the

coordinator service of sites has to decide which of the sites (i.e. eitherl or p or both) be

allowed to claim the ticket issued by siteu. This load-distribution decision is based on the

fact that it should not lead to over-provisioning of resources at siteu.

In case a resource ticket matches with one or more resource claims, then a coordinator

service sendsnotificationmessages to the resource claimers such that it does not lead to

the overloading of the concerned resource ticket issuer. Thus, this mechanism prevents

the resource brokers from overloading the same resource. Incase of PlanetLab environ-

ment, it can prevent the users from instantiatingsliverson the same set of nodes. Once

a scheduler receives notification that its resource claim has matched with an advertised

resource ticket, the scheduler undertakes a Service Level Agreement (SLA) (described in

Chapter 5) contract negotiation with the ticket issuer site.In case agreement is reached,

the scheduler can go ahead and deploy its application/experiment. The GFAs have to re-

ply as soon as the SLA enquiry arrives. In other words, we set the SLA timeout interval

as0. We do this in order to study the effectiveness of coordination space with respect to

decentralised load-balancing. As excessive timeout interval can lead to a deadlock situ-

ation in the system, with coordination service sending the notifications while the ticket

issuer is not accepting SLA contracts. In future we intend tostudy how varying the de-

gree of SLA timeouts can affect the system performance in terms of load-balancing and

provider’s economic benefit.
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Point object

publish (t icket)

subscribe (claim)

match ()

Notify ()

Submit (job)

publish (t icket)
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Peer-to-Peer Space

Range object

Broker 1

Broker 3

Broker n

Broker 2

Figure 7.3: Scheduling and resource provisioning coordination through P2P tuple space.

7.4 Distributed Application Scheduling Algorithm

In this section we provide detailed descriptions of the scheduling algorithm that is under-

taken by a GFA in the Grid-Federation system following the arrival of a job:

1. When a job arrives at a GFA, the GFA compiles a resource ticket object for that job.

It then posts this resource ticket object with the P2P tuple space though the Core services

layer. The complete pseudo code for this process is shown in Fig. 7.4. In Fig. 7.3 GFA1

is posting a resource claim on behalf of its local user.

2. When a GFA receives a notification for a resource ticket and resource claim match

from the P2P coordination space, it then undertakes SLA-based negotiation with the ticket
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issuer GFA. After successful notification, the coordination service unsubscribes the re-

source claim for that job from the tuple space. In Fig. 7.3 thematch event occurs and

GFA 1 is notified that it can place the job with GFA3. Following this, GFA1 undertakes

SLA negotiation with GFA3, which is accepted and, finally GFA1 migrates the locally

submitted job to the GFA3.

3. If SLA negotiation is successful then the GFA sends the jobto the remote GFA,

otherwise it again posts the resource claim object for that particular job to the coordination

space.

7.5 Distributed Resource Provisioning Coordination Al-

gorithm

In this section we present the details on the decentralised resource provisioning algorithm

which is undertaken by the coordination services across theP2P tuple space.

1. When a resource claim object arrives at a coordination service for future consider-

ation, the coordination service queues it in the existing claim list as shown in the Fig. 7.5.

2. When a resource ticket object arrives at a coordination service, the coordination

service calls the auxiliary procedure match(Ticket Ui) (as shown in Fig. 7.5) to gather

the list of resource claims that overlaps with the submittedresource ticket object in the

d-dimensional space. This initial resource claim match listis passed to another auxiliary

procedure LoadDist(matchList, ticket).

3. The Loaddist() procedure notifies the resource claimers about the resource ticket

match until the ticket issuer is not over-provisioned. The LoadDist() procedure can utilise

the resource parameters such as number of available processors and the threshold queue

length as the over-provision indicator. These over-provision indicators are encapsulated

with the resource ticket object by the GFAs. The GFAs can postthe resource ticket object
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PROCEDURE: GFASCHEDULING1

begin2

begin3

Sub-Procedure: EventUserJobSubmit (Job Ji,j,k)4

encapsulate the claim objectri,j,k for job Ji,j,k5

call PostResourceClaim (ri,j,k).6

end7

begin8

Sub-Procedure: PostResourceClaim (Claimri,j,k)9

call subscribe (ri,j,k).10

end11

begin12

Sub-Procedure: EventResourceStatusChanged(ResourceRi)13

encapsulate the ticket objectUi for resourceRi14

call publish (Ui).15

end16

begin17

Sub-Procedure: EventCoordinatorReply (GFA gindexi)18

call SLA Bid (Ji,j,k, gindexi).19

end20

begin21

Sub-Procedure: SLABid (Job Ji,j,k, GFA gindexi)22

Send SLA bid for jobJi,j,k to the decentralised coordinator adviced GFAgindexi.23

end24

begin25

Sub-Procedure: EventSLA Bid Reply (Ji,j,k)26

if (SLA Contract Accepted)then27

Send the jobJi,j,k to accepting GFA.28

end29

else30

call SLA Bid Timeout (Ji,j,k).31

end32

end33

begin34

Sub-Procedure: SLABid Timeout(Ji,j,k)35

call PostResourceClaim (ri,j,k) .36

end37

end38

Figure 7.4:SLA-based GFA application scheduling algorithm.
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to the tuple space either periodically or whenever the resource condition changes such as

a job completion event occurring.

7.6 Simulation Model

Here, we present a simulation model for evaluating the performance of the proposed coor-

dinated resource provisioning approach. The simulation model is similar to the one con-

sidered in Chapter 6. However, the only difference is that in Chapter 6 the Core service

layer only included one sub-layer called Index Service, while in this chapter we extend

the Core services layer to include the Coordination services too. The message queuing

model remains exactly the same in which a Grid peer node (through its Chord routing

service) is connected to an outgoing message queue and an incoming link from the In-

ternet (described Chapter 6). The network messages delivered through the incoming link

are processed as soon as they arrive. Further, the Chord routing service receives messages

from the local publish/subscribe Index service. Similarly, these messages are processed

as soon as they arrive at the Chord routing service.

After processing, the Chord routing service queues the message in the local outgoing

queue. Basically, this queue models the network latencies that a message encounters as

it is transferred from one Chord routing service to another onthe overlay. Once a mes-

sage leaves an outgoing queue, it is directly delivered to a Chord routing service through

the incoming link. The distributions for the delays (including queueing and processing)

encountered in an outgoing queue are given by the M/M/1/K queue steady state probabil-

ities. The Coordination service directly connects to the Index service. Effectively, there

is negligible delay in message transfer between Coordination and Index service.

