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Abstract 

Big Data computing in Clouds is a new paradigm for next generation analytics development, 

enabling large scale data organization, sharing, and exploration of large volumes rapidly growing 

variety forms of data using Cloud computing technologies as a back end large scale service- 

oriented computational infrastructure facility. Advances in information technology and its 

widespread growth in several areas of business, engineering, medical and scientific studies are 

resulting in information and data explosion. Knowledge discovery, and decision making from 

such rapidly growing voluminous data is a challenging in terms of both data organization, access 

and timely processing, which is an emerging trend known as Big Data computing, a new 

paradigm which combines large scale compute, new data intensive techniques and mathematical 

models to build data analytics for intrinsic information extraction. Cloud computing is emerged 

as service oriented computing model, to deliver infrastructure, platform and applications as 

services from the providers to the consumers meeting the Quality of Service (QoS) parameters, 

by enabling the archival and processing of large volumes of rapidly growing data at faster scale 

based on economy models. Big Data demands huge computing and data resources, and Clouds 

offer large scale infrastructure, hence both these technologies could be integrated, so as to 

process large scale Big Data on Clouds infrastructure as back end computing resources. This 

thesis proposes challenges in integration of both these technologies, and Big Data computing in 

Clouds as an effective metaphor for the management of large scale data organization and 

processing in elastically scalable computing and store infrastructures for scientific computing 

applications. The thesis discusses an architectural framework for Big Data computing in Clouds 

that supports large scale distributed data intensive applications, Data Aware scheduling model 

for effectively scheduling the jobs by fetching the data from  remote distributed storage 

repositories using evolutionary genetic approach, followed by an extensions of Hadoop 

Distributed File System (HDFS) and MapReduce, for distributed data organization and  

processing for applications of scientific image processing domain. It demonstrates their 

effectiveness by performing scheduling experiments both in the simulated and real environments 

using CloudSim and Hadoop clusters respectively. 
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Chapter 1  

 

Introduction 

This chapter introduces the context of the research to be presented in this thesis. It starts with an 

in introduction to the general area of Big Data computing, and discusses the motivation and 

challenges for integrated Cloud and Big Data computing known as Big Data Computing in 

clouds. Then, it presents a short view of system architecture, layered framework for Big Data 

computing in Clouds and elements in the framework, scheduling model for the decoupled 

computing and storage resources, problem statement, motivation for the scheduling model, 

extended MapReduce and Data organization model for scientific large scale data problems, and 

presents the primary contributions of this research. The chapter ends with a discussion on the 

organization of the rest of this thesis. 

 

1.1 Inspiration for Big Data and Clouds 

Big Data computing is an emerging data science paradigm of multi dimensional information 

mining for scientific discovery and business analytics over large scale infrastructure. The data 

collected or produced from several scientific explorations and business transactions often require 

tools for effective data management, analysis, validation, visualization and dissemination, 

preserving the intrinsic value of the data [1] -[3].  SMAC (Social, Mobile, Analytics, and Cloud) 

driven growth is enabling the large scale multi dimensional digital data growth worldwide, and  

IDC [4] report predicted that there could be 40 folds data growth from 2012 to 2020 and 

expected to double every two years as per the digital universe data growth cycle depicted in 

Figure 1.1. Since, the advancements in processor, storage, and networking are enabling the 

resources at considerable low prices and cloud computing technologies are enabling for on 

demand utility computing for a large scale data preservation and analysis over distributed 

computing infrastructures based on Service Oriented Architectures (SOA).  
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Figure 1.1 Data Growth Cycle (Source: IDC [4]) 

The wide spread growth of digital content in several fields of social networking, business 

processing, and scientific analysis are producing the voluminous data in several formats like 

video, audio, images, relational, text, xml etc. Such data is rapidly growing, often leading to 

difficulties in storing, and processing in the stipulated time frame using conventional data bases 

or ware housing systems. To address these problems, Big Data is an emerging as a new 

technology, to mine untapped information of large scale variety forms of rapidly growing data, 

using data intensive analytics platforms and computing paradigm over a large scale distributed 

compute and storage resources.   

The data collected or produced from several applications of scientific and business areas like 

genome study, theoretical physical sciences, weather forecasting, remote sensing, web log 

mining, business process analytics etc., often require tools for effective data management, 

analysis, validation, visualization and dissemination, preserving the intrinsic value of the data.  

Gartner hype cycle for emerging technologies, 2014 as on August is depicted in Figure 1.2, 

depicts Big Data computing as one among the peak technologies for future research and 

innovations for the strategists and planners to leverage Big Data Analytics and new technologies 

to work on large data of various formats for information retrieval and decision making. 

Conventional data warehousing systems in general have the pre determined analytics over the 

abstracted data which is cleansed and transformed into another database known as data marts- 

which are periodically updated with the similar type of rolled-up data. However, Big Data 

systems are for non predetermined analytics, hence no data cleansing and transforming 
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techniques are used. In practice, data warehousing systems organize the data from enterprises 

financial systems, customer marketing systems, billing systems, point of sale system etc., 

however, would not capture the operational databases like click streams logs, sensor data, 

location data from mobile devices, customer support emails and chat transcripts, and surveillance 

videos etc.  

 

 

Figure 1.2. Gartner hype cycle for emerging technologies as on 2014 August 

 

Traditional data warehouses work with the abstracted data that has been cleansed and 

transformed into a separate database (data marts – which are periodically updated with the same 

type of rolled-up data) for which specific analytics are known in advance. By contrast, Big Data 

systems maintain raw data whether from operations (log reports), user activity (web site 

tracking), or other real world usage data. That data is organized in its raw form as its usage is not 

predetermined, so there is no known target to transform it. Big Data could be organized on 

distributed storage repositories and large scale computing infrastructure could be utilized for 

analytics and visualization. However, Big Data and data warehousing systems have the same 

goals to deliver business value through the analysis of data, but, differ in their scope and the 
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organization of the data. In practice, data warehouses have traditionally sourced data solely from 

other databases like enterprise‘s financial systems, customer marketing systems, billing systems, 

point-of-sale systems, and so on, however, would not capture the operational databases like click 

streams logs, sensor data, location data from mobile devices, customer support emails and chat 

transcripts, and surveillance videos etc. Big Data systems harness these new sources of data, and 

allow enterprises analyze and extract business value from these immense data sets. Big Data 

analytics address more complex tasks by mining the information. For instance, Amazon could 

recommend the ideal book, Google can rank the most relevant website, Facebook knows our 

likes, and LinkedIn could connect to professionals for whom we know. Similar technologies 

would be applied to diagnose illnesses, recommend treatments, perhaps even identifying 

―criminals‖ before one actually commits a crime. Just as the internet radically changed the world 

by adding communications to computers, similarly Big Data could change the fundamental 

aspects of life by giving it a quantitative dimension it never had before.  

 

1.2 Characteristics and key elements  

Big Data is characterized into four dimensions called 4V‘s; Volume, Velocity, Variety, Veracity 

as depicted in Figure 1.3. Aside, another dimension V (Value/Valor) also used to characterize 

the quality of the data. 

 Volume:  Volume is concerned about scale of data i.e. the volume of the data at which it is 

growing. According to IDC [4]  report, the volume of data will reach to 40 Zeta bytes by 2020 

and increase of 400 times by now. The volume of data is growing rapidly, due to several 

applications of business, social, web and scientific explorations. 

 Velocity: The speed at which data is increasing thus demanding analysis of streaming data. 

The velocity is due to growing speed of Business Intelligence Applications such as Trading, 

Transaction of Telecom and Banking domain, growing number of internet connections with 

the increased usage of internet, growing number of sensor networks  and wearable sensors. 

 Variety: It depicts different forms of data to use for analysis such as structured like 

relational databases, semi structured like XML and unstructured like video, text.  
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 Veracity: Veracity is concerned about uncertainty or inaccuracy of the data. In many cases 

the data will be in accurate hence filtering the same and selecting the data which is actually 

needed is really a cumbersome activity. A lot of statistical and analytical process has to go for 

data cleansing to choose intrinsic data for decision making. 

 

 

Figure 1.3. Data Dimensions 4V's. 

Big Data is an emerging data science paradigm driven from computer science and statistical 

domains to solve complex data intensive problems in several domains such as science, 

engineering, healthcare, internet and business intelligence for intrinsic information extraction and 

decision making. Big Data paradigm enables engineers to analyze far greater quantities and types 

of data in a shorter time span. It includes structured data sets, such as information stored in 

databases; semi-structured like XML files and RSS feeds; and unstructured data sets, such as 

images, videos, text messages, e-mails and documents to uncover insights hidden within these 

large data sets. The major key elements in the evolution of Big Data are social networking, 

mobile computing, analytics and Clouds; SMAC approach as depicted in Figure 1.4.  

 

Big Data and data warehousing share the same basic goals to deliver business value through the 

analysis of data, however, differ in the scope and organization of the data. In practice, data 

warehouses have traditionally sourced data solely from other databases like enterprise‘s financial 

systems, customer marketing systems, billing systems, point-of-sale systems, and so on, 

however, would not capture the operational databases like click streams logs, sensor data, 

Big Data Dimensions 

Volume 

Variety 

V
el

o
ci

ty

V
era

city
B

a
tc

h
S

tr
ea

m
in

g
 D

a
ta

Structured Semi Structured Un Structured

Terabytes Zettabytes

C
erta

in
ty

U
n

 C
erta

in
ty



 

6 
 

location data from mobile devices, customer support emails and chat transcripts, and surveillance 

videos etc. 

 

Figure 1.4. SMAC — Big Data Key elements 

Big Data is gaining popularity in many fields. Philip et.al [5] presented a survey on Big Data 

along with opportunities and challenges for Data-Intensive applications stated several areas and 

the importance of Big Data. Big Data is important both in the business and scientific 

communities for addressing several problems. As business domains are growing, there is a need 

to converge a new economic system redefining the relationships among producers, distributors 

and consumers of goods and services. Obviously, it is not feasible to rely solely on experience or 

pure intuition to make decisions; hence there is a need to rely on good data services for the 

decisions. Coming to the scientific community, it is mandatory to extract the information from 

both the sensor networks and open source information for better decision making using data 

analytics. 

 

1.2.1 Big Data applications 

Big Data is gaining popularity in many fields. Philip et.al [5]  presented a survey on Big Data 

along with opportunities and challenges for Data-Intensive applications stated several areas and 

the importance of Big Data. Big Data is important both in the business and scientific 

communities for addressing several problems. As business domains are growing, there is a need 

to converge a new economic system redefining the relationships among producers, distributors 

and consumers of goods and services. Obviously, it is not feasible to rely solely on experience or 

SMAC

Social
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Analytics

Cloud
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pure intuition to make decisions; hence there is a need to rely on good data services for the 

decisions. Coming to the scientific community, it is mandatory to extract the information from 

both the sensor networks and open source information for better decision making using data 

analytics. Big Data is applicable to science and engineering, business intelligence, government 

and industries, scientific explorations etc. the sample application areas are described below. 

a)  Healthcare industry: Healthcare organizations would like to predict the locations from 

where the diseases are spreading so as to prevent further spreading [6] . However, it is a 

challenging job for centers for disease control, to predict exactly the origin of the disease, 

until there is statistical data from several locations. In 2009, when a new flu virus similar to 

H1N1 was spreading, Google has predicted this, and published a paper in the scientific journal 

Nature. The authors explained how Google could ―predict‖ the spread of the winter flu in the 

United States, not just nationally, but down to specific regions and even states. The company 

could achieve this by looking at what people were searching for on the internet. Since Google 

receives more than three billion search queries every day and saves them all, it had plenty of 

data to work with. Google took the 50 million most common search terms that Americans 

type and compared the list with centers for disease control and prevention (CDC) data on the 

spread of seasonal flu between 2003 and 2008. The idea was to identify areas infected by the 

flu virus by what people searched for on the internet.  

b)  Biotechnology and Drug Discovery: Today, gene sequencing is used extensively by 

biotechnology companies and pharmaceutical companies to develop more effective drugs or 

novel therapies for diseases. Gene sequencing involves large collection of data with rapid 

velocity and biologists have ―pipelines‖ to clean the sequencing data and then ―cook‖ the raw 

data into usable form. This cooking involves putting all of the ―short reads‖ together into a 

single human genome and then looking for interesting strings of base pairs in the result. 

Biologists envision storing sequence of data for millions of humans, so they can perform data 

mining looking for genome patterns that identify particular diseases. Using current 

technologies, running a single analysis can take days slowing the scientific process and 

putting a practical limit on the number of analyses. With new computational technologies for 

Big Data, we could dramatically reduce current processing times, reducing biologists ―time-

to-insight‖ by an order of magnitude. 
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c)   Scientific explorations: The data collected from various sensor sources would be utilized 

to extract information useful for societal benefits, which would be: 

 Physics and astronomical experiments: Large number of scientists collaborating for 

designing, operating and analyzing the products of sensor networks and detectors such as 

CERN. A large compute, storage, networking of resources called ―Data Grid‖ are required 

to analyze petabytes of data [1] [7] [9] [10] [9] . However, extraction and analysis of the 

data from large distributed compute and storage repositories would demand better 

analytics.  

 Earth Observation Systems (EOS): Information gathering and analytical approaches 

about earth‘s physical, chemical and biological systems via remote sensing technologies. 

It involves collection, analysis and data presentation/visualization. Earth observation is 

used to monitor and assess the status of, and changes in the natural environment and the 

built environment. It provides to improve social and economic well-being and its key 

applications are: weather forecasting, monitoring and responding to natural disasters, and 

climate change predictions. EOS systems are supported by remote sensing satellites, 

numerical measurements by various earth sensors with decision support tools.  

d)  Government: Government provides a large variety of programs and services, which both 

produce and require massive amounts of data, often unstructured and increasingly in real time. 

This data comes from numerous sources including historical, video, audio, cell phones, 

geospatial, imagery, sensors, social media and much more. From crime prevention to 

transportation, defense, national security, revenue management, environmental stewardship 

and social services, governments must wrestle every day with managing and using this data. 

Big Data analytics can improve the efficiency and effectiveness across the broad range of 

government responsibilities, by improving existing processes and operations and enabling 

completely new ones. The several areas for harnessing Big Data computing for government 

sector include: 

 Surveillance system analyzing and classifying streaming acoustic signals. 

 Cyber security system analyzing network traffic for anomalies. 

 Sensors in ocean buoys and river gauges collecting data for faster, more accurate flood 

predictions. 
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 Transportation departments using real-time traffic data to predict traffic patterns, update 

public transportation schedules. 

 Police departments analyzing images from aerial cameras, news feeds, and social 

networks or items of interest. 

 Social program agencies gain a clearer understanding of beneficiaries and proper 

payments. 

 Tax agencies identifying fraudsters and support investigation by analyzing complex 

identity information and tax returns. 

 Sensor applications such stream air, water and temperature data to support cleanup, fire 

prevention and other programs. 

e)  Financial and business analytics: Big Data could transform business and financial 

institutions to tailor their products and build strategy road maps aligned with customer 

expectations. Large scale administrative data sets and proprietary sector data can greatly 

improve measurement, tracking and describing the economic activity. Text captured from 

credit applications, account opening interviews, call center notes, mortgage application notes, 

social media chatter and other customer service interactions could be integrated and analyzed 

to identify escalation and complaint triggers, understand fraud pattern, manage alerts, reduce 

credit risk and build social media dash boards. Effective use of Big Data would be a key 

driver for competition in financial services, and companies that use data more effectively will 

secure an edge in the market place. Retaining customers and satisfying consumer expectations 

are among the most serious challenges facing financial institutions. Sentiment analysis and 

predictive analysis could be used to address the issues and also for other key challenges. The 

several areas are described below. 

 Travel industry:  Better decision support to enable the customers with targeted options 

– product/service innovation, extreme search; in which a consumer enters overall budget, 

the number of passengers, the length of the time for the trip, and the minimum temperature 

at the destination, the analytics could return the proposals for the trip [11] . 

 Retail industry: A retail company could recommend specific items to customers based 

on their individual shopping preferences. Amazon could recommend specific books based 
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on their interest, from its start, capturing reams of data on all its customers; what they 

purchased, what books they only looked at but didn‘t buy, and how long they looked at 

them. Capturing customer feedback through sentiment analysis which examines customer 

confidence indices that are driven by specific data elements such as product, functionality, 

content and price; banks can judge the mood of the market and decide how to best reward 

their customers. Successful execution drives loyalty and also attracts new customers. 

Although the technologies behind sentiment analysis are still maturing, many of the tools 

and techniques are advanced enough for financial services institutions to derive incremental 

value by understanding customer likes, dislikes and preferences for product and service 

improvements. 

 Forecast: Forecast of the airline tickets for predicting whether the price of an airline 

ticket was likely to go up or down, and by how much, empowered consumers to choose 

when to go for buying the ticket [6] . The system can work by taking, industry‘s flight 

reservation databases, system can make predictions based on every seat on every flight for 

most routes in aviation sector over the course of a year. The system can save consumers a 

bundle. However, the similar technique may be applied for hotel rooms, concert tickets, and 

used cars; anything with little product differentiation, a high degree of variation over a large 

scale data. 

 Financial industry: Big Data analytics for fraud detection in financial services would 

help to detect fraud in real time and proactively identify probable risks without disrupting 

service to valuable customers. The analytics would process massive amounts of structured 

and unstructured data from hybrid sources; model and algorithms would be developed to 

find patterns of fraud and anomalies to predict customer behavior. Several areas of fraud 

detection credit cards, insurance claims or surrender premium, employee related or third 

party fraud [12]. 

 

Big Data analytics help businesses to make better decisions in several areas which are described 

below. 

 Product strategy: strategies to adopt for promoting the existing or new product by 

understanding the market by going through the customer data. 
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 Targeting sales: approaches to improve the sales by targeting the probable customers. 

 Just-in-time supply-chain economics: ways of managing manufacturing systems to 

reduce waste, and lower cost, thus increasing profit. 

 Business performance optimization: methods such as productivity, process 

management, labor optimization for the survival of the firm. 

 Predictive analytics and recommendation: predictions about the new products 

marketing. 

 Real time analytics: stringent timing constraints to analyze the data for real time 

decision making. 

 Census data analysis: population analysis for governments for policy makings. 

 Health care industry: data maintenance of all the medical related information. 

 Telecommunications: transactions and logs of all the customers and log analysis. 

 Social network analysis: analysis of the behavior of the people and constructing the 

strong and weaker social networking groups. 

 Stream data mining: Data Analysis of video and streaming data. 

 Semantic and web ontology: Ontology building for relationships. 

 Customer behavior analysis: analyzing the behavior of the customers for business 

intelligence. 

 IT infrastructure optimization: maximize return on investments (ROI). 

 Churn analysis: identify the consumers/customers who are most likely to discontinue 

their business services and take necessary steps to retain their potential customers. 

f)  Web analytics: Several web sites are experiencing millions of unique visitors per day, in 

turn creating a large range of content. This can easily amount of tens of hundreds of gigabytes 

per day (tens of terabytes per year) of accumulating user and log data. Increasingly, 

companies want to be able mine this data to understand limitations of their sites, improve 

response time, offer more targeted ads and so on. Doing this requires tools that can perform 

complicated analytics on data that far exceeds the memory of a single machine or even in 

cluster of machines. 
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1.2.2 Cloud computing – back end infrastructure for Big Data  

Clouds are being positioned as the next-generation computing infrastructure platforms for 

hosting all kinds of IT and scientific applications for deploying, maintaining, managing, and 

delivery to a wider variety of personal, as well as professional applications and services. The 

internet, and several scientific experiments in several fields of science and engineering has 

spawned an explosion in data growth in the form of data sets, called Big Data, that are so large 

they are difficult to store, manage and analyze using traditional data warehousing and mining 

techniques. Apart from huge volumes, often the data generated from web logs, and scientific 

experiments becomes heavily unstructured, and streams are generated so rapidly, which needs to 

be organized and processed becomes an important factor. 

 

Figure 1.5. Cloud computing architecture 

The benefits of Cloud computing over traditional computing models include – multi-tenant, on 

demand resource provisioning, automated and self orchestrated resource creation and 

management, dynamically scalable with easy configurable tools and techniques for managing the 

infrastructures for computing, storage and networking. Clouds offers three fundamental service 

models as depicted in Figure 1.5 with  three layers of service delivery models such as 

Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and SaaS (Software as a 

Service). IaaS offers virtualized computing services for storage, compute and networking 

elements with on demand provisioning, elastically scalable and self management.  PaaS is a one 
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of three fundamental service models of Clouds that provides a platform allowing one to develop, 

run and manage applications without the complexity of building and maintaining the 

infrastructures. SaaS is a software distribution model in which applications are made available to 

the users from remotely without being installed on their local devices. These applications are 

built using PaaS model and will make use of the IaaS services. 

Clouds can be deployed in three modes such as private clouds, public clouds and hybrid clouds 

to meet the organizational requirements as depicted in Figure 1.6. Private Clouds are set up 

within the organizational boundaries firewall, to meet the users and application demands. This 

type of clouds are owned, operated and restricted to particular organizational needs, and not 

made available to the general public. Public clouds offer the infrastructure, platform and 

applications services. These are operated by a company and are made available to the general 

public as on demand pay-as-go computing subscription based services. Hybrid Clouds does the 

federation of Public and Private Clouds, with an additional infrastructure facility supplemented 

by Public Clouds as required by the organizational need. 

 

Figure 1.6. Cloud computing deployments 

Since Cloud computing technologies are into reality, to deliver compute, storage and software 

applications as services over private or public networks, and Big Data technologies demand the 

large scale dynamically scalable computing and storage resources, hence, Clouds can turn as 
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infrastructure platforms for such large scale big data explorations for intrinsic information 

extraction. 

 

1.3 Big Data computing in Clouds – Problem statement 

Cloud is emerged as service oriented computing model, to deliver infrastructure, platform and 

applications as services to the end users. As clouds are becoming reality, it is emerging as back 

end technology by enabling the archival and processing of large volumes of rapidly growing data 

for further analysis. Big Data computing demands a huge storage and computing resources for 

data organization, and processing, which could be driven by Cloud computing as under pinning 

back end technologies for the realization of Big Data Analytics for scientific and business 

applications. 

Here we discuss the challenges in Big Data computing using Clouds as large scale computing 

infrastructure facilities. We present the elements of Big Data Computing in Clouds, Taxonomy 

of Big Data and Clouds, Layered Architecture, followed by a Framework for Big Data 

Computing in Clouds. The framework addresses the several elements of the layered 

architecture. 

Here we discuss on one of the areas delineated in the taxonomy – scheduling the jobs in 

decoupled data and computing resources for Big Data applications in Clouds based on 

Data Aware Scheduling using Genetic Approach, family grouping and graph connected 

components. To this end, it presents the architecture, problem discussion, model, and problem 

solving using genetic approach, The thesis discussed the middle ware which is able to discover 

big data repositories, interface with various repositories, select the data portion for transfer based 

on the available bandwidth, group them as family, and select suitable resources in order to meet 

the application requirements, so as to achieve high throughput. . The approach is based on 

evolutionary methods focused on data dependencies, computational resources and effective 

utilization of bandwidth thus achieving higher throughputs.   

Later, we discuss the handling the image or similar kind of data on the Hadoop Distributed 

File System and MapReduce model[8] . We focus our discussion on the applications for which 

the data overlap among the adjacent blocks is mandatory. To meet those requirements, we 

propose an extended model of HDFS and MapReduce called XHAMI, which offers a high 
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level APIs for data organization and processing of single large volumes of images using 

distributed file systems and MapReduce programming models. 
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1.5 Thesis Contributions 

This thesis makes several contributions towards Big Data computing environments in Clouds 

with a taxonomy, architectural framework, discusses the gap analysis,  and identifies two key 

elements of Big Data computing in Clouds infrastructure such as Scheduling and large scale data 

intensive organization and problem solving for scientific analysis. These are as follows. 

 

1. The thesis discusses the key concepts behind Big Data computing on Clouds. It compares 

Big Data Clouds with technologies such as Data Clouds, Storage Clouds and Cluster based Big 

Data computing setups. Discussed on how Big Data and Cloud technologies, that each has to 

complement and support for large scale data handling and processing for both scientific 

computing and business analytics. The objective of this exercise is to understand, how Big Data 

computing and Cloud computing are converging, to evolve as new generation technology.  

http://www.buyya.com/papers/XHAMI-Cloud2015.pdf
http://www.buyya.com/papers/XHAMI-Cloud2015.pdf
http://www.buyya.com/papers/XHAMI-Cloud2015.pdf
http://www.buyya.com/papers/XHAMI-Cloud2015.pdf
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2. The thesis provides a comprehensive taxonomy that covers aspects of Big Data Clouds, 

underlying elements, Integrated Big Data Access Network, gap analysis and future research 

directions. Here, identifies the key components of Big Data and Clouds technologies such as 

Scheduling, and data organization and processing. 

 

3. The thesis presents the layered architecture and framework for Big Data Clouds, which is 

generic enough to accommodate different components and maps well onto the architecture of 

Clouds. Illustrates the underlying components. identified the two key components in the 

framework such as scheduling of data intensive applications using both data push and pull 

models, followed by data organization and processing of the data intensive applications using 

data intensive MapReduce models.  

 

4. Discussed the significance of Big Data computing in Earth Observation System (EOS) 

and Remote Sensing Big Data Clouds as one of the case study for supporting the proposed 

architecture and our methodologies. 

 

5. The thesis presents a scheduling model for effectively scheduling the jobs onto computing 

resources by effectively utilizing the underlying bandwidth. The model takes into account 

application execution times, replicated data sites, and computing capability to achieve higher 

throughputs. The proposed model is compared with match making and other heuristic 

techniques. Developed architecture, and the model for Data Aware Scheduler using 

evolutionary genetic algorithm and graph connected components for scheduling data intensive 

applications in the decoupled storage and computing infrastructure setups. Discussed how this 

scheduling model differs from the conventional compute push models like MapReduce, and 

illustrated the significant role of Data Aware Scheduler in scheduling the scientific applications 

which majorly demand data push to the computing node rather computing function push to the 

data node. Developed a mathematical model using data commonality for the jobs (called as 

family job) and available network bandwidth for parallel chunks of data transfers for achieving 

high throughputs while scheduling the data intensive jobs. The model is simulated using 

CloudSim Toolkit using virtual data hosts and virtual clusters, and to meet the requirements of 
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the scheduling aspects, substantial enhancements were incorporated for CloudSim toolkit to 

support the features such as data replication, bandwidth awareness, job grouping etc. 

 

6. Demonstrate a model for Big Data Image processing scientific computing applications for 

which data overlapping is the primary and essential requirement. Developed a methodology and 

high level programming APIs over Hadoop Distributed File System (HDFS) and extended the 

conventional MapReduce models called ―XHAMI – Extended Hadoop and MapReduce 

Interface for Big Data Image Processing Applications in Cloud Computing 

Environments‖.. XHAMI discusses several key elements of data organization in the Hadoop 

distributed file system, for image processing applications where overlapped data is the primary 

requirements and discusses the development for several image processing spatial filters for 

scientific applications. XHAMI presents a high level data organization model, programming 

APIs and extended MapReduce functions for image processing applications. The thesis also 

discusses how XHAMI could be extended for similar kind of image processing domain 

applications where overlapped data is among the functions is essential requirement. 

1.2 Thesis Organization 

The rest of the thesis is organized as follows.  

Chapter 2 presents an over view of data intensive technologies in traditional data warehousing, 

mining and Big Data technologies. It discusses about the CAP theorem with ACID and BASE 

properties to differentiate Big Data technology with the traditional data models. It also discusses 

relevant computing paradigms such as Cloud computing and its deployment models followed by 

taxonomy of Big Data computing technologies.  – derived from publications 1. 

 

Chapter 3 presents an architecture and framework for Big Data computing in Clouds 

infrastructure. It discusses the several elements of the framework, an integrated Cloud and Big 

Data computing platform, and illustrates gap analysis in Big Data technologies. The chapter 

identifies the key elements of the framework such as scheduling the Big Data applications in 

Clouds infrastructure and also addressing the extended data intensive computing models for 

Distributed File System. – derived from publication 1. 
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Chapter 4 discusses Data Aware scheduling model for solving data intensive applications in 

Clouds infrastructure. It presents the problem statement, motivating applications such as Remote 

Sensing Big Data in Clouds for Earth Observation Systems (EOS), and addresses Data Aware 

Scheduler, its architecture, workflow and mathematical model based on data and bandwidth 

parameters. – derived from publication 2. 

 

Chapter 5 presents, evolutionary based genetic approach for solving data intensive applications 

using Data Aware Scheduler based on family grouping using graph connected components. It 

presents the problem formulation for chromosome representation, fitness functions, and 

scheduling algorithm. It also discusses the simulation and results using CloudSim toolkit, and 

illustrate the extensions made for CloudSim toolkit for addressing the Data Aware Scheduling. It 

also illustrates the comparison results of the performance of family Vs non family scheduling 

and other heuristic techniques – derived from publication 2. 

 

Chapter 6 discusses XHAMI- an extension of MapReduce models for data intensive scientific 

computing along with the data organization models for Image processing domain applications. It 

presents the data model and extended function with APIs for MapReduce computing on Hadoop 

Distributed File System (HDFS). It discusses the results with the performance benefits of 

XHAMI over traditional. Distributed file system and MapReduce computing models. – derived 

from publications 3 and 4. 

 

Chapter 7 presents conclusions and future research directions. 
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Chapter 2  

 

Literature Review – an overview and 

related technologies 

This chapter provides a general overview of Big Data Clouds that covers topics such as key 

concepts, relevant paradigms, taxonomy of Big Data computing, Layered architecture, 

Convergence of Cloud computing and Big Data computing. This chapter presents an analysis of 

the differences between Big Data Clouds, and other technologies such as Data Clouds and 

Storage Clouds. It ends with a discussion on the convergence between Cloud computing as back 

end technologies and Big Data is being the computing over back clouds, emerging as Big Data 

Clouds – a new generation service oriented Big Data Analytics platform. 

 

2.1 Big Data Vs Traditional Data Models 

Big Data computing environment consists of applications that demand and produce large amount 

of data from collection and analysis respectively, sizes increasing from several Tera bytes (TB) 

to Peta bytes (PB) and beyond. The data is organized as Raw, Object file systems, and are 

typically stored at geographical distant apart storage repositories, and are offered as services by 

Cloud providers using web services. The data could be replicated over geographical locations for 

high availability and effective access so as to minimize the I/O latencies. The data is accessed 

via APIs offered by providers, or low level distributed programming APIs offered by the 

underlying technology, in the case of cluster based distributed file system.  

