
Robust and Fault-Tolerant
Scheduling for Scientific Workflows
in Cloud Computing Environments

Deepak Poola Chandrashekar

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

Department of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

August 2015

Copyright c© 2015 Deepak Poola Chandrashekar

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.

Robust and Fault-Tolerant Scheduling for Scientific Workflows

in Cloud Computing Environments
Deepak Poola Chandrashekar

Supervisors: Prof. Rajkumar Buyya and Prof. Ramamohanarao Kotagiri

Abstract

CLOUD environments offer low-cost computing resources as a subscription-based

service. These resources are elastically scalable and dynamically provisioned. Fur-

thermore, new pricing models have been pioneered by cloud providers that allow users

to provision resources and to use them in an efficient manner with significant cost re-

ductions. As a result, scientific workflows are increasingly adopting cloud computing.

Scientific workflows are used to model applications of high throughput computation and

complex large scale data analysis.

However, existing works on workflow scheduling in the context of clouds are either

on deadline or cost optimization, ignoring the necessity for robustness. Cloud is not

a utopian environment. Failures are inevitable in such large complex distributed sys-

tems. It is also well studied that cloud resources experience fluctuations in the delivered

performance. Therefore, robust and fault-tolerant scheduling that handles performance

variations of cloud resources and failures in the environment is essential in the context of

clouds.

This thesis presents novel workflow scheduling heuristics that are robust against per-

formance variations and fault-tolerant towards failures. Here, we have presented and

evaluated static and just-in-time heuristics using multiple fault-tolerant techniques. We

have used different pricing models offered by the cloud providers and proposed sched-

ules that are fault-tolerant and at the same time minimize time and cost. We have also

proposed resource selection policies and bidding strategies for spot instances. The pro-

posed heuristics are constrained by either deadline and budget or both. These heuristics

are evaluated with the prominent state-of-the art workflows.

Finally, we have also developed a multi-cloud framework for the Cloudbus workflow

iii

management system, which has matured with years of research and development at the

CLOUDS Lab in the University of Melbourne. This multi-cloud framework is demon-

strated with a private and a public cloud using an astronomy workflow that creates a

mosaic of astronomic images.

In summary, this thesis provides effective fault-tolerant scheduling heuristics for

workflows on cloud computing platforms, such that performance variations and failures

can be mitigated whilst minimizing cost and time.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Deepak Poola Chandrashekar, August 2015

v

This page intentionally left blank.

Acknowledgements

”It was my luck to have a few good teachers..., men and women who came into my dark head and

lit a match.”

-Yann Martel, author, Life of Pi (Chapter 7)

PhD has been an enriching experience, which enlightened me in more than many

ways. This journey has made me more intellectual and most importantly a better human

being. This metamorphosis has occurred at the behest of many people who have walked

along me in this path. It is my duty to acknowledge every such person.

First and foremost, I offer my profoundest gratitude to my supervisor, Professor Ra-

jkumar Buyya, who awarded me the opportunity to pursue my studies in his group. I

would like to thank him for continuous guidance, support, and encouragement through-

out all rough and enjoyable moments of my PhD endeavor. Secondly, I would like to

offer my sincere gratitude to my co-supervisor, Proffessor Rao Kotagiri, whose wise ad-

vice and profound knowledge has made the contributions of this thesis more significant.

I would like to express my appreciation to Professor Christopher Andrew Leckie for

his constructive comments and suggestions on my work as the chair of PhD committee.

I am indebted to all the past and current members of the CLOUDS Laboratory, at the

University of Melbourne. I would especially like to thank Adel Nadjaran Toosi for his

generous help and advice, and more than that for being a role model, I wanted to mimic.

I further would like to thank William Voorsluys, Atefeh Khosravi, Nikolay Grozev, Yaser

Mansouri, and Chenhao Qu whose sincere friendship made my candidature life more

enjoyable. I would like to express my gratitude to Rodrigo N. Calheiros for many helpful

discussions and constructive comments, and for proof-reading this thesis. My thanks

vii

to fellow members: Anton Beloglazov, Yoganathan Sivaram, Sareh Fotouhi, Yali Zhao,

Jungmin Jay Son, Bowen Zhou, and Safiollah Heidari.

I would also like to express special thanks to my collaborators: Saurabh Garg (Uni-

versity of Tasmania, Australia), Mohsen Amini Salehi (The University of Louisiana at

Lafayette, USA) and Maria Rodriguez (University of Melbourne, Australia).

I wish to acknowledge Australian Federal Government and its funding agencies, the

University of Melbourne, Australian Research Council (ARC), and CLOUDS laboratory

for granting scholarships and travel supports that enabled me to do the research for this

thesis and attend international conferences.

On a personal note, I would like to express my sincerest thanks to my closest

friends: Arjun.B.S, Avinash Ranganath, Manjunath.R., Manu.G.S., Murali Sampath,

Poorva Agrawal, and Swati Sharma who have helped me through my tough times and

filled me with confidence and strength when I needed the most. But for them, life would

not have been this beautiful.

To my cousins in Melbourne Swamy Madike, Janaki Madike and their beautiful and

bright children Swathi and Shakthi for making me feel this city as my second home.

Without their moral, financial, emotional support this PhD would not be complete. I

am eternally indebted for the love and affection they have showered on me through this

journey. The amazing Indian food and the numerous memorable moments will always

stay fresh in my heart.

To my father Chandrashekar.P.N., who has been the strongest pillar of my growth.

Whose confidence in me was more than I had in myself and whose spiritual guidance

has helped me achieve this feat.

Lastly and most importantly, I thank my precious wife Raksha, in her eyes I find

strength and in her smile my stress dissolves. I cannot thank her enough for bearing with

me through emotional ups and downs during my PhD, and for standing beside me with

unwavering love.

Deepak Poola Chandrashekar

August 2015

viii

ix

This page intentionally left blank.

To my mother, who created in me an eternal hunger to learn.

xi

ಕೆಲವಂ ಬಲಲವರಂದ ಕಲತು
ಕೆಲವಂ ಮಳ್ಪವರಂದ ಕಂಡತ ಮತ್ೆು

ಹಲವಂ ತ್ಾನೆ ಸ್ವತಃಮಾಡಿ ತಿಳಿ ಎಂದ ಸ್ವವಜ್ಞ II

Transliteration

Kelavam ballavarindha kaltu

Kelavam malpavarindha kandu matthe

Halavam thaane swathaha maadi thilli endha sarvagna II

Summary

Sarvajña is an eminent Indian poet and philosopher from the state of Karnataka, believed to

be from the 16th century. The word "Sarvajña" in Sanskrit literally means "the one who

knows everything". He is famous for his three-line poems called vachanas like the one above.

In this vachana, Sarvajña points outs that we cannot learn everything in this world by

ourselves. He advocates the best way to learn is to listen to those who know, watch the

actions of those who do and then do the rest by yourself and learn. This in many ways, I

believe, is the essence of research.

xii

Contents

1 Introduction 1
1.1 Introduction to Cloud Computing . 3
1.2 Research Challenges and Objectives . 6
1.3 Methodology . 8

1.3.1 Spot Market Traces . 9
1.3.2 Failure Traces . 9
1.3.3 Workflow Applications . 9
1.3.4 Case Study Application . 10

1.4 Contributions . 10
1.5 Thesis Organization . 12

2 A Taxonomy and Survey 15
2.1 Introduction . 15
2.2 Background . 17

2.2.1 Workflow Management Systems . 17
2.2.2 Workflow Scheduling . 18

2.3 Introduction to Fault-Tolerance . 20
2.3.1 Necessity for Fault-Tolerance in Distributed Systems 22

2.4 Taxonomy of Faults . 22
2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 24

2.5.1 Replication . 24
2.5.2 Resubmission . 29
2.5.3 Checkpointing . 32
2.5.4 Provenance . 37
2.5.5 Rescue Workflow . 37
2.5.6 User-Defined Exception Handling 38
2.5.7 Alternate Task . 38
2.5.8 Failure Masking . 38
2.5.9 Slack Time . 39
2.5.10 Trust-Based Scheduling Algorithms 39

2.6 Modeling of Failures in Workflow Management Systems 41
2.7 Metrics Used to Quantify Fault-Tolerance 42
2.8 Survey of Workflow Management Systems and Frameworks 44

2.8.1 Askalon . 44
2.8.2 Pegasus . 46

xiii

2.8.3 Triana . 48
2.8.4 UNICORE 6 . 49
2.8.5 Kepler . 49
2.8.6 Cloudbus Workflow Management System 50
2.8.7 Taverna . 50
2.8.8 The e-Science Central (e-SC) . 51
2.8.9 SwinDeW-C . 51
2.8.10 Big Data Frameworks: MapReduce, Hadoop, and Spark 52
2.8.11 Other Workflow Management Systems 54