7.7 Performance Evaluation

In this section, we validate the proposed P2P tuple space-based coordinated resource pro-

visioning model through trace-based simulations. The simulated environment models the

Grid-Federation resource sharing environment presented in Chapters 4 and 5 as a case

study.
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PROCEDURE: ResourceProvision1

begin2

list← φ3

begin4

Sub-Procedure: EventResourceClaim Submit (Claim ri,j,k)5

list← list ∪ ri,j,k.6

end7

begin8

Sub-Procedure: Match (TicketUi)9

listm ← φ10

setindex = 011

while ( list[index] 6= null ) do12

if ( Overlap (list[index], Ui) ) then13

listm ← listm ∪ list[index]14

end15

else16

continue17

end18

resetindex = index + 119

end20

returnlistm .21

end22

begin23

Sub-Procedure: Overlap (Claimri,j,k, Ticket Ui)24

if (ri,j,k ∩ Ui 6= null ) then25

return true.26

end27

else28

return false.29

end30

end31

begin32

Sub-Procedure: EventResourceTicket Submit (Ui)33

call LoadDist(Ui, Match(Ui)).34

end35

begin36

Sub-Procedure: LoadDist (Ui, listm)37

setindex = 038

while (Ri is not over-provisioned)do39

send notification match event to resource claimer:listm [index]40

remove(listm [index])41

resetindex = index + 1.42

end43

end44

end45

Figure 7.5:Resource provisioning algorithm for coordination service.
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7.7.1 Experimental Setup

We start by describing the test environment setup.

Broker Network Simulation:

In a similar fashion to Chapter 6, our simulation infrastructure includes two discrete event

simulators; namelyGridSim[32], andPlanetSim[82]. We model the resource brokering

service (i.e. a GFA) inside GridSim, that injects resource claims and resource tickets on

behalf of both, the users and the resource providers respectively. Every GFA connects

to the Core services layer which also has implementations forCoordination service and

publish/subscribe Index service as sub-layers. At the Connectivity layer we utilised the

Chord implementation provided with PlanetSim.

Experiment configuration:

• Network configuration: The experiments ran a Chord overlay with 32 bit configura-

tion (i.e. number of bits utilised to generate node and key ids). The network sizen

was fixed at100 GFA/broker nodes. The network queue message processing rate,

µ, at a Grid peer was fixed at 500 messages per second. The message queue size,

K, was fixed at104.

• Resource claim and resource ticket injection rate: The GFAs inject resource claim

and resource ticket objects based on an exponential inter-arrival time distribution.

The value for resource claim inter-arrival delay (1
λin

l

) is distributed over the inter-

val [5, 60] in step of5 secs. While the inter-arrival delay (1
λin

u
) of resource claim

object was fixed to30 secs. The inter-arrival delay in claim/ticket injection iscon-

sidered same for all GFAs/brokers in the system. The spatialextent of both resource

claims and resource ticket objects lies in a5-dimensional attribute space. The at-

tribute dimension includes the number of processors,pi, resource access cost,ci,

processor speed,mi, processor architecture,xi, and operating system type,φi. The

distributions for these resource dimensions have been obtained from the Top500
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supercomputer list1.

Note that, in our simulation we did not utilize resource utilization,ρi , as the GFA’s

load indicator. Instead, GFAs encode the metric“number of available processors”

at time t with the resource ticket objectUi. Specifically, the information on the

number of available processor is updated inside thegindexi object and sent to the

coordination service along with ticket objectUi. The coordination service utilizes

this metric as the indicator for the current load on the resourceRi. In other words,

the coordinator service would stop sending the notifications as the number of pro-

cessors available with a ticket issuer reacheszero.

• Publish/subscribe index configuration: The minimum division, fmin, of logicald-

dimensional publish/subscribe index was set to3, while the maximum height of the

index tree,fmax, was also limited to3. This means we do not allow the partition-

ing of the P2P tuples space beyondfmin level. In this case, a cell at a minimum

division level does not undergo any further division. Hence, no resource claim or

resource ticket object is stored beyond thefmin level. The index space resembles a

Grid-like structure where each index cell is randomly hashed to a Grid peer based

on its control point value. The publish/subscribe Cartesianspace had6 dimensions

including number of processors,pi, resource access cost,ci, processor speed,mi,

processor architecture,xi, and operating system type,φi. Hence, this configuration

resulted into243 (35) Grid index cells at thefmin level. On an average,2 index cells

are hashed to a Grid peer in a network comprising of100 Grid sites.

Indexed data distribution: We generated a resource type distribution using the

resource configuration obtained from the Top500 Supercomputer list. We utilised

the resource attributes including processor architecture, its number, its speed, and

installed an operating system from the Supercomputer list.The value forci was

uniformly distributed over the interval[0, 10].

Workload configuration: We generated the workload distributions across GFAs

based on the model given in the paper [116]. The workload model generates the

1Top 500 Supercomputer List, http://www.top500.org/
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job-mixes having the details on their run times, sizes, and inter-arrival times. This

model is statistically derived from existing workload traces and incorporates corre-

lations between job run times and job sizes and daytime cycles in job inter-arrival

times. The model calculates for each job its arrival time using a2-gamma distribu-

tions, and the number of nodes using a two-stage-uniform distribution, and the run

time using the number of nodes and a hyper-gamma distribution.

Mostly we utilised the default parameters already given by the model except for

the number of processors/machines. The processor count fora resource was fed

to the workload model based on the resource configuration obtained from the Top

500 list. The simulation environment models25 jobs at each GFA, and since there

are100 GFAs therefore total number of jobs in the system accounts to2500. Also

note that, we simulated the supercomputing resources in space shared processor

allocation mode. More details on how the execution time for jobs are computed on

space shared resource facilities can be found in Chapter 4.

7.7.2 Effect of Job Inter-Arrival Delay: Lightly-Constrained Work-

loads

The first set of experiments measured the performance of P2P tuple space in coordinating

resource provisioning with respect to the following metrics: average coordination delay,

average response time and average processing time for jobs.Further, it also quantifies the

details about the job migration statistics in the system; the number of jobs executed locally

and number jobs executed remotely. In this experiment, the resource claim injection rate

is varied from12 to 1 per minute while the resource ticket injection rate is fixed to 2 per

minute. This experiment simulates a lightly-constrained workload or job characteristic. In

other words, on an average the simulated jobs did not requirelarge number of processors

for execution. For this experiment, the job characteristics were generated by configuring

the minimum and maximum processor per job as2 and26 respectively in the workload

model.

