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Abstract

“Hey, mamma, Look at me,
I’m on the way to the promised land”

— AC/DC, Highway to hell

Cloud computing addresses the problem of costly computing infrastructures by providing
elasticity to the dynamic resource provisioning on a pay-as-you-go basis, and nowadays it is
considered as a valid alternative to owned high performance computing clusters. There are
two main appealing incentives for this emerging paradigm: first, utility-based usage models
provided by Clouds allow clients to pay per use, increasing the user satisfaction; then, there
is only a relatively low investment required for the remote devices that access the Cloud
resources [1].

Computational demand on data centers is increasing due to growing popularity of Cloud
applications. However, these facilities are becoming unsustainable in terms of power
consumption and growing energy costs. Nowadays, the data center industry consumes about
2% of the worldwide energy production [2]. Also, the proliferation of urban data centers is
responsible for the increasing power demand of up to 70% in metropolitan areas where the
power density is becoming too high for the power grid [3]. In two or three years, this
situation will cause outages in the 95% of urban data centers incurring in annual costs of
about US$2 million per infrastructure [4]. Besides the economical impact, the heat and the
carbon footprint generated by cooling systems in data centers are dramatically increasing and
they are expected to overtake airline industry emissions by 2020 [5].

The Cloud model is helping to mitigate this issue, reducing carbon footprint per executed
task and diminishing CO2 emissions [6], by increasing data centers overall utilization.
According to the Schneider Electric‘s report on virtualization and Cloud computing
efficiency [7], Cloud computing offers around 17% reduction in energy consumption by
sharing computing resources among all users. However, Cloud providers need to implement
an energy-efficient management of physical resources to meet the growing demand of their
services while ensuring sustainability.

The main sources of energy consumption in data centers are due to computational
Information Technology (IT) and cooling infrastructures. IT represents around 60% of the
total consumption, where the static power dissipation of idle servers is the dominant
contribution. On the other hand, the cooling infrastructure originates around 30% of the
overall consumption to ensure the reliability of the computational infrastructure [8]. The key
factor that affects cooling requirements is the maximum temperature reached on the servers
due to their activity, depending on both room temperature and workload allocation.

Static consumption of servers represents about 70% of the IT power [9]. This issue is
intensified by the exponential influence of temperature on the leakage currents. Leakage
power is a component of the total power consumption in data centers that is not traditionally
considered in the set point temperature of the room. However, the effect of this power
contribution, increased with temperature, can determine the savings associated with the
proactive management of the cooling system. One of the major challenges to understand the
thermal influence on static energy at the data center scope consists in the description of the
trade-offs between leakage and cooling consumption.
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The Cloud model is helping to reduce the static consumption from two perspectives
based on VM allocation and consolidation. First, power-aware policies reduce the static
consumption by increasing overall utilization, so the operating server set can be reduced.
Dynamic Voltage and Frequency Scaling (DVFS) is applied for power capping, lowering
servers’ energy consumption. Then, thermal-aware strategies help to reduce hot spots in the
IT infrastructure by spreading the workload, so the set point room temperature can be
increased resulting in cooling savings. Both thermal and power approaches have the
potential to improve energy efficiency in Cloud facilities. Unfortunately, these policies are not
jointly applied due to the lack of models that include parameters from both power and
thermal approaches. Deriving fast and accurate power models that incorporate these
characteristics, targeting high-end servers, would allow us to combine power and
temperature together in an energy efficient management.

Furthermore, as Cloud applications expect services to be delivered as per Service Level
Agreement (SLA), power consumption in data centers has to be minimized while meeting
this requirement whenever it is feasible. Also, as opposed to HPC, Cloud workloads vary
significantly over time, making optimal allocation and DVFS configuration not a trivial task.
A major challenge to guarantee QoS for Cloud applications consists in analyzing the trade-offs
between consolidation and performance that help to combine DVFS with power and thermal
strategies.

The main objective of this Ph.D. thesis is to address the energy challenge in Cloud data
centers from a thermal and power-aware perspective using proactive strategies. Our research
proposes the design and implementation of models and global optimizations that jointly
consider energy consumption of both computing and cooling resources while maintaining
QoS from a new holistic perspective.

Thesis Contributions: To support the thesis that our research can deliver significant value
in the area of Cloud energy-efficiency, compared to traditional approaches, we have:

• Defined a taxonomy on energy efficiency that compiles the different levels of abstraction
that can be found in data centers area.

• Classified state-of-the-art approaches according to the proposed taxonomy, identifying
new open challenges from a holistic perspective.

• Identified the trade-offs between leakage and cooling consumption based on empirical
research.

• Proposed novel modeling techniques for the automatic identification of fast and accurate
models, providing testing in a real environment.

• Analyzed DVFS, performance and power trade-offs in the Cloud environment.

• Designed and implemented a novel proactive optimization policy for dynamic
consolidation of virtual machines that combine DVFS and power-aware strategies while
ensuring QoS.

• Derived thermal models for CPU and memory devices validated in real environment.

• Designed and implemented new proactive approaches that include DVFS, thermal and
power considerations in both cooling and IT consumption from a novel holistic
perspective.

• Validated our optimization strategies in simulation environment.
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Resumen

“Is there anyone here who speaks English?
Or maybe even ancient Greek?”

— Marcus Brody, Indiana Jones and the Last Crusade

La computación en la nube, o Cloud computing, aborda el problema del alto coste de las
infraestructuras de computación, proporcionando elasticidad al aprovisionamiento dinámico
de recursos. Este paradigma de computación está basado en el pago por uso y actualmente se
considera como una alternativa válida a la adquisición de un clúster de computación de altas
prestaciones (HPC).

Existen dos principales incentivos que hacen atractivo a este paradigma emergente: en
primer lugar, los modelos basados en el pago por uso proporcionados por la nube permiten
que los clientes paguen sólo por el uso que realizan de la infraestructura, aumentando la
satisfacción de los usuarios; por otra parte, el acceso a los recursos de la nube requiere una
inversión relativamente baja.

La demanda computacional en los centros de datos está aumentando debido a la creciente
popularidad de las aplicaciones Cloud. Sin embargo, estas instalaciones se están volviendo
insostenibles en términos de consumo de potencia y debido al precio al alza de la energı́a.
Hoy en dı́a, la industria de los centros de datos consume un 2% de la producción mundial de
energı́a [2]. Además, la proliferación de centros de datos urbanos está generando una
demanda de energı́a cada vez mayor, representando el 70% del consumo en áreas
metropolitanas, superando la densidad de potencia soportada por la red eléctrica [3]. En dos
o tres años, esta situación supondrá cortes en el suministro en el 95% de los centros de datos
urbanos incurriendo en unos costes anuales de alrededor de US$2 millones por
infraestructura [4]. Además del impacto económico, el calor y la huella de carbono generados
por los sistemas de refrigeración de los centros de datos están aumentando drásticamente y
se espera que en 2020 hayan superado a las emisiones de la industria aérea [5].

El modelo de computación en la nube está ayudando a mitigar este problema, reduciendo
la huella de carbono por tarea ejecutada y disminuyendo las emisiones de CO2 [6], mediante
el aumento de la utilización global de los centros de datos. Según el informe de Schneider
Electric sobre virtualización y eficiencia energética de la computación en la nube [7], este
modelo de computación ofrece una reducción del 17% en el consumo de energı́a,
compartiendo recursos informáticos entre todos los usuarios. Sin embargo, los proveedores
de la nube necesitan implementar una gestión eficiente de la energı́a y de los recursos
computacionales para satisfacer la creciente demanda de sus servicios garantizando la
sostenibilidad.

Las principales fuentes de consumo de energı́a en centros de datos se deben a las
infraestructuras de computación y refrigeración. Los recursos de computación representan
alrededor del 60% del consumo total, donde la disipación de potencia estática de los
servidores es la contribución dominante. Por otro lado, la infraestructura de refrigeración
origina alrededor del 30% del consumo total para garantizar la fiabilidad de la infraestructura
de computación [8]. El factor clave que afecta a los requisitos de refrigeración es la
temperatura máxima alcanzada en los servidores debido a su actividad, en función de la
temperatura ambiente ası́ como de la asignación de carga de trabajo.
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El consumo estático de los servidores representa alrededor del 70% de la potencia de los
recursos de computación [9]. Este problema se intensifica con la influencia exponencial de la
temperatura en las corrientes de fugas. Estas corrientes de fugas suponen una contribución
importante del consumo total de energı́a en los centros de datos, la cual no se ha considerado
tradicionalmente en la definición de la temperatura de de la sala. Sin embargo, el efecto de
esta contribución de energı́a, que aumenta con la temperatura, puede determinar el ahorro
asociado a la gestión proactiva del sistema de refrigeración. Uno de los principales desafı́os
para entender la influencia térmica en la componente de energı́a estática en el ámbito del
centro de datos consiste en la descripción de las ventajas y desventajas entre las corrientes de
fugas y el consumo de refrigeración.

El modelo de computación en la nube está ayudando a mitigar el problema de consumo
estático desde dos perspectivas basadas en la asignación de máquinas virtuales (MVs) y en su
consolidación. En primer lugar, las polı́ticas conscientes de la potencia reducen el consumo
estático mediante el aumento de la utilización global, por lo que el conjunto de servidores
operativos puede reducirse. El escalado dinámico de frecuencia y tensión (DVFS) se aplica
para reducir el consumo de energı́a de los servidores. Por otra parte, las estrategias
conscientes de la temperatura ayudan a la reducción de los puntos calientes en la
infraestructura de computación mediante la difusión de la carga de trabajo, por lo que la
temperatura ambiente de la sala se pueden aumentar con el consiguiente ahorro en el
consumo de la refrigeración. Ambos enfoques tienen el potencial de mejorar la eficiencia
energética en instalaciones de la nube. Desafortunadamente, estas polı́ticas no se aplican de
manera conjunta debido a la falta de modelos que incluyan parámetros relativos a la potencia
y a la temperatura simultáneamente. Derivar modelos de energı́a rápidos y precisos que
incorporen estas caracterı́sticas permitirı́a combinar ambas estrategias, conscientes de la
potencia y la temperatura, en una gestión global eficiente de la energı́a.

Por otra parte, las aplicaciones caracterı́sticas de la computación en la nube tienen que
cumplir unos requisitos especı́ficos en términos de tiempo de ejecución que están
previamente contratados mediante el acuerdo de nivel de servicio (SLA). Es por esto que la
optimización del consumo de energı́a en estos centros de datos tiene que considerar el
cumplimiento de este contrato siempre que sea posible. Además, a diferencia de HPC, las
cargas de trabajo de la nube varı́an significativamente con el tiempo, por lo que la asignación
óptima y la configuración del DVFS no es una tarea trivial. Uno de los retos más importantes
para garantizar la calidad de servicio de estas aplicaciones consiste en analizar la relación
entre la consolidación y el rendimiento de la carga de trabajo, ya que facilitarı́a la
combinación del DVFS con las estrategias térmicas y energéticas.

El principal objetivo de esta tesis doctoral se centra en abordar el desafı́o de la energı́a en
centros de datos dedicados a la computación en la nube desde una perspectiva térmica y con
conciencia de la potencia utilizando estrategias proactivas. Nuestro trabajo propone el diseño
e implementación de modelos y optimizaciones globales que consideren conjuntamente el
consumo de energı́a tanto de los recursos informáticos y de refrigeración, manteniendo la
calidad de servicio, desde una nueva perspectiva holı́stica.

Contribuciones clave: Para apoyar la tesis de que nuestra investigación puede
proporcionar un valor significativo en el ámbito de la eficiencia energética en la computación
en la nube, en comparación con enfoques tradicionales, nosotros hemos:

• Definido una taxonomı́a en el área de la eficiencia energética que se compone de
diferentes niveles de abstracción que aparecen en el ámbito de los centros de datos.

• Clasificado propuestas del estado del arte de acuerdo a nuestra taxonomı́a, identificando
posibles contribuciones, desde una perspectiva holı́stica.

• Identificado el compromiso entre las fugas de potencia y el consumo de refrigeración
basado en un estudio empı́rico.

• Propuesto nuevas técnicas de modelado para la identificación automática de modelos
precisos y rápidos, proporcionando una validación en entorno real.
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• Analizado el compromiso entre DVFS, rendimiento y consumo en el entorno de
computación en la nube.

• Diseñado e implementado una nueva polı́tica de optimización proactiva para la
consolidación dinámica de máquinas virtuales que combina DVFS y estrategias
conscientes de la potencia, manteniendo la calidad de servicio.

• Derivado modelos térmicos para procesador y memoria validados en un entorno real.

• Diseñado e implementado nuevas polı́ticas proactivas que incorporan consideraciones
de DVFS, térmicas y de potencia en para el consumo de las infraestructuras de
computación y refrigeración desde una nueva perspectiva holı́stica.

• Validado nuestras estrategias de optimización en un entorno de simulación.
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1. Introduction

“This is your last chance. After this, there is no turning back.
You take the blue pill – the story ends, you wake up in your bed
and believe whatever you want to believe. You take the red pill
– you stay in Wonderland, and I show you how deep the rabbit
hole goes.”

— Morpheus, The Matrix

The amount of energy consumed by data centers is growing disproportionately, thus
becoming a critical element in maintaining both economic and environmental sustainability.
This work presents a study of the literature that comprises recent research on energy-aware
policies highlighting the scope of Cloud computing data centers. The present research is
intended to give an overview of the energy-efficiency issue throughout the different
abstraction levels, from hardware technology to data center infrastructures.

1.1 Motivation

The trend towards Cloud computing has lead to the proliferation of data centers since they
are the infrastructure that provides this new paradigm of computing and information storage.
Reference companies such as Amazon [10], Google [11], Microsoft [12], and Apple [13] have
chosen this computational model where information is stored in the Internet Cloud offering
services more quickly and efficiently to the user.

Nowadays, data centers consume about 2% of the worldwide energy production [2],
originating more than 43 million tons of CO2 per year [14]. Also, the proliferation of urban
data centers is responsible for the increasing power demand of up to 70% in metropolitan
areas, where the power density is becoming too high for the power grid [3]. In two years, the
95% of urban data centers will experience partial or total outages, incurring in annual costs of
about US$2 million per infrastructure. The 28% of these service outages are expected to be
due to exceeding the maximum capacity of the grid [4].

The advantages of Cloud computing lie in the usage of a technological infrastructure that
allows high degrees of automation, consolidation and virtualization, which results in a more
efficient management of the resources of a data center. The Cloud model allows a large number
of users as well as the use of concurrent applications that otherwise would require a dedicated
computing platform.

Cloud computing, in the context of data centers, has been proposed as a mechanism for
minimizing environmental impact. Virtualization and consolidation increase hardware
utilization (of up to 80% [15]) thus improving resource efficiency. Moreover, a Cloud usually
consists of distributed resources dynamically provisioned as services to the users, so it is
flexible enough to find matches between different parameters to reach performance
optimizations.

Cloud market opportunities in 2016 achieved up to $209.2 billion [16], but the rising price
of energy had an impact on the costs of Cloud infrastructures, increasing the Total Cost of
Ownership (TCO) and reducing the Return on Investment (ROI). Gartner expectations
predict that by 2020, Cloud adoption strategies would impact on more than the 50% of the IT
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1. Introduction

outsourcing deals in an effort to cost optimize the infrastructures that use from 10 to 100
times more power than typical office buildings [17] even consuming as much electricity as a
city [18].

The main contributors to the energy consumption in a data center are: (i) the Information
Technology (IT) resources, which consist of servers and other IT equipment, and (ii) the
cooling infrastructure needed to ensure that IT operates within a safe range of temperatures,
ensuring reliability. The remaining 10% comes from (iii) the power consumption that comes
from lightning, generators, Uninterrupted Power Supply (UPS) systems and Power
Distribution Units (PDUs) [19].

The IT power in the data center is dominated by the power consumption of the enterprise
servers, representing up to 60% of the overall data center consumption. The power usage of
an enterprise server can be divided into dynamic and static contributions. Dynamic power
depends on the switching transistors in electronic devices during workload execution. Static
consumption associated to the power dissipation of servers, represents around 70% and is
strongly correlated with temperature due to the leakage currents that increase as technology
scales down. However, traditional approaches have never incorporated the impact of leakage
consumption, which grows at higher temperatures. Subsection 1.2.1 analyzes this issue from
the low-level scope.

On the other hand, data center cooling is one of the major contributors to the overall data
center power budget, representing around 40% of the total power consumed by the entire
facility [20]. This is the main reason why recent research aim to achieve new thermal-aware
techniques to optimize the temperature distribution in the facility, thus minimizing the cooling
costs. Moreover, temperature in data centers is increasing substantially due to the activity of
servers that result from growing resource demand. The heat is evacuated outwards in the form
of thermal pollution avoiding server failures. In Subsection 1.2.2, we explain why cooling is
necessary to avoid these failures and also irreversible damage in the IT infrastructure, from a
technological perspective.

Controlling the set point temperature of cooling systems in data centers is still to be
clearly defined and it represents a key challenge from the energy perspective. This value is
often chosen based on conservative suggestions provided by the manufacturers of the
equipment and it is calculated for the worst case scenario resulting on overcooled facilities.
Increasing the temperature by 1◦C results in savings of 7.08% in cooling consumption, so a
careful management can be devised ensuring a safe temperature range for IT resources.
Subsection 1.3.1 presents how this challenge can be tackled from a higher-level perspective,
considering the efficiency at the data center scope.

From the application-framework viewpoint, Cloud workloads present additional
restrictions as 24/7 availability, and Service Level Agreement (SLA) constraints among
others. In this computation paradigm, workloads hardly use 100% of Central Processing Unit
(CPU) resources, and their execution time is strongly constrained by contracts between Cloud
providers and clients. These restrictions have to be taken into account when minimizing
energy consumption as they impose additional boundaries to efficiency optimization
strategies. In Subsection 1.3.2 we provide some considerations about Cloud applications.

Besides the economical impact, the heat and the carbon footprint generated by these
facilities are dramatically harming the environment and they are expected to overtake the
emissions of the airline industry by 2020 [5]. Data centers are responsible for emitting tens of
millions of metric tons of greenhouse gases into the atmosphere, resulting in more than 2% of
the total global emissions [21]. It is expected that, by implementing the Cloud computing
paradigm, energy consumption will be decreased by 31% by 2020, reducing CO2 emissions
by 28% [22]. Just for an average 100kW data center, a 7% in annual savings represent around
US $5 million per year [23].

These power and thermal situations have encouraged the challenges in the data center
scope to be extended from performance, which used to be the main target, to energy-efficiency.
This context draws the priority of stimulate researchers to develop sustainability policies at
the data center level, in order to achieve a social sense of responsibility while minimizing
environmental impact.
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1.2. Technological Considerations

The following sections profusely explain the main issues from the perspective of
technology, data center and Cloud areas:

1.2 Technological Considerations

1.2.1 Impact on IT Leakage Power

As previously mentioned, power dissipation introduced by leakage has a strong impact on the
overall consumption of the Complementary Metal-Oxide-Semiconductor (CMOS) devices.

Gate

DrainSource

n⁺ n⁺

Bulk

Gate Leakage

D-S Leakage

Junction Leakage

Figure 1.1: Leakage currents in a MOS transistor

Theoretically, any current should not circulate through the substrate of a
Metal-Oxide-Semiconductor (MOS) transistor between drain and source when off due to an
infinite gate resistance. However, in practice this is not true, and leakage currents flow
through the reverse-biased source and drain-bulk pn junctions in dynamic logic as
represented in Figure 1.1. Also due to the continuous technology scaling, the influence of
leakage effects is rising, increasing the current by 5 orders of magnitude according to
Rabaey [24].

Therefore, it is important to consider the strong impact of static power consumed by
devices as well as its temperature dependence and the additional effects influencing their
performance. Thus, theoretical and practical models for the calculation of power
consumption in Cloud servers should also consider these issues in their formulations. This
research work is intended to include the static consumption, its effects and temperature
dependence in power models to globally optimize energy consumption in Cloud computing
data centers.

1.2.2 Impact on Reliability

The high-density computing causes the appearance of hot spots in data center facilities, which
are intensified due to the heterogeneous workload distribution. This issue has a strong impact
on the reliability of systems, reducing their mean time to failure and, in some cases, generating
irreversible damage to the infrastructure. Some adverse effects arising from hot spots in a
circuit are the following:

• Single event upset (SEU): Effect that results in the change of state caused by radiation,
and experiments have indicated that it increases further with temperature [25].

• Electromigration (EM): Phenomenon that consists in the transference of a material
caused by the gradual movement of ions in a conductor due to the momentum transfer
between conduction electrons and metal atoms. It depends on the operating
temperature and causes short circuits and important failures.
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• Time-dependent dielectric-breakdown (TDDB): It appears due to the breakdown of the
oxide gate resulting from the electron tunneling current to the substrate when a
Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) perform close to their
operational voltages.

• Stress migration (SM): Failure phenomenon due to the open circuit or the vast
resistance associated to large void formations, resulting in vacancy migration driven by
a hydrostatic stress gradient that can be increased by temperature.

• Thermal cycling (TC): It produces accumulative damage each time the device goes
cycling through extreme temperatures usually changing at high rates and setting
boundaries to the system lifetime.

• Negative bias temperature instability (NBTI): It results in degradation due to an
increase in threshold voltage. High temperatures slow down integrated circuits due to
the degradation of carrier mobility, thus minimizing device lifetime.

• Hot carrier injection (HCI): Phenomenon that comes from the emergence of a potential
barrier resulting in the kinetic energy gained by an electron or a hole, breaking an
interface state. Although the term “hot” refers to the model carrier density effective
temperature, not to the temperature of the device, tests [26] show dependence due to
temperature impact.

1.3 Data Center Considerations

1.3.1 Impact on Cooling Efficiency

The cooling power is one of the major contributors to the overall data center power budget,
consuming over 30% of the overall electricity bill in typical data centers [27]. In a typical air-
cooled data center room, servers are mounted in racks, arranged in alternating cold/hot aisles,
with the server inlets facing cold air and the outlets creating hot aisles. The computer room
air conditioning (CRAC) units pump cold air into the data room and extract the generated
heat (see Figure 1.2). The efficiency of this cycle is generally measured by the Coefficient of
Performance (COP).

One of the techniques to reduce the cooling power is to increase the COP by increasing
the data room temperature. We will follow this approach to decrease the power used by the
cooling system to a minimum, while still satisfying the safety requirements of the data center
operation, also considering temperature impact on IT power.

CRAC 
Unit

CRAC 
Unit

Floor plenum

Hot
Aisle

Cold
Aisle

Cold
Aisle

Hot/Cold air mixes
causing recirculation

Server
inlet

Server
inlet

Server
outlet

Hot
Aisle

Hot
Aisle

Perforated tile Perforated tile

Figure 1.2: Data center air cooling scheme
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1.4. Optimization paradigm

1.3.2 Impact on Cloud applications
While High Performance Computing (HPC) workloads typically consist of large scientific and
experimental research applications with heavy computational requirements, Cloud workloads
are more commercial applications that process incoming requests on a service-based manner.
As opposed to HPC, Cloud workloads vary significantly over time as they are interactive
and real-time workloads, making optimal allocation configuration not a trivial task. As CPU
and memory usage are variable due to interaction with users, a major challenge to guarantee
QoS for Cloud applications consists of analyzing the trade-offs between consolidation and
performance that help on enhancing optimization strategies.

The resource usage of Cloud applications is lower and much more variable than in the
HPC context. In this framework, virtualization allows workload consolidation by the
migration of Virtual Machines (VM) thus helping to improve host utilization during runtime.
Moreover, depending on the type of applications executed in the data center, the use of the
computing resources would be different. Cloud data centers typically run workloads as web
search engines, data mining and media streaming, among others.

• Search engine applications index terabytes of data gathered from online sources. They
need to support a large number of concurrent queries against the index, resulting in an
intensive use of CPU, memory and network connections.

• Data mining applications analyze, classify and filter human-generated information. They
handle large-scale analysis making intensive use of CPU.

• Media streaming applications offer an ubiquitous service to access media contents. They
make an appreciable use of CPU to packetize the information of the media file (with a
size range from megabytes to terabytes) for being sent through the Internet. They also
make an intensive use of network connections.

Consequently, the workload requirements in terms of resource demand and performance
will determine the optimizations supported by the computational model. Therefore, power
strategies must be able of accurately predicting the consumption during workloads with high
variability in resource utilization.

1.4 Optimization paradigm

This section explains our hypothesis to provide a feasible proactive and holistic solution to
approach the issues that have been motivated. As stated in the previous section, the
temperature has a relevant impact on the data center consumption at different levels.
Regarding technical considerations, there exist a power leakage that increases due to
temperature. Currently, to the best of our knowledge, there are no models that incorporate
this dependence to power consumption within the data center scope. For this reason, we
provide server power models that include thermal effects together with other contributions
as dynamic power consumption among others. As servers are complex systems, we propose
different modeling methodologies that enhance the modeling process including automaticity
in both feature selection and model generation

The temperature also impacts on the reliability of data center subsystems, so there is a
necessity of considering the thermal behavior during runtime to ensure safe-operation ranges.
For this purpose, we provide thermal models that estimate the temperature of different devices
inside the server, depending on the cooling setpoint temperature and the variable resource
demand of the workload.

Regarding data center considerations, these power and thermal models help us to provide
a holistic strategy to reduce both IT and cooling consumption globally. From the perspective
of the application framework, Cloud applications present a highly variable demand of
resources during their execution. So, we provide dynamic VM consolidation techniques to
optimize the system during runtime from our holistic perspective. Also, as Cloud workloads

5



1. Introduction

hardly consume the 100% of the server resources, we apply DVFS-awareness to leverage the
overdimensioning of the processing capacity, while maintaining SLA.

The new holistic paradigm presented in this research considers the energy at the Cloud
data center from a global and proactive perspective for the first time in literature. So, our
proposed optimization algorithms are aware of the evolution of the global energy demand,
the thermal behavior of the room and the workload considerations at all the data center
subsystems during runtime.

1.5 Problem formulation

The work developed in this Ph.D. thesis proposes a global solution based on the energy
analysis and optimization for Cloud applications from a holistic perspective. The envisioned
modeling and optimization paradigm is summarized in Figure 1.3. This framework takes as
input all the information gathered from the data center during the workload execution, at
different abstraction layers (i.e. server and data room), via sensor measurements of both
physical and computational metrics. Data is stored to generate models, also at different
abstraction levels. The models obtained enable the design of proactive optimization
strategies. The results of these optimizations are evaluated in order to integrate the decisions
taken.

Cooling

Computing

Cooling Configuration

VM Consolidation

VM Allocation

Global OptimizationModels

Data Center
Inlet, Outlet & Room 

Temperature

Sensors

Usage, Temperature, 
Frequency, Fans

Setpoint Temperature
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Frequency

Room Temperature

Server Temperature

Server Power

DVFSCPU Frequency

Dynamic Workload

Heterogeneity
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Application Domain

Figure 1.3: Overview of the proactive analysis and optimization system.

The scenario chosen for the development of this Ph.D. thesis, is a Cloud application
framework that can be seen in Figure 1.4. These applications require constantly monitoring of
their computational demand in order to capture their variability during runtime and to
perform VM migrations when needed in order to avoid Quality of Service (QoS) degradation.

As we do not have access to an operative Cloud data center, we leverage real traces
publicly released by Cloud providers to simulate the operation of the infrastructure. These
traces consist of periodic resource usage reports that provide specific information as CPU
demand percentages and memory and disk usage and provisioning values for all VMs. The
utilization traces are our only input for our optimization based on proactive strategies.
Finally, for each optimization slot, we obtain the allocation for the VMs in the system, as well
as the servers’ Dynamic Voltage and Frequency Scaling (DVFS) configuration and the cooling
set point temperature.

In Figure 1.5, we observe our proposed optimization based on proactive strategies more in
detail. For each optimization slot, in which we have input traces, we detect overloaded hosts
for the current placement of VMs that are already deployed on the system, where
oversubscription is allowed. Overloaded hosts are more likely to suffer from performance
degradation, so some VMs have to be migrated from them to other hosts.
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Figure 1.4: Overview of the inputs and outputs of the proposed optimization framework.
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Figure 1.5: Overview of the optimization diagram for the proposed framework.

Based on this information, the consolidation algorithm selects: 1) the set of VMs that have
to be migrated from the overloaded physical machines and 2) the set of servers that are
candidates to host these VMs. Then, the models proposed in this Ph.D. thesis help to predict
the effects of potential allocations for the set of VMs. These models are needed to provide
values of both the parameters that are observed in the infrastructure (temperature and power
of the different resources) and the control variables (VM placement, DVFS and cooling set
point temperature). Finally, the proactive optimization algorithm decides the best allocation
of VMs based on these predictions. After this first iteration, if underloaded hosts are found,
this optimization process is repeated in order to power off idle servers if possible.

To this end, the scenario chosen for the development of energy-aware techniques at the
data center level is a virtualized Cloud data center. We assume this data center may be
homogeneous in terms of IT equipment. Live migration, oversubscription of CPU, DVFS and
automatic scaling of the active servers’ set are enabled. We assume a traditional hot-cold aisle
data center layout with CRAC-based cooling. In particular, at the data center level we
consider a raised-floor air-cooled data center where cold air is supplied via the floor plenum
and extracted in the ceiling.
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Real server architectures are tested by means of the monitoring and modeling of various
presently-shipping enterprise servers. Also, at the data center scope other reduced scenarios
are used to test the proposed optimization policies.

1.6 Contributions of this Ph.D. Thesis

The contributions of this Ph.D. thesis can be broadly described into 4 categories: (i) analysis
of the state-of-the-art in energy efficiency, (ii) study of the thermal trade-offs at the data center
scope, (iii) modeling of data center power, temperature and performance, and
(iv) implementation of global optimizations.

• State-of-the-Art on Energy Efficiency

– Define a taxonomy on energy efficiency that compiles the different levels of
abstraction that can be found in data centers’ area.

– Classify the different energy efficiency approaches according to the proposed
taxonomy, evaluating the impact of current research on energy efficiency.

– Identify new open challenges that have the potential of improving sustainability on
data centers significantly by applying our proposed holistic optimization approach,
including information from different abstraction levels.

• Thermal Trade-offs

– Detect the need of addressing leakage power of servers jointly with cooling
efficiency to achieve substantial global savings, evaluating the relationships
between temperature and power consumption.

– Identify the trade-off between leakage and cooling consumption based on empirical
research.

– Our empirical results show that increasing data room setpoint temperature in 6° C,
increases application power consumption in about 4.5% and reduces cooling power
by 11.7%.

• Data Center Modeling

– Detect parameters mainly affected by leading power-aware strategies for improving
Cloud efficiency as well as thermal considerations.

– Analyze and implement novel modeling techniques for the automatic identification
of fast and accurate models that help to target heterogeneous server architectures.

– Derive models that incorporate these contributors that help to find the
relationships required to devise global optimizations combining power and
thermal-aware strategies.

– Provide training and testing in a real environment. Our models, which are aware
of DVFS and temperature, present an average testing error in the range of 4.87%
to 3.98%, outperforming current approaches whose accuracies are in the range of
7.66% to 5.37%.

• Global Energy Optimizations

– Analyze and model DVFS, performance and power trade-offs.

– Design and implement a novel proactive optimization policy for dynamic
consolidation of Cloud services that combine DVFS and power-aware strategies
while ensuring QoS.
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– Provide validation in a simulation environment. Our DVFS-aware holistic
approach provides energy savings of up to 45.76% for the IT infrastructure, also
increasing global server utilization to 83% in average, when compared to a
power-aware baseline.

– Derive thermal models for CPU and memory devices trained and tested in real
environment with average testing errors of 0.84% and 0.5049% respectively.

– Design and implement new proactive approaches that include DVFS, thermal and
power considerations in both cooling and IT consumption from a holistic
perspective.

– Provide validation in simulation environment. Our DVFS and thermal aware
holistic strategy presents maximum savings of up to 14.09% and 21.74% with
respect to our state-of-the-art baselines.

1.7 Structure of this Ph.D. Thesis

The rest of the document of this Ph.D. thesis is organized as follows:

• Part I explains our research on state-of-the-art on energy-efficient data centers.

– Chapter 2 presents a taxonomy and survey, highlighting the main optimization
techniques within the state-of-the art.

– Chapter 3 describes the problem statement and our positioning.

• Part II proposes our research on modeling power consumption including DVFS and
thermal awareness.

– Chapter 4 provides further information about thermal considerations on IT
infrastructures.

– Chapter 5 introduces our modeling approach.

– Chapters 6, 7 and 8 further describe the modeling techniques proposed in these
Ph.D. thesis.

• Part III explains our research on energy optimization at the data center level, taking
advantage of the power models that we have derived from a holistic viewpoint.

– Chapter 9 presents our power optimization based on DVFS-aware dynamic
consolidation of virtual machines.

– Chapter 10 explains our research on proactive power and thermal aware allocation
strategies for optimizing Cloud data centers.

• Chapter 11 summarizes the conclusions derived from the research that is presented in
this Ph.D. thesis, as well as the contributions to the state-of-the-art on energy efficiency
in data centers. The chapter also includes a summary on future research directions.

Figure 1.6 provides the reader with an overview of the structure of this Ph.D. thesis and
how the different chapters are organized. Chapters are arranged from lower to higher
abstraction level, and describe the different modeling and optimization techniques developed
in this work.

1.8 Publications

The results of this Ph.D. thesis, together with other related research have been published in
international conferences and journals. In this section, we briefly present these publications
and highlight the chapter in which the specific contributions can be found.
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power modeling for run-time energy optimization of cloud computing facilities”, Energy
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12.402 (Chapter 6 of this Ph.D. thesis)

1.8.2 Conference papers

Also, this Ph.D. thesis has generated the following articles in international peer-reviewed
conferences:

• P. Arroba, J. M. Moya, J. L. Ayala, and R. Buyya, “Proactive power and thermal aware
optimizations for energy-efficient cloud computing”, in Design Automation and Test in
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thesis)
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2015.59 [Core A conference] (Chapter 9 of this Ph.D. thesis)
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• P. Arroba, M. Zapater, J. L. Ayala, J. M. Moya, K. Olcoz, and R. Hermida, “On the
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(Chapter 4 of this Ph.D. thesis)
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Moreover, the research work developed during this Ph.D. thesis was partially funded by
the following R&D projects and industrial contracts:

• GreenStack project: This project focuses on the development of energy optimization
policies in OpenStack, providing it with awareness of the behavior of the data center to
accurately anticipate actual needs. Funded by the National R&D&i Programme for
Societal Challenges, RETOS-COLABORACION of the Spanish Ministry of Economy
and Competitiveness (MINECO).

• GreenDISC project: development of HW/SW Technologies for Energy Efficiency in
Distributed Computing Systems. The project proposes several research lines that target
the power optimization in computing systems. Funded by the National Programme for
Fundamental Research Projects of Spanish Ministry of Economy and Competitiveness
(MINECO).

• LPCloud project: This project focuses on the optimum management of low-power
modes for Cloud computing. Funded by the National Programme for Public-Private
Cooperation, INNPACTO of MINECO.

• CALEO project: Thermal-aware workload distribution to optimize the energy
consumption of data centres. Funded by Centro para el Desarrollo Tecnológico e
Industrial (CDTI) of Spain.

The following part of this Ph.D. thesis presents a taxonomy and survey, providing current
approaches on energy-efficient data centers that are analyzed from the perspective of
understanding the specific issues of each abstraction level. We also present our problem
statement and positioning, giving further information on how our research contributes to the
existing state-of-the-art.
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State-of-the-art on Energy-Efficient
Data Centers
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2. Taxonomy and Survey on Energy-Efficient Data
Centers

“Man has always learned from the past. After all, you can’t
learn history in reverse!”

— Archimedes, The Sword in the Stone. Disney

Due to the impact of energy-efficient optimizations in an environment that handles so
impressive high figures as data centers, many researchers have been motivated to focus their
academic work on obtaining solutions for this issue. Therefore, the survey in this chapter
aims for the analysis of the problem from different abstraction levels to draw conclusions
about the evolution of energy efficiency. Practical approaches are analyzed from the
perspective of understanding the specific issues of each abstraction level. The study examines
the technology, logic and circuitry that comprise the hardware, followed by the analysis of
the server scope that takes into account the architecture, type of compilation and
runtime-system, and concluding with the analysis of the entire data center as shown in
Table 2.1. Data center scope is discussed further as represents the main challenge of our
work, being splited into middleware-level, explaining the benefits of virtualized systems,
application-level, and resource management and scheduling-level.