2.9 Tools and Support Systems . 54
2.9.1 Workflow Description Languages 54
2.9.2 Data Management Tools . 55
2.9.3 Security and Fault-Tolerance Management Tools 56
2.9.4 Cloud Development Tools . 56
2.9.5 Support Systems . 57

2.10 Summary . 57

3 Robust Scheduling with Deadline and Budget Constraints 59
3.1 Introduction . 59
3.2 Related Work . 61
3.3 System Model . 62
3.4 Proposed Approach . 64

3.4.1 Proposed Policies . 67
3.4.2 Fault-Tolerant Strategy . 69
3.4.3 Time Complexity . 69

3.5 Performance Evaluation . 69
3.5.1 Simulation Setup . 69
3.5.2 Analysis and Results . 71

3.6 Summary . 76

4 Fault-Tolerant Scheduling Using Spot Instances 79
4.1 Introduction . 79
4.2 Related Work . 81
4.3 Background . 82
4.4 System Model . 84
4.5 Proposed Approach . 86

4.5.1 Scheduling Algorithm . 86
4.5.2 Bidding Strategies . 89

4.6 Performance Evaluation . 91
4.6.1 Simulation Setup . 91
4.6.2 Analysis and Results . 92

4.7 Summary . 95

xiv

5 Reliable Workflow Execution Using Replication and Spot Instances 97
5.1 Introduction . 97
5.2 Related Work . 99
5.3 Background . 101
5.4 Proposed Approaches . 103

5.4.1 Heuristics . 104
5.4.2 Time Complexity . 111

5.5 Performance Evaluation . 111
5.5.1 Simulation Setup . 111
5.5.2 Results . 113

5.6 Summary . 117

6 Framework for Reliable Workflow Execution on Multiple Clouds 119
6.1 Introduction . 119
6.2 Cloudbus Workflow Management System Architecture 121
6.3 Multi-Cloud Framework for Cloudbus Workflow Engine 125
6.4 Apache Jclouds: Supporting Multi-Cloud Architecture 126
6.5 Apache Jclouds and Cloudbus Workflow Management Systems 128

6.5.1 Multi-Cloud Resource Provisioning Heuristic 130
6.6 Testbed Setup . 132

6.6.1 Montage: A Case Study of Astronomy Workflow 132
6.6.2 Resource Characteristics . 135
6.6.3 Environment . 135
6.6.4 Failure Model . 136

6.7 Results . 136
6.8 Related Work . 138
6.9 Summary . 139

7 Conclusions and Future Directions 141
7.1 Summary of Contributions . 141
7.2 Future Research Directions . 143

7.2.1 Cloud Failure Characteristics . 144
7.2.2 Metrics for Fault-Tolerance . 144
7.2.3 Cloud Pricing Models . 144
7.2.4 Multiple Tasks on a Single Instance 145
7.2.5 Workflow Specific Scheduling . 145
7.2.6 Multi-Cloud Challenges . 146
7.2.7 Energy-Efficient Scheduling . 146

7.3 Final Remarks . 146

xv

This page intentionally left blank.

List of Figures

1.1 A sample workflow, depicting tasks, data, and their dependencies. 2
1.2 Vision of cloud computing by John McCarthy. 3
1.3 Research challenges in scheduling scientific workflows on cloud environ-

ments . 6
1.4 Thesis organization. 12

2.1 Architecture of cloud workflow management system. Portal, enactment
engine, and resource broker form the core of the WFMS performing vi-
tal operations, such as designing, modeling, and resource allocation. To
achieve these operations, the workflow management services (left column)
provide security, monitoring, database, and provenance management ser-
vices. In addition, the Directory and Catalogue services (right column)
provide catalog and meta-data management for the workflow execution. 17

2.2 Components of workflow scheduling. 19
2.3 Examples of the state-of-the-art workflows [74]: (a) Epigenomics: DNA

sequence data obtained from the genetic analysis process is split into sev-
eral chunks and are used to map the epigenetic state of human cells. (b)
LIGO: detects gravitational waves of cosmic origin by observing stars and
black holes. (c) Montage: creates a mosaic of the sky from several input
images. (d) CyberShake: uses the Probabilistic Seismic Hazard Analy-
sis (PSHA) technique to characterize earth-quake hazards in a region. (e)
SIPHT: searches for small un-translated RNAs encoding genes for all of the
bacterial replicas in the NCBI database. 21

2.4 Elements through which faults can be characterized. 23
2.5 Faults: views and their classifications. 23
2.6 Taxonomy of workflow scheduling techniques to provide fault-tolerance. 25
2.7 Different aspects of task duplication technique in providing fault-tolerance. 26
2.8 Taxonomy of resubmission fault-tolerant technique. 30
2.9 Different approaches used in resubmission algorithms. 31
2.10 Classification of resubmission mechanisms. 31
2.11 Taxonomy of checkpointing mechanism. 32
2.12 Workflow-level checkpointing. 35
2.13 Checkpointing schemes. 35
2.14 Forms of provenance. 37
2.15 Forms of failure masking. 37

xvii

2.16 Methods for evaluating trust in trust-based algorithms used for fault-
tolerant WFMS. 40

2.17 Distributions used for modeling failures for workflows in distributed en-
vironments. 41

3.1 Effect on robustness with tolerance time Rt 72
3.2 Effect on makespan for large sized CyberShake and LIGO workflow . . . 72
3.3 Effect on cost for large sized CyberShake and LIGO workflow 72

4.1 System architecture. 84
4.2 Generation of bid value through Intelligent Bidding Strategy. 88
4.3 Mean execution cost of algorithms with varying deadline (with 95% confi-

dence interval). 92
4.4 Mean execution cost of bidding strategies with varying deadline (with 95%

confidence interval). 92
4.5 Mean of task failures due to bidding strategies. 94
4.6 Effect of checkpointing on execution cost. 94

5.1 Figure(a) shows a workflow at time t0, where there is enough slack time.
Under such situation the tasks are scheduled onto spot instances. Figure(b)
shows a workflow at time t1, where there is no slack time. It also shows
some completed tasks. Under such situation, ESCTs are scheduled onto
on-demand instances and replicated on spot instances. Other tasks with
slack time are scheduled on spot instances. 102

5.2 Failure probability of algorithms with varying deadline. 113
5.3 Tolerance time of algorithms with varying deadline (with 95% confidence

interval). 113
5.4 Mean makespan of the proposed algorithms against the baseline with

varying deadlines (with 95% confidence interval). 115
5.5 Showing the effect of resource consolidation on makespan for ECPTR

heuristic (with 95% confidence interval). 115
5.6 Mean execution cost of the proposed algorithms against the baseline with

varying deadline (with 95% confidence interval). 115
5.7 Replication factor for the algorithms with varying deadline. 115
5.8 Showing the effect of resource consolidation on cost for ECPTR heuristic

(with 95% confidence interval). 117

6.1 Cloudbus workflow management system. 122
6.2 Components of workflow scheduling. 123
6.3 Apache jclouds system integration architecture. 127
6.4 Sequence diagram of jclouds integration. 128
6.5 Class diagram representing resource provisioning through Apache jclouds. 129
6.6 Testbed environment setup illustration. 132
6.7 Montage workflow. 134
6.8 Effect on makespan under failures. 137
6.9 Resource instantiation time. 137

xviii

6.10 Output mosaic of the montage workflow. 138

xix

This page intentionally left blank.

List of Tables

2.1 Features, provenance information and fault-tolerant strategies of work-
flow management systems . 45

3.1 Robustness probability Rp of large montage workflow with failure proba-
bility model (FP) for different policies. 73

5.1 Spot instance characteristics for US west region (North California AZ) . . 112

6.1 Description of montage workflow tasks . 133

xxi

This page intentionally left blank.

List of Algorithms

1 FindPCP(t) . 65
2 AllocateResource(PCP) . 67

3 Schedule(t) . 90

4 FindFreeSlot(t,vms) . 105
5 Schedule(t) . 107
5 Schedule(t) - Part Two . 108
6 FindSuitableInstances(estimates) . 110

7 FindComputeResource(task) . 130

xxiii

This page intentionally left blank.

Chapter 1

Introduction

OVER the last few decades, the experimentation methodology in science has

changed significantly. In particular, tremendous increases in the computational

capacities have enabled deeper and more accurate research within the community. As

scientific research tends to become more complex involving large scale datasets, a scal-

able and automated way to perform these computations and data processing is necessary.

This experimentation typically involves transferring data to a compute node (or compu-

tation to data nodes), running the computations, analysing the results, and managing the

storage of output results. Workflow Management Systems (WFMSs) aim to automate this

entire process, making it easier and more efficient for researchers [41].