 

In the context of Big Data Clouds represent the providers who offer the data as service through a 

several set of APIs and Meta data search mechanisms, to retrieve data of interest. Apart from 

this, they also offer such data replicated sites/clouds for effective access. Computing Clouds 

refer the providers, those who offer computing infrastructure on demand. These computing 

resources either could be physical or virtual infrastructure. The computing infrastructure either 
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could have been established prior for the applications, or could be dynamically provisioned 

based on the application requirements. 

 

Big Data refers large scale data architectures, and facilitate tools addressing new requirements in 

handling data volume, velocity, and variability. Traditional databases (data warehousing) assume 

data is organized in rows and columns and employs data cleansing methods on the data while the 

data volumes grow over a time period, and often lack on handling such large scale data 

processing. Traditional Data base / warehousing systems were designed to address smaller 

volumes of structure data, with the predictable updates and consistent data structure, that mostly 

operate on single server and lead to operational expenses with the increased data volume. 

However, Big Data comes in a variety of diverse formats with both batch and stream processing 

in several areas such as geospatial data, 3D data, audio and video, structured data, unstructured 

text including log files , sensor data and social media. Below, we discuss the properties of 

traditional database (Data Warehousing) and Big Data.  

 

Bill Inmo [13]  described data warehousing as subject oriented, integrated, time-variant, and 

nonvolatile collection of data, and helping analysts in decision making process. Data warehouse 

is segregated from the organization‘s operational database. The operational database undergoes 

the per day transactions (On Line Transaction Processing – OLTP) which causes the frequent 

changes to the data on daily basis. Traditional databases typically addresses the applications for 

business intelligence, however, lack in providing the solutions for unstructured large volumes 

rapidly changing analytics in business and scientific computing. The several processing 

techniques under data warehouse are described below.  

o Analytical processing involves analyzing the data by means of basic OLAP (Online 

Analytical Processing) operations, including slice-and-dice, drill down, drill up, and 

pivoting.  

o Knowledge discovery through mining techniques by finding the pattern and associations, 

constructing analytical models, performing classification and prediction. These mining 

results can be presented using visualization tools. 

Big Data addresses the data management and analysis issues in several areas of business 

intelligence, engineering and scientific explorations. Traditional databases segregate the 
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operational and historical data for operational and analysis reasoning, which are mostly 

structured.  However, Big Data bases address the data analytics over an integrated scale out 

compute and data platform for unstructured data in near real time. Figure 2.1 depicts several 

issues in Traditional data (Data warehousing OLTP/OLAP) and Big Data technologies which are 

classified into major areas like infrastructure, data handling and decision support software as 

described below.  

 

Figure 2.1. Big Data Vs Traditional Data (Data Warehousing) models 

 

 Decision support / intelligent software tools: Big Data technologies address various decision 

supporting tools for searching the large data volumes and constructs the relations and extract 

the information based on several analytical methods. These tools would address several 

machine learning techniques, decision support systems and statistical modeling tools. 

 Large scale data handling: rapidly growing data distributed over several storages and 

compute nodes with multi-dimensional data formats.  

 Large scale infrastructure:  scale out infrastructure for efficient storage and processing. 

 Batch and stream support: capability to handle both batch and stream computation. 

 

Table 2-1 illustrates properties of Big Data Vs Traditional Data Warehousing computing. 

 

 

 

 

 

Big Data

Large Scale Data Handling

•Rapid Velocity

voluminous data

•Un / Semi Structure Data

•Data Scaled to multiple

Storage Services

Decision Support / Intelligent

Software

•Machine Learning

•Natural Language

Processing

•StatisticalProcessing

•Predictive Analysis

•In Memory Analytics

Large Scale Infrastructure

•Massively Dist ributed

System

•Scalable architecture

•Commodity Hardware

Traditional 

Data( Data 

Warehousing)
Data base Handling

•Organized Structured

Data, mostly relational

•File System spread on

a single system or a

cluster of nodes

Transaction Oriented for operational

and historical data

•Query Languages

•OLTP , OLAP

•Data warehousingtools

•Decision support tools

Small / Medium Scale

Infrastructure

•Transaction Oriented System

•Meta data /records dist ributed

overmultiple storage nodes



 

22 
 

Table 2-1. Traditional Data warehousing Vs Big Data issues 

S. no Property Traditional Data Warehousing Big Data specific issues  

1 data volume Data is segregated into 

operational and historical data. 

Applies ETL (Extract, 

Transformation and Load) 

mechanisms for processing. As 

the data volumes are increased, 

the historical data is filtered from 

ware house system for faster 

database queries. 

High volume of data from several 

sources like web, sensor networks, 

social networks, scientific 

experiments. Capable of handling 

operational and historical data 

together, which could be replicated 

on multiple storage devices for 

high availability and throughput.   

2 speed Transaction oriented and the data 

in turn generated from the 

transactions is low. 

High data growth due to several 

sources like web and scientific 

sensors streaming experiments. 

3 data formats Semi/structured data like XML 

and Relational. 

Multi structured data handling 

such as relational, and un/semi 

structured such as text, XML, 

video streaming etc. 

4 applicable 

platforms 

OLTP (Online Transactional 

Processing), Relational RDBMS. 

Big data analytics, text mining, 

video analytics, web log mining, 

scientific data exploration, and 

intrinsic information extractions, 

graph analytics, social networking, 

In memory analytics, statistical 

and predictive analytics. 

5 programming 

methodologies/ 

languages 

Query Language like SQL. Data intensive computing 

languages for batch processing and 

stream computing like map/reduce, 

NoSQL programming. 

6 data backup / 

archival  

Files / relational data need to have 

data backup procedures or 

Due to large and high speeds of the 

data growth rates, the conventional 



 

23 
 

mechanisms. Traditional data 

works on regular, incremental and 

full backup mechanisms that are 

already established. 

methods are not adequate; hence 

techniques such as differential 

backup mechanisms need to be 

explored.  

7 disaster 

recovery (DR) 

Data is replicated at several 

places to address the disaster. 

DR techniques could be separated 

from mission critical and non 

critical data. 

8 relationship 

with Clouds 

Relational Data bases/ Data ware 

housing tools as services over 

cloud infrastructures. 

On demand Big Data infrastructure 

setup, analytic services by several 

cloud and Big Data providers.  

9 data de-

duplication 

Applicable to transactional record 

deduplication while merging 

database records. 

File and block level deduplication 

mechanisms need to be explored 

for continuous growing and stream 

oriented data. 

10 System users Administrators, developers and 

end users. 

Data scientists, analytics end users.  

11 theorem 

applicable 

Follows CAP theorem [14]  with 

ACID [15] properties. 

Follows CAP theorem with BASE 

properties [16]. 

 

2.2 CAP Theorem – ACID and BASE 

Traditional databases follow ACID [15] properties, which are the primary standards for 

relational databases. However, distributed computing systems follow BASE [16] properties to 

address loss of consistency and reliability as discussed below. 

 Basically available:  This property states that, the system guarantees the data availability, 

however, during the transition/changing state the response would be either delayed or may fail 

in obtaining the requested data. This scenario is similar as depositing a check in your bank 

account, and waiting till the check goes through the clearing house, for having the funds made 

available.  
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 Soft state: The state of the system would change over time, so even during times without 

input, there may be changes going on due to eventual consistency, thus state of the system is 

always soft. 

 Eventual consistency: The system would propagate the data as it is receiving, however, will 

not ensure the consistency of the data for every transaction. The data would be eventually 

consistent, whenever it stops receiving the input.  

In 2000, Eric Brewer presented CAP theorem, also known as Brewer‘s theorem [14]  for the 

successful design, implementation and deployment of applications in distributed computing 

systems. CAP theorem states that any networked shared-data system can provide only two out of 

the following three properties mentioned below. 

 Consistency: similar to the consistency property of ACID, the data is synchronized 

across all cluster nodes, and all the nodes would see the similar data at the same time. 

 Availability: guaranteed that every request receives a response however, the request is 

successful/failed in receiving the data which has been requested would not be known. 

 Partition tolerance: single node failure should not cause the entire system to fail and 

the system should continue to function even under circumstances of arbitrary message 

loss or partial failure of the system. 

 

Figure 2.2. CAP theorem with ACID and BASE (Source: NIST [17] ) 
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Big Data system adopts Brewer‘s CAP theorem on the similar lines of BASE. CAP theorem 

with ACID and BASE is depicted in Figure 2.2. 

 

2.3 Relevant Paradigms in Big Data computing  

Cloud computing is emerged as new generation service oriented computing model to deliver the 

computing, storage and networking resources on demand, The services are offered three types of 

deployment models such as public, private and hybrid. In this section we will briefly discuss 

Cloud computing paradigm and relevant technologies that can be leveraged to create Big Data 

computing environments followed by Cloud computing deployment models. 

2.3.1 Cloud computing Taxonomy 

As more and more data is generated at a faster-than-ever rate, processing large volumes of data 

and development of data analysis software is becoming a challenge. Frederic et.al [18]  discussed 

various technologies that demonstrate how cloud computing can meet business requirements and 

serve as the infrastructure of multi-dimensional data analysis applications.  

The digital data collected from several sources like internet web, sensor networks, financial 

firms, scientific experiments of earth observation are increasing rapidly and clouds are playing a 

major role for data organization over vast hardware datacenters linked to billions of distributed 

devices [1] . As, the data volumes are growing, the skills, experience and resources to manage all 

these bits of data would require a new flexible and scalable IT infrastructure that extends beyond 

the enterprise cloud computing.  However it seems likely that private clouds and public clouds 

will be common place, exchanging data seamlessly, hence there will not be one cloud bounded 

by geography, technology, different standards and perhaps even vendor. Hence, storing, 

analyzing, and delivery of zeta bytes of content need efficient management of infrastructure and 

efficient analysis tools. 

Cloud computing is emerged as the next generation of service oriented computing to deliver 

resources on demand. Clouds are classified into public, private, and Hybrid clouds [19]  based on 

the services rendered to the users. Cloud computing consists of various tools and technologies to 

offer the resources and service the requests accordingly. The elements of clouds are 

virtualization, programming, schedulers, and offerings such as Infrastructure as a Service (IaaS), 

Platform as a Service (PaaS), and Software as a Service (SaaS). The benefits of the cloud 
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computing include; access to infinite scalable resources, effective utilization, minimal upfront 

cost and high return on investments. The taxonomy of Cloud computing is shown in Figure 2.3. 

The elements of the Cloud computing are described below. 

 

 

Figure 2.3 Cloud Computing Taxonomy 

Table 2-2. Virtualization and Infrastructure Management Technologies 

Name Provider/Technology 

Xen Xen Source 

Citrix Xen Citrix 

VMware VMware 

Open Stack Open Stack 

Eucalyptus Eucalyptus 

Hyper-V Microsoft 

OVM Oracle 

 

i) Virtualization: Virtualization is the basis of the cloud computing technologies. Virtualization 

tools also known as hypervisors enable the creation of large pools of virtual compute and 

storage thus provide applications as services on the virtualized network. Two types of 
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hypervisors exist; bare metal and hosted. Bare metal are further classified into full, para and 

hardware assisted [20] . Virtualization plays a major role in the creation of Compute Clouds 

which are intended to delivery compute power in the form of virtual machines. The major 

players in virtualization Technologies are listed in Table 2-2. 

2.3.2 Cloud computing deployment models 

Clouds fall into three types such as public, private and hybrid. Public clouds; operate over 

public networks, rendering the services to the consumers based on pay-as-go computing and 

subscription models. Private clouds; operate in the closed user community over a secure 

network and Hybrid clouds federate workloads of the private to public clouds during peak 

hours. Clouds are classified as Public, Private and Hybrid based on the services each of them 

renders. Public Clouds; provisions the resources on rent; however billing is based on the usage 

and subscriptions. Private Clouds are a closed user group virtual data centers, unlike traditional 

data centers who deliver physical resource, these clouds offer virtual machine instances, storage 

servers and software over the private network. Unlike Public clouds, Private Clouds won‘t 

follow subscription models, however QoS requirements are met. On the other hand, Hybrid 

Clouds federate. Private and Public Clouds by staging the workloads to public clouds from 

private virtual data centers as and when needed, especially during the peak hours. Public clouds 

work outside the firewall boundaries; hence data security may be a major concern. Private 

clouds work within firewall boundaries and in a secured network; hence data security may not 

be a major concern. However, Hybrid Clouds work across the firewall boundaries of the data 

center with semi secured network. Public Clouds offer resources rapidly; hence this model is 

beneficial to the organizations who would like to immediately concentrate on their product 

design without worried on infrastructure management. However, Private clouds are good if 

investment is not a major concern, however, effectively utilize and manage the resources 

nevertheless security 

 

ii) Security: The various security mechanisms needed are auditing, symmetric and asymmetric 

encryptions apart from Identity and Access Management Mechanisms.  

iii) Benefits: Clouds offer large pool of resources with effective utilization and less cost on 

infrastructure and management. 
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iv) Schedulers: Cloud computing addresses both compute and data intensive problems apart from 

the resource schedulers which deliver the dynamic resources to the user from the virtualized 

infrastructure. 

v) Properties: The resources are offered based on pay as per usage basis. Public clouds collect 

the money for the computational resources based on hourly consumption and storage based on 

per 1GB and data transfer. The multi-tenancy feature of cloud enables the effective usage of the 

shared infrastructure. 

vi) Programming Models: Cloud computing offers programming models such as Thread, Task 

and Map Reduce models to solve compute and data intensive problems. 

vii) Technologies: The technology providers of cloud computing are classified into two types, 

first, who offers tools and SDK for infrastructure setup, others offer resources over the network. 

The various cloud providers are; Amazon, Windows Azure, RackSpace and Google. The 

technology developers are Citrix Xen, VMware, Windows Hyper-V, Oracle VM etc. 

viii) Layers: Cloud computing follows a three layered architecture. The bottom layer is the IaaS 

(Infrastructure as a Service), the middle is Platform as a Service (PaaS) and the top is the 

application development layer. 

Table 2-3. IaaS technologies/providers 

Name Provider/Technology 

EC2 Amazon 

VM Role Windows Azure 

Nova Open Stack 

Xen Cloud Platform Xen Virtualization 

Eucalyptus Open Source 

 

ix) Infrastructure as a Service (IaaS): This is the bottom layer of the cloud, which is responsible 

for Compute, Storage and Network virtualization developments. 

The computation is delivered from the virtualized infrastructure. Virtual Machines are 

provisioned dynamically, which are mapped to the physical infrastructure. The machines can be 

created on demand, can be migrated easily across the servers. The advantages are effective 
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utilization of the resources, minimizes the upfront costs and management of the infrastructure is 

easier. The various Compute Cloud offerings are shown in Table 2-3. 

x) PaaS (Platform as a Service): The middle layer of cloud computing technologies which offers 

application development tools, schedulers, APIs for running applications which can run on the 

infrastructure. Example PaaS systems include: SalesForce.com for on demand CRM, 

GoogleApp Engine, and Aneka platform for cloud applications development. 

 

xi) SaaS (Software as a Service): It is concerned with the delivery of applications services. 

Example SaaS applications include: Cloud Drive, Google Docs, On Demand CRM, gaming, 

Face Book and Twitter for social networking.  

Clouds are broadly classified into three types of deployment models, based on the services they 

render to the users, and the network in which they are connecting. The three types of Cloud 

computing deployments are Public, Private and Hybrid. 

a)  Public Clouds: The resources are offered as services based on the pay-as-go subscription 

models. Users can make provision the services and pay according to the usage or 

consumption of the resources. 

b)  Private Clouds: Clouds setup within the enterprise within the firewall boundaries for 

their own usage. These clouds are not accessible from the outside network and hence 

they are more secured.  

c)  Hybrid Clouds: These clouds are federation of public and private clouds.  

 

2.4 Data Intensive Scientific Computing 

CloudStor [21] is a data intensive computing in the Cloud for serving large scientific data sets to 

explore new strategies and technologies by investigating applications involving remote-sensed 

LiDAR data, in conjunction with the Open Topography [22] Project. Data Grids were developed 

for scientific collaborative study for LHC CERN [23] particle accelerator experiments. BioGrid 

[24] project works on the single data source and generates huge amount of data that gets 

distributed across the geographical regions. Virtual Observatory [25] project integrates existing 

independent sources of data for data exploration. Srikumar et.al presented elements of Data 



 

30 
 

Grids with focus on data transportation, data replication and resource allocation and scheduling 

[26].  Ranganathan et.al presented decoupled computation and Data for scheduling Distributed 

Data Intensive applications in the grid environment [27] . Changjun Hu et.al [28]  discussed 

Data Cloud Model for Management and Sharing of Material Science Data.  

David Tracey et.al [29]  discussed a holistic architecture for IOT, Sensing Services and Big 

Data with the using Constrained Application Protocol (CoAP) with Hadoop HBase [30]  data 

store. Amazon Web Services (AWS) offering Hadoop Big Data as a Service over Amazon 

computing infrastructure [31] . Rackspace is offering Hadoop Big Data platform over their 

private clouds, with the choice of managing Big Data platforms with the choice of storage 

devices, platforms, architectures and network designs [32] .  

HPCC (High Performance Computing Cluster) [33] also known as DAS (Data Analytics 

Supercomputer), is an open source, data-intensive computing system platform. HPCC platform 

incorporates software architecture on commodity computing clusters to provide high 

performance for big data applications, with parallel batch data processing (Thor), high 

performance online query applications using indexed data files (Roxie), and data-centric 

declarative programming language called ECL [34].Previous works on scheduling in Data Grids 

[27] [37] have been more concerned with the relationship between job assignment and data 

replication based on computation and data proximity. Mohammed et.al [38] discussed a Close-

to-Files algorithm, searching the entire solution space for a combination of computational and 

storage resources for minimizing the processing time with the restriction of one dataset per job 

for execution. 

Srikumar [39] described scheduling the distributed data intensive applications on global grids 

based on a set coverage approach for cost and time minimizing problems. This approach is 

based on the availability of both computation and data resources; however, data transfer from 

replicated sites and the selection of efficient computing nodes for minimizing the execution 

times are not addressed.  

Big Data computing frameworks such as Apache Hadoop [40] is an open source 

implementation for MapReduce scheduling methods; the examples are Capacity [41], and 

Throughput [42]. Fair Scheduler [43]  is a pluggable group scheduler where in each group gets 

equal time slots for computation. Capacity Scheduler is similar to FIFO within each queue, but 
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limiting the maximum resources per queue. Throughput Scheduler reduces overall job 

completion time on heterogeneous cluster by actively assigning tasks to computing nodes based 

on the server capabilities. Shared Scan Schedulers S
3
[44] allows sharing the scan of a common 

file for multiple jobs arriving at different time intervals thus improving the performance of 

multiple jobs which are operating on a common data file. Here, we discuss a scheduling 

methodology, where computational resources and data storages are decoupled with the data 

replicated over storage repositories which are geographical dispersed. Here, the problem is 

focused on grouping the jobs based on the data requirements, and the objective is to minimize 

the total makespan considering both computational resources and communication bandwidth 

effectively. 

2.5 Big Data Taxonomy 

Several years the organizations have captured transactional structured data using traditional 

relational data bases and used transactional query processing [4] [45]  for the information 

extraction. This traditional way of computing exploited data patterns rather than the whole data. 

Later the decisions were made by retrospective justifications based on patterns of business 

operations or scientific experiments. In recent years, technologies are evolving to perform the 

investigations on the complete data which is becoming possible due to the lower costs and 

improvements in data capture, data storage and  data analysis enabling the organizations to store 

the captured data from several sources like blogs, social media feeds, audio, video and scientific 

experiments. The options to store and process the data have expanded dramatically using 

technologies such as map reduce and in-memory computing [46]  with highly optimized 

capabilities for different business and scientific purposes. 

Due to the advancements in storage capacity, data handling and processing tools, the analysis of 

data can be carried out in real time or close to real time, acting on full data sets rather than on the 

summarized elements, leveraging tools and technologies enough to address the issue. In addition, 

the number of options to interpret and analyze the data has also increased, with the use of various 

visualization technologies. All these developments represent the context within which ―Big 

Data‖ technology is placed. The benefits of the Big Data systems are described below. 

 Provides handle for large volumes of un conventional information, together with traditional 

relational data. 
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 Allows to deal frequently, with rapidly changing  information structures. 

 Gain business value from unconventional information like weblogs, application logs, social 

media, etc. 

 Capability to run analysis on unstructured data. 

 Support of cost effective complex data processing and analysis using commodity hardware. 

 

Figure 2.4. Big Data Taxonomy 

Figure 2.4 depicts the taxonomy of Big Data and its elements are discussed below. 

i) Big Data Dimensions 

Big Data is characterized by volume, velocity, variety and veracity.  

ii) Analytics - Application Areas 

Analytics is the process of analyzing the data using statistical models, data mining techniques 

and computing technologies. It combines the traditional analysis techniques and mathematical 

models to derive information. Basically, Analytics and Analysis performs the same function, 
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however, analytics is the application of science to analysis. Big Data Analytics refers to a set of 

procedures and statistical models to extract the information from a large variety of data sets. A 

few major Big Data Analytics application areas are discussed below. 

 

 Text Analytics 

Text Analytics [47]  is the process of deriving information from text sources. These text sources 

are forms of semi-structured data that include web materials, blogs and social media postings 

(such as tweets). The technology within text analytics comes from fundamental fields including 

linguistics, statistics and machine learning. In general, modern text analytics uses statistical 

models, coupled with linguistics theories, to capture patterns in human languages such that 

machines can ―understand‖ the meaning of texts and perform various text analytics tasks. These 

tasks can be as simple as entity extraction or more complex in the form of fact extraction or 

concept analysis.  

 In Memory Analytics 

In memory analytics [46]  is the process which ingests the large amounts of data from a variety 

of sources directly into the system memory for efficient query and calculation performance. In-

memory analytics is an approach to querying data when it resides in a computer‘s random access 

memory (RAM), as opposed to querying data stored on physical disks. This results in vastly 

shortened query response times, allowing business intelligence (BI) applications to support faster 

business decisions.    

 Predictive Analysis 

Predictive analysis [48]  is the process of predicting future or unknown events with the help of 

statistics, modeling, machine learning and data mining by analyzing current and historical facts. 

 Graph Analytics 

Graph analytics [11]  studies the behavior analysis of various connected components, especially 

useful in social networking web sites to find the weak or strong groups.  

 Web Log Mining 
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Web Log mining is the study of the data available in the web. This involves searching for the 

texts, words and their occurrences. One example for web log mining is searching for the words 

and their frequencies by Google Big Query Data Analytics [49]  uses Google Big Query platform 

to run on the Google cloud infrastructure. 

 

iii) Big Data Tools  

NoSQL database management systems (DBMSs) are designed for use in high data volume 

applications in clustered environments. They often do not have fixed schema and are non-

relational unlike the traditional SQL database management system (also known as RDBMS). 

Because they do not adhere to a fixed schema, NoSQL DBMS permit more flexible usage, 

allowing high speed access to semi-structured and unstructured data. Relational databases are 

based on relational algebra, which is based on set theory. Relationships based on set theory are 

effective for many datasets, however, where there is parent-child or distance of relationships are 

required; set theory is not very effective. In other words, relational databases will perform poor 

on the key-value pairs and where more data context is needed. Hence, several NoSQL 

programming tools and databases are increasing which are mostly based on graph theory to solve 

several data formats like key-value pairs, document databases, column family/big table 

databases, and graph databases. The brief descriptions of the tools are as below. 

 Key-Value Stores: Key-value pair (KVP) tables are used to provide persistence management 

for many NoSQL technologies. The concept is; the table has two columns- one is the key; the 

other is the value. The value could be a single value or a data block containing many values, the 

format of which is determined by program code. KVP tables may use indexing, has tables or 

sparse arrays to provide rapid retrieval and insertion capability, depending on the need for fast 

look up, fast insertion or efficient storage. KVP tables are best applied to simple data structures 

and on the Hadoop Map Reduce environment. Examples of key-value data stores are Amazon‘s 

Dynamo [50]  and Oracle‘s Berkeley DB [51] . 

 Document Oriented Database: A document oriented database is a database designed for 

storing, retrieving and managing document oriented or semi-structured data. The central concept 

of a document oriented database is the notion of a ―document‖ where the contents within the 

document are encapsulated or encoded in some standard format such as JavaScript Object 
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Notation (JSON), Binary JavaScript Object Notation (JSON) or XML. Examples of these 

databases are Apache‘s CouchDB [52]  and 10gen‘s MongoDB [53] . 

 Column family/big table database: Instead storing key-values individually, they are 

grouped to create the composite data; each column contains a row of data. This is useful for 

streaming data such as Web logs, time series data coming from several devices, sensors etc. 

examples are HBase[30]  

 Graph database: A graph database contains nodes, edges and properties to represent and 

store data. In a graph database, every entity contains direct pointers to its adjacent element and 

no index look-ups are required. A graph database is useful when large-scale multi-level 

relationship traversals are common and is best suited for processing complex many-to-many 

connections such as social networks. A graph may be captured by a table store that supports 

recursive joins such as Big Table and Cassandra [114] . Examples of graph databases include 

Infinite Graph [54]  from Objectivity and the Neo4j open source graph database [11] . 

iv) Technologies 

Big Data technologies majorly address data organization and computing. In the data 

organization, file organization plays a major role. The several technologies for Big Data file 

systems are described below. 

a. File System 

File system is responsible for the organization, storage, naming, sharing, and protection of files. 

It makes use of the indexing mechanisms such as inode, FAT etc., and directory services to 

arrange files into hierarchical structure. The major services offered by file systems are; 

read/write calls for the data retrieval and storage, access privileges for security. In general, file 

systems are classified into two types; local and remote or distributed. Local file systems 

organizes the files onto the local disk storages and are interfaced to the system directly, however, 

remote file systems organize the data onto the remotely located storage devices and offers a 

degree of transparency for access. 

Big Data file management is similar to distributed file system, however the read/write 

performance, simultaneous data access, on demand file system creation, efficient techniques for 

file synchronizations would be major challenges for design and implementation. The goals in 
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designing the Big Data file systems should include certain degree of transparency to the user as 

mentioned below. 

 Distributed access transparency: Unified directory services, clients are unaware that files 

are distributed and can access them in the same way local files are accessed. 

 Location transparency: A consistent name space encompassing local as well as remote 

files without any location information. 

 Concurrent access and transparency: consistency and coherence, with all the clients have 

the same view of the state of the file system. This means that if one process is modifying a 

file, any other processes on the same or remote systems that are accessing the files will see 

the modifications in a coherent manner. 

 Failure handling: The application programs and the client should operate even with the 

few components failures in the system. This can be achieved with some level of replication 

and redundancy. 

 Heterogeneity: File service should be provided across different hardware and operating 

system platforms. 

 Scalability : The file system should work well in small environments from one machine 

to bigger  number and also scale gracefully to huge from one hundred nodes to tens of 

thousands of nodes. 

 Replication transparency: To support scalability, we may wish to replicate files across 

multiple servers. Clients should be unaware of this. 

 Migration Transparency: Files should be able to move around without the client‘s 

knowledge. 

 Support fine-grained distribution of data: To optimize performance, we may wish to 

locate individual objects near the processes that use them. 

 Tolerance for network partitioning: The entire network or certain segments of it may be 

unavailable to a client during certain periods (e.g. disconnected operation of a laptop).  The 

file system should be tolerant enough to handle the situations and applies the appropriate 

synchronization mechanisms. 
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Big Data File system could be broadly classified into two three categories as mentioned 

below. The features of these three file systems are similar; however they differ in the way 

they are served to the clients or application programs. 

 Object based storage: Offer the services through web service calls such as REST/HTTP 

calls. Examples are Amazon S3 [67] , Open Stack Swift [68]  Google drive, Sky Drive, Drop 

box etc. 

 Block Storage: Network Level exposure through SCSI/ATA/iSCSI mounted to the server 

via operating system. Users can format and partition to create their own file systems. E.g. 

include SAN (Storage Area Networks) e.g. Amazon Elastic Block Storage [56] , Luster 

[107]  Windows Distributed File System [108] , Google File System (GFS)[106] , IBM‘s 

GPFS [109] , Andrew File System (AFS) [110]  etc. 

 Network File storage: These file systems mounted to the system that are accessed via 

network such as Network File System (NFS), Server Message Block (SMB), CXFS etc. 

b. Open Source Tools 

Several open source tools for Big Data computing are described below. 

 Apache Hadoop [40] : An open source reliable, scalable and distributed computing platform. 

It offers a software library and framework that allows distributed processing of large scale 

distributed processing of large data sets across clusters of computers using simple programming 

models. It is designed to scale up from single servers to thousands of machines, each offering 

local computation and storage. Rather than relying on hardware to deliver high availability, the 

system is designed to detect and handle failures at the application layer, so delivering a highly 

available service on top of a cluster of computers, each of which may be prone to failures. 

 Spark [121] : Apache Spark is a fast and general engine for large scale data processing. This 

covers Shark SQL, Spark Streaming, MLib machine learning and Graphx graph analytics tools. 

Spark can run on Hadoop YARN [40]  cluster manager, and can read any existing Hadoop data. 

 Storm [133] : Distributed real time stream oriented computing for real time analytics, online 

machine learning, continuous computation, distributed RPC, ETL etc. Storm topology 
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consumes streams of data and processes those streams in arbitrarily complex ways, 

repartitioning the streams between each stage of the computation. 

 S4 [134] : Platform for processing continuous data streams. S4 is designed specifically for 

managing data streams. S4 apps are designed combining steams and processing elements in real 

time. 

c. Commercial tools  

Google offers Big Query [49]  to operate on Google Big Tables [113] . Amazon supports Big 

Data through Hadoop cluster and also NoSQL support of columnar database using Amazon 

DynamoDB [50] . RackSpace [112]  offers Hadoop framework on their storage platforms. 

Aneka [20]  offers a data intensive platform to build map Reduce applications on .NET 

platform. 

v) Programming Models and Schedulers 

Several programming models such as data intensive, stream computing, batch processing, high 

performance/throughput, query processing, column oriented data processing described below. 