Fig. 7.6 and Fig. 7.7 show the measurement for parameters coordination delay, re-
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sponse time, processing time and job migration. The metric coordination delay sums up

the latencies for: (i) a resource claim to reach the index cell; (ii) the waiting time till a

resource ticket matches with the claim; and (iii) the notification delay from coordination

service to the relevant GFA. The processing time for a job is defined as the time the job

takes to actually execute on a processor or set of processors. The average response time

for a job is the delay between the submission and arrival of execution output. Effectively,

the response time includes the latencies for coordination and processing delays. Note that

these measurements were collected by averaging the values obtained for each job in the

system.

Fig. 7.6(a) depicts results for the average coordination delay in seconds with increas-

ing job inter-arrival delay. With increase in average job inter-arrival delay, we observed

a decrease in the average coordination delay. The results show that at higher inter-arrival

delays, resource claim objects experience less network traffic and competing requests.

Thus, this leads to an overall decrease in the coordination delay across the system. The

effect of this can also be seen in the response time metric forthe jobs (refer to Fig. 7.6(b)),

which is also seen to improve with an increase in inter-arrival delays.
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Figure 7.6: Simulation: Effect of job inter-arrival delay:lightly-constrained.

Fig. 7.7(a) depicts results for the average job processing delay in seconds with increas-

ing job inter-arrival delay. As expected, the processing delays do not change significantly

with an increase in the inter-arrival delay. This is due to the availability of resources with
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similar or near similar processing capabilities in the Top 500 list. Hence, allocation of

jobs to any of the resource does not have significant effect onthe overall processing time.

Further, the job-migration statistics also showed negligible change with increasing job

inter-arrival delays (refer to Fig. 7.7(b)). At every step,approximately65% of jobs were

executed remotely while the remaining jobs executed at the originating site itself.
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Figure 7.7: Simulation: Effect of job inter-arrival delay:lightly-constrained.

7.7.3 Effect of Job Inter-Arrival Delay: Heavily-Constrained Work-

loads

This experiment simulates the performance of P2P tuple space in coordinating resource

provisioning for highly-constrained workload or job characteristic. The heavily-constrained

workloads on an average require relatively larger number ofprocessors on per job-basis

as compared to the lightly-constrained ones. For this experiment, the job characteristics

were generated by configuring the minimum and maximum processor per job as26 and

28 respectively in the workload model. Other simulation configurations stay the same as

described for the previous experiment.

Fig. 7.8(a) depicts results for the average coordination delay in secs with increasing

job inter-arrival delay. With increase in average job inter-arrival delay, we observed no-

ticeable decrease in the average coordination delay. At an inter-arrival delay of5 secs, on
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Figure 7.8: Simulation: Effect of job inter-arrival delay:heavily-constrained.

the average job experienced a coordination delay of about172 secs (refer to Fig. 7.8(a)).

At an inter-arrival delay of50 secs, the coordination delay decreased to45 secs. The

results show that at higher inter-arrival delays, resourceclaim objects experience less net-

work traffic and competing requests. However, we saw the sametrend in the case of

lightly-constrained jobs as well, where the decrease in case of heavily-constrained jobs is

more significant (about73%). The chief reason behind this being that there is a higher

degree of competition between resource claim requests, as on average they required larger

number of processors for execution. The effect of diminishing coordination delay can be

seen in the response time metric for the jobs as well (refer toFig. 7.8(b)), which is also

seen to improve with increase in inter-arrival delays.

Similar to the lightly-constrained case, we observed that the processing delays (see

Fig. 7.9(a)) does not change significantly with increases ininter-arrival delay. Further, the

job-migration statistics also showed negligible or very little change with increasing job

inter-arrival delays (refer to Fig. 7.9(b)). At every step,approximately62% of jobs were

executed remotely while remaining executed at the originating site itself.
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Figure 7.9: Simulation: Effect of job inter-arrival delay:heavily-constrained.

7.8 Conclusion

In this chapter, we described a P2P tuple space framework forefficiently coordinating re-

source provisioning in a federated Grid system such as the Grid-Federation. The proposed

coordination space built upon the resource discovery system presented in Chapter 6. The

simulation based study shows that heavily- constrained workloads can experience signifi-

cant coordination delays due to the competing requests in the system. However, the same

is not true when the workloads are lightly-constrained i.e.the resource claim requests for

lesser number of processors.

One limitation with our approach is that the current publish/subscribe index can map a

resource claim object to at most2 index cells. In some cases this can lead to generation of

unwanted notification messages in the system and may be to an extent sub-optimal load-

balancing as well. In our future work, we plan to address thisissue by constraining the

mapping of a resource claim object to an index cell. Another way to tackle this problem is

to make the peers currently managing the same resource claimobject communicate with

each other before sending the notifications.



Chapter 8

Coordinated Federation of Alchemi

Desktop Grids

This chapter presents the design and implementation of the Alchemi-Federation software

system. The software serves as a proof of concept for our mainresults in thesis. In

this chapter we start with a brief description of backgroundinformation on the Alchemi

desktop Grid computing system in Section 8.2. Section 8.3 presents the overall soft-

ware architecture of the Alchemi-Federation system; including details on the individual

components. Section 8.4 discusses the implementation of a P2P publish/subscribe based

resource discovery service and software interfaces. In Section 8.5, we present details on

service deployment and bootstrap. Section 8.6 includes thediscussion on the performance

evaluation. Finally, chapter ends with a discussion on conclusions and future work.

8.1 Introduction

The Alchemi-Federation system logically connects topologically and administratively

separated Alchemi grids as part of a generalised resource sharing system. Fig. 8.3 depicts

the proposed decentralised Alchemi-Federation based on a publish/subscribe resource in-

dexing service. Each Alchemi grid site is managed by a software service called Grid-

Federation Agent (GFA). A GFA exports an Alchemi grid resource to a wide-area resource

sharing environment. A GFA has the following basic softwaremodules: Local Resource

175
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Management System (LRMS), Grid Resource Manager (GRM), and Distributed Informa-

tion Manager (DIM). We discussed the functionalities of these modules in Chapter 4. In

this chapter we elaborate on their software architecture, design and implementation.