A primitive science of workflow design initially emerged within the business world.

They used this concept to automate their business logic and tools. This was later bor-

rowed into the scientific domain. The automation process involves a sequence of tasks

and their dependencies to conduct a business or scientific work. This process is called

workflow orchestration. An instance of a workflow orchestration is called a workflow [41].

That is, workflow is an application composed of a collections of tasks, which are most

frequently executable scripts taking input data and producing output data. These tasks

are connected by data and/or control dependencies as illustrated in Figure 1.1. Data de-

pendencies define the flow of data within a workflow application. Normally, when two

tasks are data dependent, then the output of the first task becomes the input of the second

task, and the second task starts its execution after the first task finishes execution, writes

the output data, and stages the data in the location of the second task. Similarly, the con-

trol dependencies define the sequence of executions for the tasks. Therefore, workflows

1

2 Introduction

Task

Task

Task

Task

Input
Data

Entry Node

Intermediate
Data

Intermediate
Tasks

Exist Node

Final
Output Data

Task

Figure 1.1: A sample workflow, depicting tasks, data, and their dependencies.

express the relationship between individual tasks and their input and output data in an

explicit way. They link together computational tasks such that they can be reliably and

automatically executed on behalf of the researchers [75].

The early workflow systems both in business and science were described with com-

plex job-control languages and shell scripts. These scripts required substantial pre-

processing and post-processing to manage and run a workflow, making the scripting

approach sophisticated. With the introduction of distributed systems for scientific appli-

cations, scripts could no longer control and coordinate workflow executions. To deal with

these environments, WFMSs had to evolve into systems built around remote procedure

calls, distributed object technology, and distributed file systems and databases. These ap-

proaches slowly evolved into grid technologies, web service-oriented architectures, and

now cloud technologies [41].

Currently, workflows are a prevalent paradigm for managing and representing com-

plex distributed computations. In addition to automation, they provide the information

necessary for scientific reproducibility, result derivation, and sharing among collabora-

tors [61]. By providing automation and enabling reproducibility, they can accelerate and

transform the scientific analysis process. Workflows are deployed in diverse distributed

1.1 Introduction to Cloud Computing 3

John McCarthy

"Computing someday may be
served as a public utility"

Internet
VM

Cloud Data Center Customers

Figure 1.2: Vision of cloud computing by John McCarthy.

environments, starting from supercomputers and clusters, to grids and currently cloud

computing environments [61,75]. As a subscription-based computing service, cloud com-

puting provides a convenient platform for scientific workflows, because it offers virtual-

ized servers, which are dynamically managed, monitored, maintained, and governed by

market principles. In the next section, we introduce the notion of cloud computing, its

origins, features and benefits.

1.1 Introduction to Cloud Computing

Enterprises over decades have invested in expensive hardware in anticipation of a peak

load that might occur occasionally or seasonally. Unfortunately, most of these servers sit

idle for long periods of the year. Alternatively, hardware needs to be upgraded every few

years to keep pace with new technology. These capital costs make it extremely difficult

for small and medium companies to commercialize their ideas and bring them to market.

However, other utilities such as energy, gas and water are not generated in the

premises. These utilities are consumed by us on-demand and we pay for what we

use.The science and technology behind how these utilities are delivered to us is not of

paramount importance. The provision of these services as utilities sparked an economic

and social revolution, making it relatively more affordable for common people and fos-

tering innovation built on these fundamental building blocks.

4 Introduction

In 1960 John McCarthy envisioned (Figure 1.2) that computation someday would be

provided as an utility [115]. Cloud computing is the realization of this vision. With

technologies such as Web Services, Service Oriented Architecture, Web 2.0, Mashups and

Hardware Virtualization becoming popular and widely accepted, they were laying the

path for cloud computing environments.

Cloud computing sprung up as an amalgamation of these technologies. New busi-

ness models centered around it made it an economical option for small and medium

enterprises. Cloud computing is formally defined by NIST (National Institute of Stan-

dards and Technology) as “A model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released

with minimal management effort or service provider interaction.” [99].

Cloud computing is subscription-based service that delivers computation as a utility.

The key characteristics of this service that is making it rapidly popular are:

• Delivered on demand: cloud providers paint an illusion of unlimited resources1.

They promise to lease these resources on-demand dynamically as users make re-

quests through easy interfaces and programmable APIs.

• Pay-as-you-go: cloud users pay only for the time they used the resources, much like

other utility services. Cloud providers may have different pricing models, such as,

Amazon charges per hour whereas, Google compute engine charge per minute. But

the user pays for only the approximate period they used the resources.

Cloud computing is highly driven by market principles. Economics drive the cloud

and competition among providers drive the pricing of cloud resources. Cloud com-

puting envisions computing as a commodity and builds business models and ser-

vices around this philosophy.

• Attractive and innovative pricing models: Clouds providers have different pricing

models. As stated earlier, different cloud providers price differently and a single

cloud provider can provision the same resource through multiple pricing models.

1In this thesis, resources, instances and VMs are used interchangeably.

1.2 Research Challenges and Objectives 5

For example, Amazon EC2 instances are provisioned in three main ways: 1) on-

demand instance, where the user pays per hour. 2) spot instances: where a user

bids for the instance and if the bidding price is higher than the spot price then the

instances are leased to the user. And when the bid price fall below spot price, the

instance is terminated. 3) reserved instance, here, the user pays an upfront price

and reserves the instance for a period of time. Further, when they actually use the

instance they pay an additional nominal price for the same.

• Highly elastic: Cloud resources can be leased and shut down when the user pleases.

This gives users flexibility to scale up and down as their application demands.

• Provide different levels of services: Clouds providers provision cloud resources

through various levels of services, such as, 1) infrastructure-as-a-service: where re-

sources like storage, virtual machine, and network are provisioned. 2) platform-as-

a-service: here, a set of tools and services are provided for application development,

deployment and monitoring without worrying about the underlying hardware. 3)

software-as-a-service delivers application over the web to end-users.

• Dynamically configurable: Cloud resources are delivered through the web by eas-

ily manageable graphical interfaces and APIs. They empower cloud providers to

provision services that users can configure dynamically and manage seamlessly.

Because of these features, cloud computing is increasingly used amidst researchers for

scientific workflows to perform high throughput computing and data analysis [89]. Nu-

merous disciplines such as astronomy, physics, biology, and others use scientific work-

flows to perform large scale complex analyses. Features like dynamic provisioning and

innovative pricing models bring a new dimension for workflow scheduling, making it

cost-effective and faster. However, using cloud computing for scheduling scientific work-

flows has some challenges and issues, which are outlined in our next section.

6 Introduction

Workflow Management System

Network Failure

Spot Instance
Failure

Pricing Models

Resource
Heterogeneity

Performance Variations
of Cloud Resources

Resource
Failures

Task Failures

Workflow
Complexity

Figure 1.3: Research challenges in scheduling scientific workflows on cloud environ-
ments

1.2 Research Challenges and Objectives

Cloud computing offers virtualized servers, which are dynamically managed, monitored,

maintained, and governed by market principles. As a subscription based computing ser-

vice, it provides a convenient platform for scientific workflows due to features like applica-

tion scalability, heterogeneous resources, dynamic resource provisioning, and a pay-as-

you-go cost model.

However, these environments are prone to performance variations and different types

of failures (e.g., in resources or in platforms) as illustrated in Figure 1.3. In particular,

the likelihood of performance variation and failure increases for long-running work-

flows [101].

For instance, Dejun et al. [44] show that the behavior of multiple “identical” resources

vary in performance while serving exactly the same workload. CPU and I/O perfor-

mances also vary significantly for different identical instances. A performance variation

of 4% to 16% is observed when cloud resources share network and disk I/O [10]. Ad-

ditionally, VM start up and shutdown times of instances vary based on the operating

system, instance type, pricing model, and location [94]. The performance variation of

1.2 Research Challenges and Objectives 7

VMs in clouds affects the overall execution time (i.e. makespan) of the workflow. It also

increases the difficulty to estimate the task execution time accurately.

Failures also affect the overall workflow execution time by increasing its makespan.

Failures in a workflow application are mainly of the following types: task failures, ma-

chine (VM) failures, and workflow-level failures [67]. Task failures may occur due to

dynamic execution environment configurations, missing input data, or system errors.

Machine (VM) failures are caused by hardware failures and load in a distributed system,

among other reasons. Workflow level failures can occur due to factors such as machine

failures or cloud outages.