Table 2.1: Main abstraction levels highlighted by hardware, server and data center scope

SCOPE ABSTRACTION LEVEL

Data Center

Resource Manager & Scheduling

Application

Middleware

Server

Run-time System

Compiler

Architecture

Hardware

Circuit

Logic

Technology

The following survey analyzes today’s energy-efficient strategies from both the IT
power-aware and the thermal-aware perspectives. The proposed taxonomy classifies current
research on efficient data centers, helping to identify new open challenges and promoting
further progress towards sustainability.
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2.1 Power-Aware Practical Approaches

2.1.1 Hardware Efficiency

The main challenge within energy-efficient hardware design consists in reaching a
compromise between the QoS and energy consumption so that the performance is not
degraded. To achieve this goal, the different components of the system should be analyzed,
as well as the interaction between them when they operate as a whole.

Technology Level

From vacuum tubes to modern transistors, miniaturization of electronic devices by reducing
the energy requirements and manufacturing costs have been the major instrument for the
progress and sustainability of technologies. Transistor density of new systems is increasing
due to the miniaturization per Moore’s law so, power delivery and temperature management
have become critical issues for computing. However, the main source of inefficiency is due to
the leakages caused by submicron technologies. The main achievements in energy-efficiency
at the technology level focus on technology scaling, voltage and frequency reduction, chip
layout optimization and capacitances minimization. These techniques have been applied to
technologies based on CMOS transistors achieving energy savings of about 18% [43].

Duarte et al. [44] show that migration from scaled down technologies reduces energy
consumption considerably. For 0.07µm, 0.05µm and 0.035µm, savings obtained were 8%, 16%
and 23% respectively. Timing speculation, which consists of increasing frequency at constant
voltage and correcting resultant faults, is studied by Kruijf et al. [45] to achieve energy
savings. Their outcomes show energy savings by 13% for high-performance low-power
CMOS and by 32% using ultra-low power CMOS technology.

The design of more efficient chip layouts is becoming an important target in terms of energy
savings as technology scales down. Muttreja et al. [46] combine fin-type field-effect transistors
(FinFETs) with threshold voltage control through multiple supply voltages (TCMS) to explore
the synthesis of low power interconnections for 32nm technology and beyond. Their work
achieves power savings of about 50.41% by reducing the layout area by 9, 17%.

Logic Level

Logic-level design for energy efficiency mainly focuses on optimizing the switching activity.
Minimizing the switching capacitance directly optimizes the dynamic power consumption by
reducing the energy per transition on each logic device [47]. Clock management,
asynchronous design and optimized logic synthesis also provide power savings by using
accurate delay modeling and minimization of charging loads, taking into account slew rates
and considering the dynamic power dissipation occurred due to short-circuit currents [48].

Power gating, also known as MTCMOS or Multi-Threshold CMOS, allows to put to sleep
transistors by cutting off the power supply from a circuit when it is not switching, as well as
disconnecting the ground lines from the cells eliminating leakage. Madan et al. [49] have
devised a robust management policy of guarded power gating, suggesting efficient guard
mechanisms that guarantee power savings. Per-core power gating (PCPG) is proposed in [50]
as a power management solution for multi-core processors. PCPG allows cutting voltage
supply to selected cores, resulting on savings in energy consumption up to 30% in
comparison to DVFS, also reducing the leakage power for the gated cores to almost zero.

Clock gating provides substantial energy savings by disabling parts of a circuit avoiding
switch states. PowerNap [51] reduces power of idle components by using clock gating
dropping power requirements about 20%. Voltage scaling significantly reduces the circuit
consumption due to the quadratic relationship between supply voltage and dynamic power
consumption. Henrty et al. [52] present Sense Amplier Pass Transistor Logic, a new logic
style designed for ultra low voltage that results in 44% drop in energy consumption.
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Circuit Level

The major challenges in circuit-level design are based on efficient pipelining and
interconnections between stages and components. Pipelining technique is commonly used to
boost throughput in high performance designs at the expense of reducing energy efficiency
due to the increasing area and execution time. Seok et al. [53] present a strategy for
optimizing energy efficiency based on an aggressive pipelining achieving energy savings
around 30%. On the other hand, the pipelining technique proposed by Jeon et al. [54],
reduces the logic depth between registers increasing pipeline stages when compared with
conventional strategies for ultra low voltages. They achieve a 30% of energy savings also
incorporating two-phase latches to provide better variation tolerance.

The interconnection-based energy consumption is another issue regarding nanometer
CMOS regime due to the constant scaling of technology. Logic delays are drastically reduced
while increasing interconnection delays results in larger repeater sizes and shorter flip-flop
distances. The high-density and the complexity increment require large wiring densities
leading to significant capacity couplings inducing the risk of crosstalk in adjacent wires. The
problem is due to the capacitive coupling, which in deep sub-micron technology could be
comparable to the ground line capacitance of the wire itself, increasing both crosstalk energy
and bus dissipation. Brahmbhatt et al. [55] propose an adaptive bus encoding algorithm
considering both self and coupling capacitance of the bus, thus improving energy savings by
24%. The research by Seo et al. [56] defines an edge encoding technique that achieves energy
savings over 31% by an optimized bus design without overloaded latency, reducing the
capacitive coupling. This work shows high-robustness to process variations concerning
energy savings.

Another important technique used to achieve energy savings in the context of circuit level
is based on charge recycling. The main objective of charge recycling is to reduce power
consumption during transitions active-to-sleep and sleep-to-active by charge sharing
between active circuit and sleep circuit capacitors. By using this technique, Pakbaznia et
al. [57] achieve energy savings of 46%.

2.1.2 Server Efficiency

Currently, IT energy consumption in data centers is mainly determined by computing
resources as CPU, memory, disk storage, and network interfaces. Compared with other
resources, CPU is the main contributor to power consumption so many research focus on
increasing its energy efficiency. However, the impact of memory, disk and network is not
negligible in modern servers, also establishing these resources as important factors for energy
optimization. This section will provide an overview of the architecture, compilation, and
runtime-system approaches by analyzing relevant research in terms of reducing server
consumption.

Architectural Level

Power savings are typically achieved at the architectural-level by optimizing the balance of
the system components to avoid wasting power. Some techniques focus on reducing the
complexity and increasing the efficiency by using strategies that use specific hardware
resources to obtain higher performance in idle and active modes. In addition, DVFS is widely
used to minimize energy consumption.

DVFS is by far the most used technique at the architectural-level as well as one of the
currently most efficient methods to achieve energy savings, especially when combined with
other strategies. DVFS is a technique that scales power according to the workload in a system
by reducing both operating voltage and frequency. Reducing the operating frequency and
the voltage slows the switching activity achieving energy savings, but it also slows down
the system performance. The DVFS implementation on a CPU results in an almost linear
relationship between its power and its frequency, taking into account that the set of states of
frequency and voltage of the CPU is limited. Only by applying this technique on a server CPU,
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up to 34% energy savings can be reached as presented in the research proposed by Le Sueur et
al. [58].

Since memory and disk consumption is becoming even more important and comparable
with CPU power, DVFS has been used in current research to also improve energy efficiency
in these IT resources. Deng et al. [59] apply DVFS to memory management achieving 14% of
energy savings. Lee et al. [60] propose an efficiency solution that applies DVFS on an energy-
efficient storage device design, thus achieving reductions in energy consumption around 20-
30%.

However, DVFS is even more effective when combined with other energy-aware
strategies. As reported in the research presented by Heo et al. [61], by combining DVFS with
Feedback On/Off techniques, they achieve savings around 55% for highly loaded systems.
Moreover, Per-Core Power Gating, used together with DVFS can reach around 60%
savings [50]. The Energy-Delay-Product-aware DVFS technique proposed by Swaminathan et
al. [62], dynamically adjusts the frequency of processor cores achieving improvements of up
to 44% in energy efficiency for heterogeneous CMOS-Tunnel field-effect transistor (TFET)
multicores.

Apart from DVFS, there are other strategies to optimize the energy consumption of
servers in the architectural-level. The work presented by Seng et al. [63] studies the issue of
wasteful CPU consumption from three different perspectives: the execution of unnecessary
instructions, the speculation waste due to the instructions that do not commit their results,
and the architectural waste, given by suboptimal sizing of processor structures. Their paper
discusses that, by eliminating the sources of waste, reductions about 55% can be obtained for
the processor energy.

The rise in the number of server cores together with virtualization technologies have
widely increased storage demand, establishing this resource as one of the most important
factors of energy optimization [64]. In the research presented by Zhu et al. [65], the authors
present an off-line power-aware greedy algorithm that saves 16% more disk energy in
comparison to the Least Recently Used algorithm. On the other hand, Pinheiro et al. [66]
suggest the use of multi-speed disks, so each device could be slowed down to reach lower
energy consumption during low-loaded periods showing energy savings of 23%.

Compiler Level

The challenge of compiler-level optimizations is to generate code that reduces the system
energy consumption with or without a penalty in performance. Optimized compilers
improve application performance by optimizing software code for better exploitation of
underlying processor architecture, thus avoiding serious issues due to system failure.
Compiler optimization mechanisms have been proposed to reduce power consumption by
code optimization, profiling and annotation approaches.

Jones et al. [67] propose a compiler to an efficient placement of instructions performing
energy savings in the instruction cache. The compiler comprises most frequently used
instructions at the beginning of the binary, to be subsequently placed explicitly in the cache.
Compared with the state-of-the-art, their work highlights a 59% in energy savings, in contrast
to the 32% achieved by the hardware implementation. Fei et al. [68] propose the usage of
source code transformations for operating system embedded programs to reduce their energy
consumption, achieving up to 37.9% (23.8%, on average) energy reduction compared with
highly compiler-optimized implementations.

Furthermore, the current compilation techniques are not able to exploit the potential of
new system parallelism, such as the technologies based on multiple memory banks.
Consequently, the compiler-generated code is far from being efficient. Shiue et al. [69] present
an energy-aware high-performance optimized compiler that reaches 48.3% improvement in
system’s performance and average energy savings around 66.6%.
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Run-time System Level

The run-time systems development is a very interesting matter within the scope of server
energy efficiency, as it allows the monitoring of systems through both server logs or physical
sensors that help to control the most relevant features. These systems also provide predictive
implementations making anticipation possible for future workloads. As a consequence,
statistical models can be introduced to allow run-time system-wide prediction of servers
power consumption [70], [71].

Network dynamic management is also used in order to increase savings. Nedevschi et
al. [72] combine the reduction of energy consumption in the absence of packets, via sleeping
networking components, during idle times with an algorithm that adapts the rate of network
operations according to the workload increasing latency in a controlled manner, without a
perceptible loss increase.

Son et al. [73] present the implementation of a run-time system that improves disk power
efficiency. In this approach the compiler provides key information to the run-time system to
perform pattern recognition of disk access, so the system can act accordingly. Their outcomes
reach among 19.4% and 39.9% savings when compared with the energy consumed by
hardware or software based solutions. A prediction-based scheme for run-time adaptation is
presented by Curtis-Maury et al. [74] improving both performance and energy savings by
14% and 40% respectively. In the field of multiprocessor system on chip, significant
improvements have been reached at run-time system level. Yang et al. [75] combine the low
complexity of the design-time scheduling with the flexibility of a run-time scheduling to
achieve an energy efficiency of 72%.

2.1.3 Data center Efficiency

The advantages of Cloud computing lie in the usage of a technological infrastructure that
allows high degrees of automation, consolidation and virtualization, which result in a more
efficient management of the resources of a data center. The Cloud model allows working
with a large number of users as well as concurrent applications that otherwise would require
a dedicated computing platform. Cloud computing in the context of data centers, has been
proposed as a mechanism for minimizing environmental impact.

Virtualization and consolidation increase hardware utilization (of up to 80% [15]) thus
improving resource efficiency. Also, a Cloud usually consists of heterogeneous and
distributed resources dynamically provisioned as services to the users, so it is flexible enough
to find matches between these different parameters to reach performance optimizations. The
Cloud market keeps growing and is expected to grow 10% in 2017 to reach to total $246.8
billion, up from $209.2 billion [16]. Also, according to Gartner, Cloud system infrastructure
services and Cloud application services are projected to grow about a 36.8% and a 20.1%
respectively in 2017.

It is expected that, by implementing this type of computing, energy consumption will be
decreased by 31% by 2020, reducing CO2 emissions by 28%. Even so, consumption and
environmental impact are far from being acceptable [22]. Just for an average 100kW data
center, a 7% in annual savings represents around US $5 million per year [23]. This context
draws the priority of encourage research to develop sustainability policies at the data center
scope, in order to achieve a social sense of responsibility while minimizing environmental
impact.

Middleware Level

Within the scope of data centers, the middleware abstraction level includes the concepts of
virtualization, consolidation and modification of the dynamic operating server set.
Virtualization allows the management of the data center as a pool of resources, providing live
migration and dynamic load balancing, as well as the fast incorporation of new resources and
power consumption savings. Due to virtualization, a single node can accommodate
simultaneously various virtual machines (also based on different operating systems) that can
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be dynamically started and stopped according to the system load that shares physical
resources. By virtualizing a data center, savings in the electricity bill can be achieved of
around 27%.

On the other hand, consolidation uses virtualization to share resources. Recent studies, as
seen in the research presented by Lee et al. [76], highlight that power consumption in a server
scales linearly with resource utilization. The task consolidation reduces energy consumption
by increasing resource utilization, allowing multiple instances of operating systems to run
concurrently on a single physical node. Energy savings reported by virtualization and
consolidation are ranging from 20% to 75% by accommodating several VMs on the same host
as can be seen in [77] and [78]. To reduce energy usage in data center infrastructures, some
approaches have studied the consumption related to the basic operations of VMs such as boot
or migrations. Lefèvre et al. [79] propose an energy-aware migration policy that achieves
around 25% savings.

Moreover, the available computational resources of data centers are over-dimensioned for
its typical incoming workload, and in very few load peaks they are used entirely. This is the
main reason why a significant fraction of the infrastructure would be underutilized the most
part of the time and thus an important amount of energy could be saved by turning off idle
servers. Typically, an idle server consumes up to 66% of the total power consumption, so many
efforts have been made in this area.

Chen et al. [80] focus on 4 algorithms that estimate the CPU usage in order to reduce the
active server set by turning off machines. The researchers have achieved savings around 30%.
The Limited Lookahead Control algorithm provided by Kusic et al. [81] also consists in a
predictive control to select the active server set in virtualized data centers. This approach
takes into account the control and the switching associated costs, including time and power
consumed while a machine is powered up or down, achieving average savings of 22% while
maintaining QoS goals.

The management of the active server set is especially useful considering service
requirements fluctuation. Dynamic consolidation techniques presented by Beloglazov et
al. [82] obtain a increase of 45% in energy savings. This approach takes into account
migration costs as well as turning off idle machines of the server set. Similar policies
consisting on server shutdown are used in the research proposed by Niles [83] and Corradi et
al. [78] obtaining energy savings of 69% and 75% respectively.

Application Level

As the connectivity in personal and working environments is gaining importance, an
increasing number of services with diverse application-level requirements are offered over
the Internet [84]. The integration of application-level strategies together with server
consolidation techniques is a major challenge to maximize energy savings [85]. The amount
of resources that are required by the VMs are not always known a priori, so it is
recommendable to have an application-level performance controller to adapt resources
optimally to the studied variations in the application requirements. This issue is particularly
accentuated when servers are overloaded and applications cannot access enough resources to
operate efficiently. Therefore, it is a great recommendation to use consolidation algorithms
that dynamically reallocate VMs on different physical servers throughout the data center in
order to optimize resource utilization.

MapReduce, popularized by Google [86] is widely used in application-level energy-aware
strategies due to simplified data processing for massive data sets in order to increase data
center productivity [23]. When a MapReduce application is submitted, it is separated into
multiple Map and Reduce operations so its allocation may influence the task performance [87].
Research by Wirtz et al. [88] achieved energy savings from 9% to 50% by combining this
kind of applications with Hadoop frameworks for large clusters [89]. Also including dynamic
operating server set techniques, research by Leverich et al. [90] and Maheshwari et al. [91]
provide an energy efficiency improvement of 23% and 54% respectively.

On the other hand, PowerPack [92] is a proposal that involves circuit-level application

20



2.2. Thermal-Aware Practical Approaches

profiling in order to determine how and where the power is consumed. Researchers also have
developed a scheduling policy achieving energy savings of 12.1% by observing consumption
profiles and their correlation with the application execution patterns. In future work they
propose to adopt PowerPack for thermal profiling.

Resource Management and Scheduling Level

Resource management refers to the efficient and effective deployment of computational
resources of the facility where they are required. The resource management techniques are
used to allocate, in a spatio-temporal way, the workload to be executed in the data center thus
optimizing a particular goal.

One of the key issues to consider in Cloud data centers, is the optimization of the current
allocation of VMs. It is important to study which of them would get better
energy-performance running on different hosts and therefore how the system should perform
globally after migrations. Live migration of virtual machines involves the transfer of a virtual
machine to another physical node at runtime without interrupting the service. Beloglazov et
al. [93] present different migration procedures to manage the migration of VMs from
overloaded hosts to avoid performance degradation. Their results show that energy
consumption can be significantly reduced relatively to non-power aware and non-migration
policies by 77% and 53% respectively maintaining up to 5.4% of SLA violations.

EnaCloud resource manager presented by Li et al. [94] helps to maintain the data center
pool utilization at 90%, providing energy savings between 10% and 13%. Liu et al. [95] have
designed GreenCloud, which enables online-monitoring of the system, live migration and
searching the optimal placement of VMs by using a heuristic algorithm. This approach
evaluates the costs of these migrations and then it turns on or off servers accordingly. Results
show savings up to 27% obtaining a near-optimal solution in less than 300ms in a test
environment.

2.2 Thermal-Aware Practical Approaches

Currently, data centers save lots of energy by cooling in an efficient manner. Hot-spots
throughout the facilities are the main drawback according to system failures, and due to this
factor, some data centers maintain very low room temperatures of up to 13◦C [15]. Most
recently, data centers are turning towards new efficient cooling systems that make higher
temperatures possible, around 24◦C or even 27◦C.

2.2.1 Server Efficiency

The problem due to increasing power density of new technology has resulted in the
incapacity of processors to operate at maximum design frequency, while transistors have
become extremely susceptible to errors causing system failures [96]. Moreover, adding to this
issue that system errors increase exponentially with temperature, new techniques that
minimize both effects are required. As a result, optimized compilers are being developed
taking into account both the thermal issues and power dissipation.

The register-file is one of the most affected components inside the processor due to its
high temperature during activity. The development of compiler-managed register-file
protection schemes is more efficient than hardware designs in terms of the power
consumption. However, Lee et al. [97] propose a compile-time analysis as a solution to
optimize further issues to significantly improve energy efficiency by an additional 24%.

2.2.2 Data Center Efficiency

Within the data center scope, many of the reliability issues and system failures are given by
the adverse effects due to hot spots. However one of the major problems is given by the
heterogeneous distribution of the workload across the IT infrastructure, generating heat
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sources in localized areas. This fact causes the room cooling to be conditioned by hot spots
temperature so CRAC units have to distribute air colder than necessary in many other areas
thus avoiding failures in the whole data center server set. Therefore, in order to prevent the
room overcooling, several techniques have been developed to optimize scheduling and
resource management in data centers. The motivation in this area focuses on the efficient
usage of resources and the thermal-aware policies to contribute to the energy efficiency and
the sustainability of the facilities.

Wang et al. [98] present a Thermal Aware Scheduling Algorithm (TASA) that achieves
simulation results of up to 12% in savings for the cooling system, representing about 6% of
the power consumption of the entire infrastructure, which corresponds to a reduction of
around 5000 kWh. Mukherjee et al. [99] use genetic algorithms to balance the workload to
minimize thermal cross-interference, saving 40% of the energy when compared to first-fit
placement techniques.

In addition, in the research presented by Tang et al. [100] authors have addressed the
problem of minimizing the peak inlet temperature in data centers through task assignment.
They use a recirculation model that minimizes cooling requirements, in comparison with
other approaches. According to their results, the inlet temperature of the servers can be
reduced from 2◦C to 5◦C, saving about 20-30% of the cooling energy. The resource manager
presented by Beloglazov et al. [101], while combined with techniques for minimizing the
number of migrations, achieves energy savings about 83% due to the optimization of
resource utilization, host temperature and network topology, also ensuring QoS.

2.3 Thermal and Power-Aware Practical Approaches

2.3.1 Server Efficiency
Joint thermal and power-aware strategies can be found within the server scope, considering
fan control together with scheduling in a multi-objective optimization approach [102]. The
work by Chan et al. [103] proposes a technique that combines both energy and thermal
management technique to reduce the server cooling and memory energy costs. They propose
a model to estimate temperature that uses electrical analogies to represent the thermal and
cooling behavior of components. However, their work does not split the contributions of
leakage and cooling power, so their minimization strategy is unaware of the leakage-cooling
trade-offs.

2.3.2 Data Center Efficiency
By virtualizing a data center, savings in the electricity bill can be achieved of around 27%.
However, by combining improvements in power of both computation and cooling devices,
savings have the potential to reach about 54% [83]. This is the main challenge to reduce data
center energy from a global perspective.

On its own, virtualization has the potential of minimizing the hot-spot issue by migrating
VMs. Migration policies allow to distribute the workload also considering temperature
variations during run-time without stopping task execution. Some Cloud computing
solutions, such as introduced by Li et al. [104], have taken into account the dependence of
power consumption on temperature, due to fan speed and the induced leakage current.

Abbasi et al. [105] propose heuristic algorithms to address this problem. Their work
presents the data center as a distributed Cyber Physical System (CPS) in which both
computational and physical parameters can be measured with the goal of minimizing energy
consumption. However, the validation of these works is kept in the simulation space, and
solutions are not applied in a real data center scenario.

The current research in the area of joint workload and cooling control strategies is not
addressing the issue of proactive resource management with the goal of total energy
reduction. Instead, techniques so far either rely on the data room thermal modeling provided
by Computational Fluid Dynamics (CFD) software, or just focus on measuring inlet
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temperature of servers. However, as opposed to the holistic approach proposed in this
dissertation, the models at the data room level do not monitor the CPU temperature of
servers nor adjusting the cooling proactively or performing a joint workload and cooling
management during run-time for arbitrary workloads.

2.4 State of the Art Discussion

Research on problem solving focuses on understanding the processes to reach a solution
within the context of available knowledge. Therefore, understanding the energy efficiency
contributions becomes essential to reach optimal results in terms of savings in consumption,
together with reducing the economic and environmental impact involved. In this section, the
challenges related to the different abstraction levels are discussed. Table 2.2 summarizes the
bibliography and the higher savings value organized by scope for each abstraction level of
the presented taxonomy.

Table 2.2: Bibliography and savings for each abstraction level
SCOPE References Savings

DATA CENTER

RM & Scheduling [93]- [95], [98]- [106], [104], [105] 83%

Application [84]- [92] 54%

Middleware [76]- [78] 75%

SERVER

Run-time System [70]- [75], [102]- [103] 72%

Compiler [67]- [69], [97] 67%

Architecture [58]- [66] 60%

HARDWARE

Circuit [53]- [57] 46%

Logic [47]- [52] 44%

Technology [43]- [46] 32%

Temperature and power dissipation are the major issues faced by technology due to
Moore’s law scaling evolution, resulting in static and dynamic energy consumption, and
noise. Thereby the energy efficiency achieved at this level, reaching 32%, is restricted to the
integration density allowed by current technology. At logic-level the main strategies for
reducing energy are based on the minimization of switching activity and capacity loads
achieving savings about 44%. Interconnection-based consumption improvements, correcting
logic delays, and prevention against capacitive coupling due to technology scaling are the
main goals at the circuit level, obtaining reductions about 46% in energy consumption.

Regarding the server scope, architectural-level energy savings of 60% are achieved by
avoiding unnecessary power waste and optimizing the balance of the system activity.
Preventing hot spots within the server is one of the main challenges of optimized
compilation. These approaches allow the processor to run at the best possible design
conditions taking advantages of parallel architectures. These techniques represent energy
savings up to 66.6%. Through server logs or hardware sensing, usage patterns can be
recognized in order to monitor run-time systems and therefore to develop both reactive and
proactive policies. Thus, run-time system optimizations, which are based on the optimal
management of resources and the control of temperature variations, improve energy
efficiency up to 72%.

By addressing the energy challenge of the data center as a whole, savings in consumption
have assumed such proportions, which result in strong improvements both in economic and
environmental impact. Due to the oversized data centers and the high consumption of idle
and underutilized servers, the main target at middleware-level is to optimize the resource
utilization of servers, even turning them on/off , thus balancing the workload. Virtualization
impacts on these optimization approaches that, for Cloud computing, achieves energy savings
up to 75%. However, migration of VMs introduces overheads that are not always considered.
Application-level strategies mainly focus on the adaptation between the resources offered by
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the data center infrastructure and the variations of the applications requirements. This issue
is even worse for overloaded servers and for workloads that dynamically fluctuate over time.
At this abstraction level, practical approaches achieve energy savings of up to 54%.

The resource management and scheduling level focus on optimizing the allocation of
VMs, by increasing the efficiency of reallocations and by modifying the operating server set.
Maintaining QoS is also a major challenge for Cloud data centers as services are expected to
be delivered by SLA. At this abstraction level, thermal-aware approaches are more relevant in
current research, developing strategies that help to avoid the overcooling of the data room.
Resource management and scheduling techniques achieve energy savings of up to 83%, thus
improving the sustainability of these infrastructures.

This Ph.D. thesis proposes a novel holistic paradigm to consider the energy globally within
the data center scope, from the IT to the cooling infrastructures that has not been applied before
in the literature. Taking into account the energy contributions and the thermal impact at the
different levels of abstraction would lead to more efficient global optimizations that are aware
of the information available from the different subsystems. The following chapter presents our
problem statement and positioning, giving further information on how the present research
offers a new optimization paradigm, contributing to the existing state-of-the-art.
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“Venture outside your comfort zone.
The rewards are worth it.”

— Rapunzel, Tangled, Disney

The survey presented in the previous section studies the main energy-efficient strategies
from both the power-aware and the thermal-aware perspectives. This section analyzes the
trade-offs between energy efficiency and abstraction levels in order to help to identify new
open challenges at the data center scope. The box plot in Figure 3.1 graphically depicts the
range of energy savings by abstraction level for the practical approaches in Table 2.2.

HW Server DC

Figure 3.1: Box-and-whisker diagram representing the range of energy savings for the
proposed taxonomy

For each abstraction level, the input data is a numeric vector including all the energy
savings’ values that can be found in the previous section. On each box, the central mark
provides the median value, and the bottom and top edges of the box specify the 25th and 75th

percentiles, respectively. The whiskers’ edges represent the most extreme data points not
considered outliers. For the values considered in our research, no outliers have been found.

3.0.1 The holistic perspective
Regarding Figure 3.1, some assessments can be made. First, we can observe that for
increasing abstraction levels, the maximum savings value also improves. Data center energy
consumption depends on the contribution of diverse subsystems and how they interact.
Thus, the energy performance of these facilities is based on the complex relationships
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between many different parameters. As the energy challenge is tackled from a more global
perspective, the optimization strategies can be aware of the status of a larger set of elements.
This trend shows that, higher abstraction levels help to take better decisions that result in
higher savings, as they have deeper knowledge about subsystems interactions and how they
affect to the global consumption. So, this Ph.D. thesis will face the energy efficiency issue
from a high-level perspective.

However, research found in the area of application-level optimizations shows energy
savings that are lower than expected, according to their level of abstraction. These results
indicate that further research on VM consolidation for dynamic workloads is required to
better understand the problem, proposing new optimizations to increase the current energy
savings at this scope. Thus, our work will emphasize on analyzing the features of dynamic
workloads that best describe real environments.

Also, we find that Architecture and Run-time system levels have the potential to increase
energy efficiency, as there exists a significant gap between the maximum and the average
efficiency obtained. Due to this, our research will also focus on DVFS and proactive
techniques based on runtime monitoring.

Our contributions to the state-of-the-art

Table 3.1 presents current state-of-the-art approaches and highlights those techniques used in
our research, which we consider to have the highest potential for improve energy efficiency in
Cloud data centers when applying our holistic paradigm.

Table 3.1: Current state-of-the-art approaches for energy efficiency

Scope Abstraction Level Main Energy Optimizations

Data 
Center

RM & Scheduling      Server’s set & VM’s Allocation

Application Management of dynamic workloads

Middleware      Utilization, Virtualization & Migration

Server

Run-time Reactive/Proactive based on monitoring

Compiler Preventing hot spots & Parallelization

Architecture DVFS & Balance of system’s activity

Hardware

Circuit      Interconnection-based & coupling

Logic      Switching and Capacity loads

Technology      Temperature & Power dissipation

The thermal-aware strategies are becoming relevant when applied to reduce the energy
consumption of cooling infrastructures. These policies help to avoid hot-spots within the IT
resources so the cooling temperature can be increased, resulting in lower energy
requirements while maintaining safe operation ranges. However, current approaches do not
incorporate the impact of leakage consumption found at the technology level when
controlling the cooling set point temperature at the data center level. This power
contribution, which grows for increasing temperatures, is neither considered when
optimizing allocation strategies in terms of energy.

Thus, deriving power models that incorporate this information at different abstraction
levels, which impact on power contributors, helps to find the relationships required to devise
global optimizations that combine power and thermal-aware strategies in a holistic way. In
our work, we will focus on the combination of strategies that are aware of both IT and
cooling consumption, also taking into account the thermal impact.

Modeling the power consumption is crucial to anticipate the effects of novel optimization
policies to improve data center efficiency from a holistic perspective. The fast and accurate
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modeling of complex systems is a relevant target nowadays. Modeling techniques allow
designers to estimate the effects of variations in the performance of a system. Data centers, as
complex systems, present non-linear characteristics as well as a high number of potential
variables. Also, the optimal set of features that impacts on the system energy consumption is
not well known as many mathematical relationships can exist among them.

Analytical models, as closed form solution representations, require specific knowledge
about the different contributions and their relationships, becoming hard and time-consuming
techniques for describing complex systems. Complex systems comprise a high number of
interacting variables, so the association between their components is hard to extract and
understand as they have non-linearity characteristics [107]. Also, input parameter limitations
are barriers associated to classical modeling for these kind of problems. Therefore, new
modeling techniques are required to find consumption models that take into account the
influence of temperature on both IT and cooling. This work is intended to offer new power
models that also take into account the contributions of non-traditional parameters such as
temperature. So, deriving fast and accurate models will allow us to combine both power and
thermal-aware strategies.

In this Ph.D. thesis we develop a novel methodology based on a Grammatical Evolution
metaheuristic for the automatic inference of accurate models. Hence, we propose a
methodology that considers all these factors thus providing a generic and effective modeling
approach that could be applied to numerous problems regarding complex systems, where the
number of relevant variables or their interdependence are not known. Our methodology
allows to derive complex models without designer’s effort, automatically providing an
optimized set of features combined in a model that best describe the power consumption of
servers.

Modeling the main contributors to the consumption of the whole data center, including
information about the impact on power at different abstraction levels, offers estimations that
can be used during runtime in a proactive manner. Based on the information provided by the
models on how optimization techniques impact on both IT and cooling infrastructures, new
local and global optimization strategies may be devised to reduce the whole consumption of
the data center. In this research we propose proactive optimization approaches based on best
fit decreasing algorithms and simulated annealing metaheuristics to reduce the global energy
consumption, both IT and cooling contributions, while maintaining the QoS.

The new holistic paradigm proposed in this work focuses on considering the energy
globally and proactively for the first time in literature. So, all the data center elements are
aware of the evolution of the global energy demand and the thermal behavior of the room.
Decisions are based on information from all available subsystems to perform energy
optimizations.

The work presented in the following part of this Ph.D. thesis profusely describes our
strategies to model power consumption that include both DVFS and thermal awareness. In
this research we detect the need of addressing leakage power and focus on the different
modeling methodologies to provide power models that outperform the state-of-the-art.
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Part II

Modeling Power Consumption:
DVFS and Thermal Awareness
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4. Thermal considerations in IT infrastructures

“Nothing shocks me, I’m a scientist.”

— Indiana Jones, Indiana Jones and the Temple of Doom

4.1 Introduction

Leakage power consumption is a component of the total power consumption in data centers
that is not traditionally considered in the set point temperature of the room. However, the
effect of this power component, increased with temperature, can determine the savings
associated with the careful management of the cooling system, as well as the reliability of the
system. The work presented in this chapter detects the need of addressing leakage power in
order to achieve substantial savings in the energy consumption of servers.

Interestingly, the key issue on how to control the set point temperature, at which to run the
cooling system of a data center, is still to be clearly defined [108]. Data centers typically operate
in a temperature range between 18° C and 24° C, but we can find some of them as cold as 13°
C degrees [109], [110]. Due to the lack of scientific data in the literature, these values are often
chosen based on conservative suggestions provided by the manufacturers of the equipment.

Some authors estimate that increasing the set point temperature by just one degree can
reduce energy consumption by 2 to 5 percent [109], [111]. Microsoft reports that raising the
temperature from two to four degrees in one of its Silicon Valley data centers saved $250,000
in annual energy costs [110]. Google and Facebook have also been considering increasing the
temperature in their data centers [110].

Power consumption in servers can be estimated by the summation of the dynamic power
consumption of every active module, dependent on the computing activity, and the static
power consumption, present even if the server is idle. However, a power leakage is also
present, and it is strongly correlated with the integration technology. In particular, leakage
power consumption is a component of the total power consumption in data centers that is
not traditionally considered in the set point temperature of the room. The effect of this power
component, increased with temperature, can determine the savings associated with the
careful management of the cooling system, as well as the reliability of the system itself.

The work presented in this chapter detects the need of addressing leakage power in order
to achieve savings in the energy consumption of servers and makes the following
contributions:

• we establish the need of considering leakage power consumption and its dependence
with temperature for modern data centers;

• we detect the impact of leakage power in the total power consumption of
high-performance servers;
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4.2 Background on data center power modeling

The main contributors to the energy consumption in a data center are the IT power, i.e. the
power drawn by servers in order to run a certain workload, and the cooling power needed to
keep the servers within a certain temperature range that ensures safe operation. Traditional
approaches have tried to reduce the cooling power of data center infrastructures by increasing
the supply temperature of CRAC units. However, because of the direct dependence of leakage
current with temperature, the leakage-temperature trade-offs at the server level must be taken
into account when optimizing energy consumption.

In this section we show the impact of these trade-offs on the total energy consumption of
the data center, as well as how the ambient room temperature affects the cooling power. This
fact can be exploited to optimize the power consumption of the infrastructure as a whole.

4.2.1 Computing power

Current state-of-the-art resource management and selection techniques were considering
only the dynamic power consumption of servers when allocating tasks or selecting machines.
Moreover, the devised power models have not traditionally included the impact of leakage
power consumption and its thermal dependence, driving to non-optimal solutions in their
energy optimization plans.

Dynamic consumption has historically dominated the power budget. But when scaling
technology below the 100nm boundary, static consumption has become much more
significant, being around 30- 50% [112] of the total power under nominal conditions.
Moreover, this issue is intensified by the influence of temperature on the leakage current
behavior. With increasing temperature, the on-current of a transistor is reduced slightly.
However the reduction of the threshold voltage is not sufficient to compensate the decreased
carrier mobility and has a strong exponential impact on leakage current. Hence, the
increasing temperature reduces Ion/Ioff ratio, so that static consumption becomes more
relevant in the total power budget as shown in Figure 4.1.

Figure 4.1: Performance variations with temperature [24]

There are various leakage sources in devices such as gate leakage or junction leakage but
at present, sub-threshold leakage is the most important contribution in modern designs. This
phenomenon occurs because, when the gate voltage is lowered under the threshold voltage,
the transistor does not turn off instantly, entering a sub-threshold regime also known as “weak
inversion”. During this process drain-source current increases exponentially in terms of VGS
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voltage as seen in Figure 4.2.

Figure 4.2: The transistor in “weak inversion” [24]

Also leakage current increases exponentially with a linear reduction in threshold voltage
as can be seen in the example 4.3, where leakage current at VGS = 0 for a lower threshold
transistor (VTH = 0.1V ) is approximately four orders of magnitude higher than that for a high
threshold (VTH = 0.4V ) device.

Figure 4.3: Comparison between leakage current at different thresholds [24]

The effect of Drain-Induced barrier lowering (DIBL) aggravates the problem because the
threshold is reduced approximately linearly with VDS voltage as seen in equation 4.1.

VTH = VTH0 − λd · VDS (4.1)

This issue occurs in short-channel devices, where the source-drain distance is comparable
to the widths of depletion regions. This means that the DIBL effect makes the threshold
voltage to become a variable that varies with the signal, so the drain voltage can modulate
the threshold. Figure 4.4 shows this effect for different drain-source channel lengths.