The Alchemi-Federation framework is developed with the aimof making distributed

Grid resource integration and application programming efficient, flexible, and scalable.

The conceived software service can act as a base platform forhosting a variety of dis-

tributed applications and programming models. Some of the important application do-

mains include Grid workflow composition, distributed auctions, distributed storage man-

agement with trading framework and wide-area parallel programming environment. The

unique features of Alchemi-Federation are:

• Internet-based federation of distributed Alchemi grids;

• implementation of a P2P publish/subscribe based resource indexing service that

makes the system highly scalable;

• implementation of a P2P tuple space-based distributed load-balancing algorithm.

8.2 Alchemi: A Brief Introduction

Alchemi [117] is a .Net based enterprise Grid computing and runtime machinery for cre-

ating a high-throughput resource sharing environment. An Alchemi Manager logically

couples the Windows Desktop machines running the instance of Alchemi Executor ser-

vice. An Executor service can be configured to receive and execute jobs both in voluntary

and non-voluntary modes. Alchemi exposes run-time machinery and a programming en-

vironment (API) required for constructing Desktop Grid applications. The core Alchemi

middleware relies on the master-worker model - a manager is responsible for coordinating

the execution of tasks sent to its executors (desktop machines). The layered architecture

of the Alchemi system is shown in Fig. 8.1.

8.2.1 Programming and Application Model

Alchemi has supporting APIs for the following job executionmodels: Thread Model

and Job model. The Thread Model is used for applications developed natively using the
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Figure 8.1: Alchemi architecture.

.Net Alchemi application programming framework. This model defines two main classes

including GThread and GApplication. A GThread is the simplest unit of task that can

be submitted for execution. One or more GThreads can be combined together to form

a GApplication such as executing parallel threads over Alchemi to do distributed image

rendering. The Job Model has been designed to support legacytasks developed using

different programming platforms (such as C, C++ and Java). These legacy tasks can be

submitted to the Alchemi through the Cross Platform Manager.ASP.Net Web service

interface host the Cross Platform Manager service which can be invoked by generalised

Grid schedulers such as GridBus broker.

Fig. 8.2 illustrates the job submission and execution process involving Alchemi Man-

ager, Executor and users. Application users submit their jobs directly to the local Alchemi

Manager. This submission can be done either through Alchemi’s API if invoked from .Net

platform or Cross Platform Manager’s Web service interface.Once the job is submitted,
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Alchemi Executors

Alchemi Manager distr ibutes
       job to ExecutorsUser submits a job 

to the Alchemi Manager

Figure 8.2: Job submission and execution on Alchemi.

the Manager queues it for future consideration by the scheduler. The Alchemi scheduler

queries the status of each executor and finally dispatches the job to the available executor.

After processing, executors send back back the job output tothe owner via the central

Manager.

8.3 System Design

This section presents comprehensive details about the software services that govern the

overall Alchemi-Federation system. Fig. 8.4 shows the layered architecture of the pro-

posed software system. We start by describing the Grid-Federation Agent service.

8.3.1 Grid-Federation Agent Service

As described in Chapter 4, the GFA service is composed of threesoftware entities includ-

ing Grid Resource Manager (GRM), Local Resource Management System (LRMS) and

Distributed Information Manager (DIM).
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Grid Resource Manager (GRM)

The GRM component of a GFA exports the local Alchemi site to thefederation and is

responsible for coordinating the federation wide application scheduling and resource al-

location. We have already discussed in detail the job submission, job queuing and migra-

tion in Chapters 2 and 3. This software module is implemented in C-sharp. As shown

in Fig. 8.4, GRM interacts with other software modules including LRMS and Grid peer.

Both LRMS and Grid peer software modules are implemented in C-sharp so they have no

inter-operational issues.

Figure 8.3: Alchemi GFA and Alchemi sites with their Grid peer service and some of the
hashings to the Chord ring.

Local Resource Management System (LRMS)

The LRMS software module extends the basic Alchemi Manager module through object

oriented software inheritance. Additionally, we implemented the following methods for
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facilitating the federation job submission and the migration process: answering the GRM

queries related to job queue length, expected response timeand current resource utiliza-

tion status. LRMS inherits the capability to submit applications to Alchemi executors

from the basic Alchemi Manager module. The Alchemi executors register themselves

with the Manager. This in turn keeps track of their status andavailability. In the Alchemi

system, a job is abstracted as a Thread object that requires asequential computation for a

fixed duration of time. The executors return the completed threads directly to the LRMS

module which in turn sends it to the GRM module. Finally, the GRMmodule directly

returns the thread output to the responsible remote GRM in thefederation. In case the job

thread is submitted by a user local to a Alchemi grid, then theLRMS directly returns the

output without GRM intervention.

Figure 8.4: Alchemi GFA software interfaces and their interactions.
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Grid Peer

The Grid peer module in conjunction with publish/subscribeindexing service performs

tasks related to decentralised resource lookups and updates. The details on how the GRM

component encapsulates the Resource Lookup Queries (RLQs) and the Resource Update

Queries (RUQs) can be found in Chapter 6. Here we discuss the details on interaction

protocols between the Grid peer and the publish/subscribe service. The Grid peer module

is implemented in C-sharp while the publish/subscribe service is implemented using the

Java platform. To resolve the inter-operational issues between these two services we im-

plemented web service interfaces for both modules. The publish/subscribe index service

exposes the method for invoking RLQ and RUQ processes througha web service interface

(refer to Fig. 8.5).

Apache Tomcat container hosts the publish/subscribe application service. Apache

Tomcat is the servlet container that implements the Java Servlet and JavaServer Pages

technologies. The specifications for Java Servlet and JavaServer Pages are developed by

Sun under the Java Community Process. We utilised the Apache Axis 1.4 SOAP (Simple

Object Access Protocol) engine for parsing the XML messages. SOAP is a communica-

tion protocol put forward by W3C for exchanging structured information among software

entities running in different hosting environment. It is anXML based protocol that is

based on three specifications: an envelope that defines a framework for describing what

is in a message and how it should be processed, a set of encoding rules for expressing in-

stances of application-defined data types and methods, and aconvention for representing

Remote Procedure Calls (RPCs) and responses. The Grid peer module implements a .Net

web service for receiving the query responses from the publish/subscribe index service.

