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ABSTRACT

In recent times, there is a growing need to analyse Spatio-temporal datasets to
extract meaningful information and provide location-aware services, such as trip
planning, weather forecasting, and even health management. From its inception,
Spatio-temporal data mining has shown a significant impact on varied aspects of
our lives. However, analysing a huge volume of Spatio-temporal datasets is chal-
lenging since it requires enormous computing and storage power and several spatial
operations to perform analytics efficiently. In this regard, Cloud computing is un-
doubtedly the most feasible solution as it provides unlimited computing resources
and data storage facilities. However, frequent communications with distant cloud
servers increase the delay and may affect the Quality of Service (QoS) of any frame-
work. Here, the fog or edge nodes can be made intelligent enough to analyse and
adapt timely measures to reduce the intervention of cloud servers at each time. While
fog or edge computing is not a replacement for cloud computing, the magnificent
integration of these two booming technologies can efficiently facilitate delay, energy
awareness, and real-time applications.

To be specific, our research focuses on exploring the spatial cloud computing do-
main to facilitate several real-life applications in less delay and energy consumption.
The most critical aspect of facilitating any real-life application by analysing a large
volume of data is to develop an efficient query processing module. The demand for
computing resources to process the geospatial queries has been increased drastically.
The query helps the users to get a variety of information to serve their needs. A
huge number of heterogeneous data sources and different computing services are
involved in resolving the geospatial queries. Extracting appropriate results within
a specific time bound and orchestration among those data sources and web services
are essential. These services are available on the web and require different resource
specifications in order to resolve a geospatial query.

The major contributions of this thesis are (1) Development of a taxonomy for
geospatial cloud-fog-edge computing environments. (2) Resolution of geospa-
tial queries in the cloud with heterogeneous data sources. (3) Various geospatial
queries resolve in cloud platform after generating geospatial service chaining. Pre-
estimating the cloud resources helps provide resources to geospatial queries within



user-defined budget and time deadline using a game theory-based approach. (4)
Geospatial query resolution within region-specific fog devices. It is an energy-
efficient and delay-aware geospatial query resolution framework. (5) Finally, a
real-time healthcare service provisioning with geospatial queries in a cloud-fog-
edge integrated platform. It is an energy and latency-aware framework, leading
to a green geospatial query resolution platform. We have also performed an ex-
tensive comparative study with the benchmark and state-of-the-art spatial cloud
computing systems, demonstrating our proposed spatial cloud-based methods’ effi-
cacy and superiority. The overall study comprises collection, orchestration, analysis,
and visualization of Spatio-temporal data sources, such as road-networks, land-use
information, location-based movement patterns, and user health profiles at different
spatial locations at various time-scales.

Keywords: Spatial Cloud Computing, Geospatial Query, Geospatial Services, Fog
Computing, Edge Computing.
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Chapter 1

Introduction

The advances in various location acquisition systems, sensor networks, and mobile
computing methods have generated substantial volume of geospatial data. Various
applications, namely, navigation systems, traffic analysis, sensing, disaster manage-
ment, etc., have been proposed with this myriad of geospatial data. To resolve the
geospatial query, a huge amount of geospatial data need to be accessed and pro-
cessed. The processing of such data is often computationally intensive and requires
incessant access. Cloud computing provides ubiquitous network access, on-demand
self-service, resource pooling, rapid elasticity, and measured services [1]. The rapid
advances of computer hardware, software, and fast network speed have fostered
enough opportunities in research in cloud-based geographical information systems
(GIS).
Spatial Cloud Computing (SCC) [2] refers to the cloud computing paradigm driven
by geospatial sciences (see figure 1.2). It also employs Spatio-temporal principles for
enabling geospatial science discoveries and cloud computing within a distributed
computing environment. Spatio-temporal principles [3] are essential for their abili-
ties to enable the discoverability, accessibility, and usability of the distributed, het-
erogeneous, and massive data. SCC optimizes cloud computing infrastructure by
helping arrange, select, and utilize high-end computing for computing-intensive
problems, along with enabling timely response to world-wide distributed and lo-
cally clustered users. SCC also enables the timely response to world-wide distributed
and locally clustered users through geospatial optimization. SCC assists the design
of Spatio-temporal data structure and algorithms to optimize the information work-
flow for solving complex problems. Cloud orchestration is required while dealing
with services and operational concerns such as servicing large numbers of simulta-
neous user queries, enforcing policies that reflect on services and engineering rules,
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Figure 1.1: A typical Spatial Cloud Computing environment

and performing fault and error handling in a highly dynamic environment.
Beyond geospatial services, the key success of these technologies is the interoperabil-
ity because “no single organization produces all the data (so it’s inconsistent) and no
single vendor provides all the systems” (OGC, 2008a) [4]. So, the different types of
geospatial services are naturally published via different interfaces. For achieving the
geo-processing solution, it requires the mediate component to integrate those het-
erogeneous services. Orchestration Engine(OE) plays such intermediate component
role. It selects and coordinates required intelligent geospatial services [5] applying
business logic. Using catalog services OE architecture describes the way of choosing
required data services. It also synchronises web services as per requirement. For
examples, Web Feature Service (WFS) itself cannot coordinate with Web Map service
(WMS), Web Coverage Service (WCS) itself also cannot coordinate to WFS; therefore,
orchestration engine, aggregate service, or workflow managed service is necessary.
Geospatial cloud as a system-based-on cloud computing has several advantages
over traditional GIS [9] , namely, easy setup, low cost, easy publishing, modular
component, interoperable collaboration. With traditional GIS, collaborating among
stakeholders located at various places in the world is a persistent problem. With the
advent of spatial cloud, this problem can be addressed, because multiple stakehold-
ers at different locations, can create accounts on the geospatial cloud and collaborate
among one another. Service Oriented Architecture (SOA) helps seamless integration
of distributed data sources. Enterprise Geographical Information Systems (EGIS)
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framework for sharing and utilizing the heterogeneous data sources. Each stake-
holder can access the data which is centralized, make modifications, and build any
project collaboratively.
Moreover, storing and processing a massive amount of data on cloud data centers
results in high energy consumption as well as the use of long distant cloud servers
compromise with Quality of Service (QoS) in terms of delay and energy, from the
perspective of the client mobile devices [6, 7]. In order to improve the QoS, fog
computing has been introduced where the intermediate devices like a switch, or a
router are used to perform data and computation offloading [8] in between the end
node and cloud servers. The intermediate and end devices that monitor, store and
process data are called fog and edge devices [9, 10] respectively. The use of fog
and edge devices in geospatial data storage and processing can reduce the delay
and energy consumption over remote cloud servers [11]. Various fog-edge based
real-life applications are increasing in healthcare [12], agriculture [13], environment
monitoring [14], disaster monitoring [15] etc.
The brief descriptions of the few terms/ topics, used in this thesis, are presented here.

• Geospatial Query: These queries return all documents whose locations are
within the query-specified area. To specify holes within the area, so that one
or more subsets of returned documents can be omitted from the final results,
boolean queries should be applied to the set of documents returned by the
geospatial query. The types of Geospatial Queries (GQs) [16] are mentioned
below.
Filter Query- This type of query[17][18] filters a particular geometry (say, geom-
etry1) which presents in the another geometry (say, geometry2). The format of
filter query is as follow-
SDO FILTER (geometry1, geometry2, parameters)
Primary and Secondary Filter- This type of query filters one subset geometry (say,
geometry1) or an object from the superset geometry (say, geometry2). For this
kind of operations, SDO FILTER and SDO RELATE operators are used. The
format of filter query is as follow-
SDO FILTER (geometry1, geometry2, parameters)
SDO RELATE (geometry1, geometry2, parameters)
Within Distance- It measures whether one geometry or object (say, aGeom) is
present within a particular euclidean distance of another geometry or not. The
format of within distance query is as follow-
SDO WITHIN DISTANCE (T.column, aGeom, parameters)
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To proceed the within distance query, we can create a buffer of the radius of
specified distance (say, d). It is also called Buffer query [19].
Nearest Neighbour (NN)- It measures whether geometries(say, geometry2) is the
nearest neighbor of a particular geometry (say, geometry1) or not. The format
of nearest neighbour query is as follow-
SDO NN (geometry1, geometry2, parameter)
Reverse Nearest Neighbour Query (RNNQ) [20] and All-Nearest Neighbour
(ANN) [21] [22] query are the two variants of the NN query.
Geospatial Join Query- This type of join query [23][24] is the same as the rela-
tional join of queries, but the predicates are attached with geospatial operators.
It compares one layer of a geometry (say, geometry1) with the layers of the
other geometries (say, geometry2). Geospatial index type (that is, R-tree or
Quadtree) must be the same on the geometry column of all the tables involved
in the join operation.
Example: How many states are crossed by a river?
SELECT R.GId, S.GId

FROM rivers R, states S

WHERE sdo filter(R.shape, S.shape,‘querytype = join’) = ‘TRUE’;

• Geospatial Services: Geospatial web services, used in this thesis, are complaint
with Open Geospatial Consortium (OGC) standards1. Geospatial web services
emphasis on three main purposes - data discovery, data visualization and data
access. Some of the OGC complaint geospatial services are as follows-
Web Features Services (WFS)[25] is interfaces for defining data handling op-
erations like create, update, delete a geographic feature instance. There are
different operations, i.e., GetFeature, GetCapabilities, GetPropertyValue avail-
able on WFS.
Web Processing Service (WPS)[26] provides a platform with different geo-processing
operations like buffering, intersection, overlaying on a point, polyline or poly-
gon. It could access across the network to utilize a preprogrammed computa-
tion model that operates on spatially referenced data.
Web Map Service (WMS) returns one or more geo-registered map images from
distributed geospatial databases in JPEG, PNG, TIFF etc. format on the re-
sponse of WMS request.
Catalog Services for the Web (CSW) is needed to publish the geospatial character-
istics and search group of metadata for data, services, and related information

1https://www.ogc.org
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objects provided by different sources. So, the client system can automatically
bind with the required geospatial services. CSW interface helps a client to
query on catalogs to discover resources. A CSW has different requirements for
its three main types of users - Resource User, Resource Provider and Registry
Manager.

• Computing Paradigms:
Cloud Computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly pro-
visioned and released with minimal management effort or service provider
interaction [1].
Fog Computing extends the traditional cloud computing and services to the edge
of network. It provides the computation, communication, controlling, storage
and services capabilities at the edge of network. The decentralized platform is
different from other conventional computational model in architecture [27].
Edge Computing also extends cloud service to the edge devices. It refers to the
enabling technologies which allow computation and storage to be performed
on edge devices [28]. That is to say, computing and storing happens near things
and data sources [29]. The edge nodes and devices with computing capacity
perform a large number of computing tasks (e.g., data processing, temporar-
ily storing, devices management, decision making, and privacy protection) to
reduce the network latency and traffic between end devices and cloud [30].
These edge nodes can be composed of smart sensors, smart phones, and smart
vehicles, even a special edge servers. They can interconnect and intercommu-
nicate in the local to form an edge network. Moreover, edge devices connect
with cloud data center by core network. Edge computing provides edge in-
telligence services nearby to meet the critical demands of the digital industry
in agile connection, real-time services, data optimization, application intelli-
gence, security and privacy protection.
Edge computing and fog computing, their architectures are hierarchical, decen-
tralized, and distributed, which is different from centralized cloud computing
architecture. Their service locations are the proximity to end users. Edge com-
puting is located in edge devices, while fog computing is located in network
edge devices, which is single network hop or few network hops away from the
edge. Their resources (e.g., computing, communication and storage resources)
and computation and storage capabilities are limited by comparing with cloud

5



1. Introduction

computing, and edge computing is more limited than fog computing. Because
the resources and service capabilities of network edge devices are relatively
stronger than edge devices. Moreover, these two computing paradigm have
mobility support for end users. Because most services are provided locally,
it is essential to take the existence of mobile devices into consideration. They
also support the scalability of the whole ecosystem. The reason is that a large
number of wide-spread and geo-distributed nodes are available if the situation
requires them, including the nodes located at a certain site, neighboring nodes,
or even the nodes situated at more remote geographical locations [31].

1.1 Motivation and Objectives

Geospatial query processing can be used in various applications in different aspects
to solve real-life challenges. In order to resolve the crisis and effectively come up
with an appropriate decision, several departments (such as electricity, transporta-
tion) need to collect huge data and work seamlessly. Extracting the Spatio-temporal
information from various sources need a proper query execution framework and or-
chestration of geospatial services in an integrated cloud-fog-edge computing frame-
work. Even though the cloud-only framework provides the capability of storing,
managing, and analysing the massive volume of data, frequent communication with
the cloud servers adds more delay and generates more energy consumption. There-
fore, to provide energy-efficient and timeliness-aware services, it is necessary to
utilize the computational capabilities of fog and edge nodes.

The broad objectives of this research works are summarized as follows:

• Resolution of geospatial queries in the cloud with heterogeneous data sources.
Geospatial web services facilitate fetching of the geospatial data from hetero-
geneous data sources. A geospatial query can be represented as query tree.
The leaf nodes of the query tree link to the geospatial data sources. The reg-
istry service helps to identify the data sources. The orchestration of geospatial
services for fetching and displaying the data as per the user query is done in
the cloud platform.

• User-defined deadline and budget aware Spatio-temporal query processing in the cloud
platform.
A game theory-based approach has been proposed to allocate cloud resources
so that the query resolution can be done within user-defined deadline and

6



1.2. Thesis Contribution

budget. The geospatial service chain plays a vital role in allocating the cloud
resources for a Spatio-temporal query.

• Framework for geospatial query resolution in a cloud-fog environment.
A fog layer has been incorporated into the existing cloud framework. Fog
devices store local or regional data. Geospatial queries of the local region are
resolved by the fog devices. It reduces the data load on a cloud server by
distributing data over fog nodes. Consequently, the energy consumption of
the user device during query resolution and delay are reduced.

• A delay-aware and energy-efficient framework to assist users in a healthcare emer-
gency. Edge nodes are added within the cloud-fog architecture where the edge
nodes are placed near the affected people or patient. This enables continuous
data monitoring and triggering alerts to the administrator in case of any ab-
normalities. The cloud paradigm provides the capability of storing, managing,
and analysing a massive volume of data. Since frequent communication with
the cloud servers adds more delay and requires more energy consumption, it
is important to address and efficiently resolve the crisis to provide adequate
humanitarian relief and a sustainable environment.

1.2 Thesis Contribution

The contributions of the thesis are as follows:

1. Proposing the taxonomy on geospatial Cloud, Fog, Edge, and other comput-
ing environments. Categorizing existing works into geospatial computing,
geospatial data, geospatial analysis methods, and geospatial applications.

2. Investigated different types of geospatial services, and orchestration of the
services.

3. Geospatial service chaining for faster processing of geospatial query. Cloud
resource allocation for queries with predicting user budget and deadline.

4. Geospatial query resolution in fog devices to facilitate energy efficiency and
reduction of delay in query processing.

5. Location-based geospatial query resolution in healthcare system with Cloud-
Fog-Edge-IoT architecture.
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1.3 Thesis Organization

The overall organization of the thesis is presented in Fig.1.2.

Chapter 1
Introduction

Chapter 2 
Related Work

Chapter 4
Geospatial Query Resolution in

Cloud with Resource Optimization

Chapter 5 
Geospatial Query Resolution 

in Fog-Cloud Environment

Chapter 6
Healthcare Application of

Geospatial Query in Edge-Fog-
Cloud Environment

Chapter 7 
Conclusion and Future Work

Chapter 3
Geospatial Query

Framework in Cloud

Figure 1.2: Structure of thesis

• Chapter 2 presents the related works of Geospatial applications in different
computing paradigm.
Related Publication:
- Jaydeep Das, Soumya K. Ghosh, Rajkumar Buyya, “Geospatial Edge-Fog
Computing: A Systematic Review, Taxonomy, and Future Directions”. In book
titled Mobile Edge Computing (MEC), Springer, USA, 2020.

• Chapter 3 elaborates geospatial query framework in Cloud platform. It dis-
cusses about the geospatial service orchestration to resolve the geospatial
queries. A cloud infrastructure has been utilized for scalable resource allo-
cation. An orchestration engine has been developed to access the geospatial
resources according to query requirement.
Related Publication:
- Jaydeep Das, Arindam Dasgupta, Soumya K. Ghosh, Rajkumar Buyya, “A
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Geospatial Orchestration Framework on Cloud for Processing User Queries”,
In Proceedings of IEEE International Conference on Cloud Computing in
Emerging Markets, Pages: 1-8, IEEE, 2016.

• Chapter 4 presents the work on the provisioning of cloud resources so that
the geospatial query is resolved within user’s budget and time deadline. In
this regard, an efficient query resolution system can be deployed if we predict
the infrastructure requirement of the user query apriori along with the identi-
fication of the geospatial service chain. The proposed framework attempts to
resolve queries efficiently considering user-defined deadline and budget con-
straint.
Related Publications:
- Jaydeep Das, Shreya Ghosh, Soumya K. Ghosh, Rajkumar Buyya, “LYRIC:
Deadline and Budget Aware Spatio-Temporal Query Processing in Cloud”, in
IEEE Transaction on Services Computing (TSC), April 2020,
DOI:10.1109/TSC.2021.3073006.
- Jaydeep Das, Sourav Kanti Addya, Soumya K. Ghosh, and Rajkumar Buyya,
“Optimal Geospatial Query Placement in Cloud”, In Proceedings of Interna-
tional Conference on Intelligent and Cloud Computing (ICICC), Pages: 335-
344, Springer, Singapore, 2021.
- Jaydeep Das, Arindam Dasgupta, Soumya K. Ghosh, Rajkumar Buyya, “A
Learning Technique for VM Allocation to Resolve Geospatial Queries”, In Pro-
ceedings of the 5th International Conference on Advanced Computing, Net-
working, and Informatics (ICACNI), Pages: 577-584. Springer, Singapore,
2019.

• Chapter 5 proposes a fog computing framework namely Spatio-Fog, where
the fog devices contain the geospatial data of their current region and process
geospatial queries using resources in the proximity. The geospatial query res-
olution is performed by the fog device either itself or using cloud servers or
fog device of other region depending on the geographical region related to the
geospatial query.
Related Publication:
- Jaydeep Das, Anwesha Mukherjee, Soumya K. Ghosh, and Rajkumar Buyya,
“Spatio-Fog: A Green and Timeliness-oriented Fog Computing Model for
Geospatial Query Resolution”, Simulation Modelling Practice and Theory
(SIMPAT), Elsevier, Volume 100, Article 102043, ISSN: 1569-190X, April 2020.
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- Jaydeep Das, Anwesha Mukherjee, Soumya K. Ghosh, and Rajkumar Buyya,
“Geo-Cloudlet: A Time-Efficient Geospatial Query Resolution Paradigm using
Cloudlet”, In Proceedings of IEEE 11th International Conference on Advanced
Computing (ICoAC), Pages: 180-187, 2019.

• Chapter 6 discusses an end-to-end framework which has four layers, namely,
cloud, fog, edge and IoT. This framework has an efficient spatio-temporal data
analytics module for information sharing, spatio-temporal data analysis to
predict path for users to reach the destination (say, healthcare center or relief
camps) with minimum delay in the time of exigency (say, natural disaster).
This module analyzes the collected information through crowd-sourcing and
assists the user by extracting optimal path post-disaster when many regions
are non-reachable. The framework is deployed and evaluated using real-life
datasets. The experimental and simulation results outperform the baselines to
a significant margin in terms of accuracy, delay, and power consumption, and
green service provisioning is achieved.
Related Publication:
- Shreya Ghosh, Jaydeep Das, Soumya K. Ghosh, Rajkumar Buyya, “CLAWER:
Context-aware Cloud-Fog based Workflow Management Framework for Health
Emergency Services”, In Proceedings of 20th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Internet Computing (CCGrid 2020), Pages: 810-817.

• Chapter 7 summarises the overall thesis and indicates some directions of future
research.
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Chapter 2

A Review of Geospatial
Cloud-Fog-Edge Computing
Environments

Real-time geospatial applications are ever-increasing with modern Information and Com-
munication Technology. Latency and Quality of Service-aware applications are required to
process at the edge of the networks, not at the central cloud servers. Edge and fog nodes of
the networks are capable enough for caching the frequently accessed small volume geospatial
data, processing with lightweight tools and libraries. Several research works are carried out
on edge and fog computing, especially in the geospatial domain. Health monitoring, weather
prediction, emergency communication, disaster management, disease expansion are some
of the examples of geospatial real-time applications. In this chapter, we have investigated
the existing work of the edge and fog computing in the geospatial paradigm. We propose a
taxonomy of the related works. At the end of this chapter, we discuss the limitations and
future direction of the geospatial cloud-fog-edge computing.

2.1 Introduction

With the enormous usage of smartphone and IoT devices, generating, accessing, and
analyzing geospatial data have increased manifolds. To access and analyze these
geospatial data, substantial computing and processing resources are required [2].
The provisioning of resources varies with the applications. For the large compu-
tation, a huge infrastructure is needed for processing a large amount of geospatial
data. In such cases, the central cloud computing infrastructure is the preferred solu-
tion. However, for the small amount of geospatial data processing, analyzing, and

11



2. A Review of Geospatial Cloud-Fog-Edge Computing Environments

decision making, the edge, and fog computing is a promising technology [11].

A pictorial view of the cloud, fog, and edge computing with geospatial applica-
tions is presented in Figure 2.1. Cloud is the core layer where high-end computing
servers and databases are present. Users receive virtualized computing instances
with different configurations for their geospatial applications. Moreover, the cloud
is usually present at a multi-hop distance from the geospatial applications.

Figure 2.1: Geospatial Cloud-Fog-Edge computing layers

In fog computing layer, the computation is done in the fog nodes,i.e., switches,
routers, gateways, access points, base stations [8]. These fog nodes are present in
between the edge devices (mobile phone, laptop, tab) and the central cloud server.
These fog nodes are capable to compute and analyze the small amount of geospatial
data. After processing and analysis of the geospatial data, these fog nodes may
communicate to the edge devices. Fog computing is effective in terms of service
delay, energy efficiency, network congestion, etc.

Edge computing layer is constructed by the inter-connectivity among nearby edge
devices like mobile phones. As edge computing is very near to the edge devices, it
facilitates high network bandwidth, ultra-low latency, and real-time response [32, 33]
to the geospatial applications like sending alert to the fire station, change the color of
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traffic signal lights and its timespan, sending a message to the medical person about
his/her patient’s condition, etc.

Edge and Fog Computing (EFC), enriches the computing paradigm for real-time
geospatial applications like health monitoring [34–36] systems, short-term weather
prediction, disaster recovery [15, 37], crop diseases monitoring[38]. In all these
cases, a quick decision has to be taken depending upon the analysis of captured
geospatial data by edge nodes[39]. The response time is a major concern in all of
the above situations. Fast decisions can be obtained from a geospatial EFC system
than a centralised geospatial cloud system. Geospatial fog computing helps in the
computation and analysis of the geospatial data. A layered architecture has been
proposed in [40]. EFC system has an inner, middle, and outer edge layer. Different
edge and fog devices are present in these three layers.

In summary, motivations move towards the Edge-Fog than cloud-centric com-
puting paradigm are low latency or response-time, less network bandwidth utiliza-
tion, uninterrupted service due to minimum distance from edge devices, resource-
constraint at the individual edge devices affects cloud performance, and security of
the edge devices is not controllable by cloud from distance [41].

In this chapter, we present a taxonomy based on a survey of cloud-fog-edge
computing for geospatial domain. There are several surveys exist in edge and fog
computing domain [27, 30, 31, 42–60], but none of them address geospatial aspects. In
Section 2.2, we have discussed the geospatial related researches in Cloud, Cloudlet,
Mist computing environment. A taxonomy on existing research work in geospatial
cloud, fog, and edge computing has been structured in Section 2.3 and Section 2.4
makes a summary of these works in a tabular form for better understanding. Section
2.5 expresses the limitations in the geospatial cloud-fog-edge computing domain.
Future scopes of geospatial cloud, fog, and edge computing is explored in Section
2.6. The conclusion of this chapter has been done in the last section.

2.2 Existing Computing Paradigms for Geospatial Ap-

plications

In this section, we focus on ongoing researches on cloud computing, cloudlet, mist
computing with geospatial features.
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2.2.1 Geospatial Cloud Computing

Currently, there are many computing strategies are available. Cloud computing[61]
is the core of all these computing, where a large number of servers, databases are
available. While huge computing is required for a geospatial application, then cloud
is the only option for processing it. As the cloud servers reside multi-hop distance
from the geospatial application nodes, it increases the overall communication de-
lay which is sometimes critical for real-time geospatial applications like methane
gas leakage monitoring, fire alarming, health monitoring [36]. The characteristics
of the Cloud-GIS has been mentioned in [62], which are the extensible geospatial
version of the cloud characteristics. These are - (i) elasticity of geospatial resources,
(ii)on-demand geospatial service, (iii) measurable and pay-as-you-go for geospatial
resources, i.e. geospatial data, geospatial tools, (iv) accessing diversity, (v) trans-
parency, (vi) service based geospatial applications, and (vii) hardware and resource
extendable. The geospatial based Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS) are discussed in [63]. Along with
these geospatial Data as a Service(DaaS) is also a major concern. Some geospatial
services on the cloud are also mentioned in [64]. Cloud-based GIS architecture mod-
els have been discussed in [65–67]. Geospatial data indexing [68, 69] is performed
for better data management in the cloud. Geospatial data interpolation [63, 70] is
performed in the cloud for determining the missing geospatial data in the public
dataset. Geospatial data mining [71, 72] and data processing [73–75] are performed
for the getting results of the geospatial data query [76, 77]. All these geospatial data
mechanisms have been done for getting the results from the geospatial applications
running over the cloud computing platform.

2.2.2 Geospatial Cloudlet

Cloudlet is introduced to improve the latency of the cloud by caching the copies of
data while users access the mobile applications[78]. It brings the performance of the
cloud closer to mobile users. Cloudlets are computationally less powerful than the
central cloud system [79]. Mobile phone, Laptop, an Access point can be used as a
cloudlet. If many cloudlets are connected with each other, then the single point of
failure can be avoided. Cloudlet supports mobility. The mobile device offloads the
codes to the cloudlet and the code is migrated to another nearby cloudlet. While the
mobile device reaches under the coverage of the second cloudlet, it starts getting the
executed results from the second cloudlet [80]. Location-based service discovery is
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done by the distributed cloudlets [81] and it generates less traffic in the network than
a cloud-based approach. Geospatial query resolution using cloudlet reduces delay
and power consumption than remote cloud access for geospatial data analysis.

2.2.3 Geospatial Mist Computing

According to [82], Mist computing is a computing layer between fog and cloudlets.
Sensor and actuator devices are involved in the processing of data, which pushed
the computing towards the edge node of the network [83] where edge devices are
present. This reduces the communication latency within edge devices in millisec-
onds. Mist computing enhances the self-awareness among the edge devices in such
a way that edge devices perform their operations with unstable Internet connections
[40]. A Mist-GIS framework has been developed for clustering and overlying the
geospatial data of the Ganga river basin [84] and malaria disease spread in the state
of Maharastra, India [85].