The current that is generated in a MOS device due to leakage is the one shown in
equation 4.2.

Ileak = Is · e
VGS−VTH

nkT/q · (1− e
V ds
kT/q ) (4.2)
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Figure 4.4: Threshold variations due to different drain voltages in short-channel devices [24]

Research by Rabaey [24] shows that if VDS > 100mV the contribution of the second
exponential is negligible, so the previous formula can be rewritten as in Equation 4.3:

Ileak = Is · e
VGS−VTH

nkT/q (4.3)

where technology-dependent parameters can be grouped together to obtain the formula in
Equation 4.4:

Ileak = B · T 2 · e
VGS−VTH

nkT/q (4.4)

where B defines a constant that depends on the manufacturing parameters of the server.
According to this formulation, the effect of leakage currents due to temperature may be

devised, at the server scope, in order to accurately model the power contribution of IT together
with cooling variations.

4.2.2 Cooling power

The cooling power is a major contributor to the overall electricity bill in data centers,
consuming over 30% of the power budget in a typical infrastructure [27]. In an air-cooled
data center room, servers mounted in racks are arranged in alternating cold/hot aisles, with
the server inlets facing cold air and the outlets creating hot aisles. The CRAC units pump
cold air into the data room’s cold aisles and extract the generated heat. The efficiency of this
cycle is generally measured by the COP or coefficient of performance. The COP is a
dimensionless value defined as the ratio between the cooling energy produced by the
air-conditioning units (i.e. the amount of heat removed) and the energy consumed by the
cooling units (i.e. the amount of work to remove that heat), as shown in Equation 4.5.

COPMAX =
output cooling energy
input electrical energy

(4.5)

Higher values of the COP indicate a higher efficiency. The maximum theoretical COP for
an air conditioning system is described by Carnot’s theorem as in Equation 4.6:

COPMAX =
TC

TH − TC
(4.6)

where TC is the cold temperature, i.e. the temperature of the indoor space to be cooled,
and TH is the hot temperature, i.e. the outdoor temperature (both temperatures in Celsius).
As the difference between hot and cold air increases, the COP decreases, meaning that the air-
conditioning is more efficient (consumes less power) when the temperature difference between
the room and the outside is smaller.
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According to this, one of the techniques to reduce the cooling power is to increase the COP
by increasing the data room temperature. We will follow this approach to decrease the power
wasted on the cooling system to a minimum, while still satisfying the safety requirements of
the data center operation.

4.3 Experimental methodology

The experimental methodology in this section pursues the goal of finding leakage-temperature
trade-offs at the server level, by means of measuring the power consumption of an enterprise
server at different temperatures in a real data room environment where the air-conditioning
can be controlled. After this, we will be able to evaluate the energy savings that could be
obtained in a data center when our modeling strategy is applied.

4.3.1 Data room setup

To find if a dependence exists between temperature and power consumption in an
infrastructure that resembles a real data center scenario, we install eight Sunfire V20z servers
in a rack inside an air-cooled data room, with the rack inlet facing the cold air supply and the
outlet facing the heat exhaust. We selected this type of servers because they present an
enterprise server architecture used in current infrastructures that exhibits leakage-dependent
properties with temperature. The air conditioning unit mounted in the data room is a Daikin
FTXS30 unit, with a nominal cooling capacity of 8.8kW and a nominal power consumption of
2.8KW. We assume an outdoor temperature of 35°C and use the manufacturers technical data
to obtain the COP curve depending on the room temperature [113]. This temperature is only
used to estimate the energy savings based on the curve provided by the manufacturer and
does not affect the experimental results.

As can be seen in Figure 4.5, as the room temperature and the heat exhaust temperature
rise, approaching the outdoor temperature, the COP increases thus improving the cooling
efficiency.
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Figure 4.5: Evolution of the air-conditioning COP with room temperature

We monitor all the servers by means of the Intelligent Platform Management Interface
(IPMI) tool to gather the server internal sensors and we use current clamps to obtain power
consumption. We set the air supply temperature at various values ranging from 18°C to 24°C,
and run from 1 to 4 simultaneous instances of the different tasks of the Standard Performance
Evaluation Corporation (SPEC) CPU 2006 benchmark suite [114] in the servers of the data
room. Our goal is to verify the leakage-temperature dependence, finding the maximum air-
supply temperature that makes the servers work in the temperature region where leakage is
negligible.
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4. Thermal considerations in IT infrastructures

4.4 Results

We run the tasks of the SPEC CPU 2006 benchmark suite in the AMD servers under different
data room conditions. In our experiments, we run from 1 to 4 instances of SPEC CPU in the
AMD servers at different room temperatures of 18° C, 20° C, 22° C and 24° C. Figure 4.6a
shows the power consumption values for two simultaneous instances of the SPEC CPU 2006
benchmark at an air supply set point temperature of 18° C, 20° C and 24° C, respectively.
Figure 4.6b shows the CPU temperature for each of these tests under the same conditions.
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Figure 4.6: Power consumption and CPU temperature of SPEC CPU 2006 at different air
supply temperatures

Because all other variables are constant (we removed server fans so there is no variable
fan power), and as the measurement error with the current clamp is already controlled, the
changes in the power consumption for each test can be due to the differences in ambient
temperature. As can be seen in the plots, even though there are differences in the average
CPU temperature between the 18° C and the 20° C case, for most of the benchmarks CPU
temperature does not go above the 50° C, staying in the negligible leakage area. In fact, the
power consumption differences between the 18° C and the 20° C case are in the range of
±5W, so we cannot consider them to be due to leakage, but to the inaccuracy of our current
clamp. However, for the 24° C case, CPU temperatures raise above 50° C and power
consumption for most of the benchmarks is considerably higher than in the 18° C scenario,
achieving differences higher than 8W for gcc, libquantum, astar and xalancbmk benchmarks
that represent an increase of about 4.5% in IT power. Thus, in this region we begin to observe
temperature-dependent leakage.

The experimental results for our data room scenario show that if we allow temperature
to rise above this 24° C barrier, the contribution of the leakage increases, thus increasing the
computing power drawn by our infrastructure. However, for our data room configuration and
under our workload, leakage is negligible in the 18° C - 24° C range and, thus, we can rise the
ambient temperature within this range in order to reduce cooling power.
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If we increase the air supply temperature from 18° C to 24° C, the room temperature
increases and the COP varies (see Figure 4.5) from 2.95 to 3.47, increasing the energy
efficiency of the cooling equipment and reducing the cooling power. This increase has a
proportional impact on the energy savings of the infrastructure, leading to savings of 11.7%
in cooling power as predicted by the curve.

4.5 Summary

Power consumption in servers can be estimated by the summation of the dynamic power
consumption of every active module (which depends on the activity) and the static power
consumption, but the leakage contribution to power that is strongly correlated with the
integration technology may be considered. However, traditional approaches have never
incorporated the impact of leakage power consumption in these models, and the noticeable
values of leakage power consumption that appear at higher temperatures.

The work presented in this chapter detects the need of addressing leakage power in order
to achieve substantial savings in the energy consumption of servers. In particular, our work
shows that, by a careful detection and management of the impact of thermal-dependent
leakage, energy consumption of the data-center can be optimized by a reduction of the
cooling budget. Finally, we validate these facts with an experimental work that resembles the
infrastructure of current enterprises. Our empirical results show that increasing the cooling
setpoint temperature in 6° C reduces cooling power by 11.7%, but also increases IT power
consumption in about 4.5%. The state-of-the-art only take into account cooling power
reduction due to set point temperature increments. So, our research outperform current
approaches by also considering the power increase in IT under these conditions.

The next chapter provides an analytical power model that provides the dependence of
power consumption on temperature for the first time at server level. We also present a
metaheuristic-based method, to optimize this analytical model, to enhance the accuracy
between model estimations and power measurements.
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“I always like to look on the optimistic side of life, but I am
realistic enough to know that life is a complex matter.”

— Walt Disney

The management of energy-efficient techniques and proactive optimization policies
requires a reliable estimation of the effects provoked by the different approaches throughout
the data center. However, data center designers have collided with the lack of accurate power
models for the energy-efficient provisioning and the real-time management of the computing
facilities. Thus, new power models will facilitate the analysis of several parameters from the
perspective of the power consumption, and they will allow us to devise efficient techniques
for energy optimization.

In the last years, there has been a rising interest in developing simple techniques that
provide basic power management for servers operating in a Cloud, i.e. reducing the active
servers set by turning on and off servers, putting them to sleep or using DVFS to adjust
servers’ power states by reducing clock frequency. Many of these recent research works have
focused on reducing power consumption in cluster systems [115]–[118]. In general, these
techniques take advantage of the fact that application performance can be adjusted to utilize
idle time on the processor to save energy [119]. However, their application in Cloud servers is
difficult to achieve in practice as the service provider usually over-provisions its power
capacity to address worst case scenarios. This often results in either waste of power or severe
under-utilization of resources.

On the other hand, increasing server’s utilization may increase the temperature of the
infrastructure, so the effects on the overall power consumption of servers should be devised,
considering the leakage currents that are correlated with temperature. Thus, it is critical to
quantitatively understand the relationship between power consumption, temperature and
load at the system level by the development of a power model that helps on optimizing the
use of the deployed Cloud services.

5.1 Related Work

Currently the state of the art offers various power models. However the majority of these
models are analytical, architecture-dependent and do not include the contribution of static
power consumption, or the capability of switching the frequency modes. Also, no power
model can be found that describes the dependence of server’s power with temperature. Many
authors develop linear regression models that present the power consumption of a server as a
linear function of the CPU usage of that server [120]–[122].

Some other models can be found where server power is formulated as a quadratic
function of the CPU usage [123]–[125]. Still, as opposed to ours, these models do not include
the estimation of the static power consumption (which has turned to have a great impact due
to the current server technology). Besides, these models have not been exploited in a
multi-objective optimization methodology to minimize the power consumption of servers for
Cloud services.
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The approach presented by Bohra et al. [126] is based on a robust fitting technique to
determine the power model, taking also into account the correlation between the total system
power consumption and the utilization of the different resources. Our work follows a similar
approach but it also incorporates the contribution of the static power consumption, its
dependence on temperature, and the effect of applying DVFS techniques. We will show later
that this is a critical upgrade of the model as it allows to improve the accuracy in over-loaded
and top-notch servers.

Interestingly, one key aspect in the management of a data center is still not very well
understood: controlling the ambient temperature at which the data center operates. Due to
the lack of accurate power models, the effect of the ambient temperature set point on the
power consumption of high-end servers has not been clearly analyzed. The experimental
evaluation presented in this work has been performed in ambient temperatures ranging from
17◦C to 27◦C. This range follows nowadays’ practice of operating at higher
temperatures [127] being close to the limits recommended by the American Society of
Heating Refrigerating and Air-Conditioning Engineers (ASHRAE). Increasing ambient
temperature of data centers obtains energy savings in the cooling expense [128]. But the lack
of detailed server power models, which consider the effect of a temperature increment on
server consumption, prevents the application of thermal-aware optimization policies to
reduce the power consumption of the facility as a whole.

A complex system can be described as an interconnected agents system exhibiting a
global behavior that results from agents interactions [129]. Nowadays, the number of agents
in a system grows in complexity, from data traffic scenarios to multi-sensor systems, as well
as the possible interactions between them. Therefore, inferring the global behavior, not
imposed by a central controller, is a complex and time-consuming challenge that requires a
deep knowledge of the system performance. Due of these facts, new automatic techniques
are required to facilitate the fast generation of models that are suitable for complex systems
presenting a large number of variables. The case study presented in this work exhibits high
complexity in terms of number of variables and possible traditional and non-traditional
sources of power consumption.

A Grammatical Evolution based modeling technique has been also proposed by J.C.
Salinas-Hilburg [130] to model specific contributions to power for CPU and memory devices
for HPC workloads. However, to the best of our knowledge, this approach has not been yet
used to model the power consumption of the whole server and also for workloads that vary
significantly during runtime.

The work presented in this section outperforms previous approaches in the area of power
modeling for enterprise servers in Cloud facilities in several aspects. Our different
approaches provide the identification of accurate power models that are consistent with
current architectures. We propose models that consider main power consumption sources
that involve traditional and non-traditional parameters and that have an impact on the
servers’ power consumption. Thus, our power models consider the effects of nowadays’
Cloud optimizations, being able to be used during runtime and under variable workload
constrains.

5.2 Modeling considerations

Our modeling framework is presented in Figure 5.1. For modeling purposes, we run specific
workloads in a real server in order to monitor their performance during runtime. We profile
the applications according to those parameters that impact on power consumption,
considering current state-of-the-art Cloud optimizations. The model features are provided or,
in the case of automatic modeling approaches, different rules are considered for their
generation. Then, the fitting objective helps to improve models accuracy.

By applying the different model techniques presented in this part of the research, we obtain
accurate power models that could be used during runtime. These models, when incorporated
to a simulation environment, help to analyze the impact of Cloud optimizations in a wider
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range of servers for traces from real Cloud infrastructures that are publicly available.

Modeling Scenario: Real server

Simulation Scenario:    number of Servers and VMs

Modeling
Technique

Real measurements:
Continuous profiling of 

parameters

INPUTS

Optimal Weights:
XESTIM =   k1* feat1 +

   +       …      +
   +   kF* featF

OUTPUT: MODEL

Traces from a real Cloud:
VMs’ resource utilization

Proactive 
optimizations

INPUTS

Assumptions & 
Models

Model features:
feat = f (parameters)

Fitting Objective:
error (XMEAS, XESTIM)

Training & Testing
error (XMEAS, XESTIM)

Figure 5.1: Modeling vs. Model usage.

5.2.1 Data compilation

Data have been collected gathering real measures from a Fujitsu RX300 S6 server based on an
Intel Xeon E5620 processor. This high-end server has a RAM memory of 16GB and is running
a 64bit CentOS 6.4 Operating System (OS) virtualized by the Quick Emulator (QEMU)
hypervisor. Physical resources are assigned to four Kernel-based Virtual Machine (KVM)
VMs, each one with a CPU core and a 4GB RAM block. We selected this type of server
because it presents an enterprise server architecture used in current infrastructures that
exhibits leakage-dependent properties with temperature.

The power consumption of a high-end server usually depends on several factors that
affect both dynamic and static behavior [33]. Our proposed case study takes into account the
following 7 variables:

• Ucpu: CPU utilization (%)

• Tcpu: CPU temperature (Kelvin)

• Fcpu: CPU frequency (GHz)

• Vcpu: CPU voltage (V)

• Umem: Main memory utilization (Memory accesses per cycle)

• Tmem: Main memory temperature (Kelvin)

• Fan: Fan speed (revolutions per minute (RPM))

Power consumption is measured with a current clamp with the aim of validating our
approach. CPU and main memory utilization are monitored using the hardware counters
collected with the perf monitoring tool. On board sensors are checked via IPMI to get both
CPU and memory temperatures and fan speed. CPU frequency and voltage are monitored
via the cpufreq-utils Linux package. To build a model that includes power dependence with
these variables, we use this software tool to modify CPU DVFS modes during workload
execution. Also room temperature has been modified during run-time with the goal of
finding non-traditional consumption sources that are influenced by this variable.
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5.2.2 Experimental workload

We define three workload profiles (i) synthetic, (ii) Cloud and (iii) HPC over Cloud as they
emulate different utilization patterns that could be found in typical Cloud infrastructures.

Synthetic benchmarks

The use of synthetic load allows to specifically stress different server resources. The
importance of using synthetic load is to include situations that do not meet the actual real
workloads that we have selected. Thus, the range of possible values of the different variables
is extended in order to adapt the model to fit future workload characteristics and profiles.
Lookbusy1 stresses different CPU hardware threads to a certain utilization avoiding memory
or disk usage. The memory subsystem is also stressed separately using a modified version of
RandMem2. We have developed a program based on this benchmark to access random
memory regions individually, with the aim of exploring memory performance. Lookbusy and
RandMem have been executed, in a separated and combined fashion, onto 4 parallel Virtual
Machines that consume entirely the available computing resources of the server.

On the other hand, real workload of a Cloud data center is represented by the execution of
Web Search, from CloudSuite3, as well as by SPEC CPU 2006 mcf and SPEC CPU 2006
perlbench [131].

Cloud workload

Web Search characterizes web search engines, which are typical Cloud applications. This
benchmark processes client requests by indexing data collected from online sources. Our Web
Search benchmark is composed of three VMs performing as index serving nodes (ISNs) of
Nutch 1.2. Data are collected in the distributed file system with a data segment of 6 MB, and
an index of 2 MB that is crawled from the public Internet. One of this ISNs also executes a
Tomcat 7.0.23 front end in charge of sending index search requests to all the ISNs. The front
end also collects ISNs responses and sends them back to the requesting client. Client
behavior is generated by Faban 0.7 performing in a fourth VM. Resource utilization depends
proportionally on the number of clients accessing Web Search. Our number of clients
configuration ranges from 100 to 300 to expose more information about the application
performance. The four VMs use all the memory and CPU resources available in each server.

HPC over Cloud

In order to represent HPC over a Cloud computing infrastructure, we choose SPEC CPU 2006
mcf and perlbench as they are memory and CPU-intensive, and CPU-intensive applications,
respectively. SPEC CPU 2006 mcf consists in a network simplex algorithm accelerated with a
column generation that solves large-scale minimum-cost flow problems. On the other hand,
a mail-based benchmark is performed by SPEC CPU 2006 perlbench. This program applies a
spam checking software to randomly generated email messages. Both SPEC applications run
in parallel in 4 VMs using entirely the available resources of the server.

5.2.3 Data set variability

Our data set presents high variability for the different parameters compiled from the server as
can be seen in the following compilation of ranges obtained after workload execution.

• CPU operation frequency (Fcpu) is fixed to f1 = 1.73 GHz, f2 = 1.86 GHz, f3 = 2.13 GHz,
f4 = 2.26 GHz, f5 = 2.39 GHz and f6 = 2.40 GHz; thus modifying CPU voltage (Vcpu)
from 1.73 V to 2.4 V.

1http://www.devin.com/lookbusy/
2http://www.roylongbottom.org.uk
3http://parsa.epfl.ch/cloudsuite
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• Room temperature has been modified in run-time, from 17◦C to 27◦C. Therefore,
temperatures of CPU and memory (Tcpu and Tmem) range from 306 K to 337 K, and
from 298 K to 318 K respectively.

• CPU and memory utilizations (Ucpu and Umem) take values from 0% to 100% and from
0 to 0.508 memory accesses (cache-misses) per CPU cycle respectively.

• Finally, due to both room temperature, and CPU and memory utilization variations, fan
speed values (Fan) range from 3540 RPM to 7200 RPM.

5.3 Modeling Techniques

In this work we pursue four different modeling strategies for the identification of power
models of enterprise servers in Cloud data centers. In Chapter 6 we propose (i) an analytical
model that does not only consider the workload consolidation for deriving the power model,
but also incorporates other non traditional factors like the static power consumption and its
dependence with temperature. We also provide (ii) an automatic method, based on
Multi-Objective Particle Swarm Optimization, to simplify the number of parameters used
during power estimation in our proposed analytical model.

However, this modeling technique performs only as a parameter identification
mechanism so, it may not provide the features that best represent the system’s power
consumption and other features could be incorporated to enhance the power estimation.
Chapter 7 presents (iii) an automatic method based on Grammatical Evolution to obtain a
power model that provides both Feature Engineering and Symbolic Regression. This
technique helps to incorporate model features that only depend on the most suitable
variables, with little designer’s expertise requirements and effort.

Otherwise, classical regressions provide models with linearity, convexity and
differentiability attributes, which are highly appreciated for describing systems performance.
In Chapter 8, we proposes (iv) an automatic methodology for modeling complex systems
based on the combination of Grammatical Evolution and a classical regression to obtain an
optimal set of features that take part of a linear and convex model.

5.4 Comparison with state-of-the-art models

In order to evaluate the performance of the models that we obtain in this part of the research,
we use as baseline different alternatives found in the state-of-the-art and that are available in
current Cloud simulation environments [132].

• Linear model: Power is linear with CPU utilization (ucpu).

Plinear = klinear1 · ucpu + klinear2 (5.1)

• Quadratic model: Power is quadratic with CPU utilization.

Pquadratic = kquadratic1 · u2cpu + kquadratic2 (5.2)

• Cubic model: Power is cubic with CPU utilization.

Pcubic = kcubic1 · u3cpu + kcubic2 (5.3)

• Square root model: Power presents a square root dependence with CPU utilization.

Psqrt = ksqrt1 ·
√
ucpu + ksqrt2 (5.4)
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Also, as can be seen in Equation 6.8, dynamic power consumption of the CPU can be
modeled considering the CPU supply voltage V (k) and the working frequency of the
machine f(k) in a specific k DVFS mode. On the other hand, as seen in [133] fan power is a
cubic function of fan speed represented as FS. We apply these statements to provide two
more baseline power models that would help us to show how the thermal awareness,
proposed in our research of the following chapters, would outperform non-thermal-aware
approaches.

• DVFS model: Power presents a dependence with DVFS considering CPU voltage and
frequency.

PDV FS = kDV FS1 · V 2(k) · f(k) · ucpu + kDV FS2 (5.5)

• DVFS and Fan model: Power presents a dependence with DVFS and with fan speed.

PDV FS&fan = kDV FS&fan1 ·V 2(k) · f(k) · ucpu + kDV FS&fan2 ·FS3 + kDV FS&fan3 (5.6)

kMX are constants depending on the model M and the number of the constant X . These
constants, which can be seen in Table 5.1 are obtained using a classic regression (lsqcurvefit
provided by Matlab) for training the models using the training data set collected from our
Fujitsu RX300 S6 server explained in Subsection 5.2.2.

Table 5.1: Model constants for the baseline models
Model kM1 kM2 kM3

Linear 34.52 154.53 -
Quadratic 28.84 163.33 -
Cubic 26.77 166.85 -
Sqrt 40.44 144.35 -
DVFS 5.16 157.30 -
DVFS&fan 4.98 8.086·10−11 152.64
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Model Optimization

Modeling the power consumption of data center infrastructures is crucial to anticipate the
effects of aggressive optimization policies, but accurate and fast power modeling is a complex
challenge for high-end servers not yet satisfied by current analytical approaches.

This chapter proposes an analytical model and an automatic method, based on
Multi-Objective Particle Swarm Optimization (OMOPSO), for the identification of power
models of enterprise servers in Cloud data centers. Our approach, as opposed to previous
procedures, does not only consider the workload consolidation for deriving the power
model, but also incorporates other non traditional factors like the static power consumption
and its dependence with temperature. Our thermal and DVFS considerations are based on
physical phenomena observed at the transistor level. Our experimental results show that we
reach slightly better models than classical approaches, but simultaneously simplifying the
power model structure and thus the numbers of sensors needed, which is very promising for
a short-term energy prediction. This work, validated with real Cloud applications, broadens
the possibilities to derive efficient energy saving techniques for Cloud facilities.

6.1 Introduction

Analytical models, as closed form solution representations, require the classification of the
parameters that regulate the performance and power consumption of a computing system.
Also, it is mandatory to find the complex relationships between these parameters to build the
analytical functions [134].

However, incorporating a large amount of considerations to an analytical model may
impact on its complexity not only in terms of non-linear relationships but also in the number
of features. Also, analytical models enforce the usage of features that may have a low impact
on the modeling target, thus degrading the performance of the curve fitting. For this reason
we provide a model optimization using higher-level procedures that may help to simplify the
complexity of analytical models. In this research we propose the use of metaheuristics
because they are particularly useful in solving optimization problems that are noisy, irregular
and change over time. These optimization algorithms make few assumptions about the
optimization problem, providing adequately good solutions that could be based on
fragmentary information [135], [136]. In this way, metaheuristics appear as a suitable
approach to meet our optimization problem requirements in order to provide simplified
accurate models that could be used in a Cloud during runtime. Finally our work makes the
following contributions:

• We propose an accurate analytical power model for high-end servers in Cloud facilities.
This model, as opposed to previous approaches, does not only consider the workload
assigned to the processing element, but also incorporates the need of considering the
static power consumption and, even more interestingly, its dependence with
temperature.

• Moreover, this power model, applied to both the processing core and the memories of
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the system, includes voltage and frequency as parameters to be tuned during run-time
by the DVFS policies.

• The model has been built and tested for an enterprise server architecture and with
several real applications that can be commonly found in nowadays’ Cloud server
machines, achieving low error when compared with real measurements.

• We have optimized the power model for our target architecture using OMOPSO, a novel
technique to perform the curve fitting. This algorithm allows the simplification of our
analytical model attending to each server architecture.

The power model is presented in Section 6.2. Section 6.3 provides the background
algorithm used for the model optimization. In Section 6.4 we describe the algorithm setup to
adapt its parameters to our optimization problem. Section 6.5 describes profusely the
experimental results. Finally, in Section 6.6 the main conclusions are drawn.

6.2 Power modeling

Leakage current increases strongly with temperature [24], also in deep sub-micron
technologies [137], consequently increasing power consumption. Therefore, it is important to
consider the strong impact of static power consumed by devices, as well as its dependence
with temperature, and the additional effects influencing their performance. In this section,
we derive a leakage model for the static consumption of servers attending to these concepts.
The model is tested with real measurements taken in the enterprise server of our case study.

The current that is generated in a MOS device due to leakage is given by

Ileak = Is · e
VGS−VTH

nkT/q · (1− e
−VDS
kT/q ) (6.1)

Research by Rabaey [24] shows that if VDS > 100mV the contribution of the second
exponential in (6.1) is negligible, so the previous formula can be rewritten as

Ileak = Is · e
VGS−VTH

nkT/q (6.2)

where leakage current depends on the slope factor n, the surface mobility of the carriers µ,
the capacitance of the insulating material for the oxide gate Cox and the ratio between the
width and length of the transistors W

L as can be seen in the following equation. Technology-
dependent parameters can be grouped together to obtain an α constant.

Is = 2 · n · µ · Cox ·
W

L
· kT
q

2

(6.3)

Ileak = α · T 2 · e
VGS−VTH

nkT/q (6.4)

Using (6.4) in the leakage power equation Pleak = Ileak · VDD, the leakage power for a
particular machine m can be derived:

Pleak(m) = α(m) · T 2(m) · e
VGS−VTH

nkT/q · VDD(m) (6.5)

Since our goal is to fit a model for the leakage power, we expand the polynomial
function (6.5) into its Taylor third order series in order to easily regress the function, which
leads to

Pleak(m) = α1(m) · T 2(m) · VDD(m) + α2(m) · T (m) · V 2
DD(m) + α3(m) · V 3

DD(m) (6.6)

where α1(m), α2(m) and α3(m) define the specific constants due to the manufacturing
parameters of a server.
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Incorporating frequency and voltage dependence in models is interesting due to the
current trend of using DVFS modes to control the power consumption of servers.

Two of the main contributors to power consumption in servers are the CPU and the
memory subsystem. We can easily find DVFS modes in CPUs, but there are currently very
few memory devices with these capabilities. Power consumption of both disk and network
have not been taken into account because of their lower impact in our scenario, high
variability and heterogeneity of their technology in data centers.

Below is the formulation of the static consumption in a scenario with a CPU providing
k ∈ {1 . . .K} different DVFS modes and a memory performing at a constant voltage. The
model considers the different contributions due to temperature dependence. Also γ(m) has
been taken into account as it represents the fan power contribution constant. As seen in [133]
fan power is a cubic function of fan speed represented as FS(m). λ(m) represents the total
consumption of the rest of the server resources and devices that operate at a constant voltage
and frequency.

Pleak(m, k) = α1(m) · T 2
cpu(m) · VDD(m, k) + α2(m) · Tcpu(m) · V 2

DD(m, k) +

+ α3(m) · V 3
DD(m, k) + β1(m) · Tmem(m) + β2(m) · T 2

mem(m) +

+ γ(m) · FS3(m) + λ(m) (6.7)

As temperature-dependent leakage cannot be measured separately from the dynamic
power in a server, we execute the lookbusy1 synthetic workload to stress the system during
monitored periods of time. Lookbusy can stress all the hardware threads to a fixed CPU
utilization percentage without memory or disk usage. The use of a synthetic workload to
derive the leakage model has many advantages, the most important of which is that dynamic
power can be described as linearly dependent with CPU utilization and Instructions Per
Cycle (IPC). Equation 6.8 provides the formula for dynamic power consumption.

P dyn
cpu (m, k,w) = α4(m) · V 2

DD(m, k) · f(m, k) · ucpu(m, k,w) (6.8)

In the previous formula α4(m) is a constant that defines the technological parameters of the
machine m, VDD(m, k) is the CPU supply voltage and f(m, k) is the working frequency of the
machine in a specific k DVFS mode. ucpu(m, k,w) is the averaged CPU percentage utilization
of the specific physical machine m that operates in the k DVFS mode, running a workload
w. ucpu(m, k,w) is proportional to the number of cycles available in the CPU and accurately
describes power consumption.

In order to stress the memory system we have developed a specific benchmark based on
RandMem2. The program accesses random memory regions of an explicit size to explore the
memory power consumption. Dynamic power consumption depends on the high level data
cache misses characterized during profiling. As memory performs at a constant frequency and
voltage, Equation 6.9 describes its dynamic power consumption.

P dyn
mem(m, k) = β3(m) · umem(m, k,w) (6.9)

The constant β3(m) is defined by the technological features of the device, including both
the constant frequency and voltage, and umem(m, k,w) represents the memory utilization
expressed in memory accesses per cycle in a k DVFS mode (k = 1 represents a powered down
server).

Finally, total power can be described as in Equation 6.10.

Ptot(m, k,w) = Pcpu(m, k) + Pmem(m, k) + Pothers(m, k) (6.10)
Pcpu(m, k,w) = α1(m) · T 2

cpu(m) · VDD(m, k) + α2(m) · Tcpu(m) · V 2
DD(m, k) +

+ α3(m) · V 3
DD(m, k) +

+ α4(m) · V 2
DD(m, k) · f(m, k) · ucpu(m, k,w) (6.11)

Pmem(m, k,w) = β1(m) · Tmem(m) + β2(m) · T 2
mem(m) + β3(m) · umem(m, k,w) (6.12)

Pothers(m, k) = γ(m) · FS3(m) + λ(m) (6.13)
1http://www.devin.com/lookbusy/
2http://www.roylongbottom.org.uk
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6.3 Model identification

As stated above, our proposed power model consists of 9 parameters. Depending on the
target architecture, some parameters might have more impact than others, as shown in our
results. In our case, identification is performed as a multi-objective optimization and
compared with a classical regression method. With a multi-objective optimization, we
simultaneously optimize the average and the maximum errors to avoid peaks in the error
function. To this end, we have selected a multi-objective Particle Swarm Optimization (PSO)
algorithm to identify our power model. The reason for selecting multi-objective PSO is that
this stochastic evolutionary computation technique, based on the movement and intelligence
of swarms, has obtained excellent results specially in instances with real variables [138]. Next
we provide a brief background about multi-objective optimization and the algorithm
selected.

6.3.1 Multi-objective optimization
Multi-objective optimization tries to simultaneously optimize several contradictory objectives.
For this kind of problems, single optimal solution does not exist, and some trade-offs need to
be considered. Without any loss of generality, we can assume the following multi-objective
minimization problem:

Minimize ~z = (f1(~x), f2(~x), . . . , fm(~x))

Subject to ~x ∈ X (6.14)

where ~z is the objective vector with m objectives to be minimized, ~x is the decision vector,
and X is the feasible region in the decision space. A solution ~x ∈ X is said to dominate another
solution ~y ∈ X (denoted as x ≺ y) if and only if the following two conditions are satisfied:

∀i ∈ {1, 2, . . . ,m}, fi(~x) ≤ fi(~y) (6.15)
∃i ∈ {1, 2, . . . ,m}, fi(~x) < fi(~y) (6.16)

A decision vector ~x ∈ X is non-dominated with respect to S ⊆ X if another ~x′ ∈ S such
that ~x′ ≺ ~x does not exist. A solution ~x∗ ∈ X is called Pareto-optimal if it is non-dominated
with respect to X . An objective vector is called Pareto-optimal if the corresponding decision
vector is Pareto-optimal.

      Solution
      Pareto front solution

Figure 6.1: Non-dominated solutions of a set of solutions in a two objective space.

The non-dominated set of the entire feasible search space X is the Pareto-Optimal Set (POS).
The image of the POS in the objective space is the Pareto-Optimal Front (POF) of the multi-
objective problem at hand. Figure 6.1 shows a particular case of the POF in the presence of
two objective functions. A multi-objective optimization problem is solved, when its complete
POS is found.
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6.3.2 PSO and OMOPSO

PSO is a metaheuristic search technique that simulates the movements of a flock of birds that
aim to find food. The relative simplicity of PSO and the fact that is a population-based
technique have made it a natural candidate to be extended for multi-objective
optimization [139].

In PSO, particles are “flown” throughout a hyper-dimensional search space. Changes to
the position of particles within the search space are based on social-psychological tendencies
of individuals to emulate the success of other individuals. Hence, the position of each particle
is changed according to its own experience and the experience of its neighbors. Let xi(t)
denote the position of particle pi, at time step t. The current position of pi is then changed by
adding a velocity vector vi(t) to the previous position, i.e.:

~xi(t) = ~xi(t− 1) + ~vi(t) (6.17)

The velocity vector reflects the socially exchanged information and is defined in the
following way:

~vi(t) = W~vi(t− 1) + C1~ri1(~xipbest − ~xi(t− 1)) + C2~ri2(~xileader − ~xi(t− 1)) (6.18)

where:

• W is the inertia weight and controls the impact of the previous history of velocities.

• C1 and C2 are the learning factors. C1 is the cognitive learning factor and represents the
attraction that a particle has towards its own success. C2 is the social learning factor and
represents the attraction that a particle has towards the success of its neighbors.

• ~ri1 , ~ri2 are random vectors, each component in the range [0, 1].

• ~xipbest is the personal best position of pi , namely, the position of the particle that has
provided the greatest success.

• ~xileader is the position of the particle that is used to guide pi towards better regions of the
search space.

Particles tend to be influenced by the success of any other element they are connected to. These
neighbors are not necessarily particles close to each other in the decision variable space, but
instead are particles that are close to each other based on a neighborhood topology, which
defines the social structure of the swarm [139].

M. Reyes and C. Coello proposed a multi-objective PSO approach based on Pareto
dominance, named OMOPSO [138]. This algorithm uses a crowding factor for the selection of
leaders. This selection is made by binary tournament. This proposal uses two external
archives: one for storing the leaders currently being used for performing the flight and
another one for storing the final solutions. Only the leaders with the best crowding values are
retained. Additionally, the authors propose a scheme in which the population is subdivided
in three different subsets. A different mutation operator is applied to each subset. We use
OMOPSO in the identification of our proposed power model, identifying the set of
parameters that are representative for each target architecture.

6.4 Algorithm setup

PSO, as a metaheuristic, makes few assumptions about the optimization problem. As a
consequence, the algorithm requires a preliminary configuration to provide adequate
solutions. In this section we explain both the constraints and the parameter setup to adapt the
metaheuristic to our optimization problem.
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6.4.1 Multi-objective function
The problem to be solved is the estimation of the power consumption in virtualized
enterprise servers performing Cloud applications. Our power model considers the
heterogeneity of servers, as the specific technological features of each processor architecture
result in a different power consumption. The resultant power model is non-linear (as shown
in the previous section) and presents a large set of constraints. As stated above, the model
identification is tackled as a multi-objective optimization simultaneously minimizing both
the average and maximum errors :

Minimize ~z = (eavg(~x), emax(~x))

Subject to ~xmin ≤ ~x < ~xmax

where ~x = (α1, . . . , α4, β1, . . . , β3, γ, λ) ∈ X (6.19)

~x is the vector of n decision variables and ~z is the vector of 2 objectives. eavg(~x) is the average
relative error percentage, emax(~x) is the maximum of the relative error percentage
(Equation 6.21) and X is the feasible region in the decision space. Although we are interested
in the minimization of the average relative error, we also use the maximum error percentage
to avoid singular high peaks in the estimated model.

eavg(~x) =
1

N
·
∑
n

∣∣∣∣ (P − Ptot) · 100

P

∣∣∣∣ (6.20)

emax(~x) = max

∣∣∣∣ (P − Ptot) · 100

P

∣∣∣∣ (6.21)

P is the power consumption measure given by the current clamp, Ptot is the power
consumption estimated by our model (Equation 6.10) and n is each sample of the entire set of
N samples used for the algorithm training. We use OMOPSO [140] to obtain a set of
candidate solutions in order to solve our problem. Using this formulation, we are able to
obtain a power consumption that is realistic with the current technology.