 Map Reduce: data intensive programming model, with high level constructs for Map and 

Reduce functions. Map function does the assignment of the programming code/logic to the 

system to perform the computation on the data; whereas, Reduce function aggregates all the 

results of the map function by shuffling/sorting to generate the final result. Map Reduce 

programming is a type of recursive programming model to operate the similar logic on 

multiple distributed data sets, the examples include Hadoop Map Reduce [28] . 

 Thread/Task Data Intensive Models: Thread programming model is used for high 

performance applications, where in the logic demands more number of cores or high end cores 

for processing within the reasonably less time. Task Programming models are applied for 

workflow programming models, e.g. Aneka [62]  

 Machine learning tools: new generation of machine learning tools for decision making. 

Few tools available are Hadoop Mahout [111]  

 Big Query Languages: new generation of Query Languages, examples are Google Big 

Query [49]  
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Big Data computing majorly need to address two types of scheduling mechanisms; Query 

scheduler and Data Aware Scheduling. Query schedulers addresses several mechanisms for 

querying the data managed by Big Data systems, Data Intensive schedulers addresses several 

computing mechanisms, examples include Capacity scheduler [41] , and Fair scheduler [43] . 

 

vi) Big Data Security 

Big Data project can uncover tremendous value for an enterprise, by revealing customer buying 

habits, detecting or preventing fraud, or monitoring real time events. However, a poorly run Big 

Data project can be a security and compliance nightmare, leading to data breaches. Big Data 

must be protected, to ensure that only the right people have appropriate access to it. Big Data 

security addresses several mechanisms for large scale high volume rapidly growing varied forms 

of data, analytics and large scale compute infrastructure. As, the data volumes and compute 

infrastructures are very large, traditional methods of computing and data security mechanisms, 

which are tailored for securing small scale data and infrastructure, are inadequate. Also, the use 

of large scale cloud infrastructures, with a diversity of software platforms, spread across large 

networks of computers, also increases the attacks. The onion model of defense for Big Data 

Security is depicted in Figure 2.5. 

 

Figure 2.5. Big Data Security Onion Model of Defense 
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 Distributed Computing Infrastructure: Mechanisms for providing security while data is 

analyzed over a multiple distributed systems.  

 Large Scale Distributed Data:  Privacy preserving mechanisms, encryption techniques for 

the data stored on large scale distributed systems. 

 Analytics Security: Offering security to the applications and delivery of the right 

analytics tools to the end users. 

 Users Privacy and Security:  Confidentiality, Integrity and Authentication mechanisms to 

validate the users. 

Big Data security refers to both data and infrastructure security, protecting the information 

throughout the data life span, from the initial creation on through the final disposal. The 

information must be protected while in motion, rest and processing. During its life time, 

information would pass through many different processing systems, demanding protection at 

each stage. Based on the security elements to be provided, Big Data security could be classified 

into three major areas and the related functions are described below. 

a)  User Level Security 

Authentication, authorization and access control mechanisms for computing, and data access 

needs to be addressed based on the user privileges and roles, such as, Identity Access 

Management (IAM) Controlled access for all the users and resources in an automated fashion. 

This ensures that access privileges are granted according to policies and all individuals and 

services are properly authenticated, authorized and audited. Poorly controlled identity access 

management processes may lead to regulatory non-compliance because if the organization is 

audited, management will not be able to prove that company data is not at risk for being misused. 

Granular Access Control like Role Based Access Control (RBAC) approach permits access to 

the system resources based on their role policies to authorized users. 
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Figure 2.6.Big Data Security Components. 

b)  Privacy preserving computing  

In the Big Data environment, there is a great potential for advancements in several fields like 

healthcare, education, financial/economic growth, social and scientific studies, however, there 

are huge risks involved regarding the loss of control over private data. The risks include 

sacrificing data integrity, losing the anonymity, profiled and giving up competitive edge when 

everyone has access to the privacy information. Hence, several methods, needs to be developed 

to obtain the benefits without/minimizing the risks without losing control on the private data. 

Several such methods are explained below. 

a. Computing on encrypted data: Computing on the encrypted data without being 

decrypted. Since, the data is too large; decryption would be a costly affair. The 

technologies for computing on encrypted data includes- 

i. Fully Homomorphic Encryption (FHE) [122] [123] : computing on cipher text and 

generating an encrypted result which, when decrypted, matches the result of operations 

performed on the plaintext.  
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encrypting. This generalizes several existing primitives including Identity-based 

encryption (IBE) and Attribute-based encryption (ABE).  

iii. Program obfuscation [125] : Method of creating obfuscated source or machine code 

that is difficult for humans to understand. 

b. Multiparty secure computing [126] : parties jointly compute a function over their 

inputs, while at the same time keeping these inputs private. 

c. Analytics security: Security mechanisms for the analytics offered as services over Big 

Data cloud platforms. 

c)  Data security at rest and move 

Secure communications plays a major role in encrypting the data and user identity over the 

network, which is broadly addressed by cryptography mechanisms as discussed below. It is said 

that, there is a need to design a cryptographically secure communication framework. Sensitive 

data is routinely stored unencrypted in the cloud. The main problem to encrypt data, especially 

large data sets, is the all-or-nothing retrieval policy of encrypted data, disallowing users to 

easily perform fine grained actions such as sharing records or searches. Mechanisms such as 

Attribute Based Encryption procedures alleviates this problem by utilizing a public key 

cryptosystem where attributes related to the data encrypted serve to unlock the keys. On the 

other hand, there can be unencrypted less sensitive data as well, such as data useful for 

analytics. Such data has to be communicated in a secure and agreed-upon way using a 

cryptographically secure communication framework. Cryptographically enforced secure 

communication: To ensure that the most sensitive private data is end-to-end secure and only 

accessible to the authorized entities, data has to be encrypted based on access control policies. 

Specific research in this area such as attribute-based encryption (ABE) has to be made richer, 

more efficient and scalable. Access Controlled secure communication: Data communication 

based on levels of access mechanisms Processing on encrypted data: Full and partial 

homomorphic encryptions needs to be evolved to process on the encrypted data without fully 

decrypting. 

Many Big Data use cases in enterprise settings require data collections from many end-point 

devices. For example, a security information and event management system (SIEM) may collect 
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event logs from millions of hardware devices and software applications in an enterprise network. 

A key challenge in the data collection process is input validation; validating that a source of 

input data is not malicious and filtering out malicious input from our collection. Input validation 

and filtering is a daunting challenge posed by non-trusted input sources, especially with bring 

your own device (BYOD) model. Both data retrieved from weather sensors and feedback votes 

sent by an iPhone application share a similar validation problem. A motivated adversary may be 

able to create ―rogue‖ virtual sensors, or spoof iPhone IDS to rig the results. This is further 

complicated by the amount of data collected, which may exceed millions of reading/votes. To 

perform these tasks effectively, algorithms need to be created to validate the input for large data 

sets. Several elements of Big Data security are described in Table 2-4.
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Table 2-4. Big Data security elements 

S.no Security element Description 

1 System Security  Big Data setup would be either confined to an enterprise or could be a large collection of 

several enterprises, social and scientific collection of disparate sources distributed system. 

2 Privacy, Security and 

Confidentiality 

Not revealing private and confidential information to unauthorized users. For example, in a 

mailing system, secrecy is concerned about preventing the users from finding out the 

passwords of other users. 

3 Integrity Improper modification of information. It is concerned with trustworthiness. For example, 

in a pay roll system integrity addresses the issues by preventing the employee not to update 

their salary details. 

4 Availability Availability of information resources. For example, the data should be made available as 

and when it is needed. An information system which is not available, when we need it, is at 

least as bad as none at all 

5 Authentication  and  

Authorization 

Preventing resource access to the one who are not empowered to use. 

6 Data Base and File 

Security 

Role based access mechanisms. 

7 Privacy Preserving Data 

Mining 

Data sharing among the users thus protecting privileged information for mining 

applications. 

8 Secure Computing Multi-party computation preventing information disclosure of the party to another party. 

9 Data Auditing Auditing mechanisms for data integrity which could be offered by neutral third party 

providers. 



 

45 
 

10 Access Control Access restrictions to the data at several levels.  

11 Data Security at Rest and 

Move 

Encryption mechanisms for the data at transfer as well for the data at rest. 

12 Analytics Security Preventing unauthorized access to applications thus retaining integrity.  

13 Copy Right Protection Protecting Intellectual Property (IP) rights for the data Protection among several 

coordinated and content owners. 

14 Data Migration across 

multiple domains / Inter 

Cloud Migration 

Protecting the data and managing applicable policies. 

15 NoSQL Security Security mechanisms need to be evolved for column, document, key-value and graph data 

models. In order to maintain fast access to data, NoSQL databases come with little built-in 

security. They have what‘s called BASE (Basically Available, Soft state, Eventually 

consistent) properties; rather than requiring consistency after every transaction, the data 

base just needs to eventually reach a consistent state. 

16 Data validation and 

filtering 

Finding the data which is needed further so as to minimize the expenditures of storage and 

computational cost. 
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2.6 Selected Big Data technologies 

Big Data is gaining popularity and several open source and commercial technologies are under evolving to address Big Data Analytics 

either cloud or physical infrastructure. These include frameworks, scheduling models, file systems, NoSQL column oriented 

databases, machine learning tools and libraries. In this section we describe the technologies and present the table to describe the 

comprehensive list of the technologies.  Table 2-5 summarizes the list of Big Data technology providers. 

 

Table 2-5. Big Data Technologies. 

Provider Name Type File System Tools Description 

Apache Hadoop Open source Hadoop Distributed 

File System(HDFS) 

HBase 

Map Reduce 

 

A framework for Big Data. Cluster 

setup with replication of the data 

across the nodes. It is a good tool to 

address the applications which demand 

computing for processing large 

volumes of data. 

Amazon  Elastic Map 

Reduce(EMR) 

Commercial HDFS Map Reduce Hadoop cluster offered over Amazon 

Infrastructure. 

Amazon DynamoDB Commercial Amazon S3 & 

Simple DB 

Column oriented 

key/value pair  

NoSQL implementation over Amazon 

Cloud. 

Google Big Query Commercial Google File 

System(GFS) ( latest 

version is called 

Colossus) 

Map Reduce Data Analytics for the websites of your 

interest. 
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Open Stack Hadoop Cloud  Open source 

and 

enterprise 

support 

HDFS Nova, Swift Hadoop on virtual private Cloud 

infrastructure. 

Panasas ActiveStor Commercial PanFS High performance 

Parallel File System. 

Simulation and collaborative design. 

Manjrasoft Aneka Commercial Windows distributed 

file system. 

Map Reduce. PaaS model for the development of 

.NET based map reduce applications 

development over cloud infrastructure 

[66] , [104]  

MongoDB(

formerly 

10gen) 

MongoDB Open source 

and 

enterprise 

support 

Uses BSON (Binary 

JSON) serialization 

format to store the 

documents and make 

remote procedure 

calls. Uses GridFS 

file systems for 

storing document 

files larger than 

16MB [127]  

Document oriented 

database over a cluster of 

nodes with indexing and 

searching capabilities. 

Applies NoSQL queries. 

Full index support, replication and 

high availability, auto sharding 

(horizontal scaling), query, 

Map/Reduce functionality with 

flexible aggregation and data 

processing. 
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Google  Google 

Spanner 

Commercial Temporal multi 

version database, 

schematized semi-

relational tables. 

NewSQL Globally distributed database by 

Google, the successor to Big Table 

[128] . Data is stored in schematized 

semi-relational tables; data is 

versioned, and each version is 

automatically time stamped with its 

commit time; old versions of  data are 

subject to configurable garbage-

collection policies; and applications 

can read data at old timestamps. 

Spanner supports general-purpose 

transactions, and pro-vides a SQL-

based query language. 

Apache CouchDB Open source Works on the base 

operating file system 

Document databases with 

NoSQL based on Erlang 

implementation. 

CouchDB is ideal for web applications 

that handle large amounts of loosely 

structured data.  

Neo 

Technology 

Neo4j Open source 

and 

enterprise 

support  

Cross platform 

works on the 

operating file system 

Graph database Embedded disk based fully 

transactional java persistence engine 

that stores data structured in graphs 

rather than in tables. 
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EMC
2
 Scale-Out 

NAS for Big 

Data Systems 

Commercial OneFS Support for petabytes of 

storage and supported by 

REST, object based, 

block and file level 

access with data life 

cycle tier tools. 

Unified storage technology and 

operating system with integrated 

system of file system, volume manager 

and data protection schemes. 

Storm Apache Opensource Stream/In memory Stream computing Similar to S4 , software for streaming 

data-intensive distributed applications 

 

Table 2-6. Hadoop ecosystem 

Sno Tool Name Description 

1 HDFS Distributed redundant file system for Hadoop 

2 HBase [30]  A key-value pair/column oriented database system that runs on HDFS scaling to billions of rows  

3 Hive [78]  A system of functions that support data summarization and ad hoc query of the Hadoop Map Reduce 

result set used for data warehousing. A Data warehouse system with SQL like access 

4 Pig [103]  High Level language for managing data flow and application execution in the Hadoop environment 

5 Mahout[111]  Machine Learning system implemented on Hadoop. A Library of machine learning and data mining 

algorithms 

6 Zookeeper[40]  Centralized service for maintaining configuration information and naming, providing distributed 

synchronization and group services with coordination 

7 Sqoop [40]  A tool designed for transferring bulk data between Hadoop and structured data stores such as relational 

databases 
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8 Ambari Deployment, configuration and monitoring tool 

9 Flume Collection and import of log and event data tool 

10 HCatalog Schema and data type sharing over Pig, Hive and MapReduce 

11 MapReduce A Parallel computing programming model on server clusters using HDFS 

12 OoZie Orchestration and Work flow Management System 

13 Whirr Cloud agnostic deployment of clusters 

14 Default 

scheduler – 

FIFO 

Firs In First out, scheduler with priority support. Processes one job at a time 

15 Fair scheduler Pluggable Scheduler provided from Face book. Group scheduling, however each group gets equal time 

slots 

16 Capacity 

scheduler 

Pluggable Scheduler provided by Yahoo. Similar to FIFO scheduling within each queue, however limits 

the maximum resources per queue. 

 



 

51 
 

 

2.7 Discussions and Summary 

In this chapter we have discussed conventional data models and its short comings in handling 

large scale, variety forms of data, followed by, emerging technologies such as Big Data 

computing and their relevant paradigms computing models for solving several applications in 

scientific, social networking and business domains. We have discussed Cloud computing 

technologies which are emerged as large scale elastically scalable infrastructure technologies as 

services based on demand. We have discussed taxonomy of Cloud computing, its deployment 

models, and several applications of business, scientific and social networking applications that 

Clouds are addressed as service oriented computing. We have presented taxonomy of Big Data 

computing, and illustrated several elements of it such as application domains, data dimensions, 

File Systems, available open source technologies and their tools, security aspects of Big Data, 

Scheduling approaches for data intensive applications, and programming models such as 

MapReduce, Task and Thread models.  In the next chapter, based on the survey we have 

presented in this chapter, we will discuss the architecture and framework for Big Data 

Computing in Clouds. Later, we will identify gaps in both Clouds and Big Data technologies, 

and identify two key components of the framework such as scheduling data intensive 

applications in Clouds, and data organization/processing models for scientific computing over 

distributed file system using MapReduce computing models for image processing applications.  
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Chapter 3  

 

Big Data Clouds Framework – A Proposal 

This chapter introduces Big Data Clouds architecture and Framework for large scale data 

organization, processing on dynamically scalable Clouds infrastructure. First, we describe the 

layered architecture followed by framework and present the elements that are necessary for 

processing big data over Clouds. We illustrate the functions of each of the layers and how they 

are distinguished from the Cloud computing layered architecture. Based on the described layered 

architecture, we identify the key elements and describe the framework. In the framework, we 

identify the several key components, and describe the functions of each of the components those 

are mentioned.  

3.1 Layered Architecture 

Big Data Cloud architecture is similar to cloud computing architecture and adopts the four 

layered model, the layers from bottom to top are cloud infrastructure, Big Data fabric layer, Big 

Data platform and Big Data analytics layer as shown in Figure 3.1. 

 

 

Figure 3.1. Big Data Cloud Reference Architecture. 

Cloud Infrastructure (CI)

(Compute, Storage and Network)

Big Data Fabric

(Big Data Management, Access and Aggregation)

Big Data Platform as a Service (BPaaS)

(Data Platform APIs, Scheduling, Analytics 

Programming Environment etc.)

Big Data Analytics Software as a Service

(Analytics Applications)



 

53 
 

The cloud infrastructure layer handles the scalable dynamic infrastructure that could be delivered 

either from clouds or from physical infrastructure. The second layer, Big Data fabric layer; 

addresses the several tools for data management, access and aggregation. The third layer is the 

platform layer which addresses the tools and technologies for data access and processing, 

programming environments for analytics development and scheduling etc. the top layer is the 

Big Data analytics Software as a Service offers several analytics. The brief functional description 

of each of the layers is described below. 

 Cloud infrastructure (CI): Large scale management of dynamic and elastic scalable large 

infrastructure of compute and storage resources as services. Virtualization technologies are 

used for on demand provisioning of the resources based on SLAs and QoS parameters. The 

services rendered by this layer are  

a. Offers the large scale infrastructure to setup Big Data platform on demand.  

b. Dynamic creation of virtual machines for Big Data computing. 

c. Large scale offerings for File/Block/Objected based storages on demand. 

d. Ability to move the data seamless way across the storage repositories. 

e. Able to create the virtual machines and auto mount the file system to the compute 

node. 

f. Information defined data storage, access and retrieval mechanism. 

 Big Data fabric: This layer addresses standard tools and APIs to access storage, compute 

and application services. This layer offer standard interoperable protocol APIs to connect 

multiple cloud infrastructures as specified in the standards [65].  

 Big Data Platform as a Service (BPaaS):  The third layer from bottom which offers 

core middle platform services to access storage/data services, compute based on SLAs 

and QoS. This layer consists of middleware management tools such as schedulers, data 

management tools such as NoSQL tools for data processing. Big Data Platform layer 

address development of platform tools and SDKs to address Big Data Analytics. 

 Big Data Analytics:  Big Data analytics offered as software services from the Big Data 

cloud providers. Users can quickly use this analytics software without investing on 

infrastructure and pay only for the resources consumed. This layer organizes the 



 

54 
 

repository of software appliances and quickly deploys on the infrastructure and delivers 

the end results to the users, the pricing would be computed based on the usage, quality of 

service provided etc. 

3.2  Framework 

Big Data clouds architecture is similar to cloud computing model, however, the services offered 

by Big Data layers are specific to the development of Big Data analytics. Cloud computing 

providers offer the infrastructure and platform tools for the usage of the infrastructure. Also, they 

may offer software services readily available for usage. However, Big Data clouds are specific to 

the development of analytics for information mining, using Cloud computing technologies in due 

course. Major layers, sub layers and each layer how related to layered reference architecture is 

shown in Table 3-1. 

Table 3-1.  Layers mapped to reference architecture 

S. No Layer name Sub layers Reference layer of 

architecture 

1 Infrastructure  Resource and Interface 

layers 

Cloud Infrastructure (CI), 

Big Data fabric 

2 Big Data Platform  Foundation, Runtime, 

Programming modeling 

layer, SDK 

Big Data platform as a 

Service 

3 Applications Analytics, Big Data 

services 

Big Data Analytics 

software as a Service 

 

Big Data cloud layered architecture from bottom to top, layered components, interaction among 

the layers are described below. Layers are further classified into sub layers based on the specific 

services offered by each one of them.  Components of Big Data clouds in each of the layers are 

shown in Figure 3.2. 
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Figure 3.2. Big Data Cloud Layered Components. 
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storage and data services either on physical or virtual environments. Physical environment is 

similar to data centers without virtualization enforced and is similar to cluster setup in the local 

network. In the case of virtual environments, it could be a private/public/hybrid cloud provider 
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and virtual environments is similar, however, virtual environments offer high utilization of the 

resources, on demand resource provisioning and highly scalable, however, endure performance 

degradations due to enforced virtualization technologies. Below, services offered by resource 

and interface layers are described in brief. 

 

3.2.1.1 Resource layer: Resource layer handles both physical and cloud resources as discussed 

below. 

a) Physical resources: non-virtualized compute and storage resources delivered via local 

data centers or in-house available. The resources may be accessed via standard protocol and 

networking interfaces.  

b) Virtualized/Cloud resources: The resources are delivered by several cloud providers 

like compute, storage and application clouds. Compute clouds offers several scalable 

machine instances on demand, Storage / Data Clouds offers either storage repositories or data 

online, and sometimes both. Software services are similar to applications offered as services 

over the cloud. The cloud infrastructure may be either from private clouds or public clouds, 

and sometimes both. However, the access mechanisms and security implementations will 

differ depending on types of clouds were chosen. Below, we illustrate the functions of 

Compute, Storage/Data Cloud and Software Services. 

 

i)  Compute Cloud: large pool of compute machine instances to serve the demands. 

Compute machines could be created at run time and the data needed for analytics purpose 

may be made available dynamically. 

ii)  Storage/Data Cloud: Storage clouds offers a pool of the storage space where in files 

required for analytics could be placed. However, Data Cloud offers the storage space 

along with the Data necessary for compute.  Such data or storage could be offered as 

Block Storage or Object Storage. 

iii)  Service Cloud: Several analytic tools which can be provisioned on demand. 
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3.2.1.2 Interface Layer 

Interface layer facilitate open standards, protocols based on web and interoperable services. The 

major challenges include; interoperability between heterogeneous hardware and storage 

infrastructure, and migration/access across various cloud providers. Interface layer offers 

standard interfaces [65]  to access Compute resources, Storage resources and application 

services. This layer could be classified into four components based on the services rendered, 

such as networking interface protocols, cloud compute management interface (CCMI), cloud 

Storage/Data management interface (CS/DMI) and Cloud application services interfaces 

(CASI). The detailed description for each of the components is given below. 

a)  Network Interface: This interface allows several physical devices access through 

standard networking interfaces and protocols. This includes accessing the compute instances 

via terminal services or web consoles. The storage devices can be mounted to the local 

compute machine instances or access via separate networks such as NFS protocols.  

b)  CCMI (Cloud Compute Management Interface): functional interfaces that 

applications will use to create virtual machine nodes on demand. As part this interface the 

client will be able put a request to the Compute Cloud Infrastructure and will be able to 

create or destroy the virtual nodes. There is a need to evolve interoperable system interfaces 

for accessing the compute machine instances across various public providers of compute 

machine instances. 

c)  CS/DMI (Cloud Storage / Data Management Interface): A functional interface that 

applications will use to create, retrieve, update and delete data elements from the Cloud. As 

part of this interface, the client will be able to discover the capabilities of the cloud storage 

offering and use this interface to manage container and the data that is placed in them. In 

addition, Metadata can be set on container and their contained data elements through this 

interface. This interface is also used by administrative and management applications to 

manage container, accounts, security access and monitoring/billing information, even for 

storage that is accessible by other protocols. The capabilities of the underlying storage and 

data services are exposed so that clients can understand the offering. Various CDMI 

interfaces  are 
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o Amazon S3: Amazon S3 stands for Simple Storage Service, stores the data objects 

within the buckets, comprised of a file and optionally any metadata that describes that file. 

To store an object in Amazon S3, the file can be uploaded to the bucket and permissions 

can be set on the object as well as on the metadata. Buckets are the containers and there can 

be more than one bucket. 

o  Open Stack Swift:  Object Based Data Storage system exposes the storage via REST 

API and stores a large amount of unstructured data at low cost. 

d)  CASI (Cloud Application Services Interface): set of Web Services that exposes the 

published applications through standard web protocols. This also involves application 

virtualization methodologies to serve only the needed applications as services from the cloud 

providers.  

3.2.2. Big Data Platform layer 

This is a middleware layer that is further categorized into four sub layers based on the 

functionality, they are, foundation layer, runtime layer, programming modeling layer and 

software development kit (SDK) layer. The Foundation layer offers mechanisms for resource 

management, data storage, data management, security and virtual appliance. The Runtime layer 

addresses several scheduling mechanisms and job management mechanisms. The Programming 

Modeling layer employs several programming standards; the SDK layer offers Application 

Programming Interfaces (APIs) for programming in several languages. The detailed description 

of the layers is given below. 

3.2.2.1 Foundation layer: This is the core part of the middle ware layer, which interfaces with 

the resource layer.  This layer mainly classified into components such as resource management, 

data management, appliances, data storage and security. 

a) Resource management:  Resource management consists of the following components.  

o Management services: The services to manage the underlying physical resources. 

These can be middleware services to track of the available resources. The management 

services include applications to monitor the resource utilizations for data and compute 

such as computing resources availability, storage availability etc. 
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o Hardware profiling: The information services to retrieve the information regarding 

the available resources such as RAM, Network Bandwidth, compute load etc. 

o Dynamic resource provisioning: Facilitates the resources at run time from the 

virtualized resources. 

b) Data management: This mainly deals with data formats, discovery, and publishing 

mechanisms. 

 Data Formats: Data formats service provides to store the data in various types of forms 

which include structured, unstructured and semi structured. Search mechanisms services offer 

various query mechanisms to search for the data of interest, Sharing allows various access 

privileges. 

 Data transfer/migration: The mechanisms either pull or push the data for processing, 

automatic syncing of the files to the Big Data systems. It also contains tools that are necessary 

for migration of the existing structured/unstructured data to cloud Big Data workloads. 

 Data discovery mechanisms: Several mechanisms to find the location of the data. This can 

be performed with the query mechanisms or looking for the meta data contents. Without data 

discovery mechanism, data infrastructures are merely a storage area, which would retrieve the 

data from the location you know, however searching for a data which you don‘t know the 

locations, would throw new challenges for designing search engines. Unlike Google like search 

engines where data is discovered in the web based on a key word, however, in scientific 

environment keyword-based search may be insufficient. Users may want to be able to search 

for number ranges in specific measurements, geospatial locations etc. For this reason, there 

could be a number of data discovery mechanisms in a single data infrastructure, and they may 

be driven by specialized user requirements. Discovery needs to be established as an application 

level mechanism to enable users to build their own discovery tool for search, analysis and 

visualization. Several filters could be required when choosing and describing data.  Dedicated 

discovery mechanisms for specific communities need to be evolved. Technologies for data 

discovery might include visualization, structural query mechanisms, semantic query etc. 
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 Data publication mechanisms: Data Publication allows to publish the data and its 

characteristics via standard web interfaces and finally storage and indexing allows the storage 

and indexing mechanisms of the Big Data in the storage clouds. 

 Data indexing: Indexing mechanisms are needed to speed up the process of accessing the 

data. Several Data Indexing mechanisms need to be explored for data redundancy, replication. 

 Query process: Data Processing mechanisms and standard Query languages. 

 

c) Appliances: As compared to ―do it yourself‖ self-configuration, appliances eliminates the 

time consuming efforts of choosing and configuring hardware, determining the proper software 

components, integrating and tuning the overall configuration. 

 Machine image: The repository of machine instances for creating the systems on demand. 

Virtual Machine Manager and Machine Image Instance, the former, is the scheduler; manages 

the life cycle of the virtual machines such creation and destroy and the later is Machine Image 

Instances are basically Image Templates for creation of virtual machines by virtual machine 

manager. 

 Big Data appliances: The repository and management of Big Data Appliances for specific 

Big Data Analytics. 

 

d) Data storage 

 Replication procedures: Several replication procedures for duplicating the data onto 

multiple storage repositories for data redundancy, high availability and high performance Data 

Transfer. Data Replication allows Big Data Replication for efficient processing and backup 

mechanisms, Security component allows secured way of data access and transmission. Data 

Replication enables some of the most important functions like backup and restore, application 

performance and data integration. There is a need to replicate Big Data repositories that were 

previously confined to a single location. Tervela [69]  accelerates Big Data Replication by 

efficiently duplicating to multiple sites with ease through one of two methods such as 

Changed data capture or parallel replication.  Big Data Replication [61]  address the issues 

like; 
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i. Providing extremely rapid access to data from multiple sources, even in a mixed 

workload. 

ii. Reducing the drag on multi-way joins for complex queries. 

iii. Accelerating reporting for faster analysis, review and decision making. 

iv. Backup and Disaster Recovery. 

 

 Distributed File System: File system which stores the data onto multiple distributed 

storage repositories, maintains the indexing of the data and offers various logical views of the 

entire data which is available within the system.  

3.2.2.2 Runtime layer: This layer is concerned about workload handling with the help of 

several scheduling mechanisms. Examples include Thread, Task, Map Reduce, Data and 

network aware scheduling, batch job management based on the type of computation needed. 

Below, we briefly, discuss the functions and characteristics of several types of schedulers. 

 Thread scheduler: Thread Scheduling exploits the available cores/processors 

effectively by utilizing either local system or remote system resources. Local threads 

execution could use shared memory, however, for remote execution; objects migration 

would take place. Thread scheduling, is applicable for problems that are recursive, 

multiple data streams but applied on a single instruction. Thread scheduler determines the 

best resources for running the several spawn independent threads on available 

resources/cores. Thread Scheduling addresses high performance computing problems. 

 Task scheduler: Distributed processing of tasks on several computing nodes. Task 

Scheduling solves the high throughput problems by determining the best available 

resources for execution.  

 Map Reduce scheduler:  Type of Data Aware Scheduling which maps the compute 

process to the data nodes. After the completion of the process, the results are consolidated 

onto a single node for final result.  

 Data Aware scheduler: Jobs execution, knowing the best available storage locations 

for execution or transfer the data to compute nodes from the best available store 

repositories. The process could depend on computing the best replicated site that 
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minimizes the compute time. This may apply Data Parallelism to pull/push the data to the 

compute nodes. Map Reduce is an example of Data Aware Scheduler. 

 Data Compute and Bandwidth aware Scheduler: Considering compute, network 

and data to solve the data intensive scheduling.  The techniques applied for this type of 

scheduling are 

i. Parallel Data Extractor: Parallel Data Extractor is the high performance Data 

Transfer module. It enables extraction of transfer of data from storage clouds to the 

compute node. This module pulls the data from the storage repositories by establishing 

multiple parallel lines between storage clouds to compute resources. Parallel Data 

Extractor identifies possible data storage resources and identifies the amount of data to 

be pulled from each of the storage repositories.  

ii. Scheduler: The scheduler which effectively maps a set of jobs to the computing 

nodes, the scheduling would depend on heuristic approaches. Big Data schedulers 

could pick up the best computing nodes or may quickly clone the virtual machines and 

perform the computation by applying effective data aware scheduling techniques.  