2.2.4 Discussion

The changes of different parameters like distance from applications, computational
capacity, cost, energy savings, real-time responses, etc. with respect to computing
paradigms are represented in figure 2.2. However, communication delay, compu-
tational capacity, the infrastructural cost are more in a cloud environment than the
other computing paradigms. Moreover, energy efficiency, closeness to the applica-
tions, and real-time response are promising in the edge, fog, and mist computing
paradigm.
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2.3 Taxonomy

We have represented a taxonomy on geospatial Cloud-Fog-Edge computing in figure
2.3. This taxonomy is based on the existing works in the geospatial domain where
the computation has been done in Cloud, Fog, and Edge computing environment.
We have categories the works into four parts. These are-

• Geospatial Computing: We focus on service and resource management in edge-
fog environments. Resource management is sub-categories in power, delay,
cost, and geospatial data management. Whereas, service management is bro-
ken into four parts, i.e., network, application, geospatial data service, and
quality of service management.

• Geospatial Data: The geospatial data which used for the applications running
on the Edge-Fog computing are mentioned.

• Geospatial Analysis Procedures: The methods or procedures applied to the
geospatial data, which help to identify the emergency or severity of the sit-
uations through the geospatial applications.

• Geospatial Applications: Different types of geospatial applications which run on
the edge and fog computing environment.

In the following subsections (2.3.1-2.3.4), we elaborate existing related works that
fall into the four categories mentioned above.

2.3.1 Geospatial Computing

In this section, we discuss about the overall cloud, fog, and edge computing man-
agement. It includes resource management, and service management.

Resource Management

Resource provisioning has been done depending upon the power, delay, cost by
the cloud server, fog, and edge nodes. Also, keep in mind about the amount of
geospatial data can be processed and stored by cloud server, fog or edge nodes [45].

Power Management: Edge and Fog computing paradigm are introduced to
efficient power management of the overall network system. In [11, 86, 87], the
processing of geospatial data is done at the edge and fog devices of local region.
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Figure 2.3: Taxonomy of geospatial Cloud-Fog-Edge Computing
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Data processing at local devices reduces the data transfer to the remote cloud server.
This leads to low power consumption in the overall system.

Delay Management:Delay in communication or in service is crucial for applica-
tions. Sometimes, an application loses its relevancy due to the delay. This is one of
the major concerns that introduce Edge and Fog computing instead of Cloud com-
puting. Geospatial queries are resolved within nearby Fog devices if concern data is
available that fog devices. Otherwise, fog devices communicate to the cloud server
for processing. They achieved 47–83% improvement in delay than the only-cloud
environment. The shortest path within the critical zone has been determined in
case of emergency situation [87] within nearby fog devices. They come by 9-11%
better in average delay than the cloud platform. In time-critical applications [86],
achieve improvement in delay on user devices as the processing of information done
in nearby fog devices.

Cost Management: The cost management includes infrastructure deployment
cost, networking, or communication cost, and application execution cost [49]. Data
offloading cost, process migration cost are also considered for this category.

Geospatial Data Management: GIS applications are running based on geospatial
data. These data are large in volume[88]. Only pre-processing of data can be done
in edge and fog nodes because the infrastructure like memory, processor, storage
capacity is small. Pre-processed data forward to the cloud for further processing.
Sometimes, frequency used data are only cached in the edge and fog nodes, which
helps to reply quickly to the user query. Various methods for matching geospatial
vector data are mention in [89].

Service Management

We discuss network management, application management, geospatial data service
management, and quality of service(QoS) management as overall service manage-
ment of the Cloud-Fog-Edge computing environment.

Network Management: Networks are managed in the EFC paradigm through
congestion control, seamless connectivity, and network virtualization. Congestion
in the network can be avoided by minimizing the communication with the cloud
server from the EFC network. Geospatial application requests are coming from
any edge devices, and its resolution performed nearby edge or fog nodes. It leads
to minimizing network traffic. Seamless connectivity helps to connect edge devices
with cloud or fog servers without any latency. Seamless connectivity is possible with
handover technology in future vehicular networks[90, 91]. Network virtualization
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has been done by the software-defined network (SDN). Network function virtual-
ization(NVF) helps to virtualize the traditional network functions. SDN based work
in fog computing done in [92, 93]

Application Management: Real-time geospatial applications are road traffic
monitoring, weather prediction, a spatial query against any point of interest(POI),
emergency health monitoring. In all these cases, a cluster of reliable edge-fog nodes,
low latency, and dedicated computing resources are required. Augmented real-
ity(AR), real-time video streaming, content caching technique, bigdata analysis dis-
cussed in [94]. Using offloading technique[95], one nearby edge/fog nodes can forward
computational tasks to its adjacent edge/fog node which has better computing re-
sources. Scaling is another aspect that helps to run the application smoothly. Always
the processing of geospatial data amounts is not the same. When it increases, the
computation power needs to increase. This leads to a challenge for edge/fog nodes.
In the case of scalability, cloud is still a promising technology.

Geospatial Data Service: Geospatial data are integrated from various sources
through OGC compliant web services [96]. There are five types of web services avail-
able. These are Web Feature Service(WFS), Web Processing Service(WPS), Web Cov-
erage Service(WCS), Web Map Service(WMS), and Catalogue Service for Web(CSW).
WFS helps to extract the features according to queries. WPS applies different spa-
tial operations over geospatial data. WMS displays the maps according to user
demands. CSW prepares the registry of the available data sources.

QoS Management: Best quality of service is achieved in EFC through energy-
efficient computation, low latency in communication, overall minimal cost, reliable,
and secure connection.

• Energy: In the EFC paradigm, energy is consume minimize through energy-
aware computation offloading, mobility management federation of constrained
devices [59]. In [46], the overall edge computing system will be energy efficient
through edge hardware design, computing architecture, operating system, and
middleware.

• Latency: Computation latency and communication latency are considered for
overall service latency management. Computation latency depends upon the
configuration (Processor, RAM) of the edge and fog nodes. Whereas, commu-
nication latency relies on network bandwidth. It can be considered as within
edge nodes, edge node to Fog node, and within fog nodes connectivity.

• Cost: It is the summation of the computational cost, deployment cost, and net-
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working cost. Network bandwidth is responsible for the networking cost [97].
Whereas, computing devices like processing unit, RAM, virtual machine cost
are considered as computational cost. Deployment of cloud server, edge-fog
nodes and their communication elements expenses come under the deploy-
ment cost.

• Reliability: It is also the main concern while an application is running on
reliable edge or fog nodes. The availability of such computing nodes should
be guaranteed. In [59], mentioned to make a fog service reliable the replication
of required functions is required, but it may not possible due to the limited
computing resources available to the fog devices. So, it is a challenge to make
a service reliable and available which is running in edge and fog devices.

• Security: Heterogeneous and geographically distributed edge and fog nodes
have a major concern about the security. Rogue fog node identification, au-
thentication, strengthen the network, and data storage security are ways to
constitute a security in the cloud-fog-edge environment [98]. There are var-
ious security attacks, like Man-in-the-middle, Distributed Denial-of-Service
(DDoS), ripple effects, injection attacks [31, 99] can be done through unautho-
rized access of user [100, 101]. Before deployment of any geospatial applica-
tions in the EFC system, the four basic security requirements, i.e., availability,
authenticity, confidentiality, and data integrity should be verified.

2.3.2 Geospatial Data

Geospatial data has its geographic location (lat/lon) attached to it. These data are
captured from different types of sensors. It is also captured by the high-resolution
cameras from the satellites. Raster and vector data are primary data format [16], but
in [88] types of geospatial data are extended with Point Cloud data and Textual data
along with prior two categories.

Raster Data: It is made up of a grid of pixels and each pixel has an individual
value. All kind of aerial photography and satellite imagery comes into this cat-
egory. It includes thematic cartographic maps, topographical maps, orthophotos,
time series of satellite images.

Vector Data: It is made up of the point, polyline, polygon. It has a shape feature,
which contains the (x, y) coordinates. The shape contains latitude, polyline longitude
information instead of (x,y) while the representation is done on earth surface with
2D view.
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Point Cloud Data: This kind of data helps to visualize the 3D model of the terrain.
Terrestrial Mobile Mapping System (MMS) data [102], LiDAR data are examples of
point cloud data [103].

Textual Data: Text data are generated from several applications with location-
tagged [104]. Social media data like Twitter, Facebook data, online blogs are coming
into this category. These help to generate data-driven geospatial semantics.

2.3.3 Geospatial Analysis Procedures

Geospatial analysis[105, 106] is required for visualization of the geospatial data by
using software and tools. The geospatial analysis methods are described below.

Basic Geospatial Operations: Buffer creation, nearest neighbor searching, over-
lay analysis are the basic GIS analysis tools. Overlay of the several geospatial layers
has been done based on user queries. It reduces the overload of the computer mem-
ory displaying selected data layers instead of all layers. The clip, Intersect, Union
are the basic overlay tools. Whereas, the buffering technique is used to identify the
affected areas in flood, forest fire[107], earthquakes[108], tsunami[109], or disease
outbreak like malaria, dengue fever [110], corona etc.

Geospatial Analytical Methods: It includes the clustering of the similar point
patterns, generation of the heat map, analysis of points density. These methods help
to identifying city traffic flow [111], air quality determination[112], monitoring of
greenhouse gas emissions from factories, households, livestock agriculture [113].

Network Analysis: This type of geospatial analysis is based on graph analysis,
where the connection between edges and nodes are defined. Transportation prob-
lems can be solved by finding the shortest path between two cities connected by a
road network, or rail network, or a combination of both networks. This shortest-path
generation helps in healthcare facility [114], tourism facility [115]. Human move-
ment pattern identification after analyzing the trajectories in the road network has
been done in [116, 117].

Geometric Measurement: Distance and proximity between one point to another
point is the basic geometric measurement which is vastly used in the GIS applica-
tions. This measurement helps in tourism facility recommendations [118] like nearby
hotels, restaurants, visiting places, ATM. It also helps to find nearby hospitals, med-
ical shops in heath-care applications[86, 119]. In disaster management, transfer the
victims to the nearby shelters, or reach to the victims with relief[120, 121].

Data Mining: A large number of geo-tagged data generate from sensor nodes,
drone images, mobile devices, crowdsourcing, etc. Data mining is a technique to
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generate information after analyzing such unstructured geospatial data. It helps to
identify human movement pattern [117], urban growth over a time period [122],
smarter traffic light control during time zones [123], wildlife monitoring[124].

Geo-statistics: Spatial interpolation is a geo-statistics technique[125] to anal-
yse the surface. This technique estimates the value of an unknown point with the
knowledge of nearby known point’s value. Kriging [126], Inverse Distance Weight-
ing (IDW), Regression are well known geospatial interpolation techniques. Using
these techniques, many geospatial related work like malaria-prone zone identifica-
tion [127], heavy metal, i.e. zinc, soil contamination [128], recognize area of irrigation
water[129] for agriculture had been done.

2.3.4 Geospatial Applications

Here, we have discussed some geospatial applications which are run on the edge-fog
environment or run on the cloud environment with the support of EFC.

Disaster Monitoring: Disaster prediction data are stored in telephone central
offices (TCOs). These data are important for disaster monitoring. To prevent data
loss, a data distribution technique among nearby edge devices has been proposed
in [15]. They have used Japan Tsunami prediction data. In [130], identify the
missing people in the disaster recognizing by face. To save the energy and network
bandwidth only significant facial images are sent to the cloud server. Identifying
the disaster-prone area after analyzing geospatial videos and satellite images in
fog-cloud environment [37].

Transportation Monitoring: A traffic management system [131] is developed
where RSU and vehicles (both parked and moving) act as fog nodes according to
the queueing theory. They scheduled traffic flow among fog nodes and tried to
minimize the response time to make it real-time traffic management.
A mobility pattern of moving agents predicted after applying a machine learning
algorithm on spatio-temporal mobility data [86]. It helps to predict the next location
of the moving agents, which added advantage for Time-Critical Applications.
A prediction model[111] is generated after analyzing of Bing Maps traffic jam infor-
mation, and manage traffic flow in the Chicago city.
A smart traffic lighting system is proposed in [123], which is to optimize the man-
agement process. The lighting time changes according to the traffic conditions of the
roads. It reduces human errors in signaling.

Health & Diseases Monitoring: Indoor, outdoor patient’s continuous health
monitoring is necessary. Mukherjee et al.[132] proposed a cloud-Fog based solution
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for health monitoring with mobility data of patients while he/she is an outdoor lo-
cation. Any small health data analysis has been done by fog devices, but any critical
data analysis and mobility data analysis has been done in the cloud server.
A heart disease identifying, HealthFog [12], architecture has been developed with
deep learning technology. They used FogBus for real-time data analysis by inte-
grating the IoT-Edge-Cloud environment with delay and energy efficiency. Malaria
[85, 127], dengue fever [110] prone zone identification with geospatial map and
taking action accordingly are some aspects in this category.

Tourism Monitoring: Geo-tagged Flickr images are mining to detect the accurate
tourist destination in [133]. RHadoop platform helps to organize such big spatial
tourism data in the Cloud platform. A mobile-based tourist recommendation system
has been developed in [118]. A tourist guide application for Cyprus is discussed in
[115].

Agriculture Monitoring: Vatsavai et al. [13] synthetically generates images
of crop fields. With the anomaly detection, feature extraction, and unsupervised
technique, they identified the Weeds and crop diseases. Omran et al.[129] proposed
an irrigation water quality evaluation method for agriculture in the Darb El-Arbaein
area. They classified water quality depending on the salinity of the water. The
computed index value determines the quality of the water. High index (above 70)
is good for irrigation, where the lower index (below 40) is bad for irrigation. A
livestock agriculture analysis has been done by [113]. They analyze the dataset of
biodiversity, climate, water, land, people, farms, and animals using the cloud server.

Environment Monitoring: The presence of excessive Carbon Monoxide (CO) gas
in the air is a cause of environmental pollution. Monitoring of CO level increment
in pollution-prone areas is developed an application of Fog computing [14]. They
used krigging methods to identify the distance among CO emission areas, calculated
and plotted on Google map using lat/lon information. Air quality also have been
checked at low concentration levels in [112] using AirSensEUR.
Various mineral resources of India are determined after data mining of spatial big
data and displayed resources using overlay analysis in the QGIS tool [134]. They
also have done Ganga river management using mist Computing.
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Table 2.1: Existing works in Geospatial Cloud-Fog-Edge computing

Work Edge/Fog Nodes Associated Com-
puting

Considered Data Applications

Armstrong
et al.[135]

Clusters of sensors IoT Sensors, Cloud Safecast data Ionizing radiation risk detecting

Barik et
al.[136]

Intel Edison GIS Cloud Global Map data Different Compression tech-
niques over GIS data

Barik et
al.[134]

Raspberry Pi Cloud Mineral resources
data

Mineral Resources Information
Management

Cao et
al.[137]

Simulated Edge
nodes

Fog Server Taxi-trajectory data Trajectory data collection for IoT
applications

Chemodanov
et al.[37]

Not Mentioned Cloud Video and Satellite
Image data

Disaster Situational Awareness

Dautov et
al.[138]

Raspberry Pi 3 Cloud CCTV image data Metropolitan intelligent surveil-
lance system

Denby et
al.[139]

Jetson TX2 Image Sensor Satellite image data Nanosatellite Constellations

Ghosh et
al.[86]

Mobile device Cloud, IoT Mobility data Time-Critical application

Higashino
et al.[140]

Cyber physical sys-
tems

IoT, Laser Range
Scanner

Not Mentioned safety management, and vehicle
speeds prediction

Klein et al.
[141]

Raspberry Pi WSN, IoT Sensor data Methane gas leaks monitoring

Liu et
al.[130]

Edge Server Cloud, IoT Device Face image data Missing People Search

Liu et
al.[142]

Performance Ori-
ented Edge Com-
puting

IoT Not Mentioned Multi-scale 3D scenery process-
ing

Mishra et
al.[87]

Simulation Node WSN, Cloud Simulated Data Mission critical applications

Mukherjee
et al.[132]

Raspberry Pi Cloud, IoHT Student health data Personalized Health Care

Nugroho et
al.[14]

Mikrokontroller
ESP 8266, Access
Point, MiFi

Gas Sensor, Cloud
Server

CO gas sensors data CO Gas Level Monitiring

Richardson
et al.[143]

Raspberry Pi-2B, Pi
Camera

Single board com-
puter

Raster data Solar Forecasting

Tsubaki et
al.[15]

Telephone central
offices(TCO)

Not Mentioned Japan Tsunami pre-
diction data

Data loss prevention in natural
disasters.

Tuli et
al.[12]

FogBus Cloud, IoT Heart patient data Heart Diseases Monitoring

Vatsavai et
al.[13]

Lenovo ThinkSta-
tion P320 with
GPU

Not Mentioned synthetically gener-
ated image

Weeds and crop diseases identi-
fication

Wang et
al.[131]

RSU Cloud, Cloudlet taxi-trajectory
datasets

Traffic Management System

2.4 Existing Work on Geospatial Cloud-Fog-Edge Com-

puting: A Glance

We have prepared a table 2.1 for summarising the existing geospatial applications
on the cloud, fog, and edge computing domain. Here, we pointed out the existing
papers in the first column. In the second column said about the edge and/or for nodes
used in their work. Associated with other computing paradigm, devices applied in
different work are presented in the third column. In the last column, the geospatial
applications which they have used in their work.
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2.5 Limitations in Geospatial Cloud-Fog-Edge Comput-

ing

Every domain has its own limitations. We will discuss here the limitations of geospa-
tial cloud-fog-edge computing.

• Geospatial data are large in volume. It is difficult to store and process it in small
computing infrastructure, i.e., EFC. Whereas, the cloud has the advantage of a
large data store.

• Large computation is required for geospatial prediction and analysis. Some-
times this cannot be fulfilled by EFC. Cloud servers can done large computation
and support EFC.

• Small number of simulation tool, like iFogSim [144, 145], FogBus [146] for EFC
are available.

• Long-distant cloud server increases the communication delay which can be
reduced by local EFC.

2.6 Future Directions

In this section of the chapter, we discuss the future directions of the geospatial
Cloud-Fog-Edge computing research work. Though many explorations have been
done in the cloud, fog, and edge computing, very little progress happened with the
geospatial EFC domain. The following aspects of geospatial Edge-Fog Computing
are challenging tasks.

• Investigation of pricing policies is required individually for geospatial data
providers and Edge-Fog computing service providers.

• Geospatial data management in the EFC environment is a challenge. Keeping
a small amount of data within the edge and fog nodes of a distributed manner
and synchronize them.

• Geospatial application management, EFC resource provisioning, with artificial
intelligence and machine learning technique can be a future trend.
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• Every geospatial application, i.e., weather prediction, health-care, crop analy-
sis, etc. has its own requirements that are different from each other. Application
relevant policies are required for proper management in the EFC environment.

• Automatic orchestration of different geospatial web services to resolve any
geospatial query in the EFC domain can be future aspects.

2.7 Summary

In this chapter, we have discussed the existing works on the Geospatial Cloud-
Fog-Edge computing domain in detail. We provide a taxonomy over Geospatial
Cloud-Fog-Edge computing which considered about the different types of geospatial
computing management, geospatial data types, geospatial analysis methods, and
geospatial applications. We provide a brief of geospatial Cloud-Fog-Edge computing
existing work in a tabular form. After that, we have discussed the limitations of
the geospatial cloud, fog, edge computing. We ended our discussion with future
possibilities of geospatial EFC.
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Chapter 3

Geospatial Query Framework in Cloud

The demand for computing resources to process the geographical information (GI) queries
has been increased drastically. The query helps the users to get the variety of information
to serve their needs. Resolving the spatial queries, huge number of heterogeneous data
sources along with different computing services are involved. Getting appropriate results
within a specific time bound, orchestration among those data sources and web services are
required. These services are available on the web and require different resource specifications
in order to resolve a geospatial query. A cloud infrastructure has been utilized for scalable
resource allocation. An orchestration engine (OE) has been developed to access the geospatial
resources according to query requirement. In this chapter, we have proposed and developed
geographical data query processing framework which orchestrates spatial services according
to user query in cloud environment. The empirical experimentation shows the efficiency of
the proposed framework to resolve spatial queries in timely manner.

3.1 Introduction

The demand for geospatial data has been increased with the development of data
acquisition systems and various geographical information system (GIS) software.
With the availability of such software people expect variety of geographical infor-
mation (GI) instantly for their daily use. However, responding to these queries in
timely manner require not only a large memory space, but also huge computing
power. The need of such computing resources depends on the user query, both in
terms of memory and processing power. This is more challenging when the GIS
information are fetched in mobile devices. Again, the processing power and mem-
ory space requirements vary with the type of incoming query from the user. In
this situation, the demand of processing power and memory requirements depend
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on the amount of data resources and the number of computing functions involve
with the user query. Hence, the demand of computing power and memory varies
extremely. A framework is needed to provide computing resources on demand. In
such situation, cloud computing environment provides the most efficient trade-off

between the GIS query and system resources.
Spatial cloud computing [2] refers to the cloud computing paradigm that is driven

by geospatial sciences, and optimized by spatiotemporal principles for enabling
geospatial science discoveries and cloud computing within distributed computing
environment. Spatiotemporal principles [3] are critical to enable the discover-ability,
accessibility and usability of the distributed, heterogeneous and massive data. For
computation intensive problem, cloud computing select the resources such that it
optimize the utilization of high end computation resources. It enables the timely
response either worldwide or local users through geospatial optimization. Further,
it also assists the design of spatiotemporal data structure and algorithms to optimize
the information workflow in order to solve complex problems. Again, it needs
multiple processing of geospatial data from multiple heterogenious data sources.
The geoprocessing functions in cloud environment can bring scalable, on-demand,
and cost-effective services. Yue et al. [147] compared different geoprocessing services
in different public cloud computing platforms. More complexities are involved in
the case of heterogeneous data resources. Web feature services (WFS) accumulate
these heterogeneous data into a single platform to resolve the user queries. Further,
it is processed by web processing services (WPS) module as per the user query
requirements and demands high amount of RAM. Scaling up or scaling down of
RAM requirement is very much needed for processing service. It can be done by
assigning virtual machine (VM) in cloud environment.

A spatial query may have different query execution trees and can be further
divided into small query trees. From these trees, the OE chooses the optimal one
using business logic [148]. Selected query tree can consider as a complex spatial data
analysis task. Workflow management helps in realization of parallel implementation
of the spatial analysis tasks.

In this work, the complex spatial queries are considered. The resolution of the
query involves multiple heterogeneous geospatial data resources. In order to resolve
such complex spatial queries, the following issues are considered in this work.

• Geospatial data are voluminous and distributed over multiple data centers at
different locations.

• Query execution is complex because data are coming from multiple sources
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with different data format.

To resolve user query, a sequence of geospatial web services is needed. Sequenc-
ing of existing services is achieved by a complex information service framework
mentioned in [149]. Bernard et al. [150] have developed a Web service framework
for heterogeneous environmental information systems.

The rest of the chapter is organized as follows. Section 3.2 presents the back-
ground of the work. Section 3.3 gives an overview of our proposed system architec-
ture. Section 3.4 presents the methodology of our system. Section 3.5 elaborates a
case study and results. Finally, Section 3.6 summarises the chapter.

3.2 Background

In this section, we present some related terminologies and technologies which are
utilized in our work.

3.2.1 Geospatial Web Services

We have discussed about different OGC compliant geospatial web services, i.e. WFS,
WPS, WMS, CSW in chapter 1.

3.2.2 Workflow

Workflow is a sequence of computational and data processing tasks. Workflow
technologies are frequently used for complex analysis of engineering, business, or
scientific processes. For on-demand complex data analytics in the cloud environ-
ment, a service-oriented workflow architecture [151] is needed.

3.2.3 Orchestration Engine

Orchestration is the description of communications, and messages flow between
services in the context of a business process [152]. Goal of orchestration is to make
participation of web services across the enterprise boundary to access large infor-
mation. A geospatial OE, embedded with a rule repository, has been proposed
in chapter [149]. This OE composes different geospatial web services across the
enterprise boundary.
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3.2.4 Spatial Query Parsing

Parsing is a stage in the processing of a query statement. Issuing a spatial query
statement, an application makes a parse call to the spatial database. Parsing should
be done in such a manner that accuracy of the result is high within a short time span
considering I/O cost more than CPU cost. Unlike relational database query, spatial
query deals with extremely large volumes of complex objects with spatial extension
[16].

3.3 System Architecture

A multilayer client-server geospatial cloud system architecture, as shown in Fig.
3.1, is customized to serve our purpose such as scalable computation and suitable
VM assignment. It illustrates an implementation scenario with selected open source
software components, such as GeoServer, ArcGIS, GRASS GIS, etc., supporting OGC
web services standards interface in cloud environment. There are three layers in this
architecture- Client, Application and Data layer where Application and Data layers
are in cloud [64]. Clients(thick and thin) in Client layer can access applications and
data using request-response method from cloud. Clients are able to view resultant
maps according to their spatial query. The Application layer helps communicating
between clients and data providers. On top of this layer, a web server presenting web
services(catalog/process/map) and serving requests to and response from application
servers considered as the access point of the system. Application services implement
CSW, WFS, WCS and WPS.

• Catalog server applications keep track of metadata information about data and
processes, received from different sources. This step becomes quite essential
due to the large amount of spatial data in the Cloud. Furthermore, a well-
defined approach following the publish-find-bind service framework is defined
in the OGC Web Services architecture.

• Data server applications which are used to provide spatial data to the users,
categorized in standardized service forms, like WMS for map images, WFS for
vector data and web coverage services (WCS) for grid data.

• Processing server applications offer a repository of geospatial processes and
allow users to apply them over spatial data by implementing WPS standard.
Users may query about details of every process, provide the processing service
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Figure 3.1: Spatial Cloud system architecture

along with these parameters, define a certain bounding box, and provide data
having complex values such as binary data and XML structures. Input data
given by the user will further be modified by processing units. These units
can either be newly developed ones or existing GIS software tools (e.g., Grass
GIS). An internal communication interface between the processing server, and
the processing unit is required. This is introduced in terms of a unified mod-
eling language (UML) sequence diagram which implements the WPS request
handler component.

All the spatial data and information are available in the Data layer. This layer is
used to retrieve spatial data and provide various standardized services for further
computations. File systems, database management systems of different national and
international organizations are accessible from this layer.
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Figure 3.2: Workflow in Spatial Cloud system

3.4 Methodology

A workflow model has been developed based on OGC standard geospatial services.
This workflow model (see Fig. 3.2) is utilized to generate derived information by
accessing different geospatial services according to user query. The user query is
interpreted by business logic in OE. After parsing the user query, a query tree will
be generated by considering the essential geospatial services. It is the responsibility
of OE to map the query tree into the workflow model. According to this workflow
model, different web services will be required to access and list of data sources and
processing sources will generate. To achieve this, OE will communicate with registry
service. After getting the information about different web services and sources, OE
communicates(binds) with virtual machines, which provide such web services and
data sources. Maintaining the sequence (or parallel) of accessing web services and
data sources, according to workflow, is a big challenge. It needs a cloud environment
which can perceive, reason, learn GI services, and apply these services intelligently
to construct the workflow of user query [153].

Web services are not available in a single virtual machine, rather these services are
distributed in many virtual machines in a cloud platform. So, in cloud, parallel web
service access can be possible. After processing of web services and data sources,
results get back to OE and produce the query response to the user. Algorithm 1
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describes the generation of workflow based on user query.