6.4.2 Algorithm parameters
Our power modeling problem requires a set of solutions with low error when compared with
the real power consumption measures. In order to obtain suitable solutions we tune the
OMOPSO algorithm using the following parameters:

• Swarm size: 100 particles.

• Number of generations: 2000. We avoid the PSO algorithm to be trapped in a local
minimum by exhaustively analyzing this parameter. We have performed 20
optimizations for each number of generations ranging from 200 to 2400 as can be seen
in Figure 6.2. For each number of generations, the input data is a numeric vector
including all the values for the average error and maximum error respectively that can
be found at the end of the PSO algorithm for all the particles. On each box, the central
mark provides the median value, and the bottom and top edges of the box specify the
25th and 75th percentiles, respectively. The whiskers’ edges represent the most extreme
data points not considered outliers. Finally, the outliers are presented using the symbol
“+”. As can be seen in the figure, no improvements can be found when running more
than 2000 generations.

• Perturbation: Uniform and non-uniform mutation. Both with a perturbation index of
0.5 and with mutation probability inversely proportional to the number of decision
variables, 1/9 in our case.

• W, C1 and C2 are generated for each particle in every iteration as a random value in
[0.1, 0.5], [1.5, 2] and [1.5, 2], respectively.
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6.5 Experimental results

6.5.1 Training
We use our data set from the execution of the synthetic workload to perform a regression to our
model by applying both nonlinear curve-fitting algorithms. First, we fit the power curve using
OMOPSO optimizations and then we compare the results with MATLAB lsqcurvefit fitting
function to analyze its benefits. The function lsqcurvefit is defined to solve nonlinear curve-
fitting problems in least-squares sense.

The data collected during the execution of the training set are used to perform 30 iterations
of the OMOPSO optimization. We obtain 30 sets of solutions, each of them defining a Pareto
front for the two objectives defined in our problem, as seen in Figure 6.3. The hypervolume
of these Pareto fronts shows an average value of -1.0109 and a standard deviation of 0.0229;
hence, it can be concluded that the algorithm is not trapped into a local minimum. Once we
combine these Pareto fronts into a final one, we achieve the final set of solutions for our power
modeling problem, also shown in Figure 6.3.
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Figure 6.2: 20 optimizations for each number of generations.

6.5.2 Results
In order to present some results that support the benefits reached by OMOPSO applied to
our optimization problem, we choose a solution from the final Pareto front. We also obtain
the only solution of the lsqcurvefit optimization applied to the same training data set so that
we can compare both approaches. Table 6.1 shows the values of both the average relative
error and maximum relative error percentages obtained applying OMOPSO and lsqcurvefit,
whereas Table 6.2 shows the corresponding solution for these two objectives, i.e., the best
values reached for the 9 constants included in our power model.

Table 6.1: Objectives for Power curve fitting
Algorithm Avg.Error Max.Error
OMOPSO 4.0328% 17.0693%
lsqcurvefit 4.8501% 16.9401%
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Figure 6.3: Pareto Fronts for 30 optimizations.

Table 6.2: Constants obtained for Power curve fitting
Algorithm α1 α2 α3 α4 β1 β2 β3 γ λ
OMOPSO 0 0 0 3.32 0 1.63 · 10−3 0 4.88 · 10−11 0
lsqcurvefit 2.71 · 10−12 3.70 · 10−10 1.48 · 10−8 3.50 2.55 · 10−10 1.60 · 10−3 7.63 · 10−9 5.12 · 10−11 3.76 · 10−10

These results show that, while lsqcurvefit uses all the constants of the model, OMOPSO
provides nonzero values to three constants simplifying the power model. The optimized
model provided by our OMOPSO-based methodology is presented in Equation 6.22. This
also means that for lsqcurvefit we need to collect information from seven sensors and, for
OMOPSO, only from five sensors, resulting in computational savings in the monitoring
system. We validate the solutions obtained for the power model with both algorithms,
OMOPSO and lsqcurvefit, using real Cloud computing workload. The testing of the model is
conducted for the data set gathered during the execution of the three different tests that
represent real workload of a Cloud computing data center: Web Search application, SPEC
CPU 2006 mcf and SPEC CPU 2006 perlbench [131].

PFujitsu(k,w) = 3.32 · V 2
DD(k) · fop(k) · uCPU(k,w) + 1.63 · 10−3 · T 2

mem +

+ 4.88 · 10−11 · FS3 (6.22)

We calculate the values of eavg(~x) and emax(~x) for the test data sets using the solutions of
both OMOPSO and lsqcurvefit algorithms. The average percentage error results, eavg(~x), can
be seen in Table 6.3. These results show that OMOPSO not only simplifies the optimization
problem for our power model but also provides better error results than lsqcurvefit for three of
the four tests conducted. Web Search presents higher peaks of memory accesses per cycle in
comparison with the rest of the tests. The lsqcurvefit algorithm takes into account additional
power contributions that are not present in the OMOPSO formulation, which are more
sensitive to the high variability in the memory utilization. However, the difference in the
power estimated by both algorithms in this test is only 0.3W. Finally, for our

Table 6.3: Average error percentage comparison for the tests performed
Workload Training Web Search SPEC mcf SPEC perlbench
OMOPSO 4.0328% 4.6028% 4.1242% 5.1148%
lsqcurvefit 4.8501% 4.4253% 6.1736% 5.2453%
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OMOPSO-optimized model we obtain a mean error between the estimated power and the
real measurement of -2.291 watts and a standard deviation of 5.199 watts. Figure 6.4 shows
the power error distribution for this model, where it can be seen that a Gaussian-shaped
distribution has been obtained. According to this, we can conclude that the error in terms of
power of the 68% of the samples ranges from -7.4 to 2.9 watts. In Figure 6.5, the fitting of our
optimized power model is provided.
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Figure 6.4: Power error distribution for our OMOPSO-optimized model.
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Figure 6.5: Model fitting for our OMOPSO-optimized model.

Our results consist of 30 different runs of the metaheuristic, with a randomly generated
initial collection of particles as described in Section 6.4.2. All the solutions offered by our PSO-
based algorithm, shown in Figure 6.3, present an average error between 4.03% and 4.36%,
better than the 4.85% provided by the lsqcurvefit-based approach.

In order to compare the performance of our models, Table 6.4 presents the average error
percentage for all the baseline models and for our proposed models lsqcurvefit and
OMOPSO. Linear, quadratic, cubic and sqrt models provide training errors that are higher,
from 7.66% to 6.20%. It is important to note that the DVFS, DVFS&fan and our lsqcurvefit
and OMOPSO models aggregate incrementally DVFS-awareness, fan speed-awareness and
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thermal-awareness respectively. Each of them have been trained independently so their
constants are different and can be seen in Tables 5.1 and 6.2. Thus, including
DVFS-awareness to the power model, as in the DVFS model, improves the error when
compared to linear, quadratic, cubic and Sqrt models from 6.20% to 5.77%. Moreover,
incorporating also fan speed awareness, as done in the DVFS&fan model, also outperforms
these models from 5.77% to 5.37%. By including the thermal-awareness as in our analytical
model trained using a classic regression, lsqcurvefit, the average error is reduced from 5.37%
to 5.24%. Finally, by optimizing the number of features of the analytical model using
OMOPSO, the average error of the model is further reduced from 5.24% to 4.87%.

Table 6.4: Average error percentage comparison with the baseline models
Model Linear Quadratic Cubic Sqrt DVFS DVFS&fan lsqcurvefit OMOPSO
Training 5.83% 6.25% 6.46% 5.61% 5.58% 5.32% 4.85% 4.03%
Testing 6.58% 7.21% 7.66% 6.20% 5.77% 5.37% 5.24% 4.87%

Given the obtained results, we can conclude that 1) our contributions of including
thermal-awareness to our models is relevant in order to estimate the power consumption of a
server with higher accuracy; and 2) that the proposed methodology based on OMOPSO
algorithms is an efficient technique for the envisioning of complex, multi-parametric power
models for state-of-the-art Cloud computing servers. Moreover, the proposed technique
allows to target several optimization problems that work on setting an energy-efficient
working point by deciding the optimal clock frequency, voltage supply level and
thermal-aware workload assignment.

6.6 Summary

This work has made successful advances in the provisioning of accurate power models of
enterprise servers in Cloud services. The work presented in this research outperforms
previous approaches in the area of power modeling for enterprise servers in Cloud facilities
in several aspects. First, our work presents the relevance of including DVFS and
thermal-awareness for power modeling in servers, enhancing their accuracy. Then, our
approach consists on an automatic method for the identification of an accurate power model
particularized for each target architecture. We propose an extensive power model consistent
with current architectures. It is based on a generic analytical model where the main power
consumption sources are considered. The model is multiparametric to allow the development
of power optimization approaches. Our generic power model is optimized using
metaheuristics, resulting in a specific model instance for every target architecture. Also the
execution of the resulting power model is fast, making it suitable for run-time optimization
techniques. Current models (linear, quadratic, cubic and square root among others), which
do not consider both DVFS and thermal-awareness, present power accuracies that range from
7.66% to 5.37%. Our power model provides an error when compared with real measurements
of 4.03% for training and 4.87% for testing in average, thus outperforming the state-of-the-art.

The use of multi-objective metaheuristic optimization algorithms allows us to include the
traditional and non-traditional sources of power consumption, as well as the effect of several
system-level parameters that affect the energy footprint. The experimental work, conducted
with realistic workload, has shown the accuracy of the proposed methodology as compared
with traditional regression algorithms. In addition, the multi-objective optimization
approach followed in this chapter opens the door to proactive energy minimization
techniques where the parameters are considered as decision variables.

The following chapter presents a novel methodology where the power models can be
obtained automatically with no design effort. This modeling strategy helps to provide the
optimal set of features and to infer the model, using metaheuristics based on evolutionary
computation, without the necessity of deriving an analytical equation.
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Data centers, as complex systems, involve a vast number of different nature interacting
variables that include non-linear relationships. So, extracting and understanding the
connections between the most representative parameters and the power consumption require
an enormous effort and knowledge about the problem. Analytical approaches have not yet
fulfilled efficiently the complex challenge of easily generate accurate models for data center’s
servers.

In the previous chapter we have used a PSO to identify analytical models, providing
accurate power estimations [33]. PSO helps to simplify the resultant power model by
reducing the number of predefined parameters, variables and constants used in our
analytical formulation. However, this technique is a parameter identification mechanism so,
it does not provide the features that best represent the system’s power consumption. Some
other features could be incorporated to enhance the power estimation.

In this chapter, we propose an automatic method based on Grammatical Evolution to
obtain a set of models that minimize power estimation error. This technique provides both
Feature Engineering and Symbolic Regression to infer accurate models, which only depend
on the most suitable variables, with little designer’s expertise requirements and effort. This
work has been validated using a real infrastructure running real Cloud applications resulting
in a testing average power estimation error of 4.22%.

The work presented in this chapter outperforms previous approaches in the area of power
modeling for enterprise servers in Cloud facilities in several aspects. Our approach is an
automatic modeling method that offers an extensive power model consistent with current
architectures. Also, our procedure takes into account the main sources of power consumption
resulting in a multiparametric model, allowing the development of novel power optimization
approaches. Different parameters are combined by FE, thus enhancing the generation of an
optimized set of features. The resulting models, describe the power performance of high-end
servers during runtime, for workloads that are subject to vary significantly. Our work
improves the possibilities of deriving proactive energy-efficient policies in data centers that
are simultaneously aware of complex considerations of different nature.

7.1 Introduction

One of the biggest barriers in data centers, as complex systems scenarios, is the huge number
of variables that are potentially correlated. This problem complicates the inference of general
power models from a macroscopic analytical perspective. The dependence of power on some
traditionally ignored factors, which are increasingly influencing the consumption patterns of
these infrastructures, must now be considered in order to achieve accurate power models.
Factors like static power consumption, along with its dependence on temperature, or the
power due to internal server cooling, are just some examples of parameters that typically
have not been considered in the published models.

Also, Cloud data centers run workloads that show significant variations over time. So,
power models need to be aware of the fluctuation of the different parameters during runtime.

55



7. Automatic GE-based Power Modeling Methodology

Consequently, a fast and accurate method is required to model server performance, achieving
a more accurate overall power prediction under varying workloads and working situations.

Analytical models require specific knowledge about the different power contributions and
their relationships, becoming hard and time-consuming techniques for describing these
complex systems. Moreover, models are architecture-dependent, so the modeling process has
to be replicated for each different server structure. Conversely, metaheuristics, as high level
procedures, help to find good enough solutions for modeling heterogeneous, scalable and
distributed systems based on fragmentary information and making few assumptions about
the problem [135].

Our research in the previous chapter [33] shows that accurate results for power estimation
can be obtained by applying a PSO metaheuristic. PSO helps to constrain the predefined set
of parameters of the analytical formulation, thus simplifying the resulting power model.
However, this technique does not provide the optimal collection of features that best describe
the system power performance, because it only works as an identification mechanism.

Feature Engineering (FE) methods are used to select adequate features, avoiding the
inclusion of irrelevant parameters that reduce generality [141]. FE properties help, not only to
find relevant variables, but their combinations and correlations, offering a straightforward
problem formulation thus generating better solutions. Grammatical Evolution (GE) is an
evolutionary computation technique used to perform Symbolic Regression (SR) [142].

GE is particularly useful to solve optimization problems and build accurate models of
complex systems. This technique provides solutions that include non-linear terms while still
offering FE capabilities, thus bypassing the barrier of analytical modeling. Also, as GE is an
automatic technique, little designer’s expertise is required to process high volumes of data. In
this work we propose a GE-based approach to find optimized power models that accurately
describe and estimate the consumption of high-end Cloud servers, providing a general
methodology that can be applied to a broad set of server architectures and working
conditions.

Our work makes the following key contributions:

• We propose a method for the automatic generation of fast and accurate power models to
describe the performance of high-end Cloud servers.

• Resulting models are able to include combinations and correlations of variables due to
FE and SR performed by GE. Therefore, the power models incorporate the selection of
representative features that best describe power performance.

• Different models have been built and tested for a high-end server architecture using real
applications that can be commonly found in nowadays’ Cloud data centers, achieving
low error in terms of power estimation when compared with real measurements.

• The validation of the resulting models for different applications (including web search
engines, and intensive applications) shows an average testing error of 4.22% in power
estimation.

The remainder of this chapter is organized as follows: Section 7.2 provides some
background on GE. The power modeling evaluation is presented in Section 7.3. Section 7.4
describes profusely the experimental results. Finally, in Section 7.5 the main conclusions are
drawn.

7.2 Feature selection and Modeling Process

Data centers, as complex systems can be defined as an interconnected agents system that
exhibits a global behavior resulting from the interaction of these agents [129]. So, inferring
the global performance, which is not induced by a central controller, requires a deep
knowledge of the operation and the physical phenomena, being a complex and
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time-consuming challenge. Therefore, fast and automatic modeling techniques are required
that are more suitable for systems that have a huge amount of parameters.

Our research focuses on obtaining a mathematical expression that represents server
power consumption. In this work, the power formulation is derived from experimental data
collected in a real infrastructure. Our data set compiles values of the different variables that
have been considered such as processor and memory temperatures, fan speeds, processor
and memory utilization percentages, processor frequencies and voltages. In this context, we
consider the selection of the relevant features that will take part of our model as a SR
problem. SR helps to simultaneously obtain a mathematical expression and include the
relevant features to reproduce a set of discrete data.

Genetic Programming (GP) has proven to be effective in solving a number of SR
problems [143], but it presents some limitations like the excessive growth of memory
computer structures, often produced by representing the phenotype of the individuals. In the
last years, GE has appeared as a simpler optimization variant of GP [144]. GE allows the
generation of mathematical models applying SR, where the model generation is achieved
thanks to the use of grammars that define the rules for obtaining mathematical expressions.

In this work we use GE together with grammars expressed in Backus Naur Form
(BNF) [144] as this representation has been satisfactorily used by the authors to solve similar
problems when combined with regressive techniques [29]. A BNF specification is a set of
derivation rules, expressed in the form:

<symbol>::=<expression> (7.1)

BNF rules are represented as sequences of non-terminal and terminal symbols. The former
symbols use to appear on the left side of the equation, but they may appear also on the right,
while the later are shown on the right side. In Equation 7.1, we can affirm that <symbol> and
<expression> are non-terminals, although these do not represent a complete BNF
specification, since those are always enclosed between the pair < >. This equation represents
that the non-terminal <symbol> will be replaced (indicated ::=) by an expression. The rest
of the grammar may define the set of different alternatives for the expression.

A grammar is defined by the 4-tuple N,T, P, S, being N the set of non-terminals, T the set
of terminals, P the production rules for the replacement of elements between N and T , and
S is the start symbol that should appear in N . The symbol “|” separates the different options
within a production rule.

N = {EXPR, OP, PREOP, VAR, NUM, DIG}
T = {+, -, *, /, sin, cos, log, x, y, z, 0, 1, 2, 3, 4, 5, (, ), .}
S = {EXPR}
P = {I, II ,III ,IV ,V ,VI}
I <EXPR> ::= <EXPR><OP><EXPR> | <PREOP>(<EXPR>) | <VAR>
II <OP> ::= + | - | * | /
III <PREOP>::= sin| cos | log
IV <VAR> ::= x | y | z | <NUM>
V <NUM> ::= <DIG>.<DIG> | <DIG>
VI <DIG> ::= 0 | 1 | 2 | 3 | 4 | 5

Figure 7.1: Example BNF grammar designed for symbolic regression

Figure 7.1 shows an example of a BNF grammar, designed for symbolic regression.
The final obtained expression will consist of elements of the set of terminals T . These have

been combined with the rules of the grammar, as explained previously. Also, grammars can be
adapted to bias the search of the relevant features because there is a finite number of options
in each production rule.

The final expression resulting from the GE execution will only consist of terminals of the T
set. Non-terminals will be translated to terminal options by using the production rules in set
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P . Grammars can be adapted to bias the search of the relevant features because of the finite
number of options in each production rule.

In this work, our variables set <VAR> consists of different parameters, as usage, frequency,
voltage and temperature of computing resources, which contribute to the server power
consumption. Our set of terminals consist of these variables, the operators +,−, ∗ and /, the
preoperators exp, sin, cos and ln, and base-10 exponent format constants. Finally, they will be
combined in a final expression describing power consumption.

GE works like a classic Genetic Algorithm (GA) [145] in terms of structure and internal
operators. Each individual is defined by a chromosome and a fitness value. Each chromosome
consists of a specific number of genes, also called codons. Then, the population formed by a
set of individuals is evolved by the algorithm. While in SR, the fitness function is commonly a
regression metric, as a Mean Squared Error (MSE), a Root Mean Square Deviation (RMSD) or
a Coefficient of Variation (CV), in GE, the chromosome consists of a string of integers. The GA
operators are applied iteratively in order to improve the fitness function during the algorithm
execution. These operators are the selection of the population, the crossover process, which
combines the chromosomes, and the mutation of the resulting individuals, which occurs with
a certain probability defined as mutation probability. Then, in the decoding stage, the GE
algorithm computes the fitness function for each iteration, extracting the expression defined
in each individual. To obtain further information about GA operators, we refer the reader to
the work presented by D. E. Goldberg [146]. Through the following example, we explain the
GE decoding process to clearly explain how this algorithm selects the features. In this example,
we decode the following 7-gene chromosome using the BNF grammar shown in Figure 7.1.

21-64-17-62-38-254-2
First, we begin to decode the expression using the Start symbol S={EXPR} defined by the
grammar in Figure 7.1.

Solution = <EXPR>
Then, we decode the first gene of the chromosome, 21, in rule I of the grammar. This rule has
3 different choices: (i) <EXPR><OP><EXPR>, (ii) <PREOP><EXPR> and (iii) <VAR>. Hence, the
modulus operator is applied as a mapping function:

21 MOD 3 = 0
As result of the mapping function, the first option <EXPR><OP><EXPR> is selected, so this
expression is used to substitute the non-terminal. The current expression after this decoding
step is the following:

Solution = <EXPR><OP><EXPR>
The process continues with the substitution of the first non-terminal of the current expression
<EXPR>, using the next codon, 64. The modulus is applied again to rule I.

64 MOD 3 = 1
In this case, the algorithm selects the second option offered by the grammar for this rule,
<PREOP>(<EXPR>). The current expression is the following:

Solution = <PREOPR>(<EXPR>)<OP><EXPR>
The GE takes the next gene, 17, for decoding. At this point, <PREOP> is the first non-terminal
in the current expression. Therefore, we apply the modulus operator to rule III to choose one
of the three different choices.

17 MOD 3 = 2
So, the third option log is selected. The output of the decoding process at this point results in
the expression:

Solution = log(<EXPR>)<OP><EXPR>
The following codon, 62, decodes <EXPR> using rule I.

62 MOD 3 = 2
Value 2 means to select <VAR>, the third option, resulting in the expression:

Solution = log(<VAR>)<OP><EXPR>
Next codon, 38, uses rule IV to decode <VAR>.

38 MOD 4 = 2
Non-terminal z is selected as the mapping function output means the third option.

Solution = log(z)<OP><EXPR>
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Codon 254 decodes the Non-terminal <OP> with rule II:
254 MOD 4 = 2

This value means the third option, terminal *:
Solution = log(z)*<EXPR>

The last codon of the chromosome in this example, decodes <EXPR> with rule I:
2 MOD 3 = 2

The third option is selected so, the expression is substituted by the non-terminal <VAR>. In
this step, the current expression is the following:

Solution = log(z)*<VAR>
At this point, GE algorithm has run out of codons. However, the decoding process has not
obtained an expression with Terminals in each of its components. GE, solves this problem by
reusing codons, starting from the first one in the chromosome, and during the decoding
process, it is possible to reuse the codons more than once. This technique is known as
wrapping, and it is inspired in the gene-overlapping phenomenon present in many
organisms [147]. By applying wrapping to our example, the GE reuses the first gene, 21,
which decodes <VAR> with rule IV.

21 MOD 4 = 1
The result of the mapping function selects the second option, non-terminal y, giving the final
expression of the phenotype:

Solution = log(z)*y
As can be seen in this example, the process performs parameter identification like in classic
regression methods. Moreover, when used together with an appropriate fitness function, GE
is also able to infer the optimal set of features that best describes the target system. So, the
evolutionary algorithm computes the mathematical expression, performing both model
identification and feature selection, being able to result into the most accurate power model.

7.3 Modeling Evaluation

This work focuses on the accurate estimation of the power consumption in virtualized
enterprise servers running Cloud applications. Our power model considers heterogeneity,
specific technological features and non-traditional parameters of the target architecture that
impact on power. Hence, we propose a modeling process that considers all these factors,
applying GE to infer an expression that characterizes the power consumption. As a result, we
derive a highly accurate power model, targeting a specific server architecture, that is
automatically generated by our evolutionary methodology with little effort for the designer.

7.3.1 GE Configuration
Modeling systems can target two different purposes. On the one hand, there exist modeling
procedures that intend to interpret systems’ behavior. They have the purpose of acquiring
additional knowledge from the final models once these have been derived. However, this
kind of models is not optimized in terms of accuracy, but incur a loss of precision in favor of
being more explanatory. On the other hand, when building an accurate predictor, the presence
of irrelevant features and restrictions on operations hinders generalization and conciseness
of models. The proposed grammar in Figure 7.2 allows the occurrence of a wide variety of
operations and operands to favor building optimal models. The variables x[0] − x[6] are the
parameters measured during data compilation as explained in Section 5.2.

Fitness Evaluation

During the evolutionary process, GE will evolve towards optimizing the fitness function. Our
fitness function includes the power estimation error in order to build accurate models by
constraining the difference between the real measurement P (n) and the estimated value
P̂ (n). The fitness function presented in Equation 7.2 leads the evolutionary process to obtain
optimized solutions thus minimizing RMSD.
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N = {EXPR, OP, PREOP, CTE, BASE, EXPON, SIGN, VAR}
T = {+, -, *, /, exp, sin, cos, ln, 0,..., 99, x[0],...,x[6],(,)}
S = {EXPR}
P = {I, II ,III ,IV, V, VI, VII, VIII}
I <EXPR> ::= <EXPR><OP><EXPR> | <PREOP>(<EXPR>) | <VAR> | <CTE>
II <OP> ::= + | - | * | /
III <PREOP> ::= exp | sin | cos | ln
IV <CTE> ::= <BASE>E<sign><EXPON>
V <BASE> ::= 1 | 2 | 3 |...| 98 | 99
VI <EXPON> ::= 1 | 2 | 3 |...| 8 | 9
VII <SIGN> ::= + | -
VIII <VAR> ::= x[0] | x[1] |...| x[6]

Figure 7.2: Proposed grammar in BNF. x represent our variables, with i = 0 . . . 6.

F =

√
1

N
·
∑
n

en2 (7.2)

en = |P (n)− P̂ (n)|, 1 ≤ n ≤ N (7.3)

The estimation error en represents the deviation between the power measure given by the
current clamp P , and the power consumption that is estimated by the model phenotype P̂ . n
represents each sample of the entire data set of N samples obtained during the execution of
the proposed workloads.

7.4 Experimental results

Our data set (explained in Section 5.2) has been split into a training and a testing set. We have
used the three kind of workloads for both training and testing the evolutionary algorithms
instead of restricting the use of synthetic workloads only for training and Cloud benchmarks
exclusively for testing. This procedure provides automation for the progressive incorporation
of additional benchmarks to the model. The training stage performs feature selection and
builds the power model according to our grammar and fitness function. Then, the testing
stage tests the power model accuracy.

Our GE-based algorithm is executed 30 times using the same grammar and fitness function
configuration. For each run, we randomly select 50% of each data set for training and 50% for
testing, thus obtaining 30 power models. This random-split technique validates the variability
and versatility of the system, by analyzing the occurrence of local minima in optimization
scenarios.

7.4.1 Models training

We use GE to obtain a set of candidate solutions with low error, when compared with the
real power consumption measurements in order to solve our modeling problem. To obtain
adequate solutions we adjust the algorithm parameters to the values shown in Table 7.1, where
the mutation probability is inversely proportional to the number of rules.

It is worthwhile to mention that we have performed a variable standardization for every
parameter (in the range [1, 2]) in order to ensure the same probability of appearance for all the
variables, thus enhancing SR. Table 7.2 shows the phenotype of the best model and the fitness
function (RMSD errors) at the training stage obtained for each of the 30 iterations. As can be
seen in this table, the minimum training RMSD is 0.11 and those phenotypes presenting this
error value depend on the three same parameters: Tcpu, Tmem and Ucpu.
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Table 7.1: Algorithm configuration parameters
Parameter Configuration value
Population size 250 individuals
Number of generations 30000
Chromosome length 100 codons
Mutation probability 1/8
Crossover probability 0.9
Maximum wraps 3
Codon size 256
Tournament size 2 (binary)

Table 7.2: Phenotype, RMSD and Average testing error percentages for 30 iterations
Run Expression Train Testing Synthetic mcf perlb WebSearch Total

Power estimation P̂ (RMSD) (RMSD) (%) (%) (%) (%) (%)
1 ((Tcpu-58E-3)+(ln(Ucpu)/exp(Fcpu))) 0.13 0.12 4.81 4.60 5.00 5.47 4.88
2 ln(ln(exp((Tcpu+((Tmem+Ucpu)-sin(35E-3)))))) 0.11 0.11 4.16 4.95 4.44 4.62 4.24
3 ln(((Ucpu+Tcpu)+Tmem)) 0.11 0.12 4.10 5.15 4.54 4.81 4.22
4 exp((Tcpu/ln(5E+1))) 0.13 0.12 5.22 4.42 4.17 5.52 5.21
5 (59E-2*(Tcpu+(exp(37E-6)+3E-9))) 0.13 0.13 4.88 5.52 4.13 5.17 4.91
6 (67E-1/(ln(10E+1)-cos((2E+5-(Tcpu-60E+1))))) 0.13 0.13 5.39 4.23 4.30 5.75 5.38
7 exp(((exp(Tcpu)+Ucpu)*sin((19E+4*sin(33E-8))))) 0.12 0.12 5.16 4.03 4.23 4.84 5.07
8 ln((Ucpu+(Tcpu+Tcpu))) 0.12 0.13 5.19 4.87 6.19 5.16 5.20
9 exp((exp(Tcpu)*89E-3)) 0.13 0.12 5.39 4.49 4.04 5.81 5.38

10 ln((Tmem+(Ucpu+(Tcpu-46E-9)))) 0.12 0.11 4.10 5.15 4.54 4.81 4.22
11 exp((exp(Tcpu)*88E-3)) 0.12 0.13 5.26 4.62 4.02 5.63 5.25
12 (cos(sin(Umem))-(Tcpu*sin(12E+4))) 0.12 0.12 5.27 4.62 4.02 4.66 5.15
13 exp((Tcpu/40E+1)) 0.13 0.12 5.15 4.67 4.26 5.24 5.12
14 ln(((Tcpu+Ucpu)+Tmem)) 0.11 0.12 4.10 5.15 4.54 4.81 4.22
15 ln(((Tcpu+Ucpu)+Tmem)) 0.11 0.12 4.10 5.15 4.54 4.81 4.22
16 exp((84E-3*exp(Tcpu))) 0.12 0.13 4.91 5.25 4.18 5.00 4.91
17 ln((Tmem+(Tcpu+(Ucpu-2E-8)))) 0.11 0.11 4.10 5.15 4.54 4.81 4.22
18 (50E-6+ln((Tmem+31E-2+Fcpu+(Ucpu/Fcpu))*exp(64E-9))) 0.12 0.12 4.56 5.12 4.80 5.25 4.66
19 ln(((cos(cos(33E+4))+Tcpu)/52E+2)) 0.12 0.13 5.12 4.62 4.04 5.53 5.13
20 ln((exp(Tcpu)+ln((Fan/(Tcpu/Ucpu))))) 0.12 0.12 4.97 4.23 4.75 4.97 4.94
21 (sin((48E-2*Tcpu))-ln(cos(91E+6))) 0.13 0.13 5.61 4.00 4.27 6.32 5.61
22 exp((exp(Tcpu)*84E-3)) 0.13 0.12 4.91 5.25 4.18 5.00 4.91
23 ln(((Tcpu+Ucpu)+Tmem)) 0.11 0.11 4.10 5.15 4.54 4.81 4.22
24 exp((Tcpu*25E-2)) 0.12 0.13 5.15 4.67 4.26 5.24 5.12
25 ln((Tcpu+(Tmem+Ucpu))) 0.11 0.11 4.10 5.15 4.54 4.81 4.22
26 exp((25E-2*Tcpu)) 0.13 0.12 5.15 4.67 4.26 5.24 5.12
27 exp((Tcpu/38E+1)) 0.13 0.12 5.41 4.16 4.17 5.97 5.41
28 ln(((Ucpu+Tcpu)+Tmem)) 0.11 0.12 4.10 5.15 4.54 4.81 4.22
29 exp(sin((90E-3*exp(Tcpu)))) 0.13 0.12 5.21 4.59 4.02 5.60 5.21
30 exp((Tcpu/39E+1)) 0.12 0.13 5.23 4.39 4.17 5.57 5.22

7.4.2 Models testing and analysis of results

After training, we evaluate the quality of the power models obtained for each of the 30
iterations. Testing results are analyzed particularly for each benchmark in order to verify the
reliability of the power estimation for different workloads. Table 7.2 shows average error
percentages for each data set. These values have been obtained using the following equation:

eAVG =

√√√√ 1

N
·
∑
n

( |P (n)− P̂ (n)| · 100

P (n)

)2
, 1 ≤ n ≤ N (7.4)

As can be seen in Table 7.2, those solutions that present a lower training error also show
the best values obtained for testing. Our results demonstrate a minimum value of 4.22% for
the total average error (Total) when evaluating the entire testing data set. The average value
can be broken down for the different tests, achieving testing errors of 4.1%, 5.15%, 4.54% and
4.81% for Synthetic, mcf, perlbench and WebSearch workloads respectively.

Also, those phenotypes presenting the lowest error are logarithmically dependent on the
summation of Tcpu, Tmem and Ucpu. Solution in Equation 7.5 appears in 8 of the 30 iterations
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(assuming negligible additional constants) and is the best power model obtained during the
training stage. Ucpu and Tcpu provide physical information about the dynamic consumption
of the CPU and its variability with the workload. Tcpu is also correlated to DVFS modes, fan
speed and the static contribution of the CPU that depends on the inlet temperature of the
server. On the other hand, Tmem provides the information regarding the dynamic
consumption of the memory and is correlated to fan speed and to the static consumption,
which present a dependence with the inlet temperature of the server. Furthermore, this
power model simultaneously simplifies the power model (from 7 to 3 parameters), reducing
the number of required sensors, which is very promising for run-time prediction. These
experimental results show that simplified models that use relevant features provide an
accurate prediction that can be calculated during run-time for real workloads.

P̂ = ln(Ucpu+ Tcpu+ Tmem) (7.5)

Figure 7.3 shows the power fitting of the model shown in Equation 7.5 normalized in the
range [1,2]. In this figure, each sample represents the averaged values of an execution of
5 minutes of workload. It can be seen that this model offers a good fitting to the normalized
monitoring curve on scenarios with workloads that vary significantly during runtime. Finally,
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Figure 7.3: Model fitting for our GE-based power model
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Figure 7.4: Power error distribution for our GE-based power model

for our GE-optimized model we obtain a mean error between the estimated power and the real
measurement of -0.0357 and a standard deviation of 0.1082. Figure 7.4 shows the power error
distribution for this model, where it can be seen a Gaussian-shaped distribution. According to
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this, we can conclude that the error in terms of power of the 68% of the samples ranges from
-0.0725 to 0.1439.

Following the criteria of reducing the number of parameters, and with the aim of
simplifying the computational complexity of the models, we also analyze the effect of the
number of parameters in the error of the power estimation. Figure 7.5 shows the trade-off
between the testing error percentage and the number of parameters that appear in the final
power expression per run. When considering those models whose expressions have 3
variables, we obtain a testing error ranging from 4.22% and 4.94%. A global minimum can be
found at 4.22% for phenotypes matching Equation 7.5. We can see that the rest of the
parameters that do not appear in Equation 7.5 are less relevant for describing power
performance or they are correlated with these three variables. So, their inclusion would
decrease the model accuracy as it occurs in the case of including Fan and Fcpu in runs 20, 1
and 18.

1 2 3
2

3

4

5

6

Number of Variables

A
v
e
ra

g
e
 E

rr
o
r 

(%
)

Error Distribution per Run 

 

 

2
1

2
7

 6  9
1

1
3

0
 4 2

9
1

9
1

3
2

4
2

6
 5 1

6
2
2

 8 1
2

 7

2
0

 1
1

8
 2  3 1
0

1
4

1
5

1
7

2
3

2
5

2
8

Tcpu

Tcpu,Ucpu

Tcpu,Umem

Tcpu,Ucpu,Fan

Tcpu,Ucpu,Fcpu

Tmem,Ucpu,Fcpu

Tcpu,Tmem,Ucpu
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For the obtained models presenting expressions with 2 variables, results show that as Tmem
parameter is missing, testing results worsen ranging from 5.07% to 5.20%. Testing results
for 1 variable-expressions range from 4.91% to 5.61% showing that the most relevant feature
when estimating server power is Tcpu. A local minimum can be found at 4.91% as, in some
cases better solutions can be easily found for expressions depending only on Tcpu than on 2
variables.

In order to compare the performance of our models, Table 7.3 presents the average error
percentage for all the baseline models, for our models proposed in Chapter 6, lsqcurvefit
and OMOPSO and for the model obtained in this work, GE. Linear, quadratic, cubic and sqrt
baselines provide errors that are higher, from 7.66% to 6.20%. Including DVFS-awareness and
also fan speed-awareness to the power model, as in the DVFS and DVFS&fan models, improve
the error when compared to linear, quadratic, cubic and sqrt models from 6.20% to 5.77% and
to 5.37% respectively. By including the thermal-awareness as in our analytical model trained
using a classic regression, lsqcurvefit, and using OMOPSO, the average error is reduced from
5.37% to 5.24% and to 4.87% respectively. Finally, by optimizing the feature selection, using an
automatic modeling based on GE, for the testing data set, the average error is further reduced
from 4.87% for the OMOPSO model to 4.22% for our GE model.