Failures in a workflow environment can occur at different levels [110]: hardware, op-

erating system, middleware, task, workflow, and user. Some of the prominent faults that

occur are network failures, machine crashes, out-of-memory, file not found, authentica-

tion issues, file staging errors, uncaught exceptions, data movement issues, and user-

defined exceptions. Gao et al. [57] identify that cloud systems are not fully protected

systems and are prone to soft errors. Similarly, Ko et al. [80] mention that just in the pe-

riod 2009 to 2011, 172 unique outages occurred among various cloud providers. At the

scale of cloud computing, these errors could potentially worsen application performance.

Added to this, cloud providers like Amazon sell data center capacity that is idle or

unused as spot instances 2 (SI). Users compete in an auction-like market where they bid

a maximum price for these SIs they are willing to pay. The user is provided the instance

whenever the spot price is lower than their bid [136]. However, when the user bid goes

below the spot price, Amazon terminates the resources, such failures are called out-of-bid

failures. Cloud users using SIs to reduce costs must employ strategies to address these

out-of-bid failures [112]. These out-of-bid failures introduce a new dimension to failures,

here failures are proportional to the value of the bid price. These failures are dependent

on the budget an application is willing to spent. Research has shown that these instances

provide huge cost benefits and for that an effective bidding strategy is essential. These

innovative pricing models come with different SLAs that applications need to address.

Cloud resources comes with a variety of configuration characteristics, with different

2http://aws.amazon.com/ec2/purchasing-options/spot-instances/

8 Introduction

cpu cores, memory, storage and others. The execution times of tasks vary on these re-

source, the ability to choose the right resource depending on the deadline and budget of

the workflow is a research challenge. How to address the heterogeneity amidst resources

for an application depending on this deadline and budgetary constraints is a valuable

question that needs to be answered.

Lastly, workflows are generally composed of thousands of tasks, with complicated

dependencies between the tasks. These tasks are interdependent with various execution

times. Scheduling these workflow tasks onto heterogeneous VMs is an NP-Complete

problem [73]. Therefore, necessity for fault-tolerance arises from the complexity of the ap-

plication and environment. Workflows are applications that are most often used in a col-

laborative environment spread across the geography involving various people from dif-

ferent domains (e.g., [74]). So much diversity is a potential cause for adversities. Hence,

to provide a seamless experience over a distributed environment for multiple users of a

complex application, fault-tolerance is a paramount requirement of any WFMS.

This thesis provides effective solutions arising from these research challenges by an-

swering the following fundamental question:

How does one make workflow scheduling algorithms robust and fault-tolerant for cloud

computing environments?

1.3 Methodology

This thesis employs two main methodologies to evaluate the proposed algorithms:

1. Discrete-event simulation: Workflow applications are complex with numerous

jobs and multiple dependencies. Conducting large scale experiments on real cloud

infrastructures is time consuming, costly and extremely difficult. Therefore, a

discrete-event based simulator was employed to evaluate our algorithms. Discrete-

event simulation enables us to conduct experiment and allows us to control var-

ious parameters and evaluate the heuristics under multiple scenarios effectively,

economically, and swiftly. We use and extend CloudSim [21] to simulate the cloud

1.3 Methodology 9

environment. The simulator was extended to support workflow applications, mak-

ing it easy to define, deploy and schedule workflows. A failure event generator was

also integrated into the CloudSim, which generates failures from an input failure

trace.

2. System Prototype: A multi-cloud utility for a workflow management system was

developed. A resource provisioning policy for such an environment was also pro-

posed. The system was tested on two cloud infrastructures to run this experiment:

a private cloud and a public cloud.

1.3.1 Spot Market Traces

This work has used real Amazon AWS EC2 spot market traces for our evaluation of chap-

ter 4 and 5. The spot price history is taken from Amazon EC2 US West region (North Cal-

ifornia availability zone). The spot price history provides information of the spot price

and time for a specific instance.

1.3.2 Failure Traces

For the experiment of Chapter 3, one of the failure models was simulated through fail-

ure traces. Due to lack of publicly available cloud specific failure traces, Condor (CAE)

Grid failure dataset [147], available as a part of Failure Trace Archive [81] was chosen.

This dataset was collected by the Condor team at the University of Wisconsin-Madison

from the Compact Muon Solenoid (CMS) experiment at the European Organization for

Nuclear Research (CERN) [72].

1.3.3 Workflow Applications

State-of-the art workflow applications were used to evaluate the heuristics. Five work-

flows (Montage, CyberShake, Epigenomics, LIGO and SIPHT) were considered. Their

characteristics are explained in detail by Juve et al. [74]. These workflows cover all the

10 Introduction

basic components such as pipeline, data aggregation, data distribution and data redistri-

bution.

1.3.4 Case Study Application

The system prototype was evaluated with the montage application [16], which is a com-

plex astronomy workflow. We have used a montage workflow consisting of 110 tasks,

where the number of the tasks indicate the number of images used. It is an I/O intensive

application, which produces a mosaic of astronomic images.

1.4 Contributions

This thesis proposes novel heuristic algorithms for robust and fault-tolerant workflow

scheduling on cloud computing platforms. Additionally, we use the dynamic pricing

models offered by cloud providers to minimize cost and time whilst providing fault-

tolerant schedules. Specifically, the key findings and contributions of this thesis are:

1 Novel Heuristic Algorithms: Four novel fault-tolerant workflow scheduling

heuristics are proposed in this thesis. These heuristics employ various fault-

tolerant techniques to mitigate failures and performance variations experienced in

the cloud.

– Chapter 3 proposes a heuristic that uses slack time to make schedules robust

against performance variations. The concept of slack time is detailed in Chap-

ters 2 and 3. This algorithm remaps failed tasks and also employs checkpoint-

ing to save execution time.

– Chapter 4 proposes a heuristic that uses both on-demand and spot instances to

save executions cost. It also provides a heuristic that can mitigate spot instance

out-of-bid failures by employing task retry and checkpointing. Results have

shown that using spot instances reduces up to 70% execution costs.

– The heuristic in Chapter 5, similar to the one in chapter 4, uses both on-

demand and spot instances to save execution costs. The proposed heuristics

1.4 Contributions 11

mitigate spot instance out-of-bid failures, additionally it also address VM fail-

ures and network failures by employing task retry and task replication.

– In Chapter 6, a heuristic that utilizes a multi-cloud framework to schedule

resources based on budget constraints is proposed. Upon resource failures,

this algorithms reschedules the failed task onto another resource.

In summary, we have demonstrated numerous heuristic algorithms that employ

fault-tolerant techniques developed specifically for cloud environments, which ad-

dress failures and performance variations experienced in the environment.

2 Bidding Strategy: Bidding strategies are proposed that aid workflow scheduling

algorithms to effectively bid spot instances, such that failures and execution cost

are minimized. The proposed Intelligent Bidding Strategy bids prices closer to the

spot price in the beginning of the execution and gradually increases the bid price

closer to the on-demand price as the workflow nears the completion based on the

current spot price, on-demand price, time flag of the workflow, failure probability

of the previous bid price, and the current time.

3 A performance evaluation study on time, cost and fault-tolerance. Each of the

heuristics proposed are studied with respect to the execution time, cost and fault-

tolerance. Results have demonstrated that our proposed algorithms are robust and

fault-tolerant and can minimize cost and time. We have also studied the effect of

spot price volatility on checkpointing and the results demonstrate that for low spot

prices, frequent checkpointing is not profitable.

4 This thesis also proposes two metrics to measure robustness and fault-tolerance

of a schedule. The first metric robustness probability, measures the likelihood of the

workflow to finish before a given deadline. The second metric tolerance time is the

amount of time a workflow schedule can be delayed, such that the deadline con-

straint is not violated.

5 Multi-cloud resource plug-in: Multiple cloud providers offer clouds resource in an

attractive way. An application running in a multi-cloud environment can benefit

12 Introduction

Chapter 2 : Literature review
Taxonomy and Survey

Novel Algorithms, Simulation

Chapter 3 Chapter 4 Chapter 5

Slack Time
and

Checkpointing

Task Retry
and

Checkpointing

Task Retry
and

Replication

Fault-Tolerant
Strategy

Chapter 6 : System prototype
Multi-Cloud Integration

Chapter 7 : Conclusions and Future Directions

Chapter 1 : Introduction

Figure 1.4: Thesis organization.

from pricing, wider resource types, and higher reliability to name a few.

As a part of the system prototype, we have integrated a multi-cloud framework to

a workflow management system. This was demonstrated using an astronomy case

study and mapping that workflow on private and public cloud infrastructures.