Algorithm 1 Workflow generation of user query

Input: User geospatial query
Output: Result of geospatial query

1: start
2: user query is placed to OE
3: the geospatial parse tree is generated from geospatial query
4: identify the essential geospatial services from parse tree
5: identify the geospatial data sources from the leaf nodes of parse tree
6: OE gathers information about VMs where geospatial services and data are avail-

able from registry service
7: OE binds with VMs according to sequence generated from parse tree
8: OE received results from VM
9: merge results in OE

10: OE sends query result to the user
11: end

User query can break into some specific service pattern

select SF from SD where SC

• Let SF be a collection of feature services available in the cloud in form of WFS,
denoted as
SF =< SF1 ,SF2 , · · · ,SFn >.

• Let SD be a collection of data services available, denoted as SD =<SD1 ,SD2 , · · · ,SDn >.

• SC is the query predicate which depends on the business logic of OE and based
on the logic different WPS services are called and let SP be a collection of
processing services available in the cloud in the form of WPS, denoted as SP =

< SP1 ,SP2 , · · · ,SPn >.

We have represented different service flows in a sequence diagram which is
presented in a Fig. 3.3.

3.5 Case study

In this work, the spatial data set (Land Use Land Cover and Road) of Purulia
and Hatasuria (Bankura district), West Bengal, India are considered for generating
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Figure 3.3: Sequential accessing of OGC web services for geospatial user query

workflow according to user query. The spatial reference system, EPSG:326451, is
used for displaying various maps.

3.5.1 Query resolution

Query from the user: Find the suitable(top 6) places within Purulia and Hatasuria
(Bankura), West Bengal, which has at least 50 acres industrial lands and the distance
from the high road less than 1 kilometer.
Query resolutions are as follows:

SELECT area name

FROM Purulia

WHERE area ≥ 50 and road = ‘High Road’ and Overlap (road.shape, Buffer

(area.shape, 1))

ORDER BY area desc;

1https://epsg.io/32645
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Figure 3.4: Workflow of case study

SELECT area name

FROM Hatasuria

WHERE area ≥ 50 and road = ‘High Road’ and Overlap (road.shape, Buffer

(area.shape, 1))

ORDER BY area desc;

In order to resolve these queries, a predefined workflow is needed for OE. In this
work, the workflow to solve such type of queries has been developed. After getting
the user request, the parser interprets the query string and identifies the relevant
geospatial services to solve the query. The predefined workflow model is mapped
with the related services and produces a service chain. Then the service will be
executed by OE to produce the result.

The steps for generating workflow are as follows:

1. Filter out the lands which have land area at least 50 acres using WFS getFeature
service.

2. Create 1 km buffer of each filtered area using WPS BufferFeatureCollection ser-
vice.

3. Filter out the specific roads from the road database using WFS getFeature ser-
vice.
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4. Make intersection lands buffer with filtered roads using WPS IntersectionFea-
tureCollection service.

5. Filter intersected lands using WPS IntersectionFeatureCollection service.

6. Generate geography markup language(GML) of the ascending order lists of
resultant lands with getFeature service.

From both ascending order lists, user can choose suitable places meeting his require-
ments (land and road) from Purulia and Hatasuria. From fig. 3.4, we can observe
that two parallel flow execute in a distributed system. Cloud computing is appropri-
ate environment for executing these kinds of parallel operations in timely manner.
Web services i.e., WFS, WPS and WMS are called several times. If these services are
available in different virtual machines, then executions of jobs are done in short time
span. However problem may occur to synchronize results.

3.5.2 Experimentation

To illustrate operational flow, we have taken snapshots of each step of the workflow.
These are shown step wise in the figure Fig. 3.5. Fig. 3.5a shows all the areas of
Purulia. Next Fig. 3.5b shows the filtration result of the industrial areas of Purulia.
After creation of buffer of 1 km, the industrial areas look like the one shown in Fig.
3.5c. Similarly, road network of Purulia is shown in Fig. 3.6a. From this data high
roads are filtered and is shown in Fig. 3.6b. The resultant intersection of Fig. 3.5c
and Fig. 3.6b is shown in Fig. 3.7a. After that, the non-intersected high roads and
industrial areas have been eliminated, which is shown in Fig. 3.7b. Final resultant
industrial areas are shown in Fig. 3.7c.

Prerequisites: Purulia and Hatasuria spatial databases with land use/land cover(LULC)
and road informations.

System Configuration: The private cloud of IIT Kharagpur, Meghamala 1 has been
used for this experimentation. Seven distinct VMs are used for different services.
Web processing service has been assigned VM with 8 GB RAM. The web catalog
service needs more space to store data or service registry and thus has been assigned
32GB persistent storage from Meghadata data service. Web map service is launched

1http://www.sit.iitkgp.ernet.in/Meghamala/
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3.5. Case study

Figure 3.5: Spatial query outputs (Study area: Purulia district, West Bengal)

Figure 3.6: Spatial query outputs for road network (Study area: Purulia district,
West Bengal)

in the VMs with 4GB RAM and 2 VCPUs. OE assigns tasks using logic and accumu-
lates all results. It has been instantiated in the VMs with 4 VCPUs and 8GB RAM.
The details about the assignment of virtual machines are given in TABLE 3.1.
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Figure 3.7: Intersection of high road and industrial area

Table 3.1: Virtual Machine configuration

VM No. Service VM Type VCPUs RAM (GB) Ephemeral Storage (GB) Persistent Storage (GB)

VM1 WFS1 IITKGP regular 2 4 45 0

VM2 WFS2 IITKGP regular 2 4 45 0

VM3 WPS1 IITKGP large 4 8 45 0

VM4 WPS2 IITKGP large 4 8 45 0

VM5 WMS IITKGP regular 2 4 45 0

VM6 WCS IITKGP regular 2 4 45 32

VM7 OE IITKGP large 4 8 45 0

3.6 Summary

In this chaper, we presents a geospatial query resolution framework using OE. The
operations like filtration, buffer creation, intersection, display of data are realized
which help in efficient resolution of spatial queries. OE abstracts the user query
done by feature service, processing service and map service respectively. All the
available services are published with metadata in the service catalog. Sequence of
services are automated by OE getting information from catalog service. According
to the need of spatial query, synchronization of such services, executing in several
virtual machines, is a challenging task. The parallel execution of some services in
the cloud, may decrease the spatial query execution time.

38



Chapter 4

Geospatial Query Resolution in Cloud
with Resource Optimization

With the enormous growth of wireless technology, improved networking, and location ac-
quisition techniques, a huge amount of spatio-temporal traces are being accumulated. These
dataset facilitates varied location-aware services and helps to take real-life decisions. The
analysis and extraction of meaningful information from these massive volumes of the spatio-
temporal dataset is a challenging task. Efficiently handling and processing spatio-temporal
queries are necessary to respond in real-time. Processing the vast geospatial data requires
scalable computing infrastructure. In this regard, an efficient query resolution system can be
deployed if we predict the infrastructure requirement of the user query apriori along with the
identification of the geospatial service chain. In this work, we propose a framework, namely
LYRIC (deadLine and budget aware spatio-temporal querY pRocessing In Cloud), where
the geospatial queries are resolved efficiently considering user-defined deadline and budget
constraint.

4.1 Introduction

The huge volume of spatio-temporal data instances has motivated the data sci-
ence community to analyse and utilize the underneath knowledge. Spatio-temporal
data-set consists of objects and events in spatial (location) and temporal (timestamp)
context. These spatio-temporal data sources open up unprecedented opportuni-
ties to extract and leverage the usable knowledge and utilize it for a smart living
such as route planning, trip recommendation, weather prediction, etc. However,
managing this huge volume of spatio-temporal data and obtaining optimized query
performance is inevitably challenging tasks. There are several challenges in spatio-

39



4. Geospatial Query Resolution in Cloud with Resource Optimization

temporal query processing. Firstly, unlike conventional database, the attributes of
spatio-temporal database have different structure (geometry), such as polygon, poly-
line [16] etc. The processing cost of accessing a record in the spatio-temporal database
depends on the spatial and temporal extent of the query itself. Therefore, an effective
query processing framework is necessary to retrieve information from these huge
spatio-temporal datasets. Moreover, Cloud paradigm is suitable to leverage the
pay-as-you-go model based on the resources used in query processing.

In this regard, the primary objective of this work is to propose an effective spatio-
temporal query processing framework, which is capable of providing query response
within the user’s deadline and budget. When an organization, or an user submits
a task containing bulk queries, the processing needs to be resolved within the user-
deadline and budget. This user-deadline is the time frame provided by the user to get the
query result from the time of the submission, and budget is the total price (example:
Price of Google Cloud Platform services1) incurred for utilizing the compute, stor-
age, and/or software services of the cloud servers. The query processing techniques
must be optimized to store, search, and query the records defined in geographi-
cal space and time interval. The traditional query processing tools do not work
well with spatio-temporal databases due to the complex geometric structures and
computations. On the other side, spatio-temporal query processing requires varied
OGC2 compliant geospatial services (Feature, Processing, Map service) to respond.
Each of those geospatial services has separate processing cost and execution time.
For instance, say a user submits bulk-query with 10mins deadline, and $20 budget
threshold. The task requires 3 feature services3 and map services. The price of each
of the services (deployed in the cloud) is $2 for 10mins timespan. However, it is ob-
served that the task can not be completed within the deadline utilizing the present
configurations of the services. In such a scenario, a proper query processing plan,
such as adding more compute resources for the feature service to reduce the time,
needs to be adapted. However, selecting an appropriate query plan considering
both deadline and budget is difficult when several geospatial services are required
to resolve the query. To address the issue, LYRIC implements cooperative game theory
where the objective is to complete the task within the deadline and reducing the
overall user budget. In other words, using the minimal resources[154] for the query
processing in cloud servers within the user’s deadline.

1https://cloud.google.com/pricing/list
2https://www.ogc.org
3https://www.ogc.org/standards/wfs
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Figure 4.1: Motivating scenario

Motivating Example:

Fig. 4.1 illustrates a motivating scenario. In the time of exigency (say, super-cyclone
Amphan1), the normal lives are disrupted due to power cut, shortage of water supply,
road blockage or even residential place collapse. In such situation, several depart-
ments of state/ central govt. (such as electricity, communication, railway, highway,
transportation, water resources, etc.) help seamlessly to National Disaster Response
Force (NDRF) to continuously monitor the situation and taking appropriate steps
to get back the normalcy. Extracting spatio-temporal information seamlessly from

1Super cyclone Amphan caused huge damage in eastern India. https://en.wikipedia.org/
wiki/Cyclone_Amphan

41



4. Geospatial Query Resolution in Cloud with Resource Optimization

various data sources need proper geospatial query.1 execution and orchestration of
geospatial services. For instance, national agencies of Indian government, such as
GSI2 (Geological Survey of India), India-WRIS3 (Water Resources Information Sys-
tem), SOI4 (Survey of India), IMD5 (Indian Meteorological Department), or ISRO6

(Indian Space Research Organisation) provide varied real-time feature services, data
services, and map services to retrieve the present situation of the affected region.
LYRIC provides a query execution plan considering the user’s deadline and budget.
This resolves the query seamlessly utilizing geospatial services in the cloud. Here,
we provide an example scenario of an exigency situation in the Indian context. Our
proposed framework is also suitable for any spatio-temporal query processing task
with user budget and deadline constraints[155].

Our Contributions:

The key contributions of this chapter are as follows:

1. We propose an end-to-end framework, named LYRIC, to resolve the geospatial
query within the deadline and budget provided by the user. The framework
analyses the query and orchestrates several geospatial services required to
resolve the query.

2. The framework is conducive to decompose the query into several components
automatically. It generates the query parse tree and identifies the geospatial
services, and build geospatial service chains for the processing. Further, it predicts
the resource requirements for resolving the spatio-temporal query efficiently.

3. LYRIC proposes a novel method of choosing an appropriate query execution
plan using cooperative game theory. The query execution plan provides the con-
figuration of the VMs in the cloud to run the geospatial services and generates
the query result considering the deadline and the user’s budget.

4. The framework has been implemented and tested using spatio-temporal traces
in the laboratory test-bed. The experimental observations yield encouraging
results in terms of accuracy of task (bulk query processing) completion within

1In this chapter, we have used geospatial query and spatio-temporal query interchangeably.
2https://www.gsi.gov.in
3https://indiawris.gov.in/wris/
4http://www.surveyofindia.gov.in/
5https://mausam.imd.gov.in/
6https://www.isro.gov.in/
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the deadline, reduced delay in the query response, and reduced memory and
CPU usages.

The rest of this chapter is organized as follows. Section 4.2 discusses the related
existing works. Section 4.3 presents the system model of our work, where we
discussed geospatial query types, geospatial service chaining, and its utility. We
also define the cost model of spatio-temporal queries. Section 4.4 elaborates on
the performance evaluation with experimental setup and results. Summary of the
chapter is discussed at the end.

4.2 Related Work

This section discusses the existing works about query processing, geospatial web ser-
vices, and resource management in the cloud. Marcus et al. [156] used supervised
learning techniques for batch processing and reinforcement learning techniques
for online processing of user queries. This learning achieved a query scheduling
with proper cost and performance management, which met the service level agree-
ment(SLA) of user and service provider. Many researchers have also analysed the
performance and latency of analytical queries through machine learning techniques
[157–160].

A graph-based temporal relationship between entities like edge, vertices, prop-
erties has been proposed in [161]. Their approach is for path queries over dynamic
temporal graphs. They used Granite distributed engine over Graphite ICM platform
for experiments. Another graph embedded query performance prediction for con-
current queries has been proposed by [162]. They also used the graph update and
compaction algorithm to determine the query workload. Chu et al.[163] predicts
the query execution time using LSTM in graph database. Encoding the query plan
tree, they used a post-order traversal algorithm. RF and PCA help to do feature
engineering.

A resource modeling approach to measuring concurrent query performance is
proposed by Duggan et al. [164], and prediction under concurrency is made in
[165–167]. Concurrent Query Intensity (CQI) and Query Sensitivity (QS) are two
matrices that determine the latency of concurrent queries. CQI helps to know how
the resources are shared among concurrent queries, and QS defines how the query
functions are changed in case of resource shortage. Popescu et al. [168] proposed to
predict the runtime performance for a set of queries with a different dataset. They
segmented the queries and measured the performance using the machine learning
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Table 4.1: Comparisons with existing works and LYRIC

Related Works LYRIC
Feature [157],[158] [165] [169],[170], [172] [Proposed

[171] Work]
Geospatial query execution 3 3 8 3 3

Spatial service chain 8 8 3 3 3
consideration
Query placement to VM 8 8 8 8 3

Priority-basis query 8 8 8 8 3
resolution
Apriori estimation of 8 3 8 8 3
resource requirements

model. Later they tried to predict the overall query runtime. They considered only
tuple size and cardinality of the different dataset for estimating execution time.

Geospatial semantics and service-oriented architecture (SOA) based automatic
compositions of geospatial services have been made in [169]. DataType, ServiceType,
and Association type ontologies had been used as a semantic schema in SOA. They
used geospatial services for ontology design, composition building, and semantic
analysis. Geospatial services are used to knowledge transformation [170–172] using
geospatial modeling, model instantiating, and model execution. Geospatial service
orchestration in the cloud platform is described in [173]. A cloud and agent-based
geospatial service chain are proposed by [174], where geospatial tasks are executed
with agents movement in a single cloud environment. Agents act as part of the chain
and interact with individual geospatial services. It prevents huge volumes of data
transfer and service chain failure. Web service composition related literates have
been done in [175].

Although several research works in this domain, all of these existing literature has
some limitations. First of all, there is no clear indication of how performance characteristics
(execution time and resource usages) of spatio-temporal queries can be predicted. As discussed
earlier, the prediction of the performance of spatio-temporal queries is not straightforward.
Most of the works need execution-time statistics of the queries and the count of the tuples
processed. While this method adds more overhead, the simple count of tuples does not work
in spatio-temporal queries. In brief, the contributions of LYRIC are manifolds. Firstly, it
is capable of decomposing the queries into different segments and identifies several spatial-
services. Our framework deploys a novel performance characteristics prediction technique
and provides a query-plan to complete the query at minimal cost within the deadline.
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4.3 System Model

This chapter has taken up the spatio-temporal query processing in cloud considering
the user given deadline and budget to resolve the query. Spatio-temporal queries
are generated by the user in bulk and submitted to the framework through a user
interface. The query parser module breaks the query into a query tree with spatial
and temporal information. Next, geospatial services are identified from the query
tree, and a service chain is generated for processing. On the other side, decomposing
the query helps identify the resource (RAM, CPU cores, storage) requirement for
processing geospatial queries and predicting the execution time. Our framework,
LYRIC, also considers the users’ priority in resolving the query. The priority is
determined by two parameters provided by the user: (i) deadline and (ii) budget
to resolve it. LYRIC analyses all of these factors and offers a query execution plan
resolving the task within the deadline incurring minimal budget. Geospatial queries
are places into Cloud VM, and finally, the results of queries are sent back to the user
through the query interface. The overall activities of our approach are illustrated in
a block diagram (fig 4.2).

The query parser generates the query tree for the incoming geospatial query. The
query tree nodes determine the types and number of geospatial services are required.
After identifying the geospatial services, LYRIC generates the service chain. Here, we
have provided different queries based on whether it requires sequential processing
of the services or parallel service processing. After generating the geospatial service
chain for the particular query, LYRIC provides the query execution plan based on
the users’ priority. This geospatial service chain formation is one of the key modules
that help allocate the virtual machine to resolve the query effectively.

We also determine the resources like RAM, CPU cores, the storage requirement
for a geospatial query from the query tree, and predict the query execution time.
Next, we use game theory to find a proper query processing plan to resolve the
geospatial query within the user-defined deadline and budget. We have shown the
sequence diagram of the overall activity in fig 4.3.

4.3.1 Geospatial Query Types

Geospatial query type identification is essential to estimate the resource(RAM, CPU
cores, storage) requirement for the geospatial query or batch of queries efficiently.
We need to know the amount of geospatial data that has to be processed to resolve
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Figure 4.2: Block diagram of LYRIC framework

the geospatial query. The geospatial data amount depends upon the number of
tables selected for the geospatial query. According to the number of table selection,
we categorize the geospatial queries into the following two types.

• Single Clause Query These types of geospatial queries are with one clause. It
considers only one table for extracting the result from the database.
Example: Select <A> from Table <B> where <C>;
Here, A = {A1,A2, ...An} is name of features, B = {B1,B2, ...Bn} is the set of relations
or tables, and C = {C1,C2, ...Cn} is set of clause.
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Figure 4.3: Sequence diagram of overall architecture

• Nested Loop Query These types of queries are associated with multiple clauses,
which require either joining two or more relations or iteratively executing them.
In general, the Cartesian product of the multiple tables are involved with these
queries.
Example: Select <A> from Table <B> where <C> <conditions> (Select
<A1> from Table <B1> where <C1>);

The geospatial query parse tree has been generated from the geospatial query. It
may be noted that geospatial query processing is both CPU and I/O intensive, and we
need to minimize the number of disk accesses to reduce the I/O cost. We have adapted
spatio-temporal indexing which helps to cluster the temporal information and store
the spatial objects efficiently such that the number of disk accesses is minimized.
Typically, LYRIC solves a spatio-temporal query in three steps (see Fig. 4.4): (i)
temporal filtering, (ii) spatial filtering, and (iii) refinement step. In the temporal
filtering, given any of the two types of the query (time-interval and time-instance),
we search the temporal index (buckets) and find the appropriate buckets satisfying
the temporal clause. The selected candidates/ tuples are returned. Next, the spatial
objects (returned tuples) are represented by simple approximation. Here, we have
used MBR (minimum bounding region), and in this step, the spatial operations are
carried out. In the final step (refinement), the exact geometry information of the
approximate candidate set is examined. It may be noted, we estimate the cardinality
of each of these stages and combine them to get the exact resource requirement.
For instance, the “scan” procedure is I/O intensive (requires disk accesses), and
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“verify” (or, refinement) is CPU-intensive. For query parse tree generation, we
follow the same steps. As depicted in the Fig. 4.5, for the following query : “Find all
movement history having length greater than 1km and within 50m of Commercial
building and within time-interval 09:00-0.9:15”, the parse tree has been generated.
For optimization purpose, it may be noted that “refinement” step needs to be pushed
down. The selection of building type can be done earlier to reduce the cardinality
(see the arrow sign in Fig. 4.5).
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Figure 4.4: Spatio-temporal query processing stages
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Figure 4.5: Spatio-temporal query parse tree generation

From the nodes of the tree, we can get the required geospatial services. We also
get the geospatial service chain if we follow the tree’s path from leaf nodes to the root
node. The query parse tree generation has two major phases: (i) in the initial phase,
the framework processes the SQL-text, and identifies the set of A, B and C. It also
identifies whether the query processing needs a nested loop for resolving it. Based
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on the conventional query parsing technique, it generates the parse tree. (ii) In the
next phase, it analyzes the temporal extension of the query. Based on the temporal
extension, new levels are generated at the leaf node. For each level, a specific amount
of spatial data is processed. This hierarchical segmentation of spatio-temporal data
in the query parse tree’s leaf node helps to understand the amount of data that needs
to be processed at each level of the execution effectively.

select S f chr from Sdata where Sc

• Let S f chr be a collection of feature services available in the cloud in form of Web
Feature Service(WFS), denoted as S f chr =< S f chr1 ,S f chr2 , · · · ,S f chrn >.

• Let Sdata be a collection of data services available, denoted as
Sdata = < Sdata1 ,Sdata2 , · · · ,Sdatan >.

• Sc is the query predicate which depends on the business logic of orchestration
engine and based on the logic different Web Processing Services(WPS) are
called and let Sproc be a collection of processing services available in the cloud
in the form of WPS, denoted as Sproc = < Sproc1 ,Sproc2 , · · · ,Sprocn >.

4.3.2 Geospatial Service Chaining

Several OGC compliant geospatial services, i.e., Web Feature Service (WFS), Web
Processing Service (WPS), Web Map Service (WMS), are available. The brief descrip-
tions of the geospatial services are given below:

• Web Feature Service1: This service allows us to retrieve featured data from
stored data. The user specifies these features. There are different operations,
i.e., GetFeature, GetCapabilities, GetPropertyValue available on WFS.

• Web Processing Service2: This geospatial service allows us to perform different
types of geospatial operations like buffering, intersection, overlaying on a
point, polyline or polygon. These operations are depending upon the user’s
geospatial query.

• Web Map Service3: This service allows us to integrate multiple map layers from
one or more distributed geospatial databases and displays one merged map

1https://www.ogc.org/standards/wfs
2https://www.ogc.org/standards/wps
3https://www.ogc.org/standards/wms
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according to the geospatial query. The map images are in JPEG, PNG, TIFF
format, which is displayed in a browser application.

These geospatial services are executing a sequential operation to generate the final
result. Though multiple services are made in this chain, it still appears to be ag-
gregated one chain to the query-user. We categories the geospatial service chain
according to the number of geospatial services, i.e., WFS, WPS, WMS, involvement.
We represent the six types of geospatial service chains in Fig.4.6.

WMS

WPS WMS

WFS WMS

Type 1

Type 2

Type 3

WFS WMSWPSType 4

WPS WMSWFSType 5

WFS

WMS

WPS

WPSWFS

Type 6

Figure 4.6: Different geospatial service chains in a state diagram form

• Type 1: Only View This type of geospatial queries is only for visualizing a map.
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There is no such filtration or specification present here. Only web map service
is responsible for this kind of geospatial queries. Already existing maps are
displayed here.
Considering our motivating example, Land Use Land Cover (LULC), Trans-
portation(Road, Rail), Drainage map of super-cyclone affected areas (here,
Area X)
SELECT LULC FROM Area X;

SELECT Road Network FROM Area X;

The above geospatial queries retrieve data of the individual layers (LULC/ Road
Networks) of Area X and a getMap WMS display these layers individually or
combine in any one of the png, jpeg, and tiff format.

• Type 2: Process and View These types of geospatial queries are the combination
of process and view. Processing is done over already existing maps. One WPS
and WMS are responsible for resolving this kind of geospatial queries.
The following example helps to identify the locations of rail and road crossing
bridges of Area X. NDRF monitors these bridges, which are affected by super-
cyclone or not, and proceed accordingly.
Example: Select crossing points of rail and road of an Area X
SELECT point.geom

FROM X.rail ra, X.road ro

WHERE Cross(ra.Shape, ro.Shape)=1;

In this example, first, it will take the rail network layer and road network layer
of area X. LineIntersectionService WPS is used to obtains the intersection points
with lat/lon and getMap WMS displays the crossing points.

• Type 3: Filter and View A particular area or parameter is considered for this type
of query. A specific feature of a map is visualized here. One WFS and WMS
will resolve this kind of geospatial queries.
The geospatial query identifies the high roads of Area X from the road network.
It helps NDRF to clear the blockage on the high road due to super-cyclone.
Example: High roads from Road Network
SELECT *

FROM X.Road Network

WHERE road type = ‘High Road’;

This query filters the high roads from Area X road network. getFeature WFS
identify the high roads and getMap WMS display the roads.
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• Type 4: Filter over the Processed area and View A WFS, WPS, and WMS together
resolve this type of geospatial queries. Filtration can be done after the process-
ing of an existing map.
NDRF team wants to check the conditions of the narrow bridges over rivers
after super-cyclone. The following geospatial query helps to identify the same.
Example: Identify the narrow bridges from all the intersections of road and
water networks.
SELECT *

FROM Bridge B

WHERE B.type = ‘narrow’

AND B.geom =(

SELECT point.geom

FROM Water Network W, Road Network R

WHERE Cross(W.shape, R.shape)= 1));

This geospatial query obtains two layers, i.e., a water network and road net-
work, to process it to determine the junction points with lat/lon. It will use
LineIntersectionService WPS for that. Now, in the bridge layers, it filters the
narrow-type bridges with the same lat/lon as junction points by using getFea-
ture WFS. Finally, getMap WMS displays the narrow bridges in a map.

• Type 5: Process over Filtered area and View Here processing is done after the
filtration from the existing map. WFS comes before the WPS. At last, WMS
visualize the resultant map.
Matla river is situated in the super-cyclone affected area. NDRF teams identify
the damage of both the banks of Matla river that spread 1 kilometer of each
side.
Example: 1km buffer zones of Matla River

SELECT *

FROM Water Network

WHERE W Net type = ‘River’ AND river name = ‘Matla’

AND Buffer(area.shape, 1);

The above geospatial query first, filter the rivers with name ‘Matla’ using
getFeature WFS, and then it creates buffers of 1 km over filtered river with
BufferFeatureCollection WPS. Buffer of Matla will display as a result by using
getMap WMS.

• Type 6: Multiple Filter, Processed area and View In this type of query, multiple
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filtration and processing can be done one after another. There should not be a
specific chain of WFS and WPS. The sequence can be any combination of WFS
and WPS.
Suppose NDRF teams start rescue operations according to the population of
the area. Densely populated areas, which are near to the highway, gets the
highest priority and so on.
Example: Finding the fifty towns which have above one thousand population
nearest to the national highway NH36.

SELECT t.name, t.population, sdo nn distance

FROM interstates i, town t

WHERE i.highway name = ‘NH36’

AND sdo nn(t.location, i.geom)=‘TRUE’

AND t.population > 1000

AND rownum < 51

ORDER BY sdo nn distance;

The above geospatial query has many WFS like population counts, specific
highway names. WPS helps to determine the nearest towns to the highway
NH36 by using the Nearest Neighbour algorithm.

The process of determining the types of the geospatial service chain has been
mentioned in Algorithm 2. The execution of the service-chain depends on the
number and variety of geospatial services.