Table 7.3: Average error percentage comparison with the baseline models
Model Linear Quad. Cubic Sqrt DVFS DVFS&fan lsqcurv. OMOPSO GE
Training 5.83% 6.25% 6.46% 5.61% 5.58% 5.32% 4.85% 4.03% 4.10%
Testing 6.58% 7.21% 7.66% 6.20% 5.77% 5.37% 5.24% 4.87% 4.22%

These results show that, by using the proposed methodology, 1) the model can be
obtained automatically with no design effort applying FE to provide the optimal set of
features; 2) adequate solutions can be found if the number of variables is a major constraint
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when finding a suitable power model in order to meet system requirements; and 3)
optimizing the set of features using GE leads to more accurate models. As training and
testing data sets are randomly selected in each of the 30 runs, this analysis confirms that FE
works well for our scenario.

7.5 Summary

The work presented in this chapter makes relevant contributions on the accurate power
modeling of high-end Cloud servers. Our GE-based automatic approach does not require
designer’s expertise to describe the complex relationships between parameters and power
consumption sources. FE and SR help to infer accurate models by incorporating only those
features that best describe the power consumption.

The proposed modeling method has shown relevant benefits with respect to
state-of-the-art modeling techniques. Our approach automatically derives power models,
with almost no designer’s effort, helping to consider a broader number of input parameters.
The experimental evaluation, using real infrastructure, shows high accuracy for the
estimation of power. Moreover, the models provided for different executions of our modeling
algorithm, where data sets are split randomly, converge to the same solution that also present
a lowest average testing error of 4.22% when compared with real measurements. So, our
automatically generated model outperforms current models (linear, quadratic, cubic and
square root among others), which do not consider both DVFS and thermal-awareness, whose
power accuracies range from 7.66% to 5.37%.

According to these results, we can infer that our methodology based on GE algorithms is
effective for performing feature selection and building accurate multi-parametric power
models for high-end Cloud servers. Finally, our modeling methodology is a starting point for
proactive energy-efficient policies as resulting models can be exploited by further power
optimization techniques that consider the joint effect of different features. Our approach
helps to implement proactive energy optimization techniques based on these power models,
thus considering the combined effect of consolidation, DVFS and temperature. This research
help to optimize not only the computing resources of the data center, but also the cooling
contribution.

Classical regressions may provide models with linearity, convexity and differentiability
attributes, which are highly appreciated for describing systems power consumption.
However, these properties are difficult to be provided by GE approaches that use BNF
grammars. In the following chapter we propose a novel methodology for the automatic
inference of accurate models that combines the benefits offered by both classic and
evolutionary strategies.
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8. Automatic Power Modeling Methodology based
on GE and LASSO

This chapter proposes an automatic methodology for modeling complex systems. Our
methodology is based on the combination of GE and classical regression to obtain an optimal
set of features that take part of a linear and convex model. The management of
energy-efficient techniques and aggressive optimization policies in a Cloud, requires a
reliable prediction of the effects caused by the different procedures throughout the data
center. The heterogeneity of servers and the diversity of data center configurations make it
difficult to infer general models. Also, power dependence with non-traditional factors that
affect consumption patterns of these facilities may be devised in order to achieve accurate
power models.

For this case study, our methodology minimizes error in power prediction. This research
has been tested using real Cloud applications resulting on an average error in power
estimation of 3.98%. Our work improves the possibilities of deriving Cloud energy efficient
policies in Cloud data centers being applicable to other computing environments with similar
characteristics.

8.1 Introduction

As we present in the previous chapter, some metaheuristics as GP, perform FE for selecting an
optimal set of features that best describe an optimization problem. Those features consist of
measurable properties or explanatory variables of a phenomenon. Finding relevant features
typically helps with prediction, but correlations and combinations of representative variables,
also provided by FE, may offer a straightforward view of the problem thus generating better
solutions. Also, designer’s expertise is not required to process a high volume of data as GE is
an automatic method. However, GE provides a vast space of solutions that may be bounded
to achieve algorithm efficiency.

Otherwise, classical regressions as least absolute shrinkage and selection operator
techniques provide models with linearity, convexity and differentiability attributes, which are
highly appreciated for describing systems performance. Thus, combining the modeling
properties of classical techniques with metaheuristics may be interesting in order to find
automatic modeling approaches that also present these kind of desirable attributes. In our
previous work presented in the previous chapter, we apply an evolutionary algorithm to
infer power models for enterprise servers. This technique achieves very good accuracy
results, but does not provide linearity, convexity and differentiability properties to models.

In this work we propose a novel methodology for the automatic inference of accurate
models that combines the benefits offered by both classic and evolutionary strategies. First,
SR performed by a GE algorithm finds optimal sets of features that best describe the system
behavior. Then, a classic regression is used to solve our optimization problem using this set
of features providing the model coefficients. Finally, our approach provides an accurate
model that is linear, convex and derivative and also uses the optimal set of features. This
methodology can be applied to a broad set of optimization problems regarding complex
systems. This chapter presents a case study for its application in the area of Cloud power
modeling as it is a relevant challenge nowadays.
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The work proposed in this chapter makes substantial contributions in the area of power
modeling of Cloud servers taking into account these factors. We envision a powerful method
for the automatic identification of fast and accurate power models that target high-end Cloud
server architectures. Our methodology considers the main sources of power consumption as
well as the architecture-dependent parameters that drive today’s most relevant optimization
policies.

8.1.1 Contributions

Our work makes the following contributions:

• We propose a method for the automatic generation of fast and accurate models adapted
to the behavior of complex systems.

• Resulting models include combination and correlation of variables due to the FE and
SR performed by GE. Therefore, the models incorporate the optimal selection of
representative features that best describe system performance.

• Through the combination of GE and classical regression provided by our approach, the
inferred models present linearity, convexity and differentiability properties.

• As a case study, different power models have been built and tested for a high-end server
architecture running several real applications that can be commonly found in nowadays’
Cloud data centers, achieving low error when compared with real measurements.

• Testing for different applications (web search engines, and both memory and
CPU-intensive applications) shows an average error of 3.98% in power estimation.

The remainder of this chapter is organized as follows: Section 8.2 provides the
background algorithms used for the model optimization. The methodology description is
presented in Section 8.3. In Section 8.4 we provide a case study where our optimization
modeling methodology is applied. Section 8.5 describes profusely the experimental results.
Finally, in Section 8.6 the main conclusions are drawn.

8.2 Algorithm description

8.2.1 Least absolute shrinkage and selection operator

Tibshirani proposes the least least absolute shrinkage and selection operator (lasso)
algorithm [148] that minimizes residual summation of squares according to the summation of
the absolute value of the coefficients that are lower than a defined constant.

The algorithm combines the favorable features of both subset selection and ridge
regression (like stability) and offers a linear, convex and derivable solution. Lasso provides
interpretable models shrinking some of the coefficients and setting others to exactly zero
values for generalized regression problems.

For a given non-negative value of λ, the lasso algorithm solves the following problem:

min
β0,β

 1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λ

p∑
j=1

|βj |

 (8.1)

where:

• β is a vector of p components. Lasso algorithm involves the L1 norm of β

• β0 defines a scalar value.
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• N is the number of observations.

• yi provides the response at observation i.

• xi presents the vector of p values at observation i.

• λ is a non-negative regularization parameter corresponding to one value of Lambda. The
number of nonzero components of β decreases as λ increases.

At the end, we combine the use of GE, which generates the set of relevant features, with
lasso, which computes the coefficients and the independent term in the final linear model.

As a result, our GE+lasso framework solves our optimization problem that targets the
generation of accurate power models for high-end servers.

8.3 Devised Methodology

The fast and accurate modeling of complex systems is a relevant target nowadays. Modeling
techniques allow designers to estimate the effects of variations in the performance of a
system. Complex systems present non-linear characteristics as well as a high number of
potential variables. Also, the optimal set of features that impacts the system performance is
not well known as many mathematical relationships can exist among them.

Hence, we propose a methodology that considers all these factors by combining the
benefits of both GE algorithms and classical lasso regressions. This technique provides a
generic and effective modeling approach that could be applied to numerous problems
regarding complex systems, where the number of relevant variables or their interdependence
are not known.

Figure 8.1 shows the proposed methodology approach for the optimization of the
modeling problem. Detailed explanations of the different phases are summarized in the
following subsections.

Figure 8.1: Optimized modeling using our GE+lasso methodology.

8.3.1 GE feature selection

Given an extensive set of parameters that may cause an effect on system performance, FE
selects the optimal set that best describes the system behavior. Also, this technique, which is
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provided by GE, avoids the inclusion of irrelevant features while incorporating correlations
and combinations of representative variables.

The input to our approach consists of a vector of initial data that includes the entire set of
variables xn extracted from the system.

~y = g1(x1, x2, x3, . . . , xn) (8.2)

All these parameters are entered in the GE algorithm to start the optimization process.

Each individual of the GE encodes its own set of candidate features f1, f2, f3, . . . , fm. The
candidate features follow the rules imposed by a BNF grammar allowing the occurrence of a
wide variety of operations and operands to favor building optimal sets of features. Figure 8.2
shows an example of a BNF grammar for this approach.

<list_features> ::= <feature> | <feature>;<list_features>
<feature> ::= (<feature><op><feature>)
| <preop>(<feature>) | <var>
<op> ::= + | - | * | /
<preop> ::= exp | sin | cos | ln
<var> ::= x[0] | x[1] | x[2] | x[3] | ... | x[n]

Figure 8.2: Grammar in BNF format. x variables, with i = 0 . . . n, represent each parameter
obtained from the system.

This grammar provides the operations +, −, ∗, / and preoperators exp, sin, cos, ln. The
space of solutions is easily modified by incorporating a broader set of relationships between
operands to the BNF grammar.

The output of the GE stage consists of a matrix that includes all the candidate features
provided by individuals. The output vector of each individual has its own set of m candidate
features that intends to minimize the fitness function provided for the system optimization.

~z = g2(f1, f2, f3, . . . , fm) (8.3)

8.3.2 Lasso generic model generation
Modeling procedures usually intend to interpret systems’ behavior. They have the purpose of
acquiring additional knowledge from the final models once these have been derived. Linearity,
convexity and differentiability offered by the lasso classic regression help modeling to be a
more explanatory and repeatable process. In addition, whereas GE is able to find complex
symbolic expressions, it does not perform well in parameter identification, mainly because the
exploration of real numbers is not easily representable in BNFs. Due to these facts, we have
included the lasso algorithm in our methodology in order to manage the coefficient generation
of the model.

As can be seen in Figure 8.1, each individual of the GE provides a set of candidate features
to lasso. This classical regression is in charge of deriving the optimized model for each
individual by solving the following equation.

~z = a1f1 + a2f2 + a3f3 + · · ·+ amfm + k (8.4)

Lasso offers the set of optimized coefficients (a1, a2, a3, . . . , am, k) for each individual that
minimizes the fitness function. This process provides the goodness of each individual. All
this information feeds back the GE algorithm to generate the next population of individuals
through selection, crossover and mutation, creating a loop. The loop continues executing until
it completes the number of generations defined by the GE. This process results in the set of
models that best fits power performance.
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8.3.3 Fitness evaluation
As our main target is to build accurate models, our fitness function includes the error resulting
in the estimation process. The fitness function presented in 8.5 leads the evolution to obtain
optimized solutions thus minimizing the RMSD.

F =

√
1

N
·
∑
n

en2 (8.5)

en = |P (n)− P̂ (n)|, 1 ≤ n ≤ N (8.6)

The estimation error, defined as en, represents the deviation between the measure given by
system monitoring P , and the estimation obtained by the model P̂ . n represents each sample
of the entire set of N samples used to train the algorithms.

8.4 Case Study

In this section we describe a particular case study for the application of the devised
methodology presented in Section 8.3. The problem to be solved is the fast and accurate
estimation of the power consumption in virtualized enterprise servers performing Cloud
applications. Our power model considers heterogeneity of servers, as well as specific
technological features and non-traditional parameters of the target architecture that affect
power consumption. Hence, we propose our modeling technique that considers all these
factors by combining the benefits of both GE algorithms and classical lasso regressions.

First, a GE algorithm is applied to extract those relevant features that best describe power
consumption sources. The features may also include correlations and combinations of
representative variables due to the FE performed by GE. Then, the lasso algorithm takes the
optimal set of features in order to infer an expression that characterizes the power behavior of
the target architecture of a Cloud server. As a result, we derive a highly accurate, linear and
convex power model, targeting a specific server architecture, which is automatically
generated by our evolutionary methodology.

We apply our methodology described in Section 8.3 to real measures gathered from a high-
end Cloud server in order to infer an accurate power model. Also, we provide an experimental
scenario for various workloads with the purpose of building and testing our methodology.

Instead of restricting the use of synthetic workloads only for training the algorithms, and
limiting the use of real Cloud benchmarks exclusively for testing, we have used both
workloads for the two purposes. This procedure provides automation for the progressive
incorporation of additional benchmarks to the model.

8.5 Experimental results

Our data collection (explained in Section 5.2) has been split into training and testing sets.
Training stage performs feature selection and builds the power model according to our
grammar and fitness function. Next, the testing stage examines the power model accuracy.
The algorithm proposed by our methodology runs completely 20 times using the same
grammar and fitness function configuration. For each run, we randomly select 50% of each
data set for training and 50% for testing stage, thus obtaining 20 final power models. This
procedure validates the variability and versatility of the system, by analyzing the occurrence
of local minima in optimization scenarios.

8.5.1 Algorithm setup

GE setup parameters

We use GE to obtain a set of candidate features that best describe our optimization problem.
To obtain adequate solutions we tune the algorithm using the following parameters:
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• Population size: 250 individuals

• Number of generations: 3000

• Chromosome length: 100 codons

• Mutation probability: inversely proportional to the number of rules, 1/4 in our case.

• Crossover probability: 0.9

• Maximum wraps: 3

• Codon size: 256

• Tournament size: 2 (binary)

As we strictly seek for simple combination of features, our proposed BNF grammar only
provides the operations +| − | ∗ |/. The space of solutions is easily increased by incorporating
more complex relationships between operands to the BNF grammar. Figure 8.3 shows the BNF
grammar proposed for this case study.

<list_features> ::= <feature> | <feature>;<list_features>
<feature> ::= (<feature><op><feature>) | <var>
<op> ::= + | - | * | /
<var> ::= x[0] | x[1] | x[2] | x[3] | x[4] | x[5] | x[6]

Figure 8.3: Grammar in BNF format. x variables, with i = 0 . . . 6, represent processor and
memory temperatures, fan speed, processor and memory utilization percentages, processor
frequency and voltage, respectively.

Lasso setup parameters

We use the lasso algorithm to obtain a set of candidate solutions with low error, when
compared with the real power consumption measurements in order to solve our optimization
modeling problem. Lasso setup parameters are the following:

• Number of observations: 100

• λ regularization parameter: Geometric sequence of 100 values, the largest just sufficient
to produce zero coefficients.

• λ regularization parameter: 1 · 10−4

8.5.2 Training stage
We have performed variable standardization for every feature (in the range [1, 2]) to ensure
the same probability of appearance for all the variables and to enhance the GE symbolic
regression. Experiments with more than 4 features do not provide better values for RMSD.
Hence, we have bounded their occurrence to a maximum of 4 by penalizing higher number
of features in our fitness evaluation function. This also facilitates the generation of simpler
models, which are faster and easy to be applied, in order to be used for real-time power
optimizations.

Table 8.1 shows the phenotypes obtained for each feature combined with the coefficients
provided by lasso, which are obtained for 20 complete runs of our methodology algorithm.
Fitness results, which correspond to the RMSD between measured and estimated power
consumption (see Equation 8.5), are shown in Table 8.2 for the training stage. Both Table 8.1
and Table 8.2 present the results for the best model of each execution.
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Table 8.1: Power models obtained by combining GE features and lasso coefficients for 20
executions

Run a1 · f1 + a2 · f2 + a3 · f3 + a4 · f4 + K
1 0.288 · Tcpu

+ 0.127 · (((Tcpu*Ucpu)-Umem)*Fan)
+ 0.220 · (Fan*Tmem)
+ -0.450 · Fan + 1.043

2 0.173 · Ucpu
+ 0.438 · Tcpu
+ -0.209 · Fan
+ 0.070 · (Tmem/(Umem/(Fan*Tmem))) + 0.636

3 0.256 · (Fan/(Ucpu/Tmem))
+ 0.346 · Ucpu
+ -0.694 · (Fan/Tcpu) + 1.151

4 -0.376 · Tmem
+ -0.033 · ((((Fan/Tcpu)/(Fcpu+Fcpu))/((Fan/(Vcpu+Umem))/Ucpu))*Fan)
+ 0.606 · ((Fan/((Umem+(Fan+(Fcpu/Fcpu)))*(Fan/Ucpu)))+(Fan+Tmem))
+ 0.786 · ((Fcpu-(Fcpu+Fan))/Tcpu) + 0.810

5 0.181 · Ucpu
+ 0.254 · (Fan*Tmem)
+ 0.378 · Umem
+ -0.345 · (((Umem+Umem)*Fan)/Tcpu) + 0.939

6 0.483 · (Ucpu-Fan)
+ 0.030 · ((Tmem+Fan)*((Fan-(Tmem/((Ucpu+Vcpu)+(Fan+Fan))))*(Fan*Fan)))
+ 0.220 · Tmem
+ 0.430 · (Tcpu/Ucpu) + 0.402

7 0.506 · Tcpu
+ 0.195 · ((Ucpu/(Vcpu+(Tmem-Umem)))*Vcpu)
+ -0.319 · Fan
+ -0.199 · (((Fan+Umem)*((Umem-Tmem)/Tcpu))*Fan) + 0.704

8 0.084 · (Ucpu/Vcpu)
+ 0.473 · Tmem
+ 0.499 · (Ucpu/(Ucpu*(((Fcpu-Vcpu)+Tmem)/Tcpu)))
+ -0.019 · (Fan-(((Fan+Vcpu)*Tcpu)*((Ucpu*Tmem)-(Vcpu-Fcpu)))) + 0.046

9 0.927 · Ucpu
+ -0.380 · Fan
+ 0.232 · (((Tmem*((Fan+Umem)-Ucpu))+(Tcpu-(Ucpu*Umem)))-Ucpu)
+ 0.180 · Tcpu + 0.365

10 -0.073 · Tmem
+ 0.106 · (((Tmem+Fan)*Fan)-Umem)
+ 0.194 · (Ucpu+Tmem)
+ 0.437 · (Tcpu-Fan) + 0.665

11 -0.117 · (Tmem*(Ucpu-(Tmem*Fan)))
+ 0.317 · Ucpu
+ 0.377 · (Tcpu-Fan) + 0.810

12 -0.070 · Umem
+ 0.174 · Ucpu
+ 0.647 · (Tcpu/Tmem)
+ 0.647 · Tmem + -0.318

13 0.291 · (Tmem+Fan)
+ -0.409 · (Fan/Tcpu)
+ 0.234 · Tcpu
+ 0.423 · (Ucpu/(Tmem+Umem)) + 0.442

14 0.093 · (Ucpu+(Ucpu+(Tmem*Tmem)))
+ -0.019 · ((Tcpu-((Tmem*Fan)-Vcpu))-Vcpu)
+ -0.081 · (Tmem+Umem)
+ 0.462 · Tcpu + 0.526

15 -0.004 · Fcpu
+ 0.380 · (Ucpu/(Umem+Fan))
+ 0.054 · (Tmem*(Tmem+Fan))
+ 0.454 · Tcpu + 0.347

16 -0.010 · Fan
+ -0.155 · (((Fan/Tmem)-(Tmem/Ucpu))*Fan)
+ 0.282 · Ucpu
+ 0.417 · Tcpu + 0.393

17 0.242 · (Fan*(Tmem/Ucpu))
+ 0.396 · (Tcpu-Fan)
+ 0.001 · Fcpu
+ 0.344 · Ucpu + 0.508

18 0.448 · Tmem
+ -0.178 · Umem
+ -0.221 · (((((Tcpu/(Vcpu/(Fcpu-Vcpu)))-Ucpu)+Fan)/Tmem)-(Tcpu-(Tmem-(Tcpu+Fan))))
+ 0.100 · (Umem/Fan) + 0.271

19 0.134 · Ucpu
+ 0.241 · (Tmem*Fan)
+ 0.066 · Ucpu
+ -0.403 · ((Fan-Tcpu)/Umem) + 0.653

20 -0.433 · (((Fan-(Ucpu+Umem))/Fan)-(Tcpu+Fan))
+ -0.295 · Umem
+ -0.102 · Fan
+ 0.235 · (((Tmem-Umem)-Ucpu)+Fan) + 0.184
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Table 8.2: RMSD and Average testing error percentages for 20 executions
Run Train (RMSD) Testing (RMSD) Synthetic (%) mcf (%) perlb (%) WebSearch (%) Total (%)

1 0.1069 0.1068 3.985 4.097 4.463 4.147 4.173
2 0.1068 0.1067 3.984 4.099 4.463 4.110 4.164
3 0.1070 0.1068 3.995 4.110 4.504 4.145 4.189
4 0.1070 0.1071 4.007 4.085 4.469 4.155 4.179
5 0.1069 0.1069 3.991 4.106 4.494 4.113 4.176
6 0.1071 0.1068 3.988 4.085 4.459 4.153 4.171
7 0.1070 0.1072 3.995 4.042 4.462 4.101 4.150
8 0.1071 0.1072 3.994 3.996 4.559 4.101 4.162
9 0.1072 0.1072 4.033 3.884 3.990 4.059 3.991

10 0.1067 0.1072 4.052 3.894 3.969 4.031 3.986
11 0.1073 0.1075 4.023 3.926 3.963 4.063 3.994
12 0.1071 0.1076 4.098 3.896 3.951 4.030 3.994
13 0.1070 0.1070 4.073 3.939 4.173 4.243 4.107
14 0.1072 0.1072 4.088 3.935 4.174 4.184 4.096
15 0.1071 0.1070 4.083 3.922 4.161 4.246 4.103
16 0.1071 0.1070 4.060 3.937 4.164 4.217 4.095
17 0.1079 0.1057 3.951 4.136 4.208 4.056 4.088
18 0.1081 0.1060 3.981 4.171 4.180 4.050 4.095
19 0.1082 0.1060 3.953 4.190 4.224 4.212 4.145
20 0.1082 0.1059 3.974 4.205 4.178 4.074 4.108

As can be seen in Table 8.1, power model solutions combine features that correspond to a
single variable with others that merge a combination of several parameters. On the one hand,
there are single-variable features that appear in up to 50% of the power model solutions. This
shows that there are linear dependencies with certain parameters, as Ucpu, Tcpu, and Tmem
that are consistent regardless of the workload that is used for training and testing. On the
other hand, variables as Vcpu, Fcpu and Umem are seldom treated as a feature in the model
solutions. However, they systematically appear when combined with other variables.

Ucpu and Tcpu provide physical information about the dynamic consumption of the CPU
and its variability with the workload. Tcpu is also correlated to the fan speed and the static
contribution of the CPU that depends on the inlet temperature of the server. Vcpu, Fcpu
present the dependence with the DVFS mode of the CPU. On the other hand, Umem and
Tmem provide the information regarding the dynamic consumption of the memory and Tmem
is also correlated to fan speed and to the static consumption, which present a dependence
with the inlet temperature of the server. These results show that there exist input parameters
that are not relevant for the modeling or that they are correlated to other features, and how
their inclusion could decrease the model accuracy. Model training for run 10 shows the
lowest RMSD error of 0.1067.

8.5.3 Model testing

At this stage, we analyze the quality of the models that we have simultaneously tested for the
20 complete executions of our methodology algorithm. Results are also analyzed particularly
for the testing data that corresponds to each benchmark data set in order to verify the
estimation reliability of the models for different workloads. Table 8.2 shows testing average
error percentages particularized for the different benchmark data sets. These values have
been obtained according to the following formulation:

eAVG =

√√√√ 1

N
·
∑
n

( |P (n)− P̂ (n)| · 100

P (n)

)2
, 1 ≤ n ≤ N (8.7)

where P is the power measurement given by the current clamp and P̂ is the power estimated
by the model phenotype. n represents each sample of the entire set of N samples.
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Total average error for the testing data set shows a lowest error of 3.98% (as shown in
Table 8.2). Best testing error corresponds to the solution with lower training error. Solutions
can be broken down for those samples that belong to different tests, achieving testing errors
of 4.052%, 3.894%, 3.969% and 4.031% for synthetic, SPEC CPU 2006 mcf, SPEC CPU 2006
perlbench and WebSearch workloads respectively. This fact confirms that our methodology
works well for our scenario, extracting optimized sets of features and coefficients that are
consistent even for 20 runs with random selection of both training and testing data sets.

For our optimized model using GE+Lasso, we obtain a mean error between the estimated
power and the real measurement of−1.47 ·10−5 and a standard deviation of 0.1069. Figure 8.4
shows the power error distribution for this model. According to this, we can conclude that the
error in terms of power of a high percentage of the samples ranges from -0.1069 to 0.1069. In
Figure 8.5, the fitting of our optimized power model is provided.
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Figure 8.4: Power error distribution for our optimized model using GE+Lasso.
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Figure 8.5: Model fitting for our optimized model using GE+Lasso.

In order to compare the performance of our models, Table 8.3 presents the average error
percentage for all the baseline models, for our models proposed in Chapter 6 (lsqcurvefit
and OMOPSO) and Chapter 7 (GE) and for the model obtained in this work, GE+lasso.
Linear, quadratic, cubic and sqrt baselines provide errors that are higher, from 7.66% to
6.20%. Including DVFS-awareness, fan speed-awareness and thermal-awareness to the
power model (as in the DVFS, DVFS&fan and lsqcurvefit models) improves the error when
compared to linear, quadratic, cubic and sqrt models from 6.20% to 5.77%, 5.37% and 5.24%
respectively. By optimizing the set of features of our analytical model using OMOPSO, the
average error is reduced from 5.24% to 4.87% respectively. Then, optimizing the feature
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selection, using an automatic modeling based on GE, the average error is reduced from 4.87%
for the OMOPSO model to 4.22% for our GE model. However, the appearance of linearity,
derivability and convexity properties using GE is difficult using BNF grammars. Our
GE+lasso methodology intends to enhance the modeling process, so the functions that make
up the model are closer to the physical model according to our hypothesis. Finally, enforcing
linearity, derivability and convexity properties using our GE+lasso methodology, the testing
error outperforms the GE value from 4.22% to 3.98%.

Table 8.3: Average error percentage comparison with the baseline models
Model Linear Quad. Cubic Sqrt DVFS DVFS&fan lsqcurv. OMOPSO GE GE+lasso
Training 5.83% 6.25% 6.46% 5.61% 5.58% 5.32% 4.85% 4.03% 4.10% 4.05%
Testing 6.58% 7.21% 7.66% 6.20% 5.77% 5.37% 5.24% 4.87% 4.22% 3.98%

Our methodology application shows very accurate testing results for all of the complete
runs ranging from 3.98% to 4.18%, thus outperforming all our baselines. The obtained results
are robust, as they have been obtained for a heterogeneous mix of workloads so the power
models are not workload-dependent. According to these results, we can infer that our
methodology is effective for performing feature selection and building accurate
multi-parametric, linear, convex and differentiable power models for high-end Cloud servers.
This technique can be considered as a starting point for implementing energy optimization
policies for Cloud computing facilities.

8.6 Summary

This chapter has presented a novel work in the field of FE and SR for the automatic inference
of accurate models. Resulting models include combination and correlation of variables due to
the FE and SR performed by GE. Therefore, the models incorporate the optimal selection of
representative features that best describe the target problem while providing linearity,
convexity and differentiability characteristics due to lasso incorporation.

As a proof of concept, the devised methodology has been applied to a current computing
problem, the power modeling of high-end servers in a Cloud environment. In this context,
the proposed methodology has shown relevant benefits with respect to state-of-the-art
approaches, like better accuracy and the opportunity to consider a broader number of input
parameters that can be exploited by further power optimization techniques.

Our approach presents an automatic method for the identification of an accurate power
model particularized for each target architecture, which is consistent with current
architectures. In this research, optimal features provided by GE are included in a classical
regression resulting in a specific model instance for every target architecture that is linear,
convex and derivable. Also the execution of the resulting power model is fast, making it
suitable for run-time optimization techniques. Current models (linear, quadratic, cubic and
square root among others), which do not consider both DVFS and thermal-awareness,
present power accuracies that range from 7.66% to 5.37%. Our power model, inferred
automaticaly, provides a testing error of 3.98%, outperforming the state-of-the-art
approaches.

This part of the present dissertation introduces our power models that are aware of DVFS
and thermal impact on power consumption. The information regarding their dependence
with these non-traditional parameters provides the base for deriving new strategies to
improve energy savings in the data center infrastructure. The following part presents DVFS
and thermal aware proactive consolidation strategies that use these models to consider the
energy globally. Thus, decisions are based on information from all available subsystems to
perform different energy optimizations from a holistic perspective.
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9. DVFS-Aware Dynamic Consolidation for
Energy-Efficient Clouds

“They see the immediate situation. They think narrowly and
they call it ’being focused’. They don’t see the surround. They
don’t see the consequences.”

— Michael Crichton, Jurassic Park

Data centers are becoming unsustainable in terms of power consumption and growing
energy costs so Cloud providers have to face the major challenge of placing them on a more
scalable curve. Also, Cloud services are provided under strict Service Level Agreement
conditions, so trade-offs between energy and performance have to be taken into account.
Techniques as DVFS and consolidation are commonly used to reduce the energy
consumption in data centers, although they are applied independently and their effects on
Quality of Service are not always considered. Thus, understanding the relationship between
power, DVFS, consolidation and performance is crucial to enable energy-efficient
management at the data center level.

In this chapter we propose a DVFS policy that reduces power consumption while
preventing performance degradation, and a DVFS-aware consolidation policy that optimizes
consumption, considering the DVFS configuration that would be necessary when mapping
VMs to maintain QoS. We have performed an extensive evaluation on the CloudSim toolkit
using real Cloud traces and one of our accurate power models based on data gathered from
real servers. Our results demonstrate that including DVFS awareness in workload
management provides substantial energy savings of up to 45.76%, for scenarios under
dynamic workload conditions, when compared with a state-of-the-art baseline. These
outcomes outperform previous approaches, which do not consider integrated use of DVFS
and consolidation strategies.

9.1 Introduction

The main contributor to the energy consumption in a data center is the IT infrastructure, which
consists of servers and other IT equipment. The IT power in the data center is dominated by
the power consumption of the enterprise servers, representing up to 60% of the overall data
center consumption [14]. The power usage of an enterprise server can be divided into dynamic
and static contributions. Dynamic power depends on the switching transistors in electronic
devices during workload execution. Static consumption associated to the power dissipation of
powered-on servers represents around the 70% of the total server consumption and is strongly
correlated with temperature due to the leakage currents that increase as technology scales
down.

The Cloud computing paradigm helps improving energy efficiency, reducing the carbon
footprint per executed task and diminishing CO2 emissions [6] by increasing data centers
overall utilization. The main reason is that, in the Cloud model, the computing resources are
shared among users and applications so, less powered-on servers are needed, which means
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less static consumption. In this way, smaller facilities are able to consolidate higher incoming
workloads, thus reducing the computing and cooling energy requirements.

To meet the growing demand for their services and ensure minimal costs, Cloud
providers need to implement an energy-efficient management of physical resources.
Therefore, optimization approaches that rely on accurate power models and optimize the
configuration of server parameters (voltage and working frequency, workload assignment,
etc.) can be devised. Furthermore, as many applications expect services to be delivered as per
SLA, power consumption in data centers may be minimized without violating these
requirements whenever it is feasible.

From the application-framework viewpoint, Cloud workloads present additional
restrictions as 24/7 availability, and SLA constraints among others. In this computing
paradigm, workloads hardly use 100% of CPU resources, and their execution time is strongly
constrained by contracts between Cloud providers and clients. These restrictions have to be
taken into account when minimizing energy consumption as they impose additional
boundaries to efficiency optimization strategies. QoS would be determined by these
constraints and it would be impacted by performance degradation.

Also, Cloud scenarios present workloads that vary significantly over time. This
fluctuation hinders the optimal allocation of resources, which requires a trade-off between
consolidation and performance. Workload variation impacts on the performance of two of
the main strategies for energy-efficiency in Cloud data centers: DVFS and Consolidation.

DVFS strategies modify frequency according to the variations on the utilization
performed by dynamic workload. These policies help to dynamically reduce the
consumption of resources as dynamic power is frequency-dependent. DVFS has been
traditionally applied to decrease the power consumption of underutilized resources as it may
incur on SLA violations. On the other hand, consolidation policies decrease significantly the
static consumption by reducing the number of active servers, increasing their utilization.

Dynamic workload scenarios would require policies to adapt the operating server set to
the workload needs during runtime in order to minimize performance degradation due to
oversubscription. However, both strategies are applied independently, regardless the effects
that consolidation have on DVFS and vice versa. Therefore, the implementation of DVFS-
aware consolidation policies has the potential to optimize the energy consumption of highly
variable workloads in Cloud data centers.

The key contributions of our work are 1) a DVFS policy that takes into account the
trade-offs between energy consumption and performance degradation; 2) a novel
consolidation algorithm that is aware of the frequency that would be necessary when
allocating a Cloud workload in order to maintain QoS. Our frequency-aware consolidation
strategy reduces the energy consumption of the data center, making use of DVFS to reduce
the dynamic power consumption of servers, also ensuring SLA. The algorithm is light and
offers an elastic scale-out under varying demand of resources.

The rest of the chapter is organized as follows: Section 9.2 gives further information on
the related work on this topic. The proposed DVFS policy that considers both energy
consumption and performance degradation is presented in Section 9.3. This section also
provides our Frequency-Aware Optimization strategy for the energy optimization of the IT
infrastructure in Cloud data centers. The simulation configuration is detailed in Section 9.4.
In Section 9.5, we describe profusely the performance evaluation and the experimental
results. Finally, Section 9.6 concludes the work.

9.2 Related Work

Recently, there has been a growing interest in developing techniques to provide power
management for servers operating in a Cloud. The complexity of the power management and
workload allocation in servers has been described by Gandhi et al. [149] and Rafique et
al. [150], where the authors show that the optimal power allocation is non-obvious, and, in
fact, depends on many factors such as the power-to-frequency relationship in processors, or
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the arrival rate of jobs. Thus, it is critical to understand quantitatively the relationship
between power consumption and DVFS at the system level to optimize the use of the
deployed Cloud services.

DVFS is by far the most frequent technique at the architectural-level as well as one of the
currently most efficient methods to achieve energy savings. This technique scales power
according to the workload in a system by reducing both operating voltage and frequency.
Reducing the operating frequency and voltage slows the switching activity achieving energy
savings but also decreasing the system performance. DVFS implementation on CPU results
in an almost linear relationship between power and frequency, taking into account that the
set of states of frequency and voltage of the CPU is limited. Only by applying this technique
on a server CPU, up to 34% energy savings in dynamic consumption can be reached as
presented by Le Sueur et al. [58].

DVFS has been mainly applied to enhance energy efficient scheduling on idle servers, or
those performing under light workload conditions [151], and during the execution of
noncritical tasks [152]. However, a recent research shows that DVFS can be also used to meet
deadlines in mixed-criticality systems [153]. Furthermore, DVFS-based scheduling research
on multiprocessor systems shows promising results. Rizvandi et al. [154] achieved
considerable energy savings by applying this technique on up to 32-processor systems for
HPC workload. However, the effects of DVFS in loaded servers have not been analyzed yet
for Cloud scenarios. The QoS offered depends on the SLA contracted to Cloud providers
could be violated under certain frequency-voltage conditions. DVFS-aware approaches could
help to reduce the energy consumption of Cloud facilities but new algorithms have to be
devised for large scale data center infrastructures also taking into account the SLA
considerations of Cloud workloads.

On the other hand, many of the recent research works have focused on reducing power
consumption in cluster systems by power-aware VM consolidation techniques, as they help
to increase resource utilization in virtualized data centers. Consolidation uses virtualization
to share resources, allowing multiple instances of operating systems to run concurrently on
a single physical node. Virtualization and consolidation increase hardware utilization (up to
80% [15]) thus improving resource efficiency.

The resource demand variability of Cloud workloads is a critical factor in the consolidation
problem as the performance degradation boundary has to be considered for both migrating
VMs and reducing the active server set [155]. Balancing the resource utilization of servers
during consolidation was performed by Calheiros et al. [156] to minimize power consumption
and resource wastage. In the research proposed by Hermenier et al. [157], their consolidation
manager reduces the VM migration overhead. Also, there exist interesting works that focus
on modeling the energy consumption of the migration process as the research proposed by
Haikun et al. [158] and De Maio et al. [159].