3.2.2.3 Programming modeling Layer: Several programming models to solve the Big Data 

Problems. This may include; coarse/fain grain programming models for thread, tasks and Data 

Intensive. It also addresses data handling and query programming models for NoSQL databases.  

SDK layer: The programming APIs to solve Big Data Problems. This could be Java, C, C++, 

and C# based APIs. 

3.3 Application / Analytics layer: Analytics and Application services are the parts of this 

layer. Analytics layer offers several statistical, deterministic, probabilistic, machine learning 

techniques. Services layer, hosts the end user applications. The brief description of analytics and 

services layer is described below: 

 Analytics layer: This layer is responsible for management of APIs and development of 

several data analytics specific to domain. This layer offers SDKs; APIs & Tools for the 

analytics development and also responsible for several management Interfaces 

development for monitoring the Big Data environments are Statistical Models, Graph 

Analytics, Business Analytics, Text Analytics and Data Analytics. 
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 Services: Application Services readily available for the end users. This could use 

underlying analytics and scheduling mechanisms to run on the infrastructure. 

 Users: The several users of the system are Developer: Big Data general purpose 

application designer. Data Scientist: Data Analysts who design the Analytics 

applications. This could be Business Analytics, Scientific Explorations etc. End Users: 

Analytics users of the system. 

3.4 Elements of Big Data Clouds 

Big Data differs from the traditional data in several ways, in which the data is organized, 

processed, queried and delivered to the Data Scientists with a wide variety of analytic tools. In 

this section, we present Big Data Cloud shown in Figure 3.3 and describe several components of 

it. 

 

 

Figure 3.3. Big Data Cloud components 

i) Big Data Infrastructure Services (BDIS): This layer offers core services such as compute, 

storage and Data Services for Big Data Computing as described below. The several services 

offered by Infrastructure services are discussed below. 
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a) Basic Storage Service: Provide basis service for data over physical and virtual 

infrastructure, such as create, delete, modify and update. Provide unified data model for all 

kinds of data.  

b) Data Organization and Access Service: Data Organization provides management and 

location of data resources for all kinds of data, and selection, query transformation, 

aggregation and representation of query results, which leads to exploitation of RDF-RDBMS 

semantic querying to select data of interest. 

c) Processing Service: Mechanism to access the data of interest, transfer to the compute 

node, efficient scheduling mechanism to process the data, programming methodologies, 

various tools and techniques to handle the variety of Data Formats. 

d) Data Formats Support: The service should provide mechanisms to handle various types of 

data for processing and aggregating the information from multiple sources. Types of data to 

support are 

 Relational Data such as Tables/Transaction/Legacy Data 

 Text Data: Web Documents such as HTML 

 Semi-Structured Data: XML 

 Graph Data: Social Network Semantic Web(RDF) 

 Streaming Data: Video 

The elements of BDIS are described below. 

 Compute Clouds: On Demand provisioning of compute resources, which could expand or 

shrink based on the analytics requirements.  

 Storage Cloud:  Large volume of storage offered over the network.  The storages offered 

include; file system, Block Storages and Object Based Storage. Storage clouds offer to create 

file system of choice and also elastically scalable. Storage Clouds can be accessed based on the 

pricing models which are usually based on data volumes, transactions/data transfer. The several 

services offered by Storage Clouds are described below. 

o File Storages: which were raw file systems similar to the direct disks attached to the 

storage. The examples include SkyDrive, Dropbox, Google Drive, and Amazon Cloud Drive. 
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These are useful to store the backup and useful to access the data from the local system from 

anywhere. 

o Block Storages: These are the storages which can be mounted to the system and allows 

formatting the raw file system and creating a one of your own. These works through internet 

protocols with high bandwidth networks. Examples include Amazon EBS (Elastic Block 

Storage)], Open Stack Block Storage. 

o Object Based Storage: The file system offered as container over the network. The files can 

be accessed only through web service calls such as HTTP/REST. Examples are Open Stack 

Swift Storage [68] , and Amazon S3 [67] . 

 Data Clouds: Data Clouds are similar to Storage Clouds, however, unlike storage space 

delivery, they offer data as a service. Data Clouds offer tools and techniques to publish the data, 

tag the data, discovery the data and process the data of interest. Data Clouds operate on domain 

specific data leveraging the Storage Clouds to serve Data as a Service based on four step of 

―Standard Scientific Model‖ [64]  such as data collection, analysis, Analyzed reports and long 

term preservation of the data.  

ii) Big Data Platform Services (BDPS): This layer offers schedulers, Query mechanisms for 

Data retrieval, Data Intensive Programming models to address several Big Data Analytic 

problems. 

iii) Big Data Analytics Services (BDAS): Big Data Analytics as Services over Big Data Cloud 

infrastructure. 

Big Data cloud is an emerging technology to quickly build analytics over cloud infrastructure 

without worrying about the infrastructure setup and platforms to deploy Big Data workloads. Big 

Data clouds offers several tools and technologies to quickly transform the organizations data 

workloads into a Big Data computing workloads and offers platforms for statistical, predictive 

analytics tools as services helping organizations to understand and make use of the underlying 

data for intrinsic information extraction. Big Data clouds offer three major services; Big Data 

setup without investment on the infrastructure, on demand platforms tools to access the data of 

the organization or data services from several data providers and on demand data platform tools 

for the design and development of application specific analytics. 
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Big Data clouds could be classified into the following types based on the setup and  the services 

they render to the users. 

 Public Big Data clouds: offered by public providers to setup Big Data computing on the 

publicly available infrastructure and the cost is based on the consumption. The examples 

include Amazon Big Data clouds, Google Big Data clouds etc. This type of clouds enable 

to setup owns Big Data environment on demand based on pay-as-go models. 

 Private Big Data clouds: Big Data clouds setup by the organizations for their own 

purpose. These are not accessible to the outside networks. Groups which are part of the 

private network only have an access to this setup. 

 Hybrid Big Data clouds: Federation of public and private Big Data clouds either for 

data sharing or scalability. 

 On premise Big Data Clouds – Dedicated: Big Data setup in the private/ local data 

centers such as Big Data setup over  cluster of nodes. 

 Big Data access networks and computing platform: These are the special type of Big 

Data setups where Data scientists could work on building the analytics by accessing the 

Big Data from several data providers using Data APIs offered, and computing 

infrastructure offered by compute providers. 

Big Data computing examines the large scale data to extract useful information for decision 

making uncovering hidden patterns and unknown correlations, over a large scale infrastructure 

and storage resources for solving analytics. Big Data and Clouds ―Big Data Cloud‖ offers an 

environment for Data Intensive application developments over a large scale, distributed compute 

and storage infrastructures.  In this section Big Data Cloud characteristics and advantages, 

followed by how it is different from other Cloud technologies like Storage Cloud and Data Cloud 

are described. The major characteristics of Big Data Cloud are described below. 

 Large scale distributed compute and data storages: wide range of computing facilities 

with seamless access to scalable storage repositories and Data Services. 

 Information defined data storage: Meta data based data access instead of path and 

filenames. 
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 Distributed virtual file system: File system could be dynamically created and mapped 

to the compute node for data intensive computing. 

 Seamless access of computing and data: Transparent access to large scale data and 

compute resources. 

 Dynamic creation of data storages and compute resources: Able to handle dynamic 

creation of virtual machines and able to access large scale distributed data sources. 

 High performance data and computation: Compute and data should be high 

performance driven. 

 Multi dimension data handling: Support for several forms of data with necessary tools 

for processing. 

 Analytics platform services: able to develop, deploy and usage Analytics over the 

environment. 

 High availability of computing and data: Replication mechanisms for Compute and 

Data. 

 Platform for data intensive computing: Support for both traditional and emerging Data 

Intensive computing models and scalable deployment and execution of applications. 

Big Data Cloud is an infrastructure that unifies distributed compute and data sources in order to 

provide computing and data management support for a wide range of Data Analytics. The 

different types of computing support offered by Big Data Clouds are described below. 

 Data and compute intensive Platform: offers high performance application delivery 

with large scale compute and data services, with several programming models. 

 On demand computing support: Computing could be delivered as and when needed. 

 Data as a Service: Data Services could be priced and delivered on demand. 

 On Demand Platforms for Analytic: Analytics could be made available on line. Big 

Data users could use Analytics on demand basis. 

 Multi Dimension Data Addressing: Supports several forms of data like text, audio, 

video including Relational data support. 
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 On Demand Big Data Cloud Platform: customize Big Data configuration with the 

choice of storage devices, platforms, easy pricing and simple scalability and setup your 

own Big Data setup: offers tools and platform to setup your own Big Data computing 

network in short time rapidly. 

Big Data computing consists of applications that produce, manipulate or analyze variety forms of 

data in Peta bytes and beyond. The data is organized as either collections or data sets and are 

stored on mass storage systems and are offered via access networks. Big Data technology offers 

several data platform services offered by various service providers like social media, scientific 

experimental data, sensor networks, business studies. Figure 3.4 depicts Integrated Cloud and 

Big Data access networks for Big Data analytics which provide data platform and Cloud 

infrastructure integrated as unified Big Data computing Platform.   

 

Figure 3.4. Integrated Cloud and Big Data Compute Network. 

The several Data content from several sources like social media, web logs, scientific studies, 

sensor networks, business transactions etc. are growing rapidly. Deriving useful information for 

decision making from such large data, fusing the information from several sources would be a 

challenging task.  
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The elements of Big Data access network are; Data services, Big Data computing platform, Data 

scientist and Computing Cloud described below. 

 Data and Platform Services: Several data providers who offer both data and platform 

services to access the data. For example; Google Data APIs (GData) [132]  provide a simple 

protocol for reading and writing data on the web for several services like Content API for 

shopping, Google Analytics, Spreadsheets and YouTube. 

 Big Data Computing Platform: Platform for Big Data managed services. 

 Data scientist: Analytics developers. 

 

 Storage Cloud Vs Data Cloud Vs Big Data Clouds 

Big Data Clouds offer services for the development of analytics over a large scale dynamically 

scalable compute and storage infrastructures. As, there are already Data and Storage Clouds that 

offer services for data and storage related technologies over cloud infrastructures. To understand 

Big Data Clouds, and how this is different from Storage/Data Clouds, we briefly describe key 

properties of these technologies in Table 3-2. 
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Table 3-2. Comparison for Storage, Data and Big Data Clouds 

S.no Property Storage 

Cloud 

Data Cloud Big Data Cloud Remarks 

1 Service offered Storage as a 

Service 

Data as a 

Service 

Big Data as a Service; 

Compute, Data and 

Analytic services. 

Platform for Analytics 

development, access to 

Big Data networks 

Storage clouds offers space to store the data 

mostly for backup purposes. Data Clouds are 

similar to Storage clouds and offer services to 

access the data through customized APIs. Big 

Data clouds provide a platform to data 

storage, access and application development 

for decision making on a large stream of 

rapidly increasing data. 

2 Raw storage Applicable Applicable Applicable Storage offered for data archival purposes. 

3 Object storage Applicable Applicable Applicable Object storage stores the data on a large 

cluster of storage devises. Object containers 

allow accessing the data through web services 

such as REST/HTTP and allow mounting as 

the disk to the clients. Automated 

synchronization methods are developed to 

sync the data to the cloud storages. 

4 Block storage Applicable Applicable Applicable Large scale images repository. 

5 File System for 

data organization 

Not 

applicable 

not applicable Applicable Storage clouds and Data clouds enable to 

access the data from remote repositories. 
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and compute However, Big Data clouds addresses 

distributed file systems for data organization, 

indexing and computing. 

6 Data formats Not 

applicable 

Pre-defined 

data formats by 

the data 

providers 

Structured , 

unstructured, semi 

structured data formats 

Big Data computing addresses several 

platforms for processing several formats of 

data. Storage and data clouds may not address 

several forms. On the other side, Data clouds 

addresses only formats which are predefine. 

7 Distributed 

storage 

Applicable Applicable Applicable Cluster of storage nodes for data organization 

and scalability. 

8 Distributed file 

system 

Optional Specific to data 

providers 

Applicable Storage clouds and Data clouds offer data as a 

service but not computation, hence addressing 

file system is optional. However, Big Data 

systems should address the file system 

specific to data organization, indexing and 

syncing with the streaming data. 

9 Authentication 

and authorization 

Applicable Applicable Applicable Several mechanisms such as user name, 

passwords and token based authorization 

mechanisms. 

10 Pricing models Applicable Applicable Applicable Storage clouds pricing include the amount of 

storage space utilized or subscribed. Data 

clouds charge for the data services subscribed 
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and how much utilized. Big Data clouds 

pricing include size of the Big Data setup, 

compute infrastructure needed for processing 

and analytics offered for data exploitation. 

11 Query processing Not 

applicable 

Applicable Applicable Data clouds and Big Data clouds offer 

platforms to retrieve the data of interest with 

the several query processing mechanisms. 

12 Domain specific Not 

applicable 

Applicable Applicable Data clouds offer specific services based on 

the user requirements. For example; Google 

earth services, Open Geo Spatial Services 

offer the services for geo spatial earth data. 

Big Data clouds may also offer specific 

services, for example, Google Big Query 

offers services to retrieve statistical 

information about the web documents. 

13 Meta data 

organization 

Applicable Applicable Applicable meta data organization for storage clouds is 

about file organization, Data clouds works on 

several formats example; Open Geo Spatial 

formats, Big Data clouds needs to explore 

several meta data organization in terms of 

column oriented data bases. 

14 Mash up services Not Applicable Applicable Storage clouds may not use mash up services, 
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applicable however, Data and Big Data clouds may use 

mash up services to offer new services by the 

selection from several services. 

15 Security Storage level Data level  Storage, data, 

processing and analytics 

security 

Big Data clouds needs to address security at 

several levels compared to storage and Data 

clouds. 

16 Customized tools 

-application 

specific  

Not 

applicable 

Applicable Applicable Application specific customized tools such as 

web services, processing tools, data 

organization and retrieval tools needed for 

Data and Big Data clouds.  

17 Customized web 

services 

Optional Applicable Applicable Storage clouds may or may not offer web 

services. 

18 Replication Applicable Applicable Applicable Replication services ensure high availability 

and also effective retrieval of the data content 

by proper selection of replicated sites while 

minimizing the latency. 

19 Data discovery 

mechanisms 

Not 

applicable 

Applicable Applicable Storage clouds need to offers any tools for 

data discovery, however Data clouds offers 

web services to find the data of interest, other 

side, Big Data clouds need to explore several 

data discovery mechanisms which could be 

much more complex than services offered by 
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Data clouds. This could be due to large 

volume of data and variety forms of data 

formats and processing complexity. 

20 Processing 

capability 

Not 

applicable 

Mandatory Mandatory Big Data clouds and Data clouds offer tools 

to process the data, however, storage clouds 

need not to have processing capabilities. 

21 Data 

management 

Only file 

level 

management 

Web services 

for Data 

management  

Data indexing, query 

mechanisms to handle 

several formats of data 

effectively. 

Big Data clouds needs to explore several new 

technologies to manage the data. 

22 Schedulers Not 

applicable 

Optional Mandatory Efficient Schedulers are needed for data 

processing for different formats on distributed 

compute nodes. 

23 Data intensive 

computing 

Not 

applicable 

Optional Mandatory Big Data need to offer several programming 

tools for data intensive computing such as 

NoSQL programming models for 

unstructured data, map/reduce programming 

models for data centric operations. 

24 Data 

management 

systems 

Not 

applicable 

Applicable Applicable Database systems could be offered as a 

Service over cloud e.g., Oracle Cloud, SQL 

Azure etc., 

25 Scalability Applicable Applicable Applicable All three systems should be scalable for 
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storage and Big Data systems should be 

scalable for compute delivery. 

26 Map Reduce Not 

applicable 

Not applicable Applicable Map Reduce is a new programming language 

for data intensive applications, which is an 

emerging programming model with in Big 

Data computing. 

27 Data analytics Not 

applicable 

Not applicable Platform for data 

analytics 

Data analytics is a new generation of 

applications which combine the skills of 

computer science and mathematical domains 

to mine Big Data. 

28 Time to deliver 

data 

Optional Optional Mandatory On time delivery of the information for 

decision making is an important factor for 

Big Data. 

29 Column oriented 

database 

Not 

applicable 

Not applicable Applicable Big Data technologies need to address 

column oriented databases to handle the 

unstructured data formats. 
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3.5 Integrated Cloud and Big Data Platform - Convergence of Cloud and Big Data  

The recent advancement in the service oriented technologies  aka Cloud computing are 

delivering compute, storage and software applications as services over private or public networks 

based on pay-as-go delivery models [62]  [19] . With Cloud computing paradigm becoming a 

reality, it is serving as a key enabler for Big Data to solve data intensive problems over a large 

scale infrastructure. The integration of Big Data technologies and Cloud computing read as - 

―Big Data in Clouds‖ is an emerging new generation data analytics platform for information 

mining, knowledge discovery and decision making. 

With Big Data clouds, enterprises can save money, grow revenue and achieve many other 

business objectives in any vertical by quickly building their Big Data databases and writing 

analytics for mining the information. The benefits of Big Data clouds for the enterprises are 

mentioned below. 

 Build new applications: Big Data clouds might allow a company to collect billions of 

real-time data points on its products, resources or customers and then repackage that 

instantaneously to optimize customer experience or resource utilization.  

 Improve the effectiveness and lower the cost of existing applications: Big Data clouds 

offer services and pay as go consumption model similar to cloud services. This pricing 

model would effectively reduce both the cost of the applications development by 

minimizing the cost of development tools. 

 Realize new sources of information and build applications to gain competitive 

advantage: The information could be quickly fused from several Big Data databases and 

rapidly build applications for several platforms like hand held and mobile devices. 

 Increase in customer loyalty: Increase in the amount of data sharing within the 

organization and the speed with which it is updated allows businesses and other 

organizations to more rapidly and accurately respond to customer demand.  
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3.6 Big Data Computing Gap Analysis 

Big Data computing can be classified into four technology segments denoted by 4D‘s 

(Depository, Devise, Domain and Determine) as depicted in Figure 3.5. Below, the detailed 

descriptions for several elements under each of the mentioned category are described. 

 

 

Figure 3.5. Big Data Segments. 

A. Depository: Depository addresses issues related to data storage, organization and 

management of both structured and unstructured data from traditional storage like DAS, 

SAN/NAS to Cloud based storage architecture. Migrating from traditional file systems 

that maintain hierarchical organization using the file and folder analogy to object store 

which uses distributed data base model. Unlike traditional file system, big data storages 

addresses issues for a long-term storage system for more permanent type of static data 

can be retrieved, leveraged, and then updated if necessary. Several issues to be addressed 

are file systems for In memory databases, In memory computing, and Stream computing 

using distributed file systems over a cluster of nodes, fault tolerant data storages, 

indexing mechanisms for data retrieval, security and management issue for data access, 

data organization for several formats etc. as explained in Table 3-3. 
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Table 3-3. Depository: gap analysis and future directions. 

Key element : Gap Analysis and future directions  

1. Storage and network: 

 The unified storage systems need to be explored combining three layers of traditional storage architectures such as file 

system, volume manager and data protection into unified software layer, creating a single file system. These newer 

generation file systems should have support for wide range of industry standard protocols, including network file system 

(NFS), Server Message Block (SMB), Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), REST-based 

Object access etc.  

 Ethernet, today the mostly used network infrastructure, however, has limitation in the speeds due to its hierarchies of 

subnets connected by routers and network packets which takes exactly one path to traverse between any two points on the 

network. Newer technologies supporting multi paths for network packets to traverse between two points, such as InfiniBand 

[129]  network need to be explored for Big Data HPC analytics. 

 Large scale data warehousing systems at present are hierarchical in nature with online, near online, and tape/offline 

storage support. These systems have limitations like storage scaling, data access from several devices, and large file name 

space creation. Apart, they use custom proprietary protocols that makes impossible for mounting and accessing the data 

from several devices. Hence, there is a need to explore on new generation of file systems for big data to support for scalable 

file systems that could be accessed, mounted and queried from several kinds of devices with large scale storage capability. 

This could be achieved by scaling the storage devices horizontal over a cluster of nodes, making the file system not limited 

by file name space and open standards for data access that mostly use REST based web services. New scale out storage 

architectures for object based storages need to be developed. These architectures should scale the storage devices in 

horizontal without limited by the file name space. The challenges involve in addressing the unified storage technologies 
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with object based file systems, where in user defined metadata could be attached to the file and NoSQL query engines could 

be developed for efficient query and processing. 

 Existing cloud storage technologies support data archival for long term usage, however indexing and computations on the 

preserved data, is not supported, directly. Hence, there is a need to address better indexing support for cloud storage 

systems. This could be achieved Write Once and Read Many (WORM) object storage technologies for both long term 

archival and computation. The indexing techniques could be applied as metadata to the object or else separate data 

structures like NoSQL databases integrated with the storage could be used. 

 New WAN-based protocols needs to be investigated as the traditional WAN-based transport methods cannot move 

terabytes of data, they use fraction of available bandwidth and achieve transfer speeds that are unsuitable for such volumes, 

introducing unacceptable delays in moving data into, out of and within the clouds. 

 Big Data protection and data access at faster rate plays key role. Hence, new storage protocols need to be explored for on 

disk data encryption, privacy preserving, and query on encrypted data mechanisms with high performance rates. 

2. File system: Present file systems have built-in namespace constraints for files and directories they can store and 

manage. Hierarchical directory structures can become unwieldy, performing poorly at navigating large number of users or 

files. These file systems are managed by the operating system   and organized into folder hierarchy, which has limitations 

in searching with  limited metadata which is defined by the operating system. To envisage the additional metadata 

searching, the data is organized by databases either into relational or any other relevant data. However, Big Data file 

system needs additional metadata to be required and have access from variety forms of devices. Hence, newer file systems 

needs to be explored, such as Object based storage technologies that allow the files to assign user define metadata to the 

files and are never confined to any operating system. These could be accessed via open standards API (Application 

Programming Interface) to interact for greater application data awareness. Object based storage frameworks providing 

native support of standard object protocols like REST while also supporting de-facto cloud protocols like Amazon S3, 
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Google Drive etc. needs to be evolved. Meter based billing usage and consumption of cloud based storage for Big Data 

needs to be evolved. 

 Isolation of file systems from operating systems. This could be achieved by building file storage services for account 

management (for file access), container management (list of objects) and object management (files stored at physical 

devices).  

 The file systems should support a large petabytes of storage with a single namespace supporting by user defined metadata 

to the files. This will enable the elimination for to eliminate the need for maintaining the separate database to describe the 

metadata of the files.  

 Tools to transform the existing file systems to cloud based object storage structures needs to be developed. The 

challenges are; identifying the right tools required for data processing from a large set of available tools.  

 Tools to automatically mount the object based storage to the virtual compute nodes for analytics execution needs to be 

developed. The object mount create a super logical view of the objects located on distributed data storages with the 

metadata constructed online. 

 New data storage, access and retrieval mechanisms should enhance the current distributed file systems to retrieve the 

data based on their value, meaning and content.  Technologies such as Information Defined Data Storage complement the 

existing distributed file system to derive the value out of the data by its content and meaning but not just with names. 

 Object Based Storages for single flat name space, location independent addressing, per object user definable metadata, 

unlimited storage, user defined policies and random seek with high performance retrieval are to be developed. 

 High performance parallel data transfer with data distribution, replication and redundant mechanisms. Big Data File 

System need to be supported with Object based storage and high performance file systems. However, the present HDFS 

supports only Distributed File System. Object based storage provides the location transparency with scalability features and 

block based retrieval. Object Storage can be considered as an alternative to store large volume of image, video and audio 
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data. 

 Replication transparency needs to be developed which will ensure scalability. This could be achieved by replicating the 

big data file objects on multiple distributed storage systems and creating the clustered indexes. 

 Migration transparency for files should be able to move around without the client‘s knowledge. This could be useful to 

move across the several storage providers over several geographical regions. 

 Support fine-grained distribution of data to optimize performance by locating individual objects near the processes that 

use them. 

 Benchmarking the several big data storage systems needs to be developed considering several QoS parameters like 

objects metadata, scalability of the file systems, replication and partition across the geographical boundaries, high 

performance delivery and computation.  

 High performance, intelligent file syncing process, that could recognizes the changes and file operations (such as moves 

and renames), to avoid the unnecessary data copy over the network. 

 On demand delivery of Big Data file systems as service models over cloud technologies needs to be explored. These 

systems would create the required file systems based on QoS and SLAs between users and providers. Also, necessary 

migration tools need to be addressed for moving the on premise big data files to the cloud based big data systems which 

could be relational data or unstructured like documents, texts, videos, audios etc. 

3. Data Life Cycle Management (DLM) 

 Data life cycle addresses the data management issues at several phases of data creation, usage, sharing, storing and 

eventually archiving or disposing automatically based on policies defined within the management. BDLM (Big Data Life 

Cycle Management) systems need to be developed incorporating several user defined policies, to enable the better data 

organization and to minimize the storage costs. For e.g., the policy could be data aging,  addresses issues related to the data 

obsolete,  something like, deleting the objects those are older than 365 days, deleting objects those are created before a date. 
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Another policy could be the version management, holding only the recent versions of each object in a bucket with a 

versioning enabled. 

 There has been an explosion in the growth of data, and traditional approaches to scaling storage and processing, to reach 

computational, operational and economic limits. Hence, there is a need to intelligently manage and meet the performance 

and availability needs of rapidly growing data sets. Technologies such as automated N-tier storage migrations need to be 

investigated, that automatically and non-disruptively migrate data from one generation of a system to another to effectively 

address long-term archiving, also distributing storage among multiple data centers, either for effective recovery or to place 

content closer to the requesting users in order to keep latency at a minimum and improve response times.  This N-tier 

storage architectures could organize the data which is mostly used in lower tiers (tier1) such as Flash/SSD and migrate the 

data moving down to other tiers such as flat disks, capacity disks to tier N such as Cloud storage for backup/archival. 

4. In memory computing (IMC) systems 

 In memory computing systems or in memory Data Grids (IMDG) technologies need to be investigated that could store 

terabytes of data completely in RAM, avoiding the need for mass storage media such as hard disks. The open challenges 

include, distributing the data structures among multiple servers, storing as key/value data structure, rather than a relation 

structure, providing flexibility for application developers. 

 In-memory computing tools should work with Object storage file systems enabling the data computing faster and the 

results that could be stored making for longer duration. It also enables to query the data based on the metadata from the 

cloud storage pools and perform the object based data storage, query and object based data analysis. 

5.High Availability(HA) and Fault Tolerant(FT) Data Storage 

HA systems offer storage providing multiple internal components and multiple access points to storage resources. In other 

words, the system has a second critical component or path to data available in case something fails. This availability or 

single point of failure doesn‘t eliminate downtime. Instead, it minimizes it by restoring services behind the scenes, in most 



 

83 
 

cases before the user notices failures.  

7. Indexing for search and retrieval : Indexing multidimensional data and enabling object based retrieval mechanisms 

instead of set based needs to be developed for efficient query processing. 

7.Data access and Security :Data access and security mechanism in Big Data Clouds needs to be developed which set 

policies enabling which users get access to which original data, with protection of sensitive data that maintains usable, 

realistic values for accurate analytics and modeling on data. 

 

B. Devise–Big Data Platform Services 

This segment focused on design of new programming models for distributed computing, in-memory computing, stream computing, 

and tools to handle assorted data via query languages such as key-value pair, column oriented data, document databases etc, high 

performance data synchronization techniques, scheduling methodologies etc. This segment covers Big Data Platform tools such as 

programming models, Query Processing techniques, performance related issues, tools to process Big Data Types, schedulers, etc,. 

Currently, Hadoop and Map Reduce [28] , [70]  have become an ubiquitous framework for large scale data processing, however, Map 

Reduce, has limitations both from theoretical perspective [71] , [72]  and empirically by exploring classes of algorithms that cannot be 

efficiently implemented [73] , [74] , [75] , [76] several limitations of the Map Reduce Model over Hadoop File System are described 

below. 

Table 3-4. Device: gap analysis and future directions 

Key element :Gap Analysis and future directions  

1.Programming models :Hadoop Distributed File System and Map Reduce programming models are amenable to the 

problems where the program is recursive, however, will not fit into to solve all classes of problems specifically which are 

iterative in nature [79]  like Page Ranking Iterative Graph Algorithms, Gradient Descent  and also few engineering and 
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scientific applications like Data Product Generation [80] , [81] , [82] and DEM [83] , [84]  generation demands for a large data 

made available at the compute for processing leading data aggregation before the  execution commences. 

 New developments in the Hadoop project promise ―meta-frameworks‖ such as Hadoop NextGen YARN [40]  and other 

programming models like Spark [85] and MPI [86] , and MapReduce. 

 There has already been plenty of works within Hadoop, from database perspective; integration with traditional RDBMS [87] 

, [88] , smarter task scheduling [89] , [90] , columnar layouts [91] , [92] , [93] , [94] , [95]  embedded indexes [96] [97] , cube 

materialization [98] and efficient join algorithms [99] , [100] , [101] , [102] . 

 HDFS address small compute and large data problems. 

 NoSQL Data base Management System (NoSQL DBMS). 

And NoSQL alternatives are in pre-production versions with many key features yet to be implemented. 

 Proper indexing and efficient search tree mechanisms need to be explored to improve the response for queries. 

 Debugging tools and profilers for Map Reduce Programming model required to be investigated for Map Reduce 

programming. Currently, there are batch based without user interaction. 

 Domain specific languages need to evolve such data intensive, high performance, IOT programming etc. to solve specific 

problems in several fields of final services, business sectors, scientific explorations, sensors networks etc. 

 The analytics executed on the cloud platform are currently, mostly batch oriented without user interaction. Tools need to be 

explored to make the user jobs more interactive and get the intermediate refined answers to the queries, instead waiting till 

completion of all the jobs. 

2.Unstructured data processing :In the era of big data, good old RDBMS is no longer the right tool from many database jobs. 

NoSQL databases needs to be evolved to address several kinds of data. 

 Document, text and graph based data processing mechanisms with better indexing mechanisms need to be explored. This 

could use key value pair mechanisms with schema less data bases and map reduce functions for effectively retrieving the data 
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by processing on the cluster of machines.  