4.3.3 Cost Model of Spatio-Temporal Queries

Query Plan (QP): Query plan consists of the segments (Sa,Sb, ...,Sz) of the execution
of the query along with a probable time-deadline of each such segment.
QPq := {Sa[ta, fa] . . .Sz[tz, fz]}, where query plan (QP) of the query q(T) is given, where
T is the user-deadline. ta and fa is start and finish timestamp of segment Sa. tz and
fz is start and finish timestamp of segment Sz. For each execution segment, [ta, fa] is
given, and fz-ta ≤ T. After determining the cost-effective execution strategy, a query
plan is produced, and the execution is carried out based on this QP.

For instance, an user ui submits a spatio-temporal query (Q) with a deadline ti

at time-instance Ta. Further, the user also provides a budget (Bt) for resolving the
query. For efficiently resolving the query considering the user-defined timeline and
budget, the framework needs to compute the probable execution time. We have
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Algorithm 2 Determine the types of geospatial query from parse tree

Input: Geospatial query parse tree
Output: Type of the geospatial query

1: start
2: the geospatial parse tree is generated from geospatial query
3: identify the leaf nodes of the tree, which are data nodes
4: the spatial operation is held on the parent node of the leaf nodes
5: identify the spatial operations WFS, WPS, WMS
6: if only WMS required then
7: Geospatial Query Type 1
8: else
9: if first WFS and then WMS required then

10: Geospatial Query Type 2
11: else
12: if first WPS and then WMS required then
13: Geospatial Query Type 3
14: else
15: if first WPS, then WFS, lastly WMS required then
16: Geospatial Query Type 4
17: else
18: if first WFS, then WPS, lastly WMS required then
19: Geospatial Query Type 5
20: else
21: multiple time WFS, WPS, and WMS required
22: Geospatial Query Type 6
23: end if
24: end if
25: end if
26: end if
27: end if
28: end
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also predicted the execution time of bulk queries submitted by the users. A trade-
off is required to resolve the queries within the user-deadline at minimum cost. It
also helps in the capacity planning of cloud VMs, i.e., whether the VMs should be
upgraded or downgraded based on the workloads. The main objective here is to
predict resource usages, i.e., memory, CPU usages, and disk accesses. Also, LYRIC analyses
the query’s probable run-time and user-deadline. Based on the predicted resource usages,
LYRIC computes the cost and compares it with the user’s budget. Based on these
two factors, it produces an appropriate query plan and configures the VMs.

The cost model of our framework follows four steps: (i) estimation of input and
output cardinality; (ii) computing the CPU cost based on the cardinality estimation;
(iii) computing the I/O cost based on the estimated number of accessed pages; and
finally (iv) combining CPU cost, I/O cost along with WMS (map service cost for
visualizing the results on map). We discuss the cardinality estimation procedure
(including analyzing temporal extension) in the next section. The query parse tree
and sequential-sampling approach help to get the estimation of cardinality, and the
indexing and storage method is utilized to estimate the I/O cost.

4.3.4 Cost Estimation and Prediction of Run-time of Spatio-temporal

Queries

In the context of the Spatio-temporal query, we define our problem space into two
broad aspects: (i) static spatial objects (these are “fixed location assets”, such as
buildings, road-segments, lakes, mountains, etc.) where location information does
not change with time; and (ii) moving objects in the two-dimensional space (mov-
ing agents, say, trajectory traces of people, vehicles, etc.). It may be noted, that
temporal information is crucial in the latter case, since the location changes with
time-instances, along with the data size. For the spatial query, the cost is determined
by the cardinality of the relational tables. And for the spatio-temporal queries, we
take the temporal extension and multiply it with the time required to process one
unit of spatio-temporal operations. Let us explain the cost incurred for resolving
spatio-temporal queries and how our framework, LYRIC, predicts the queries’ ex-
ecution time. Table 4.2 shows the notations used in the cost model. The cost of a
query (Q) can be written as:

Cost(Q) = cs×np + cr×nr + cc×nt + ci×nti + co×nc (4.1)

We have used these five parameters of PostgreSQL’s model in our cost model. It
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Table 4.2: Notations used in cost model

Notation Meaning
cs I/O cost to access a page sequentially
cr I/O cost to access a page randomly
cc CPU processing cost of a tuple
ci CPU processing cost of a tuple (using index)
co CPU processing cost to carry out an operation
np Number of sequentially scanned pages
nr Number of randomly accessed pages
nt Number of tuples processed/ accessed
nti Number of tuples processed/ accessed (Indexing)
nc Number of CPU operations
qt Query execution time

may be noted that an accurate query time predictor requires an accurate estimation
of these variables. The CPU operations mean the spatial operations such as buffer,
intersection etc. along with common SQL operations (count, aggregate etc.). We
consider the following query as an example:
Qa:SELECT count(*)

FROM Road Network

WHERE road type = ‘High Road’

AND road id = ‘N’

AND Buffer(area.shape, 1);

Here, the relation Road Network is memory resident, and two CPU operations,
count(∗) and BUFFER() are present. Two conditions need to be satisfied. Suppose
road id has clustered index, and road type is an attribute with a non-clustered index.
Therefore, the query plan consists all five parameters (npQa ,nrQa ,ntQa ,ntiQa ,ncQa). In
general, we generate such query plans where varied combinations of cost variables
are required and solve the following equation:

qt = NC (4.2)

where N is the cardinality of tuples or operations, and C is the CPU or I/O cost. By
solving the system of linear equations, we can find out the accurate value of C. It
may be noted that PostgreSQL uses the default values for I/O and CPU cost, which
does not capture the real-life computational cost.

In order to estimate the run-time, two important facts need to be considered:
(i) calibration of cost units and (ii) estimation of input and output cardinality of
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the query. Calibration of cost units means to get the exact value of cost (say, CPU
operation time) to execute a single unit of task. It may be noted that PostgreSQL
uses default values for this purpose, however those are not accurate and it definitely
varies with the hardware and software of the VMs where query will be executed.
Here, we come up with the fundamental idea to design particular query template
such that it isolates specific cost parameters from others. As we presented six types of
geospatial service chain in Section 3.2, those types help to calibrate the unit costs. For
example: SELECT LULC FROM Area X. In this (type 1: Only View) query template,
there is no I/O cost (we assume, Area X is memory resident), and only cpu tuple cost
and WMS cost (getMap) are involved. We execute the query without the WMS
service and take the execution time (say, t1). Next, we call WMS service, and note
the execution time (say, t2). Therefore, the WMS cost is t2− t1. In our framework, we
divide the study area (geographical extent) in uniform grids and temporal extent in
buckets of 15 minutes. Say, the query processes ng grids, then:

t1 = Tg×ng

t2 = ng× (Tg + WMSg)
(4.3)

where WMSg is the time taken to call getMap service and visualize for one grid, and
Tg is the time for CPU operation for one grid. From these equations, we get the
values for Tg and WMSg. In the similar way, we utilize all six types of service chains
with different query sets to get the CPU cost and geospatial service cost of different
spatio-temporal service chains. Also, to make the procedure more robust, we use
multiple queries for each of the service chain template, and get the best-fitting of the
costs. This is one-time phenomenon for any computing platform or VMs, therefore,
the time taken to carry out this task does not effect the overall time-complexity of
LYRIC.

Next, we need to estimate the cardinality of the input and output tuples of the
query plan. Here, LYRIC utilizes a variant of sequential-sampling method[176]. We
follow the similar steps of [157] for each WPS and WFS of the query plan. It makes
the estimator more efficient and suitable for spatio-temporal queries. After this
cardinality estimation and refinement stage, LYRIC effectively predicts the query
execution time (qt).

For estimating the cost, we segregate into: start-cost: initial cost (c1) before
operator produce the first output tuple; and total-cost (c2) : the total cost when
all output tuples are generated. Thus, the execution cost can be represented as
ec = c2 − c1. Let us illustrate with two broad categories of queries as depicted in
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Section 3.1, i.e, single clause query and nested loop query. For example, if single clause
query aims to select an object’s location in a particular time-instance, then:

c1 = 2× co× int× log int

ec = ct× int
(4.4)

where int is the number of input tuples for the operator. Here, we have discretized
the temporal information into buckets, and those temporal buckets are in sorted
order. Hence, we can deploy any sorting algorithm for the data-instances, therefore
log factor is present in the equation. Next, for the nested loop query:

c1 = c1o f innerclause + c1o f outerclause

ec = ct× ininner
t × inouter

t + inouter
t × (eco f innerclause)

(4.5)

where the number of input tuples from inner and outer clauses are presented by
ininner

t and inouter
t respectively.

Let us illustrate, the cardinality estimator process here. Prior to that, let us define
two terms, namely, rank (µ) and selectivity (ω).

µ =
ω−1

pertuplecosto f aspatialoperation

ω(q) =
cardinality(output(q))
cardinality(input(q))

(4.6)

Here, the per tuple cost of spatial operation is computed by the calibration of cost units
as described before. While creating the query parse tree, we put the predicates or
services based on the ascending order of µ. Thus, we optimize the query processing
in terms of operations. The calculation of cardinality of input is straightforward
which is the product of the cardinalities of the spatio-temporal relations (tables) that
are input to the operator. We obtain this information from the metadata or system
catalogue.

Say, in the spatio-temporal database SD, there are M relations or tables {ST1,ST2, . . . ,STM}.
Each of the relations (say, STi) are partitioned into pi blocks, and each block stores g
spatial grids and bu temporal buckets. Therefore, |STi| = pi× (g,bu). Now, consider
two operators: select (σ) and cross-product (×). The selectivity of the operations are
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as follows:

ωσ(ST) =
|σclause(g,bu)|
|(g,bu)|

ω×(ST) = 1
(4.7)

The pair (g, bu) is the spatial and temporal extents of the input relation. Now, we
can say, if a relation STi is segmented into p grids, then ωpi =

|σclause(pi)|
|pi|

(1 ≤ i ≤ n), then
E[ωpi] = ωST, where, we have taken n random samples of grids from ST relation. In
this way, when we get the value of selectivity, it is straightforward to get the output
cardinality.

Now, we present the estimation process of output cardinality for different spatio-
temporal queries. For spatial intersection query, let us assume Pi(O1) is the probability
that object O1 intersects the grid Gi. Again, the probability of intersecting exactly p
grids is: P(O1,p). Then, the expected number of spatial grids that O1 will intersect is
given as (g is the total number of grids present in a particular relation/ table):

E(O1) =

g∑
p=0

p×P(O1,p)

= Pi(O1)

(4.8)

Now, for point query, an object is likely to be present at any point of the grid. Hence,
we get:

E(O1) = areao f thegridspresentintherelation

=

g∑
i=1

a1× a2
(4.9)

where a1 and a2 are the length of the sides of the grids. For range-query O1(a1× a2),
we have:

E(O1) =

height−1∑
i=1

gi×

2∏
j=1

(n exti, j + a j) (4.10)

where height is the height of the spatial indexing tree (we have used R* tree [177]), and
the average node extent in j dimension and i level is n exti, j. Thus, following these
approaches, we estimate the cost and predict the run-time of the spatio-temporal
queries.
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4.3.5 Query Plan Generation using Game Theory

At this stage, we have the predicted query execution time (qt) and user-deadline
(T) along with the budget (Bt) of the query. LYRIC’s objective is to provide a query
execution plan such that the total cost is minimized and qt ≤ T. To obtain such a
query execution plan, we deployed a cooperative game theory, where joint actions
taken by the group of players provide collective payoffs. In general, P(p1,p2, ...pn)
number of players are present in cooperative game theory, and for each subset of
players, a vector of payoff (R) is defined. The tuple (P,r) is defined as a characteristic
function. In our problem set-up, we define varied services of the query plan, such as,
WFS-controller, WPS-controller, and WMS-controller as group of players. Each of the
players may choose a strategy s = {s1,s2, . . .s j} to adapt such that the aggregate payoff

is maximized. In other words, all the players cooperate in the game, taking varied
strategies such that the outcome of the game is the agreement condition from all the
players. When we consider two influencing factors, budget (Bt) and user-deadline
(T) of the queries, the bargaining method can resolve the problem.

As discussed, there are P players participating in the game, where players are
the spatial-services required for the query. Each non-empty set of P is termed as a
coalition. For each coalition (say, A), we denote a set R(A) ∈R|A| - which is the payoff

vector and feasible for coalition A. The collection (Co) of the coalition is denoted to
be balanced if the following statement is satisfied.

∑
A∈Co, j⊆A

we(A) = 1

when we(A) ∈ [0,1] f oreach j ∈ P
(4.11)

where we(A) is the set of weights for each A ∈ Co. We have considered (P,R) as a
transferable utility case of game theory in our approach. Since one of the service (or
player) can losslessly transfer its utility to another service (or player). Typically, for
each A ⊆ P, there exists a real number r(A)

R(A) = {g ∈R|A| :
∑
i∈A

gi ≤ r(A)} (4.12)

where g is the set of vectors. In our problem, each of the strategy consists of
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(resource,executiontime). The set of payoffs define the set of allocations of games (P,r)

G(P,r) = {g ∈Rn :
∑
i∈P

gi = g(P) ≤ r(P)} (4.13)

Thus, the core of the game is deployed using the following equations:

Core(P,r) = {g ∈ G(P,r) : ∀A ⊆ P, g(A) ≥ r(A)} (4.14)

Furthermore, it is already well-known that if the game is balanced, the core is non-
empty. The bargaining solution is the function of:

f (Ug) :
|P|∑
→Ug (4.15)

where
∑
|P| is the class of all bargaining problems. Based on the cooperative game

theory, there is a unique solution s(Ug) of bargaining problem. It can be achieved by:

s(Ug) = argmax
y∈Ug

(y1−d1)× (y2−d2)× . . . (yp−dp) (4.16)

where d is the disagreement point. After each step, the payoff is the percentage of
the completion of the task, and the utility (Ug) of the game is defined as:

Ug =

 |T−qt| × |Bt− acost| i f ((T > qt)and (Bt > acost))
(−1)× |T−qt| × |Bt− acost| otherwise

(4.17)

where acost is the actual cost of the query execution. The user-deadline, budget, and
the query execution time are represented by T, Bt, and qt respectively. It is obvious
that maximizing the utility function both benefits in terms of budget and reduces
the response time.

After resolving the budget and deadline trade-off using the game theory ap-
proach, we deploy a query scheduling module to assign the query into appropriate
VMs and the time-stamp. The basic steps of the process are represented in Algorithm
3.

4.3.6 Example Scenario

This section presents a sample query and corresponding service chains and execution
process. Geospatial Query: Determine the housing complex of Area A with more than 10
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Algorithm 3 Scheduling algorithm of geospatial query placement to virtual machine)

Input: Geospatial query
Output: VM allocated to geospatial query

1: start
2: Receive geospatial query along with response deadline from user
3: Search and select available VM by the VM manager according to the type of the

geospatial query
4: Calculate weights for each available VM
5: Sort VMs in increasing weights
6: Assign VM to a geospatial query according to the weights of the VM
7: If the requirement of the geospatial query is not satisfied, go to step 6
8: If the requirement of the geospatial query is not satisfied, and VMs are not

available. Notification send to VM manager
9: Receives the suspended VM list from the VM manager. If there is no suspended

VMs, the assignment is a failure. Go to step 11
10: Add suspended VMs to the available VM list. Go to the step 4
11: Send the assignment result to the VM manager
12: end

acres situated within 500 meters of state highway R

SELECT area name FROM Area A WHERE area ≥ 10 AND area type=‘Housing Complex’

AND road = ‘State Highway’ AND road name = ‘R’ AND Overlap (road.shape,

Buffer(area.shape, 0.5)) ORDER BY area desc;

To resolve the above geospatial query, the following geospatial services are required.
(1) WFS getFeature service for area≥10 WFS getFeature service for area type=‘Housing Complex’
(2) WPS BufferFeatureCollection service for Buffer(area.shape, 0.5) (3) WFS getFeature
service for road = ‘State Highway’ (4) WFS getFeature service for road name = ‘R’ (5)
WPS IntersectionFeatureCollection service for Overlap operation (6) WFS getFeature
service for list preparation (7) WMS getMap service for display final result. Hence,
from the above lists of geospatial services, we can get the following geospatial ser-
vice chain, which belongs to Geospatial Chaining Type 6 (refer section 4.3.2).
WFS→WFS→WPS→WFS→WFS→WPS→WFS→WMS In the next step, we
generate the query parser tree, where the leaf nodes store the spatial and temporal
extents of the query. We also already know the cost units of several services and
CPU and I/O cost from calibration module. Then, we compute the cardinality esti-
mation and refinement from the process described in Section 3.4. Now, given the
user deadline and budget, LYRIC forms the pay-off matrix with players: five WFS, 2
WPS, and 1 WMS. All these players participate in the cooperative game and find out
the coalition, where each of them gets a specific amount of time for execution and
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budget or resources to utilize. Finally, the game objective is to minimize the differ-
ence between (deadline, total execution time of all players) and (budget allocated,
total resource consumption of all players). Based on the game coalition, the query
plan is generated and executed.

4.4 Performance Evaluation

To illustrate the efficacy of the proposed architecture, we have designed and executed
a large set of experiments on mobility datasets. The intuition behind taking the
mobility dataset is that the movement data is dynamic and accumulates on a large
scale. Furthermore, most of our real-life spatio-temporal queries are associated with
the movement, traffic, and road datasets. Therefore, we consider the use case of
mobility-related queries. However, the framework is generic to handle any types of
spatio-temporal datasets and resolve queries efficiently.

4.4.1 Experimental Test-bed

We have used real-life mobility traces of three geographical regions, Kharagpur
(22.346010, 87.231972), Durgapur (23.5204, 87.3119), and Waranangle (17.9689, 79.5941)
in India. The study area of these regions are 12.6km2, 5.23km2, and 4.08km2 respec-
tively. The number of participants in this study is 204, 42, and 76 from three regions,
respectively, for a timespan of 12 months. We developed a web interface to extract
their movement path, and utilized the Google Map Timeline, Google Map Services to ex-
tract the underlying road networks. It was observed that the road networks of these
three regions have more than 50,000 edges, and the cardinality of the road network
makes the information extraction and resolving mobility queries more challenging
factor. On the other side, the reverse geocoding technique was used to extract the POIs
(point-of-interests) (such as commercial places like shopping malls, banks, market,
or academic and residential areas, etc.) from the map database. The mobility traces
are collected in 60secs to 180secs time interval. The total size of the dataset is 64GB,
36GB, and 49GB, respectively.

The experiment is conducted in the VMs of Google Cloud Platform, where we
have used several computational and storage features of Google Cloud. Our test-
bed consists of several types of compute engine instances. For instance, we have
created 5 general-purpose VM instances (Ubuntu-16.04 LTS) ranging from 4vCPU,
and 15GBmemory to 32vCPUs, and 120GBmemory. Each such instance’s approxi-
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mate cost is $0.134 per hour to $1.065 per hour. These VMs are used for common
workloads and having low cost and more flexibility. Along with these general-
purpose VMs, we have also created 2 memory-optimized and 3 compute-optimized
instances, which are used for memory and compute-intensive workloads. The ini-
tial configuration that we have selected is 40vCPUs, 961GBmemory, and 30vCPUs,
120GBmemory respectively. The approximate cost is $1.253 per hour. Next, we
create an instance group with these compute engine instances for auto-scaling and
load-balancing based on the user requirement and predefined budget. We have also
deployed spatial tools and databases, namely, QGIS, and PostgreSQL with PostGIS
extension.

To store and retrieve spatio-temporal data effectively, we have utilized a novel
spatio-temporal storage structure [178] for indexing temporal information and R*
tree for storing and managing spatial objects. We have adapted the K-level spatio-
temporal hashing technique for storing the spatio-temporal datasets. Here, the
data instances are segmented and stored in different temporal buckets, and the
storage technique is implemented using a hashing scheme that considers the spatial-
proximity feature (nearby locations are stored in nearby buckets). Therefore, in the
initial level, the spatial features of the data instances are stored, and from the next
level, the data is stored into different temporal buckets.

4.4.2 Performance Results

It is quite obvious that spatial query resolution requires analysing a large number of
spatial data[179]. Moreover, the performance is dependent on I/O and computational
efficacy. To consider these, we have used both I/O and spatial query metrics. The
I/O performance is measured by sequential and random reads along with bulk
loading. The efficacy of spatial query resolution is measured by r-query (range),
p-query (point) and t-query (trajectory). The range or r-query (RangeQ(S,T)) finds all
trajectory segments which intersects the given spatial (S) and temporal (T) extent.

RangeQ(S,T)→ Traj

where Traj is the set of trajectory segments within spatial(S) and temporal(T) extent.
The t-Query or trajectory-based query finds all trajectory segments of a moving agent
(a) within the time interval (T).

TrajectoryQ(a,T)→ Traj
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Here, Traj is the output trajectory of the query. We have used both the r-query and
t-query in our evaluation set-up.
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Figure 4.7: Task Completion accuracy within deadline

From Fig. 4.7, the accuracy based on the specific deadline is shown with a varied
number of concurrent queries ranging from 500 to 10000. We have compared the
accuracy of the result with two well-known baselines, SparkGIS, geoSpark, GeoMesa1

and JUST [180]. The accuracy is computed based on the percentage of comple-
tion of the task in the user-deadline. It is observed that with more numbers of
concurrent queries, LYRIC, significantly outperforms than others. It shows high
deadline completion accuracy in the range of 1.0− 0.937. Whereas, in the same
set-up, SparkGIS, GeoSpark, GeoMesa and JUST provide 0.85−0.537, 0.752−0.469,
0.928− 0.703, 0.921− 0.689 respectively. Fig. 4.8 illustrates the memory footprints
for concurrent query processing compared to the other four popular methods. The
memory footprints denote the amount of main memory segment accessed or referred
for the query processing during execution. It is observed that the savings of memory
footprints are significantly better than the existing methods. The key reason behind
this result is that LYRIC computes the resource requirements apriori and assigns the
required resources effectively. It also reduces the percentage of under-utilization of
resources accordingly.

We evaluate the prediction accuracy of the execution time of the spatio-temporal
queries. To depict the efficacy, we experiment in two set-ups: (i) prediction module

1http://www.geomesa.org/
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Figure 4.8: Comparison of memory footprints for concurrent query processing

without geospatial service chain and (ii) considering the geospatial service chain.
The later method shows better accuracy in Fig. 4.9.
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Figure 4.9: Prediction of query execution time

The reason is that the geospatial chain is one of the integral parts of providing
the query result to the end-users. For instance, a few segments of query processing
can be carried out in parallel. In contrast, few segments depend on the previous one,
thus require sequential processing. Since LYRIC explores and identifies such geospa-
tial service chain automatically and predicts the execution time, it achieves a more
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accurate result. It is observed that the prediction module without the geospatial
service chain provides 14.50% error (differences in actual execution time and predic-
tion time), while LYRIC achieves only 2.68% prediction error. Therefore, LYRIC can
reduce the prediction error by 11% incorporating the geospatial service chaining
method.
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Figure 4.10: Cost comparisons with baselines

To demonstrate the effectiveness of LYRIC, we have evaluated our proposed
framework using three cost metrics, namely, Web-Feature Service Cost, CPU Cost and
Web Map Service Cost. The CPU cost is categorized in two classes, namely, cost related
to static or spatial query operations and cost related to spatio-temporal query tasks.
It is observed from Fig. 4.10 that there are marginal differences between Web-Feature
Service Cost and Web Map Service Cost, however, CPU cost is significantly less in LYRIC
compared to other methods. The major reason is that LYRIC efficiently generates the
query plan and subsequently executes it for better execution time and less budget
to complete the tasks. In this work, we have not used any new method for WMS
or WFS cost reduction, except that we have augmented spatio-temporal indexing
method [? ] for less feature extraction delay. Therefore, the WFS cost and WMS
cost are marginally different from other baselines, however, LYRIC outperforms in
a significant margin in CPU cost, thus, facilitating better query execution time and
budget requirements.

To evaluate the framework’s effectiveness, we have used the CloudSim [181]
toolkit, where we simulated the same environment as in GCP. We simulate the query
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arrival scenario. As discussed, we define a set of six types of spatio-temporal queries
in the list. For each such type, we initially write 120 queries manually, each having
a spatial and temporal variable. From the list of such 120 queries, we generate
120× 105 queries in the list varying the spatial and temporal domain. It may be
noted that in the simulation process, we provide a bounding box for the spatial
variable. Otherwise, any random pick of spatial variables may lead to a region
outside our datasets’ study-region. For each query, there are two other parameters,
user-deadline (T) and budget (Bt). The query arrival rate is determined by well-known
Gaussian distribution. To evaluate LYRIC performance under varied workloads, we
experiment with different arrival rates.
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Figure 4.11: Comparison of actual execution time and deadlines

In the experimental set-up, we have considered several samples of deadlines and
budgets (which are set-up based on real-life knowledge of a GIS domain expert).
Fig. 4.11 and Fig. 4.12 illustrate the specific values of the deadline, allocated
budget, and actual execution time and budget required to resolve the task. We have
shown results for six spatio-temporal query templates and queries are randomly
selected using CloudSim toolkit. In Fig. 4.11, in the experimental set-up, strict
budget allocation estimation and the deadline (query task completion time) have
been provided. It has been observed that for most of the cases (baselines), query
execution time has exceeded the deadline provided. Again, in Fig. 4.12, we have
specified that the deadline should be strictly maintained, and it is observed that the
allocated budget has been overshoot in a significant margin for the baselines. The
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Figure 4.12: Comparison of budget requirements with baselines

key reason is that for all other distributed platforms for spatial and spatio-temporal
query processing, no method/ algorithm is present to optimize both deadline and
budget allocation. Moreover, the baseline methods do not consider the service chain
and provision concurrent processing based on service chain execution in the query
processing. However, in our case, LYRIC identifies the service chains, generates the
query plan, and concurrently processes the query using a game theory approach to
satisfy both deadline and budget optimally.

4.5 Summary

Accurate estimation of query execution time, as well as computational resources,
is a challenging task. It helps in query scheduling based on the user-deadline
and budget of the query processing. Furthermore, we can monitor the queries’
progress, and for bulk query processing, particular queries taking unreasonably
long time can be identified and eliminated apriori. Also, it helps in system sizing
or obtaining the approximate estimation of total budget or resource utilization. Our
proposed framework, LYRIC, has three main components. First, it models the cost
of an incoming spatio-temporal query based on the known PostgreSQL’s cost model.
However, instead of the default parameters used by the PostgreSQL, LYRIC extracts
the accurate CPU and disk-access cost and effectively predicts the query execution
time. Next, it identifies several spatio-temporal services required to complete the
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query processing task and further decomposes it in a query tree. LYRIC is capable
of considering the user-defined timeline and given budget for each query. The
framework utilizes the concept of cooperative game theory to obtain the trade-off

between more resources and budget or cost. LYRIC is deployed in GCP, and real-life
experiments with mobility datasets and simulations yield encouraging results.
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Chapter 5

Geospatial Query Resolution
Cloud-Fog Environment

Geospatial data analysis is an emerging area of research today. Systems need to respond to
user requests in a timely manner. We propose a fog computing framework namely Spatio-
Fog, where the fog devices contain the geospatial data of their current region and process
geospatial queries using resources in the proximity. The geospatial query resolution is
performed by the fog device either itself or using cloud servers or fog device of other region
depending on the geographical region related to the geospatial query. We carried out both
theoretical and experimental analysis to demonstrate feasibility of our proposed approach. The
theoretical analysis illustrates that the proposed architecture Spatio-Fog reduces the power
consumption and delay by approximately 43-47% and 47-83% respectively over the use of
existing geospatial query resolution system. The experimental analysis demonstrates that
the proposed framework reduces the power consumption and delay by 30-60% approximately
than the existing geospatial query resolution system.