However, DVFS-Aware consolidation techniques that maintain QoS in data centers have
not been fulfilled yet. Although some combined application of DVFS and consolidation
methods for Cloud environments can be found, no one of them are considering performance
degradation due to VM migration or resource over-provisioning. In the research presented by
Wang et al. [160], the consolidation is performed regardless the frequency impact, and the
DVFS is applied separately. The approach presented by Petrucci et al. [161] shows the
dependence of power with frequency but the algorithm does not scale for large data centers
and SLA violations are not taken into account.

Our work provides a novel DVFS-aware consolidation algorithm that helps to reduce the
energy consumption of data centers under dynamic workload conditions. The proposed
strategy considers the trade-offs between energy consumption and performance degradation
thus maintaining QoS. The work presented in this chapter outperforms previous
contributions by allowing the optimization of Cloud data centers from a proactive
perspective in terms of IT energy consumption and ensuring the QoS of Cloud-based
services.
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9.3 Frequency-Aware VM consolidation

The major challenge that we face in this work is to reduce the energy consumption of the IT
infrastructure of data centers, while maintaining QoS, and under dynamic workload
conditions. In our previous work [33], Chapter 6 of this dissertation, we derived a complete
accurate model to calculate the total energy consumption of a server Ehost(m, k) in kW · h
that can be seen in Equation 9.1:

Ehost(m, k,w) = Phost(m, k,w) ·∆t = (Pdyn(m, k,w) + Pstat(m)) ·∆t (9.1)
T = {t1, ..., ti, ..., tT } (9.2)

∆t = ti+1 − ti (9.3)
Pdyn(m, k,w) = α(m) · V 2

DD(m, k) · fop(m, k) · ucpu(m, k,w) (9.4)
Pstat(m) = β(m) · T 2

mem(m) + γ(m) · FS3(m) (9.5)

where ∆t is the time along which the energy is calculated. In this research we assume a discrete
set of times T in which the algorithm is evaluated in order to optimize the power performance
of the system. We define each time ti as the particular instant in which the system evaluates an
incoming batch of workload. Our proposed model estimates the instantaneous electric power
of a server in ti so, the energy is computed for the time interval ∆t between two workload
evaluations, considering that the power is stable in this time period. For practical reasons, we
have selected ∆t to be 300s in our experiments, which is a realistic assumption for our setup.

Phost(m, k,w), Pdyn(m, k,w) and Pstat(m) represent total, dynamic and static
contributions of the power consumption in Watts of the physical machine m operating in a
specific k DVFS mode for a specific workload w. In the research conducted in this chapter, we
define Phost(m, k,w) as the optimized expression obtained in Chapter 6 for modeling the
server’s power consumption that can be seen in Equation 6.22. In Equation 9.1, we split the
expression into its dynamic and static contributions and rename the technological constants
α4(m) and β2(m) as α(m) and β(m).

Our proposed model consists of 5 different variables: ucpu(m, k,w) is the averaged CPU
percentage utilization of the specific serverm and is proportional to the number of CPU cycles
defined in Millions of Instructions Per Second (MIPS) in the range [0,1]. VDD is the CPU supply
voltage and fop is the operating frequency in GHz. Tmem defines the averaged temperature of
the main memory in Kelvin and FS represents the averaged fan speed in RPM. Depending
on the target architecture, some factors might have higher impact than others. This model
has been tested for Intel architectures achieving accuracy results of about 95% as can be seen
in Chapter 6. Our model allows to obtain power estimations during run-time facilitating the
integration of proactive strategies in real scenarios. Power consumption is measured with a
current clamp, so we can validate our approach comparing our estimations with real values,
obtaining a testing error of 4.87%.

As shown in Equation 9.4, the energy consumption due to the dynamic power
consumption Pdyn(m, k,w) depends on the workload profile executed in the server. So, the
lower the ucpu(m, k,w), the lower the dynamic energy contribution. On the other hand, the
static consumption represents the energy consumed due to power dissipation of a
powered-on server, even if it is idle. This energy represents around 70% of the total server
consumption. In this context, we can see some observations about the dynamic consolidation
problem:

• DVFS vs SLA. DVFS can be used to achieve power savings because reducing the
frequency and voltage of the CPU (fop(m, k) and VDD(m, k)) slows its switching
activity. However, it also impacts on the performance of the system by extending tasks
duration (t), which can lead to the appearance of SLA violations and to the increase of
energy consumption.

• Underloaded servers. If the workload is spread over a larger number of servers, the
CPU utilization in each server will be lower, so the dynamic power contribution in each
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server will be also lower. As ucpu is reduced, fop can be scaled down thus decreasing
the power contribution due to CPU frequency. However, the global energy consumption
will be increased disproportionately due to the impact of static consumption of a higher
number of servers.

• Overloaded servers. On the other hand, if the incoming workload is concentrated in a
smaller set of servers, even though the static consumption is reduced, the QoS may be
affected. This situation is intensified due to the dynamic variation of workload and, if
the maximum server capacity is exceeded during peak loads, it would lead to
performance degradation. To avoid overloaded servers, one or more VMs can be
migrated from one server to another. However, VM migration has associated costs in
terms of energy consumption and time, which could lead to SLA violations.

In this chapter we propose a strategy to allow the energy optimization of a Cloud under
SLA constraints. As opposed to previous approaches, our work offers a DVFS policy that
considers the trade-offs between energy consumption and performance degradation explained
in subsection 9.3.1. Thus, frequency is managed according to the available states depending on
the server architecture while ensuring QoS. On the other hand, in subsection 9.3.2 we provide
an energy-aware dynamic placement algorithm that considers the frequency configuration
according to the allocation of VMs. Finally, in subsection 9.3.3 we use both strategies combined
to proactively optimize a Cloud under dynamic workload conditions.

9.3.1 DVFS-Performance Management
DVFS scales the power of the system varying both CPU frequency and voltage. Reducing
the operating frequency and voltage slows the switching activity to achieve energy savings;
however, it also impacts negatively on the performance of the system.

The CPU performance of a physical machine m can be characterized by the maximum
workload (w) that can be run by its CPU without performance degradation at its maximum
frequency (fMAX(m)). Moreover, the real workload that may be run by the system depends on
the current operating frequency of the CPU (f(m, k)). As we present in Equation 9.8, f(m, k)
can only take a value from a specific set of valid frequencies where k represents the operating
DVFS mode. It is important to note that not all frequencies from 0 to fMAX(m) are available,
as the set of states of frequency and voltage of the CPU for each physical machine is limited
and it may be different depending on the architecture of the physical machine. We define the
equivalent CPU utilization percentage (ucpueq

(m, k)) in Equation 9.9 as the maximum CPU
utilization that could be used by the workload without performance degradation.

In this research we propose a DVFS policy that selects the minimum operating frequency
that ensures that the equivalent utilization ucpueq

(m, k) is greater or equal than the utilization
required by all the workload allocated on the host at maximum frequency
ucpu(m, fMAX(m), w). This statement, which can be seen is Equation 9.10, helps to provide a
frequency that does not degrade the performance of the workload, thus ensuring the SLA for
CPU-bounded workloads. Finally, the utilization of the CPU at the system level for the
operating frequency (ucpu(m, k,w)) is shown in Equation 9.12.

ucpu(m, k,w) ∈ [0, 1] (9.6)
where ucpuMAX

= 1 (9.7)
f(m, k) ∈ {f1(m), f2(m), · · · , fk(m), · · · , fMAX(m)} (9.8)

ucpueq
(m, k) =

f(m, k)

fMAX(m)
· ucpuMAX

(9.9)

fhost(m, k,w) = min{f(m, k)} that ensures (9.10)
ucpueq

(m, k) ≥ ucpu(m, fMAX(m), w) (9.11)

ucpu(m, k,w) =
ucpu(m, fMAX , w)

ucpueq
(m, k)

= ucpu(m, fMAX , w) · fMAX(m)

f(m, k) · ucpuMAX

(9.12)
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In order to motivate these metrics we provide the following case of use for the Fujitsu
RX300 S6 server. The maximum frequency for this type of physical machine is
fMAX(Fujitsu) = 2.4GHz. For this example we assume that this server is able to run, at
2.4GHz, a CPU-bounded workload w100 with a rate of requests of 100 requests per second
without losing performance, while the system detects a CPU usage of
ucpu(Fujitsu, fMAX(Fujitsu), w100) = 1. One of the available operating frequencies for this
server is f(Fujitsu, 1) = f1(Fujitsu) = 1.73GHz so, according to Equation 9.9, the
equivalent CPU utilization percentage takes the value ucpueq

(Fujitsu, 1) = 0.72. Thus, if the
utilization of the Fujitsu server, running at 1.73GHz, exceeds the 72% of its total capacity, the
required requests per second to be executed will exceed the limit rate that can be provided for
this frequency, provoking a delay. On the other hand, when the utilization is kept below this
threshold, no performance degradation occurs due to DVFS. These quality and performance
metrics will be considered by the proposed energy optimization algorithm, so that they are
not degraded (as it will be confirmed by the experimental results).

Our proposed DVFS management policy (DVFS-perf), presented in Algorithm 1 takes into
account the previous relationships in order to improve energy efficiency, avoiding
performance degradation. As inputs, we consider the complete set of hosts (hostList), and the
set of valid frequencies (frequenciesList). For each host, the current value of CPU utilization is
acquired in step 4 by using Equation 9.12 applied to the current utilization at the current
frequency. This variable, which depends on the workload that is already hosted and running
in the server, is monitored during runtime by using calls to the system utility (e.g. Linux ps).
Then, ucpueq (m, k) (eqUtilization) is calculated for the different frequencies in frequenciesList in
steps 5 to 9. The algorithm selects the minimum frequency that offers a suitable ucpueq

(m, k)
value that is greater or equal to the current utilization in the host in step 7. Finally, the DVFS
configuration for the entire set of hosts is provided by frequencyConfiguration.

Algorithm 1 DVFS-perf configuration
Input: hostsList, frequenciesList
Output: frequencyConfiguration

1: frequenciesList.sortIncreasingFrequency()
2: maxFrequency← frequenciesList.getMax()
3: foreach host in hostList do
4: utilization← host.getFmaxUtilization()
5: foreach frequency in frequenciesList do
6: eqUtilization← frequency / maxFrequency
7: if eqUtilization ≥ utilization then
8: frequencyConfiguration.add(frequency)
9: break

10: return frequencyConfiguration

As dynamic power is reduced with frequency, our algorithm sets the operating frequency
of each host to the lowest available value that provides sufficient CPU resources according
to Equation 9.9. This ensures that the server offers sufficient resources based on the amount
demanded by the allocated workload satisfying QoS.

We motivate these metrics by providing a case of use based on a Fujitsu RX300 S6 server,
whose maxFrequency is 2.4GHz. The operating frequencies set (frequenciesList) in GHz is
f(Fujitsu, k) = {1.73, 1.86, 2.13, 2.26, 2.39, 2.40}. Our aim is to find the best
frequencyConfiguration for a current utilization of the server of 80% at maximum frequency
(ucpu(Fujitsu, fMAX(Fujitsu), w80) = 0.8). First, we calculate the eqUtilization for the
minimum frequency according to Equation 9.9 obtaining
ucpueq (Fujitsu, 1) = 1.73/2.4 = 0.72. As 72% is lower than 80%, this frequency is discarded so
the algorithm check the next one in an increasing order. ucpueq

(Fujitsu, 2) = 1.86/2.4 = 0.775
is also lower so the next frequency is evaluated. For f(Fujitsu, 3) = 2.13GHz, we calculate
ucpueq

(Fujitsu, 3) = 2.13/2.4 = 0.887 obtaining an equivalent CPU utilization of 88.7%,
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which is higher than the 80% required by the workload allocated in it. Thus, our algorithm
sets the frequency of the Fujitsu server to 2.13GHz, as it is the minimum frequency that
allows running the workload without performance degradation due to DVFS.

This policy allows servers to execute the workload in a more efficient way in terms of
energy as frequency is scaled depending on the CPU requirements of the workload, while
maintaining QoS.

9.3.2 Frequency-Aware Dynamic Consolidation
As an alternative to previous approaches, in this research we provide an energy-aware
consolidation strategy that considers the frequency configuration according to the allocation
of VMs. We use this approach to proactively optimize a Cloud under dynamic workload
conditions.

Dynamic Consolidation Outlook

In this context, the dynamic consolidation problem can be split into four different phases, as
proposed by Beloglazov et al. [162]. Each phase considers (i) detection of overloaded and
(ii) underloaded hosts, (iii) selection of VMs to be migrated from these hosts, and (iv) VM
placement after migrations respectively. Their research also present different algorithms for
optimizing phases (i)-(iii) that we use during performance evaluation (see Subsection 9.4.4).
So our work will be focused on finding new placements to host VMs after their migration
from underloaded and overloaded hosts. In this work, we aim to optimize VM placement
taking into account the frequency variations caused by the workload allocation together with
the estimation of its impact in the overall consumption. This premise is incorporated in our
policy, and evaluated lately in terms of energy efficiency and performance.

Algorithm Considerations

One of the main challenges when designing data center optimizations is to implement fast
algorithms that can be evaluated for each workload batch during run-time. For this reason,
the present research is focused on the design of an optimization algorithm that is simple in
terms of computational requirements, in which both decision making and its implementation
in a real infrastructure are fast. Instead of developing an algorithm for searching the optimal
solution, we propose a sequential heuristic approach because it requires lower computational
complexity. Our solution scales properly in accordance with large numbers of servers as
explained in Subsection 9.3.2.

Minimizing the overall IT power consumption of the data center as a whole by only
considering the consumption of each server separately may drive to some inefficiencies. The
dynamic power of a host depends linearly on the CPU utilization, while the static remains
constant (see Equation 9.1). So, when the reduction in consumption is performed
individually, server by server, it results in the allocation of less workload on each physical
machine, leading to the underloaded server-issue. This situation increases the number of active
servers, which become underutilized, regardless the increase in the global static
consumption. Otherwise, if the total energy consumed by the infrastructure is considered to
be optimized, increasing the CPU utilization will reduce the number of servers required to
execute the workload thus decreasing the overall static consumption but leading to an
overloaded server-scenario. Therefore, both QoS and energy consumption could be affected as
a consequence of VM migrations.

The proposed power and performance considerations, in Equations 9.1-9.5 and 9.6-9.12
respectively, provide a better understanding on how the system’s behavior varies depending
on frequency and utilization simultaneously. According to this, a more proactive allocation
policy could be devised using DVFS to dynamically constrain aggressive consolidation
scenarios to preserve QoS. To this purpose, the trade-offs between CPU utilization and
frequency have to be analyzed in terms of energy. An increase in the resource demand of a
host in terms of CPU utilization could represent an increment in its frequency depending on
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the available set of frequencies to maintain QoS. If frequency needs to be risen, the power
consumption will be increased due to the frequency contribution (see Equation 9.8). So, we
propose a VM placement policy that estimates the frequency increment during workload
consolidation. Our strategy decides to allocate workload in those servers that have a higher
utilization (but still have resources left to accommodate the incoming VM) and that impact
less on the frequency contribution. Consequently, the policy uses more efficiently the ranges
of utilization in which the frequency is not increased.

DVFS-Aware Dynamic Placement

The policy proposed in this research is not only aware of the utilization of the incoming
workload to be assigned, but also is conscious of the impact of its allocation on servers
working at different frequencies. DVFS-awareness allows to predict operating frequencies
depending on VM allocation, thus helping to estimate future energy contributions. The
presented approach takes advantage of this knowledge to optimize VM placement within the
Cloud infrastructure under QoS and energy constraints.

Our algorithm is based on the bin packing problem, where servers are represented as bins
with variable sizes due to the frequency scaling. To solve this NP-hard problem we use a Best
Fit Decreasing (BFD)-based algorithm as BFDs are shown to use no more than 11/9 ·OPT + 1
bins [163], being OPT the bins provided by the optimal solution. The bin packing approach
under similar conditions has been proved to work well for this type of problems with large
server sets of 800 hosts [162].

The allocation of a VM in a specific host provokes an increase in its CPU utilization and,
according to our proposed DVFS-perf configuration algorithm, may increase or not its
operating frequency. According to our previous considerations, a trade-off between servers’
utilization and frequency may be inferred to reduce the energy consumption of dynamic
workload scenarios. Typically, the frequency span in which a CPU ranges is of about 1GHz.
So, the difference between a frequency of the set of valid frequencies and the next one is in
the order of magnitude of 10−1, being more common steps of about 0.1-0.5 GHz. On the other
hand, average Cloud workload utilization ranges from 16%-59% [164]. As we define
utilization of CPU as a value that ranges from 0 to 1, average Cloud workload utilization
would be in the range 0.16-0.59. Thus utilization and frequency increments originated by the
allocation of VMs have the same orders of magnitude. So, in order to maximize servers’
utilization while minimizing frequency increment, we propose to maximize the difference
between these two parameters as can be seen in Equation 9.13. We avoid the use of
normalization, providing a light algorithm. We mean that our proposed algorithm is light
because, compared with tests that we have conducted with metaheuristics as Simulated
Annealing and Grammatical Evolution, we achieve simulation times that are about 160 times
lower.

Placementhost,vm = uhost,vm −∆fhost,vm (9.13)
uhost,vm = uhost + uvm (9.14)

∆fhost,vm = fhost,vm − fhost (9.15)

uhost,vm is the estimated CPU utilization resulting from adding both host and vm
utilizations (uhost and uvm). ∆fhost,vm provides the estimated difference between the host
frequency after (fhost,vm) and before (fhost) the VM allocation calculated for the new
estimated utilization. Algorithm 2 presents our DVFS-Aware Dynamic Placement proposal.

The input vmList represents the VMs that have to be migrated according to the stages (i), (ii)
and (iii) of the consolidation process, defined in Subsection 9.3.2, while hostsList is the entire
set of servers in the data center that are not considered overutilized. First, VMs are sorted
in a decreasing order of their CPU requirements. Steps 3 and 4 initialize bestPlacement and
bestHost, which are the best placement value for each iteration and the best host to allocate the
VM respectively. Then, each VM in vmList will be allocated in a server that belongs to the list
of hosts that are not overutilized (hostList) and have enough resources to host it.
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Algorithm 2 Frequency-Aware Placement
Input: hostsList, vmList
Output: FreqAwarePlacement of VMs

1: vmList.sortDecreasingUtilization()
2: foreach vm in vmList do
3: bestPlacement←MIN
4: bestHost← NULL
5: foreach host in hostList do
6: if host has enough resources for vm then
7: utilization← estimateUtilization(host, vm)
8: frequencyIncrement← estimateFrequencyIncrement(host,vm)
9: placement← utilization - frequencyIncrement

10: if placement > bestPlacement then
11: bestHost← host
12: bestPlacement← placement
13: if bestHost 6= NULL then
14: FreqAwarePlacement.add(vm, bestHost)
15: return FreqAwarePlacement

In steps 7 and 8, the algorithm calculates the value of the estimated CPU utilization
(uhost,vm) and freqIncrement (∆fhost,vm) after vm allocation using Equations 9.14 and 9.15.
According to our allocation strategy, derived from the above considerations, the placement
value (Placementhost,vm) obtained when a VM is allocated in a specific host is calculated in
step 9 using Equation 9.13.

As can be seen in steps 10, 11 and 12, the VM is allocated in the host that has a higher
placement value, which means a high CPU utilization but, on the contrary, it represents a low
increase in frequency due to the utilization increment. This approach minimizes the number
of bins used by this combinatorial NP-hard problem while taking full advantage of the range
of the equivalent CPU utilizations for each frequency. The output of this algorithm is the
frequency-aware placement (FreqAwarePlacement) of the VMs that have to be mapped
according to the under/overloaded detection and VM selection policies.

9.3.3 Frequency-Aware Optimization

Our Frequency-Aware Optimization combining the DVFS-perf policy with the Freq-Aware
Placement algorithm is shown in listing of Algorithm 3. First, it finds the optimized
placement of the VMs (optimizedPlacement) that have to be migrated due to dynamic
workload variations. This is calculated in Algorithm 2, taking care of the frequency
requirements. In step 2, the function consolidateVM allocates the VMs according to this
mapping, performing VM migrations and updating utilization requirements for each host.
Then in steps 3 and 4, the DVFS-perf configuration is obtained using Algorithm 1 with
current utilization values. Finally the data center status is updated according to the
optimized allocation and frequency configuration. Our DVFS-Aware strategy provides an
elastic scale out that is adapted to the varying demand of resources. Also, the algorithm is
light, making it suitable for quickly adaptation to workload fluctuations in the data center
and run-time execution.

9.4 Simulation Configuration

In this section, we present the impact of our frequency-aware policies in energy consumption
due to the improved management of the workload and the frequency assignment in servers.
However, large-scale experiments and their evaluations are difficult to replicate in a real data
center infrastructure because it is difficult to maintain the same experimental system
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Algorithm 3 Frequency-Aware Optimization
Input: hostsList, vmList, frequenciesList
Output: optimizedConfiguration of the data center

1: optimizedPlacement← frequencyAwarePlacement (hostList, vmList)
2: consolidateVM (optimizedPlacement)
3: optimizedFrequencies← DVFS-perfConfiguration (hostList, frequenciesList)
4: setFrequencyConfiguration (optimizedFrequencies)
5: optimizedConfiguration← configureDC (optimizedAllocation, optimizedFrequencies)

6: return optimizedConfiguration

conditions that are necessary for comparing different user and application scenarios. This can
be achieved in simulation environment as simulators helps in setting up repeatable and
controllable experiments.

For that reason, we have chosen the CloudSim toolkit [132] to simulate a Infrastructure as
a Service (IaaS) Cloud computing environment. In contrast to other simulators, CloudSim
provides the management of on-demand resource provisioning, representing accurately the
models of virtualized data centers. The software version 2.0 that we have chosen supports
the energy consumption accounting as well as the execution of service applications with
workloads that vary along time [162]. For this work, we have provided frequency-awareness
to the CloudSim simulator, also incorporating the ability to modify the frequency of servers.
This frequency management policy allows us to evaluate the performance of the algorithms
proposed in Sections 9.3.1 and 9.3.2. Our code also supports switching the VM placement
policy to compare our strategy with other approaches.

Our simulations have been executed in a 64-bit Windows 7 OS running on an Intel Core i5-
2400 3.10GHz Dell Workstation with four cores and 4 GB of RAM. Moreover, the simulations
are configured according to the following considerations:

9.4.1 Workload

We conduct our experiments using real data from PlanetLab, which comprises more than a
thousand servers located at 645 sites around the world. The workload consists of 5 days of data
with different resource demand profiles obtained from the CoMon monitoring project [165].
The data traces are available and fully operative in CloudSim as this workload is commonly
used by researchers using this simulator. By using these traces we can compare our approach
with published and future research works.

The main features of each of the 5 sets, as the number of VMs and both the mean and
standard deviation values of the CPU utilization, are shown in Table 9.1. Each of the five data
sets includes CPU utilization values of around a thousand VMs with a monitoring interval
of 300 seconds. We have chosen this collection because each independent workload can be
executed for the same data center’s initial size. Also, the usage of traces from a real system
makes our simulation-based analysis applicable to real scenarios.

Table 9.1: PlanetLab workload main features
Date VMs CPU mean utilization CPU utilization SD
2011.03.03 1052 12.31 % 17.09 %
2011.03.06 898 11.44 % 16.83 %
2011.03.09 1061 10.70 % 15.57 %
2011.04.12 1054 11.54 % 15.15 %
2011.04.20 1033 10.43 % 15.21 %
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9.4.2 Physical Nodes

The simulation consists of a set of 400 hosts conforming a data center. This is the minimum
amount of resources required by the CloudSim initial provisioning policy to manage the
number of VMs for the different workloads that we have selected. During simulations, the
number of servers will be significantly reduced as oversubscription is enabled. Hosts are
modeled (as in Part II of this dissertation) as a Fujitsu RX300 S6 server based on an Intel Xeon
E5620 Quad Core processor @2.4GHz, RAM memory of 16GB and storage of 1GB, running a
64bit CentOS 6.4 OS virtualized by the QEMU-KVM hypervisor.

DVFS Governors

The DVFS system of our Fujitsu server operates at 1.73, 1.86, 2.13, 2.26, 2.39 and 2.40 GHz
respectively. For our experiments, we define two different governors to dynamically manage
the CPU frequency. Both of them are fully available in our CloudSim modified version. For this
work, we have provided frequency-awareness to the CloudSim simulator, also incorporating
the ability to modify the frequency of servers according to our new DVFS-perf policy.

• Performance. The CPUfreq governor performance1 is a typical governor available in the
Linux Kernel. It sets the CPU to the highest frequency of the system.

• DVFS-perf. This governor dynamically modifies the CPU frequency according to
Algorithm 1 so, it is set to the minimum frequency that ensures QoS depending on the
workload.

Server Power Modeling

The power model used to estimate the energy consumed by these servers was proposed in our
previous work in Chapter 6 (Equation 6.22) and can be seen in Equation 9.16. Then the energy
consumption is obtained using Equation 9.17 where t determines the time in which the energy
value is required. The operating frequencies set (in GHz) is provided in 9.18.

PFujitsu,k,w = 3.32 · V 2
DD(k) · fop(k) · ucpu(Fujitsu, k, w) +

= 1.63 · 10−3 · T 2
mem + 4.88 · 10−11 · FS3 (9.16)

EFujitsu = PFujitsu · t (9.17)
fop(k) = {1.73, 1.86, 2.13, 2.26, 2.39, 2.40}(GHz) (9.18)

This model presents a testing error of 4.87% when comparing power estimation to real
measurements of the actual power. We used applications that can be commonly found in
nowadays’ Cloud data centers (including web search engines, and intensive applications) for
training and testing stages. We assume a thermal management that allows memory
temperature and fan speed to remain constant as we are interested in analyzing the power
variations only due to utilization and DVFS management provided by our Freq-Aware
optimization. The temperature of the memory Tmem and the fan speed FS are considered
constant at 308 K and 5370 RPM respectively. Both parameters take their average values from
the exhaustive experimental evaluation for this type of server that has been performed in our
aforementioned previous work in Part II. This approach is valid since current models usually
take into account only the variation of the dynamic consumption, as seen in Section 9.2. By
including our power model in the CloudSim toolkit we are able to evaluate the power
consumption in a more accurate way, as both the dynamic (depending on CPU utilization
and frequency) and the static contributions are now considered. Thus, the impact of DVFS
and consolidation-aware optimizations on the data center IT energy consumption is more
likely to be measured by including our proposed models.

1www.kernel.org/doc/Documentation/cpu-freq/governors.txt
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Active Server Set

In this work we assume that a server is switched off when it is idle, so no power is consumed
when there is not any running workload. Also, servers are turned on when needed, if the
system is overloaded. We take into account the booting energy consumption required by a
server to be fully operative as seen in Equation 9.21.

Pboot = 1.63 · 10−3 · 3082 + 4.88 · 10−11 · 53703 = 162.1768W (9.19)
tboot = 300s (9.20)
Eboot = Pboot · tboot = 13.514 · 10−3kW · h (9.21)

where Pboot is the server booting power working at 308 K and 5370 RPM as defined above and
tboot is the booting time obtained experimentally.

9.4.3 Virtual Machines

VM types

The simulation uses heterogeneous VM instances that correspond to existing types of the
Amazon EC2 Cloud provider. The Extra Large Instance (2000 MIPS, 1.7 GB RAM), the Small
Instance (1000 MIPS, 1.7 GB RAM) and the Micro Instance (500 MIPS, 613 MB RAM) are
available for all the scenarios. All the VM are forced to be single-core to meet the PlanetLab
data set requirements.

Migration policy

In all our scenarios we allow online migration, where VMs follow a straightforward load
migration policy already deployed on CloudSim 2.0. During migration, another VM, which
has the same configuration as the one that is going to be migrated, is created in the target
server. Then the cloudlets are migrated from the source VM to the target VM. Finally, when
the migration is finished the source VM is removed. Live migration has two different
overheads that affect to energy consumption and performance degradation. Therefore, it is
crucial to minimize the number migrations in order to optimize energy efficiency while
maintaining QoS.

Energy overhead. A migration takes a time known as migration time (tmigration), which
is defined in Equation 9.22. The migration delay depends on the network bandwidth (BW)
and the RAM memory used by the VM. We consider that only the half of the bandwidth is
used for migration purposes, as the other half is for communication. Thus, migrations have an
energy overhead because, during migration time, two identical VMs are running, consuming
the same power in both servers.

tmigration =
RAM

BW/2
(9.22)

Performance overhead. Performance degradation occurs when the workload demand in
a host exceeds its resource capacity. In this work we model that oversubscription is enabled
in all servers. So, if the VMs hosted in one physical machine simultaneously request their
maximum CPU performance, the total CPU demand could exceed its available capacity. This
situation may lead to performance degradation due to host overloading. The impact on SLA
can be calculated as the SLA violation time per active host (SLATAH ) that can be seen in
Equation 9.23.

On the other hand, when overloading situations are detected, VMs are migrated to better
placements, thus provoking performance degradation due to migration (PDM) as seen in
Equation 9.24. The metric used in this work to determine the SLA violation
(SLAviolation) [162] combines SLATAH and PDM as shown in Equation 9.26:
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SLATAH =
1

M

∑
i=1

M
t100%i

tactivei
(9.23)

PDM =
1

V

∑
j=1

V
pdmj

Cdemandj
(9.24)

pdmj = 0.1 ·
∫ t0+tmigration

t0

ujdt (9.25)

SLAviolation = SLATAH · PDM (9.26)

where M is the number of servers; t100%i
and tactivei are the time in which the CPU utilization

of the host i is 100% and the total time in which it is active respectively. V is the number of
VMs and Cdemandj represents the CPU demand of the VM during its lifetime. pdmj defines
the performance degradation per VM during tmigration. In our experiments it is estimated as
the 10% of the CPU utilization in MIPS during the migration time of VM j. Finally, t0 is the
time in which the migration starts and uj is the CPU utilization of VM j.

9.4.4 Dynamic Consolidation Configuration
The present work aims to evaluate the performance of DVFS-aware dynamic consolidation.
Consolidation phases (i), (ii) and (iii), defined in Subsection 9.3.2, are able to use the
algorithms for the detection of overloaded or underloaded hosts and for the selection of VMs
to be migrated that are available in CloudSim 2.0 [162]. We have simulated all the possible
combinations for both types of algorithms with the default configuration of internal
parameters, resulting in 15 different tests. The internal parameters for each option are set to
those values that provide better performance according to Beloglazov et al [162]. Finally,
consolidation phase (iv) is able to use two different power-aware placement algorithms.

Over/Underloading detection algorithms

We consider the detection of overloaded or underloaded hosts using five specific policies that
belong to three different detection strategies.

• Adaptive Utilization Threshold Methods. Include the Interquartile Range (IQR) and the
Median Absolute Deviation (MAD) algorithms, and offer an adaptive threshold based on
the workload utilization to detect overloaded or underloaded hosts. The internal safety
parameters take the value 1.5 and 2.5 respectively, and define how aggressively the
consolidation is considered in this stage.

• Regression Methods. Both the Local Regression (LR) and the Local Regression Robust (LRR)
are regression methods based on the Loess method and have the same internal parameter
of 1.2.

• Static Threshold Method. The Static threshold (THR) sets a fixed value to consider when
a host is overloaded or underloaded. The internal parameter is 0.8.

VM Selection Algorithms

The selection of the VMs that have to be migrated from overloaded or underloaded hosts is
performed by three different algorithms.

• Maximum correlation (MC). The system migrates the VM that presents a higher
correlation of CPU utilization with other VMs so, the peak loads would occur at the
same time.

• Minimum migration time (MMT). The algorithm selects the VM that takes less time to
be migrated when compared with the rest of VMs hosted in the same server.

• Random choice (RS). The VM is randomly selected.
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VM Placement Algorithms

• Power Aware Best Fit Decreasing (PABFD). This placement policy for Cloud
infrastructures takes into account the power consumption of the servers when finding
an optimal placement under dynamic workload conditions [162]. It works well for
SLA-constrained systems, maintaining QoS while reducing energy consumption. This
state-of-the-art solution does not take into account frequency increments due to
workload allocation and will serve us as a baseline consolidation policy.

• Frequency-Aware Placement (Freq-Aware Placement). This is the DVFS-aware
placement policy that we propose in Algorithm 2. This solution allows a dynamic
consolidation that is aware of both power and frequency also taking into account QoS.

9.4.5 Scenarios

We provide three different scenarios to evaluate the performance of our frequency-aware
optimization. For this purpose, we will compare our work with two different approaches. All
the proposed scenarios are able to power on/off servers when needed as can be seen in
section 9.4.2

• The Baseline scenario represents the default performance of CloudSim. The
performance governor is active so, the servers always operate at the maximum
frequency. PABFD placement is used to perform VM allocation.

• The DVFS-only scenario uses our DVFS-perf governor combined with PABFD
placement. Thus, the frequency of each server is reduced to the lowest value that allows
the system to meet QoS. However, the mapping is not aware of the allocation impact on
CPU frequency that also impacts on the power consumption.

• The Freq-Aware Optimization scenario combines our DVFS-perf governor with our
Freq-Aware Placement as shown in Algorithm 3. Both utilization and frequency
estimations are considered to find the optimized allocation. It aims to evaluate our
proposed optimization strategy.

9.5 Experimental Results

We have simulated the 3 different scenarios for each of the 5 different PlanetLab workloads
presented in Table 9.1, and tested the 15 different combinations of the algorithms for
overloading detection and VM selection aforementioned. Therefore, for each of the daily
workloads, we are able to present the following results per test (under/overload
detection-VM selection) and per scenario, in order to compare our Freq-Aware optimization
with the other two baseline alternatives.

9.5.1 Performance Analysis

We consider the following metrics to analyze the obtained results. The number of VM
migrations is considered as a figure of merit because migrations may cause SLA violations
due to performance degradation, also impacting on energy consumption. Additionally we
have included the overall SLA violations provided by the metric SLAviolation to
simultaneously verify if our policies meet QoS requirements. As CloudSim allows turning
machines on when needed, we have included the additional booting energy consumption of
the servers to the simulation. The number of Power on events is our proposed metric to
evaluate its impact because, reducing the number of these events would decrease the overall
data center energy. Service outages are experienced when the power density exceeds the
maximum capacity of the grid. So, we evaluate the peak power during the simulation in
order to analyze the system’s performance under critic situations in terms of electricity
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supply. Finally, the IT energy signature is obtained in order to evaluate the efficiency
introduced by our strategy.

Table 9.2 shows the average values of these metrics when comparing the baseline with the
DVFS-only policy and with our Freq-Aware optimization. For each PlanetLab workload
(represented as the date when it was obtained) the table shows the averaged values that
result from their execution under every possible combination of the overloading detection
and the VM selection algorithms. An average of 3.35% energy savings is achieved just
including the DVFS capabilities to the simulation infrastructure for all the workloads. The
savings in energy consumption come from the combined reduction of the VM migrations and
the Power on events. In this scenario, QoS is maintained but the peak power is not improved
when compared with the baseline.

Table 9.2: Average values per day for baseline comparison
Optim. Date VM migrations Power on events SLA violations Peak power Energy
Policy (yy.mm.dd) reduction reduction reduction reduction savings

DVFS-only 2011.03.03 4.40 % 13.63 % 0 % -6.08 % 4.64 %
2011.03.06 4.81 % 9.60 % 0.01 % -2.87 % 3.45 %
2011.03.09 3.63 % 5.16 % 0 % -7.27 % 3.44 %
2011.04.12 1.44 % 1.49 % 0 % 0.1 % 2.36 %
2011.04.20 1.82 % -3.72 % 0.01 % 5.81 % 2.59 %

Freq-Aware 2011.03.03 23.44 % 86.10 % 0 % 68.16 % 34.82 %
2011.03.06 19.38 % 79.16 % 0.01 % 64.29 % 34.64 %
2011.03.09 19.53 % 85.41 % 0 % 64.34 % 39.14 %
2011.04.12 26.77 % 88.03 % 0.01 % 66.19 % 38.88 %
2011.04.20 19.55 % 85.81 % 0 % 69.09 % 41.62 %

The proposed Frequency-Aware Placement combined with the DVFS management
significantly reduces both the number of power on events and VM migrations. The
minimization of the times that a server is powered on has several benefits, not only reducing
the energy consumption but also extending its lifetime. However, its impact on the total
energy consumption represents only about 5.31%. So, the energy savings are obtained mainly
due to the reduction of the VM migrations as, during each migration, an identical VM is
simultaneously running in the source and in the target hosts. Our proposed Freq-Aware
optimization policy outperforms the baseline obtaining average energy savings of 37.86%
significantly reducing peak power consumption around 66.14% while maintaining the QoS,
as can be seen in the peak power reduction column and in the SLA violations reduction
column respectively.