1.5 Thesis Organization

The thesis is structured as illustrated in Figure 1.4 into seven core chapters, and are de-

rived from journal and conference papers published/submitted during the PhD candi-

dature. An overview of the details of the thesis organization is presented here:

• Chapter 2 presents a Taxonomy of faults and fault-tolerant techniques, and a survey

of the existing workflow management systems with respect to these taxonomies

and the techniques. In addition, various failure models, metrics, tools, and support

systems are also classified.

1.5 Thesis Organization 13

• Chapter 3 proposes a robust scheduling algorithm using checkpointing and slack

time of resources, and resource allocation policies that schedule workflow tasks on

heterogeneous cloud resources while trying to minimize the total elapsed time and

the cost. The chapter is derived from:

– Poola D., Garg S.K., Buyya R., Yang Y., and Ramamohanarao K., Robust

Scheduling of Scientific Workflows with Deadline and Budget Constraints in

clouds, Proceedings of the 28th IEEE International Conference on Advanced

Information Networking and Applications (AINA-2014), Victoria Canada.

• Chapter 4 proposes a scheduling algorithm that schedules tasks on cloud resources

using two different pricing models (spot and on-demand instances) to reduce the

cost of execution whilst meeting the workflow deadline. The proposed algorithm

is fault tolerant against the premature termination of spot instances and also robust

against performance variations of cloud resources. The algorithm proposed uses

task retry and checkpointing techniques to achieve fault-tolerance. The chapter is

derived from:

– Poola D., Ramamohanarao K., and Buyya R., Fault-Tolerant Workflow

Scheduling Using Spot Instances on Clouds, Proceedings of the 13th Interna-

tional Conference on Computational Science (ICCS-2014), Cairns Australia.

• Chapter 5 presents an adaptive, just-in time scheduling algorithm for scientific

workflows. This algorithm judiciously uses both task retry and task replication

to provide fault-tolerance. The proposed scheduling algorithm also consolidates

resources to minimize execution time and cost. The chapter is derived from:

– Poola D., Ramamohanarao K., and Buyya R., Enhancing Reliability of Work-

flow Execution Using Task Replication and Spot Instances, Accepted in the

ACM Transactions on Autonomous and Adaptive Systems (TAAS), ISSN:1556-

4665, ACM Press, New York, USA, 2015 (in press, accepted on Aug. 13, 2015).

• Chapter 6 presents a prototype system developed to provide a multi-cloud integra-

tion to the flagship project of the University of Melbourne, the cloudbus workflow

14 Introduction

management system.

• Chapter 7 concludes this thesis with a summary of contributions, future research

directions, and finals remarks.

Chapter 2

A Taxonomy and Survey

In recent years, workflows have emerged as an important abstraction for collaborative research and

managing complex large-scale distributed data analytics. Workflows are increasingly becoming

prevalent in various distributed environments, such as clusters, grids, and clouds. These envi-

ronments provide complex infrastructures that aid workflows in scaling and parallel execution

of their components. However, they are prone to performance variations and different types of

failures. Thus, workflow management systems need to be robust against performance variations

and tolerant against failures. Numerous research studies have investigated fault-tolerant aspect

of the workflow management system in different distributed systems. In this study, we analyze

these efforts and provide an in-depth taxonomy of them. We present the ontology of faults and

fault-tolerant techniques then position the existing workflow management systems with respect to

the taxonomies and the techniques. In addition, we classify various failure models, metrics, tools,

and support systems. Finally, we identify and discuss the strengths and weaknesses of the cur-

rent techniques and provide recommendations on future directions and open areas for the research

community.

2.1 Introduction

WORKFLOWS orchestrate the relationships between dataflow and computational

components by managing their inputs and outputs. In the recent years, sci-

entific workflows have emerged as a paradigm for managing complex large scale dis-

tributed data analysis and scientific computation. Workflows automate computation,

and thereby accelerate the pace of scientific progress easing the process for researchers.

15

16 A Taxonomy and Survey

In addition to automation, it is also extensively used for scientific reproducibility, result

sharing and scientific collaboration among different individuals or organizations. Scien-

tific workflows are deployed in diverse distributed environments, starting from super-

computers and clusters, to grids and currently cloud computing environments [61, 75].

Distributed environments usually are large scale infrastructures that accelerate com-

plex workflow computation; they also assist in scaling and parallel execution of the work-

flow components. The likelihood of failure increases specially for long-running work-

flows [101]. However, these environments are prone to performance variations and dif-

ferent types of failures. This demands the workflow management systems to be robust

against performance variations and fault-tolerant against faults.

Over the years, many different techniques have evolved to make workflow schedul-

ing fault-tolerant in different computing environments. This chapter aims to catego-

rize and classify different fault-tolerant techniques and provide a broad view of fault-

tolerance in workflow domain for distributed environments.

Workflow scheduling is a well studied research area. Yu et al. [148] provided a com-

prehensive view of workflows, different scheduling approaches, and different workflow

management systems. However, this work did not throw much light on fault-tolerant

techniques in workflows. Plankensteiner et al. [110] have recently studied different fault-

tolerant techniques for grid workflows. Nonetheless, they do not provide a detailed view

into different fault-tolerant strategies and their variants. More importantly, their work

does not encompass other environments like clusters and clouds.

In this chapter, we aim to provide a comprehensive taxonomy of fault-tolerant work-

flow scheduling techniques in different existing distributed environments. We first start

with an introduction to workflows and workflow scheduling. Then, we introduce fault-

tolerance and its necessity. We provide an in-depth ontology of faults in section 2.4. Fol-

lowing which, different fault-tolerant workflow techniques are detailed. In section 2.6,

we describe different approaches used to model failures and also give definition of vari-

ous metrics used in literature to assess fault-tolerance. Finally, prominent workflow man-

agement systems are introduced and a description of relevant tools and support systems

that are available for workflow development is provided.

2.2 Background 17

Task
Dispatcher

Fault-Tolerant
Management

Resource
Allocation

Workflow Enactment Engine

Public Cloud

Cloud

Workflow
Editor

Workflow Modeling
 and Definition

Database
Management

Workflow
Scheduler

Language
Parser

Negotiation
Services

Monitoring

Provenance
Management

Vm
Images

Application
Catalogue

Data
Catalogue

Database

Workflow Portal

D irectory and
Catalogue Services

Workflow
M anagement

Services

Resource Broker

Hybrid CloudPrivate Cloud

Security & Identity
Management

Figure 2.1: Architecture of cloud workflow management system. Portal, enactment en-
gine, and resource broker form the core of the WFMS performing vital operations, such as
designing, modeling, and resource allocation. To achieve these operations, the workflow
management services (left column) provide security, monitoring, database, and prove-
nance management services. In addition, the Directory and Catalogue services (right
column) provide catalog and meta-data management for the workflow execution.

2.2 Background

2.2.1 Workflow Management Systems

Workflow management systems (WFMS) enable automated and seamless execution of

workflows. They allow users to define and model workflows, set their deadline and

budget limitations, and the environments in which they wish to execute. The WFMS

then evaluates these inputs and executes them within the defined constraints.

The prominent components of a typical cloud WFMS is given in Figure 2.1. The work-

flow portal is used to model and define abstract workflows i.e., tasks and their depen-

dencies. The workflow enactment engine takes the abstract workflows and parses them

using a language parser. Then, the task dispatcher analyses the dependencies and dis-

patches the ready tasks to the scheduler. The scheduler, based on the defined schedul-

ing algorithms schedules the workflow task onto a resource. We further discuss about

workflow scheduling in the next section. Workflow enactment engine also handles the

18 A Taxonomy and Survey

fault-tolerance of the workflow. It also contains a resource allocation component which

allocates resources to the tasks through the resource broker.

The resource broker interfaces with the infrastructure layer and provides a unified view

to the enactment engine. The resource broker communicates with compute services to

provide the desired resource.

The directory and catalogue services house information about data objects, the applica-

tion and the compute resources. This information is used by the enactment engine, and

the resource broker to make critical decisions.

Workflow management services, in general, provide important services that are essen-

tial for the working of a WFMS. Security and identify services ensure authentication and

secure access to the WFMS. Monitoring tools constantly monitor vital components of the

WFMS and raise alarms at appropriate times. Database management component provides

a reliable storage for intermediate and final data results of the workflows. Provenance

management services capture important information such as, dynamics of control flows

and data, their progressions, execution information, file locations, input and output in-

formation, workflow structure, form, workflow evolution, and system information [141].

Provenance is essential for interpreting data, determining its quality and ownership, pro-

viding reproducible results, optimizing efficiency, troubleshooting and also to provide

fault-tolerance [35, 36].

2.2.2 Workflow Scheduling

As mentioned earlier, a workflow is a collection of tasks connected by control and/or data

dependencies. Workflow structure indicates the temporal relationship between tasks.