5.1 Introduction

Geospatial information storage, processing, and query resolution is a promising re-
search area [182]. Usually, cloud servers are used to store and process the geospatial
information. However, as geospatial information is related to geographical regions,
storing and processing large volume geospatial data inside the remote cloud servers
can suffer from delay and energy consumption. Mobile devices while requests for
any information related to geospatial, then accessing remote cloud servers may de-
grade the quality of user experience by enhancing delay and energy. Moreover,
storing and processing a massive amount of data on cloud data centres results in
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high energy consumption as well as the use of long distant cloud servers compromise
with Quality of Service (QoS) in terms of delay and energy, from the perspective of
the client mobile devices [6, 7]. Fog computing has been introduced to improve
the QoS, where the intermediate devices between the end node and cloud servers,
e.g., switch, router, perform data and computation offloading [8]. The intermedi-
ate devices which store and process data are called fog devices [9, 10]. Use of fog
devices in geospatial data storage and processing can reduce the delay and energy
consumption over remote cloud servers.

5.1.1 Motivation and Contribution

The use of fog based framework in different applications such as health-care, home
monitoring, has reduced the delay and energy consumption over the only cloud-
based system [146]. In these types of applications, the intermediate devices perform
preliminary data processing. However, for large scale data storage and processing,
cloud is still the only option. The major challenges of geospatial application are
[3, 182–185]:

• For geospatial data analysis, a large volume of multidimensional data has to
be processed.

• For exploration, multiple approximate queries are involved in rapid succession.

• The approximate queries involve ranges specified along the spatio-temporal
dimensions. The query evaluations require other concurrent rigorous and
approximate queries.

The traditional fog computing based model unable to provide satisfactory QoS in
case of geospatial query resolution. In [84, 136], fog device is used for partial
computation on spatial data. However, the geospatial data storage and large scale
processing are performed inside the cloud, and the load on cloud servers remains
high, whereas resourceful fog devices remain underutilized. Hence, there should
be a method for distributing the voluminous data among the fog devices and cloud,
so that the resources of the fog nodes will be utilized as well as the load on the
cloud will be reduced. Our objective is to introduce a new hierarchical fog based
framework for the geospatial application, which will distribute the voluminous data
among the fog devices and cloud servers in such a way that the load on cloud data
centre will be reduced as well as the query processing time will be minimal. The
contributions of this chapter are:
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• A fog computing based architecture is proposed where fog devices store the
regional spatial data based on the pre-calculated volume of data of the regions.
The proposed system is referred as Spatio-Fog.

• The geospatial data processing and query resolution are performed inside
the fog device. When a mobile user queries for information related to the
geographical region, where the user is currently present, the fog device resolves
the query and sends the result to the requesting device without loading the
cloud servers.

• The communication and computation costs in terms of delay and power con-
sumption for the proposed architecture are measured in terms of theoretical and
experimental analysis to show that the proposed framework is delay-sensitive
and energy-efficient than the existing model for geospatial query resolution.

The rest of this chapter is organized as follows. Section 5.2 discusses on the
related existing strategies. Section 5.3 discusses on the geospatial data analysis.
Section 5.4 elaborates the proposed fog based architecture for geospatial query res-
olution. Section 5.5 presents the performance analysis. Section 5.6 summaries the
chapter.

5.2 Related Work

Geospatial data analysis is an emerging research challenge due to its large volume
and computational intensity of processing the data. Various researches have focused
on the challenges of geospatial applications [3, 182–185] and the use of cloud com-
puting to address them. However, the use of only cloud-based system may not be
efficient in terms of accessing the data at low latency, low energy consumption etc.
Moreover, the load on the cloud data centre is also very high. Use of fog computing
for distribution of the voluminous data has not been explored much. In this section,
we have discussed on the geospatial information and the query resolution along
with the existing approaches on geospatial cloud computing and fog computing.

Geospatial information refers to the data with respect to a geographical place
in terms of geographic coordinates, collected using Geographic Information System
(GIS) [186]. Remote sensing images are recognized as important geospatial data.
Geospatial data are of two types: Raster data and Vector data. Indexing, scoring,
and ranking of remote sensing images have been discussed in [187]. Query resolu-
tion for spatiotemporal database has been discussed in [188]. Query processing for
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the spatial database has been discussed in [189]. Usually Quadtree [190] and R-tree
[191] are popular for spatial query processing [189]. However, R+-tree [192], R∗-tree
[177] and PMR Quadtree [193] are also used for spatial query processing [189]. The
authors in [189] have used XBR+-tree for spatial query processing, which is a dy-
namic, disk-resident and balanced Quadtree-based index structure. Multiple query
optimization for relational database has been highlighted in [194]. For geospatial
query evaluation, a method has been discussed in [182], where multi-dimensional
data set has been considered. A predictive and exploratory analysis over high vol-
ume multi-dimensional data set in a distributed environment has been performed
in [195]. For land cover classification a geospatial web service has been designed
in [196]. For storage and analysis of high volume geospatial data, cloud data cen-
tres have been used [3, 64, 183]. For high-resolution geospatial interpolation, cloud
computing has been used in [63]. In the Geospatial Cloud framework, the applica-
tion tier is used for geospatial services, such as Web Map Service (WMS) [197], Web
Coverage Service (WCS), Web Feature Service (WFS) [25], Catalog Service for the
Web (CSW) and Web Processing Service (WPS) [198]. Though cloud computing has
been largely used for geospatial data analysis, use of long distant cloud servers for
query resolution increases delay and energy. Use of fog computing for geospatial
data analysis has been highlighted in [34, 84, 136]. Geospatial query processing
in edge devices has been discussed in [84]. However, geospatial data is of large
amount. Hence, the processing of voluminous data requires high-end processing,
which the edge or fog devices may not be able to deal with. However, if this huge
volume of data is stored in a distributed manner in fog devices and cloud servers,
so that the high-end processing will be executed by the cloud, there a trade-off will
be maintained between communication and computation costs.

In fog based frameworks, the fog devices are used for preliminary processing of
data. Fog devices usually offload the computational tasks, rather than permanently
storing massive volume of data. In the existing methods, the fog devices perform
preliminary processing before forwarding the data to the cloud, for example, overlay
analysis or compression on the spatial data is performed inside the fog devices, and
then the data is forwarded to the cloud [34, 84, 136]. However, from the perspective
of geospatial data analysis, the use of fog computing is promising due to the data in-
tensity as well as the computational intensity of the spatial data. Hence, there should
be a framework which will deal with decision making regarding the distribution of
spatial data, load balancing, and query resolution with energy-efficiency and delay
optimization. The users will generate queries related to relational regional spatial
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data, and the system has to respond to it. The objective of using fog computing in our
work is to process a user-generated regional spatial query at an optimum delay and
power consumption of the client device. Towards the solution of this, we propose a
cloud-fog based distributed framework in this chapter. For query processing in the
geospatial relational database, parse tree [199] is used in our work. The communi-
cation and computation costs in terms of delay and power consumption of the user
device in our framework are measured and compared with the existing systems on
geospatial data analysis and services in cloud and fog environment.

5.2.1 Comparison with existing schemes

As our work is based on geospatial query processing in cloud-fog framework, we
have compared the proposed model with the existing strategies on geospatial data
analysis and services in cloud and fog environment. Table 5.1 compares the contri-
butions of the proposed work with the existing schemes on geospatial data analysis
and services. In the existing cloud-based systems, the geospatial data storage and
analysis take place inside the cloud servers [3, 64, 183]. In the existing fog based
system, the fog devices are used to perform only the preliminary processing such as
compression, on the geospatial data [136]. In our system, the data to be contained
by the fog devices are categorized regionally, with an objective to optimize the delay
and power consumption of the client device during query resolution, as well as to
reduce the load on cloud data centres. This is the uniqueness of the proposed model
with respect to the existing frameworks [3, 64, 136, 183]. From Table 5.1 it is also
observed that in our system, we have not only analysed the data for query resolution
but also calculated the delay, power consumption, and system response time.

It is observed that most of the existing approaches on geospatial data analysis
and query resolution are based on cloud computing, and the fog computing has
been used only for partial computation on the spatial data before forwarding to the
cloud. However, none of them has focused on the use of fog nodes for distributing
the storage and processing of the high volume spatial data in order to reduce the
load on the cloud as well as for better utilization of the fog devices’ resources. We
have focused on this, and as a solution towards this challenge, we have proposed
a fog-cloud based collaborative framework in section 5.4. But before that, we have
discussed on the geospatial data analysis and different types of services required for
query processing in section 5.3. The use of the proposed architecture for resolving
these types of queries has been discussed in section 5.4.
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5.3 Geospatial data analysis

Geospatial data analysis [200] is a collection of techniques and models which are
used to determine the spatial relationships among geospatial data. In cartographic
modelling, a map is represented by processed geospatial data. In mathematical
modelling, results depend upon the spatial interaction between the objects of the
model. Geospatial data analysis improves the development and application of
statistical techniques. Differences between relational database query and geospatial
query [201] are there are no fixed set of operators for geospatial query evaluation, and
databases deal with a large volume of geospatial data, computationally expensive
due to spatial predicates. Open Geospatial Consortium (OGC) compliant geospatial
services help to process and publish the results of the geospatial queries. They offer
the following capabilities:

• Web Feature Service(WFS) helps to extract the featured data from the dump of
geospatial data.

• Web Processing Service(WPS) helps to process like buffer, intersection opera-
tions over the geospatial data.

• Web Map Service(WMS) helps to generate a map from the geospatial data
according to its coordinates.

Two examples of the geospatial query are provided as follows.
Geospatial Query 1 (GQ1): List of areas which are present within 10 kilometers of each
hospital in Bankura district.

SELECT B.area name

FROM Bankura B

WHERE Overlap (area.shape, Buffer (hospital.shape, 10))=1

GROUP BY hospital name

ORDER BY area desc;

Here,‘.shape’ stands for shapefile. A shapefile1 is a simple, nontopological format
for storing the geometric location and attribute information of geographic features.
Geographic features in a shapefile can be represented by points, lines, or polygons
(areas). The workspace containing shapefiles may also contain database tables,
which can store additional attributes that can be joined to a shapefile’s features.

1http://desktop.arcgis.com/en/arcmap/10.3/manage-data/shapefiles/what-is-a-shapefile.htm
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Query parsing tree for GQ1 is presented in Figure 5.1. In GQ1, first, select the hos-
pitals of Bankura and create a 10-kilometer buffer of each Hospital. Now, make an
‘overlap’ spatial operation between buffered hospital shapefile and area shapefile
of Bankura. From there, we obtain area names of Bankura which are within 10
kilometers of hospitals. For resolving GQ1, the following geospatial services are

Figure 5.1: Query parsing tree of GQ1
Figure 5.2: Query parsing tree of GQ2

required.

• WPS BufferFeatureCollection service is used for the creation of 10 km buffer of
the hospitals.

• WPS IntersectionFeatureCollection service is used for the overlap operation.

• WMS GetMap service is used to display the final area map of Bankura.

Geospatial Query 2 (GQ2): List the ‘one Way’ roads of Bengaluru, India.

SELECT B.road name

FROM Bengaluru Road B

WHERE B.road type = ‘One Way’;

Query parsing tree for GQ2 is presented in Figure 5.2. A ‘filter’ spatial operation is
done over the road network shapefile of Bengaluru.

For resolving GQ2, the following geospatial services are required.

• WFS getFeature service is used for filtering the ‘One Way’ roads from Ben-
galuru road network.

• WMS GetMap service is used to display the ‘One Way’ road map of Bengaluru.
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In this section, we have discussed on the geospatial data analysis and query process-
ing. In the next section, we will propose the Spatio-Fog architecture for geospatial
data storage and query processing. These types of queries will be processed by the
fog devices or cloud based on the geospatial area for which the query has been made.

5.4 Proposed Spatio-Fog Architecture

The fog based system architecture for geospatial query processing is presented in
Figure 5.3. The total geographical area is divided into sub-areas, e.g., countries. Each
geographical sub-area has coverage which is decomposed into several zones, e.g., in
a country, there are a number of states. Each zone is decomposed into several regions,
e.g., each state contains a number of districts. In our system, we are considering a
hierarchical architecture (see Figure 5.4), where level 1 is a sub-area, e.g., country,
which is then decomposed into several zones, e.g., states, in level 2. Each zone, e.g.,
the state is then decomposed into several regions, e.g., districts, in level 3.

Let a is a sub-area and za is a zone under sub-area a, then za ∈ a. Let rza is a region
under zone za, then rza ∈ za. The spatial data of region rza is denoted by Srza . If f is a
fog device located in rza , then f will contain Srza .

In our system, fog devices located in each region contains the geospatial informa-
tion of that region. Usually, switch, gateway, an indoor base station with storage and
computation ability [202] are used as fog devices. In our system, the intermediate
devices between the end node and cloud servers, possessing high storage and com-
putation ability are considered as fog devices, because they will store the spatial data
of the region as well as process the data for query resolution. When a user generates
one or multiple queries to retrieve information related to a region where he/she is
currently present, then instead of accessing the cloud servers the fog device accesses
its geospatial data and responds accordingly, e.g., the geospatial query resolution is
performed by the fog device instead of the cloud servers. The advantages of this
framework are:

• As the fog device stores the geospatial data of the region instead of the cloud
data centres, the propagation and communication delays are reduced, which
in turn helps to reduce the total delay.

• As the fog device is containing the region-specific geospatial data instead of
the cloud, the load on cloud data centre will be reduced. Moreover, an extra
layer for regional data privacy will be maintained. However, the spatial data
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Figure 5.3: Architecture of Fog-based system for geospatial query resolution
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Figure 5.4: Hierarchy of proposed Spatio-Fog framework

of the regions to be frequently accessed, are stored in the cloud, which will not
compromise with the delay over remote cloud if a query is generated regarding
such regions other than the current region.

5.4.1 Query Generation from Mobile User

A mobile device located in a region is connected with a fog device. The mobile
device generates a query and sends to the fog device.

Let a mobile device M currently located in region rza is connected with a fog
device f of the region and the geospatial data stored by f is Srza . M generates a query
Q and sends to f .

5.4.2 Query Resolution by Fog Device

The fog device of a region contains the geospatial data of that region. The geospatial
data storage and processing are performed by the fog device. When the fog device
receives a query from the mobile device, first it verifies whether the query is related
to the current region where both the mobile device and fog device are located. If the
query is related to the current region, the fog device analyses its geospatial data and
responds accordingly. Otherwise, the fog device forwards the query to the cloud
servers. If the query Q received by the fog device f is related to Srza , f responds after
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Figure 5.5: Area registry maintained inside the Cloud

analysing the data. Otherwise, f forwards Q to the cloud.

5.4.3 Cloud Servers

The fog devices are connected with the cloud servers. The cloud servers contain the
spatial data of the regions for which the users frequently generate queries. When the
cloud receives a geospatial query, it checks whether it has the intended spatial data
to solve the query. If so, it analyses the data and sends the result. Otherwise, the
cloud servers identify the region related to the spatial data and forward the request
to the fog device of that region.

If the query Q received by the cloud is related to the spatial data which it contains,
it resolves the query and sends the result to the fog device, which further forwards
it to the mobile device. Otherwise, the cloud forwards Q to a fog device g which
contains spatial data related to Q. Here, fog devices f and g belong to two different
regions. To find out the sub-area, zone, and region of a query and then finding
out the respective fog device, area registry is maintained inside the cloud servers.
The registry is containing the sub-area IDs under the area and the zone IDs under
the sub-areas. The zone IDs are referring to the region IDs of the respective zones.
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The region IDs are referring to the fog device IDs containing the spatial data of the
respective regions. The registry for area a is presented in Figure 5.5. There are as sub-
areas present under the area a. Each sub-area has several zones, which are pointing
to the regions under them. The regions are pointing to the fog devices containing
the spatial data of those regions. By accessing the area registry, the cloud can find
out the fog device containing the geospatial data related to a particular region.

5.4.4 Case Study

In section 5.3 we have discussed on the queries and the services for processing those
queries. Now, the mobile user when generates such queries, then the proposed
framework resolves them based on the location for which the query has been made.
For resolving these queries, the WPS, WFS, and WMS services are used according to
the type of operation required. Based on the location for which the query is made,
the following three cases come into the scenario:

• Geospatial query resolution by fog device of the current region

• Geospatial query resolution using cloud servers

• Geospatial query resolution using fog device of another region

These three cases are discussed as follows.

Case 1: Geospatial query resolution by fog device of current region

In this case, the mobile device sends a query to the connected fog device of its region.
The query is related to the spatial data of the current region. Thus the fog device
analyses its spatial data and sends the result to the mobile device. The corresponding
sequence diagram is presented in Figure 5.6.

Case 2: Geospatial query resolution using cloud servers

In this case, the mobile device sends a query to the connected fog device of its region.
The query is related to the spatial data of the other region, whose data the cloud
servers contain. The fog device forwards the query to the cloud servers. The cloud
servers analyse the intended spatial data to resolve the query and send the result
to the fog device. The fog device then sends the result to the mobile device. The
corresponding sequence diagram is presented in Figure 5.7.
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Figure 5.6: Case 1- sequence diagram of geospatial query resolution by Fog device
of current region

Figure 5.7: Case 2- sequence diagram of geospatial query resolution using Cloud
servers

Case 3: Geospatial query resolution using fog device of another region

In this case, the mobile device sends a query to the connected fog device of its
region. The query is related to the spatial data of the other region, whose data is not
available inside the cloud servers. The fog device forwards the query to the cloud
servers. The cloud accesses the area registry and finds out the fog device containing
the corresponding spatial data. After that, the cloud forwards the request to that
fog device along with the ID of the requesting fog device and the query ID. The
corresponding fog device analyses its spatial data to resolve the query and sends the
result to the requesting fog device directly. The fog device then sends the result to
the mobile device. The corresponding sequence diagram is presented in Figure 5.8.
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Figure 5.8: Case 3- sequence diagram of geospatial query resolution using Fog device
of other region

5.4.5 Delay and Power Consumption in Query Resolution

The parameters used in delay and power calculation are defined in Table 5.2.
The sum of propagation delay, communication delay, processing delay and queu-

ing delay is the total delay while resolving query generated from a mobile device.
In the first case, the propagation delay is (dprop1/Sp) as the fog device of current

region resolves the query. However, in the second case, the cloud resolves the query.
Therefore, the propagation delay is (dprop2/Sp). In the third case, the fog device of
another region resolves the query. Hence, the propagation delay is (dprop3/Sp). If
all the three cases are considered with their probability of occurrences, then the
propagation delay is given as,

Dp = (p1 ∗dprop1 + p2 ∗dprop2 + p3 ∗dprop3)/Sp (5.1)

In the first case, the fog device of current region resolves the query. Hence, for the
first case, the uplink and downlink communication delays between mobile device
and fog device are considered. The communication delay from mobile device and
fog device is given as,

Dup1 = (Dm f /Upm f ) ∗ (1 + f um f ) (5.2)

The communication delay from fog device to mobile device is given as,

Ddw1 = (D f m/Dwm f ) ∗ (1 + f dm f ) (5.3)

In the second case, the cloud resolves the query. Hence, for the second case, the
uplink and downlink communication delays between fog device and cloud are taken
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Table 5.2: Notations used in delay and power calculation

Parameter Definition
dprop1 Distance to be covered during propagation while fog device of

current region resolves query
dprop2 Distance to be covered during propagation while cloud resolves query
dprop3 Distance to be covered during propagation while fog device of

other region resolves query
Sp Propagation speed
D f Data amount processed for resolving query
S f Data processing speed of fog device
Scl Data processing speed of cloud
Dm f Data amount transmission from mobile device to fog device while

sending query
D f m Data amount transmission from fog device to mobile device while

sending result
D f c Data amount transmission from fog device to cloud while sending query
Dc f q Data amount transmission from cloud to fog device while sending query
Dc f Data amount transmission from cloud to fog device while sending result
D f f Data amount transmission from serving fog device to requesting fog device

while sending result
Upm f Data transmission rate from mobile device to fog device
Dwm f Data transmission rate from fog device to mobile device
Up f c Data transmission rate from fog device to cloud
Dw f c Data transmission rate from cloud to fog device
Dw f f Data transmission rate from serving to requesting fog device
f um f Link failure rate from mobile device to fog device
f dm f Link failure rate from fog device to mobile device
f u f c Link failure rate from fog device to cloud
f d f c Link failure rate from cloud to fog device
f d f f Link failure rate from serving fog device to requesting fog device
Dw Queuing delay
Pt Power consumption of mobile device for data transmission per unit time
Pr Power consumption of mobile device for data reception per unit time
Pm Power consumption of mobile device in idle mode per unit time
p1 Probability of case 1
p2 Probability of case 2
p3 Probability of case 3
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into account along with the delays in the first case. The communication delay from
fog device to cloud is given as,

Dup2 = (D f c/Up f c) ∗ (1 + f u f c) (5.4)

The communication delay from cloud to fog device is given as,

Ddw2 = (Dc f /Dw f c) ∗ (1 + f d f c) (5.5)

In the third case, the fog device of another region resolves the query. Hence, for the
third case, the uplink and downlink communication delays between two fog devices
are taken into account along with the delays in the first case. As the fog device
responds to the query using fog device of another region, the communication delay
from requesting to serving fog device is given as,

Dup3 = ((D f c/Up f c) ∗ (1 + f u f c)) + ((Dc f q/Dw f c) ∗ (1 + f d f c)) (5.6)

In this case, the query is sent from the requesting fog device to the serving fog device
through the cloud. However, after resolving the query the serving fog device directly
delivers the result to the requesting fog device. Therefore, the communication delay
from serving to requesting fog device is given as,

Ddw3 = (D f f /Dw f f ) ∗ (1 + f d f f ) (5.7)

After considering the probabilities of occurrences of all the three cases, the uplink
communication delay is therefore given as,

Dup = p1 ∗Dup1 + p2 ∗ (Dup1 + Dup2) + p3 ∗ (Dup1 + Dup3)

= Dup1 + p2 ∗Dup2 + p3 ∗Dup3

(5.8)

where p1 +p2 +p3 = 1. Accordingly, The downlink communication delay is given as,

Ddw = p1 ∗Ddw1 + p2 ∗ (Ddw1 + Ddw2) + p3 ∗ (Ddw1 + Ddw3)

= Ddw1 + p2 ∗Ddw2 + p3 ∗Ddw3

(5.9)

The communication delay as a sum of the uplink and downlink communication
delays, is therefore given as,

Dcom = Dup + Ddw (5.10)
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In the first and third cases, fog device processes the query. The data processing delay
of fog device is given as,

Dproc f = D f /S f (5.11)

In the second case, cloud processes the query. The data processing delay of cloud is
given as,

Dproccl = D f /Scl (5.12)

After considering the probabilties of occurrences of all the three cases, the processing
delay is given as,

Dproc = p1 ∗Dproc f + p2 ∗Dproccl + p3 ∗Dproc f (5.13)

The total delay as the sum of the propagation, communication, processing and
queuing delays is given as,

Dtot = Dp + Dcom + Dproc + Dw (5.14)

The power consumption of mobile device during propagation is given as,

Pp = Pm ∗Dp (5.15)

The power consumption of mobile device during uplink communication is given as,

Pmu = Pt ∗Dup1 + p2 ∗Pm ∗Dup2 + p3 ∗Pm ∗Dup3 (5.16)

The power consumption of mobile device during downlink communication is given
as,

Pmd = Pr ∗Ddw1 + p2 ∗Pm ∗Ddw2 + p3 ∗Pm ∗Ddw3 (5.17)

Therefore, the power consumption of mobile device during communication is given
as,

Pmcom = Pmu + Pmd (5.18)

The power consumption of mobile device during data processing by fog device or
cloud, is given as,

Pproc = Pm ∗Dproc (5.19)

The power consumption of mobile device during queuing period is given as,

Pmqu = Pm ∗Dw (5.20)
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Therefore the total power consumption of the mobile device as a sum of the power
consumption during propagation, communication, query processing (inside the fog
device/cloud) and queuing periods, is given as,

Ptot = Pp + Pmcom + Pproc + Pmqu (5.21)

In the next section, using this mathematical model we have determined the delay in
resolving a mobile user-generated query using the proposed Spatio-Fog framework,
and the power consumption of the user device during query resolution period, and
compared with the existing cloud-based query resolution framework. After that
we have validated the theoretical results with the experimental results obtained by
carrying out different types of query resolution using the proposed framework in
the laboratory.

5.5 Performance Evaluation

In this section, we have performed theoretical analysis using MATLAB and exper-
imental analysis using OpenStack Cloud and Google Cloud Platform. We have
compared our framework with the existing query processing system in terms of
delay and power consumption of the mobile device. We have also performed a
comparative study between the theoretical and experimental analysis in this section.

5.5.1 Theoretical Analysis

In this section, the delay and power consumption during geospatial query resolution
using proposed fog based system and existing cloud-based system are compared
[3, 64, 183]. MATLAB 2015 is used for theoretical analysis. For theoretical analysis,
the total amount of geospatial data is considered 1 to 10 TB. It is assumed that p1 < 1,
p2 < 1, p3 < 1 and p1 +p2 +p3 = 1. For theoretical analysis the data amount transmitted
in uplink and downlink is assumed 1.25 to 2.50 MB and 15 to 27.5 MB respectively,
the uplink and downlink data transmission rate are assumed 5 to 10 Mbps and 10 to
30 Mbps respectively, and the power consumption of mobile device per unit time in
transmit, receive and idle modes are assumed 0.01 to 0.1 W, 0.005 to 0.05 W, and 0.005
W respectively. Figure 5.9 shows the delay in query resolution using proposed fog
based system Spatio-Fog, calculated using equation (14) and using existing cloud-
based system [3, 64, 183]. The simulation results show that Spatio-Fog reduces the
delay by approximately 47-83% than the existing system.
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Figure 5.9: Delay in geospatial query res-
olution using proposed Spatio-Fog and
existing system

Figure 5.10: Power consumption by mo-
bile device during geospatial query res-
olution using proposed Spatio-Fog and
existing system

Figure 5.11: System response time during geospatial query resolution using pro-
posed Spatio-Fog and existing system
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Figure 5.10 shows the power consumption of mobile device during query reso-
lution using proposed fog-based system Spatio-Fog, calculated using equation (21)
and using existing cloud-based system [3, 64, 183]. The simulation results show that
Spatio-Fog reduces the power by approximately 43-47% than the existing system.

Figure 5.11 shows system response time during query resolution using proposed
fog-based system Spatio-Fog and using existing cloud-based system [3, 64, 183]. The
simulation results show that Spatio-Fog reduces system response time by approxi-
mately 29-41% than the existing system.

If the query size and the size of the result to be sent to the device are large, then
communication delay will be high. The processing delay depends on the volume
of data has to be processed to resolve the query. Hence, the reduction in delay
and power consumption while using the proposed architecture will differ for large,
medium, or small data size.