This web service is implemented using ASP.Net and is hosted by the Microsoft Internet

Information Service 6.0 (IIS).
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Figure 8.5: Object oriented view of the Alchemi-Federationarchitecture and the interac-
tion between its components.

8.4 Spatial Index based Peer-to-Peer Publish/Subscribe

Resource Discovery Service

The resource discovery service organises data by maintaining a logical d-dimensional

publish/subscribe index over a network of distributed Alchemi GFAs. Specifically, GFAs

create a Pastry overlay, which collectively maintains the logical publish/subscribe index

to facilitate a decentralised resource discovery process.We have presented finer details

about the resource discovery service and the spatial index in Chapters 5 and 6. Here, we

focus only on implementation details such as design methodology, programming tools,

and libraries. The resource discovery service was developed using the core Java pro-

gramming libraries and FreePastry P2P framework. We utilised the Eclipse Integrated

Development Environment (IDE) for system implementation and testing.
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Our resource discovery system implementation followed a layered approach known

as OPeN architecture. The OPeN architecture consists of three layers: the Application

layer, Core Services layer and Connectivity layer. The Application layer implements all

the logic that encapsulates the query requirements of the underlying Alchemi Federation

environment. The Core Services layer undertakes the consistency and management of vir-

tual d-dimensional indices. The Connectivity layer provides services related to Key-based

routing, overlay management and replica placement. The Application service, in conjunc-

tion with the Core Services, undertakes the resource discovery tasks including distributed

information updates, lookups and virtual index consistency management. While the main-

tenance of Connectivity layer is left to the basic DHT implementations such as FreePastry,

the modules for Application and Core services layer is developed using the standard Java

libraries. For Connectivity layer services we utilised the FreePastry framework.

8.4.1 FreePastry

FreePastry is an open source implementation of the well-known Pastry routing substrate.

The Pastry protocol was proposed by Microsoft’s Systems Research Group Cambridge,

United Kingdom and Rice University’s Distributed System Group. Pastry offers a generic,

scalable and efficient routing substrate for development ofP2P applications. It exposes a

Key-Based Routing (KBR) API; given the Key K, the Pastry routing algorithm can find

the peer responsible for this key inlogb n messages, whereb is the base andn is the

number of peers in the network. Nodes in a Pastry overlay forma decentralised, self-

organising and fault-tolerant circular network within theInternet. Both data and peers in

a Pastry overlay are assigned Ids from a 128-bit unique identifier space. These identifiers

are generated by hashing the object’s names, a peer’s IP address or public key using a

cryptographic hash functions such as SHA-1/2. FreePastry is currently available under

BSD-like license. FreePastry framework supports the P2P Common API specification

proposed in the paper [57].

The Common API (ref to Fig. 8.6) abstracts the design of P2P applications into three

layers: tier 0, tier 1 and tier 2. Key-based routing at tier 0 represents the basic capabili-

ties that are common to all structured overlays. The Common API specification hides the
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complexity of the low level P2P protocol implementation by defining a common set of

interfaces to be invoked by higher level application services. These application services

can invoke standard KBR procedures independent of the actualimplementation. In other

words, a KBR implemented using the Chord, Pastry or CAN will not make any difference

to the operation of the higher level application service. Tier 1 abstracts more higher level

services built upon the basic KBR or structured overlays. Examples include DHTs, De-

centralised Object Location and Routing (DOLR), and group anycast/multicast (CAST).

Application services at tier 3 such as CFS, PAST, Scribe can utilise one or more of the

abstractions provided by tier 2.

Figure 8.6: Structured P2P systems’ CommonAPI architecture.
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8.5 Deployment and Bootstrap

8.5.1 Manager Container

The ManagerContainer Class loader is responsible for instantiating the classes that im-

plement the GFA functionality (such as the GRM, LRMS, Grid Peer, and Alchemi Ex-

ecutors) in the Alchemi-Federation system. Additionally,Manager Container addition-

ally initialises the Publish/Subscribe Index web service.The Index service initialisation

process includes: (i) booting the node hosting the index service into the existing Pastry

overlay if one exists, otherwise start a new overlay; (ii) ifthis is the first node in the over-

lay then also compute the division of the logical index spaceat the fmin level else send

a node.join(keys) message to the overlay to undertake the ownership of Index keys. Note

that FreePastry takes care of the tasks related to routing table, leaf set and neighbour set

maintenance. Our Application service is only concerned with coordinating proper distri-

bution and migration of logical Index keys.

8.5.2 Tomcat Container

Tomcat servlet container hosts the Publish/Subscribe Index service. It exposes an API

called TriggerService (int PortName, String BootStrapServerName, int BootStrapPort) to

the ManagerContainer service for invoking the Index service. The values for API call pa-

rameters PortName, BootStrapServerName and BootSTrapPort are maintained in a con-

figuration file accessible only to the ManagerContainer. Other APIs that Tomcat container

exposes include SubmitRLQ(String Object) for submitting RUQs, SubmitRUQ(String

Object) for submitting RUQs and SubmitURLQ(String Object) for unsubscribing from

the Index service once an application has been successfullyscheduled. These methods

are invoked by the Grid peer service whenever an applicationis submitted to the GRM for

scheduling consideration.
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8.6 Performance Evaluation

In this section, we evaluate the performance of the softwaresystem in a resource sharing

network that consisted of federation of5 Alchemi desktop grids as shown in the Fig. 8.7.

These desktop grids were created in three different laboratories (labs) including Microsoft

.Net Lab, Masters student Lab1 and2 within the Computer Science and Software Engi-

neering Department at the University of Melbourne. The machines in these Labs are

connected through a Local Area Network (LAN). The LAN environment has a data trans-

fer capability of100 MB/sec (megabits per second). Ethernet switches of these Labs

inter-connect through the firewall router. Various system parameters were configured as

follows:

• Pastry network configuration: Both Grid peer nodeIds and publish/subscribe object

IDs were randomly assigned and uniformly distributed in the160-bit Pastry identi-

fier space. Other network parameters were configured to the default values as given

in the filefreepastry.params. This file is provided with the FreePastry distribution.

Desktop
Grid - 1

Switch

Switch

Firewall Router

Masters Student Lab 1

Internet

Switch

Desktop
Grid - 2

Desktop
Grid - 5

Masters Student Lab 2

Microsoft .Net Lab

Desktop
Grid - 3

Desktop
Grid - 4

Figure 8.7: Alchemi-Federation testbed setup.