 Unstructured database systems need to be developed to bride gap between traditional databases and key value pair databases. 

These data base systems should work on object notations and perform query on multiple nodes to improve the performance. 

3. Scheduling methodologies : 

 Evolutions of new programming models for compute intensive Big Data Problem: programming models with the 

combination of Thread, Task and Map Reduce need to be devised. The current Map Reduce programming model will transfer 

the compute to the data node. Here, Compute is considered to be a small activity, when compared to Data. This model will not 

be amenable when Compute is as large as data. Hence new programming models needs to be exploited. 

 QoS based Resource Management scheduling methods needs to be developed which would work on parameters like time, 

budget, accuracy etc. 

 New HPC programming models such as high speed in memory computing, stream computing need to be worked for HPC 

Big Data Clouds for scientific applications to address data science problems with accuracy in real time. 

4.Workspace Management :Creating workspaces for Big Data analytics development in collaborative environment. These 

workspaces need to organize the source code, data etc. in sharing mode, and allow the analysts to design and develop the 

applications over cloud infrastructure. 

 

C. Domain  - Scientific, Engineering and Business 

Big Data Analytics extract information from large data for decision making. Examples include, earth observation systems, disaster 

management study, weather forecasting, simulations, engineering design problems, business intelligence applications. Apart, there is a 

need to evolve several complex applications such as monitoring historical data of a company with millions of rows of data for their 

business process improvement. Here, we say this new field as ―Data Science‖ which incorporate mathematical model, simulations, 
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visualization, decision making needs to be done for the data. Specific Analytic tools need to be evolved in all domains of science and 

engineering, business intelligence. The researchers should focus on the following activities to address the domains of data science. 

Table 3-5. Domain: gap analysis and future directions 

Key element: Gap Analysis and future directions  

1.Data Management and Supporting architectures :The current frameworks for data intensive computing such as Hadoop are 

good to solve when the compute is small, however, for larger computes, the current systems needs to be scaled. Several case studies 

need to be conducted to understand the performance of the existing frameworks, for several data science problems, like Genome 

Analysis, CFD, Earth Observation systems etc.  These case studies need to address the data management and processing issues for 

unstructured data and investigate on several computing, data migration and indexing mechanisms specific to the domains. 

2.Model development and scoring :Models need to be developed to work on the regions of data and assign the score based on the 

ranking assigned. This could enable the Analytics to pick up the most relevant data for analysis. 

3. Visualization and interaction: Visualization tools need to be developed to view the large scale data and the analyzed/processed 

complex results. This could include building reports, charts, dashboards etc. 

4.Domain specific models : 

 Domain specific analytics tools that would pick up the appropriate NoSQL databases necessary for the analytics needs to be 

explored.  

 Models to be investigated, for migration of the existing in house domain specific analytics to clouds. These models address the 

data management issues, extract, transformation and load tools for the in house data with effective indexing, processing and tools 

for analysis. 

 Open standards need to be evolved to publish analytics models as services. This would help the enterprises to quickly 

analyze the data for decision making without investing on infrastructure and analytics development. 
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D. Decision – Mining and Determining 

Big Data processing is driven by statistical and analytical models to derive information for 

decision making. Big Data is not just about the data, however, ability to solve business and 

scientific exploration problems and provide new business opportunities and thoughts. Data 

Analytic play a major role in information mining and deriving a value from the data. Currently, 

analytic systems are evolving; however, the majority of them are based on the Hadoop 

framework. Big Data Analytics frameworks should evolve to solve specific domain problem 

issues for example in the areas of predictive analysis, behavior analysis, business intelligence etc. 

In Big Data mining, several open source initiatives tools are becoming popular, as mentioned 

below. 

 Apache Mahout [111] : Scalable machine learning and data mining open source software 

which is a part of Hadoop framework. It has a wide range of machine learning and data mining 

algorithms: clustering, classification, collaborative filtering and frequent pattern mining.  

 R [115]  [116] : Open source programming language and software environment designed for 

statistical computing and visualization.  

 MOA [117] [118] : Stream data mining open source software to perform data mining in real 

time. It has implementations of classification, regression; clustering and frequent item set 

mining and frequent graph mining.  

 PEGASUS [119] : Big graph mining system built on top of Map Reduce. It allows finding 

patterns and anomalies in massive real-world graphs.  

 GraphLab [120]  : A high-level graph parallel system built without using Map Reduce. 

GraphLab computes over dependent records which are stored as vertices in a large distributed 

data graph. Algorithms in GraphLab are expressed as vertex-programs which are executed in 

parallel on each vertex and can interact with neighboring vertices.  

A few new challenges researchers can investigate are:  

  Evolve new architecture for analytics to deal with both historical and real time data at the 

same time. This could be achieved by organizing the unstructured data as N-tier system with 

effective indexing and performing the distributed queries and data intensive programming 
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techniques to analyze the historical data and compare it with the present data to derive the 

intrinsic information.  

  Statistical significance tools need to be developed to determine maximum like hood (e.g. p-

value [35] ) to determine the evidence based on the probabilities and statistics, rather on 

randomness on the data distribution. 

  Distributed Data Mining and Big Data Distributed parallel data mining algorithms and 

frameworks for unstructured large volume of data need to be investigated, to analyze the data 

quickly and provide the results summary.  Time evolving data mining techniques need 

investigated for the evolving data sets such as words, Graph analytics for social networking, 

behavior analytics, predictive analytics, earth observation geo intelligence solutions, weather 

forecasting, etc. New techniques need to be evolved which could quickly identify the portion of 

the data needs to be mined rather as a whole to quickly deliver the analysis results. Big Data 

cloud analytics services need to be developed for domain specific applications meeting QoS, 

SLAs, and budget followed by deadline constraints. Distributed Real-time, predictive and 

prescriptive analytics tools need to be evolved that could provide the interactivity to the running 

jobs, apply statistical tools to determine the information and offer the results in the real time [36]. 

 

3.7 Discussion and Summary 

In this chapter we have introduced technologies for  data intensive computing in the domains of 

Big Data,  and Cloud computing, followed by using Cloud computing as back end technologies 

for performing Big Data computing applications in several fields of science, engineering, 

business domains. Initially, we have discussed the differences between Traditional Data model 

followed by Big Data model, and comparisons between these two technologies in terms of data 

organization, and processing tools. Later, we have discussed, Big Data computing taxonomy 

and it‘s under pinning technologies such as Cloud computing. Followed by Cloud computing 

related technologies and its deployment models, and how these Clouds can deliver the backend 

infrastructure for Big Data problem solving. This chapter also introduced, the Integrated Cloud 

and Big Data Access Network for which Clouds would work as back end computing 

technologies for the development of Big Data Applications. Later, we have introduced several 

applications that would fall into scientific and Business intelligence applications, followed by 
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Big Data computing segments and gap Analysis. This chapter identifies two key element of the 

framework such as data aware scheduling, and domain specific programming models for 

scientific big data computing applications over Clouds infrastructure. Scheduling is presented in 

following chapters 4 and 5. The scheduling discusses about the challenges in bringing the data 

and computing elements together so as to solve large scale data intensive applications for the 

decoupled applications, data and computing resources using family scheduling model and 

genetic approaches, followed by simulation of the experiments using CloudSim and results.  

Chapter 6 presents one of the domains specific big data processing for scientific imaging 

applications for data organization, processing using extended Hadoop Distributed File System, 

and MapReduce computing. This chapter discusses, the extended Application Programming 

Interfaces (API) for data organization over Hadoop HDFS, followed by several high level APIs 

for data processing using MapReduce for image processing filters.  
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Chapter 4  

 

Data Aware Scheduling in Big Data Clouds – 

A Mathematical model 

In this chapter, we discuss the problem statement for large scale data intensive scientific problem 

solving in the Cloud computing environments, and present the several applications in earth 

observation systems which are considered as Big Data applications.  We discuss, remote sensing 

earth observation system, followed by several applications in remote sensing data processing, 

those motivates the design of Data Aware Scheduler for addressing large scale data intensive 

applications in Cloud computing environments. Here, we discuss the overall requirements for 

data intensive scheduling, system architecture for the data aware scheduling, and present how the 

system can be viewed as problem of Big Data computing using Clouds infrastructure as back end 

technologies. Here, illustrate several challenges in handling the data intensive applications, and 

present a scheduling approach based on data availability, computing resources and network 

availability called as Data Aware Scheduling model, for addressing data intensive applications 

over large scale distributed data and computing resources. Here present, mathematical model, 

and discuss, how the several parameters such as job characteristics, data volumes, data replica 

locations, computing resources availability, and underlying network resources like bandwidth 

and latency are considered for scheduling the batch of job applications. Here, we address the 

problem using a grouping mechanism called as family grouping, which is based on grouping the 

jobs for which data required is nearly similar, followed by significance of optimization methods 

to address the scheduling problem. The proposed scheduling approach does the minimization of 

the turnaround times so as to achieve higher throughputs for group of jobs. 
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4.1 Problem statement 

Data collected/produced from several fields of science, engineering, business intelligence, social 

networking is growing tremendously and such data volumes are expected to reach to several 

Zetta bytes in near future. Such collected data often require tools to facilitate efficient data 

management, analysis, validation, visualization, and dissemination by preserving the intrinsic 

value of the data [3] . Experiments in the fields of science and engineering such as remote 

sensing, high energy physics, molecular docking, computer micro-tomography and many other 

fields gather the data from several instruments place at distant apart and collect the data from 

such instruments, and analyze them from intrinsic information extraction. Such gathered data 

from several scientific instruments is organized over geographical distributed storage 

repositories, for further processing. The data would be replicated to ensure high availability, and 

also to enhance the location proximity while processing the data over several computing 

resources. Below, we describe one such large scale data gathering and distributed system in geo 

science of remote sensing data processing from space earth observation system. 

 Remote Sensing earth observation and data processing system 

Remote sensing is a broad term used to describe acquiring information about an object by means 

of ―remote‖ examination; that is, with no direct contact of the object. There are several ways of 

sensing the data remotely such as ground based, airborne and space borne (satellite). In space 

borne remote sensing, sensors are mounted on-board a space craft (space shuttle or satellite) 

orbiting the earth as shown in Figure 4.1. There are several remote sensing satellites providing 

imagery for research and operational applications [130] . Space borne remote sensing provides 

the following advantages. 

 Large area with wide swath, and systematic coverage. 

 Repetitive coverage of an area of interest with frequent revisits for object change 

detections. 

 Ground features using radio-metrically calibrated sensors for Quantitative measurement. 

 Semi / fully automated computerized processing and analysis of objects. 

 Relatively lower cost per unit area of coverage for earth based explorations. 
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Figure 4.1. Space shuttle orbiting the earth and receiving ground stations 

 

Figure 4.2. Remote sensing space craft for earth observation systems and their inter connectivity 

with ground stations 

 

A ground station or earth station, or earth terminal is a terrestrial radio station designed for extra 

planetary telecommunication with space craft, or reception of radio waves from space craft. 

Ground stations are located either on the surface of the earth or in its atmosphere. Earth stations 
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communicate with spacecraft by transmitting and receiving radio waves, when ground station 

successfully transmits radio waves to a space craft or vice versa, it establishes a 

telecommunication link and receives the data from the space craft sensors. One such 

earth/ground stations and interconnectivity with space craft is depicted in Figure 4.2. Ground 

stations receives the data from the space craft, and such collected data is distributed across 

several storage repositories for further study by several researchers using several data processing 

techniques. The papers  [80] [81]  had discussed, one such satellite data processing system for 

precision data product generation in the private cloud environment over a distributed computing 

and storage repositories. Such collected data gets distributed and often replicated to several 

storage locations for efficient access and can be retried for processing by several research 

communities. And such storage repositories called as Storage Clouds where the digital data is 

stored in pools, the physical storage spans multiple servers and often locations, and are accessed 

on demand as several service oriented architectures.  

Remote sensing data processing system involves a set of procedures starting from data 

collection, organization, processing, analyzing, extraction and dissemination of information to 

the end users of the systems. Several applications for remote sensing data processing are 

discussed below. 

 Applications of Remote sensing data processing 

In the data processing system a group of researchers‘ dispersed geographically conduct data 

exploitation experiments routinely which involves various activities, such experiments are of 

Object detection, pattern matching, Image matching, DEM generation [149] [84]  etc. Below we 

will introduce such activities and also the nature of the data processing system: 

a)  Large volume of data is collected from various sensors, stored in the data repositories on 

the daily basis; also a large number of experiments could generate the data which in turn 

may be stored at these repositories. These repositories named as data hosts which are 

geographically distributed across the country/globe.  

b)  Large number of jobs from various research groups arrives for processing; these jobs 

need the computational power and the data for execution. In some of the cases data and 

compute may be collocated, and few cases distant apart. In the case of distant apart 
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proper selection for computation and data is needed along with the application service 

migration. 

c)  The services that are used for exploitation of the data are published by the researchers. 

These services can be part of data hosts, compute providers or may be located on other 

host providers. 

d)  The jobs are to be processed in minimal time by reducing the overall make span. Make 

span is the minimum completion time of all the jobs. 

e)  In many cases the data being used by the users is common while the application services 

are different. For example user A is interested in extracting objects in a specific Region 

of Interest, similarly user B is interested analyzing the patterns of object in the same or 

sub set of the region. The jobs which fall under this category are termed as the family 

job. 

f)  The pre processing stage is needed to identify the family jobs among the arrived jobs. 

g)  After the jobs and the families are identified, the next activity is to construct the schedule 

for the jobs for minimizing the overall completion time of all the jobs. 

h)  The jobs are to be processed in minimal time by reducing the overall make span. Make 

span is the minimum completion time of all the jobs. 

i)  After the jobs and the families are identified, the next activity is to construct the schedule 

for the jobs for minimizing the overall completion time of all the jobs. 

Processing and analyzing large volumes of data plays an increasingly important role in many 

domains of scientific research. Here, we focus on data intensive applications with two important 

properties: (i) data elements have spatial coordinates associated with them and the distribution 

of the data is not regular with respect to these coordinates, and (ii) the application processes only 

a subset of the available data on the basis of spatial coordinates. These applications arise in 

many domains like satellite data processing and medical imaging. Here, we present a satellite 

data processing example give below. 

Another computation on this remote sensing is as follows- portion of earth is specified through 

latitudes and longitudes end points with the time range. For any point on the earth within the 

specified area, all available pixels within that time-period are scanned and the best value is 
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determined. A typical criterion for finding the best value is cloudiness on that day, with the least 

cloudy image being the best. The best pixel over each point within the area is used to produce a 

composite image. This composite image is used by researchers to study a number of  - properties 

like deforestation, pollution over different areas, etc A typical scenario and problem in one of 

scientific community is discussed below. 

4.2 Remote Sensing Big Data Clouds 

The recent advances in remote sensing and computer techniques are generating huge volumes of 

data, and are given an explosive growth of remote sensing digital data technologies, which is the 

earth observing data continuously obtaining from space, and airborne sensors, as well as some 

other data acquisition sensors. With the exponential growth and increasing degree of diversity 

and complexity, the remotely sensed data are regarded as Remote Sensing Big Data. Big Data 

occurs when large collection of data sets whose volume and rate of data is at scale that is far 

beyond the state-of-the art system and revolutionize the way of seeking solutions. This is also 

the case for the remote sensing and earth sciences domain that falls into Big Data domain. 

With the recent advances in sensors and earth observation techniques, high resolution sensors 

are placed in the orbit employed to seek shorter re-visit cycle and larger ground coverage. 

Applications and experiments in all areas of earth observation systems are becoming 

increasingly complex and more demanding resources in terms of their computational and data 

requirements. Some applications generate data volumes reaching hundreds to terabytes even 

petabytes. As scientific applications become more data intensive, the management of data 

resources and dataflow between the storage and compute resources is becoming the main 

bottleneck. Analyzing, visualizing, and disseminating these large data sets has become a major 

challenge and Big Data is considered as the next generation data intensive computing model  

using after empirical, theoretical, and computational scientific approaches. 

However, the transformation of Remote Sensing Data as Remote Sensing Big Data is due to the 

scale at which the data is acquired from a large collection of sensors, and whose volume and rate 

of data is at a scale that is far beyond the conventional systems and revolutionize new tools and 

techniques for handling and processing. Remote Sensing Big Data, is not just merely refers to 

the volume of and velocity of data that but also the storage and computing capacity, including 

the variety and complexity of the data to be handled, and processed.  
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Figure 4.3. RS Big Data Cloud setup – Distributed data and computing services 
 

An overview setup of Remote Sensing Big Data Cloud setup, with the distributed and dispersed 

Data/Storage services, and Computing services are depicted in Figure 4.3. The data collected/at 

the earth/ground stations will be pushed on to RS Big Data Cloud for further usage by several 

research analysts for necessary applications developments in the several areas of as spatial and 

temporal analysis which will be described in the next section 4.4. Below, we describe major 

elements of the RS Big Data Cloud.  

 Data services:  Large scale, secure, durable and highly scalable storages for data 

organization and retrieval on demand for the data of interest. The storage services 

include file system, block storages, and object storages for organization of the data based 

on the users and data specific requirements. For example, the data can be organized as 

Object Storage files, and such objects can be retried using web service calls such as 

Representation State Transfer (REST) APIs. Object storage also enables to attach the 
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user specific metadata to the file, which is could have wide usage for unstructured data 

organization and processing.  Data services to provide data on demand to the users 

regardless of geographic or organizational separation of provider and consumer. Data 

services are similar to Software as a Service (SaaS) in that the information is stored in 

the Cloud storages and is accessible by a wide range of systems and devices.  

Data services can eliminate redundancy and streamline costs by housing critical data in 

one location, enabling the data to be accessed and/or updated by multiple users while 

ensuring a single point for updates. Potential drawbacks to data services include server 

downtime from the data service provider, data loss in the event of a disaster, and the 

security of the data, both in its stored location and in the transmission of the data among 

the users. To overcome the limitations of the above said drawbacks, the data would be 

distributed and replicated onto the multiple storage locations along with the data services 

for accessing the data. In Figure 4.3, the shown data service providers indicate that, data 

gets replicated via distributed synchronization mechanism for ensuring the high 

availability and proximity as and when the data is required. 

 Computing services: Large scale, elastically scalable computing resources which can be 

provisioned on demand either as a single individual systems or a group of systems like 

cluster. These computing services can be offered in three modes based on organizational 

requirements such as i) publicly available giving access to other organizations or 

individuals ii) owned and operated by a single organization, controlling the way the 

resources and automated services are customized and used by various constituent groups 

iii) with a combination of single owning, and public resources federation to meet the 

organizational demands. 

The computing services offered can be categorized into two parts such i) resources which can be 

created on demand based on the application requirements. This could be achieved using the 

virtualization techniques and the web service API calls offered by the respective virtualization 

technology, and ii) already setup pool of computing resources similar to cluster setups which 

could be used by the application developers for performing the jobs execution. Below we 

describe how EOS and RS Big Data could offer services for large community of researchers for 

geo science applications. 
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Figure 4.4 EOS and RS Big Data 

4.3 RS Big Data Clouds for EOS 

The data collected from Earth Observation Sensors at ground stations is pushed to Remote 

Sensing Big Data setup for further usage. RS Big Data is continually acquired for processing 

and knowledge discovering using several processing techniques. Communities groups can make 

use of the RS Big Data for their applications development. In recent years, spatial applications 

have become more and more important in both scientific and research industries. Geospatial 

analyses of distributed data from surveys and sensors are often stored and managed in diverse 

regional, national and global repositories. The nature of scientific processes requires 

composition of these resources in a meaningful order to solve a specific geosciences problem. 

Spatial data processing can be very resource intensive and complex, since it usually involves the 

analysis of large amounts of spatial and non spatial data from various diverse applications. The 
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topologies such as Euclidean, metric, topological, Set-Oriented are used to find the relationship 

between spatial objects.  The amount of information in spatial databases is growing as more data 

is available from several experiments, and such data intensive computations from a number of 

domains share two important characteristics such as associating of ground coordinate value with 

the pixel, and followed spatial features/gray value with the pixel.  Figure 4.4 describes Remote 

Sensing Big Data and its integration with EOS, where Computing and Data Storage resources 

are geographically dispersed. The data acquired from several space borne sensors are distributed 

and replicated over the storage repositories. These storage repositories can scale on demand and 

offer the data through metadata and query services on demand to the several application 

developers, research scientists on demand. Computing resources are dispersed from the storage 

repositories, and which are scalable and are offered as services for the jobs to be processed. The 

sequence of steps followed for processing the jobs are as follows – the application developers 

place the request either to process the job, or for retrieving the data of their interest. The request 

is processed by the scheduler, interacting with Query/meta data service. This would return the 

data sets to be processed or served. Later, the scheduler initiates the process for processing the 

jobs.  

The execution of distributed data-intensive applications involve requirements for discovering, 

migration/transfer, processing, storing and managing large scale distributed data sets and is 

guided by speed and processing of the data. There may be multiple datasets involved in a 

computation, each replicated at multiple locations that are connected to one another, apart from 

the computing resources connected with a network of varying capabilities. Consequently, this 

kind of scenario makes it difficult to identify appropriate resources for retrieving and performing 

the required computation on the selected data sets. This thesis, therefore, develops and presents a 

scheduling model for applications that require massive data addressing in RS Big Data. 

The researchers/users in the satellite Data processing run the large number of data intensive jobs 

which demand for more computation also data, and need to be served by reducing the overall 

completion time of all the jobs. Hence, there is a need of a system for effectively processing 

jobs. In this section various such issues in solving the data intensive jobs of the system along 

with the specific characteristics of the jobs are mentioned.  Jobs need the data, compute and 

application services for processing; in some cases Jobs may need the same data, while the 

application services may differ. These application services are published by the application 
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providers, and may be collocated with the data, compute or may not be. In case of the data being 

used by the jobs are same, a pre processing stage can be applied to group them as a single 

Entity, enabling in reducing the data transfer time in the system for the group rather than 

individual job The data is replicated on the multiple data hosts, hence the mechanism can be 

devised to construct the multiple channels for the data transfer enabling the minimal data 

consolidation time.  To reduce the data consolidation times, the job grouping is applied; in the 

job grouping the jobs which need similar data are grouped to one family. The above mentioned 

points enable us to devise a methodology to construct the optimal group scheduling for the jobs, 

enabling effective utilization of the available communication and computational resources of the 

system. 

 

Figure 4.5. Remote Sensing Big Data elements 

 The typical structure of the model for data processing system is as follows - the 

applications/services are hosted as services, computational services by the compute providers 

and the data services by the data providers as depicted in Figure 4.5. From the diagram it is 

known that these resources (services, data and compute) are dispersed (in some scenarios may 

be collocated). 
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The processing of these massive RS data is quite a challenging issue. The difficulty lies in the 

data storing, organization, processing and analyzing. To meet these challenges, the researchers 

may need to concentrate on the below said points. 

 Efficiently managing the massive amounts of variety forms of RS data 

 The loading the transmission of data 

 Handling large scale of data dependent tasks using schedulers 

 The efficient programming models for data handling and processing. 

Scheduling plays a major role in efficiently handling the large scale RS data intensive jobs.  In 

the below section we discuss one such scheduler for addressing Data intensive jobs in RS Big 

Data Clouds. 

4.4 Data intensive scheduling in Big Data Clouds 

Big Data applications demand more computation power and large volume of data for 

processing, there is a need to access, transfer, and modify massive data sets stored in distributed 

storage resources as shown in Figure 4.4 RS Big Data setup.  Data-Intensive computing is a 

class of distributed computing adopts data parallel approach to process the large volumes of data 

typically in size from terabytes to peta bytes with the primary objective to maximize the 

resource utilization and minimize the turnaround time of the jobs. Completion time of the job is 

dependent on the data make span, which involves the communication band width and the 

compute time which includes applications execution time on computational resources and 

migration time in staging the input and output files. Due to the advancement in the science and 

technology massive amounts of scientific data in the areas such as earth observation, climate 

analysis is collected from the sensors and stored on multiple storage servers for further analysis 

by the scientific community. While technology has made massive data storage cheap and 

bandwidth abundant, the ability to extract valuable knowledge from multiple types of data 

obtained from multiple sources in real time is a grand challenge problem and poses the need for 

better data intensive scheduling techniques.  

For example considering the earth observation sensors generating the datasets contain sensors 

for different bands like Panchromatic and Multispectral. Satellite orbits the earth; the sensors 

sweep the surface building scan lines. The typical computation of this satellite data can be data 

product generation [80] [81] [82]  is follows: A portion of earth is specified through latitudes 
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and longitudes end points. A time (typically 10 days to one year) is also specified. For any 

portion of the earth within the specified area, data product generation such as geocode, ortho and 

DEM may be generated by picking the images. Large number of data intensive jobs which 

demand for more computation also data, and need to be served by reducing the overall 

completion time of all the jobs. Hence, there is a need of a system for effectively processing 

jobs. In this section various such issues in solving the data intensive jobs of the system along 

with the specific characteristics of the jobs are mentioned. 

Jobs need the data, compute and application services for processing; in some cases Jobs may 

need the same data, while the application services may differ. These application services are 

published by the application providers, and may be collocated with the data, compute or may not 

be. In case of the data being used by the jobs are same, a pre processing stage can be applied to 

group them as a single Entity, enabling in reducing the data transfer time in the system for the 

group rather than individual job The data is replicated on the multiple data hosts, hence the 

mechanism can be devised to construct the multiple channels for the data transfer enabling the 

minimal data consolidation time. To reduce the data consolidation times, the job grouping is 

applied; in the job grouping the jobs which need similar data are grouped to one family. 

To address the data intensive scheduling we present Data Aware Scheduler in Big Data setup 

which effectively considers both data and computational requirements for large jobs handling. 

4.4.1 Data Aware Scheduler (DAS) characteristics 

Providing timely results in the face of rapid growth in data volumes has become an important 

for many scientific and business intelligence analytics. As more and more data is generated at 

faster-than-ever rate, processing these large volumes of data is becoming challenge for several 

scientific analytics. The importance of data aware scheduling is increasing with rapid growth in 

data volumes, and to cope with this data and yet provide timely results. A brief overview of Big 

Data Clouds is depicted in Figure 4.5, it shows a scenario where an application requires data and 

computing resources from the providers who are decoupled and geographically dispersed. 

Several characteristics of Data Aware Schedulers are described below. 

 Seam less access to data and computing resources. 

 Ability to search the data set and identify the appropriate data sets those are required 

 Transfer the data from the data storages to computing resources for process and analysis 
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 Select the best suitable computational resources for processing the data. 

 Effective utilization of underlying band width between data storage services and 

computing resources. 

 Effectively map the jobs to the best computing resources so as to achieve high 

performance and higher throughputs. 

 Grouping the jobs based on the data awareness so as to minimize the data transfer 

migrations from data storages to computing resources. 

 Make use of the data replica locations so as to achieve better location proximities. 

 Reducing the communication and computation delays, thus increasing the total 

throughput of the system. 

 Hide the complexities of underlying infrastructure by transforming user requirements into 

operations, which are then carried out without user intervention. 

 Provide high level programming model APIs, write the logic and submit the jobs to the 

system. 

 The system would run the jobs and the output is presented at minimal time as possible. 

 Providing the grouping mechanism wherever is possible. 

 Apply both data push and pull models whichever is necessary. 

In many scientific workflows, particularly those that operate on spatially oriented data, jobs that 

process adjacent regions of space often reference large numbers of files in common. Such, 

workflows, when processed using workflow planning algorithms that are unaware of the 

application‘s file reference pattern, result in a huge number of redundant file transfers between 

data storage repositories and consequently perform poorly. Hence, the scheduling aspects should 

have a planning for spatial workflows for execution based on the spatial proximity of files and 

the spatial range of jobs. Overall, Data Aware Scheduler has to maximize the resource 

utilization, by minimizing the turnaround times of the job executions thus achieving higher 

throughputs. In the next section we describe the architecture of Data Aware Scheduling 

followed by its workflow. 

4.4.2 Data Aware Scheduling (DAS) Architecture and Workflow 

Data Aware Scheduling architecture is depicted in Figure 4.6, with four basic elements, 

computing infrastructure providers, data providers, analytics/applications developers/users, and 
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Data Aware Scheduler. Compute providers offers a large scale computing infrastructure, data 

providers service the data on demand, scheduler broker periodically collects the jobs from the 

pool and determines the effective schedule to increase system throughput. 

 

 

Figure 4.6. Data Aware Scheduler interfacing with Data and Computing resources in Big 

Data Clouds 

The workflow is depicted in Figure 4.7. The several activities in Data Aware Scheduling are 

described below. 
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Figure 4.7. Workflow in Data Aware Scheduling 
 

i. Pre processing Stage: Jobs in the pool are periodically collected and preprocessing has 

done for determining the jobs for which data is common. Here, each data is identified by 

the name and each job has unique job id. The data/file names required for the jobs are 

queried, and based on the query results, a set with the of data/file names is constructed. 

The data/filenames along with the job set is passed onto the next stage for grouping the 

jobs based on the data commonality the jobs are having.  

ii. Grouping the job:  Based on the preprocessing output stage, the jobs are categorized 

into several groups. Each group may consist of one or more number of jobs based on the 

common data requirements they have, as discussed in section A data aware modeling. 

iii. Determining the data hosts and computing hosts: data replica locations and 

computing resources are selected, based on the data they have received from the previous 

step.  

iv. Computing Round Trip Time (RTT), data chunk volumes for data migration to 

computing resources: Based on the data replica locations the data hosts are selected, and 
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similarly the amount of data to transfer from each of the data hosts to the computing 

resources would be determined. This is discussed in section 4.5.3. 

v. Estimation of data consolidation and computing times: Times are estimated based on 

the consolidation of data and computing times between the data hosts and computing 

resources. This model is discussed in the next chapter using genetic approach for mapping 

the jobs to the computing resources. 

vi. High Throughput data transfers: Based on the evolutionary genetic model the jobs 

would be mapped to the computing resources and data transfers would take place from the 

data resources to the computing nodes.  

vii. Jobs execution: the jobs are run and the end results are sent to the users. 

Below the model for the Data Aware Scheduling is discussed. 