The different tests, each of them representing a specific combination of overloading
detection and VM selection algorithms, perform differently. However, the performance
pattern for each test is repeated for every considered PlanetLab workload in Table 9.1. Thus,
we are able to analyze the system’s performance for every test, as can be seen in Figure 9.1,
which presents the averaged values of each metric for all the workloads. As shown in 9.1.e,
both policies achieve energy savings for each test but the Freq-Aware optimization reduces
the data center energy consumption to an average value of 69.16 kWh for all the workloads
regardless the combination of algorithms. This means an average savings of 37.86%. In 9.1.d
we obtain a similar pattern in the overall peak power of the IT infrastructure, achieving a
reduction of about 66.14%.

The same occurs in 9.1.c for the number of power on events that is reduced to about 76.53
events, showing average savings of 86.03%. However, not every test performs the same in
terms of SLA violations. Overall SLA violation for local regression methods combined with
MC and MMT algorithms present better values of about 0.05% as can be seen in 9.1.b. Also
in 9.1.a, average VM migrations vary considerably from one test to another. So, the SLA
violations and VM migrations metrics may be determining factors when selecting a
combination of overloading detection and VM selection algorithms.
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Figure 9.1: Average metrics per test

9.5.2 Run-time Evaluation

Moreover, to deeply understand the performance of the Freq-Aware optimization during run-
time, we have selected one of the workloads for its simulated execution under the conditions
of a specific test. Figure 9.2 presents the temporal evolution of the test that combines the MAD
and MMT algorithms as it achieved the lowest total energy consumption. The test runs the
1052 VMs of the workload dated on 2011.03.03 because it achieves the highest CPU utilization
and standard deviation (see Table 9.1) thus presenting the most variable working conditions.

In this framework, we evaluate additional metrics to compare both baseline and
Freq-Aware scenarios. Figure 9.2.a shows the global resource demand of this workload in
terms of MIPS. The global utilization represents the average CPU utilization of all the servers
in the data center. The number of active hosts within the total facility is also analyzed
because, as this value increases, the global utilization will be reduced. Finally the cumulative
energy consumption of the IT infrastructure is presented to study its deviation between both
scenarios during a 24 hours-workload.

For the baseline policy, the number of active hosts is highly increased during peaks of
workload demand, consequently reducing the data center global utilization, as can be seen
in Figures 9.2.b and 9.2.c respectively. The decrease on the overall utilization also reduces
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Figure 9.2: Temporal evolution for MAD-MMT test running workload 2011.03.03

each server energy consumption, as its power depends linearly on CPU demand. However,
the static consumption (which accounts for about 70% of total consumption in each physical
machine) due to the additional servers that are required to execute the workload with this
utilization, highly increases the total energy budget. On the other hand, for the Freq-Aware
optimization policy, both values remain more constant, as shown in Figures 9.2.b and 9.2.e
respectively.

The DVFS configuration of the active server set during run-time can be seen in
Figure 9.2.d. The DVFS mode operating at 2.13GHz is the most selected, as it offers a wider
range of utilizations in which the frequency remains constant. This frequency allows a
sufficiently high utilization (from 77.5% to 88.75%) that helps to minimize the number of
servers. The rest of DVFS modes are also used but mainly to absorb load peaks as dynamic
workload fluctuates during run-time.

Our algorithm, when compared with the baseline, speeds up both the consolidation into
a lower number of active servers and the elastic scale out of the IT infrastructure, increasing
the global utilization in a 23.46% while reducing the number of active hosts around a 44.91%.
Table 9.3 presents the averaged values for these results. Figure 9.2.f shows how this behavior
impacts on the energy usage of the data center where the baseline consumption grows at a
higher rate during dynamic workload variations than for the optimized scenario, achieving
total energy savings of 45.76%.

Table 9.3: Average results for MAD-MMT test running workload 2011.03.03.
Scenario Global Utilization Active Hosts Total Energy
Baseline 60 % 35.49 125.45 kWh
Freq-Aware 83 % 19.55 76.72 kWh
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9.6 Summary

The work presented in this chapter makes relevant contributions on the optimization of
Cloud data centers from a proactive perspective. In this work we present the Freq-Aware
optimization that combines a novel reactive DVFS policy with our proactive
Frequency-aware Consolidation technique. We have achieved competitive energy savings of
up to 45.76%, when compared with the PABFD baseline, for the IT infrastructure while
maintaining QoS, even improving slightly the SLA violations around 0.01%, for real
workload traces in a realistic Cloud scenario. According to our results, our algorithm
enhances the consolidation process and speeds up the elastic scale out, reducing the global
peak power demand about a 66.14% while improving the energy efficiency by increasing
global server utilization to 83% in average.

The following chapter extends this research to provide not only DVFS awareness but also
thermal awareness to the dynamic management of the data center. So, novel dynamic and
proactive consolidation strategies are provided to improve energy savings in both IT and
cooling infrastructures from a holistic perspective.
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10. Power and Thermal Aware VM Allocation
Strategies for Energy-Efficient Clouds

“Whatever it is you seek, you have to put in the time, the
practice, the effort. You must give up a lot to get it. It has to be
very important to you. And once you have attained it, it is
your power.”

— Michael Crichton, Jurassic Park

The cooling needed to keep the servers within reliable thermal operating conditions has a
significant impact on the thermal distribution of the data room, thus affecting servers’ power
leakage. The energy efficiency of novel cooling technologies, as water-based cooling, heat
reusing and free cooling approaches outperform traditional CRAC units. However, the
implantation rate of these new techniques is still low for typical data centers. Therefore,
optimizing the energy consumption of both IT and cooling infrastructures is a major
challenge to place data centers on a more scalable scenario. Also, many Cloud applications
expect services to be delivered as per SLA, so power consumption in data centers may be
minimized without violating these requirements whenever it is feasible. Thus, understanding
the relationships between power, temperature, consolidation and performance is crucial to
enable energy-efficient management at the data center level.

In this chapter, we propose novel power and thermal-aware strategies to model global
optimizations from a local perspective based on the global energy consumption of
metaheuristic-based optimizations. For this purpose, thermal models, which accurately
describe the behavior of the CPU and the memory devices, are provided. They have been
tested using a real infrastructure running real Cloud applications resulting in an average
temperature estimation error of 0.85% and 0.5049% respectively. Our results show that the
combined awareness from both metaheuristic and BFD algorithms allow us to infer models
that describe the global energy behavior into faster and lighter global optimization strategies
that may be used during runtime. This approach allows us to improve the energy efficiency
of the data center, considering both IT and cooling infrastructures, in a 21.74% while
maintaining QoS.

10.1 Introduction

As the connectivity in personal and working environments is gaining importance, an
increasing number of services with diverse application-level requirements are offered over
the Internet [84]. The integration of application-level strategies together with server
consolidation is a major challenge to maximize energy savings [85]. The resource demand
required by the VMs is highly variable and is not always known a priori, as it depends
mostly on users’ activity. So, it is recommendable to have additional knowledge about
application-level performance, not only regarding CPU but also in terms of memory and disk
among others, to optimize the resource adaptation to the studied variations in the application
requirements. This issue is particularly accentuated when servers are overloaded and
applications cannot access enough resources to operate efficiently. Therefore it is a great

95



10. Power and Thermal Aware VM Allocation Strategies for Energy-Efficient Clouds

recommendation to use consolidation algorithms that dynamically reallocate VMs on
different physical servers throughout the data center in order to optimize resource utilization
during runtime.

One of the main challenges within energy-efficient Clouds consist in reaching a
compromise between the QoS in terms of SLA and energy consumption so that the
performance is not degraded. To achieve this goal, the different components of the system
should be analyzed, as well as the interaction between them when they operate as a whole.
This work is intended to offer novel optimization strategies that take into account the
contributions to power of non-traditional parameters such as temperature and frequency
among others. Our research is based on fast and accurate models that are aware of the
relationships with power of these parameters, allowing us to combine both energy and
thermal-aware strategies. The new holistic paradigm proposed in this Ph.D. thesis, focuses
for the first time in literature on considering the energy globally. Hence, all the data center
elements are aware of the evolution of the global energy demand and the thermal behavior of
the data room. So, our decisions are based on information from all available subsystems to
perform different energy and performance optimizations.

Our work makes the following key contributions: 1) a set of single and multi-objective
BFD-based policies that optimize the energy consumption of the data center considering both
IT and cooling parameters; 2) a novel strategy to infer a global optimization from a local
perspective based on modeling the global energy consumption of metaheuristic-based
optimizations; 3) two thermal models that accurately describe the behavior of the CPU and
the memory devices; and 4) a cooling strategy based on the estimated temperature of devices
due to VM allocation.

The remainder of this chapter is organized as follows: Section 10.2 gives further
information on the related work on this topic. Our proposed algorithms and models are
presented in Section 10.3, Section 10.4 and Section 10.5 respectively. Section 10.6 describes
profusely the experimental results. Finally, in Section 10.7 the main conclusions are drawn.

10.2 Related Work

Due to the impact of energy-efficient optimizations in an environment that handles so
impressive high figures as data centers, many researchers have been motivated to focus their
academic work on obtaining solutions for this issue. In this section, we present different
approaches of the state-of-the-art from both server and data center perspectives that are
aware of thermal and power contributions.

10.2.1 Server Efficiency

Joint thermal and power-aware strategies can be found within the server scope considering
fan control together with scheduling in a multi-objective optimization approach [102]. Chan
et al. [103] propose a technique that combines both energy and thermal management policies
to reduce the server cooling and memory energy costs. They provide a model to estimate
temperature that uses electrical analogies to represent the thermal and cooling behavior of
components. However, their work does not split the contributions of leakage and cooling
power, so their minimization strategy is unaware of the leakage-cooling trade-offs.

10.2.2 Data Center Efficiency

By virtualizing a data center, savings in the electricity bill of around 17% can be achieved.
However, by combining improvements in power of both computation and cooling devices,
savings have the potential to reach about 54% [83]. This is the main challenge to reduce data
center energy from a global perspective.

On its own, virtualization has the potential of minimizing the hot-spot issue by migrating
VMs. Migration policies allow to distribute the workload during run-time without stopping
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task execution. Some Cloud computing solutions, such as those introduced in the work
presented by Li et al. [104], have taken into account the dependence of power consumption
with temperature, due to fan speed and the induced leakage current.

Abbasi et al. [105] propose heuristic algorithms to address this problem. Their work
presents the data center as a distributed CPS in which both computational and physical
parameters can be measured with the goal of minimizing energy consumption. However, the
validation of these works is kept in the simulation space, and solutions are not applied in a
real data center scenario.

The current work in the area of joint energy and thermal aware strategies is not addressing
the issue of proactive resource management with the goal of total energy reduction. Instead,
techniques so far either rely on the data room thermal modeling provided by CFD software,
or just focus on measuring inlet temperature of servers. However, the models at the data
room level do not monitor the CPU temperature of servers nor adjusting the infrastructure
status proactively or performing a joint workload and cooling management during run-time
for arbitrary workloads.

10.3 VM Allocation Strategies Description

The different policies presented in this section are based on the knowledge achieved from
our power model in Equation 9.3 that considers non-traditional contributions as frequency
and temperature of the server physical resources. In this section we provide a taxonomy of
candidate optimization algorithms that take into account IT and cooling power of the data
center infrastructure under energy and thermal considerations. The mathematical description
of these objectives will allow the later optimization by the development of an optimization
algorithm.

10.3.1 Single-Objective BFD-based Allocation Policies

These Single-Objective (SO) policies optimize the consolidation of a set of VMs (vmList) using
the BFD approach. First, VMs are sorted in decreasing order of CPU utilization and then,
they are allocated on the set of available hosts (hostList) according to the minimization of an
optimization objective (SOvalue) as can be seen in Algorithm 4. bestPlacement and bestHost are
the best placement value for each iteration and the best host to allocate the VM respectively.

Algorithm 4 SO Placement Policy
Input: hostList, vmList
Output: SOPlacement of VMs

1: vmList.sortDecreasingUtilization()
2: foreach vm in vmList do
3: bestPlacement←MAX
4: bestHost← NULL
5: foreach host in hostList do
6: if host has enough resources for vm then
7: placement← SOvalue
8: if placement < bestPlacement then
9: bestHost← host

10: bestPlacement← placement
11: if bestHost 6= NULL then
12: SOPlacement.add(vm, bestHost)
13: return SOPlacement

Then, each VM in vmList will be allocated in a server that belongs to the list of hosts that are
not overutilized (hostList) and have enough resources to host it. The VM is allocated in the host
that has a lower placement value. The output of this algorithm is the placement (SOPlacement)
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of the VMs that have to be mapped according to the MAD-MMT detection and VM selection
policy. In this subsection we present the different SO objectives proposed in this research.

SO1 : min{∆PHost}

This policy minimizes the increment of power consumption when a VM is allocated in a host.
The algorithm consolidates the VM in the server whose power consumption has the lowest
increase in terms of power. The increment is calculated as the difference between the power
after and before the allocation of the incoming VM. This approach is used as a baseline, as it
has been proposed by Beloglazov et al. [162] and it is included in the open source version of
CloudSim 2.0 as PABFD, so it could be easily compared with other state-of-the-art research.

SO2 : min{PHost}

The consolidation value is the host’s power consumption. The algorithm chooses the server
that presents the lowest power consumption when hosting the incoming VM. The main
objective of this policy is to show the relevance of understanding the different contributions
to power in a data center. The fact is that the global power consumption can not be reduced
by minimizing local power, as the static contribution increases globally with the number of
active hosts. However, this consolidation technique may be useful in some scenarios in which
power capping is a necessity, enforcing a drastic reduction of server power.

SO3 : min{1/(ucpu −∆freq)}

The consolidation value calculated by this approach has been proposed by the authors in
Chapter 9. Our proposed policy is not only aware of the utilization of the incoming VM, but
also considers the impact of its allocation in terms of frequency. This approach is interesting
from the point of view of combining both static and dynamic contributions to global power
consumption from a local perspective. The higher the CPU utilization allowed in servers, the
lower the number of active hosts required to execute the incoming workload, thus reducing
global static consumption. However, host’s dynamic consumption increases with frequency.
As frequency increases with CPU utilization demand, we propose a compromise between
increasing ucpu after the allocation, while reducing the frequency increment due to the
incoming VM. This equation may be devised as both the ucpu and the frequency increment
range in the same orders of magnitude.

SO4 : min{Tmem}

This consolidation approach aims to minimize the temperature of the memory as it has been
demonstrated to be a key contribution to static power consumption. Moreover, this
parameter also depends on the inlet temperature of the server, which impacts on the cooling
power of the data center infrastructure and on the dynamic memory activity. Cooling down
the computing infrastructure is needed to avoid failures on servers due to temperature, or
even the destruction of components as in the case of thermal cycling and electromigration
among others. Therefore, this policy may be helpful for extremely hot conditions in the
outside, and also when undergoing cooling failures.

SO5 : min{∆freq}

This algorithm consolidates the VM in the server whose frequency has a lowest increase in
terms of frequency. The policy aims to minimize the increment of power consumption when a
VM is allocated in a host. The increment is calculated as the difference between the frequency
before and after the allocation of the VM. This consolidation technique aims to minimize the
dynamic contribution to power consumption.
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SO6 : min{1/ucpu}

The consolidation value proposed in this approach maximizes the overall CPU utilization in
the active host set, also constraining the number of active servers. In all our proposed
approaches, the maximum load that can be allocated in each host is bounded by its available
resources. Also, the VMs are migrated from overloaded servers according to previous
workload variations. However, the possibilities of violating the SLA are high when using this
specific technique. This is because workload variations in a highly loaded server may exceed
the total resource capacity of the device, degrading the performance of the applications. This
policy may be specially useful in scenarios with low penalties per SLA violations or if
performance degradation does not have a great impact on economic or contractual issues.

SO7 : min{PHost + PCooling}

The consolidation value is the aggregation of the host’s power consumption and the power
dimensioned to cool it down avoiding thermal issues. The algorithm chooses the server that
presents the lower power IT and cooling consumption when hosting the incoming VM. The
main objective of this policy is to show the relevance of understanding the thermal
contributions to power in a data center. The overall power consumption can not be reduced
by minimizing local power, as the static IT contribution increases globally with the number of
active hosts and the cooling power depends on IT consumption as well as on their inlet
temperature needed to keep them safe. However, this consolidation technique may be useful
in some scenarios in which power capping is a necessity in both IT and cooling
infrastructures and when combined with variable cooling techniques.

SO8 : min{
∑
|SOX |}

This approach aims to minimize the total power consumption of the data center by
combining the different parameters presented in the SO section in a single metric. In order to
make the values comparable we normalize them in the range [1,2] (according to their
maximum and minimum in each range) so all the inputs take values in the same orders of
magnitude. It is worthwhile to mention that we have performed a variable standardization
for every feature in order to ensure the same probability of appearance for all the variables.
The algorithm consolidates the VM in the host that minimizes the summation of all the
normalized parameters as seen in Equation 10.1. After an exhaustive analysis, the best global
power results are shown for the parameter combination presented in Equation 10.2.

SO8 = min{|∆PHost|+ |PHost|+ |1/(ucpu −∆freq)|+
+|Tmem|+ |∆freq|+ |1/ucpu|+ |PHost + PCooling|} (10.1)

SO8 = min{|1/(ucpu −∆freq)|+ |∆freq|+ |1/ucpu|} (10.2)

10.3.2 Multi-Objective BFD-based Allocation Policies

The approaches that we present in this section also aim to minimize global power
consumption from a local perspective. However, these policies do not consider one single
objective to be optimized, but more than one. Multi-Objective (MO) optimizations try to
simultaneously optimize several contradictory objectives. This is also useful due to the fact
that, in some cases, the parameters cannot be linearly combined as their units are not
comparable without normalization (e.g. their orders of magnitude are very different).

In all our MO policies, the VMs from VMlist are also allocated one by one in the host that
minimizes the consolidation value according to the given policy. However, MO techniques
offer a multidimensional space of solutions instead of returning a single value. For this kind
of problems, single optimal solution does not exist, and some trade-offs need to be
considered. The number of dimensions is equal to the number of objectives of the problem.
Each objective of our MO strategy consists of each one of the SO consolidation values
presented in the previous subsection. Hence, to find the solution for the allocation of a VM in
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a specific Hosti from hostList, we calculate every consolidation value of the SO policies
(SOvalues) as can be seen in Algorithm 5. Thus, each solution of the algorithm has the
following objective vector (hostV ector):

solutionHosti = {∆PHosti , PHosti , 1/(ucpu −∆freq)i,

Tmemi ,∆freqi, 1/ucpui , PHosti + PCoolingi} (10.3)

Then, we constrain the set of solutions to provide the ones that are in the Pareto-optimal
Front (paretoOptimal). This optimal subset provides only those solutions that are
non-dominated by others in the entire feasible search space. This approach discards solutions
that may be the optimum for a SO policy, but are dominated by other solutions that appear in
MO problems. bestPlacement and bestHost are the best placement value for each iteration and
the best host to allocate the VM respectively. Then, each VM in vmList will be allocated in a
server that belongs to the list of hosts whose hostV ector are non-dominated and have enough
resources to host it. The VM is allocated in the host that has a lower placement value. The
output of this algorithm is the placement (MOPlacement) of the VMs that have to be mapped
according to the MAD-MMT detection and VM selection policy. In this section, we present
two MO metrics to decide a solution from the Pareto-optimal set of solutions.

Algorithm 5 MO Placement Policy
Input: hostList, vmList
Output: MOPlacement of VMs

1: vmList.sortDecreasingUtilization()
2: foreach vm in vmList do
3: bestPlacement←MAX
4: bestHost← NULL
5: foreach host in hostList do
6: if host has enough resources for vm then
7: hostVector← SOvalues
8: hostVectorSolutions.add(host, hostVector)
9: paretoOptimal← hostVectorSolutions.getNonDominatedHostVectors()

10: foreach host in paretoOptimal do
11: placement←MOvalue
12: if placement < bestPlacement then
13: bestHost← host
14: bestPlacement← placement
15: if bestHost 6= NULL then
16: MOPlacement.add(vm, bestHost)
17: return MOPlacement

MO1 : min{
∑

(Phost + PCooling)}

To allocate each VM, we consider the solution from the Pareto-optimal set that provides the
lowest global IT and cooling power. Thus, for every solution in POF, the algorithm calculates
the MO1 consolidation value as the power consumed by the data center considering the VM
placement. Then, the VM is allocated in the host that minimizes this consolidation value.

MO2 : min{|d(solutionHosti , o)|}

For each solution in POF, the algorithm calculates the Euclidean distance from the objective
vector solutionHosti to the origin. Finally, the VM is allocated in the host that minimizes this
distance.
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10.3.3 Metaheuristic-based Allocation Policies

In order to compare our algorithms with non-local policies we consider a different approach.
Local search methods usually fall in suboptimal regions where many solutions are equally
fit. The methods proposed in these sections intend to help the solutions to get out from local
minimums finding more optimal solutions. Metaheuristics aim to optimize the global power
consumption by simultaneously allocating all the VMs in the available hosts set, instead of in
a sequential way as in our BFD-based algorithms. Thus, these algorithms do not only consider
local power in each server but the entire IT and cooling data center consumption during the
allocation.

SimulatedAnnealing : min{
∑

(PHost + PCooling)}

Simulated Annealing (SA) is a metaheuristic based on the physical annealing procedure used
in metallurgy to reduce manufacturing defects. The material is heated and then it is cooled
down slowly in a controlled way, so the size of its crystals increases and, in consequence, this
minimizes the energy of the system. SA is used for solving problems in a large search space,
both unconstrained and bound-constrained, approximating the global optimum of a given
function. This algorithm performs well for problems in which an acceptable local optimum is
a satisfactory solution, and it is often used when the search space is discrete.

Our SA proposed in this research evaluates the power consumption of the data center after
the consolidation of the VM set along the infrastructure. We provide the solution structure in
Figure 10.1, where each (VMi) is hosted in HostVMi . The size of the solution is the size of the
list of VMs that have to be allocated in the system. The allocation is performed for the solution
that minimizes the global contribution to data center power. Also, in the calculation of the
SA objective value (SAvalue) we have included power penalties in the solution evaluation for
those servers that are overutilized after the consolidation process in terms of CPU utilization,
RAM memory or I/O Bandwidth.

HostVM1 HostVM2 HostVM3 ... HostVMi ... HostVMx

VM1 VM2 VM3
... VMi

... VMx

Figure 10.1: Solution scheme for the SA algorithm.

Apart from this, we have included an optional optimization of the SA, where the first
proposed solution is initialized to the best solution found by the SO set of algorithms. This
initialization ensures that the SA finds a feasible solution that is, at least, as good as the one
provided by the best SO in each optimization slot.

As can be seen in Algorithm 6 a set of candidate solutions (solutionList) are provided by
the SA according to the VMs in vmList that have to be placed simultaneously within the
hostList set. bestPlacement and bestSolution are the best placement value when allocating the
entire vmList set and the best solution that provides this placement respectively for the
minimum SAvalue. Then, each VM in vmList will be allocated in the server provided by the
best solution.

10.3.4 Metaheuristic-based SO Allocation Policies

In this subsection we present a novel strategy to derive global optimizations from a local
perspective based on modeling the global energy consumption of metaheuristic-based
optimizations. This approach is used to model a new SO policy that combines the different
SO consolidation metrics previously presented in order to find a local policy that outperforms
their single outcomes. By using this modeling technique, we aim to find a local, fast and light
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Algorithm 6 Metaheuristic Placement Policy
Input: hostList, vmList
Output: MetaheuristicPlacement of VMs

1: solutionList← getSolutionList(vmList, hostList)
2: bestPlacement←MAX
3: bestSolution← NULL
4: foreach solution in solutionList do
5: placement← SAvalue
6: if placement < bestPlacement then
7: bestSolution← solution
8: foreach vm in bestSolution do
9: bestHost← vm.getHost()

10: MetaheuristicPlacement.add(vm, bestHost)
11: return MetaheuristicPlacement

consolidation algorithm that is aware of the relationships between the contributions to
energy, not only during the allocation, but also taking into account further VM migrations.

Using the consolidation values and the energy values obtained during the simulation of the
SO experiments we model a function that describes the behavior of the energy consumption
of the values obtained for the SA metaheuristic as in Equation 10.4. Then, we use this function
to provide a SOSA local consolidation value, which will be used to optimize the system as
done before for the regular SO policies. So, we use SOSA as the other SO policies, allocating
the VMs of the set, one by one, in the host that offers a lowest consolidation value (as detailed
in Algorithm 4). Further details regarding the implementation of this strategy are provided in
Section 10.4.

SOSA = f(SO1, ESO1
, SO2, ESO2

, ..., SO8, ESO8
) (10.4)

10.3.5 BFD-based SO Dynamic selection Allocation Policy

The approach that we present in this section also aims to minimize global power
consumption from a local perspective. However, this policy does not consider only one
consolidation value, but the complete set of values offered by all the SO approaches in this
research. The SO Dynamic Selection approach (DynSO) allocates the set of VMs using the SO
policy that minimizes the overall IT power in each time slot.

SO ∈ SO1, ..., SOn, ..., SON (10.5)

Algorithm 7 presents the implementation for this allocation policy. First, the algorithm
evaluates the final global power consumption (GlobalPowern) provided by the allocation of
the entire set of VMs when using the consolidation value of SOn. Then, the same calculations
are done for the rest of SOn+1 until all the N-dimensioned set of SOs is covered obtaining the
table PowerSO shown in Figure 10.2.

SO1 GlobalPower1

... ...

SOn GlobalPowern

... ...

SON GlobalPowerN

GlobalPowermin SOPmin

... ...

GlobalPowerj SOj

... ...

GlobalPowermax SOPmax

Figure 10.2: Dynamic selection of the best SO policy.
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Finally, all the VMs of the set are allocated one by one in the host that presents the lowest
consolidation value according to the SO policy that offers a lowest global power consumption
after the allocation of all the VM set (SOPmin). The calculation of the bestSO that minimizes
the power consumption of the allocation of the VMs’ set is performed for every time slot in
the system.

Algorithm 7 Dynamic SO Placement Policy
Input: hostList, vmList, SOList
Output: DynSOPlacement of VMs

1: vmList.sortDecreasingUtilization()
2: foreach SO in SOList do
3: foreach vm in vmList do
4: bestPlacement←MAX
5: bestHost← NULL
6: foreach host in hostList do
7: if host has enough resources for vm then
8: placement← SOvalue
9: if placement < bestPlacement then

10: bestHost← host
11: bestPlacement← placement
12: if bestHost 6= NULL then
13: tentativeSOPlacement.add(vm, bestHost)
14: GlobalPowerSO← getSOGlobalPower(tentativeSOPlacement)
15: PowerSO.add(SO,GlobalPowerSO)
16: bestSO← PowerSO.getSOMinPowerAfterAlloaction()
17: DynSOPlacement← PowerSO.getTentativeSOPlacement(bestSO)
18: return DynSOPlacement

10.4 Modeling Metaheuristic-based SO Allocation Objectives

In this section we aim to obtain an expression that defines the energy behavior of our SA
allocation algorithm using local optimizations. For this purpose, we model the global energy
consumption of each time slot for the metaheuristic (EnergySA) using parameters of the
different SO described in Section 10.3. The conducted experiments have the same
configuration as the ones described in Section 10.6.1. First, we run the workload using each
SOn algorithm and, after each time slot we monitor: i) the consolidation value normalized in
the range [1,2] (|SOn|21), and ii) the total energy consumption of the infrastructure after the
consolidation process is completed (ESOn ). Then, the same workload is run using the SA
optimization algorithm for VM allocation and also, after each time slot, we collect the global
energy consumption ESA. Considering the global energy of the entire data center helps us to
incorporate in the optimization the knowledge not only from the IT and cooling contributions
but also the contributions of the VM migrations needed to avoid underloaded situations.

In this work we use the SA provided by the HEuRistic Optimization (HERO) library of
optimization algorithms1 configured as in Section 10.6.1. For SA samples, we separate the
entire monitored data into a training and a testing data set. The data set used for for this
modeling process consist of the samples collected during the simulation of only the first 24
hours of the Workload 1 configured as defined in Section 10.6.2. Also, we only use those
samples in which the SA outperforms the SO policies in terms of energy, as the SA not always
perform better than the SO strategies because it is able to provide worse final solutions to get
out from local minima. We train the models inferring the expressions shown in Equation 10.6,
where |SO3|21 and |SO6|21 are the normalized consolidation values obtained for local

1github.com/jlrisco/hero

103



10. Power and Thermal Aware VM Allocation Strategies for Energy-Efficient Clouds

optimizations SO3 and SO6 respectively.

SOSA = ESA = 0.1603 · |SO3|21 · ESO3
+ 0.7724 · |SO6|21 · ESO6

+ 0.0102 (10.6)

The fitting is shown in Figures 10.3 and 10.4 for training and testing respectively. For the
SA energy, ESA, we obtain an average error percentage of 3.05% and 2.87% for training and
testing. Finally, we use this expression to calculate the consolidation value used in SOSA.
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Figure 10.3: Modeling fitting for SOSA using Simulated Annealing samples.
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Figure 10.4: Testing modeling for SOSA using Simulated Annealing samples.

For our model we obtain a mean error between the estimated energy and the real trace of
8.84 · 10−7 kWh and a standard deviation of 0.0144 kWh. Figure 10.5 shows the power error
distribution for this model, where it can be seen that the error in terms of power of the 68% of
the samples ranges from -0.0144 to 0.0144 kWh.

10.5 Cooling strategy based on VM allocation

The power needed to cool down the servers, thus maintaining a safe temperature, is one of
the major contributors to the overall data center budget. Many of the reliability issues and
system failures in a data center are given by the adverse effects due to hot spots that may also
cause an irreversible damage in the IT infrastructure. However, controlling the set point
temperature of the data room is still to be clearly defined and represents a key challenge from
the energy perspective. This value is often chosen for the worst case scenario (all devices
running consuming maximum power), and based on conservative suggestions provided by
the manufacturers of the equipment, resulting in overcooled facilities. In this section we
present a novel cooling strategy based on the temperature of the system’s devices due to
VMs’ allocation that can be seen in Algorithm 8.

Our cooling strategy aims to find the highest cooling set point that ensures safe operation
for the whole data center infrastructure. Inside the physical machine, the CPU is the
component that presents the highest temperatures and this parameter depends on both the
inlet temperature and the CPU utilization (utilization). So, the CPU temperature will limit
the highest value for the inlet temperature of the host (maxInletTemperature) in order to
operate in a safe range (lower than maximumSafeCPUTemperature) avoiding thermal
issues. Depending on the VMs distribution and the server location, we define a maximum
cooling set point (maxCoolingSetPoint) for each host that ensures that its maximum inlet
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Figure 10.5: Power error distribution for our SOSA model.

temperature is not exceeded so the CPU temperature is safe. Finally the cooling set point is
set to the lowest value within the maxCoolingSetPoint for all the servers, thus guaranteeing
that the infrastructure operates below the maximum safe CPU temperature defined as
maximumSafeCPUTemperature.

Algorithm 8 Cooling strategy
Input: hostsList maximumSafeCPUTemperature
Output: cooling

1: foreach host in hostList do
2: utilization← host.getUtilization()
3: maxInletTemperature ← host.getMaxInletTemperature(utilization,

maximumSafeCPUTemperature)
4: maxCoolingSetPoint← host.getMaxCoolingSetPoint(maxInletTemperature)
5: hostCooling.add(maxCoolingSetPoint)
6: globalMaxCoolingSetPoint← hostCooling.getMin()
7: cooling.setCoolingSetPoint(maxCoolingSetPoint)
8: return cooling

10.6 Performance Evaluation

In this section, we present the impact of our proposed optimization strategies in the energy
consumption of the data center, including both IT and cooling contributions. As it is difficult
to replicate large-scale experiments in a real data center infrastructure, thus maintaining
experimental system conditions, we have chosen the CloudSim 2.0 toolkit [132] to simulate a
IaaS Cloud computing environment as in the previous chapter.

Apart from the DVFS management, for this work, we have provided thermal-awareness
to the CloudSim simulator. Moreover, the temperature of servers’ inlet, memory devices and
CPUs vary depending on the workload distribution and on the resource demand. We
incorporate these dependence by including different thermal models. Also our frequency and
thermal-aware server power model has been included. Finally, in order to obtain temperature
and power performance, we have also incorporated memory and disk usage management.
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Our simulations run on a 64-bit Ubuntu 14.04.5 Long Term Support (LTS) OS running on
an Intel Core i7-4770 CPU @3.40GHz ASUS Workstation with four cores and 8 GB of RAM.
Experiments are configured according to the following considerations.

10.6.1 Experimental Setup

We conduct our experiments using real data from the Bitbrains service provider. This
workload has the typical characteristics of Cloud computing environments in terms of
variability and scalability [166]. Our data set contains performance metrics of 1,127 VMs from
a distributed data center from Bitbrains. It includes resource provisioning and resource
demand of CPU, RAM and disk as well as the number of cores of each VM with a monitoring
interval of 300 seconds. These parameters define the heterogeneous VM instances available
for all the simulations. We split the data set into three workloads that provide three scenarios
with different CPU variability. Each scenario represents one week of real traces from the
Bitbrains Cloud data center. As can be seen in Figure 10.6, Workloads 1 to 3 present
decreasing aggregated CPU utilization variability of 568.507%, 284.626% and 143.603%
respectively.
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Figure 10.6: One-week workloads with different CPU utilization variability.

The simulation consists of a data center of 1200 hosts modeled as a Fujitsu RX300 S6
server based on an Intel Xeon E5620 Quad Core processor @2.4GHz, RAM memory of 16GB
and storage of 1GB, running a 64bit CentOS 6.4 OS virtualized by the QEMU-KVM
hypervisor. During the simulations, the number of servers will be significantly reduced as
oversubscription is enabled. The proposed Fujitsu server operates at different DVFS modes
as seen in Equation 9.18. For optimization purposes, we have simulated all our algorithms
under the frequency constraints of our ad-hoc DVFS-performance aware governor proposed
in Section 9.3.1, as it has been demonstrated to give further energy improvements without
affecting SLA. Moreover, maximum CPU temperature is constrained to take values that are
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lower or equal to 65° C for reliability purposes. Also server’s inlet is limited to a 30° C upper
bound, to avoid fan failures.

Power and Thermal Models

In this subsection we present the different models referenced in our work, and also two novel
ones derived for this research. To estimate the energy consumed by the IT infrastructure, we
use our DVFS and thermal aware server power model defined in Section 9.4. As our power
model shown in Equation 9.16 depends on the memory temperature, for this research, we
present a novel temperature model for the memory device.

The temperature of the memories in a server depends on several factors both internal and
external to the physical machine. The utilization of the memory subsystems, the inlet
temperature of the host and the fan speeds are potential contributors to memory temperature
that have to be taken into account. In order to gather the real data during runtime, we
monitor the system using different hardware and software resources. collectd monitoring tool
is used to collect the values taken by the system in order to monitor uMEM . Memory and
CPU temperatures and fan speed are monitored using on board sensors that are consulted via
the software tool IPMI. Inlet temperature is collected using external temperature sensors.
Finally, room temperature has been modified during run-time in order to find the
dependence with the inlet temperature.

In this research, a synthetic workload is used to stress specifically the memory resources,
increasing the range of possible values of the considered variables. Therefore, our model may
be adapted to estimate different workload characteristics and profiles. We run RandMem onto
4 parallel Virtual Machines that have been provisioned to the available computing resources
of the server. Then the samples are separated into a training and a testing data set.

After training, we obtain the model shown in Equation 10.7, where Tmem is the memory
temperature, Umem the memory utilization, Tinlet the inlet temperature of the server, k1 =
0.9965 and k2 = 2.6225. Then, we evaluate the quality of the thermal model using the testing
data set in order to verify the reliability of the estimation. For our data fitting, we obtain an
average error percentage of 0.5303% during training and 0.5049% for testing. These values
have been obtained using Equation 10.8. In our research, the time slots are defined as each
time an optimization is performed in order to consolidate a set of VMs into a set of candidate
hosts.

Tmem = k1 · Tinlet + k2 · ln(U2
mem) (10.7)

eAVG =

√√√√ 1

N
·
∑
n

( |Tmem(n)− T̂mem(n)| · 100

Tmem(n)

)2
, 1 ≤ n ≤ N (10.8)

(10.9)

Finally, for our thermal model we obtain a mean error between the estimated temperature
and the real measurement of 8.54·10−4 K and a standard deviation of 2.02 K. Figure 10.7 shows
the error distribution for this model. According to this, we can conclude that the error in terms
of temperature of about the 68% of the samples ranges from -2.02 to 2.02 K. In Figure 10.8, the
fitting of our thermal model is provided.