• Resource Configuration: Every GFA/Cluster was configured to connect to different

numbers of executors (refer to Fig. 8.7). The Alchemi manager periodically reports
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the resource status/configuration to the GFA as given by the resource ticket publish

interval. The clusters running the GFA component had Windows XP as the operat-

ing system running on Intel chips. The processors were allocated to the jobs in the

space-shared mode.

• Publish/Subscribe index space configuration: The minimum division fmin of logi-

cald-dimensional publish/subscribe index was set to2, while the maximum height

of the index tree,fmax was constrained to5. The index space had provision for

publishing resource information in4-dimensions including number of processors,

pi their speed,µi, operating system type,φi, and processor architecture,xi. This in-

dex configuration resulted into 16 (24) Grid index cells atfmin level. On an average,

3 index cells are hashed to a Grid peer in a network of5 Alchemi sites.
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Figure 8.8: Job perspective.

• Workload configuration: The test application was a Windows executable (source

code written using C-sharp) that computed whether a given number is prime or

not. In order to introduce processing delays, the process was made to sleep for10

seconds before it could proceed to check the prime condition. A simple brute force

algorithm was implemented to check the prime condition for anumber. The brute

force algorithm consists of dividing the number by every possible divisor, up to the

number. If exactly2 factors are found, the number is prime. However, if more than

2 factors are found, then the number is not prime (it is composite).
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(b) Job-ID vs. no. of jobs serviced

Figure 8.9: Resource perspective.

• Resource claim and resource ticket injection rate: The GFAs inject resource claim

and resource ticket objects based on the exponential inter-arrival time distribu-

tion (recall from the last chapter). The value for resource claim inter-arrival de-

lay ( 1
λin

l

) was fixed to10 secs. While the inter-arrival delay (1
λin

u
) of resource claim

object was fixed to15 secs. The inter-arrival delay in ticket injection is considered

the same for all the GFAs/Grids in the system. We configured2 GFAs/Grids (Desk-

top Grid-1 and Desktop Grid-4) to insert resource claim objects into system with

the delays as described. The users in Desktop Grids1 and2 submit25 resource

claim objects over the experiment run at an exponential inter-arrival delay. While

the injection of resource ticket object is done by all the GFAs/Grids in the Alchemi-

Federation system.

8.6.1 Discussion

This experiment measures the performance of the software system with respect to the

following metrics: average coordination delay and averageresponse time. Recall from

the last chapter, the performance metric coordination delay sums up the latencies for: (i)

resource claim to reach the index cell; (ii) waiting time untill a resource ticket matches the

claim; and (iii) notification delay from coordination service to the relevant GFA. While

the average response time for a job is the delay between the submission time and arrival
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(c) Job-ID vs. no. of jobs serviced

Figure 8.10: Resource perspective.
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Figure 8.11: Resource perspective.
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of the execution output.

Fig. 8.8(a) depicts the results for the average coordination delay in seconds for each

job submitted during the experiment period. We observed that jobs across the Desktop

Grids 1 and2 experienced varying degree of coordination delay. As described earlier,

the coordination delay directly affects the overall response time for jobs which is evident

from the Fig. 8.8(b).

Fig. 8.9 and 8.10 show how the job load was distributed over the Alchemi grids. We

observed that Desktop Grid 1 executed the least number of jobs (refer to Fig. 8.9(a)) i.e.3

jobs, while Desktop Grid 5, located in Lab 3, executed the highest number of jobs (refer

to Fig. 8.10(c)) i.e.18 jobs over the experiment run. Overall, the resources performed

reasonably well as it is seen in Fig. 8.9 and Fig. 8.10. In Fig.8.11, we show the details

on number of jobs finished and under execution across the Alchemi-Federation over the

experiment run time.

8.7 Conclusion

In this chapter, we have described the Alchemi-Federation software system, which serves

as a proof of the concepts that have been proposed in this thesis. We have strictly fol-

lowed an Object Oriented Design (OOD) methodology in architecting and implementing

the Alchemi-Federation system. Our existing Alchemi-Federation testbed consisted of

Alchemi Grids distributed over three different laboratories of the department. These labo-

ratories are protected from malicious users by a firewall router that inhibits any connection

from or to the machines that do not belong to the domain. In future work, we intend to

overcome this limitation of the Alchemi GFA service by implementing a cross-firewall

communication capability. Such extension to the Alchemi GFA will support the creation

of Internet-based federation of Alchemi Grids that belong to different firewall controlled

domains.

Our software platform can be utilised to develop other distributed applications such

as P2P auctions and distributed storage frameworks. Currently, our platform provides

services for aggregating distributed computational resources. We also intend to study the

query load-imbalance issues at the peers in a Windows-basedGrid computing environ-
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ment where the resource attribute distribution tends to be skewed. In future work, we

intend to incorporate decentralised reputation management frameworks such as PeerRe-

view and JXTA Poblano in the Alchemi-Federation system. These reputation manage-

ment systems will aid in facilitating a secure and trustworthy system for the participants

to interact. Further, we are also considering integrating the PeerMint credit management

system. PeerMint is a decentralised credit management application that has been devel-

oped using the FreePastry platform.
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Conclusion and Future Directions

9.1 Summary

Grids have evolved as the next generation computing platform for hosting distributed

services for computing, content management (including replication and distribution) and

data sharing. Grid environment includes the resources thathave varying types and ca-

pabilities, are topologically and geographically isolated and are under control of sepa-

rate administrative policies. Federated grids (also knownas decentralised or hierarchical

grids) constitute a novel and emerging research area. Federated grids aim toward coupling

of distributed resources as part of single resource sharingenvironment. In this thesis, I

proposed a new federated Grid system, called Grid-Federation. The Grid-Federation re-

source sharing model aims toward decentralised and coordinated coupling of distributed

Grid resources as a part of single cooperative system.

The P2P network model forms the basis for the design of decentralised protocols for

scheduling and resource discovery in the Grid-Federation.The decentralised organisa-

tion of the system gives the provider more autonomy and additionally makes the system

highly scalable. Two levels of decentralised coordinationis presented in this thesis: (i)

an SLA based broker-to-broker coordination protocol that inhibits the brokers from over-

provisioning the resources and also gives every site the admission control capability; and

(ii) a P2P tuple space based coordination protocol that coordinates the scheduling pro-

cess among the distributed resource brokers. I proposed a novel model for designing

decentralised, coordinated and scalable Grid resource management system. I have shown

193
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through extensive simulation based studies that the proposed techniques are favourable

for building next generation Grid systems.