Workflows can be represented either in Directed Acyclic Graph (DAG) or non-DAG for-

mats. In this thesis, workflows are represented in DAG formats (as shown in Figure 2.3),

where the vertices represent task nodes and the directed edges represent control and/or

data dependencies.

Scheduling maps workflow tasks on to distributed resources such that the dependen-

cies are not violated. Workflow Scheduling is a well-known NP-Complete problem [73].

The workflow scheduling architecture specifies the placement of the scheduler in a

2.2 Background 19

Workflow
Scheduling
Components

Planning
Scheme

Scheduling
Techniques

Strategies

Architecture

Centralized

Hierarchical

Decentralized

Static (offline)

Dynamic (Online)

Heuristics

Meta-heuristics

Time Based

Cost Based

Energy Based

QoS Based

Fault-Tolerance Based

Figure 2.2: Components of workflow scheduling.

WFMS and it can be broadly categorized into three types as illustrated in Figure 2.2:

centralized, hierarchical, and decentralized [148]. In the centralized approach, a centralized

scheduler makes all the scheduling decisions for the entire workflow. The drawback of

this approach is that it is not scalable; however, it can produce efficient schedules as the

centralized scheduler has all the necessary information. In hierarchical scheduling, there

is a central manager responsible for controlling the workflow execution and assigning the

sub-workflows to low-level schedulers. The low-level schedulers map tasks of the sub-

workflows assigned by the central manager. In contrast, decentralized scheduling has no

central controller. It allows tasks to be scheduled by multiple schedulers, each scheduler

communicates with each other and schedules a sub-workflow or a task [148].

Workflow schedule planning for workflow applications also known as planning

scheme are of two types: static(offline) and dynamic(online). Static scheme map tasks to re-

sources at the compile time. These algorithms require the knowledge of workflow tasks

and resource characteristics beforehand. On the contrary, dynamic scheme can make few

assumptions before execution and make scheduling decision just-in-time [82]. Here, both

dynamic and static information about environment is used in scheduling decisions.

Further, workflow scheduling techniques are the approaches or methodologies used

to map workflow tasks to resources, and it can be classified into two types: heuristics

20 A Taxonomy and Survey

and meta-heuristics. Heuristic solutions exploit problem-dependent information to pro-

vide an approximate solution trading optimality, completeness, accuracy, and/or pro-

cessing speed. It is generally used when finding a solution through exhaustive search is

impractical. It can be further classified into list based scheduling, cluster based schedul-

ing, and duplication based algorithms [124, 149]. On the other hand, meta-heuristics are

more abstract procedures that can be applied to a variety of problems. A meta-heuristic

approach is problem-independent and treats problems like black boxes. Some of the

prominent meta-heuristic approaches are genetic algorithms, particle swarm optimiza-

tion, simulated annealing, and ant colony optimization.

Each scheduling algorithm for any workflow have one or many objectives. The most

prominent strategies or objectives used are given in Figure 2.2. Time, cost, energy, QoS,

and fault-tolerance are most commonly used objectives for a workflow scheduling algo-

rithm. Algorithms can have a single objective or multiple objectives based on the scenario

and the problem statement. The rest of the chapter is focused on scheduling algorithms

and workflow management systems whose objective is fault-tolerance.

2.3 Introduction to Fault-Tolerance

Failure is defined as any deviation of a component of the system from its intended func-

tionality. Resource failures are not the only reason for the system to be unpredictable,

factors such as, design faults, performance variations in resources, unavailable files, and

data staging issues can be few of the many reasons for unpredictable behaviors.

Developing systems that tolerate these unpredictable behaviors and provide users

with seamless experience is the aim of fault-tolerant systems. Fault tolerance is to pro-

vide correct and continuous operation albeit faulty components. Fault-tolerance, robust-

ness, reliability, resilience and Quality of Service (QoS) are some of the ambiguous terms

used for this. These terminologies are used interchangeably in many works. Significant

works have been carried out in this area encompassing numerous fields like job-shop

scheduling [85], supply chain [65], and distributed systems [124, 128].

Any fault-tolerant WFMS need to address three important questions [128]: (a) what

2.3 Introduction to Fault-Tolerance 21

(a) (b) (c)

(d) (e)

Figure 2.3: Examples of the state-of-the-art workflows [74]: (a) Epigenomics: DNA se-
quence data obtained from the genetic analysis process is split into several chunks and
are used to map the epigenetic state of human cells. (b) LIGO: detects gravitational waves
of cosmic origin by observing stars and black holes. (c) Montage: creates a mosaic of the
sky from several input images. (d) CyberShake: uses the Probabilistic Seismic Hazard
Analysis (PSHA) technique to characterize earth-quake hazards in a region. (e) SIPHT:
searches for small un-translated RNAs encoding genes for all of the bacterial replicas in
the NCBI database.

are the factors or uncertainties that the system is fault-tolerant towards? (b) What behav-

ior makes the system fault-tolerant? (c) How to quantify the fault-tolerance i.e., what is

the metric used to measure fault-tolerance?

In this survey we categorize and define the taxonomy of various types of faults that a

WFMS in a distributed environment can experience. We further develop ontology of dif-

ferent fault-tolerant mechanisms that are used until now. Finally we provide numerous

metrics that measure fault-tolerance of a particular scheduling algorithm.

22 A Taxonomy and Survey

2.3.1 Necessity for Fault-Tolerance in Distributed Systems

Workflows, generally, are composed of thousands of tasks, with complicated dependen-

cies between the tasks. For example, some prominent workflows (as shown in Figure 2.3)

widely considered are Montage, CyberShake, Broadband, Epigenomics, LIGO Inspiral

Analysis, and SIPHT, which are complex scientific workflows from different domains

such as astronomy, life sciences, physics and biology. These workflows are composed of

thousands of tasks with various execution times, which are interdependent.

Workflow tasks are often executed on distributed resources that are heterogeneous

in nature. WFMSs that allocates these workflows uses middleware tools that require to

operate congenially in a distributed environment. This very complex and complicated

nature of WFMSs and its environment invite numerous uncertainties and chances of fail-

ures at various levels.

In particular, in data-intensive workflows that continuously process data, machine

failure is inevitable. Thus, failure is a major concern during the execution of data-

intensive workflows frameworks, such as MapReduce and Dryad [69]. Both transient

(i.e., fail-recovery) and permanent (i.e., fail-stop) failures can occur in data-intensive

workflows [79]. For instance, Google reported on average 5 permanent failures in form

of machine crashes per MapReduce workflow during March 2006 [37] and at least one

disk failure in every run of MapReduce workflow with 4000 tasks.

Necessity for fault-tolerance arises from this very nature of the application and envi-

ronment. Workflows are applications that are most often used in a collaborative environ-

ment are spread across the geography involving various people from different domains

(e.g., [74]). So many diversities are potential causes for adversities. Hence, to provide

a seamless experience over a distributed environment for multiple users of a complex

application, fault-tolerance is a paramount requirement of any WFMS.

2.4 Taxonomy of Faults

Fault is defined as a defect at the lowest level of abstraction. A change in a system state

due to a fault is termed as an error. An error can lead to a failure, which is a deviation

2.4 Taxonomy of Faults 23

of the system from its specified behavior [59, 70]. Before we discuss about fault-tolerant

strategies it is important to understand the fault-detection and identification methodolo-

gies and the taxonomy of faults.

Fault Characteristics

SeverityTimeOriginatorAccuracy Location Stage Frequency

Known Unknown

Faults

Types Classes

Transient Intermittent Permanent Crash Fail-Stop Byzantine

Faults
Figure 2.4: Elements through which faults can be characterized.

Faults can be characterized in an environment through various elements and means.

Lackovic et al. [83] provide a detailed list of these element that are illustrated in Fig-

ure 2.4. Accuracy of fault detection can be either known or unknown faults. Known faults

are those which have been reported before and solutions for such faults are known. Lo-

cation is the part of the environment where the fault occurs. Originator is the part of the

environment responsible for the fault to occur. Stage of the fault refers to the phase of the

workflow lifecycle (design, build, testing, and production) when the fault occurred. Time

is the incidence time in the execution when the fault happened. Frequency, as the name

suggests identifies the frequency of fault occurrence. Severity specifies the difficulty in

taking the corrective measures and details the impact of a particular fault. More details

of these elements can be found in [83].

Fault Characteristics

Severity Time Originator Accuracy Location Stage Frequency

Known Unknown

Generic View Processor View

Transient Intermittent Permanent Crash Fail-Stop

Faults

Byzantine

Figure 2.5: Faults: views and their classifications.