On the other hand, the CPU presents the highest temperatures inside the physical machine,
so its temperature will limit the highest value for inlet temperature in order to operate in a safe
range, while avoiding thermal issues. Thus, we follow the same approach in order to model
the CPU temperature of the server. This parameter depends on both the inlet temperature and
the CPU utilization (uCPU ).

After training, we obtain the model shown in Equation 10.10, where Tcpu is the CPU
temperature, Ucpu its utilization, k1 = 1.052 and k2 = 19.845. Our model presents average
error percentages of 0.64% and 0.84% during training and testing respectively.

Tcpu = k1 · Tinlet + k2 · Ucpu (10.10)
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Figure 10.7: Temperature error distribution for our memory model.
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Figure 10.8: Modeling fitting for the memory temperature.

Finally, we obtain a mean error between the estimated temperature and the real measurement
of 0.0026 K and a standard deviation of 2.683 K. Figure 10.9 shows the error distribution for
this model, where the error in terms of temperature of about the 68% of the samples ranges
from -2.68 to 2.68 K. In Figure 10.10, the fitting of our thermal model is provided.

Disk power consumption is modeled according to the work proposed by Lewis et al. [70],
as can be seen in Equation 10.11, where Diskr and Diskw are the read and write throughputs.
We define cooling energy model, shown in Equation 10.12, as in the research presented by
Moore et al. [167]. The COP depends on the inlet temperature of the servers’ Tinlet.

PDisk = 3.327 · 10−7 ·Diskr + 1.668 · 10−7 ·Diskw (10.11)
ECooling = EIT /COP = (PIT · t)/COP (10.12)

EIT = (PFujitsu + PDisk) · t (10.13)
COP = 0.0068 · T 2

inlet + 0.0008 · Tinlet + 0.458 (10.14)

Dynamic Consolidation considerations

In all our scenarios we allow online migration, where VMs follow a straightforward load
migration policy. Thus, migrations have an energy overhead because, during migration time,
two identical VMs are running, consuming the same power in both servers. Performance
degradation occurs when the workload demand in a host exceeds its resource capacity.

In this work we allow oversubscription in all the servers so, the total resource demand may
exceed their available capacity. If the VMs in a host simultaneously request their maximum
performance, this situation may lead to performance degradation due to host overloading.
We calculate the impact on SLA as the SLA violation time per active host (SLATAH ) shown in
Equation 9.23.

Our dynamic consolidation strategy first chooses which VMs have to be migrated in each
server of the data center. For this purpose, we use the adaptive utilization threshold based on
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Figure 10.9: Temperature error distribution for our CPU model.
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Figure 10.10: Modeling fitting for the CPU temperature.

the Median Absolute Deviation of the CPU and the Minimum migration time algorithm provided
by Beloglazov et al [162]. Then, the VM allocation is performed according to the optimization
algorithms provided in this Section 10.3.

When overloading situations are detected using the MAD-MMT technique, VMs are
migrated to better placements according to the different proposed algorithms. These
migrations provoke Performance Degradation due to Migration (PDM) as seen in
Equation 9.24. In this research, to determine SLA violations (SLAviolation) [162], we use the
same metrics that in the previous chapter, which can be seen in Equations 9.22 and 9.23- 9.26.

Metaheuristic-based optimization considerations

In this work we use the SA provided by the HERO library of optimization algorithms
configured as single objective for 100,000 iterations and value of k=0.5 for the control of the
annealing temperature. Additionally, in the first iteration, the integer variables of the solution
are set to the best solution found for the SO policies each time the optimization algorithm is
run. This helps to accelerate the algorithm on finding a low-energy valid solution. For the
rest of iterations the new set of solutions are provided randomly.

10.6.2 Experimental results

To obtain a preliminary evaluation of the performance of the different VM allocation policies,
we have simulated one day of our Workload 1 from Bitbrains using the proposed strategies
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presented in Section 10.3 for a fixed inlet temperature of 291K. On the one hand, the
simulation time when using the SO approaches (SO1−8, SOSA, and DynSO) ranges from 8 to
12 minutes. This parameter for MO approaches is around 15 minutes, being in the same order
of magnitude. On the other hand, the metaheuristic-based SA has a simulation time that is 60
times higher than the simulation time of SO policies. Also, for SA, there exist optimizations
that take more time than the time fixed for the optimization slot (300 s), making it unfeasible
to use this metaheuristic during runtime. The energy results provided for the selected
algorithms are shown in Figure 10.11. Also, Table 10.1 shows the numerical results of the
additional metrics considered.
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Figure 10.11: Contributions to data center energy per VM allocation strategy for 1 day of
Workload 1

Table 10.1: Performance metrics per VM allocation strategy for 1 day of Workload 1
Algorithm IT Energy Cooling Energy Power-on Power-on Energy Migrations Average SLA Final Energy

(kWh) (kWh) events (kWh) events ·10−4 (%) (kWh)
SO1 157.62 58.91 309 5.80 42545 18.43 222.32
SO2 478.54 178.85 16194 303.74 116044 11.66 961.13
SO3 153.15 57.24 335 6.28 36711 18.28 216.67
SO4 511.60 191.21 17792 333.71 125807 11.89 1036.52
SO5 165.12 61.71 524 9.83 45044 18.36 236.66
SO6 150.43 56.22 336 6.30 35619 19.29 212.95
SO7 478.54 178.85 16194 303.74 116044 11.66 961.13
SO8 153.54 57.38 334 6.26 37376 18.28 217.19
SOSA 150.20 56.14 333 6.25 36983 19.50 212.58
DynSO 152.15 56.86 326 6.11 36126 18.71 215.13
MO1 160.41 59.95 367 6.88 40342 18.15 227.25
MO2 152.86 57.13 331 6.21 37690 18.62 216.20
SA 162.95 60.90 662 12.42 50540 18.34 236.27

For SO2, SO4 and SO7, the power or temperature of each server is minimized locally
resulting in a higher energy consumption due to an increase in the number of active hosts.
These algorithms spread the workload as much as possible through the candidate host set as
they intend to reduce only the dynamic contribution, which depends on the workload
requirements. So, the lower the servers’ load, the better for reducing dynamic power
consumption locally, thus increasing the global IT contribution as these policies are not aware
of their impact on the rest of the infrastructure. Then, after allocating those VMs incoming
from overloaded servers, in the next iteration, the algorithm constrains the active server set
by migrating VMs from underutilized hosts if possible. So, these algorithms present a higher
number of migrations.

Moreover, the energy consumption of both SO5 and SA policies is above the average due
to a higher number of VM migrations and power on events, performed to find the best data
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center configuration in each time slot. This is due to their trend towards allocating part of the
workload in underutilized servers. In the case of SO5, this situation occurs because, when
servers present an utilization below 72% (equivalent utilization for 1.73GHz that is the lowest
available frequency), their frequency increment is zero. On the other hand, SA is highly
penalized when its solutions provide overloaded servers. So, underutilized servers are
preferred when the algorithm does not find a minimum.

Our results show that SO3 and SO6 are the best simple-SO optimization policies. This
outcome is consistent with the high idle consumption of the Fujitsu’s server architecture, so
reducing the active servers’ set by increasing CPU utilization is a major target to improve
energy efficiency. The multi-objective strategies that we present in this research also
outperform the baseline, where MO2 is more competitive in terms of energy.

The SOSA strategy shows the lowest final consumption value, providing energy savings
of 4.38% and 10.02% on the global power budget when compared with our baselines SO1 and
SA respectively. This is translated into a reduction of 9.74 kWh and 23.69 kWh as this novel
technique also incorporates global information regarding the effect of allocation on future
VM migrations. This local approach takes advantage of global knowledge from a holistic
viewpoint thus outperforming other strategies for highly variable workloads.

The dynamic selection of the SO consolidation values during runtime (DynSO), also
reduces power significantly, but do not achieve the best result, even including the best policy.
Thus, the best policy (SOSA in this scenario) has not the best consolidation value during local
calculations but has the one that best describes the energy behavior of the data center
infrastructures as a whole, considering also future migrations. Moreover, the SLA is
maintained for all the tests, where a higher increment of 1.07 · 10−4% is detected.

After this proof of concept, we use all the different VM allocation policies to optimize the
power consumption of the same infrastructure under several conditions. In this work we
propose the optimization of 9 scenarios that combine different cooling strategies and
workloads with different load profiles.

First, we optimize Workload 1, which is the one that presents the higher instantaneous
variability, for fixed cooling inlets of 291 K and 297 K, and for our variable inlet cooling strategy
(V arInlet). We obtain the results provided in Table 10.2 in terms of final energy consumption,
average SLA and number of migrations.

Table 10.2: Energy, SLA and Migration metrics per inlet temperature and allocation policy for
workload 1.

Policy Energy (kWh) Average SLA (·10−4 %) Migrations (·103)
291K 297K VarInlet 291K 297K VarInlet 291K 297K VarInlet

SO1 1178.41 1089.27 1034.20 20.76 20.98 21.04 200.8 202.2 203.2
SO2 5256.76 4718.89 4594.32 11.97 11.94 11.88 647.4 647.7 654.1
SO3 1159.07 1059.19 1018.19 20.60 20.60 20.60 190.2 190.2 190.2
SO4 5725.25 5207.93 4990.10 11.87 11.87 11.88 766.6 766.6 772.2
SO5 1247.97 1139.50 1094.45 20.15 20.15 20.15 217.5 217.5 217.5
SO6 1157.61 1057.85 1016.91 20.90 20.90 20.90 189.1 189.1 189.1
SO7 5256.76 4718.89 4594.32 11.97 11.94 11.88 647.4 647.7 654.1
SO8 1161.44 1061.33 1020.22 20.31 20.31 20.31 192.5 192.5 192.5
SOSA 1152.13 1052.93 1012.30 20.84 20.84 20.84 187.9 187.9 187.9
DynSO 1164.30 1055.83 1020.59 20.56 20.61 20.56 190.8 189.0 192.9
MO1 1199.55 1090.12 1047.56 20.01 20.31 19.94 198.0 199.0 201.0
MO2 1159.39 1059.45 1018.42 20.62 20.62 20.62 191.7 191.7 191.7
SA 1293.51 1178.35 1130.98 19.94 19.54 19.80 244.9 241.3 244.6

Figure 10.12 shows the different contributions to final energy per VM allocation policy for
the different cooling strategies. As inlet temperature rises, the IT power consumption is
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increased due to power leakage (see IT 291K, IT 297K and IT VarInlet in the bottom of each
stacked column). However, cooling power is reduced with increasing temperatures due to a
higher cooling efficiency (shown in Cooling 291K, Cooling 297K and Cooling VarInlet in the
middle of each stacked column). The savings performed by higher cooling set points
outperform the IT power increments, thus resulting in more efficient scenarios for all the
proposed allocation strategies. For this three scenarios, only by applying our V arInlet
cooling strategy provides additional energy savings of 3.78% and 12.38% in average when
compared with fixed cooling at 297 K and 291 K respectively for all the allocation policies.

SO1 SO2 SO3 SO4 SO5 SO6 SO7 SO8 SOsaDynSO MO1 MO2 SA
0

1000

2000

3000

4000

5000

6000

VM allocation policies

E
n

e
rg

y
 (

k
W

h
)

 

 

IT 291K

Cooling 291K

Power on 291K

IT 297K

Cooling 297K

Power on 297K

IT VarInlet 

Cooling VarInlet

Power on VarInlet

Figure 10.12: Contributions to data center energy per VM allocation strategy for Workload 1

Figure 10.13 shows the energy and average SLA percentage comparison for those
strategies that outperform our SO1 baseline. SOSA, SO6, SO3, MO2 and DynSO allocation
policies offer better results, in terms of energy savings, when compared to our global baseline
SA and our local baseline SO1. These policies, when combined with V arInlet strategy,
provide savings, of 13.67% and 21.35% in average with respect to SA at 297 K and 291 K
respectively. Maximum savings are found of up to 14.09% and 21.74% respectively for our
V arInlet-SOSA combined strategy. When compared with the local baseline SO1, these
allocation policies provide average savings of 6.61% and 13.67% at 297 K and 291 K
respectively, and maximum savings of up to 7.07% and 14.10% respectively for SOSA.
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Figure 10.13: Data center energy and SLA per VM allocation strategy for Workload 1
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In our three following scenarios we optimize Workload 2, which presents medium
instantaneous variability. We obtain the energy consumption, average SLA and migration
results provided in Table 10.3.

Table 10.3: Energy, SLA and Migration metrics per inlet temperature and allocation policy for
workload 2.

Policy Energy (kWh) Average SLA (·10−4 %) Migrations (·103)
291K 297K VarInlet 291K 297K VarInlet 291K 297K VarInlet

SO1 1033.75 949.09 912.18 18.84 18.67 18.58 119.3 126.0 123.0
SO2 3712.18 3422.65 3278.08 11.15 11.11 11.21 564.2 579.4 570.9
SO3 1022.49 935.02 899.36 18.43 18.43 18.43 121.7 121.7 121.7
SO4 4562.67 4142.05 3978.78 11.00 11.00 11.01 751.5 751.5 761.0
SO5 1081.89 988.79 950.59 18.11 18.11 18.11 136.0 136.0 136.0
SO6 1015.27 928.55 893.27 18.51 18.51 18.51 120.8 120.8 120.8
SO7 3712.18 3422.65 3278.08 11.15 11.11 11.21 564.2 579.4 570.9
SO8 1024.57 936.92 901.17 18.46 18.46 18.46 120.3 120.3 120.3
SOSA 1016.71 929.82 894.48 18.54 18.54 18.54 119.3 119.3 119.3
DynSO 1027.06 939.13 903.27 18.24 18.24 18.24 118.9 118.9 118.9
MO1 1032.37 945.82 913.50 18.21 18.16 18.21 125.0 121.8 122.6
MO2 1024.80 937.07 901.30 18.28 18.28 18.28 121.5 121.5 121.5
SA 1122.67 1026.40 985.68 18.34 18.12 18.06 160.1 163.3 161.6

In figure 10.14, the same trend towards power and temperature is shown as in Workload 1
scenarios. Savings obtained by increasing cooling set points also outperform IT power
increments, thus resulting in more efficient scenarios for all the proposed allocation
strategies. For this scenario, only our V arInlet cooling strategy provides additional energy
savings of 3.88% and 12.00% in average, when compared with fixed cooling at 297 K and
291 K respectively, for all the allocation policies.
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Figure 10.14: Contributions to data center energy per VM allocation strategy for Workload 2

Figure 10.15 shows the energy and average SLA percentage comparison for those strategies
that outperform our baseline SO1, where SLA is maintained. As in the Workload 1 scenarios,
SOSA, SO6, SO3, MO2 andDynSO allocation policies offer the best results, in terms of energy
savings, when compared to our baselines SA and SO1. These policies, when combined with
V arInlet strategy, provide average savings of 12.48% and 19.99% with respect to SA at 297 K
and 291 K respectively, and maximum savings of up to 12.97% and 20.43% respectively for
SO6. These policies, when compared with SO1 provide average savings of 5.34% and 13.09%
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at 297 K and 291 K respectively, and maximum savings of up to 5.88% and 13.59% respectively
for SO6.
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Figure 10.15: Data center energy and SLA per VM allocation strategy for Workload 2

Finally, we optimize Workload 3, which presents the lower instantaneous variability. For
this optimization scenarios, we obtain the energy consumption, average SLA and migration
results provided in Table 10.4.

Table 10.4: Energy, SLA and Migration metrics per inlet temperature and allocation policy for
workload 3.

Policy Energy (kWh) Average SLA (·10−4 %) Migrations (·103)
291K 297K VarInlet 291K 297K VarInlet 291K 297K VarInlet

SO1 855.52 786.93 759.02 15.68 15.77 15.74 64.4 63.2 67.5
SO2 2715.34 2505.51 2381.12 10.44 10.49 10.46 467.9 477.7 466.9
SO3 852.66 781.12 752.55 15.35 15.35 15.35 70.3 70.3 70.3
SO4 3725.87 3378.07 3232.15 10.37 10.37 10.38 718.1 718.1 721.4
SO5 884.77 810.29 780.37 15.47 15.47 15.47 73.3 73.3 73.3
SO6 858.16 785.95 757.06 15.39 15.39 15.39 74.7 74.7 74.7
SO7 2715.34 2505.51 2381.12 10.44 10.49 10.46 467.9 477.7 466.9
SO8 855.74 783.85 755.10 15.32 15.32 15.32 72.5 72.5 72.5
SOSA 856.41 84.40 755.58 15.02 15.02 15.02 75.7 75.7 75.7
DynSO 853.27 781.65 753.01 15.21 15.21 15.21 72.3 72.3 72.3
MO1 864.66 787.28 757.73 15.20 15.26 15.41 73.1 71.0 70.1
MO2 859.39 787.07 758.11 15.21 15.21 15.21 73.8 73.8 73.8
SA 946.98 856.72 827.95 14.87 14.43 14.67 93.9 95.4 96.9

In figure 10.16, the same trend towards power and temperature is presented as in Workload
1 and Workload 2 scenarios. Increasing cooling set points provides savings that outperform
IT power increments, thus resulting in more efficient scenarios for all the proposed allocation
strategies. For these scenarios, only our V arInlet cooling strategy provides additional energy
savings of 3.94% and 11.99% in average when compared with fixed cooling at 297 K and 291 K
respectively for all the allocation policies.

Figure 10.15 shows the energy and average SLA percentage comparison for those
strategies that outperform our baselines SA and SO1, where SLA is maintained. For this
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Figure 10.16: Contributions to data center energy per VM allocation strategy for Workload 3

workload, SOSA, SO6, SO3, MO1 and DynSO allocation policies offer the best results, in
terms of energy savings, when compared to our baselines. These policies, when combined
with V arInlet strategy, provide average savings of 11.78% and 20.19% with respect to SA at
297 K and 291 K respectively, and maximum savings of up to 12.16% and 20.53% respectively
for SO3. These allocation policies, when compared with SO1 also provide average savings of
4.02% and 11.72% at 297 K and 291 K respectively, and maximum savings of up to 4.37% and
12.04% respectively for SO3.

SO1 SO3 SO5 SO6 SO8 SOsa DynSO MO2

750

800

850

VM allocation policies

E
n
e
rg

y
 (

k
W

h
)

SO1 SO3 SO5 SO6 SO8 SOsa DynSO MO2

15

15.5

16

VM allocation policies

A
v
e
ra

g
e
 S

L
A

 (
%

)

 

 

291K

297K
VarInlet

x10
−4

Figure 10.17: Data center energy and SLA per VM allocation strategy for Workload 3

Tables 10.5 and 10.6 provide a summary of the energy savings obtained for the different
optimization scenarios for V arInlet cooling strategy, compared with the local SO1 baseline
and the global SA baseline policies respectively. The results show that higher energy savings
are provided for increasing instantaneous workload variability for both fixed cooling inlet
strategies at 291 K and 297 K.

In the case of Workload 3, as it presents the lower workload variation, the baseline SO1

presents a better performance so the energy savings are lower. However, the savings
provided when compared with the fixed cooling temperature at 297 K cannot been
considered as they are below the error obtained for our power model (4.87%). On the other
hand, for those workloads with the higher instantaneous variation (Workload 1 and
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Table 10.5: Energy savings for V arInlet per VM allocation policy compared with SO1.

Policy
Energy Savings vs. SO1 (%)

Workload 1 Workload 2 Workload 3
297K 291K 297K 291K 297K 291K

SO1 5.06 12.24 3.89 11.76 3.55 11.28
SO3 6.53 13.60 5.24 13.00 4.37 12.04
SO6 6.64 13.71 5.88 13.59 3.80 11.51
SOSA 7.07 14.10 5.75 13.47 3.98 11.68
DynSO 6.30 13.39 4.83 12.62 4.31 11.98
MO2 6.50 13.58 5.04 12.81 3.66 11.39

Table 10.6: Energy savings for V arInlet per VM allocation policy compared with SA.

Policy
Energy Savings vs. SA (%)

Workload 1 Workload 2 Workload 3
297K 291K 297K 291K 297K 291K

SO1 12.23 20.05 11.13 18.75 11.40 19.85
SO3 13.59 21.28 12.38 19.89 12.16 20.53
SO6 13.70 21.38 12.97 20.43 11.63 20.06
SOSA 14.09 21.74 12.85 20.33 11.81 20.21
DynSO 13.39 21.10 12.00 19.54 12.11 20.48
MO2 13.57 21.27 12.19 19.72 11.51 19.94

Workload 2), our proposed VM allocation algorithms combined with our V arInlet cooling
strategy, outperform the baseline for both fixed 291 K and 297 K inlet temperatures achieving
significant energy savings.

The proposed VM allocation strategies SO3, SO6, SOSA, DynSO, MO2 cannot be
compared between them in terms of power savings, as their relative savings fall behind the
error of our power model. In terms of SLA, the outcomes show that our algorithms maintain
the SLA obtained for the baseline policy. The SLA violations are increased by SO6 and SOSA
for the most variable scenario (Workload 1), and only when compared with the 291 K fixed
cooling policy. However, this increment is only of about 0.14 · 10−4. If the SLA is critical for
the data center management, MO2 provides SLA reductions that are consistent within the 9
scenarios, also offering competitive energy savings.

Globally, our SOSA is the strategy that performs better if selected for all the different
scenarios with significantly different workload profiles. This approach presents the best
savings for Workload 1, which is the more variable one, and a very high savings value for less
variable workloads 2 and 3. For all the scenarios, the SOSA approach outperforms the
average savings provided by SO3, SO6, DynSO and MO2 as can be seen in Table 10.7. Our
local SO based on SA optimization,SOSA, leverages the information from a global strategy
combined with the information of the overall data center infrastructure provided by our
holistic approach.

Table 10.7: Energy savings for V arInlet in average and for SOSA strategy.

Policy Workload 1 Workload 2 Workload 3
297K 291K 297K 291K 297K 291K

Baseline SA average 13.67% 21.35% 12.48% 19.99% 11.78% 20.19%
SOSA 14.09% 21.74% 12.85% 20.33% 12.16% 20.50%

Baseline SO1
average 6.61% 13.67% 5.34% 13.09% 4.02% 11.72%
SOSA 7.07% 14.10% 5.75% 13.47% 3.98% 11.68%
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10.7. Summary

Finally, the Power Usage Effectiveness (PUE) is a metric that measures the efficiency of a
data center in terms of energy usage. Specifically, it provides information of the amount of
energy that is used by the computing equipment in contrast to cooling and other overheads.
The PUE value works well with cooling optimizations, as reductions on cooling power result
in a higher percentage of the power budget consumed only by IT. On the other hand, for IT
optimizations that do not impact on cooling consumption, the PUE does not show the
efficiency gained by the IT energy reduction, but reports a negative impact, as it results on a
higher percentage of the total power used for cooling purposes. Our research reduces both IT
and cooling contributions to final power consumption simultaneously. For fixed cooling
baseline policies with set point temperatures of 291 K and 297 K, our infrastructure provides
PUE values of 1.37 and 1.23 respectively. Our V arInlet approach, together with our
proposed dynamic consolidation SOSA, optimizes the PUE in up to 16.05% and 6.5%
respectively, providing PUE values between 1.15 and 1.16 that outperforms the
state-of-the-art value that is around 1.2.

10.7 Summary

The new holistic paradigm proposed in this work focuses on considering the energy globally.
In this way, all the data center elements are aware of the evolution of the global energy
demand and the thermal behavior of the room. Our decisions are based on information from
all available subsystems to perform energy optimizations from technology impact to data
center level.

Metaheuristic algorithms like Simulated Annealing, when used for VM consolidation in
data centers, are able to achieve very good results in terms of energy. However, the time
they need to perform the optimizations makes them unfeasible to be used during runtime for
this purpose. On the other hand, various local BFD-based policies provide good solutions to
the energy problem. They constrain the set of active servers, thus reducing the static energy
consumption, but this local strategies do not consider the final status of the data center after
each optimization, so the number of VM migrations may be increased.

Leveraging the knowledge gathered from both metaheuristic and BFD algorithms helps
us to infer models that describe global energy patterns into local strategies, which are faster
and lighter to be used to optimize energy consumption during runtime. By using this
technique we provide the SOSA VM allocation policy that together with our proposed
cooling strategy V arInlet, allow us to improve energy efficiency in scenarios with high
workload variability. Our local technique achieved energy savings of 7.07% and 14.10% when
compared with the local baseline PABFD using two different traditional cooling strategies
with fixed set points at 297 K and 291 K respectively. Also, compared with a global SA-based
baseline, our local VM allocation policies provided energy savings of up to 14.09% and
21.74%. For all the scenarios proposed in this research, our optimization algorithms maintain
QoS when compared with local and global baselines.

Finally, the following chapter concludes this Ph.D thesis, summarizing its main
contributions to the state-of-the-art and proposing future research directions derived from
this dissertation.
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11. Conclusions and Future Directions

“I have passed through fire and deep water, since we parted.
I have forgotten much that I thought I knew, and learned again
much that I had forgotten.”

— J.R.R. Tolkien, The Lord of the Rings

This Ph.D. thesis has addressed the energy challenge by proposing proactive power and
thermal-aware optimization techniques that contribute to place Cloud data centers on a more
scalable curve. In this chapter, we present a synthesis of the conclusions derived from the
research fulfilled during this Ph.D. thesis, emphasizing on the contributions to the
state-of-the-art provided by this research. Finally, we conclude this dissertation highlighting
the open research challenges and future directions derived from this work.

11.1 Summary and Conclusions

As described in the motivation of this Ph.D. thesis (Section 1.1), computational demand in
data centers is increasing due to growing popularity of Cloud applications. The contribution
of Cloud data centers in the overall consumption of modern cities is growing dramatically,
becoming unsustainable in terms of power consumption and growing energy costs.
Therefore, minimizing their power consumption is a critic challenge to reduce both economic
and environmental impact.

This Ph.D. thesis presents the potential of holistic optimization approaches to improve
energy efficiency in Cloud facilities from a higher-level perspective. According to the
state-of-the-art in Part I, major challenges in the area have not been yet fulfilled as those
concerning combined power and thermal awareness, dynamic-applications consolidation or
joint cooling and IT energy minimization.

The main objective of this Ph.D. thesis focuses on addressing the energy challenge in Cloud
data centers from a thermal and power-aware perspective using proactive strategies. Our
work proposes the design and implementation of models and global optimizations that jointly
consider energy consumption of both computing and cooling resources while maintaining
QoS.

As presented in Figure 1.3 in Chapter 1, our work proposes a global solution based on the
power analysis and optimization for Cloud applications from multiple abstraction layers. We
develop power and thermal models that can be used during runtime and use the knowledge
about the power demand and the IT and cooling resources available at data center to optimize
energy consumption. Moreover, our optimization framework offers a dynamic solution for
scenarios running workloads that present high variability while maintaining SLA. This work
makes contributions in a complex and multidisciplinary area, of high economic and social
impact.

According to the research objectives highlighted in Section 1.6 of Chapter 1, during this
Ph.D. thesis we have achieved the following results:

• We have defined a taxonomy that compiles the different levels of abstraction that can be
found in data centers, classifying current research and evaluating its impact on energy
efficiency.
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11. Conclusions and Future Directions

Part I presents this survey and the problem statement and positioning of our dissertation.
We identify new open challenges that have the potential of improving sustainability on
data centers significantly by including information at different abstraction levels from a
holistic perspective.

• We detect the need of addressing servers’ leakage power together with cooling set point
temperatures to achieve substantial global savings, evaluating the relationships between
temperature and power consumption. We identify the trade-off between leakage and
cooling consumption based on empirical research.

Our results show that increasing the setpoint temperature of the data center in 6° C,
reduces cooling power by 11.7%, but also increases application power consumption in
about 4.5%.

These contributions have been presented in Chapter 4.

• We detect those parameters that mainly impact on leading power-aware strategies for
improving Cloud efficiency as well as thermal considerations. We derive models that
incorporate these contributors that help to find the relationships required to devise
global optimizations combining power and thermal-aware strategies.

For this purpose we analyze and implement novel modeling techniques for the
automatic identification of fast and accurate models that help to target enterprise server
architectures with no effort for designers. Also the execution of the resulting power
models is fast, making them suitable for runtime optimizations.

Current models, which do not consider both DVFS and thermal-awareness, present
power accuracies that range from 7.66% to 5.37%. Our models provide an error, when
compared with real measurements, which ranges from 4.87% to 3.98% in average, thus
outperforming the state-of-the-art.

This work has been presented in Chapters 5, 6, 7 and 8.

• Finally, we have developed data center energy optimizations, designing and
implementing new policies for dynamic Cloud services that combine leading
power-aware strategies while ensuring QoS. For this purpose, we design and
implement new approaches that also includes thermal considerations in both cooling
and IT consumption.

First, to evaluate the impact of DVFS on VM dynamic consolidation, we present our
Freq-Aware optimization that combines a novel reactive DVFS policy with our
proactive Frequency-aware consolidation technique. We have achieved competitive
energy savings, compared with a state-of-the-art baseline, of up to 45.76% for the IT
infrastructure, also increasing global server utilization to 83% in average, while
maintaining QoS.

Then, we evaluate different dynamic consolidation techniques also taking into account
the cooling contribution and the impact of temperature on the IT infrastructure. For this
purpose we have also implemented thermal models for the CPU and memory devices
with average testing errors of 0.84% and 0.5049% respectively, compared to real
measurements. We provide a dynamic cooling strategy, which aims to find the highest
cooling set point, ensuring safe operation for the whole data center infrastructure
during runtime.

We also present a novel local optimization that leverages the global knowledge from
a holistic viewpoint thus outperforming other strategies for highly variable workloads.
Our dynamic consolidation policy SOSA, when combined with our V arInlet cooling
strategy, provide maximum savings of up to 14.09% and 21.74% with respect to our state-
of-the-art baselines.

These contributions have been described in Chapters 9 and 10.
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11.2. Future Research Directions

The work developed in this Ph.D. thesis has enabled a very close collaboration between
the Architecture and Technology of Computing Systems (ArTeCS) group at Universidad
Complutense de Madrid and the LSI group at Universidad Politécnica de Madrid. Moreover,
a stable collaboration has been established with the CLOUDS Lab. at the University of
Melbourne. This collaboration has resulted into a 3-month research stay of the author at the
University of Melbourne, one poster, one core-A conference and one JCR journal co-authored
papers.

The research presented in this Ph.D. thesis provide realistic models and optimizations that
can be used in real data center scenarios, yielding significant savings. All models proposed in
this work have been developed and tested in real scenarios. Server models have been
validated in presently-shipping enterprise servers, belonging to the Universidad Politécnica
de Madrid. For data center room simulations this work has used real traces from PlanetLab
and Bitbrains infrastructures that are publicly available. Thus, the work presented has a high
applicability, being of high interest to both industry and academic areas, and can potentially
obtain important savings in real environments.

11.2 Future Research Directions

The research in this Ph.D. thesis has focused on the development of models and optimization
techniques at different abstraction layers: from the server to the data center level, also
considering the Cloud application framework. The proposed proactive techniques are aware
of the trade-offs between power, temperature, cooling and SLA. However, some interesting
points of future research have emerged during the completion of this work. Following, we
propose future research directions and improvements of the work presented in this
dissertation.

11.2.1 Supporting Thermal Dependencies of Air-Cooling Models
The raised-floor air-cooling model, present in the majority of today’s data centers, impacts on
the internal cooling devices of servers. As increasing the set point temperature reduces
cooling consumption, this increment may accelerate the speed of fans inside the servers, thus
increasing IT consumption. This introduces various complexities into the dynamic
optimization approaches based on the trade-offs between temperature and consumption of
both IT and cooling infrastructures. To overcome these complexities, accurate fan models
may be provided to analyze further variations of IT power due to temperature and to offer
finer optimizations. As it is hard to find these complex relationships, metaheuristic-based
modeling approaches (as our GE-based modeling methodology), could help to automatically
infer thermal trade-offs in fan speed modeling.

11.2.2 Supporting Different Cooling Models
While the traditional air-cooled model is a dominant model for many data centers,
next-generation cooling techniques, such as oil-based and two-phase immersion, need a
different cooling model. This techniques are based on placing the servers in a container filled
with a fluid, e.g. oil or Novec, that dissipates the heat. This changes completely the thermal
behavior of servers, where new trade-offs arise. In this case, evolutionary computation (as in
our GE-based modeling approach) could help to automatically infer the optimal set of
features that describe the complex thermal models for both cooling and computing
infrastructures.

11.2.3 Supporting Different Application Models
While a service-based model is a dominant model for many Cloud applications in current
data centers, there are other applications that could run in a Cloud environment (e.g. Web,
HPC, Big Data, enterprise and transactions on mobile applications) that need a different
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11. Conclusions and Future Directions

application model. For these application frameworks, disk and network can be a bottleneck
and have an impact on the overall energy consumption. This changes completely the
dynamic behavior of the applications during runtime and also the power consumption
patterns of the different server’s subsystems. In this case, applying our modeling techniques
to obtain accurate models for disk and network could help to find relationships between
application performance, resource contention and power consumption for these application
models. Moreover, the design of a local or global proactive optimization that is also aware of
the impact of these trade-offs could help to reduce global energy.

11.2.4 Supporting Heterogeneity of Servers
Typically, when upgrading a data center, the economic budget limits the number of new
physical machines that may be purchased. So, in the majority of the cases, both new and old
architectures coexist. Thus, data centers consist of homogeneous clusters of servers that can
be optimized separately. However, the optimal performance of different applications may
target different server architectures. In this case, proactive local or global optimization
techniques based on resource management and scheduling may leverage heterogeneity of
servers. Also, new models may be inferred to describe the power consumption of VM
migrations between servers.
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Acronyms

Acronyms

ArTeCS Architecture and Technology of Computing Systems

ASHRAE American Society of Heating Refrigerating and Air-Conditioning Engineers

BFD Best Fit Decreasing

BNF Backus Naur Form

CDTI Centro para el Desarrollo Tecnológico e Industrial

CFD Computational Fluid Dynamics

CLOUDS Cloud Computing and Distributed Systems

CMOS Complementary Metal-Oxide-Semiconductor

COP Coefficient of Performance

CPS Cyber Physical System

CPU Central Processing Unit

CRAC computer room air conditioning

CV Coefficient of Variation

DIBL Drain-Induced barrier lowering

DVFS Dynamic Voltage and Frequency Scaling

EM Electromigration

FE Feature Engineering

FinFETs fin-type field-effect transistors

GA Genetic Algorithm

GE Grammatical Evolution

GP Genetic Programming

HCI Hot carrier injection

HERO HEuRistic Optimization

HiPEAC European Network of Excellence on High Performance and Embedded Architecture
and Compilation

HPC High Performance Computing
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ACRONYMS

IaaS Infrastructure as a Service

IPMI Intelligent Platform Management Interface

IQR Interquartile Range

ISNs index serving nodes

IT Information Technology

KVM Kernel-based Virtual Machine

lasso least absolute shrinkage and selection operator

LR Local Regression

LRR Local Regression Robust

LTS Long Term Support

MAD Median Absolute Deviation

MC Maximum correlation

MINECO Spanish Ministry of Economy and Competitiveness

MIPS Millions of Instructions Per Second

MMT Minimum migration time

MO Multi-Objective

MOS Metal-Oxide-Semiconductor

MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor

MSE Mean Squared Error

NBTI Negative bias temperature instability

OMOPSO Multi-Objective Particle Swarm Optimization

OS Operating System

PABFD Power Aware Best Fit Decreasing

PCPG Per-core power gating

PDUs Power Distribution Units

POF Pareto-Optimal Front

POS Pareto-Optimal Set

PSO Particle Swarm Optimization

PUE Power Usage Effectiveness

QEMU Quick Emulator

QoS Quality of Service

RMSD Root Mean Square Deviation

ROI Return on Investment

RPM revolutions per minute
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ACRONYMS

RS Random choice

SA Simulated Annealing

SEU Single event upset

SLA Service Level Agreement

SM Stress migration

SO Single-Objective

SPEC Standard Performance Evaluation Corporation

SR Symbolic Regression

TASA Thermal Aware Scheduling Algorithm

TC Thermal cycling

TCMS control through multiple supply voltages

TCO Total Cost of Ownership

TDDB Time-dependent dielectric-breakdown

TFET Tunnel field-effect transistor

THR Static threshold

UPS Uninterrupted Power Supply

VM Virtual Machines
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