9.2 Conclusion

To support the thesis that Grid-Federation model along withits decentralised protocols

for scheduling and coordination is better than existing techniques for implementing new

generation Grid resource sharing system I have:

1. Outlined Key Taxonomies Related to Designing a Decentralised Grid Resource

Sharing System

Comprehensive taxonomy related to decentralised scheduling, objective function,

coordination and security are presented and are later utilised for classifying the

current state-of-the-art. This study contributes by providing better understanding of

existing Grid scheduling systems with respect to the degreeof decentralisation and

coordination that they can support. Further, I have also briefly looked at the current

security solutions available for building such decentralised Grid systems.

Further, I also presented a comprehensive study on the current state of the art in

P2P-based Grid resource discovery. The main contribution of this study is a survey

and classification of P2P-based resource discovery mechanism in a Grid computing

system. Existing approaches to tag the DHTs with Grid resource information was

discussed and classified based on the presented taxonomy. This study also provides

a qualitative comparison of the existing DHT basedd-dimensional indices with

respect to scalability and load-balancing. The presented comparison can be utilised

by the Grid system developers with respect to the kind of indexing system they

should follow.

2. Proposed, Modeled and Evaluated a Decentralised ResourceSharing System called

Grid-Federation
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Grid-Federation aims toward policy based cooperative and coordinated coupling

of distributed cluster resources. Computational economy metaphor was utilised for

driving the application scheduling and resource allocation within the Grid-Federation.

The cost-time scheduling algorithm was applied to simulatethe scheduling of jobs

using iterative resource queries to the decentralised federation directory. The results

showed that:

• While the users from popular resources (fast/cheap) have increased competi-

tion and therefore a harder time to satisfy their QoS demands, in general the

system provides an increased ability to satisfy QoS demandsof all the users

in the federation,

• the resource supply and demand patterns affect resource provider’s overall

incentive in a computational economy based resource sharing system,

• if all users seek either time/cost optimisation (non-uniform demand) then the

slowest/most expensive resource owners will not benefit as much. However, if

there is uniform distribution of users some seeking time andsome seeking cost

optimisation then all resource providers gain some benefit from the federation,

• the cost-time scheduling heuristic does not lead to excessive scheduling mes-

sages, i.e., to excessive directory accesses and we expect the system to be

scalable.

3. Proposed, Modeled and Evaluated an SLA-based GFA-to-GFAService Contract

Negotiation Protocol

Following this, a novel SLA-based GFA-to-GFA SLA contract negotiation proto-

col was proposed. The well-known agent coordination protocol, called contract-

net formed the basis for distributed SLA-based negotiations. The proposed ap-

proach modeled a set of resource providers as a contract net while job supersched-

ulers/brokers as the managers, responsible for negotiating SLA contracts and job

superscheduling in the net. Superschedulers bid for SLA contracts on the net with a

focus on completing the job within the user specified deadline. We analyzed how the
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varying degree of SLA bidding time (i.e., admission controldecision making time

for LRMSes) affects the resource providers’ payoff function. The results showed

that:

• The proposed approach gives resource owners finer control over resource al-

location decisions. However, it also indicated that the proposed approach has

a degrading effect on the user’s QoS satisfaction mainly dueto the time over-

head incurred as a result of dynamic bidding,

• SLA contract negotiation protocol based on dynamic biddingin the net is scal-

able with respect to total scheduling message generated in the system. In gen-

eral, the proposed approach does not incur excessive messages on a per job

basis as compared to the traditional FCFS case.

4. Proposed, Modeled and Evaluated Decentralised Resource Discovery in the Grid-

Federation

I presented a decentralised solution for scalable and robust resource discovery in

the Grid-Federation. The resource discovery service utilised a P2P spatial pub-

lish/subscribe index for organising thed-dimensional Grid resource data. I analysed

through trace driven simulation study how the query arrivalrate and Grid system

size affects the system performance. The experiment resultshowed that:

• The resource query rate i.e. RLQ and RUQ rate directly affectsthe perfor-

mance of the decentralised resource discovery system. At higher rates, Grid

resource queries can experience considerable latencies,

• contrary to what one may expect, the Grid system size does nothave a signifi-

cant impact on the performance of the resource discovery system, in particular

the query latency and the number of message routing hops.

5. Proposed, Modeled and Evaluated a DHT-based Tuple Space for Decentralised Co-

ordination
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Further, the resource discovery system was extended to provide the abstraction/facility

of a P2P tuple space for realising a decentralised coordination network. The P2P

tuple space can transparently support a decentralised coordination network for dis-

tributed application services such as brokers, agents, auctioneers etc. The P2P tuple

space provides a global virtual shared space that can be concurrently and associa-

tively accessed by all participants in the system and the access is independent of the

actual physical or topological proximity of the tuples or hosts. The effectiveness

of the P2P tuple space in coordinating resource provisioning was analysed using

extensive simulation study. The results showed that:

• The job inter-arrival delay has significant impact on the coordination overhead

for the jobs in the decentralised network. At lower inter-arrival delays, com-

peting requests have to wait for longer time before the notification arrives from

the coordination network,

• the performance of coordination network worsens further for highly-constrained

workloads as compared to lightly-constrained workloads. However, if there is

abundant supply of resources in the system then the system behaviour is inde-

pendent of workload type.

6. Designed and Implemented the Alchemi-Federation Software System

Finally, the Grid-Federation model is realised using the Alchemi desktop Grid com-

puting system, which I refer to as Alchemi-Federation. The software system serves

as a proof of the concepts/models/protocols that have been proposed in this thesis.

I have strictly followed an OOD methodology in architectingand implementing

the Alchemi-Federation system. Our software platform can be utilised to develop

other distributed application systems such as P2P cooperative auction environment

and distributed storage framework. Currently, our platformprovides services for

aggregating the distributed computational resources.

This thesis makes significant contribution towards providing a new model for de-

centralised Grid resource management, in particular the decentralised protocols for
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application scheduling, resource discovery and coordination. The proposed tech-

niques are clearly favourable as compared to the existing literature available for

the Grid resource management system design. I have also incorporated the pro-

posed ideas in the software system, Alchemi-Federation. The thesis clearly makes

advancement over the current state of the art by proposing novel decentralised pro-

tocols and models.