At a high level, faults can be viewed in two different ways, generic view, and the

processor view. The generic view of faults can be classified into three major types as shown

in Figure 2.5: transient, intermittent and permanent [83]. Transient faults invalidate only

the current task execution, on a rerun or restart these fault most likely will not manifest

again [13]. Intermittent faults appear at infrequent intervals. Finally, permanent faults are

faults whose defects cannot be reversed.

24 A Taxonomy and Survey

From a processor’s perspective, faults can be classified into three classes: crash, fail-stop,

and byzantine [59]. This is mostly used for resource or machine failures. In the crash failure

model, the processor stops executing suddenly at a specific point. In fail-stop processors

internal state is assumed to be volatile. The contents are lost when a failure occurs and

it cannot be recovered. However, this class of failure does not perform an erroneous

state change due to a failure [122]. Byzantine faults originate due to random malfunctions

like aging or external damage to the infrastructure. These faults can be traced to any

processor or messages [32].

Faults in a workflow environment can occur at different levels of abstraction [110]:

hardware, operating system, middleware, task, workflow, and user. Some of the promi-

nent faults that occur are network failures, machine crashes, out-of-memory, file not

found, authentication issues, file staging errors, uncaught exceptions, data movement

issues, and user-defined exceptions. Plankensteiner et al. [110] detail various faults and

map them to different level of abstractions.

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms

This section details the workings of various fault-tolerant techniques used in WFMS. In

the rest of this section, each technique is analyzed and their respective taxonomies are

provided. Additionally, prominent works using each of these techniques are explained.

Figure 2.6 provides an overview of various techniques that are used to provide fault-

tolerance.

2.5.1 Replication

Redundancy in space is one of the widely used mechanisms for providing fault-tolerance.

Redundancy in space means providing additional resources to execute the same task to

provide resilience and it is achieved by duplication or replication of resources. There are

broadly two variants of redundancy of space, namely, task duplication and data replica-

tion.

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 25

Taxonomy of Fault-Tolerant Techniques

Provenance

Checkpointing

Resubmission

Replication Rescue
Workflow

User-Defined
Exception Handling

Alternate
Task

Failure
Masking

Slack
Time

Trust

Figure 2.6: Taxonomy of workflow scheduling techniques to provide fault-tolerance.

Task Duplication

Task duplication creates replica of tasks. Replication of tasks can be done concur-

rently [31], where all the replicas of a particular task start executing simultaneously.

When tasks are replicated concurrently, the child tasks start its execution depending on

the schedule type. Figure 2.7 illustrates the taxonomy of task duplication.

Schedules types, are either strict or lenient. In strict schedule the child task executes

only when all the replicas have finished execution [12]. In the lenient schedule type, the

child tasks start execution as soon as one of the replicas finishes execution [31].

Replication of task can also be performed in a backup mode, where the replicated

task is activated when the primary tasks fail [100]. This technique is similar to retry or

redundancy in time. However, here, they employ a backup overloading technique, which

schedules the backups for multiple tasks in the same time period to effectively utilize the

processor time.

Duplication is employed to achieve multiple objectives, the most common being fault-

tolerance [12, 64, 78, 155]. When one task fails, the redundant task helps in completion of

the execution. Additionally, algorithms employ data duplication where data is repli-

cated and pre-staged, thereby moving data near computation especially in data intensive

workflows to improve performance and reliability [28]. Furthermore, estimating task

execution time a priori in a distributed environment is arduous. Replicas are used to cir-

cumvent this issue using the result of the earliest completed replica. This minimizes the

schedule length to achieve hard deadlines [33, 45, 114, 132], as it is effective in handling

performance variations [31]. Calheiros et al. [20] replicated tasks in idle time slots to re-

duce the schedule length. These replicas also increase resource utilization without any

extra cost.

26 A Taxonomy and Survey

Task Duplication

ResourcesTask PlacementObjectiveSchedule

Hybrid

Approach

Exclusive

Resource

Idle

Resource Time

BoundedUnboundedIncrease

Fault-Tolerance

Minimize

Schedule Length

LenientStrict

ApproachResourceResource Time

Figure 2.7: Different aspects of task duplication technique in providing fault-tolerance.

Task duplication is achieved by replicating tasks in either idle cycles of the resources

or exclusively on new resources. Some schedules use a hybrid approach replicating tasks in

both idle cycles and new resources [20]. Idle cycles are those time slots in the resource

usage period where the resources are unused by the application. Schedules that repli-

cate in these idle cycles profile resources to find unused time slot, and replicate tasks in

those slots. This approach achieves benefits of task duplication and simultaneously con-

siders monetary costs. In most cases, however, these idle slots might not be sufficient to

achieve the needed objective. Hence, task duplication algorithms commonly place their

task replicas on new resources. These algorithms trade off resource costs to their objec-

tives.

There is a significant body of work in this area encompassing platforms like clusters,

grids, and clouds [12, 18, 33, 45, 64, 78, 114, 132, 155]. Resources considered can either be

bounded or unbounded depending on the platform and the technique. Algorithms with

bounded resources consider a limited set of resources. Similarly, an unlimited number

of resources are assumed in an unbounded system environment. Resource types used

can either be homogeneous or heterogeneous in nature. homogeneous resources have similar

characteristics, and heterogeneous resources on the contrary vary in their characteristics

such as, processing speed, CPU cores, memory and etc. Darbha et al. [33] is one of the

early works, which presents an enhanced search and duplication based scheduling algo-

rithm (SDBS) that takes into account the variable task execution time. They consider a

distributed system with homogeneous resources and assume an unbounded number of

processors in their system.

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 27

Data Replication

Data in workflows are either not replicated (and are stored locally by the processing ma-

chines) or is stored on the distributed file system (DFS) where it is automatically repli-

cated (e.g., in Hadoop Distributed File System (HDFS)). Although the former approach

is efficient, particularly in data-intensive workflows, it is not fault-tolerant. That is, fail-

ure of a server storing data causes the re-execution of the affected tasks. On the other

hand, the latter approach offers more fault tolerance but is not efficient due to significant

network overhead and increasing the execution time of the workflow.

Hadoop, is a platform for executing data-intensive workflows, uses a static replication

strategy for fault-tolerance. That is, users can manually determine the number of replicas

that have to be created from the data. Such static and blind replication approach imposes

a significant storage overhead to the underlying system (e.g., cluster or cloud) and slows

down the execution of the MapReduce workflow. One approach to cope with this prob-

lem is to adjust the replication rate dynamically based on the usage rate of the data. This

will reduce the storage and processing cost of the resources [152]. Cost-effective incre-

mental replication (CIR) [88] is a strategy for cloud based workflows that predicts when

a workflow is needed to replicate to ensure the reliability requirement of the workflow

execution.

There are four major data-replication methods for data-intensive workflows on large-

scale distributed systems (e.g., clouds) namely, synchronous and asynchronous replication,

rack-level replication, and selective replication. These replication methods can be applied

on input, intermediate, or output data of a workflow.

In synchronous data replication, such as those in HDFS, writers (i.e., producer tasks

in a workflow) are blocked until replication finishes. Synchronous replication method

leads to a high consistency because if a writer of block A returns, all the replicas of block

A are guaranteed to be identical and any reader (i.e., consumer tasks in a workflow) of

block A can read any replica. Nonetheless, the drawback of this approach is that the

performance of writers might get affected as they have to be blocked. In contrast, asyn-

chronous data replication [79] allows writers to proceed without waiting for a replication

to complete. The asynchronous data replication consistency is not as accurate as the syn-

28 A Taxonomy and Survey

chronous method because even if a writer of block A returns, a replica of block A may

still be in the replication process. Nonetheless, performance of the writers improves due

to the non-blocking nature. For instance, with an asynchronous replication in Hadoop,

Map and Reduce tasks can proceed without being blocked.

Rack-level data replication method enforces replication of the data blocks on the same

rack in a data center. In cloud data centers, machines are organized in racks with a hi-

erarchical network topology. A two-level architecture with a switch for each rack and

a core switch is a common network architecture in these data centers. In this network

topology the core switch can become bottleneck as it is shared by many racks and ma-

chines. That is, there is heterogeneity in network bandwidth where inter-rack bandwidth

is scarce compared to intra-rack bandwidth. One example of bandwidth bottleneck is

in the Shuffling phase of MapReduce. In this case, as the communication pattern be-

tween machines is all-to-all, the core switches become over-utilized whereas rack-level

switches are underutilized. Rack-level replication reduces the traffic transferred through

the bandwidth-scarce core switch. However, the drawback of the rack-level replication

approach is that it cannot tolerate rack-level failures and if a rack fails, all the replicas

become unavailable. There are observations that show rack-level failures are infrequent

which proves the efficacy of rack-level replication. For instance, one study shows that

Google experiences approximately 20 rack failures within a year [38].