5.5.2 Experiment Analysis

The configurations of the devices used in the experimental analysis are presented
in Table 5.3. Two mobile phones are used, which generate queries. The first mobile
phone has 3 GB RAM, 32 GB HDD, and Qualcomm MSM8940 Octa Core processor.
The second mobile phone has 2 GB RAM, 8 GB HDD and 64-bit 1.2 GHz Qualcomm
Snapdragon 410 Quad Core processor. The operating system of both the mobile
phones is Android 6.0.1. Two laptops with 4 GB RAM, 250 GB HDD, and Intel
Core i5 processor have been used as fog devices. The operating system of these
two devices is Windows 7 Professional and Ubuntu. For local cloud environment,
we have used OpenStack Cloud Platform of IIT Kharagpur, referred as Meghamala
(MGL), where we have taken a regular VM (2 vCPU, 4 GB RAM). For remote cloud
environment, we have used Google Cloud Platform (GCP), where we have created
one Virtual Machine (VM) instance (zone: asia-south1-c). The machine type is n1-
standard-1 (1 vCPU, 3.75 GB RAM). The protocols used are TCP, UDP, ICMP. The
mobile devices are connected through Wi-Fi Access points. The data transmission
rate is 10-50 Mbps.

Mobile phone 1 and mobile phone 2 are connected with fog device 2 and fog
device 1 respectively. In this work, we have used the spatial reference system,
EPSG:32645. We have considered the spatial data related to road, land area and
railway track of Purulia, India, road network of Mumbai, India, road network of
Delhi, India, and forest and road network of Raipur, India. Geospatial data are of
two types: vector data and raster data. In this experiment, we have considered
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vector data. Two mobile phones send queries related to geospatial data of Purulia,
Delhi, Mumbai and Raipur. Fog device 1 and fog device 2 are containing the data
of Purulia and Raipur respectively. The data of Mumbai and Delhi are stored in
the cloud. The two mobile devices generate total six queries which come under the
three case studies, discussed in section 5.4. Concerning the three cases, the analysis
of generated queries from two mobile devices is discussed in the subsections 5.5.2,
5.5.2, and 5.5.2.

We have used QGIS (version 2.18.28) for analysing the spatial queries. The time
complexity for buffer creation is O(N), for insertion and retrieval of event points is
O(logN), for intersection is O(N2), where N is the number of edges for a geometric
buffer. The results of data analysis are presented in Figures 5.12, 5.13, 5.14, 5.15, 5.16
and 5.17. The total delay in query resolution are presented in Table 5.4. In this case we
have measured the round trip delay (difference between the time stamp of sending
request and receiving response). The power consumption of the mobile phones
during this period is presented in Table 5.4. To determine the power consumption
we have multiplied the measured delay with the power consumption of mobile
device per unit time. The results are compared with query resolution using the
existing remote cloud-based system [64, 183], and local cloud-based system.

Experimental results of query analysis by fog device of current region

The user of mobile phone 1 generates the first query, where he asks for an information
related to Raipur, and the query is sent to Fog device 2, with which it is connected.
As fog device 2 is containing the geospatial data of Raipur, it responds. The user of
mobile phone 2 generates the second query, where he asks for an information related
to Purulia, and the query is sent to Fog device 1, with which it is connected. As fog
device 1 is containing the geospatial data of Purulia, it responds.

Result of query 1 resolution: In Figure 5.12, the result of query 1 is displayed. The
query is to find the road adjacent to the forest of Raipur. The forest area data and
road network data of Raipur are analysed by fog device 2 to resolve the query. The
following three geospatial services used to resolve this geospatial query:

• WPS BufferFeatureCollection service is for 1 km buffer creation around Raipur
forest shape file.

• WPS IntersectionFeatureCollection service is for the overlap of Raipur road
and buffered forest shape file.

• WMS GetMap service is used to display the resultant map of query 1.
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Figure 5.12: Result of geospatial query 1 (connecting roads to forest in Raipur)

The amount of data transmission, delay and power consumption of the user device
are presented in Table 5.4. The amount of data transmission between consecutive
nodes, in this case, is 1.98 MB. The delay in query resolution using the proposed
model, only GCP (remote cloud VM) and only MGL (local cloud VM) are 1.72 sec,
4.71 sec, and 3.31 sec respectively. The power consumptions of the user device
during this period are 0.19 W, 0.52 W, and 0.365 W respectively for query resolution
using the proposed model, only GCP, and only MGL. The experimental results
show that the proposed model reduces the delay in query resolution by 63% and
48% approximately than only GCP and only MGL respectively. The experimental
results also show that using the proposed model the power consumption of the user
device is reduced by 63% and 48% approximately than only GCP and only MGL
respectively.

Result of query 2 resolution: In Figure 5.13, the result of query 2 is displayed. The
query is to find the high roads in Purulia. The spatial data of road of Purulia is
analysed by fog device 1 to resolve the query. The following two geospatial services
are used to resolve this geospatial query:

• WFS getFeature service is used for filtering the ‘High Roads’ from Purulia road
network.

• WMS GetMap service is used to display the ‘High Roads’ map of Purulia.
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Figure 5.13: Result of geospatial query 2 (high roads in Purulia)

The amount of data transmission, delay, and power consumption of the user device
are presented in Table 5.4. The amount of data transmission between consecutive
nodes, in this case, is 1.56 MB. The delay in query resolution using the proposed
model, only GCP (remote cloud VM) and only MGL (local cloud VM) are 1.13 sec,
3.61 sec, and 2.21 sec respectively. The power consumption of the user device during
this period are 0.124 W, 0.397 W, and 0.243 W respectively for query resolution using
the proposed model, only GCP, and only MGL. The experimental results show that
the use of the proposed model reduces the delay in query resolution by 71% and
49% approximately than only GCP and only MGL respectively. The experimental
results also show that using the proposed model, the power consumption of the user
device is reduced by 68% and 49% approximately than only GCP, and only MGL
respectively. Hence, it is observed that the proposed framework has ∼ 60% less
power consumption of user device and ∼ 60% less delay than the existing remote
cloud only system [64, 183].

Experimental results of query analysis by cloud

The user of mobile phone 1 generates the third query, where he asks for an informa-
tion related to Delhi, and the query is sent to Fog device 2. Nevertheless, fog device
2 does not have the geospatial data of Delhi. Hence, it forwards the request to the
cloud. The cloud has the geospatial data of Delhi. Thus, it processes the query and
then sends the result to fog device 2. Fog device 2 forwards the result to mobile
phone 1. The user of mobile phone 2 generates the fourth query, where he asks for
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Figure 5.14: Result of geospatial query 3 (one-way roads in Delhi)

an information related to Mumbai, and the query is sent to Fog device 1. However,
fog device 1 is not containing the geospatial data of Mumbai. Hence, it forwards the
request to the cloud. The cloud has the geospatial data of Mumbai, and it sends the
result to fog device 1 after processing the query. Fog device 1 forwards the result to
mobile phone 2.

Result of query 3 resolution: In Figure 5.14, the result of query 3 is displayed. The
query is to find one-way roads in Delhi. The road network data of Delhi is analysed
by the cloud to resolve the query. The following two geospatial services are used to
resolve this geospatial query:

• WFS getFeature service is used to filter out the ‘One Way’ roads from the Delhi
road network.

• WMS GetMap service is used to exhibit the query 3 result.

The amount of data transmission, delay, and power consumption of the user device
are presented in Table 5.4. The amount of data transmission between consecutive
nodes, in this case, is 2.28 MB. The delay in query resolution using the proposed
model, only GCP (remote cloud VM), and only MGL (local cloud VM) are 2.85 sec,
4.91 sec, and 4.45 sec respectively. The power consumption of the user device during
this period are 0.31 W, 0.54 W, and 0.49 W respectively for query resolution using
the proposed model, only GCP, and only MGL. The experimental results show that
the use of the proposed model reduces the delay in query resolution by 41% and
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Figure 5.15: Result of geospatial query 4 (one-way roads in Mumbai)

35% approximately than only GCP and only MGL respectively. The experimental
results also show that using the proposed model, the power consumption of the user
device is reduced by 42% and 36% approximately than only GCP, and only MGL
respectively.

Result of query 4 resolution: In Figure 5.15, the result of query 4 is displayed. The
query is to find one-way roads in Mumbai. The road network data of Mumbai is
analysed by cloud to resolve the query. The following two geospatial services are
used to resolve this geospatial query:

• WFS getFeature service is used to filter the ‘One Way’ roads from the Mumbai
road network.

• For displaying the result of query 4, WMS GetMap service is used.

The amount of data transmission, delay, and power consumption of the user device
are presented in Table 5.4. The amount of data transmission between consecutive
nodes, in this case, is 2.32 MB. The delay in query resolution using the proposed
model, only GCP (remote cloud VM) and only MGL (local cloud VM) are 2.91 sec,
5.22 sec, and 4.45 sec respectively. The power consumptions of the user device
during this period are 0.32 W, 0.57 W, and 0.49 W respectively for query resolution
using the proposed model, only GCP, and only MGL. The experimental results show
that the use of the proposed model reduces the delay in query resolution by 44% and
35% approximately than only GCP and only MGL respectively. The experimental
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Figure 5.16: Result of geospatial query 5 (rail gates in the junction of road and rail
track in Purulia)

results also show that using the proposed model, the power consumption of the user
device is reduced by 43% and 34% approximately than only GCP, and only MGL
respectively. Hence, the proposed framework has ∼ 40% less power consumption
of user device and ∼ 40% less delay than the existing remote cloud only system
[64, 183].

Experimental results of query analysis by fog device of another region

The user of mobile phone 1 generates the last two queries, where he asks for infor-
mation related to Purulia, and the query is sent to Fog device 2. However, fog device
2 is not containing the geospatial data of Purulia. Hence, it forwards the fifth and
sixth queries to the cloud. But the cloud is also not containing the data of Purulia,
hence forwards it to fog device 1 that is containing the data of Purulia. Fog device 1
then processes the fifth and sixth queries and sends the result directly to fog device
2. Fog device 2 forwards the result to mobile phone 1.

Result of query 5 resolution: In Figure 5.16, the result of query 5 is displayed. The
query is to find the rail gates in the junction of road and rail track in Purulia. The
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spatial data of rail track and road of Purulia are analysed by fog device 1 to resolve
the query. The following two geospatial services are used to resolve this geospatial
query:

• WPS LineIntersectionFeature service is used for performing the cross operation
on the road network and rail tracks of Purulia.

• WMS GetMap service is used to display the final map of query 5.

The amount of data transmission, delay, and power consumption of the user device
are presented in Table 5.4. The amount of data transmission between consecutive
nodes, in this case, is 2.12 MB. The delay in query resolution using the proposed
model, only GCP (remote cloud VM) and only MGL (local cloud VM) are 2.76 sec,
3.94 sec, and 3.32 sec respectively. The power consumption of the user device during
this period are 0.31 W, 0.45 W, and 0.38 W respectively for query resolution using
the proposed model, only GCP, and only MGL. The experimental results show that
the use of the proposed model reduces the delay in query resolution by 30% and
18% approximately than only GCP and only MGL respectively. The experimental
results also show that using the proposed model, the power consumption of the user
device is reduced by 31% and 17% approximately than only GCP and only MGL
respectively.

Result of query 6 resolution: In Figure 5.17, the result of query 6 is displayed. The
query is to find wastelands with an area greater than 50 acres within the distance
of 1 km from the high road in Purulia. The spatial data of road and land use land
cover (LULC) of Purulia are analysed. The amount of data transmission, delay and
power consumption of the user device are presented in Table 5.4. The following four
geospatial services are used to resolve this geospatial query:

• WFS getFeature service is used twice to filter the ‘High Road’ roads from
Purulia road network and to filter areas which are greater than 50 acres from
Purulia LULC.

• To create 1 km buffer of each filtered area using WPS BufferFeatureCollection
service.

• WPS IntersectionFeatureCollection service is used to make intersection Land
buffer with filtered Roads.

• Finally, WMS GetMap service is used to display the resultant map of the query
6.
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Figure 5.17: Result of geospatial query 6 (waste lands with area of greater than 50
acres within the distance of 1 km from high road in Purulia)

The amount of data transmission between consecutive nodes in this case is 3.15 MB.
The delay in query resolution using the proposed model, only GCP (remote cloud
VM) and only MGL (local cloud VM) are 5.25 sec, 7.66 sec and 6.35 sec respectively.
The power consumption of the user device during this period are 0.577 W, 0.842
W and 0.69 W respectively for query resolution using the proposed model, only
GCP and only MGL. The experimental results show that use of the proposed model
reduces the delay in query resolution by 31% and 17% approximately than using
only GCP and only MGL respectively. The experimental results also show that using
fog device the power consumption of the user device is reduced by 31% and 16%
approximately than using only GCP and only MGL respectively.

Hence, from this two experimental studies it is observed, the proposed frame-
work has ∼ 30% less power consumption and ∼ 30% less delay than the existing
remote cloud only system [64, 183].

The experimental results in Table 5.4 illustrate that the use of the proposed
model reduces delay and power than existing cloud-based system. In the first two
experimental studies the fog device connected with the requesting mobile phone is
containing data of the region for which the queries are made. Hence, the reduction
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in delay and power consumption of user device is ∼ 60% than the existing remote
cloud-based system [64, 183]. In the next two experimental studies the fog device
connected with the requesting mobile phone is not containing data of the region
for which the queries are made, whereas the cloud is containing the data. Hence,
the communication cost in terms of delay and power consumption is same as in
the existing cloud-based system. However, in the existing system the cloud has
to access a huge volume of data to respond to the query, as the spatial data of
all the regions is contained by the cloud. As a result the computational cost is
higher than the proposed system where cloud is containing only the frequently
accessed spatial data. Consequently the total cost (sum of communication and
computation) is higher in the existing system. It is observed that use of cloud for
query resolution in case of the proposed Spatio-Fog architecture achieves ∼ 40% less
delay and power consumption of user device than the existing remote cloud-based
system [64, 183]. In the last two experimental studies the third case is considered i.e.
the use of another fog device for query resolution. In this case the proposed model
has higher communication cost than the existing cloud-based system. Nevertheless,
the computational cost in case of the remote cloud-based system is much higher (as
discussed earlier) than the proposed model. As a result the total cost becomes less in
the proposed framework. It is observed that use of fog device of another region for
query resolution in case of the proposed Spatio-Fog architecture achieves ∼ 30% less
delay and power consumption of user device than the existing remote cloud-based
system [64, 183]. Hence, from the six experimental studies, it is observed that the
proposed system provides 30%− 60% less power consumption of user device and
30%−60% less delay than the existing system.

5.5.3 Comparison study between theoretical and experimental anal-

ysis

In the theoretical analysis, we have considered large data size, whereas in the exper-
imental analysis, we have a comparatively small amount of data. Hence the results
differ. However, we have performed the theoretical analysis also for the six queries
discussed above. Using the mathematical model, the delay in query resolution and
power consumption of user device during that period have been calculated and com-
pared with the experimental results, which is graphically presented in Fig.5.18. It is
observed from Fig.5.18 that the theoretical and corresponding experimental results
are approximately the same. Experimentally it is already noted that the proposed
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Figure 5.18: Comparison of theoretical and experimental results of query resolution

Figure 5.19: System response time in proposed Spatio-Fog system

framework reduces the power consumption and delay than the existing frameworks.
Hence, it is concluded that the proposed fog computing system Spatio-Fog is a low
power, i.e., green and delay-sensitive system.

5.5.4 System Response Time

System response time refers to the time difference between receiving a request and
sending the corresponding response by a system i.e. the sum of waiting time and
service time is the response time [3]. If a system receives N queries and the response
time of a query Q is TQ, then the average system response time is given as, RTN =∑N

Q=1 TQ

N . The average system response time with respect to the number of queries
received are presented in Figure 5.19. From the figure it is observed that the average
system response time for the proposed Spatio-Fog system is < 25 sec for the number
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of received queries 5-30.

5.6 Summary

In this chapter, a fog computing based architecture namely Spatio-Fog has been pro-
posed for geospatial query resolution. The fog devices of different regions contain
geospatial data of the respective regions. When a query is received from a mobile
device regarding the current region, the fog device resolves the query after analysing
the data and responds to the mobile device. Otherwise, if the query is regarding
other regions, the fog device responds using cloud servers or fog device of the corre-
sponding region. Theoretical analysis shows that the proposed framework reduces
the power consumption and delay by approximately 43-47% and 47-83% respec-
tively than the existing system. The experimental results illustrate that the proposed
framework reduces the power consumption and delay by 30-60% approximately
than the existing query resolution system. Thus, we conclude that the proposed
framework is a green and delay aware framework.
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Chapter 6

Healthcare Application of Geospatial
Query in Edge-Fog-Cloud
Environment

Internet of things (IoT) has a pivotal role in developing intelligent and computational solu-
tions to facilitate varied real-life applications. To execute high-end computations and data
analytics, IoT and cloud-based solutions play the most significant role. However, frequent
communication with long distant cloud servers is not a delay-aware and energy-efficient
solution while providing time-critical applications such as healthcare. The hierarchical and
collaborative architecture with cloud, fog, edge, IoT, computing overcomes the issues by
providing computing and storage services at the edge of the network. Further, the use of a
cloud-only setup increases the overall energy consumption of the cloud datacenters and emits
a huge volume of greenhouse gases. This chapter explores the possibilities and opportunities
of integrating cloud technology with fog and edge-based computing to provide healthcare
services to users in exigency. Here, we propose an end-to-end framework, named RESCUE,
which has four layers, namely, cloud, fog, edge and IoT. This framework has an efficient
spatio-temporal data analytics module for efficient information sharing, spatio-temporal data
analysis to predict path for users to reach the destination (say, healthcare center or relief
camps) with minimum delay in the time of exigency (say, natural disaster). This module
analyzes the collected information through crowd-sourcing and assists the user by extracting
optimal path post-disaster when many regions are non-reachable. The framework is deployed
and evaluated using real-life datasets. The experimental and simulation results outperform
the baselines to a significant margin in terms of accuracy, delay, and power consumption,
and green service provisioning is achieved.
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6.1 Introduction

Internet of Things (IoT) has manifested a dramatic revolution in all spheres of hu-
man lives by connecting billions of devices. It is estimated that by the end of 2025,
more than 75 billion IoT devices will be connected to the web1. The proliferation
of IoT paradigm has a significant impact in different industries [203] and facilitated
varied applications, such as time-critical applications, like healthcare, smart city,
smart home, agriculture[204] etc. With the rapid development of IoT and other sen-
sor technologies, this IoT paradigm has created new domains of research, namely,
Internet of Health Things (IoHT) [132, 205], Internet of Spatial Things (IoST) [206], Indus-
trial Internet of Things (IIoT) [207, 208], Internet of Military Things (IoMT) [209, 210].
The IoT devices need to send data to cloud servers frequently for processing and
analysing the accumulated data. However, this increases the delay, therefore affects
the Quality of Service (QoS). Here, edge or fog nodes [56] extend the functionality of
cloud computing by processing, analysing, and storing the information at the edge
of the network.

In the present decade, several IoT devices such as Raspberry Pi2, SmartThings
Hub3 facilitate temporary storage, limited computation capability, and memory
resources along with the conventional end-to-end connectivity anywhere and every-
where. These promising features have a significant impact on any large scale IoT
deployment[211], like smart city, smart healthcare, etc. Further, the integration of
edge or fog4 nodes helps in taking an adaptive and dynamic decision based on
the sudden changes of the environment, and improves the efficacy of the IoT sys-
tem. However, the computational power of these IoT devices is not sufficient for
large-scale and compute-intensive analytics. Cloud computing is the only feasible
solution where the processing is carried out in the cloud data centers. Nevertheless,
the enormous amount of interconnected IoT devices generate a massive volume of
data to be handled in the cloud server itself, and the cloud datacenters emit an enor-
mous amount of greenhouse gases (due to the high energy consumption) taking a
deep toll on the surroundings. On the other side, it is also observed that time-critical
applications, such as healthcare, evacuation system, smart traffic monitoring, or de-
fense applications, need real-time and latency-aware decision modules. Frequent
communications with distant cloud servers increase the delay and may be fatal for

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
2https://www.raspberrypi.org/
3http://www.smartthings.com/
4Fog (From cOre to edGe) term was coined in 2012 by CISCO
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many cases. Here, the fog or edge nodes can be made intelligent enough to anal-
yse and adapt timely measures to reduce the intervention of cloud servers at each
time. While fog or edge computing is not a replacement for cloud computing, the
magnificent integration of these two booming technologies can efficiently facilitate
delay, energy-awareness, and real-time applications. In this work, we leverage the
functionality of both cloud and fog/ edge computing to provide timely assistance
to users in the time of emergency. It is achieved by analysing heterogeneous data
sources, namely, health parameters, contextual information (mobility, environment
temperature, air pressure, etc.), and real-time information (crowd-sourcing data).
The word ’Green’ refers to low power; a system with low power or low energy
consumption can be referred to as a green system. Due to the enormous volume
of data analysis and transmission, accessing various applications through a mobile
device has caused a tremendous amount of energy consumption not only by the
cloud servers, network but also by mobile devices. Thus, low power, i.e., green
service provisioning, has become a significant challenge. The work also mathemat-
ically formulates the power consumption, latency, and compares with the baseline
methods to prove the eco-friendliness of the proposed framework in terms of low
power and low latency.

In recent times, there is a growing need to analyse spatio-temporal datasets to
extract meaningful information and provide location-aware services, such as trip-
planning, weather forecasting, and even health management. From its inception,
spatio-temporal data mining has shown a significant impact on varied aspects of our
lives. For instance, it was found in a spatio-temporal data analytics [212] that
the source of Cholera was public pumps and transmitted through contaminated
drinking water. The finding was immensely helpful in combating the spread of
Cholera. To this end, the Internet of Spatial Things (IoST) combines IoT with spatial
context [206], where the location information of the objects plays an important role.
Our framework aims to provide proper assistance to users when emergencies occur,
such as disaster or health emergencies. RESCUE assists users by finding a path to
reach healthcare centers or other places post-disaster situations or when the patient’s
health status is deteriorating. In the latter case, the cloud sends the alert to nearby
fog nodes, and the fog nodes inform the ambulance service and nearest healthcare
center as a preventive measure. The ambulance’s route or path is predicted by the
cloud server, such that the ambulance can reach in minimum delay avoiding any
fatal condition. Therefore, an efficient module for analysing a massive amount of
real-time mobility and road-information is required to assist the users in the time of
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emergency.

6.1.1 Motivations and Challenges

There are varied real-life applications which can be facilitated from this framework.
Here, we have considered an exigency situation (say, a natural disaster like super-
cyclone) when substantial losses occur to human lives and public infrastructures
like housing complex, roads, electric poles, etc. While the normal lives of people
are disrupted, getting proper healthcare facility becomes a challenging issue. For
instance, healthcare centers can not be reached due to the inundation of the roads.
Moreover, any emergency or disaster planning requires seamless information ex-
change and updating information about the affected regions and demands of the
people (like healthcare or food facilities). In this work, the proposed framework, RES-
CUE, aims to provide a better management framework in terms of providing preliminary
health checkups, information collection, and sharing mechanisms and finding paths to nearby
healthcare centers while several regions are not-reachable due to the damage of the disaster.
It helps in proper post-disaster planning and improves overall urban sustainability
and resilience. There are few challenges to provide such facilities in the time of
emergency, such as,

1. How proper information about the affected regions can be accumulated quickly
to take the recovery steps?

2. How these massive amounts of information can be stored, managed and anal-
ysed?

3. How to deploy a delay-aware system to assist users in the time of health-
care emergencies, when most of the roads and regions are affected and non-
reachable?

4. How can we deploy an energy-efficient framework which provides all of these
services?

It may be noted that the cloud paradigm provides the capability of storing, manag-
ing, and analysing a massive volume of data. Still, frequent communication with
the cloud servers adds more delay and requires more energy consumption. All
of these issues need to be addressed and efficiently resolved to provide adequate
humanitarian relief and a sustainable environment.
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6.1.2 Contributions

In this direction, the key contributions of this chapter are summarized as follows:

• We develop a hierarchical model that captures and accumulates data from het-
erogeneous IoT devices and performs preliminary data analysis in the edge of
the network (i.e., in Fog nodes) to reduce the communication with the distant
cloud servers. Further, the local data is stored in the fog nodes’ temporary stor-
age, and only the required information is sent to the cloud servers. The frame-
work leverages the VGI (volunteered geographical information) to accumulate
information about the affected regions or any events in the surroundings to
take countermeasures.

• We consider healthcare service as a prototype for this model, where mobility is
an important aspect. RESCUE is conducive of analysing the users’ mobility pat-
tern, present road-conditions, and finds an appropriate, less time-consuming
path to reach the destination. The model utilizes the autoencoder and markov
decision process to model and predict path to users in less time. It may be noted
that the framework is flexible enough to find out the paths from source to
destination, which requires less fuel consumption by computing the distance
of all possible routes efficiently, leading to fewer carbon footprints.

• We also provide a geospatial query processing service, where the user can get
the required emergency service information in less execution time as all local
geospatial data are stored nearby different fog nodes in a distributed fashion.

• The chapter performs extensive simulation-based analysis using iFogsim and
real-time data analysis in Google Cloud Platform (GCP). The experiment results
show that our proposed model decreases up to 81% for the indoor user device’s
and up to 80% for the outdoor user device’s power consumption and reduces
the carbon footprints of the IoT, Fog devices, and Google cloud server, which
moves a step towards green environment. The latency in healthcare service
provisioning and finding routes to assist users is reduced up to 55% for the
indoor user and up to 51% for the outdoor user in our proposed framework
compared to cloud-only approaches.

The rest of this chapter is arranged as follows. Section 6.2 represents the related
works of the topic. Section 6.3 elaborates on our proposed RESCUE architecture with
mobility and geospatial health query analysis. The latency and power calculations
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of user devices have been discussed in Section 6.4. In Section 6.5, the performance
of our proposed architecture is measured with experimental setup details. The last
section summarises the chapter.

6.2 Related Work

Over a decade, several techniques have been adopted to reduce the carbon footprint
and make the computing paradigm green. We discuss a few existing research works
in this domain of interest.

Albreem et al.[213] surveyed the existing green IoT research. They categorise the
available green initiative into three parts. First part is working over Radio-frequency
Identification (RFID) tags [214–216]. Second is making the sensor network energy
efficient with different types of routing algorithms [217–219], clustering schemes
[220, 221]. The third is green Internet technology with hardware and software so-
lutions for different types of services. A deployment scheme has been proposed by
[222]. Two types of nodes are considered sensing nodes and relay nodes. Traffic
loads are distributed from the sensing node to the relay node as it has direct com-
munications among each other. It reduces the battery power consumption of nodes
and increases the overall network lifetime.

Bharti et al. [223] present a framework to recognize and classify complex activities
at home using wearable devices. In order to reduce power consumption due to the
continuous tracking of mobile devices, a method named HARKE has been proposed
in [224]. Barik et al. [225] have proposed an ontology-based solution combined with
statistical inferencing to recognize complex activities. On the other side, volunteered
geographical information (VGI) provides a new opportunity for a better healthcare
system by collecting a time-sensitive dataset from a huge number of subjects. Ini-
tially, [226] proposed the concept of VGI, where several examples are presented to
illustrate the strength of VGI. A systematic overview of public healthcare research
using VGI is presented in [227]. Various quality measures and indicators for VGI are
mentioned in [228]. [229] propose a Fog-based SDI framework (GeoFog4Health) for
analysing big geospatial health data. The potentials of VGI in pervasive healthcare
computing applications are presented in [230], where the authors illustrate varied
data sources using OpenStreetMap (OSM) in their case-study. Another work [231]
presents the challenges and solutions regarding computationally intensive spatial
analytics.

There are also varied research works on the Internet of Health Things (IoHT).