9.3 Open Issues

The current models of distributed systems, including Grid computing and P2P computing,

suffer from a knowledge and resource fragmentation problem. By knowledge fragmenta-

tion, it means that various research groups in both academiaand industry work in an inde-

pendent manner. They define standards without any proper coordination. They give very

little attention to the inter-operational ability betweenthe related systems. Such dispar-

ity can be seen in the operation of various Grid systems including Condor-G, Nimrod-G,

OurGrid, Grid-Federation, Tycoon and Bellagio. These systems define independent in-

terfaces, different job description languages, communication protocols, superscheduling

and resource allocation methodologies. In this case, usershave an access only to those

resources that can understand the underlying Grid system protocol. Hence, this leads to

the distributed resource fragmentation problem.

A possible solution to this can be federating these Grid systems based on universally

agreed standards (similar to the TCP/IP model that governs the current Internet). The

core to the operation and inter-operational ability of Internet component is the common

resource indexing system, i.e., DNS. Both the Grid and P2P communities clearly lack

any such global or widely accepted service. These systems donot expose any API or

interfaces that can help them to inter-operate. In recent times, we have seen some ef-

forts towards developing a generic Grid service-oriented architecture, more commonly

referred to as the Open Grid Service Architecture (OGSA). Core Grid developers also

define common standards through the GGF. Web Service ResourceFramework (WSRF)

defines a new set of specifications for realising the OGSA vision of grid and web services.

WSRF can overcome the cross-platform inter-operational ability issues in Grid comput-
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ing. However, still it cannot glue the gaps between various Grid systems because of the

basic differences in interfaces, communication protocols, superscheduling and resource

allocation methodologies.

Possible solutions to overcome knowledge and resource fragmentation problem in-

clude: (i) availability of a robust, distributed, scalableresource indexing/organisation sys-

tem; (ii) evolution of common standards for resource allocation and application super-

scheduling; (iii) agreement on using common middleware formanaging Grid resources

such as clusters, SMPs etc; and (iv) defining common interfaces and APIs that can help

different related system to inter-operate and coordinate activities.

9.4 Future Directions

This thesis introduces novel protocols to build scalable, robust and decentralised Grid

resource management system. It demonstrated the benefits ofproposed decentralised pro-

tocols in terms of user’s QoS satisfaction, provider’s profit function, scalability, robust-

ness and coordination. Overall, the proposed models and protocols lay the foundation for

architecting next generation Grid and P2P systems.

9.4.1 Coordinated Co-allocation Framework for Synchronous Paral-

lel Applications

Synchronous parallel applications (such as MPI-CH) refer tothe class of applications

that have run time dependencies and need to do frequent message passing. Tradition-

ally, these kind of applications have been designed for tightly coupled environments such

as shared memory processors and computational clusters (that have high bandwidth inter-

connection network). Given the complexity of Grid environment, including its dynamism,

scale, heterogeneity in resource type, storage capability, management policies and com-

munication bandwidth, the efficient execution and adaptation of synchronous parallel ap-

plications [112] present significant challenges with respect to scheduling and resource

management.

Efficient execution of such class of applications in a Grid environment requires mech-
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anisms for coordinated co-allocation across resources having sufficient computational and

network bandwidth capabilities. In general, co-allocation across Grid resources belong-

ing to multiple control domain is a complex problem in itself. In this case, the decen-

tralised coordination mechanism proposed in this thesis can be utilised to transparently

and dynamically formulate efficient co-allocated schedules. Further, the decentralised co-

allocation algorithm can also benefit from the SLA-based protocols proposed in this thesis

with respect to guaranteed service delivery and prioritised execution.

9.4.2 Decentralised Storage Management and Replication Framework

With evolutionary growth in the Internet users and commodity computers (such as desk-

top machines), it is feasible to maintain a pervasive and on-demand content management

and replication network. The search engine Google, performs centralized content repli-

cation at its data centers to increase data availability, fault-tolerance and performance. In

contrast, the proposed decentralised Grid-Federation model can be extended to support

an Internet-scale content management and replication network that leverages the storage

capability of commodity machines. Coupled with the recent advancement in P2P rep-

utation and trust management schemes such as PeerReview and Poblano, the proposed

system can deliver the guaranteed storage services. Next, the Alchemi-Federation soft-

ware system can be easily extended to support the storage management and replication

functionality.

9.4.3 Cooperative Multiple e-Science Workflow Scheduling Frame-

work

In e-Science Grid computing environments, workflow management systems allocate tasks

to the resources after negotiating the SLA contracts with every resource provider that exe-

cutes one or more tasks. Due to this, the service providers need to allocate resources based

on negotiated QoS parameters and manage various competing demands from other users.

However, the competition among multiple workflow systems may lead to degraded QoS

satisfaction for certain users. This limitation can easilybe eradicated by utilising the de-

centralised coordination among e-Science workflow systems. In this case, the conflicting
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requests of the workflow systems can be resolved by the decentralised coordinator lead-

ing to enhanced QoS satisfaction across the system. To an extent, data-intensive workflow

scheduling also needs to consider co-allocation issues similar to synchronous parallel ap-

plications.

9.4.4 Cooperative P2P Auction Network

Proposed decentralised protocols for resource discovery and coordination can be extended

to support a P2P auction market place [92]. The capability ofthe resource discovery ser-

vice to efficiently handled-dimensional range queries can be utilised to discover available

auctions in the system. The auctioneer can advertise their items, auction types, and pricing

information through the RUQ, while the interested buyers can subscribe for the auctioned

items through the RLQ. In case the match occurs, the interested buyers can directly bid

at the auctioneer. P2P reputation management systems such as PeerReview and Poblano

can be utilised to establish the credibility of the participants in the system.

9.4.5 P2P Relational Database Management System (RDBMS)

Realising an efficient, scalable and robust P2P RDBMS is an interesting future research

problem. Fundamental to P2P RDBMS is the development of distributed algorithms

for: (i) query processing; (ii) data consistency, and integrity; and (iii) transaction atom-

icity, durability, and isolation. First step in designing aP2P RDBMS is to partition the

relational tuple space across a set of distributed nodes in the system. The data partition

strategy should be such that the query workload is uniformlydistributed while efficiently

utilising the node’s computational and network bandwidth capability. The discovery and

partitioning of tuple space across the nodes in the system for hosting the tuple space can

be facilitated through the decentralised protocols proposed in this thesis.
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