4.5 Data Aware scheduling model 

Data Aware scheduling model is built on top of the three key factors, such as data dependency 

among the jobs, the information of the data required by the jobs and which is multiple replica 

locations at various geographically distributed locations, and the available bandwidth from such 

replicated storage data servers to the computing nodes. Looking into those three key factors, 

below we describe the several steps by which the model is derived.  

 

In this section we describe the several steps for Data Aware scheduling model derivation, 

objective function for scheduling, and determine the data consolidation timings. Below we 

describe several notations used for deriving the model, followed by derivations for objective 

function for minimizing the scheduling makespan, and data consolidation timings for minimizing 

the data migration timings for job scheduling. 

A. Notations used 

Mathematical notations for the problem formulation are described in Table 4-1.   
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Table 4-1.Mathematical Notations 

J = Total number of jobs 

N= Total number of computing nodes in the grid 

H= Total number of data service/providers  

F= Total number of families 

wf= Total number of jobs in the family f.  

TDfi = Data Make Span(Consolidation time) in minutes of the family fF on Node i. 

rhi =Estimated packet transmission time in seconds between data provider hH to 

compute node iN. 

Xf= Amount of data required in GB for the family fF. 

xfhi = Data chunk in GB from the data provider hH to compute node iN for the 

family fF. 

hi= Weight assignment to the channel from data provider hH to compute node 

iN. 

TRji = Turnaround time of the job j on node i. 

TSji= Setup time of the job j on node i. 

TAj= Arrival Time of the job j. 

Δfi = Decision variable. 

δfi   = Assignment variable. 

 

B. Objective Function 

The objective is to minimize the turnaround time of the jobs over the computing nodes. 

 

Minimize    TRji∆fiδ
f
j

F

f=1

N

i=1

J

j=1

 

 

  δ
f
j  =  

0   if  jf 
1   if  jf

  

TRji   =  TDfi wf + TSji +  TLji  − TAj 

Where 

 TRji: Turnaround time of the job jЄf on computing node i. 

 TDfi: Data consolidation of the family f on computing node i. 

 TSji: Setup time of the job jЄf, on computing node i. 

 TLji: Length of the job jf, on computing node i. 

 TAj: Arrival /Submission time of the job jf. 
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Subject to the following constraints  

 A family is assigned to either one compute node or none. 

 ∆fi

N

i=1

≤ 1 for f = 1,2, … . F 

     ∆fi∈ {0,1} 

 Compute node can have either none or many families assigned to it 

 ∆fi

F

f=1

≥ 0 for f = 1,2, … . N 

     ∆fi∈ {0,1} 

C. Determining the data consolidation time 

Network traces between the computing resources and data hosts/providers are used to estimate 

the channel bandwidth availability. Such stored network traces over a time period for example 15 

minutes are used as parameter to estimate the data quantity to migrate from each of the data 

providers to compute node. Below we will discuss the procedure for computing the percentage of 

the data to be obtained from each of the data providers to the compute nodes. Let us denote the 

compute node by i, data provider by h, job by j, and the family by f. 

The families are constructed using the family graph as discussed above. The family may have 

one or more jobs if they have common data. If each family consist of only one job, then F=J, 

otherwise F<J. Let wf be the number of jobs in the family f also called weight of the family, then 

w1+w2+…..+wF=J. In the family job scheduling problem, data consolidation time is same for all 

the jobs that belong to the same family. Data Consolidation time is defined as the maximum time 

to consolidate the data from the identified data providers to the compute node. Data 

Consolidation time 𝑇𝐷𝑓𝑖 , is the maximum time required to bring the data from the data 

provider(s) to the compute node i for the family f, and is defined as 

𝑇𝐷𝑓𝑖 =  max
h=1,H

(xf
hi ∗ rhi ) ………………… (1) 

Where x
f
hi is the chunk size and rhi is the estimated time from the previous historical traces, for 

the family f from data provider h to compute node i. x
f
hi can be computed as below. 

xf
hi = ρ

hi
∗ Xf…………………………….(2) 
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Where Xf is total data size required for the family f, and hi denotes the weight assigned to the 

channel from host h to compute node i, is defined as 

ρ
hi

=   1 rhi    1 rli  H
l=1 …………..(3) 

The time is estimated using the previous history of packet transmissions over a time period. 

Simplifying equation (1),using equations (2) and (3), we get 

𝑇𝐷𝑓𝑖 =   1 rhi    1 rli  

H

l=1

 ∗ Xf ∗ rhi  

              = Xf  /   1 rli  H
l=1  

4.5.1 Data dependency jobs 

In a pool of jobs, there are could be jobs for which the data required is common. In general, it 

happens for the jobs which are highly dependent on the data sets, like applications in domains 

like image processing, earth observation systems, bio medical applications etc. To minimize the 

data transfer issues, such data dependency jobs can be grouped as sub groups for further 

processing, so as to achieve the higher throughputs, and minimizing the data consolidation 

timings. 

 

4.5.2 Data replicated storage servers 

The jobs with common/overlap data are grouped together, called ―family‖. To discover the 

grouping, metadata attributes such as object identifiers, and key/value descriptions are used as 

parameters. Object identifiers uniquely identify the objects in a bucket, and the object metadata 

is a set of name-value pairs for describing the data content. Object based storage mechanisms 

such as Openstack Swift [131], and Amazon S3 [67] offers object keys and the associated 

metadata tagged with the files/objects. Object metadata is of two types- system metadata and 

user-defined metadata. System metadata describes the object creation dates, storage class 

information etc., and the user-defined metadata tags the additional information for the objects. 

First, we apply the query to discover the jobs with similar object identifier tags, followed by 

key/value pair combination for finding the common/overlap data. However, the discussed 

methods are limited, but, these could be extended to other data overlap/commonality computing 

techniques. 
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Graph data structure, we call here as family graph is used for grouping the jobs. In the family 

graph, job is represented as node and the data required by both the jobs (adjacent nodes) is 

represented by the edge. A sample family graph with 7 jobs numbered from 1 to 7, and three data 

sets named from X1 to X3 are shown in Figure 4.8.  

 

Figure 4.8. Family graph 

The graph indicates that the jobs 1, 2, 3, and 4 require the data with id X1, the jobs 1 and 4 

require the data with id X2, and jobs 5, 6 and 7 require the data with id X3 for processing. The 

families are formed by computing the connected components of the graph. The graph in Figure 

4.8, results in two connected components with the nodes 1, 2, 3, and 4 for the first component, 

the nodes with 5, 6, and 7 for the second component. The resultant connected components form 

two groups or two family jobs which are to be processed further. 

As mentioned in section 4.2 of RS Big Data Clouds, the data would get replicated onto multiple 

data storage repositories. Hence, instead of transferring the data from a single data storage 

provider, the information from multiple storage repositories could be used. This would increase 

the transfer of multiple data sets in parallel simultaneously from several data locations, as 

discussed below. 

4.5.3 Bandwidth aware modeling 

This model performs the data consolidations, followed by high throughput data transfers. By 

identifying the data hosts for each family job If the data hosts identified are more than one (it 

may occur due to replication of the data among the data host), then data transfer can be initiated 

from the identified multiple hosts. RTT (Round Trip Time) can be used to compute the amount 

of the data to be migrated from each of the data host to compute node. Below we will discuss the 
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procedure for computing the percentage of the data to be obtained from each of the data hosts to 

the compute nodes. Below we will discuss the procedure for computing the percentage of the 

data to be obtained from each of the data hosts to the compute nodes. Figure 4.9 depicts D1 to DH 

are the Data hosts and C1 to CN are the compute nodes. Let denote the compute node by i, data 

host  h, job by j , and family by f. 

 

 

Figure 4.9. Data host to compute node mapping 

The families are constructed at the pre processing stage mentioned above; the family may have 

single job or more jobs depending on the data dependency between the jobs. If each family has 

single job then then F=J,i.e number of Families is equal to number of jobs else F<J. Let wf be 

the number of jobs in the family f also called weight of the family, then w1+w2+…..+wF=J.  

4.5.4 Scheduling methodology 

The several steps in scheduling methodology is discussed below. pre processing, Family job 

construction followed by the optimal scheduling. Data and application services are migrated 

from data provider(s) and application service(s) respectively to the compute provider(s). The 

following steps are followed in designing the optimal schedule for the system 

i. Job pool: Queue of jobs to be processed. 

ii. Pre processing stage: grouping the jobs based on metadata attributes to construct the 

family jobs.  

iii. Family Construction: Using spatial graph and connected components to form the family 

job. Family job is defined as group of jobs for which the input data is same or nearly same. 

iv. Determine Data providers: Discovering the data providers who can supply the data of 

interest with the replicated sites. 
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v. Determine Compute nodes/providers: Locating the compute providers to process the 

family jobs. 

vi. Round Trip Time (RTT) estimations: Estimation of RTT delay between data providers 

and compute providers. 

vii. Data and Compute Time consolidation: Process of consolidating the computing and data 

migration times. This will enable to find the better schedule map to minimize the schedule 

makespan.  

viii. Migration: Based on the schedule map, migration of the data and applications services to 

the compute nodes for execution. 

ix. Execution: Initiating the execution on the compute nodes once the schedule is ready. 

 

4.6 Discussion and Summary 

The proposed data aware scheduling model addresses the data intensive applications on the 

decoupled computing, and storage repositories, by effectively scheduling the applications by 

grouping them based on the data needed for processing, by making use of the available 

bandwidth between the computing and storage repositories effectively. Here, the resources such 

as computational, and data files required are geographically dispersed, and the data is replicated 

over several storage distributed repositories. Here, we have discussed the problem statement, 

discussed several remote sensing earth observation system applications where the data and 

computing resources, are decoupled and offered as services for further explorations by several 

scientific researchers. We have discussed several motivating applications, where the computing 

elements and storage resources are decoupled, and the significance of brining the data to the 

compute for effectively processing such large scale applications. Later, we have discussed how 

these Remote Sensing turns into Big Data problems processing over Clouds as back end 

infrastructures.  

Here, discussed several elements in Remote Sensing Big Data, followed by need for addressing 

Data Aware Scheduler, its architecture and workflow. We have discussed several steps in the 

workflow, and presented the need for grouping the jobs into a family; where the jobs require 

some similar kind of data for processing. For job grouping, we have presented a graph connected 

components approach, for computing the families. Based on the families, we have presented a 
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mathematical model for effectively consolidating the data so as to minimize the data migration 

times between the data storage repositories, and computing elements. Here, we have discussed 

the model, presented the mathematical notations, and derived the objective functions, which 

minimizes the Makespan of the jobs. Here, we have illustrated the derivations for data 

consolidation from replicated storage repositories, and presented a bandwidth aware model, 

which would help in building the high speed channels for transferring the large data volumes as 

chunks from multiple storage repositories to the computing nodes, so as to achieve higher 

throughputs. The scheduling methodology identifies the several steps in grouping the jobs for 

which data is common, and employs the steps for both data consolidation and computing times.  

 

In the next chapter, we discuss Data Aware Scheduling model using evolutionary genetic 

approach, implementation of the Data Aware Scheduling model using genetic approach, fitness 

function for the genetic operation, crossover and mutation probabilities derivation, followed by 

experiments using Cloudsim Toolkit, and comparison of the model with non evolutionary 

models like Compute First, Data First, and Simulated Annealing.  
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Chapter 5  

 

Genetic Approach for Data Aware Scheduling 

 

In this chapter we discuss Data Aware Scheduling using evolutionary genetic approach, and 

graph theoretic connected components approach for job grouping and the effective mapping of 

the grouped jobs to distributed computational resources. Here, we present a group scheduling 

called as family scheduling, and genetic algorithm to map such constructed families of jobs 

onto the computational resources. While scheduling we apply the optimization techniques, so 

as to maximize the utilization of underlying computing resources, and minimize the turnaround 

time of the jobs. The proposed approach for data aware scheduling is twofold; first we propose 

a family spatial graph, which classify the jobs into family jobs using connected components of 

the graph, followed by finding a schedule to map such constructed family jobs onto the 

computing nodes.  And the second is using data parallel approach, which uses Data-compute 

graph resulting in high compute-communication ratio to minimize the turnaround time of the 

job schedule. Although, the experiments which are conducted are specific to the Remote 

Sensing data, but the proposed scheduler is generic, such that it can be applied for job 

scheduling purposes, wherever the jobs have some common data requirements. 
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5.1 Introduction – Genetic Algorithm 

Genetic Algorithm (GA) is a method for solving optimization problems based on a natural 

selection process for both constrained and unconstrained problems. GA mimics biological 

evolution, and repeatedly modifies a population of individual solutions, using genetic operators. 

Genetic Algorithms(GA) have shown to be well suited for high-quality solutions to larger NP 

problems and currently they are most efficient ways for finding an approximately optimal 

solution for optimization problems [138] [139] [141] . GA developed by J.H.Holland [142]  is a 

model of machine learning, which derives its behavior from a metaphor of the processes of 

evolution in nature.  GAs is executed iteratively on a set of coded chromosomes, called a 

population, with three basic genetic operators: Selection, crossover and mutation. Each member 

of the population is called a chromosome (or individual) and is represented by a string. GA uses 

only the objective function information and probabilistic transition rules for genetic operations. 

The primary operator of GAs is the crossover. GAs will not involve extensive search and not try 

to find the best solution, but they simply generate a candidate for a solution, check in polynomial 

time whether it is solution or not and how good a solution it is. GAs will not always give the 

optimal solution, but a solution that is close enough to the optimal one. GAs begins with a set of 

candidate solutions (chromosomes) called population. A new population is created from 

solutions of an old population in hope of getting a better population. Solutions which are chosen 

to form new solutions (offspring) are selected according to their fitness. The more suitable the 

solutions are the bigger chances they have to produce. This process is repeated until some 

condition is satisfied. Genetic Algorithms are classified into several algorithms based on the 

process of carrying out the population of chromosomes from one generation to the next 

generation such as Simple GA, Steady State GA etc. In case of Simple GA, the first  

 

5.2  GA Problem Formulation – Data Aware Scheduling 

Steady State GA [139]  is used by replacing percentage of chromosomes across the generations 

until the solution converges or till the maximum number of generation is reached. Genetic 

algorithm library (GA Lib) [139]  is used for implementation.  

Proposed Scheduling Algorithm Genetic approach GA 

1. Initial Runs if any 
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a. Randomly generate populationSize chromosomes. Select populationSize/InitialRuns 

chromosomes fittest at each run and copy to the Initial population. 

b. Repeat each run for the maximum preliminary generations. 

otherwise 

Generate the populationSize chromosomes at random for the Initialpopulation  

2. Fitness: Calculate the fitness of all chromosomes of the Initial population. This initial 

population is carried to the generation for further operations. 

3. Perform the below steps in the current generation: 

a. Selection: Select two fittest chromosomes and send them to the next generation 

b.Repeat the below steps for the remaining chromosomes of the population 

i. Select two chromosomes with randomSelectionChance probability chromosome. 

ii. Crossover: perform crossover for the above two chromosomes selected. Each 

crossover results in the two off springs. Apply roulette wheel selection 

c. Mutation: Perform mutation on the chromosome having the probability below 1/10
th

 of 

percent. Apply roulette wheel selection. 

4. Fitness Function 

a. Fitness value: Calculate the fitness value for the chromosomes. The chromosomes that 

won‘t satisfy the constraints are added a graded penalty value to the fitness value.  

b.Computing the rankings: The rankings are computed based the statistical methods. 

c. The chromosomes are ordered rankings in the descending order of ranks.i.e fittest 

chromosomes are first worst are at end. 

d.Carry the new population to the next generation 

5. Replace : Replace the current population with the new population 

6. Test: Test whether current generation crossed the maximum number of generations. If so, 

stop. If not go to step 2 with the new population. 

Genetic algorithm library (GALib) is used for implementation. The basic constructor call of the 

GA is shown below. 

GA(families,// Chromosome dimension 

              populationSize, crossover, 

              randomSelectionChance, 

              maxgenerations,  
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              preliminaryruns,  

              max prelim generations, 

      mutation,  

              decimal,  

              possibleGeneValues,  

              crossover type,  

              true);   

families, PopulationSize, maxgenerations, preliminaryruns, randomSelectionChance represent 

the  chromosome length, size of the population in each generation, maxgenerations to be 

conducted, preliminary runs to be conducted and probability of random selection of 

chromosomes to be selected for the next generation respectively. Crossover, mutation, 

possibleGeneValues represents the crossover probability, mutation probability and the total 

compute nodes respectively. The last two parameters represent the cross over type and statistics 

like average deviation, average fitness to compute.  Here we used randomselectionChance of two 

percent, maxgeneration of two hundred, crossover probability of 65% , mutation of one percent 

and cross over is experimented for single, two point and uniform. Below, the data structures, 

cross over types and mutation are illustrated. 

 

 Data Structure 

The data structure of the chromosome is shown in Figure 5.1. Here, the index represents gene is 

the family number and the value; gene code is the compute node. 

 

 

 

 

 

The above data structure indicates a chromosome of length with the possible gene space of 10(means integer 

representation). In the above data structure, we can observe that family0 is assigned to node2, family1 to node4, 

family2 to node1, family3 to node0 respectively. The above data structure indicates that node5,6 and 8 have no 

family assigned and for node4 both family 1&4 are assigned , for node2 both family0&6 are assigned.  

a) Evolve Method 

Index 0 1 2 3 4 5 6 7 8 

value 2 4 1 0 4 3 2 9 7 

Figure 5.1. Chromosome representation 
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For the initial runs, population is selected at random; fittest chromosomes are carried to the next generation. The 

process is repeated for the maximum preliminary runs. In order to choose the fittest chromosomes for the next 

generation the operators like crossover and mutations are used. 

b) Elitism  

 The next generation chromosomes are created by genetically mating fitter individuals of the current generation. 

Also we apply the elitism for the first two fittest chromosomes; these two will always survive to the next generation. 

This way an extremely fit chromosome is never lost from our chromosome pool. 

c) Genetic Mating 

Crossover and mutations are applied in the current generation to generate the population for the 

next generation. 

d) Crossover 

The crossover operation carried out the GALib under GASequence is as follows.  

Select two chromosome at random from the population leaving the two fittest chromosomes. if 

the probability of selection is below the random selection chance or else if the fitness rank is 

high these two chromosomes are selected for the crossover operation. The crossover type can be 

one point, two point , roulette wheel. Generally the crossover probability applied is in the range 

60% to 70%. 

e) One/single point Crossover 

The two genes of the selected parents are swapped resulting in the two off springs for the next 

generation. The two genes are swapped to the left side of the crossover point. The resultant two 

off springs listed below are one point cross over, are shown in Figure 5.2. 

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parent1 2 4 1 0 4 3 2 9 7 

Parent2 4 1 2 9 3 2 4 6 8 

Offspring1 4 1 2 9 3 3 2 9 7 

Offspring2 2 4 1 0 4 2 4 6 8 

Figure 5.2. One/single point crossover 
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f) Two point Crossover 
 

 

 

 

 

 

 

 

 

 

The two genes of the selected parents are swapped resulting in the two off springs for the next 

generation. The two genes are swapped in between the crossover points are shown in Figure 5.3. 

g) Uniform crossover 

In uniform cross over the two genes at the crossover point are swapped, the sample is shown in 

Figure 5.4. 

 

  

 

 

 

 

 

 

 

 

 

h) Mutation  

The mutation probability chosen is 1/10
th

 of percent. The worst fit chromosomes with this 

probability in the current generation are mutated at random gene point and carried to the next 

generation. The operation of the mutation is shown below, gene3 at index 5(indexing is from 0) 

is mutated to gene 8. 

Parent1 2 4 1 0 4 3 2 9 7 

Parent2 4 1 2 9 3 2 4 6 8 

Offspring1 2 4 1 9 3 2 2 9 7 

Offspring2 4 1 2 0 4 3 4 6 8 

Figure 5.3. Two point crossover 

Parent1 2 4 1 0 4 3 2 9 7 

Parent2 4 1 2 9 3 2 4 6 8 

Offspring1 2 4 1 0 3 3 2 9 7 

Offspring2 4 1 2 9 4 3 4 6 8 

Figure 5.4. Uniform crossover 
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Figure 5.5.Sample Chromosome for family scheduling 

5.4.1 Chromosome  representation 

We choose integer based data structure for genomes representation. The gene index represents 

the familyid, and the genome indicates the compute nodeid to which the family is mapped. The 

data structure of the chromosome for family scheduling is shown Figure 5.5.  

Consider F families to be mapped onto N computing nodes. Each family f will go to only one 

computing node, whereas a computing node may or may not be assigned with families. This 

yields a possible assignment size of N
F 

which is an exponential large value. Let us assume that 

there are 9 families and 10 computing nodes. Figure 5.5 represents that familyid=2 is assigned to 

nodeid=4, familyid=1 is assigned to nodeid=2, and so on. From the above figure it is also seen 

that nodeid=4 has been assigned with familyid=2 and 5; nodeid=2 has been assigned with 

familyid=1,4 and 8 and nodeid=6, 7, 8, 9 and 10 have not been assigned to any family.  

 

5.4.2 Evolve methods 

i. Determining data workloads: The data workload is determined based on the available 

bandwidth between the replicated sites and the compute nodes.  Network traces based on 

round trip time over a time period is used as parameter (weight factor for the data channel) 

in our model to estimate the amount of data to be transferred from each of the replicated 

sites. 

ii. Optimal Schedule: The schedule is based on steady state genetic approach using 

turnaround time minimization as fitness value. 

iii. Data and applications migration: Based on the schedule map, data and application 

services would be migrated to the compute nodes. 

 

Node Id 2 4 3 2 4 5 3 2 1

Family id 1 2 3 4 5 6 7 8 9

Gene x1 x2 x3 x4 x5 x6 x7 x8 x9

Gene 

Index
1 2 3 4 5 6 7 8 9
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iv. Execution: Jobs execution on the compute nodes, and the deletion of the temporary and 

migrated data sets from the computing nodes. 

v. Result: Final result sent to the end user. 

 

 Methodology 

Here, we discuss the methodology for family construction, notations and problem formulation. 

Family to node mapping is represented as the weight matrix. The problem can be solved as the 

bipartite assignment problem, but the limitations are, a node can have maximum of one family 

assigned, although it has enough processing elements for handling more than one family. Hence, 

this problem reduces to 0/1 knapsack which can be solved using greedy, dynamic programming 

or evolutionary techniques like genetic algorithms. In the proposed group scheduling, three 

possible schedules may occur for the computing nodes during execution, such as: 

(i) No family assigned. 

(ii) With exactly one family assigned. 

(iii)More than one family assigned. 

Based on the schedules described as above for a compute node, we discuss below the GA based 

scheduling, chromosome representation, scheduling algorithm and the results obtained with the 

simulated data. 

5.3 GA based scheduling 

Below we describe the derivation of fitness function, followed by scheduling algorithm using 

Genetic approach.  

5.3.1 Fitness Function 

Initial populations of chromosomes are selected at random and the fitness function is applied. 

The fittest chromosomes are carried to the next generation based on the Steady State overlap 

percentage of chromosomes. The process is repeated either till the maximum preliminary runs 

are completed or the convergence of the objective value is achieved. In order to choose the fittest 

chromosomes for the next generation the operators like crossover and mutations are used. The 

next generation chromosomes are created by genetically mating fitter individuals of the current 

generation.  
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5.3.2 Scheduling Algorithm 

Table 5-1 describes the fitness function pseudo code and Table 5-2 discusses the proposed GA 

for scheduling the family jobs using the fitness function. We have used CloudSim toolkit [135]  

with its new capabilities for file replication, simulated object storage identifiers for the data sets 

to simulate the Big Data Clouds environment.  We use a simulated network with computation 

and data storage nodes spread at several locations as shown in Table 4, depicting: (a) 4 locations 

CHYD, CBGL, CMUB, CDEL having 7, 6, 7 and 8 virtual computing resources. These 28 

virtual compute resources provide an aggregate of 1400 processing elements.(b) 4 locations that 

provide 40 data storage nodes with corresponding simulated bandwidths. 

Table 5-1. Fitness Function pseudo code 

Algorithm. Fitness function F pseudo code 

Input: Chromosome C 

Output: Turnaround time of the schedule 

1 Turnaround time T:= 0 

2 For all genes C perform the following steps do 

3 read gene index f and genome value i 

4   Compute the jobs {J} to f.  

5 for all jJ do 

6 Estimate data consolidation time TDfi, compute total jobs Wf in family f. 

7 Compute setup time TSfi, estimated job length on node i, TLji and arrival time TAj. 

8 Compute the turnaround time TRji of job j J on computing node i. 

9 TRji= TDfi/Wf + TSfi+ TLji-TAj 

10 T  := T + TRji 

11  end for 

12 until end of chromosome 

13 return T 
 

Table 5-2. GA for schedule discovery 

Algorithm: Scheduling Algorithm pseudo code 

Input: Population, Generations, Crossover percent, Mutation percent, 

Gene length, Percentage of chromosome to carry  forward(P,g,c,m,l,r) 

Output: A Schedule for all the jobs 
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5.4 Simulation and Results 

In this section we describe the simulations performed using Cloudsim tool kit, followed by 

several experimental results. The basic features of Cloudsim does not have the components such 

such as job grouping, and data awareness features. So, in order to test the model, we have 

extended the basic features of Cloudsim tool kit, and later the experiments are conducted, as 

discussed below. 

 

5.4.1 CloudSim Tool kit 

CloudSim goal is to provide a generalized and extensible simulation framework that enables 

modeling, simulation, and experimentation of emerging Cloud computing infrastructures and 

application services, allowing its users to focus on specific system design issues that they want 

to investigate, without getting concerned about the low level details related to Cloud-based 

infrastructures and services. Main features of CloudSim are  

 support for modeling and simulation of large scale Cloud computing data centers. 

 support for modeling and simulation of virtualized server hosts, with customizable 

policies for provisioning host resources to virtual machines.  

 modeling and simulation of energy-aware computational resources  

 modeling and simulation of data center network topologies and message-passing 

applications.  

 modeling and simulation of federated clouds.  

 dynamic insertion of simulation elements, stop and resume of simulation.  

 support for user-defined policies for allocation of hosts to virtual machines and policies 

for allocation of host resources to virtual machines.  

7.Initial Run: Randomly generate population P chromosomes. 

8.Repeat  

9.Calculate the fitness of all chromosomes using Fitness function F 

10. Arrange the population in the ascending order of fitness value 

11. Copy the r best chromosomes to new population. 

12. for the remaining chromosomes; perform the crossover with percent c 

and mutation with percent m. Copy the new off springs to new 

population. 

13. Replace the current population with the new population 

14. Until maximum generations or convergence. 
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Below we describe the extensions made over Cloudsim toolkit for the simulated experiments. 

 

5.4. 1.1 Extensions for Big Data computing in Clouds 

The extensions for incorporated for several virtual data centers and their management using 

the Application programming interfaces. The files are organized in the virtual data centers, 

as distributed files. The virtual data centers are managed as geographically distributed 

repositories, with varying bandwidth and latency speeds. 

  

5.4. 1.2 Data Replication 

The files which are organized on the virtual data centers are replicated at several sites. 

The indexing mechanism is organized to know the files, at what are all the places it is 

being replicated. The APIs are extended to incorporate the replication locations and the 

respective data centers. The index query mechanisms, list of the virtual data centers, the 

data locations, for the files supplied as input arguments.  

 

5.4. 1.3 Data and Bandwidth Awareness Parallel Data Transfer 

With the extended functionality of data replication over distributed virtual data center 

storage repositories, the models are built, which would understand the data locations, and 

gives the details such as available network bandwidth, and latencies among the computing 

nodes. Virtual computing nodes are built within the model, with several resources 

parameters attached to the virtual computing nodes. Based on the bandwidth and latencies 

between the virtual computing nodes, and the replicated storage repositories, the parallel 

data transfers with several simulated threads were extended. 

 

5.4. 1.4 Family construction - Job grouping 

Graph connected components based package is added Cloudsim for finding the connected 

components of the graph, which would result in the jobs for which data is common. 

 

5.4.2 Simulated Data for experiments 

The following experiments are conducted in the order described below. 
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Table 5-3. Simulated configuration of Big Data Clouds 

 

 

 

 

 

 

 

 

 

 

 

 

 

*1-7 indicates a total of 7 numbers. 

#200/100Mbps-200Mbps indicate randomly generated PEs with a maximum of 200 for each compute provider, with 

the network channel bandwidth randomly simulated between 100Mbps to 200 Mbps. 

##0/100 Mbps to 200Mbps represents the randomly generated data source without computing elements, the 

bandwidth varying from 100 to 200 Mbps for a total of five data providers. 

 

 Data consolidation Analysis: Experiments are conducted to analyze the data transfer and 

consolidation timings from single site vs. the multiple replicated data sites considering the 

network traces over a time period. 

 Determining optimal probabilistic values of genetic operators: Experiments are conducted 

to derive the optimal values of Genetic Algorithm (GA) operators for cross over, mutation and 

types of crossovers. 

 Comparing with match making and heuristic techniques: The algorithm is compared with 

match making techniques like Data First, Compute First, and heuristics such as Simulated 

Annealing (SA). 

 Comparison with Non family scheduling: The algorithm is compared with Non family i.e. 

without grouping the jobs. 

5.4.3 Experiments 

Below, we describe the several experiments performed for data aware scheduling for family and 

non family scheduling. First we analyze the data transfer and consolidation performance 

Resource 

Name 

Type Virtual processing elements/ 

Bandwidth 

CHYD1-7
*
 Virtual Compute Provider 200/100Mbps-200Mbps

#
 

CBGL1-6 -do- 500/50 Mbps-100Mbps 

CMUB1-7 -do- 400/200Mbps-500Mbps 

CDEL1-8 -do- 300/20Mbps-200Mbps 

HYDS1-5 Virtual Data provider 0/100 Mbps to 200Mbps
##

 

BGLS1-10 -do- 0/10 Mbps to 100 Mbps 

MBS1-10 -do- 0/256 to 512 Mbps 

RJPS1-15 -do- 0/56 to 128 Mbps 
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measurements from a single site Vs replicated sites. Followed by, experiments to derive the 

probabilities operators for cross over and mutation operations. Later, we present the results for 

family Vs Non family scheduling, and comparison of the proposed GA technique with other 

heuristic and match making techniques. 