110



6.3. RESCUE: Proposed Architecture

Mukerjee et al. [132] presents a framework for personalized health care in the IoT
system. The techniques in the optimization of resources in the fog environment
are presented in [232]. Spatial service orchestration in cloud has been proposed
for geospatial query execution. Spatio-fog framework proposes an energy efficient
and delay-aware fog computing model for processing geospatial query. However,
this work does not consider the mobility aspect of the users, which is an important
factor in provisioning QoS-aware services. In this regard, Ghosh et al. [86] presents
a mobility-aware framework (Mobi-IoST) which considers the mobility information
of the users in a region and assists them in the time of emergency. However, this
frameworks cannot handle a disaster scenario, which affects the underlying road
network.

Another recent work [233] extracts the correlations of spatio-temporal events by
proposing mobility-association rules. However, it falls short in reducing energy
consumption as it only relies on cloud servers to process the data. To the best of our
knowledge, the proposed framework, RESCUE, overcomes all of these limitations as
mentioned above of the existing works and provides green and delay-aware systems
to assist users in the time of exigency.

Table 6.1: Comparison of existing works with related features

Existing Integration of Mobility Crowd-Sourcing Geospatial Delay Low Time
Works Cloud-Fog Awareness Approach Query Awareness Power -Critical

-Edge-IoT (VGI) Processing Consumption Application

Kaur et al.[234] 8 8 8 8 8 8 3

GeoFog4Health[229] 8 8 8 8 8 3 3

HARKE[224] 8 8 8 8 8 3 8

Goranson et al.[227] 8 8 3 8 8 8 3

Mooney et al.[230] 8 8 3 8 8 8 3

IoHT[132] 3 3 8 8 3 3 3

RESCUE 3 3 3 3 3 3 3

6.3 RESCUE: Proposed Architecture

This section describes our proposed framework, namely RESCUE, which facilitates
efficient health-management and post-disaster recovery mechanisms efficiently in
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minimum time and power consumption. Fig. 6.1 depicts the overall architecture of
RESCUE. It is shown that there are two major modules: (i) public health awareness
and (ii) home-health monitoring of users and assisting them. For the former case,
RESCUE depends on the crowd-sourcing information or VGI. It accumulates the
information and finds out the correlation of such reported events with the spatial
information. It helps in enhancing public health awareness and taking preventive
measures. In the next case, the health of a user is being monitored using Body
Area Network (BAN), and in case any abnormality is detected, proper measures are
taken. In both cases, IoT devices, fog/edge nodes, and cloud servers communicate
seamlessly to facilitate users’ services. The major working modules are also shown in
the figure, and the modules are latency-aware and require less power consumption.
To ease the readability of the workflow of the modules, we have presented the
sequence diagram in Fig. 6.2.
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Fog Node Fog Node

v

Edge
Gateway

Assists users in
emergency

Store information
of affected region

Communicates
with cloud for

predicted result

Power and latency aware computation modules of RESCUE

Accumulate Health
and contextual data

Segmentation of
information

Hierarchical storage
and analytic module

Preliminary health
status analysis

Predict path based on
mobility analytics

Trigger alert notification
and assists user

Water contamination
from factory

Air pollution
VG

I 
(citizens as sensor)

Spatio-tem
poral

data analysis

Cloud datacenter
for storing and

analyse huge data
Public Health
Awareness

Health data
accumulation
using BAN 

Contextual data
extraction using

IoT devices

Preliminary health status
prediction in edge nodes

Alert  Notification Send health status
to cloud

abnormality detected

Home Health
Monitoring

USE CASE 1

USE CASE 2

HIERARCHICAL FRAMEWORK
(Cloud-Fog-Edge-IoT)

Figure 6.1: RESCUE framework

6.3.1 Public health management: volunteered geographic informa-

tion (VGI) approach

In the era of sensor network development, VGI is termed as humans as sensor or citizen
as sensor, since a number of independent individuals (human/ citizen) can provide
information about their surroundings. VGI has a massive impact on public health
monitoring. For instance, VGI could assist emergencies like the recent outbreak
of COVID-19. The users can log information about the suspected cases (such as
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Figure 6.2: RESCUE sequence diagram
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having symptoms or having a recent travel history from the affected regions in the
world). The countries with high population density, such as India, can also benefit
by collecting information like a shortage of essential ingredients or medicines in a
lockdown situation.

In short, VGI refers to the use of smart-devices to assemble, modify, and share
geographical information provided by the users voluntarily. Now, the volunteers
can give a large amount of data at different spatio-temporal resolution. However,
there are few challenges: (a) since the data is collected from different people, the
accumulated data can be heterogeneous, (b) the reliability of data quality needs to
be maintained. In this work, we mainly focus on public health status. To restrict
the heterogeneous nature of the collected data, we provide a list of events (ev) such
as accident, water contamination, excess household wastage, or a sudden outbreak
of a disease. The volunteers can select any option from the list and mark the
severity (Seev) of the event. Furthermore, they also log the location information
for such events. For maintaining the data quality, we have deployed a hierarchical
approach, where RESCUE relies on a reduced group of trusted individuals (who
act as moderators). Furthermore, when a large amount of data is collected from a
region and such moderators are not present, in that case, we follow Crowdsourced
approach, where the convergence on the reliability of the data is fully dependent on
the crowd (or volunteers) by identifying and correcting errors collectively. Once
the dataset is collected, we form different spatial clusters with the collected dataset.
Each cluster consists of the information < evi,Seevi ,cardinality >. Here, evi is an event
i with severity Seevi . The cardinality is computed by aggregating the number of data
entries with the same value. Next, we generate a heatmap using this information
from all of the places and find out the correlation with other contextual parameters.

RESCUE also can analyse such historical records, if available. For instance,
in some villages of India, in rainy season, few infectious diseases (e.g., Cholera or
Dengue) occur on a large scale. Likewise, several diseases depend on temperature,
humidity, and rainfall patterns. If these relations can be found apriori, early preven-
tive measures can be adapted to prevent the widespread of the diseases. Thus, we
can find out the hotspots of such diseases in different spatial and temporal scales.

6.3.2 Mobility analysis to find the routes

In this section, we describe the process of finding a path to reach the destination in
minimal time, avoiding the regions with risk (or affected areas). First, we model
the study-region in a graphical structure where the nodes are the POIs, and the edges
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Algorithm 4 : Extracting routes from source to destination in time of exigency
Input: VGI, mobility and POI data of N connected regions (R) of graph G(V,E)
Output: Route < Route(S,D,Υ) > . Route from source S to destination D

1: V,E,Υ←NULL;
2: for eachregions l j ∈N do . Check all regions for accumulated VGI data of events
3: for eachGPSpointpi ∈ R do
4: for eachaccumulatedVGI vk ∈ V do
5: f lag← checkAuthen(vk,pi)
6: if f lag == 1 then
7: S j← ComputeCardinality (vk) . Compute the number of times an event is

reported in a particular location and store using hierarchical indexing
8: S j← geotagg() . Associate location information with the reported event
9: h j← heatmapGen(S j) . Generate a heatmap and analyse the correlation

value
10: S.insert(h j) . Append the event in the datastore
11: end if
12: end for
13: end for
14: end for
15: for eachmobilitytrace tr ∈ T do . Analyse the mobility information in the region
16: for eachevent in f ormationh ∈ S do
17: GE.append(h) . A new node in the affected region is generated
18: GE.bu f f er(50) . Buffer with 50 meter for each affected region is generated
19: path← autoencoder(GE,POI,M) . Learn representation of data and context using

autoencoder
20: path← re f inement(GE,vrisk,path) . Extract routes using MDP
21: Υ : route← Add nodes from path
22: t← extractTemporal(path) . Extract path with less commute time
23: Υ.append(Edge(G, t)) . Append edges between the nodes to complete the route

from source to destination
24: Print Υ . Print the path
25: end for
26: end for

are the road-segments. The region is segmented into uniform grids, and the fog
nodes store the road-network information as well as the POI information of the
region under its coverage area. The fog nodes are capable of communicating with
each other and sends the information to the cloud gateway, which forwards it to
the cloud. The route finding method requires a large set of data analysis. Hence
the cloud will perform the data analysis and extract the optimal path. We begin the
discussion by defining the preliminary concepts as follows:

1. Road network (R(V,E)): The underlying road network is defined by a directed
graph, where the edges ei ∈ |E| are the road-segments and the intersections of
the edges are represented by nodes vi ∈ |V|.
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2. POI (P): The POI or Point-of-interest depicts the landmarks of a region, such
as, residential area, commercial area etc. We build a tree-based structure to
store all of these POI information.

3. Route (S,D,Υ): The route represents a sub-graph of R(V,E) where the two end-
points are source (S) and destination (D) nodes and the intermediate edges and
nodes represent the optimal path to reach the destination.

It may be noted that the volume of data including road-network structure, POIs
and movement information is huge, and increases along with the spatial range of
the study region. It is not possible to store all such information in a centralized
server. To this end, we build an efficient indexing scheme and deploy it. Here, we
have used the large cell base stations (Road Side Unit or RSU) as the fog nodes. The
RSUs have temporary storage and computing capabilities. These are divided into
two categories (i) macro RSU and (ii) micro RSU. The macro RSU has a coverage area
of 1-20km and micro RSU has coverage area of 200m-1km. All the POI information
and other mobility related information are stored in these RSUs. We segregate the
study regions into hexagonal grids of uniform area. Each of the centre points of the
grids are extracted and geo-hash code is generated. The list of the geo-hash codes
are stored in the cloud server. The fog nodes store the POIs within its coverage using
layered hashing scheme. The base idea is taken from [233]. RESCUE uses three
layers of hashing, where each layer stores more granular spatial information.

RESCUE uses Markov Decision Process (MDP) to recommend the routes from given
source to destination. Typically, MDP is used as it has a fast convergence speed and
it provides global optimal route instead of only considering the local benefits. The
reward function (pathre) of the process is defined as:

Pathre(POIa,POIb,Seg) =
Riskd(POIa,POIb)

NWdis(POIa,POIb)
Riskd(POIa,POIb)
|Riskd(POIa,POIb)|

(6.1)

This is the reward function when a particular grid (Seg) is selected in the path. It
may be noted that when the user is in a grid, it is only possible to visit in any of its
neighboring grids in the next step. The NWdis is the Haversine distance between POIa

and POIb. It is assumed that the user wants to visit POIb starting from POIa. The
difference of risk in moving from POIa to POIb is represented by Riskd(POIa,POIb).
These risk values are computed from the available datasources like crowd-sourcing
data. The heatmap is used to compute the risk value in a range of [0,1] for any
particular location. Algo. 4 represents is the basic steps of modelling such networks
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along with the movement information. Here, we have used the auto-encoder and
Markov Decision Process to model the road network and related information and
subsequently finding the path to reach the destination from the source. A Road
network is defined by a directional graph with road-segments as edges and the
intersection points of the road-segments as nodes. In the time of disaster, information
from heterogeneous sources need to be augmented which makes it high-dimensional
dataset and the process becomes time-intensive. For this reason, here RESCUE uses
an autoencoder to learn the representation of data related to emergency situation by
dimensionality reduction.

Here, we deploy two phase processing: offline and online. In offline process, we
compute and store the optimal paths between different pairs of location, which are
accessed frequently. The extraction of optimal path can depend on various aspects,
like, minimum commute time, shortest distance or minimum fuel consumption. In
the online phase, when a path-query is processed, the fog nodes take the computed
route from the given source to destination, and checks the feasibility of the solution.
Next, a feedback is sent to the cloud server, in case the route is not optimal.

6.3.3 Geospatial query and services

Geospatial service helps to retrieve the geospatial data from the different databases
seamlessly. There are many types of Open Geospatial Consortium (OGC1) stan-
dardise spatial services available. Web feature service(WFS2) extracts the featured
geospatial data from the database. Web processing service(WPS3) processes the
geometrical operations, i.e., overlap, buffer, intersection, cross, etc. over exist-
ing geospatial data. Web coverage service(WCS4) accesses the multi-dimensional
geospatial data from the server database. Web map service(WMS5) displays the
map with the user’s point of interest(POI). Catalog service(CSW6) keeps the infor-
mation about the available geospatial data along with its source.
Some examples of healthcare system related geospatial query where the geospatial
services are applied.
Geospatial Query 1(GQ1): List out the hospitals where MRI facility available of city C.
SQL syntax of GQ1 is as follow:

1https://www.ogc.org/
2https://www.ogc.org/standards/wfs
3https://www.ogc.org/standards/wps
4https://www.ogc.org/standards/wcs
5https://www.ogc.org/standards/wms
6https://www.ogc.org/standards/cat
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SELECT H.name, H.time, H.price

FROM Hospital H

WHERE H.facility=‘MRI’ AND City=‘C’;

In this geospatial query, one layer(hospital facility) is involved. A geospatial filter
operation (facility=‘MRI’) is applied over the layer. The query parse tree of GQ1 is
presented in Fig. 6.3.

H.name, H.time, H.price

Hospital H

H.facility=`MRI' AND City=`C'

Figure 6.3: Query parse tree of GQ1

To retrieve hospital data from multiple hospital data sources, the essential geospa-
tial web services for GQ1 are as follows.

1. getFeature feature service is needed to retrieve hospital data with MRI facility
availability in city C.

2. getMap service displays the result of GQ1 on a map.

Geospatial Query 2(GQ2): Find out the hospital details which are available within r kilo-
meters radius of a point P(x,y) in ascending order by distance. x and y are latitude and
longitude of point P.
SQL syntax of GQ2 is as follow:
SELECT H.name, H.address, H.contact, H.distance

FROM Hospital H

WHERE Overlap (H.shape, Buffer(‘P(x,y)’, r))=1

ORDER BY H.distance ASC;

In this geospatial query, two thematic layers, Land use land cover(LULC) and Hos-
pital, are involved. Distance calculation between the user location (x,y) and different
hospitals is possible only after the integration or overlying of these two layers. In
general, the euclidean distance is calculated between two points. But, in a real
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scenario, there may not have a path between these two points. The shortest eu-
clidean distant hospital may have no path to reach there. Whereas, the euclidean
distance-wise comparatively far hospital has good communication and reach there
quickly. So, only one or two thematic layers are not capable enough to consider all
real-life factors. Many thematic layers’ involvement is required. But, the increment
of layers also increases the computational complexities and requires more resources
and energy to compute these. The query parse tree of GQ2 is presented in Fig. 6.4.

H.name, H.address,
H.contact, H.distance

Hospital H

P(x,y)

Overlap (H.shape, Buffer('P(x,y)', r))

Buffer('P(x,y)', r)

Figure 6.4: Query parse tree of GQ2

To retrieve geospatial data from multiple data sources, the essential geospatial
web services for GQ2 are as follows.

1. BufferFeatureCollection processing service is needed for ‘r’ k.m. radius buffer.

2. IntersectionFeatureCollection processing service is needed for overlapping of
point P(x,y) and hospital layer.

3. getMap service displays the result of GQ2 on a map.

6.4 Latency and Power Consumption of user device dur-

ing health status detection

In the proposed framework, it is observed that the sensor nodes do the data collection,
and the accumulation is done inside the smartphone, which then forwards the data
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to the fog device. In case of abnormal health conditions, the fog device forwards
the data to the cloud. Further data analysis is performed inside the cloud, and
notification is sent in case of an emergency. Here, to calculate the latency and power
consumption of the user’s smartphone in this entire process, two scenarios are
considered: indoor and outdoor. In case of the indoor region, either small cell cloud
enhanced enodeB (SCceNB), which is a small cell base station equipped with storage
and computational resources (if the user is registered under a cellular network), or
the switch, router working as fog device (if the user is connected with Wi-Fi) is
used for connecting the smartphone with the network. In the case of the outdoor
region, the user is usually connected with the network through the Road side unit
(RSU). Now, for these two scenarios, the latency and power consumption of the user
device during the entire process of health status detection will be determined. The
parameters used in latency and power consumption calculations are defined in Table
6.2.

6.4.1 Latency in case of indoor region

The latency in data collection by the sensor nodes is given as,

Lcs = max((Ds1/Ss1), (Ds2/Ss2), .., (DsNs
/SsNs

)) (6.2)

The latency in sending data from sensor nodes to smart phone is given as,

Lsm = max(((Ds1/Rsm) · (1 + Fs)), ((Ds2/Rsm) · (1 + Fs)), .., ((DsNs
/Rsm) · (1 + Fs))) (6.3)

As there are multiple sensor nodes, the maximum latency is considered. The latency
in data accumulation inside the smart phone is given as,

Lac = (Dm/Sm) (6.4)

The latency in sending data from smart phone to SCceNB/ fog device is given as,

Lm f i = (Dm/Rm f ) · (1 + Fmi) (6.5)

The latency in data processing inside the fog device/ SCceNB is given as,

L f pi = (Dm/S f i) (6.6)
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Table 6.2: Parameters used in latency and power calculation

Parameter Definition
Dsj Data amount collected by sensor j
Dm Data amount accumulated inside the smart phone

and transmitted to the fog device
Dc Data amount transmitted by the fog device

after processing to the cloud through Gateway
Fs Link failure rate from sensor to smart phone

Fmi Link failure rate from smart phone to SCceNB/ fog device
Fmo Link failure rate from smart phone to RSU
F f i Link failure rate from SCceNB/ fog device to cloud
F f o Link failure rate from RSU to cloud
Lqpi Latency in processing query if the device is at indoor region
Lqpo Latency in processing query if the device is at outdoor region
Ns Number of sensor nodes collecting

health, movement, environmental data
Pt Power consumption of the smart phone per unit time

in data transmission mode
Pr Power consumption of the smart phone per unit time

in data reception mode
Pa Power consumption of the smart phone per unit time

during data accumulation
Pi Power consumption of the smart phone per unit time

in idle mode
Rsm Data amount transmitted per unit time

from sensor node to smart phone
Rm f Data amount transmitted per unit time

from smart phone to SCceNB/ fog device/ RSU
R f c Data amount transmitted per unit time

from fog device/ SCceNB/ RSU to cloud through Gateway
Ssj Data collection speed of sensor node j
Sm Data accumulation speed of smart phone
S f i Data processing speed of fog device/ SCceNB
S f o Data processing speed of RSU
Sc Data processing speed of cloud
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The latency in sending data from SCceNB/ fog device to the cloud through Gateway
is given as,

L f ci = (Dc/R f c) · (1 + F f i) (6.7)

The latency in data analysis inside the cloud is given as,

Lcp = (Dc/Sc) (6.8)

Therefore the total latency for health status detection while the user is at indoor
region is given as,

Ltoti = Lcs + Lsm + Lac + Lm f i + L f pi + L f ci + Lcp + Lqpi (6.9)

6.4.2 Latency in case of outdoor region

The latency in data collection by the sensor nodes is determined using equation
(6.2). The latency in sending data from sensor nodes to a smartphone is determined
using equation (6.3). The latency in data accumulation inside the smartphone is
determined using equation (6.4). The latency in sending data from the smartphone
to RSU is given as,

Lm f o = (Dm/Rm f ) · (1 + Fmo) (6.10)

The latency in data processing inside the RSU is given as,

L f po = (Dm/S f o) (6.11)

The latency in sending data from RSU to the cloud through Gateway is given as,

L f co = (Dc/R f c) · (1 + F f o) (6.12)

The latency in data analysis inside the cloud is determined using equation (6.8). The
total latency for health status detection while the user is at outdoor region is given
as,

Ltoto = Lcs + Lsm + Lac + Lm f o + L f po + L f co + Lcp + Lqpo (6.13)
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6.4.3 Power consumption of user device in case of indoor region

The power consumption of the smartphone, i.e., user device while data collection
take place by sensor nodes is given as,

Pcs = Pi ·Lcs (6.14)

The power consumption of the user device while receiving data from sensor nodes
is given as,

Psm = Pr ·Lsm (6.15)

The power consumption of the user device during data accumulation is given as,

Pac = Pa ·Lac (6.16)

The power consumption of the user device while transmitting data to the SCceNB/

fog device is given as,
Pm f i = Pt ·Lm f i (6.17)

The power consumption of the user device while data processing takes place inside
the SCceNB/ fog device is given as,

P f pi = Pi ·L f pi (6.18)

The power consumption of the user device while fog device/ SCceNB transmits data
to the cloud through the Gateway given as,

P f ci = Pi ·L f ci (6.19)

The power consumption of the user device while data analysis takes place inside the
cloud is given as,

Pcp = Pi ·Lcp (6.20)

The total power consumption of the user device during the entire process of health
status detection while the user is at indoor region is therefore given as,

Ptoti = Pcs + Psm + Pac + Pm f i + P f pi + P f ci + Pcp ++(Lqpi ·Pi) (6.21)
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6.4.4 Power consumption of user device in case of outdoor region

The power consumption of the smartphone, i.e., user device while data collection
takes place by sensor nodes, is determined using equation (6.14). The power con-
sumption of the user device while receiving data from sensor nodes is determined
using equation (6.15). The power consumption of the user device during data accu-
mulation is determined using equation (6.16). The power consumption of the user
device while transmitting data to the RSU is given as,

Pm f o = Pt ·Lm f o (6.22)

The power consumption of the user device while data processing takes place inside
the RSU is given as,

P f po = Pi ·L f po (6.23)

The power consumption of the user device while RSU transmits data to the cloud
through the Gateway given as,

P f co = Pi ·L f co (6.24)

The power consumption of the user device, while data analysis takes place inside
the cloud, is determined using equation (6.20). The total power consumption of the
user device during the entire process of health status detection, while the user is at
the outdoor region, is therefore given as,

Ptoto = Pcs + Psm + Pac + Pm f o + P f po + P f co + Pcp + (Lqpo ·Pi) (6.25)

The latency and power consumption of the user device, i.e., smartphone during the
entire process, will be compared with the cloud-only framework in the next section.
In that case, the smartphone will send the data to the cloud through the intermediate
nodes like a base station, switch, router, gateway, but the intermediate nodes will not
perform data processing. The entire data processing is performed inside the cloud
servers for detecting the health status. This scenario will be compared with the pro-
posed framework in the next section concerning the latency and power consumption
of a user device. Here, it has to be noted that in the latency and power calculation
model, the latency in path prediction and alert message sending to the smartphone
has not been considered. The total latency in path prediction, alert message, and
path information transmission to the smartphone is given as:
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For indoor region:

Lpathalin = ((Dal + Dpath)/Rc f ) · (1 + Fc f ) + ((Dal + Dpath)/R f m) · (1 + F f m) (6.26)

For outdoor region:

Lpathalout = ((Dal + Dpath)/Rcr) · (1 + Fcr) + ((Dal + Dpath)/Rrm) · (1 + Frm) (6.27)

The power consumption of the user device during this period will be:
For indoor region:

Ppathalin = (((Dal + Dpath)/Rc f ) · (1 + Fc f )) ·Pi + (((Dal + Dpath)/R f m) · (1 + F f m)) ·Pr (6.28)

For outdoor region:

Ppathalout = (((Dal + Dpath)/Rcr) · (1 + Fcr)) ·Pi + (((Dal + Dpath)/Rrm) · (1 + Frm)) ·Pr (6.29)

where Dal, Dpath are the data amount transmitted for alert message and path infor-
mation respectively, Rcr, Rrm, Rc f , R f m are the data amount transmitted per unit time
from cloud to RSU, RSU to user device, cloud to SCceNB/ fog device, SCceNB/ fog
device to user device respectively, Fcr, Frm, Fc f , F f m are the link failure rate from
cloud to RSU, RSU to user device, cloud to SCceNB/ fog device, SCceNB/ fog device
to user device respectively.
In that case the total latency for indoor region will be (Ltoti +Lpathalin) and for outdoor
region the total latency will be (Ltoto + Lpathalout). In that case, the total power con-
sumption of the user device for the indoor user will be (Ptoti + Ppathalin), and for the
outdoor user, the total power consumption of the user device will be (Ptoto +Ppathalout).

6.5 Performance Evaluation

In this section, we illustrate the efficacy of our system by developing a test-bed as
well as using a simulation toolkit.

6.5.1 Experimental Test-bed

We have developed an experimental test-bed for evaluating the efficacy of the pro-
posed system. We have used the compute engine and app engine of Google Cloud
Platform (GCP) to carry out the spatio-temporal data analysis. In the test-bed, we
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have used Raspberry Pi 3 as the fog device. We have designed the android applica-
tion using Android Studio 4.1 with Firebase database support. It is used to collect VGI
data and personalized health data from the users. In Fig.6.5 (a), the user is asked
to select the option between VGI and personalized health data. The personalized
health data refers to the information collected from the BAN. When the user selects
the personalized health data option, the BAN sensors are synced, and information
is logged. On the other side, if the user selects the VGI option, then the next page of
the app opens (as illustrated in Fig.6.5(b)). Here, the user is asked to select the type
of event (such as accident or water contamination, etc.) he/she wants to log. In our
case study, we have provided a list of event-types, where the user may select one or
more than one. Also, the user can add any other events not listed in the selection
menu. Next, the user logs the severity of the event on a scale (0,5) and provides the
location of the event occurrence.

As soon as the user submits the information, the data is sent to the cloud server.
The app can also collect the contextual data (location, acceleration, proximity, tem-
perature, and light sensor data) from the smartphone’s in-built sensors using the
Android sensor framework. The application can also communicate with wearable de-
vices such as smart-watch (Fitbit), body temperature measuring module, and SPO2
tracking module. In the Raspberry Pi 3, we have installed the Eddystone Bluetooth
Beacon, for sending data periodically. For evaluating the spatio-temporal analysis,
we have implemented the methods in GCP and QGIS framework. For this pre-
diction, we have considered a region, Bankura district of West Bengal, India. The
experimental and simulation results are discussed in subsequent sections of chapter.

6.5.2 Mobility analysis

In this section, we evaluate our proposed framework with five baseline methods
to demonstrate the system’s efficacy in terms of accuracy and delay of extracting
path in the time of exigency. Here, we have used VM with 4vCPU, 15GBmemory
of Google Cloud Platform (GCP), and TensorFlow platform for implementing the
proposed path finding algorithm, and obtaining the results.

To illustrate the efficacy of the proposed method, we have designed and executed
a large set of experiments on mobility datasets and road-network. We consider a
region of 10.8km2 with 16×103 nodes in the underlying road network. We simulated
several scenarios where varied segments in the study-region become the victim (or
affected) region, and un-reachable. Our framework finds out the path when these
scenarios occur. Fig. 6.6 represents the precision metric of the path finding module.
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It is observed that our method achieves 0.98−0.90 precision value with 10×102 and
50×102 edges in the road-graph, respectively. The significance of this result is that
with a large number of edges, our framework is capable to efficiently extract the
path to reach the destination avoiding the blockage or affected regions.

Figure 6.5: Frontend of RESCUE android application: (a) Home page of the android
app; (b) Data collection page of the app.

Figure 6.6: Precision value of path-finding algorithm

Fig. 6.7 illustrates the runtime of the path-finding algorithm compared to the
baseline methods. It is observed that with more numbers of edges, our framework,
significantly outperforms others. It shows high accuracy, precision as well as less
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execution time compared to other existing approaches. Table 6.3 summarizes the
experimental results compared with baseline methods. The accuracy value is mea-
sured by the extraction of the most optimal path in the region. Stability represents
the robustness of the system. We have measured both the stability and accuracy
metrics by simulating 10 simulated scenarios and report the average results for all
baselines and RESCUE framework. The learning cost of the model estimates the time
to learn the parameters of the models using the training dataset. Here, the area of
the study region has been considered as the input cardinality of the model. The
learning cost is categorized into three categories concerning model training time:
Low (6-12mins), Medium (13-20mins), and High (above 20mins). It is observed that
the neural network model has high learning cost. The modelling cost consists of
the data pre-processing time, data segmentation, and generating the structure, if re-
quired. The modelling cost is categorized into three categories: Low (time 0-5mins),
Medium (6-8mins), and High (above 9-15mins). Here, we have used the categorical
values, as different variations of the baseline models may provide different training
time or modelling time. Hence, we have considered a range of values. In several
aspects, RESCUE has outperformed other approaches to a significant margin. The
key reason behind this result is that our framework models the study-region in a
graph-based structure in a hierarchical manner, and computes the path effectively.

Table 6.3: Performance metrics of the proposed mobility analytics module with
baseline methods

Metric Bayesian Model LCSS Semantic Model Markov Model Neural Network Model RESCUE
Accuracy 78.1% 74.06% 79.8% 77.71% 89.48% 93.56%
Stability 35.8% 23.02% 49.86% 30.06% 85.09 % 91.87%

Learning Cost Low Medium Low Medium High Medium
Modelling Cost Medium Low Low Low High Low

6.5.3 Simulation results using iFogSim

The proposed healthcare framework has been simulated in iFogSim [144]. Here,
Eclipse IDE has been used for implementation, and JProfiler has been installed and
integrated with Eclipse IDE. The proposed healthcare framework has been created in
iFogSim, and the respective codes are written, compiled, and executed. The created
topology for the proposed healthcare framework is shown in Fig. 6.8. As observed
in Fig. 6.8, there are data sensors (collecting contextual data, mobility-related data,
blood pressure data, pulse rate data, body temperature data), and ECG monitoring
module under each edge device. There are six edge devices, which are connected to
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Figure 6.7: Comparison of runtime of path-finding algorithm

Figure 6.8: Created topology of proposed healthcare framework in iFogSim
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a fog device. The fog device is connected with the cloud. We have also created the
cloud only healthcare framework in iFogSim, and written, compiled, and executed
the corresponding codes.

Figure 6.9: Delay in execution of Fog-based topology and Cloud-only topology for
e-Healthcare

Figure 6.10: Memory usage during execution of the created topology

Four different configurations are considered, presented as follows.

• Config1:- Host storage: 1 GB, Cloud VM with CPU 3 GHz, RAM 4 GB, fog
processor 3 GHz, RAM 4 GB
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Figure 6.11: CPU load during execution of the created topology

• Config2:- Host storage: 1.5 GB, Cloud VM with CPU 3 GHz, RAM 4 GB, fog
processor 3 GHz, RAM 4 GB

• Config3:- Host storage: 2 GB, Cloud VM with CPU 3 GHz, RAM 4 GB, fog
processor 3 GHz, RAM 4 GB

• Config4:- Host storage: 2.5 GB, Cloud VM with CPU 3 GHz, RAM 4 GB, fog
processor 3 GHz, RAM 4 GB

The execution delay (in second (s)) in the case of the proposed and cloud-only
healthcare framework is monitored and compared. The results are presented in
Fig.6.9. It is noted that the RESCUE has ∼ 10%−40% less execution delay than the
cloud only framework.

During the execution of code and created topology for the proposed framework,
the JProfiler has been attached with the current Java Virtual Machine (JVM) to
monitor the memory usage and CPU load. The CPU load and memory usage
while executing the created topology and the respective codes, have been monitored
using JProfiler. The memory usage is presented in 6.10, where the used and free
memory (heap) size are shown with respect to the time of execution of the simulated
framework. The CPU load has been presented in Fig. 6.11, where the process and
system load are marked in green and blue lines, respectively.

6.5.4 Visualization of use cases using real-life data

Our experiment location is Bankura district, West Bengal, India. We take two layers
(Health centers and road network) of Bankura district. The layers are presented in
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Fig. 6.12.

Figure 6.12: Road network and health centers of Bankura district, West Bengal, India

Figure 6.13: MRI facilitate hospital

Table 6.4: MRI facilitate hospital details for GQ1

H.ID H.Latitude H.Longitude H.facility H.Time H.Price
MCH 87.290 23.157 MRI, 11:00- INR

ECG 16:00 12000

Consider a user searching for MRI facilitate hospital details in Bankura district
using geospatial query (GQ1) of section 6.3.3, where District = ‘Bankura’. So, the
query syntax for the user will be as follow:
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Figure 6.14: Locations of two users
Figure 6.15: 10 kilometers buffer area of

user locations

SELECT H.ID, H.Latitude, H.Longitude, H.facility, H.Time, H.Price

FROM Hospital H

WHERE H.facility=‘MRI’ AND District=‘Bankura’;

The details of the geospatial query(GQ1) result is presented in Table 6.4 and pic-
torially represented in Fig. 6.13. The MRI facility is only available in the Medical
College and Hospital(MCH)(87.290, 23.157).
Suppose, two users are searching hospitals using geospatial query (GQ2) of section
6.3.3, where radius ‘r’= 10 km. Two users’ locations are (86.933, 22.896) and (87.250,
23.248). So, the query syntax for User-1 and User-2 will be as follows:
SELECT H.ID, H.Latitude, H.Longitude, H.distance

FROM Hospital H

WHERE Overlap (H.shape, Buffer((86.933, 22.896), 10))=1

ORDER BY H.distance ASC;

SELECT H.ID, H.Latitude, H.Longitude, H.distance

FROM Hospital H

WHERE Overlap (H.shape, Buffer((87.250, 23.248), 10))=1

ORDER BY H.distance ASC;

Users’ locations are shown in Fig. 6.14 with navy blue points. 10 kilometers of buffer
has been generated surroundings of both the users and shown in Fig. 6.15 with sky
blue circles. The details of the hospitals of each user is presented in the Table 6.5 and
Table 6.6.
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Table 6.5: Hospital details within 10 kilometer radius of user-1 (86.933, 22.896)

H.ID H.Latitude H.Longitude H.Distance (K.M.)
BPHC12 86.930 22.808 0.6237

HC06 86.928 22.977 0.7392
HC10 86.906 22.931 3.0229
PC16 86.904 22.872 3.2422
PC17 86.902 22.933 3.4695
SH2 86.968 22.929 3.9140
PC13 86.976 22.872 4.8048
RH09 86.979 22.826 5.1545
PHC4 86.854 22.874 8.8245

Table 6.6: Hospital details within 10 kilometer radius of user-2 (87.250, 23.248)

H.ID H.Latitude H.Longitude H.Distance (K.M.)
RH21 87.252 23.295 0.3365
PC31 87.246 23.207 0.4979
PC24 87.244 23.148 0.8584
MCH 87.290 23.157 4.4938
PC35 87.206 23.308 4.9250
RH25 87.298 23.248 5.3611
HC 87.200 23.242 5.5846

PHC25 87.189 23.181 6.8228
PC33 87.311 23.306 6.8201

BPHC28 87.316 23.202 7.3756
PC40 87.163 23.270 9.7178

The terms used in the tables are as follows: HC- Health Center, PHC- Primary
Healthcare Center, BPHC- Block level Primary Healthcare Center, MCH- Medical
College and Hospital, RH- Rural Hospital, PC- Private Healthcare Center, SH- Sub-
divisional Hospital.

6.5.5 Theoretical Analysis

In section 6.4, the theoretical model of calculating latency and power consumption
of the user device has been presented. In this section, we will calculate the same
to compare with the cloud-only scenario. The integrated health, movement, and
environmental data amount are considered 2.2-3 GB. The data transmission speed
of the network is considered as 100-200 Mbps.

Figs. 6.16 and 6.17 present the latency for detecting health status in case of the
indoor and outdoor scenarios, respectively, while using the proposed method and
cloud-only scheme. The latency for detecting health status for indoor and outdoor
users in the case of a cloud-only scheme [234] is determined to compare with the
proposed method. Figs. 6.18 and 6.19 present the power consumption of the user
device, i.e., smartphone in case of the indoor and outdoor scenarios during the
health status detection period respectively while using the proposed method and
cloud-only scheme. The power consumption of the user device during the health
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Figure 6.16: Health status detection
latency (indoor scenario)

Figure 6.17: Health status detection
latency (outdoor scenario)

status detection period in the case of a cloud-only scheme [234] is determined for
indoor and outdoor users to compare with the proposed method.

Figure 6.18: Power consumption of user
device during health status detection

period (indoor scenario)

Figure 6.19: Power consumption of user
device during health status detection

period (outdoor scenario)

From Figs. 6.16 and 6.17, it is observed that the proposed method reduces latency
up to 55% for the indoor user and up to 51% for the outdoor user than the cloud-
only scheme. From Figs. 6.18 and 6.19, it is observed that the proposed method
reduces power consumption of the user device up to 81% for the indoor user and
up to 80% for the outdoor user than the cloud only scheme. In the cloud-only
paradigm, data processing, and health status detection take place inside the cloud.
But in the proposed framework, the SCceNB/fog device/RSU processes the data to
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detect the health status before forwarding to the cloud. Thus the data transmission
latency is reduced, which subsequently reduces the power consumption of the user
device. As a result, the proposed framework provides faster and green health service
provisioning to the user.

6.6 Summary

This chapter presents an end-to-end framework, namely RESCUE, which is capable
of assisting users in the time of emergency (say, natural disaster) by predicting path
in the post-disaster scenario when several roads are non-reachable. The framework’s
major working modules are: accumulating and refining crowd-sourcing data and
extracting the correlations among the event and the spatial location. RESCUE collects
the BAN data consisting of health-parameters’ data of users and other environmental
parameters’ data from IoT devices. It analyses the data in the fog nodes, and in case
any abnormality is found, the data is sent to the cloud server immediately. Further,
RESCUE is conducive to predict routes to users in the time of exigency, avoiding the
affected regions in minimal commute time. While the IoT paradigm enables global
connectivity worldwide, communicating with billions of interconnected devices,
the whole process’s energy consumption is rising steeply. In this regard, Green IoT
computing has a pivotal role in reducing environmental problems, and subsequently
creating a sustainable environment by emphasizing energy-efficient technologies.
It reduces the greenhouse gas emission and provides a smarter and greener view of
varied applications. To this end, the major aim of this chapter is also to reduce
energy consumption and contributing towards sustainable urban development. It
may be noted that the mobility analysis module is also capable of predicting routes
from source to destination, which requires less fuel consumption. The autoencoder
process of the mobility analysis module helps in facilitating this feature as well. In
all sense, RESCUE provides a green healthcare and user assistance framework in the
time of exigency.
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Chapter 7

Conclusion and Future Directions

This chapter concludes the thesis. A summary of the key contributions of the thesis discusses
here. Future scopes of the thesis are discussed at the end of this chapter.

7.1 Summary of Contributions

Chapter 1 discussed the basics of various computing paradigms and different kinds
of geospatial queries. The objective and motivation behind this thesis works are also
elaborated in this chapter. The major contributions of this thesis are pointed here.

Chapter 2 investigated existing works in the geospatial cloud, fog, and edge
computing paradigms and generated a taxonomy on it. Different kinds of geospatial
applications on computing domains are presented in a table.

Chapter 3 presented a geospatial query resolution framework using an orchestra-
tion engine. The operations like filtration, buffer creation, intersection, and display
of data are realized, helping in the efficient resolution of spatial queries. The orches-
tration engine abstracts the user query done by feature service, processing service,
and map service, respectively. All the available services are published with metadata
in the service catalog. The sequence of services is automated by the orchestration
engine getting information from the catalog service. According to the need for
geospatial queries, synchronizing such services and executing several virtual ma-
chines is challenging. The parallel execution of some services in the cloud may
decrease the spatial query execution time.

Chapter 4 investigated the accuracy of geospatial query execution time esti-
mation and computational resources. It helps in query scheduling based on the
user-deadline and budget of the query processing. Furthermore, we can monitor
the queries’ progress, and for bulk query processing, particular queries taking an
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unreasonably long time can be identified and eliminated apriori. Also, it helps in
system sizing or obtaining the approximate estimation of the total budget or re-
source utilization. Our proposed framework, LYRIC, has three main components.
First, it models the cost of an incoming spatio-temporal query based on the known
PostgreSQL’s cost model. However, instead of the PostgreSQL default parameters,
LYRIC extracts the accurate CPU and disk-access cost and effectively predicts the
query execution time. Next, it identifies several spatio-temporal services required
to complete the query processing task and further decomposes it into a query tree.
LYRIC is capable of considering the user-defined timeline and given budget for each
query. The framework utilizes the concept of cooperative game theory to obtain the
trade-off between more resources and budget or cost. LYRIC is deployed in GCP,
and real-life experiments with mobility datasets and simulations yield encouraging
results.

Chapter 5 proposed a fog computing-based architecture, namely Spatio-Fog, for
geospatial query resolution. The fog devices of different regions contain geospatial
data of the respective regions. When a query is received from a mobile device
regarding the current region, the fog device resolves the query after analysing the
data and responds to the mobile device. Otherwise, if the query is regarding other
regions, the fog device responds using the corresponding region’s cloud servers or
fog device. Theoretical analysis shows that the proposed framework reduces the
power consumption and delay by approximately 43-47% and 47-83% respectively
than the existing system. The experimental results illustrate that the proposed
framework reduces the power consumption and delay by 30-60% approximately
than the existing query resolution system. Thus, we conclude that the proposed
framework is a green and delay aware framework.

Chapter 6 presented an end-to-end framework, namely RESCUE, which is capa-
ble of assisting users in the time of emergency (say, natural disaster) by predicting
path in the post-disaster scenario when several roads are non-reachable. The frame-
work’s major working modules are: accumulating and refining crowd-sourcing data
and extracting the correlations among the event and the spatial location. RESCUE
collects the BAN data consisting of health-parameters’ data of users and other envi-
ronmental parameters’ data from IoT devices. It analyses the data in the fog nodes,
and in case any abnormality is found, the data is sent to the cloud server immedi-
ately. Further, RESCUE is conducive to predict routes to users in the time of exigency,
avoiding the affected regions in minimal commute time. While the IoT paradigm en-
ables global connectivity worldwide, communicating with billions of interconnected
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devices, the whole process’s energy consumption is rising steeply. In this regard,
Green IoT computing has a pivotal role in reducing environmental problems and
subsequently creating a sustainable environment by emphasizing energy-efficient
technologies. It reduces the greenhouse gas emission and provides a smarter and
greener view of varied applications. To this end, this chapter’s major aim is to re-
duce energy consumption and contribute towards sustainable urban development.
It may be noted that the mobility analysis module is also capable of predicting routes
from source to destination, which requires less fuel consumption. The autoencoder
process of the mobility analysis module helps in facilitating this feature as well. In
all sense, RESCUE provides a green healthcare and user assistance framework in the
time of exigency.

7.2 Future Directions

In this thesis, we have addressed several challenges for geospatial query processing
in cloud-fog-edge computing environments. However, there are several other issues
in this domain are remain unresolved. These unresolved issues are pointed towards
the future scope of this area. In this section, we are discussed such future scopes.

• Multi-cloud environment: Several cloud service providers take part in a
multi-cloud environment. Each cloud provider facilitates different geospa-
tial services. The user can select geospatial services and cloud resources based
on their geospatial service requirements and budget. Game theory can be a
promising approach for such selection procedures.

• Use of dew computing: Network connectivity becomes a problem if the mo-
bile client is present at a remote location. Hence, the client needs service with
minimal network facility, even in offline mode. If such a mobile user has a
geospatial query, then to resolve it, dew computing can be a solution. Thus,
creating, updating, and access to raw spatial data set for resolving the geospa-
tial query for the devices connected in offline mode, use of dew computing
will be a promising future research scope in this domain.

• Hierarchical distribution: The geospatial query processing framework further
extends in the hierarchical distributed platform, such as MapReduce, where
specific geospatial query processing tasks will be segmented into ”map” and
”reduce” tasks maintaining the spatial proximity rules.
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• Advanced energy preserving model: Intermediate devices are not always
used while participating in geospatial query processing. Dynamic voltage and
frequency scaling (DVFS) can be a promising model to maximize the power and
energy savings of the computing devices when they are not required. It helps
to reduce the overall energy consumption of the query processing framework.

• Advanced learning approaches: Reinforcement based learning techniques
help in geospatial query optimization. As huge computational power is re-
quired for spatio-temporal query processing, an effective reinforcement learn-
ing agent will optimize spatial-join and search strategies.

• Security aspects: Geospatial data security is one of the major concerns in this
domain. Data can tamper between two intermediate fog and edge nodes while
data transferring happens for query processing. Blockchain technology helps
in this regard for its distributed nature. Geospatial data will generate from
the secured devices, and generated data will be treated as transactions on the
blockchain. Data will validate with a smart contract. Although any geospatial
data tamper during the transmission, it can easily be identified through this
modern technology.

• Geospatial services as FaaS: A more obvious technology to use for implemen-
tation of the distributed geospatial services would be Function-as-a-Service
(FaaS). The healthcare service can be provisioned as a FaaS layer, where the
spatio-temporal data analytics or machine learning models can be executed in-
dependently to deploy different functionalities to individual user. Also, FaaS
layer can determine the geospatial service cost.

7.3 Final Remarks

Various researches are going on different computing domains. This thesis inves-
tigated how the geospatial queries are performed in Cloud, Fog, Edge computing
environments. We have also measured the energy and delay consumption in all
computing environments. The proposed layered architectures, algorithms, math-
ematical models optimizes the computing resources considering user budget and
query deadline. The research outcome of this thesis will inspire future scholars to
work in interdisciplinary domains like GIS and Computer Science.
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“Estimating the environmental impact of agriculture by means of geospa-
tial and big data analysis: The case of catalonia,” in From Science to Society.
Springer, 2018, pp. 39–48.

[114] I. A. Jalil, A. R. A. Rasam, N. A. Adnan, N. M. Saraf, and A. N. Idris, “Geospatial
network analysis for healthcare facilities accessibility in semi-urban areas,” in
2018 IEEE 14th International Colloquium on Signal Processing & Its Applications
(CSPA). IEEE, 2018, pp. 255–260.

[115] A. Kamilaris and A. Pitsillides, “A web-based tourist guide mobile applica-
tion,” in Proceedings of the International Conference on Sustainability, Technology
and Education (STE), Kuala Lumpur, Malaysia, vol. 29, 2013.

[116] S. Ghosh, A. Chowdhury, and S. K. Ghosh, “A machine learning approach to
find the optimal routes through analysis of gps traces of mobile city traffic,” in
Recent Findings in Intelligent Computing Techniques. Springer, 2018, pp. 59–67.

[117] S. Ghosh and S. K. Ghosh, “Thump: Semantic analysis on trajectory traces
to explore human movement pattern,” in Proceedings of the 25th International
Conference Companion on World Wide Web, 2016, pp. 35–36.

[118] M. Van Setten, S. Pokraev, and J. Koolwaaij, “Context-aware recommenda-
tions in the mobile tourist application compass,” in International Conference
on Adaptive Hypermedia and Adaptive Web-Based Systems. Springer, 2004, pp.
235–244.

[119] J. S. Brownstein, C. C. Freifeld, B. Y. Reis, and K. D. Mandl, “Surveillance
sans frontieres: Internet-based emerging infectious disease intelligence and
the healthmap project,” PLoS medicine, vol. 5, no. 7, 2008.

[120] O. Chakraborty, A. Das, A. Dasgupta, P. Mitra, S. K. Ghosh, and T. Mazumder,
“A multi-objective framework for analysis of road network vulnerability for
relief facility location during flood hazards: A case study of relief location
analysis in bankura district, india,” Transactions in GIS, vol. 22, no. 5, pp.
1064–1082, 2018.

154



BIBLIOGRAPHY

[121] A. Dasgupta, S. K. Ghosh, and P. Mitra, “A technique for assessing the quality
of volunteered geographic information for disaster decision making,” in In-
ternational Conference on Computational Science and Its Applications. Springer,
2018, pp. 589–597.

[122] S. Pal and S. K. Ghosh, “Rule based end-to-end learning framework for urban
growth prediction,” arXiv preprint arXiv:1711.10801, 2017.

[123] V. Miz and V. Hahanov, “Smart traffic light in terms of the cognitive road traffic
management system (ctms) based on the internet of things,” in Proceedings of
IEEE East-West Design & Test Symposium (EWDTS 2014). IEEE, 2014, pp. 1–5.

[124] E. D. Ayele, K. Das, N. Meratnia, and P. J. Havinga, “Leveraging ble and lora
in iot network for wildlife monitoring system (wms),” in 2018 IEEE 4th World
Forum on Internet of Things (WF-IoT). IEEE, 2018, pp. 342–348.

[125] N. Cressie, Statistics for spatial data. John Wiley & Sons, 2015.

[126] S. Bhattacharjee, P. Mitra, and S. K. Ghosh, “Spatial interpolation to predict
missing attributes in gis using semantic kriging,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 52, no. 8, pp. 4771–4780, 2013.

[127] A. C. Clements, H. L. Reid, G. C. Kelly, and S. I. Hay, “Further shrinking the
malaria map: how can geospatial science help to achieve malaria elimination?”
The Lancet infectious diseases, vol. 13, no. 8, pp. 709–718, 2013.

[128] K. Forsythe, K. Paudel, and C. Marvin, “Geospatial analysis of zinc contami-
nation in lake ontario sediments,” Journal of Environmental Informatics, vol. 16,
no. 1, pp. 1–10, 2010.

[129] E.-S. E. Omran, “A proposed model to assess and map irrigation water well
suitability using geospatial analysis,” Water, vol. 4, no. 3, pp. 545–567, 2012.

[130] F. Liu, Y. Guo, Z. Cai, N. Xiao, and Z. Zhao, “Edge-enabled disaster rescue:
a case study of searching for missing people,” ACM Transactions on Intelligent
Systems and Technology (TIST), vol. 10, no. 6, pp. 1–21, 2019.

[131] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A fog-
enabled real-time traffic management system,” IEEE Transactions on Industrial
Informatics, vol. 14, no. 10, pp. 4568–4578, 2018.

155



BIBLIOGRAPHY

[132] A. Mukherjee, S. Ghosh, A. Behere, S. K. Ghosh, and R. Buyya, “Internet of
health things (ioht) for personalized health care using integrated edge-fog-
cloud network,” Journal of Ambient Intelligence and Humanized Computing, 2020.

[133] X. Zhou, C. Xu, and B. Kimmons, “Detecting tourism destinations using scal-
able geospatial analysis based on cloud computing platform,” Computers, En-
vironment and Urban Systems, vol. 54, pp. 144–153, 2015.

[134] R. K. Barik, R. K. Lenka, N. Simha, H. Dubey, and K. Mankodiya, “Fog com-
puting based sdi framework for mineral resources information infrastructure
management in india,” arXiv preprint arXiv:1712.09282, 2017.

[135] M. P. Armstrong, S. Wang, and Z. Zhang, “The internet of things and fast
data streams: prospects for geospatial data science in emerging information
ecosystems,” Cartography and Geographic Information Science, vol. 46, no. 1, pp.
39–56, 2019.

[136] R. K. Barik, H. Dubey, A. B. Samaddar, R. D. Gupta, and P. K. Ray, “FogGIS:
Fog Computing for geospatial big data analytics,” in Electrical, Computer and
Electronics Engineering (UPCON), 2016 IEEE Uttar Pradesh Section International
Conference on. IEEE, 2016, pp. 613–618.

[137] X. Cao and S. Madria, “Efficient geospatial data collection in iot networks for
mobile edge computing,” in 2019 IEEE 18th International Symposium on Network
Computing and Applications (NCA). IEEE, 2019, pp. 1–10.

[138] R. Dautov, S. Distefano, D. Bruneo, F. Longo, G. Merlino, A. Puliafito, and
R. Buyya, “Metropolitan intelligent surveillance systems for urban areas by
harnessing iot and edge computing paradigms,” Software: Practice and Experi-
ence, vol. 48, no. 8, pp. 1475–1492, 2018.

[139] B. Denby and B. Lucia, “Orbital edge computing: Nanosatellite constella-
tions as a new class of computer system,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 939–954.

[140] T. Higashino, “Edge computing for cooperative real-time controls using
geospatial big data,” in Smart Sensors and Systems. Springer, 2017, pp. 441–466.

156



BIBLIOGRAPHY

[141] L. Klein, “Geospatial internet of things: Framework for fugitive methane gas
leaks monitoring,” in International Conference on GIScience Short Paper Proceed-
ings, vol. 1, no. 1, 2016.

[142] S. Liu, X. Chen, B. Qi, and L. Zherr, “Performace oriented edge computing of
geospatial information with 3d scenery,” in 2018 IEEE 3rd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC). IEEE, 2018,
pp. 853–858.

[143] W. Richardson, H. Krishnaswami, R. Vega, and M. Cervantes, “A low cost,
edge computing, all-sky imager for cloud tracking and intra-hour irradiance
forecasting,” Sustainability, vol. 9, no. 4, p. 482, 2017.

[144] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A toolkit
for modeling and simulation of resource management techniques in the inter-
net of things, edge and fog computing environments,” Software: Practice and
Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[145] R. Mahmud and R. Buyya, “Modelling and simulation of fog and edge com-
puting environments using ifogsim toolkit,” Fog and edge computing: Principles
and paradigms, pp. 1–35, 2019.

[146] S. Tuli, R. Mahmud, S. Tuli, and R. Buyya, “Fogbus: A blockchain-based
lightweight framework for edge and fog computing,” Journal of Systems and
Software, vol. 154, pp. 22–36, 2019.

[147] P. Yue, H. Zhou, J. Gong, and L. Hu, “Geoprocessing in cloud computing
platforms–a comparative analysis,” International Journal of Digital Earth, vol. 6,
no. 4, pp. 404–425, 2013.

[148] A. Dasgupta and S. Ghosh, “A framework for ubiquitous geospatial informa-
tion integration on mobile device using orchestration of geoservices,” Interna-
tional Journal Of UbiComp (IJU), vol. 1, no. 3, pp. 69–88, 2010.

[149] S. S. Walia, A. Dasgupta, and S. K. Ghosh, “Geospatial orchestration frame-
work for resolving complex user query,” in International Conference on Compu-
tational Science and Its Applications. Springer, 2011, pp. 643–651.

[150] L. Bernard and A. Wytzisk, “A web-based service architecture for distributed
spatiotemporal modeling,” in Proceedings of the 5th AGILE Conference on Geo-
graphic Information Science, vol. 2002, 2002, pp. 25–27.

157



BIBLIOGRAPHY

[151] A. Barker and R. Buyya, “Decentralised orchestration of service-oriented sci-
entific workflows.” in CLOSER, 2011, pp. 222–231.

[152] C. Peltz, “Web services orchestration and choreography,” Computer, vol. 36,
no. 10, pp. 46–52, 2003.

[153] P. Yue, P. Baumann, K. Bugbee, and L. Jiang, “Towards intelligent giservices,”
Earth Science Informatics, vol. 8, no. 3, pp. 463–481, 2015.

[154] V. Cardellini, V. Di Valerio, and F. L. Presti, “Game-theoretic resource pricing
and provisioning strategies in cloud systems,” IEEE Transactions on Services
Computing, vol. 13, no. 1, pp. 86–98, 2020.

[155] G. Yao, Q. Ren, X. Li, S. Zhao, and R. Ruiz, “A hybrid fault-tolerant scheduling
for deadline-constrained tasks in cloud systems,” IEEE Transactions on Services
Computing, 2020.

[156] R. Marcus, S. Semenova, and O. Papaemmanouil, “A learning-based service
for cost and performance management of cloud databases,” in Data Engineering
(ICDE), 2017 IEEE 33rd International Conference on. IEEE, 2017, pp. 1361–1362.

[157] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton, “Pre-
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