 

5.4.3.1 Data Consolidation from Single Vs. Replicated Sites 

Figure 5.6 depicts the data consolidation timings for the jobs obtained using single data storage 

Vs multiple replicated storage repositories. The results indicate that, data migration time from 

replicated sites is better as compared to the data migration timings from a single site. In case of a 

single site, the data is transferred from a single storage location as a single channel. However, in 

the case of replicated sites, the data available in multiple storages can be retrieved 

simultaneously, over multiple channels, as piece wise using the information of available 

bandwidth between the storage locations to the end client system. This would effectively utilize 

the channel available bandwidth effectively, the amount of the data to be retrieved from these 

storage repositories, is computed over a time period.  Here for simulation a total 8 storage 

repositories are used to transfer the files for a total of 30 randomly simulated jobs, along with the 

necessary data sets required. 

 

 

Figure 5.6 Transfer Times in replicated vs. Single 

5.4.3.2 Genetic operation and probability derivation – Cross over and mutation 

In this section, we conduct experiments to determine the probabilities parameters for cross over 

and mutation operations. We conduct 12 experiments, with each experiment, consisting of 
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population length of 100 chromosomes, and the experiments are repeated for a maximum of 

100 to 200 generations. The experimental results are depicted in Table 5-4. As roulette wheel 

operator with the combination of one point, two point or uniform cross over, hence, we choose 

the roulette wheel as cross over operator, and conduct the probability derivation. Similarly, we 

also analyze the optimal probability value for the mutation operator. 

 

Table 5-4.Experiments to determine genetic operators 

Exp. no Pop. Length Total no. of generations 

1,2 100 100 

3,4 100 200 

5,6,7 200 100 

8 200 100 

9,10,11,12 200 200 

 

 

Figure 5.7. Fitness value convergence across generations 

The results are shown in depicted in Figure 5.7 to determine the roulette wheel has better 

convergence across the generations while compared to the other genetic operators. Hence, the 

roulette wheel operator is selected for cross over operations for the next level experiments. 
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Experiments are performed with varying mutation probabilities to determine the appropriate 

mutation ratio by fixing cross over operator of 0.9 and roulette wheel, the experiments shown 

in Figure 5.8 indicates with mutation probability of 0.1 has the better convergence fitness 

value. 

 

 

Figure 5.8. Mutation probability 
 

5.4.3.3 Performance of Family Vs Non Family 

Experiments are conducted for analyzing the turnaround times for the families and non-families 

from a single storage vs. replicated data storages. The results depicted in Figure 5.9, illustrate 

that turnaround time is lesser from the replicated sites while compared to the results obtained 

from the single site. This is due to, transfer of chunk of the data from the whole data,  

simultaneously from several storage repositories to the minimal data consolidations from 

replicated sites. 
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Figure 5.9. Turnaround times (data consolidation) of jobs (non family) from single Vs. 

replicated sites  
 

Another set of experiments are performed for analyzing the turnaround times of family vs. non 

family scheduling is depicted in Figure 5.10. This is carried out by applying the data 

migration/consolidation from the replicated sites to the selected computing nodes. Illustrates, the 

jobs with the family grouping has resulted in minimal turnaround time while compared to the 

non-family. This is due to the data consolidation carried out one time for the entire family job. 

This would reduce the data migration overheads for each job and reduce the network bandwidth 

consumptions. However, for few jobs the resultant turnaround time is more while compared to 

non-family scheduling, which could be due to the grouping that has resulted in longer data 

consolidations and computing times for the jobs.  The longer data consolidations is due to more 

numbers of  jobs in the family, and the longer computing times is due to the availability of 

minimal computing elements at the selected compute node than actually demanded for 

processing. However, the overall makespan of the family scheduling is less than the non family 

scheduling. 
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Figure 5.10. Turnaround Times for Family vs. Non Family 
 

5.4.3.4 Comparison with other techniques – Match Making & Heuristics 

The proposed GA is compared with match making and heuristic techniques discussed below.  

Here, two types of match making techniques such as Minimum Data consolidation First and 

Minimum Compute First are used. Later, heuristic technique such as Simulated Annealing 

techniques is discussed. The obtained results are compared with the proposed GA approach 

which is depicted in Figure 5.11. 
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Figure 5.11. Comparing GA with other techniques 

 Minimum Data consolidation First at node – In this mapping, a compute resource that 

ensures minimum data consolidation time is selected for the family. 

 Minimum Compute First – In this mapping, a compute resource that ensures the minimum 

computation time is selected for the family.  

 Simulated Annealing- In this mapping heuristics are applied by discarding the worst fit 

values from the current state to the next state and moving towards the best selection. 

The results indicate that Minimum Compute First technique has resulted in larger makespan 

while compared to Minimum Data First and SA techniques. Minimum Data First and Simulated 

Annealing techniques have almost the same makespan value with performance better than 

Minimum Computer Fist technique.  However, the proposed GA has resulted in minimal 

makespan while compared to matchmaking techniques and SA. This could be due to the natural 

evolution procedures of GA and fitness functions used to obtain the near optimal solution.  
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5.5 Discussions and Summary  

The proposed family/group scheduling model addresses the data intensive problems to minimize 

the turnaround time of the jobs where the computing and data resources are decoupled. Here, we 

have introduced a group based scheduling model, called as family (the jobs for which the data 

required is common) schedule, and processed these jobs as a group. This would minimize the 

data migration overheads, and increases the throughput of the jobs. 

The jobs with common data are grouped together, using the family graph, and connected 

components are used to compute the family group. Later, parallel data approach is applied for 

data migration based on the available bandwidth from the computing nodes to the storage 

repositories. The family schedule problem is addressed using Genetic Algorithm (GA), for which 

a schedule is computed by effectively mapping the data to the computing nodes. Based on high 

throughput model for data transfers, and graph connected components for family grouping, a 

chromosome data structure is defined, and fitness functions are derived, and Steady State GA is 

applied is applied to discover the optimal schedule. 

CloudSim tool kit is used to simulate the environment. Here, both Computing Clouds, and Data 

Storage providers are simulated with varying bandwidths, and different communication links. 

The available bandwidth is computed using Round Trip Time (RTT), by sending the dummy 

packets from computing nodes to the data storages. The performance comparisons of the 

schedules are illustrated for the both family and non-family schedules from a single site and 

multiple replicated sites. The results indicate that, data migration from replicated sites show 

performance improvement over a single site. The experiments show that family schedule 

performs better over the non-family schedule, by minimizing the data migration overheads using 

the data parallel approach and computes the schedule, which would minimize both 

computational and data migration overheads. Finally, the results obtained from GA based data 

aware scheduling is compared with other scheduling mechanisms such as Computer First, Data 

First, and Simulated Annealing techniques. 
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Chapter 6  

 

Extended Hadoop and MapReduce Models for 

Big Data Computing in Clouds 

 

Hadoop Distributed File System (HDFS) and MapReduce model have become popular 

technologies for large scale data organization and analysis. Existing model of data organization 

and processing in Hadoop using HDFS and MapReduce are ideally tailored for search and data 

parallel applications, for which there is no need of data dependency with its neighboring/adjacent 

data. However, many scientific applications such as image mining, data mining, knowledge data 

mining, and satellite image processing are dependent on adjacent data for processing and 

analysis.  In this chapter, we discuss the requirements of the overlapped data organization and 

propose a two phase extensions to HDFS and MapReduce programming model, called XHAMI, 

to address them. The extended interfaces are presented as APIs and implemented in the context 

of Image Processing (IP) application domain. We demonstrated effectiveness of XHAMI through 

case studies of image processing functions along with the results. Although XHAMI has little 

overhead in data storage and input/output operations, it greatly enhances the system performance 

and simplifies the application development process. Our proposed system, XHAMI, works 

without any changes for the existing MapReduce models, and can be utilized by many 

applications where there is a requirement of overlapped data. 
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6.1 Introduction – Extended HDFS and MapReduce 

 

The amount of textual and multimedia data has grown considerably in recent years due to the 

growth of social networking, healthcare applications, surveillance systems, earth observation 

sensors etc. This huge volume of data in the world has created a new field in data processing 

called as Big Data [4] , which refers to an emerging data science paradigm of multi-dimensional 

information mining for scientific discovery and business analytics over large scale scalable 

infrastructure. Big Data handles massive amounts of data collected over time, which is an 

otherwise difficult task to analyze and handle using common database management tools [158] . 

Big Data can yield extremely useful information; however apart, urges new challenges both in 

data organization and processing [159] .  

 

Hadoop is an open source framework for storing, processing, and analysis of large amounts of 

distributed semi structured/unstructured data [13] . The origin of this framework comes from 

internet search companies like Yahoo and Google, who needed new processing tools and models 

for web page indexing and searching. This framework is designed for data parallel processing at 

Petabyte and Exabyte scales distributed on the commodity computing nodes. Hadoop cluster is a 

highly scalable architecture, that spawns both compute and data storage nodes horizontally for 

preserving and processing large scale data to achieve high reliability and high throughput. 

Therefore, Hadoop framework and its core sub components i.e. HDFS and MapReduce are 

gaining popularity in addressing several large scale applications of data intensive computing in 

several domain specific areas like social networking, business intelligence, and scientific 

analytics, etc. for analyzing large scale, rapidly growing, and variety structures of data. 

 

The advantages of HDFS and MapReduce in Hadoop eco system are – horizontal scalability, low 

cost setup with commodity hardware, ability to process semi-structured/ unstructured data, and 

simplicity in programming. However, HDFS and MapReduce, though offer tremendous potential 

for gaining maximum performance, but due to its certain inherent limiting features, does not 

confine to be used for all areas. Below we describe one such domain specific applications in 

remote sensing image processing. 
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6.2 Extended MapReduce Vs Existing Models 

 

Below we discuss the comparisons of existing models Vs proposed XHAMI model for large 

scale data processing on Hadoop clusters based on the extensions of Hadoop Distributed File 

System (HDFS) and MapReduce models. Below we describe several data intensive models and 

their comparisons with the proposed XHAMI model. 

 

Image processing and computer vision algorithms can be applied as multiple independent tasks 

on large scale data sets simultaneously in parallel on a distributed system to achieve higher 

throughputs. Hadoop is an open source framework for addressing large scale data analytics using 

HDFS and MapReduce programming models. In addition to Hadoop, there are several other 

frameworks like Twister [168]  for iterative computing of streaming text analytics, and Phoenix 

[169]  used for map and reduce functions for distributed data intensive Message Passing 

Interface (MPI) kind of applications. 

 

Kennedy et al. [170]  demonstrated the use of MapReduce for labeling 19.6 million images using 

nearest neighbor method. Shi et al. [171]  presented use of MapReduce for Content Based Image 

Retrieval (CBIR), and discussed the results obtained by using around 400,000 images 

approximately. Yang et al. [172]  presented a system MIFAS for fast and efficient access to 

medical images using Hadoop and Cloud computing. Kocalkulak et al. [173]  proposed a Hadoop 

based system for pattern image processing of intercontinental missiles for finding the bullet 

patterns. Almeer et al. [174]  designed and implemented a system for remote sensing image 

processing with the help of Hadoop and Cloud computing systems for small scale images. Demir 

[175]  et al. discussed the usage of Hadoop for small size face detection images. All these 

systems describe the bulk processing of small size images in batch mode over HDFS, where each 

map function processes the complete image.  

 

White et al. [176]  discussed the overheads that can be caused due to small size files, which are 

considerably smaller than the block size in HDFS. A similar approach is presented by Sweeney 

et al. [177]  and presented Hadoop Image Processing Interface (HIPI) as an extension of 

MapReduce APIs for image processing applications. HIPI operates on the smaller image files, 

which are bundled into a large block called Hadoop Image Bundle (HIB). In HIPI each image is 
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applied to only one map function, which has limitation in dividing the data into smaller file sets. 

All these said methods discussed aggregation of smaller images and mapping each image within 

the bundle as a whole to one single map function.  

 

Potisepp et al. [178]  discussed the processing small/regular images of total 48675 by 

aggregating them into large data set, and processed them on Hadoop using MapReduce as 

sequential files, similar to the one addressed by HIPI. Also, presented feasibility study as a 

proof-of-concept test for a single large image as blocks and overlapping pixels for non-iterative 

algorithms image processing. However, no design, or solution, or methodology has been 

suggested to either to Hadoop or MapReduce for either Image Processing applications or for any 

other domain, so that the methodology works for existing as well as new models under 

consideration. Table 6-1 illustrate the differences between XHAMI and other MapReduce 

models. 

 

Table 6-1. XHAMI Vs Other MapReduce models 

S. no Model 

name 

Underlying file 

system 

Programming 

model 

Remarks 

1 Apache 

Hadoop 

Hadoop distributed 

file system 

MapReduce Works on large scale clusters 

of commodity hardware based 

on Hadoop distributed file 

system. Generic file system 

and MapReduce, requiring 

customizations for several 

domain specific applications. 

2 Twister HDFS and In 

Memory 

Twister 

MapReduce 

Runs on the large scale cluster 

of machines with distributed 

shared file repository. Does the 

processing of text related 

applications for iterative 

applications. 

3 Aneka  Windows MapReduce Runs on large cluster of 
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distributed file 

system 

desktop machines using 

windows distributed file 

system. Good for text related 

MapReduce processing, 

requires several customizations 

for domain specific models. 

4 Dryad 

LINQ 

Windows 

distributed file 

system 

MapReduce Runs on the cluster of windows 

servers using distributed file 

system of windows for large 

scale data parallel applications 

running on PC clusters. 

5 Apache 

Hadoop 

Image 

Processing 

Interface 

(HIPI) 

Hadoop distributed 

file system 

MapReduce Runs on large scale clusters of 

commodity hardware based on 

Hadoop distributed file system. 

This avoids the small files 

problem by combining the 

smaller image files into larger 

images. A single image is 

given to one Map function for 

processing.  

6 XHAMI Hadoop distributed 

file system 

MapReduce High level APIs for data 

abstraction and Map Reduce 

computations for a single large 

image volumes, where 

overlapped data among the 

blocks is the essential 

requirements. 

 

6.3 XHAMI – Extended Hadoop and MapReduce Interface 

 

Earth observation satellite sensors provide high-resolution satellite imagery having image scene 

sizes from several megabytes to gigabytes. High resolution satellite imagery for example Quick 



 

138 
 

Bird, IKONOS, Worldview, IRS Cartosat etc. [164]  are used in various applications of analysis 

and information extraction like oil/gas mining, engineering construction like 3D urban/terrain 

mapping, GIS developments, defense and security, environmental monitoring, media and 

entertainment, agricultural and natural resource exploration etc. Due to increase in the numbers 

of satellites and technology advancements in the remote sensing, both the data sizes and their 

volumes are increasing on a daily basis. Hence, organization and analysis of such data for 

intrinsic information is a major challenge.  

 

Ma et al. [165]  have discussed challenges and opportunities in Remote Sensing (RS) Big Data 

computing, focused on RS data intensive problems, analysis of RS Big Data, and several 

techniques for processing RS Big Data. Two dimensional structured representation of images, 

and majority of the functions in image processing being highly parallelizable, the HDFS way of 

organizing the data as blocks and usage of MapReduce functions for processing each block as 

independent map function, makes Hadoop a suitable platform for large scale high volume image 

processing applications.  

 

An image is a two-dimensional function f(x,y), where x and y are spatial (plane) coordinates, and 

the amplitude of f at any pair of coordinates (x,y) is called intensity or gray level of the image at 

that point [166] . Image data mining is a technology that aims in finding useful information and 

knowledge from large scale image data [167] . This involves use of several image processing 

techniques such as enhancement, classification, segmentation, object detection etc. which use 

many combinations of linear/morphological spatial filters [166]  

 

Many of the linear/morphological spatial filters demand use of adjacent pixels for processing the 

current pixel. For example, as shown in Figure 6.1, a smoothening operation performs weighted 

average of a 3X3 kernel window. The output of pixel X depends on the values of  X1,X2,X3,X4, 

X5,X6,X7,and X8. Therefore due to the dependency, these types of operations cannot be 

performed on the edge pixels. Hadoop and many of the implementations discussed in Section 2, 

split the data based on a fixed size, which results in partitioning of data as shown in Figure 1. 

Each of the blocks is written to different data nodes. 
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Figure 6.1. Image representation with segmented blocks 

 

Therefore the boundary pixels of entire line b1, b2, b3,.. in each block cannot be processed, as 

the adjacent pixels are not available at the respective data nodes. Similarly for the pixels marked 

as y1,y2,y3,y4,… also IP operations cannot be performed straight away. To process these 

boundary pixels i.e., the start line and end line in each block a customized map function to read 

additional pixels from a different data node is essential, otherwise the output would be incorrect. 

This additional read operations for each block increase the overhead significantly.  

 

To meet the requirements of applications with overlapped data, we propose an Extended HDFS 

and MapReduce Interface, called XHAMI, which offers a two phase extensions to HDFS and 

MapReduce programming model. The extended interfaces are presented as APIs and 

implemented in the context of Image Processing (IP) application domain. We demonstrated 

effectiveness of XHAMI through case studies of image processing functions along with the 

results. Our experimental results reveal that XHAMI greatly enhances the system performance 

and simplifies the application development process. It works without any changes for the 
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existing MapReduce models, and hence it can be utilized by many applications where there is a 

requirement of overlapped data. Here, we addresses the issues related to processing large remote 

sensing images which run into several Megabytes to Gigabytes, addressing several issues related 

to data organization over HDFS, and processing them using XHAMI. The proposed extensions 

are applied for image processing applications, but the same can be extended to other domains 

also where such similar data dependency exists. 

 

 
 

Figure 6.2. XHAMI for read/write operations 

 

6.3.1 Architecture 

Figure 6.2 depicts the sequence of steps in reading/writing the images using XHAMI software 

library over Hadoop framework.  Initially, client uses XHAMI I/O functions (step 1) for reading 

or writing the data. The client request is translated into create () or open () by XHAMI, and sent 

to DistributedFileSystem (step 2). Distributed File System instance calls the namenode to 

determine the data block locations (step 3).  For each block, the namenode returns the addresses 

of the datanodes for writing or reading the data. DistributedFileSystem returns 

FSDataInput/Output Stream, which in turn will be used by XHAMI to read/write the data 
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to/from the datanodes. XHAMI checks file format, if the format is in image type (step 4), then 

metadata information such as file name, total scans, total pixels, total numbers of bands in the 

image, and the number of bytes per pixel are stored in HBASE, this simplifies header 

information reading as and when required through HBASE queries, otherwise reading the header 

block by block is tedious and time consuming process. 

Later on XHAMI calls FSDataInput/Output Stream either to read/write the data to/from the 

respective data nodes (step 5). Steps 6 and 7 are based on standard HDFS data reading/writing in 

the pipelining way. Each block is written with the header information corresponding to the 

blocks i.e. blockid, start scan, end scan, overlap scan lines in the block, scan length, and size of 

the block. Finally, after the read/write operation the request is made for closing the file (step 8), 

and the status (step 9) is forwarded to the namenode.  

 

Below we describe techniques for data organization followed by extended HDFS and 

MapReduce APIs. 

6.3.2 Data organization 

The image is organized as blocks in HDFS along with overlap among the subsequent blocks. The 

image as a one directional sequence of bytes is shown in Figure 6.3a, the construction of the 

blocks, where the image is single dimension represented as blocks and the two ways of block 

arrangement is described in Figure 6.3.b, and Figure 6.3.c, depicts the blocks are constructed in 

two ways i.e.  (i) uni-directional: partitioning across the scan line direction as shown in  

Figure 6.3.a, and (ii) bidirectional:  partitioning both horizontal and vertical directions as shown 

in Figure 6.3.b. while construction, it is essential to ensure that, no split take place within the 

pixel byte boundaries. The methods are described below. 

i) Unidirectional split: blocks are constructed by segmenting the data in across scan line 

(horizontal) direction. Each block is written with the additional lines at the end of the block. 

ii) Bi-directional split: splitting the file into blocks in both horizontal and vertical directions. 

The split results in the blocks, for which, the first and last blocks have overlap with their adjacent 

two blocks, and all the remaining blocks have overlap with their adjacent four blocks. This type 

of segmentation results in large storage overhead which is approximately double the size of the 
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unidirectional segment construction. This type of organization is preferred while images have 

larger scan line lengths. 

 

 

 

Figure 6.3. Block construction methods 

 

Scan lines for each block Sb computed as 

 

𝑆𝑏 =   𝐻  𝐿 ∗ 𝑃    

 

H = HDFS Default block length in Mbytes. 

L = length of scan line i.e. total pixels in the scan line. 

P = pixel length in bytes. 

S = total number of scan lines. 

 

Total number of blocks T, having overlap of α number of scan lines is  

 

  𝑇 =   𝑆 𝑆𝑏   

  If  T* α > Sb then T = T+1. 
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The start and end scan lines 𝐵𝑖,𝑠 and 𝐵𝑖 ,𝑒 in each block is given below; N representing total scans 

in the image. 

 

𝐵𝑖,𝑠 =  

1,                                        𝑖 = 1
𝐵𝑖−1,𝑒−𝛼+1,                      1 < 𝑖 < 𝑇

𝐵𝑁−1,𝑒−𝛼+1                       𝑖 = 𝑇

  

 

𝐵𝑖 ,𝑒 =  
𝐵𝑖 ,𝑠 + 𝑆𝑏 − 1   1 ≤ 𝑖 < 𝑇

𝑆𝑏 𝑖 = 𝑇
  

 

Block length is computed as below. 

 

𝑅𝑖=(𝐵𝑖,𝑒 −  𝐵𝑖,𝑠 + 1 ) ∗ 𝐿 ∗ 𝑃 , 1 ≤ 𝑖 ≤ 𝑇 

 

The blocks are constructed with metadata information in the header, such as blockid, start scan, 

end scan, overlap scan lines in the block, scan length, block length. Though, metadata adds some 

additional storage overhead, but, simplifies the processing activity during Map phase, for 

obtaining the total number of pixels, number of bands, bytes per pixel etc, and also helps to 

organize the blocks in the order during the combine/merge phase using blockid.  

 

6.3.3 XHAMI package description 

 

XHAMI offers Software Development Kit (SDK) for Hadoop based large scale domain specific 

data intensive applications designing. It provides high level packages for data organization and 

for MapReduce based processing simplifying the development and quick application designing 

by hiding several low level details of image organization and processing. XHAMI package 

description is as follows- XhamiFileIOFormat is the base class for all domain specific 

applications which is placed under the package xhami.io, as shown in Figure 6.4.  
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Figure 6.4. XHAMI I/O package 

 

XhamiFileIOFormat is the base class for all domain specific applications offered under the 

package xhami.io, as depicted in Figure 6.4. XhamiFileIOFormat extends FileInputFormat of 

standard Hadoop package, and does the implementation of several methods, which hide the low 

level handling of data for HDFS data organization. The major methods offered are for setting the 

overlap, getting the overlap, reading, writing, seeking the data without knowing/knowledge of 

the lower level details of the data. 

 

org.apache.hadoop.FileInputFormat org.apache.hadoop.RecordReader

xhami.io.XhamiFileIOFormat

Configuration conf

FileSystem filesystem

String fileName

FSDataInputStream fdis

FSDataOutputStream fdos

long overlap

boolean setxhamiConfiguration( String 

coresite, String hdfssite)

public boolean create(String fileName)

public FSDataInputStream open(String 

fileName) 

public void  setoverLap(int overlap)

public void seek(long position)

public int getoverLap()

public void write(byte[] b)

public byte[] read(int length)

public void close()

public RecordReader<Long Writable, 

ByteArray> getRecordReader(InputSplit

split, JobConf job, Reporter reporter)

xhami.io.XhamiRecordReader

long  start

long pos

long end

int maxlength

Long writableKey

byte[] buf

void initialize(InputSplit genericSplit, 

TaskAttemptContext context)

public boolean nextKeyvalue()

public Long Writable getCurrentKey()

public byte[] getCurrentValue()

public float getProgress()

public void close()

xhami.io.XhamiImage

byte header[]

DataSet dataset

pubic boolean writeFile(String 

srcFileName, string dstFileName)

public int readFile(String fileName)

byte[] getRoi(int stscan, int stpixel, int

width, int height)

int getPixel(int scan, int pixel)

abstract public Object setBlockHeader(int

blockid)
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XhamiFile is used as base class for several application developers for file I/O functionality and 

implement further for domain specific operations. Xhami.io.XhamiImage is one such image 

processing domain specific functionality implemented using XhamiFileIOFormat. XhamiImage 

extends the base class and offers several image processing methods for read/write the image 

blocks into the similar format of that original file, using Geographical Data Abstraction Layer 

(GDAL) library [179]  and offers several methods such as reading the region of interest, getting 

the scan lines, pixel, reading the pixel grey vale etc., by hiding the low level details of file I/O. 

 

Several methods in XhamiFileIOFormat and XhamiImage classes are described in Figure 6.4. 

XhamiFileIOFormat extends FileInputFormat from the standard Hadoop package, and the 

implementation of several methods, for hiding the low level handling of data for HDFS data 

organization is handled by this package. The major methods offered under XhamiFileIOFormat 

class are i) setting the overlap, ii) getting the overlap, iii) reading, writing, and seeking the data 

without knowing/knowledge of the low level details of the data. 

 

XhamiFileIOFormat is used as base class for several application developers for file I/O 

functionality and implement further for domain specific operations. Xhami.io.XhamiImage is an 

abstract class which provides the methods for the implementation of image processing domain 

specific functionality by extending XhamiFileIOFormat. XhamiImage extends 

XhamiFileIOFormat class and implements several image processing methods for setting the 

header/metadata information of the image, block wise metadata information, and for read/write 

the image blocks into the similar format of that original file, using Geographical Data 

Abstraction Layer (GDAL) library [179]  and offers several methods such as reading the region 

of interest, getting the scan lines, pixel, reading the pixel grey vale etc., by hiding the low level 

details of file I/O .Several methods in XhamiFileIOFormat, XhamiImage classes, and 

XhamiRecordReader classes are described in Table 6-2, Table 6-3 and Table 6-4 respectively. 

XhamiImage implements Geographic Data Abstraction Layer (GDAL) functionality using the 

DataSet object for image related operations. XhamiImage class can be extended by the Hadoop 

based Image processing application developer by setting up their own implementation of 

setBlockHeader method. XhamiRecordReader reads the buffer data and sends to the Map 

function for processing. 
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Table 6-2. Description of Methods in XhamiFileIOFormat class 

Method name Method description Return value 

boolean setxhamiConfiguration(String 

coresite, String hdfssite) 

Sets the HDFS configuration parameters such as coresite and 

hdfssite. This function in turn uses the Configuration object, and 

calls addResource methods of its base class, to set establish the 

connectivity to HDFS site. 

If the configuration parameters are 

correct, then boolean value true is 

returned.  In case wrong supply of 

arguments, or if the parameter files are 

not available, or due to invalid 

credentials, or else HDFS site may be 

down, false will be returned. 

boolean create(String fileName) Create the file with name filename to write to HDFS. Checks if 

the file already exists. This function is used before the file is to 

be written to HDFS. 

Returns true if the file is not present in 

HDFS, or else returns false. 

FSDataInputStream open(String 

filename) 

Checks if the file is present in the HDFS.  If the file is present FSDataInputStream 

having the object value is returned, 

otherwise FSDataInputStream with value 

having null is returned. 

void setoverLap(int overlap) Used to set the overlap across the segmented blocks. The 

supplied overlap value is an integer value corresponding to the 

overlap size in bytes. 

- 

void seek(long position) Moves the file pointer to the location position in the file. - 

int getoverLap() Reads the overlap value set for the file while writing to HDFS. Return the overlap value if set for the file 

or else returns -1. 
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void write(byte[] b) Writes b number of bytes to the file. - 

byte[] read(int length) Reads length number of bytes from the file. Returns the data in the byte array format. 

void close() Closes the data pointers those are opened for reading / writing 

the data. 

- 

RecordReader<Long Writable, 

ByteArray>getRecordReader(InputSplit 

split, JobConf job, Reporter reporter 

Reads the Xhami compatible record reader in bytes, for 

MapReduce computing by overriding the RecordReader method 

of FileInputFormat class.  The compatible here means the 

window size to be read for processing the binary image for 

processing. This would be supplied as argument value to the 

Image Processing MapReduce function. If the value is of type 

fixed, then the entire Block is read during processing. 

Returns the Default Hadoop 

RecordReader Object for processing by 

the MapReduce job.  

 

Table 6-3.XhamiImage class description 

Method name Method description Return value 

boolean writeFile(String srcFileName, 

String dstFileName) 

Used for writing the contents of the file srcFileName, to the 

destination dstFileName. 

Boolean value true is returned if the 

writing is successful, or else false is 

returned. 

int readFile(String fileName) Set the file fileName to read from the HDFS. Returns the total 

numbers of blocks, that the file is organized in HDFS. 

Number of blocks that the file is 

stored in HDFS. If the file does not 

exist -1 is returned. 

byte[] getRoi(intstscan, intstpixel, int 

width, int height) 

Reads the array of bytes from the file already set, starting at stscan 

and pixel, with a block of size width and height bytes. 

If successful returns byte array read, 

or else returns NULL object.   
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intgetPixel(int scan, int pixel) Reads the pixel value at the location scan and pixel. Returns pixel(gray) value as integer. 

abstract   public Object 

setBlockHeader(int blockid) 

Abstract method which would be overwritten by XHAMI 

application developers for image processing domain applications. 

Header information type casted to 

Object data type. 

 

Package hierarchy of MapReduce for Image processing domain is shown in Figure 6.5 and methods are described in Table 6-5. 

Table 6-4.  Methods in XhamiRecordReader 

Method name Method description Return value 

Initialize(InputSplitgenericSplit, 

TaskAttemptContext context) 

Overrides the Initialize method of standard Hadoop 

Record reader method.  Implements the own split 

method, which reads the content which is compatible 

with the Xhami File data format, hiding the overlap 

block size. 

- 

booleannextKeyvalue() Overrides the nextKeyvalue method of its base class 

RecorReader.  

Returns true if it can read the next 

record for the file, or else return 

false. 

Long Writable getCurrentKey() getCurrentKey method of its base class is overridden.   Return Writable Object of the record 

recorder method. 

float getProgress() Overriding method, to send the progress of the data 

read. 

Return float false representing the 

percentage of data read so far from 

the XhamiRecordRecorder, 

corresponding to the InputSplit. 

byte[] getCurrentValue() Reads the bytes array to be sent for computing for Map Return byte array if true, else returns 
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function. NULL object. 

void close() Closes the record reader object. - 

 

Table 6-5. Description of  XHAMI MapReduce classes for Image Processing domain 

MapReduce Class Description Return value 

Sobel Implementation of Sobel spatial edge detection filter. It has map function 

implementation only, and the  Reduce is not required, as the output of the map 

itself is directly written, as it does not required any collection of the map inputs for 

processing further. This implementation hides the several details such as 

overlapping pixels across the blocks, and the kernel window size to be read for 

processing. Output is written to the HDFS file system.  

Output Images 

with the detected 

edges. 

Laplacian Implementation of Laplacian differential edge detection filter. It has map function 

implementation but not reduce method. Reduce is not required, as the output of the 

map itself is directly written, as it does not required any collection of the map 

inputs for processing further. This implementation hides the several details such as 

overlapping pixels across the blocks, and the kernel window size to be read for 

processing. Output is written to the HDFS file system.  

Output Images 

with the detected 

edges. 

Histogram Implements both Map and Reduce functions. Map collects the count of the pixel 

(gray) value, and reduce does the aggregation of the collected numbers from the 

map functions. While processing it does not consider the overlapping pixels across 

the blocks. 

Histogram of the 

image. 
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Figure 6.5. XHAMI MapReduce Package for Image processing domain 

 

Below we describe sample implementation of XHAMI MapReduce functions for image 

processing domain. 

 

6.3.4 XHAMI – MapReduce functions 

In this section we describe the extensions for Map and Reduce functions for image processing 

applications. The implementation of Map and Reduce function depends on the image processing 

operation to be performed on the image. For example, in the case of edge detection, there is no 

need of reducer function implementation, as the resultant output of the map function is 

straightway can be written to the storage. Each map function reads the block numbers and 

org.apache.hadoop.mapred.MapReduceBase

xhami.mapreduce.SobelEdgeMap

XhamiRecordReader xhamirr

public void Configure(JobConf

job)

public void close()

public void map(LongWritable

key, BytesWritable, value, 

OutputCollector<IntWritable, 

BytesWritable> output, Reporter 

reporter)

org.apache.hadoop.mapred.MapReduceBase

xhami.mapreduce.Laplacin

XhamiRecordReader xhamirr

public void Configure(JobConf

job)

public void close()

public void map(LongWritable

key, BytesWritable, value, 

OutputCollector<IntWritable, 

BytesWritable> output, Reporter 

reporter)

org.apache.hadoop.mapred.MapReduceBase

xhami.mapreduce.Histogram

XhamiRecordReader xhamirr

public void Configure(JobConf

job)

public void close()

public void map(LongWritable

key, BytesWritable, value, 

OutputCollector<IntWritable, 

Text > output, Reporter reporter)

public void reduce(IntWritable

key, Iterator<IntWritable> values, 

OutputCollector<IntWritable, 

Text> output, Reporter reporter)

XHAMI package offers

XhamiRecordReader class which uses

XhamiImage class for getting image

information such as number of blocks,

overlap among the subsequent blocks,

metadata information of the image and

segmented blocks.

Other MapReduce functions available as

part of package are Gaussian, Dilute, erode

etc…
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metadata of the corresponding blocks. The sample job configuration for MapReduce operation in 

java language is shown Table 6-6 

 

Read operations can be implemented in two ways in HDFS, one way is to implement own split 

function, ensuring the split does not happen across the boundaries, and other one is to use FIXED 

LENGTH RECORD of FixedLengthInputFormat class. The package offers the implementations 

for both FIXED LENGTH RECORD and custom formatter XhamiRecordRecorder.  

 

Table 6-6.Sample job configuration for MapReduce 

1.JobConfconf = new JobConf(XhamImageMROperations.class); //setting MapReduce 

job configuration 

2.conf.setWorkingDirectory(new Path("hdfs://namenode/user/hduser"));//setting 

configuration working directory. 

3.conf.addResource(newPath("/home/hduser/hadoop-2.7.0/etc/hadoop/core-

site.xml"));// adding the  core site file. 

4.conf.addResource(newPath("/home/hduser/hadoop-2.7.0/etc/hadoop/hdfs-

site.xml"));// adding the hdfs site information file. 

5.conf.setInt(XhamiFileIOFormat.RecordReader);//setting XhamiFileIOFormat 

recorder class 

6. conf.setInputFormat(XhamiFileIOFormat.class);//setting XhamiFileIOFormat class 

 

(1)  MapReduce Sobel edge detection sample implementation 

 

Edges characterize boundaries in images are areas with strong intensity contrasts- a jump in 

intensity from one pixel to the next. There are many ways to perform edge detection. However, 

the majority of different methods may be grouped into two categories, gradient, and Laplacian. 

The gradient method detects the edges by looking for the maximum and minimum in the first 

derivative of the image. The Laplacian method searches for zero crossings in the second 

derivative of the image to find the edges. An edge has the one-dimensional shape of a ramp and 

calculating the derivative of the image can highlight its location.  In the map function, for edge 

detection, the combiner and reduce functions are not performed, as there is no need of 
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aggregation of the individual map functions.  A sample map function implementation of XHAMI 

for Sobel edge detection using 3X3 image gradient operator is discussed in Table 6-7.  

 
 

Table 6-7. Sample map function of Sobel gradient edge operator 

int[][]  GX={ 

    {-1,0,1},{-2,0,2},{-1,0,1} 

}; 

int[][]  GY={ 

    {1,2,1},{0,0,1},{-1,-2,-11} 

}; 

public void map(LongWritable key, BytesWritable value, 

OutputCollector<IntWritable, BytesWritable> output, 

Reporter reporter) throws IOException {//key contains the value of the block number to be 

processed and value is the buffer to be processed 

      byte[] data = value.getBytes(); //data array to process 

     //apply the kernel on the variable value using GX and GY operator on data array. The 

resultant output written to a file from output data. 

byte[]  output = new byte[data.length]; //output array to be written.      

//output buffer is written to individual files, with the sequence number as name. Once all the 

map functions are completed, they would be merged to generate a single large output. 

} 

 

The differences between conventional Hadoop implementation and the XHAMI implementations 

are as follows-  in the former, the data is organized as segmented as blocks, and there is no 

overlap of the line pixels across the blocks. Hence, it would be difficult to process the edge 

pixels of the blocks, and to process the edge pixels, one should get the two blocks, and compute 

the overlap pixels before it is sent to the map function for processing. Also, it would be difficult 
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to ensure that the split does not happen within the pixel while reading. But, XHAMI hides all 

such low level details of data organization, lines or pixels overlap, no split within the pixels, 

number of blocks the image is organized as blocks, header information of the blocks etc. 

(2)  MapReduce Histogram sample implementation 
 

Histogram operation computes frequency count of the pixel in the image. The histogram is 

computed as follows, first, the block and length of the block is read, and each blockis mapped to 

one map function. Sample code for histogram of map and reduce function is described in Table 

6-8 and Table 6-9 respectively. The difference between the conventional implementation and 

the XHAMI MapReduce Histogram implementation are – in the former, it is necessary to ensure 

that the split does not happen within the pixels. The later overcomes this problem by using 

XHAMI Image implementation for data organization, and ensures that overlap lines (pixels) are 

vomited during processing by the Map function. 

 

Table 6-8.Histogram map function 

public void map(LongWritable key, BytesWritable value, 

OutputCollector<IntWritable, Text> output, 

Reporter reporter) throws IOException { 

byte[] data = value.getBytes(); 

byte pixelValue=0; //skip overlap scan lines 

for(inti=0;i<data.length-(overLapScanLines*scanLineLength);i++){ 

pixelValue= data[i]; 

output.collect(new IntWritable(pixelValue), new Text(""+1)); 

} 

} 
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Table 6-9.Histogram reduce function 

 

 

 

 

 

6.3.5 Writing domain specific applications by extending XHAMI package 

XhamiFileIOFormat class is the base class, which hides the low level details of data organization 

and processing for the several applications of binary data handling. This class offers several 

methods for reading, writing, seeking to the particular block of the image, getting the overlap 

information among the subsequent blocks etc.  XhamiImage class is an extended class of 

XhamiFileIOFormat, which offers several methods for handling the data for several applications 

in image processing domain. XhamiImage could be used for development of HDFS based data 

organization readily, or else, one can extend the class XhamiFileIOFormat for handling similar 

kind of image processing domain applications of their own interest. Below, we describe the 

procedure for writing and reading the images in HDFS format using by extending XhamiImage 

for writing XHAMI based applications. 

 

 Extend XhamiImage class and implement setBlockHeader method. 

public void reduce(IntWritable key, Iterator<IntWritable> values, 

OutputCollector<IntWritable, Text> output, 

Reporter reporter) throws IOException { 

int sum=0; 

while (values.hasNext()){  

 sum+=Integer.parseInt(""+values.next()); 

} 

byte b = (byte)key.get(); 

int v = (int)b; 

key  = new IntWritable(new Integer(v)); 

output.collect(key,new Text(""+sum)); 

} 
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 Define header class and the necessary data types for implementation of the Image 

processing application. 

 Implement setBlockHeader method using the FSDataInputStream available in 

XhamiImage class as member variable. 

 Set the overlap required among the adjacent blocks using setoverLap method.  

 Assign the source file and destination files, using the writeFile method. Internally, this 

method computes the total file size, by computing the total numbers of blocks that the image 

gets divided into and writes the corresponding block header. 

 The contents of the file using getBlockCount and getBlockData methods. 

 

Table 6-10 shows a sample code describing how to extend XhamiImage class for writing the 

images along with the image specific header while storing the image into HDFS.  

 

Table 6-10. XhamiImage extension for writing block header 

class ImageHeader implements Serializable{ 

      int blockid, startscan, endscan, overlapscan, scanlength, blocklength, bytesperpixel;  

} 

public class XhamiImageIOOperations extends XhamiImage{ 

   //other implementation specific to the application 

@override 

public object setBlockHeader(int blockid){ 

  ImageHeader ih = new ImageHeader(); 

 //set the details and write to FSDataOutputStream  

} 

 

6.3.6 Performance evaluation 

In this section we present the experiments conducted for large size images of remote sensing data 

having different dimensions (scans, pixels) and sizes varying approximately from 288 Megabytes 

to 9.1 Gigabytes. First we discuss the read and write performance, storage overheads of the 
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conventional system, both with and without overlapping scan lines, followed by performance 

comparison of histogram and sobel edge detection filter operations. We conduct the experiments 

both on conventional APIs and XHAMI libraries, and discuss how XHAMI simplifies the 

programming complexity and also increases the performance when applied to a large scale image 

over Hadoop framework. 

Table 6-11.System configuration  

Type Processor type hostname RAM (GB) Disk (GB) 

Name node Intel Xeon 64 bit , 4 

vCpus, 2.2 GHz 

namenode 4  100 

Job tracker -do- jobtracker 2 80 

Data node 1 -do- datanode1 2 140 

Data node 2 Intel Xeon 64 bit , 4 

vCpus, 2.2 GHz 

datanode2 2 140 

Data node 3 Intel Xeon 64 bit , 2 

vCpus, 2.2 GHz 

datanode3 2  140 

Data node 4 -do- datanode4 2  100 

 

For the experimental study, we have used virtualized environment running on Xen hypervisor 

with a pool of four servers of Intel Xeon 64 bit architecture, with 2TB internal storage. Hadoop 

version 2.7 is configured in the fully distributed mode, running on the server pool of four virtual 

machines with 64 bit ‗Cent OS‘, the nodes configuration is shown in Table 6-11. A sample 

screen from HDFS with four node configuration is depicted in Figure 6.6. 
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Figure 6.6. HDFS data nodes configuration 
 

6.3.6. 1  Comparisons of XHAMI Vs Hadoop and Similar systems 

Sample data sets used for experiments are from the Indian Remote Sensing (IRS) satellite series 

i.e. CARTOSAT-1, and CARTOSAT-2Aare shown in Table 6-12, the columns in the table, 

Image size represents the original image size in bytes in regular file system, and the resulted 

image size indicates the size in bytes in HDFS with overlapping of 5 scan lines using the block 

length computation algorithm presented in section 6.3.2. A sample image with overlap of 5 scan 

lines shown in red color is depicted in Figure 6.7. The results shown in Table 6-12 , illustrate that 

a maximum of 0.25% increase in the image size, which is negligible. 
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Figure 6.7.Image blocks with overlap highlighted in rectangular box 
 

Table 6-12. Sample data sets used and the resultant image size 

S.No Image size 

(in bytes) 

Scan line 

length 

Total Scan 

lines 

Resulted Image size ( in 

bytes) 

1 288000000 12000 12000 288480000 

2 470400000 12000 19600 471240000 

3 839976000 12000 34999 841416000 

4 1324661556 17103 38726 1327911126 

5 3355344000 12000 139806 3361224000 

6 9194543112 6026 762906 9202738472 

 

Here, we discuss the performance comparisons of HDFS data organization both in XHAMI and 

default Hadoop. Followed by, performance comparisons of MapReduce based image processing 

applications in XHAMI, Hadoop- HDFS and MapReduce, and HIPI. The data sets used for the 

experiments shown in Table 6-12. Here, Hadoop is, as directly in its native form cannot be used 

for MapReduce Image processing, and such customized Hadoop here called as customized 

Hadoop MR. In this customized Hadoop MR performs the Map Reduce is computed on the data 

organized as non overlapping blocks. We present the results for image processing operations 

such as histogram and Sobel filter, followed by read and write overheads while the data blocks 

are written to HDFS. The I/O overhead comparisons are presented for both Hadoop, and 

XHAMI. The advantage of HIPI over customized Hadoop is the use of Java Image Processing 

Library. HIPI comes with processing the image formats like jpg, and png files, hence do not 

require the additional coding. As HIPI uses HIB formats to create a single bundle for smaller 
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image files, but, here, the image sizes are large, hence, we have used only one single image is 

supplied to create the HIB format. 

 

A sample single large binary image with approximately around one GB in volume, uploaded to 

the HDFS file system with the uni-directional scheme is shown in Figure 6.8. 

 

 

Figure 6.8. HDFS browse with a single large image and its related block information 

 

(a) Histogram operation 

Histogram operation counts the frequency of the pixel intensity in the entire image, which is 

similar to counting the words in the file. The performance results of histogram operation for 

customized Hadoop MapReduce (MR), HIPI and XHAMI are shown in Figure 6.9 In the case of, 

customized Hadoop MR, the HDFS data blocks are organized as non overlapped blocks. For 

HIPI, the data blocks are retrieved using HIB files, and XHAMI uses data blocks that are with 

overlap partitioned HDFS blocks for processing. The results show that, performance of 
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Customized Hadoop, HIPI, and XHAMI are similar, and XHAMI has little overhead over 

Customized Hadoop, which is less than 0.8%, this is due to overheads accounted for processing 

the overlapped scan lines. 

 

 

 

Figure 6.9. Histogram performance 

 

(b) Fixed mask convolution operation 

Convolution is a simple mathematical operation which is fundamental to many common image 

processing operators. The convolution is performed by sliding the kernel over the image, 

generally starting at the top left corner, so as to move the kernel through all the position where 

the kernel fits entirely within the boundaries of image. Convolution methods are the most 

common operations used in image processing which uses the mask operator i.e. kernel for 

performing windowing operations on the images. Sobel operator is one of the commonly used 

methods for detecting edges in the image using convolution methods. In case if the image is 

organized as physical partitioned distributed blocks, then, convolution operations cannot process 

the edge pixels of such blocks, due to the non availability of the adjacent blocks data on the same 

node. In conventional Hadoop based HDFS and MapReduce processing, the data is organized as 
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physical partitioned blocks, hence, the edge pixels cannot be processed directly, and demands the 

additional I/O overheads for processing the edge pixels of each block.  

 

 

Figure 6.10.Sobel filter performance 

 

Here, we present the performance of the Sobel edge detection implementation in XHAMI, and 

compare it with customized Hadoop MapReduce (MR) and HIP. In customized Hadoop MR; 

data is physically partitioned as non overlapping data blocks, and for HIPI data is organized as 

single large block stored in HIB format for a single file. For MapReduce computing in 

customized Hadoop MR, an additional functionality is included in Map function for retrieving 

the adjacent block information corresponding to the block to be processed. In the case of HIPI 

such logic additional is not possible, due to the non availability of HIPI APIs to know 

corresponding adjacent block information. The results are depicted in Figure 6.10, compare the 

performance of XHAMI with customized Hadoop MR and HIPI. The results indicate that, the 

performance of XHAMI is much better, and which is nearly half of the time taken by 

Customized Hadoop MR, and it is extremely better over HIPI. Customized Hadoop MR is 

implemented with standard Java Image Processing Library, with few customized features over 

default Hadoop, like retrieving the adjacent blocks information in Map functions for processing 

the edge pixels of the blocks. This customization requires additional overheads, increasing both 
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the programming and computational complexities. The additional overheads are mainly due to 

the transfer of whole data block which is located in different data nodes, than the one where Map 

function to be processed. 

 

HIPI has in built Java Processing APIs for processing the jpg and png image formats. For HIPI, 

the data is organized a single large block equivalent to the size of the image, as there is no 

functionality readily available for retrieving the adjacent blocks information. Due to this reason, 

the experiments for the larger image size data sets starting from Serial numbers 3 and above 

mentioned in the Table 6-13, could not be conducted. XHAMI overcomes the limitations of both 

Hadoop, and HIPI, by extending the Hadoop HDFS and MapReduce functionalities with the 

overlapped data partitioned approach, and MR processing using high level APIs with the 

integrated open source GDAL package for handling several types of image formats. XHAMI not 

only simplifies the programming complexity, but also allows the development of image 

processing applications quickly over Hadoop framework using HDFS and MapReduce. 

 

Table 6-13. Read/write performance overheads 

S.No Image 

size (MB) 

Write ( Sec) Read (Sec) 

Default 

Hadoop 

XHAMI Default 

Hadoop 

XHAMI 

1 275 5.865 5.958 10.86 10.92 

2 449 14.301 14.365 19.32 19.45 

3 802 30.417 30.502 40.2 40.28 

4 1324 44.406 77.153 50.28 50.95 

5 3355 81.353 88.867 90.3 90.6 

6 6768 520.172 693.268 550.14 551.6 

 

6.3.6. 2  Read / Write overheads  

Performance of read and write function in default Hadoop and XHAMI with overlap of 5 scan 

lines in horizontal partition direction is shown in Figure 6.12 and Figure 6.11 respectively. The 

results shown in Figure 6.12  represents a negligible read overhead, as the scan lines to be 

skipped are very few, and also the position of those lines to skip are known prior. Write 

performance overheads are shown in Figure 6.11, indicate that, XHAMI has minimal overheads 

compared with default Hadoop, and it is observed that data sets in serial nos. 1, 2, 3 and 5 is less 

than 5%, and for other data sets it is 33%. 
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Figure 6.11.  Image write performance 

 

Writing overheads for data sets 4 and 6 is more, this is due to more numbers of pixels in scan 

direction i.e. large scan line lengths, which has resulted in additional storage disks space during 

HDFS block construction, which is in turn has resulted in more read and writes overheads. For 

these data sets, even the vertical direction partition also has similar write overheads, as the 

number of pixels in pixel direction is also more as compared to the scan line direction. Hence, 

the method for choosing the partitioning approach is use to compute the number of blocks during 

data partition either in horizontal or vertical direction, and subsequently compute the storage 

overhead for each blocks and accumulate the overheads for all the blocks. Based on the storage 

overheads, data partitioning approach can be chosen the one which has resulted in minimal write 

overheads. However, this is to be noted that, for image processing applications, in general the 

images are written to disk once and read operation is performed several times, hence, the as 

writing overhead is one time activity, which is minimal, while compared with the overall 

performance achieved while processing. Figure 6.12 depicts the result of read performance for 

the data sets, is less than 0.2% which is very negligible. 
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Figure 6.12. Image read performance 

 

6.4 Discussion and Summary  
 

Image processing applications deal with processing of pixels in parallel, for which Hadoop and 

MapReduce can be effectively used to obtain higher throughputs. However many of the 

algorithms in Image Processing and other scientific computing, require use of neighborhood 

data, for which the existing methods of data organization and processing are not suitable. We 

presented an extended HDFS and MapReduce interface, called XHAMI, for image processing 

applications. XHAMI offers extended library of HDFS and MapReduce to process the single 

large scale images with high level of abstraction over writing and reading the images. APIs are 

offered for all the basic forms Read/Write and Query of images. Several experiments are 

conducted on sample of six data sets with a single large size image varying from approximately 

288 MB to 9.1 GB.  

 

Several experiments are conducted for reading and writing the images with and without overlap 

using XHAMI. The experimental results are compared with the conventional Hadoop system, the 

experimental results show that, though the proposed methodology incurs marginal read and write 
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overheads, due to overlapping of data, the performance has scaled linearly and also programming 

complexity is reduced significantly.  

The system is implemented with both the fixed length record and the customized split function 

which hides the low level details of handling and processing, spawning more map functions for 

processing. However, challenges involved in organizing the sequence of executed map functions 

for aggregations need to be addressed. We plan to implement the bi-directional split also in the 

proposed system, which would be the requirement for large scale canvas images. The proposed 

MapReduce APIs could be extended for many more Image processing and Computer vision 

modules. It is also proposed to extend the same to multiple image formats in the native format 

itself. Currently, image files are transferred one at a time from the local storage to Hadoop 

cluster, hence XHAMI integration with Data Aware Scheduler, would lead to a system, which 

would effectively migrate the data files required for processing to the computing nodes. 
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Chapter 7  

Conclusions and Future Directions 

 

7.1 Summary  

Big Data computing is an emerging platform for data analytics to address large scale 

multidimensional data for knowledge discovery and decision making. In this thesis, we have 

studied, characterized and categorized several aspects of Big Data computing systems. Big Data 

technology is evolving and changing the present traditional data bases with effective data 

organization, large computing and data workloads processing with new innovative analytics tools 

bundled with statistical and machine learning techniques. With the maturity of Cloud computing 

technologies, Big Data technologies are accelerating in several areas of business, science and 

engineering to solve data intensive problems. We have enumerated several case studies of Big 

Data technologies in the areas of health care studies, business intelligence, social networking, 

and scientific explorations. Further, we focus on illustrating how Big Data databases differ from 

traditional data base and discuss BASE properties supported by them.  

 

To understand Big Data paradigm, we presented taxonomy of Big Data computing along with 

discussion on characteristics, technologies, tools, security mechanisms, data organization, 

scheduling approaches, etc. along with relevant paradigms and technologies. Later we presented 

under pinning technologies for the evolution of Big Data and discussed how cloud computing 

technologies would be utilized for infrastructure services delivery for the analytics development. 

Later, we discussed an emerging Big Data computing platforms over Clouds, Big Data Clouds, 

an integrated technology from Big Data and Cloud computing, delivering Big Data computing as 

a service over large scale clouds. The thesis also discussed types of Big Data clouds and 

illustrated Big Data access networks, an emerging data platform services for Big Data analytics.  

 

Further on, we presented a layered architecture, components under each of the layers followed by 

technologies to be addressed under each of the layers. We then compare some of the existing 
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systems in each of the areas and categorize them based on the tools and services rendered to the 

users. In doing so, we have gained an insight into the architecture, strategies and practices that 

are currently followed in Big Data computing. Also, through our characterization and detailed 

study, we are able to discover some of the short comings and identify gaps in the current 

architectures and systems.  These represent some of the directions that could be followed in 

future. Thus, this chapter lays down a comprehensive classification framework that not only 

serves as a tool to understanding this emerging area but also presents a reference to which future 

efforts can be mapped. Based on the layered architectural framework, we have identified two key 

elements which are to critical elements to be addressed such as scheduling the data intensive jobs 

using Data Aware scheduler, and data organization and processing using new programming 

approaches. These were addressed by Data Aware Scheduling with family grouping using 

genetic approach, and XHAMI respectively. 

 

The proposed family/group scheduling model addresses the data intensive problems to minimize 

the turnaround time of the jobs where the computing and data resources are decoupled. The jobs 

with common data are grouped together, based on the family graph and connected components to 

which a parallel data approach is applied. Steady state GA is applied to discover the optimal 

schedule. The results are illustrated for the both family and non-family schedules from a single 

site and multiple replicated sites. The results indicate that, data migration from replicated sites 

show performance improvement over a single site. The experiments also show that family 

schedule performs better over the non-family schedule, whenever the grouped jobs do not exceed 

the available node capacity. 

 

We presented an extended HDFS and MapReduce interface, called XHAMI, for image 

processing applications for both data organization and large scale data processing on a cluster of 

machines. XHAMI offers extended library of HDFS and MapReduce to process the single large 

scale images with high level of abstraction over writing and reading the images. APIs are offered 

for all the basic forms Read/Write and Query of images. Several experiments are conducted on 

sample of six data sets with a single large size image with varying data volumes. The 

experimental results are compared with the conventional Hadoop system, the experimental 

results show that, though the proposed methodology incurs marginal read and write overheads, 
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due to overlapping of data, the performance has scaled linearly and also programming 

complexity is reduced significantly. 

 

7.2 Conclusions 

Big Data technologies and Clouds are needed to be addressed so as to address large scale 

problems on the scalable infrastructures effectively. At the same time, the frameworks 

addressing these two technologies need to provide scalable, inter operable, easy tools and 

techniques for management and solving the large scale problems. To address these requirements, 

a layered framework is developed, which addresses the integration of Big Data computing over 

Clouds infrastructures.  In the framework, we have identified two key elements such as data 

aware scheduling using data pull models, and processing using XHAMI. 

 

Data aware scheduling discussed the scheduling model in Big Data over Clouds infrastructure, 

where the data is replicated over several storage repositories for further access and exploitation. 

The scheduling model presented the problem solving approach using family grouping techniques 

using connected components, and optimization using genetic approach. The thesis discussed 

bandwidth aware model by pulling the large chunks of data from storage repositories to the 

Computing nodes. The algorithm compared the results, with the non grouping data mechanisms 

with the family grouping based on the data dependencies. The results of genetic approach are 

compared with the other approaches like Min compute first, Min data consolidation first node, 

and simulated annealing. The results indicated that Min compute first has resulted in larger 

makespan while compared with Min data consolidation first node and Simulated Annealing. Min 

data consolidation and Simulated Annealing techniques have almost the similar makespan value 

with performance better than Min compute first technique. However, the proposed Genetic 

approach and family grouping technique has resulted in minimal makespan, this is due to 

bandwidth aware data model, and natural evolution procedures of GA and fitness function used 

to obtain the near optimal solution. 

 

To address the large scale data organization, and processing we have developed a system called 

XHAMI, which addresses the data organization and processing over Hadoop Distributed File 

System (HDFS) and MapReduce models. We have demonstrated the importance of the data 
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overlapping in several scientific applications such as image processing, and extended the APIs of 

HDFS and MapReduce. The thesis developed the data organization models in uni-directional and 

bi-directional split methods, and presented the high level APIs for MapReduce. Sample image 

processing experiments are conducted such as image histogram, and spatial filters such as Sobel 

edge detection were performed, and the results are compared with the customized Hadoop 

MapReduce (MR), and Hadoop Image Processing Interface (HIPI). XHAMI performance is 

much better over customized Hadoop MR, and HIPI for several image processing spatial filter 

applications where data dependency with the adjacent blocks is necessary.  

 

7.3 Future Directions 

The thesis formulated a comprehensive framework for Big Data computing over Cloud 

computing platforms, and addressed the data aware scheduling approach considering both 

computation and data awareness into the account, followed by a system XHAMI for data 

organization and processing for Big Data scientific applications over large scale Cloud 

platforms. This work laid a foundation for Big Data computing in Clouds, and it opens up several 

avenues for future work in Big Data based Cloud computing, scheduling and Programming 

models. 

 

7.3.1 Rough set approach for family construction 

The proposed Data aware scheduling does the grouping of the jobs for the data files which are 

common among the jobs. However, the percentage of common data among the jobs is not 

considered among the jobs. This sometimes may result in a large super job, which perhaps may 

need to schedule a node, which should have larger enough computing resources for processing 

such jobs. Hence, in order to avoid such large set of the jobs, a rough set rules can be applied, 

which would group the job, based on the data commonality and percentage of overlap among 

the data sets. This approach also would eliminate connected components graph traversal which 

would a time consuming process for family job construction.  

 

7.3.2 Supporting quality and budget aware scheduling 

Data aware scheduling addresses the job scheduling for minimizing the makespan for the jobs 

using both data consolidation and computing times. However, other QoS parameters such as 
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deadline, budget and on demand varying bandwidth network speeds are not considered. Hence, 

the proposed model can be extended for several QoS parameters. Presently, the model executes 

the jobs after the data is consolidated for the family jobs, however, the studies can be conducted 

for the execution soon after the data for the job is made available. 

 

7.3.3 Space shared scheduling 

At present, the scheduling model supports time shared scheduling approach. This would share 

the resources within the node while running. However, a dedicated processor or resource 

scheduling approach such as Space shared scheduling mechanisms could be developed as an 

extension to the model. Also, other mechanisms such as buddy systems, Distributed 

Hierarchical Control (DHC), Ouster out matrix, and bin packing algorithms can be tested with 

the models for minimizing the job make spans, depending on the job application requirements. 

 

7.3.4 Extended MapReduce for other application domains 

XHAMI offers package for image processing domains and other domains where the overlapped 

data among the blocks is the primary requirements. However, the system can be used for other 

domain too, with a small pre processing overheads. The offered package can be extended for 

other domains like business intelligence, social networking, and financial domains, and high 

level data organization and MapReduce APIs can be developed. 

 

7.3.5 Data organization extensions for XHAMI 

XHAMI discusses the data organization model for both uni-directional and bi-directional 

models, with the custom split methods for data organization and processing. Experiments are 

conducted on the unidirectional data organization, and the model needs to be extensively 

studied for bi-directional data organization, with the overheads of pre processing and 

MapReduce computing. Presently, XHAMI discusses the data organization of uncompressed 

data, the model and package needs to be extended for compressed data as well, with its custom 

splitter functions. 
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7.3.6 XHAMI and Data Aware Scheduler integration 

 

Currently, image files are transferred one at a time from the local storage to Hadoop cluster to be 

performed by XHAMI. The proposed Data aware scheduling can be integrated with XHAMI, for 

effective bulk data transfers and identifying the better computing resources for processing, later 

XHAMI could do the scheduling on those identified nodes, for achieving higher throughputs.  
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