Selective data replication is an approach where the data generated by the previous step

of the workflow are replicated on the machine, where the failed task will be re-executed.

For instance, in a chained MapReduce workflow, once there is a machine failure at the

Map phase, the affected Map tasks can be restarted instantly, if the intermediate data

generated by the previous Reduce tasks were replicated locally on the machine, where

the failed Map task will be re-run. In this manner, the amount of intermediate data that

needs to be replicated in the Map phase is reduced remarkably. However, it is not very

effective for Reduce phase, because Reduce data are mostly locally consumed.

ISS [79] is a system that extends the APIs of HDFS and implements a combination of

three aforementioned replication approaches. It implements a rack-level replication that

asynchronously replicates locally-consumed data. The focus of ISS is on the management

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 29

of intermediate data in Hadoop data-intensive workflows. It takes care of all aspects of

managing intermediate data such as writing, reading, Shuffling, and replicating. There-

fore, a programming framework that utilizes ISS does not need to consider Shuffling. ISS

transparently transfers intermediate data from writers (e.g., Map tasks) to readers (e.g.,

Reduce tasks).

As mentioned earlier, replicating input data or intermediate data on stable external

storage systems (e.g., distributed file systems) is expensive for data-intensive workflows.

The overhead is due to data replication, disk I/O, network bandwidth, and serializa-

tion which can potentially dominate the workflow execution time [153]. To avoid these

overheads, in frameworks such as Pregel [93], which is a system for iterative graph com-

putation, intermediate data are maintained in memory. Resilient Distributed Datasets

(RDDs) [153] are distributed memory abstractions that enable data reuse in a fault-

tolerant manner. RDDs are parallel data structures that enable users to persist interme-

diate data in memory and manipulate them using various operators. It also controls the

partitioning of the data to optimize data placement. RDD has been implemented within

the Spark [154] framework.

2.5.2 Resubmission

Resubmission tries to re-execute components to mitigate failures. Resubmission or re-

dundancy in time helps recover from transient faults or soft errors. Resubmission is em-

ployed as an effective fault-tolerant mechanism by around 80% of the WFMSs [110]. Li et

al. [86] claim that 41% of failures are recovered in their work through resubmission. Some

of the WFMS that support resubmission for fault-tolerance are Askalon, Chemomentum,

GWES, Pegasus, P-Grade, Proactive, Triana, Unicore [110].

Resubmission can be classified into two levels: workflow and task resubmission as

illustrated in Figure 2.8. In workflow resubmission, as the name suggests, the entire

application or a partial workflow is resubmitted [15].

Task resubmission, retries the same task to mitigate failure. Task retry/resubmission

can be either done on the same resource or another resource [110]. Resubmission on

the same resource is applicable when a task fails due to a transient failure or due to file

30 A Taxonomy and Survey

Resubmission

WorkflowTask

Arbitrary

Resource

Pre-defined

Resource

Another

Resource

Same

Resource

Reliable

Resource

ReactiveProactive

Resubmission

Mechanism

Hybrid Approach

with Replication

Combined with

Checkpointing

Meta-HeuristicsHeuristics

Resubmission Scheduling Techniques

Figure 2.8: Taxonomy of resubmission fault-tolerant technique.

staging issues. In other cases this might not be the best approach to mitigate failures.

Resubmission of the task can be either done on a fixed predefined resource [67] or on

an arbitrary resource or a resource with high reliability. A fixed predefined resource is

not necessarily the same resource, but the drawbacks are similar to that. Selecting a re-

source arbitrarily without a strategy is not the most effective solution to avoid failures.

Employing a strategy whilst selecting resources, like choosing resources with high relia-

bility, increases the probability of addressing failures. Zhang et al. [155] rank resources

based on a metric called reliability prediction and use this metric to schedule their task

retries.

Resources considered can either be homogeneous or heterogeneous in nature. In a

heterogeneous resource type environment, different resource selection strategies have

different impact on cost and time. A dynamic algorithm must take into consideration

deadline and budget restrictions, and select resources that provide fault-tolerance based

on these constraints. Clouds providers like Amazon, offer resources in an auction-like

mechanism for low cost with low SLAs called spot instances. Poola et al. [112] have

proposed a just-in-time dynamic algorithm that uses these low cost instances to provide

fault-tolerant schedules considering the deadline constraint. They resubmit tasks upon

failures to either spot or on-demand instances based on the criticality of the workflow

deadline. This algorithm is shown to provide fault-tolerant schedule whilst reducing

costs.

Algorithms usually have a predefined limit for the number of retries that they will

attempt [42, 155] to resolve a failure. Some algorithms also have a time interval in addi-

tion to the number of retries threshold [67]. However, there are algorithms that consider

infinite retries as they assume the faults to be transient in nature [26].

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 31

Resubmission

WorkflowTask

Arbitrary

Resource

Pre-defined

Resource

Another

Resource

Same

Resource

Reliable

Resource

ReactiveProactive

Resubmission

Mechanism

Hybrid Approach

with Replication

Combined with

Checkpointing

Meta-HeuristicsHeuristics

Resubmission Scheduling Techniques

Figure 2.9: Different approaches used in resubmission algorithms.

Algorithms using resubmission can be broadly classified into four types as shown in

Figure 2.9: Heuristic based [67,86,151], meta-heuristic based [15], hybrid of resubmission and

checkpointing [155], and hybrid of resubmission and replication [109]. Heuristic based ap-

proaches are proven to be highly effective, although these solutions are often are based

on a lot of assumptions and specific to a particular use case. Meta-heuristics provide near

optimal solutions and are more generic approaches; however, they are usually time and

memory consuming. Hybrid approaches with checkpointing saves time, do not perform

redundant computing, and does not over utilize resources, when compared with replica-

tion or resubmission. However, these approaches delay the makespan as resubmission

retries a task in case of failures, although, checkpointing reruns from a saved state it still

requires additional time delaying the makespan. Replication with redundant approaches

waste resources but do not delay the makespan as the replicas eliminates the necessity of

rerunning a task.

Resubmission

WorkflowTask

Arbitrary

Resource

Pre-defined

Resource

Another

Resource

Same

Resource

Reliable

Resource

ReactiveProactive

Resubmission

Mechanism

Hybrid Approach

with Replication

Combined with

Checkpointing

Meta-HeuristicsHeuristics

Resubmission Scheduling Techniques

Figure 2.10: Classification of resubmission mechanisms.

Finally, resubmission fault-tolerant mechanisms are employed in two major ways

(Figure 2.10): proactive and reactive. In the proactive mechanism [15, 116], the algorithm

predicts a failure or a performance slowdown of a machine and reschedules it on another

resource to avoid delays or failures. In reactive mechanism, the algorithms resubmit tasks

or a workflow after a failure occurs.

Resubmission in workflow provides resilience for various faults. However, the draw-

back of this mechanism is the degradation in the total execution time when large number

32 A Taxonomy and Survey

Checkpointing

System

Level

User

Level

Task/

Activity

Application/

Workflow

Communication

Induced

UncoordinatedCoordinated Hardware

Level

Operating

System Level

Heavy-WeightLight-Weight

Workflow Level

Checkpointing

Figure 2.11: Taxonomy of checkpointing mechanism.

of failures occurs. Resubmission is ideal for an application during the execution phase

and replication is well suited at the scheduling phase [109].

2.5.3 Checkpointing

Checkpointing is an effective and widely used fault-tolerant mechanism. In this process,

states of the running process are periodically saved to a reliable storage. These saved

states are called checkpoints. Checkpointing restores the saved state after a failure, i.e., the

process will be restarted from its last checkpoint or the saved state. Depending on the

host, we can restart the process on the same machine (if it has not failed) or on another

machine [32, 53]. WFMS actively employ checkpointing as their fault-tolerant mecha-

nism. More than 60% of these systems use checkpointing to provide resilience [110].

A checkpoint data file typically contains data, states and stack segments of the pro-

cess. It also stores information of open files, pending signals and CPU states [48].

Checkpoint Selection Strategies

How often or when to take checkpoints is an important question while checkpointing.

Various systems employ different checkpoint selection strategies. Prominent selection

strategies are [25, 48, 51, 119]:

• event activity as a checkpoint.

• take checkpoints at the start and end time of an activity.

• take a checkpoint at the beginning and then after each decision activity.

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 33

• user defines some static stages during build-stage.

• take checkpoint when runtime completion duration is greater than maximum ac-

tivity duration.

• take checkpoint when runtime completion duration is greater than mean duration

of the activity.

• when an activity fails.

• when an important activity finishes completion.

• after a user defined deadline (e.g., percentage of workflow completion).

• underlying system changes like availability of services.

• application defined stages.

• based on linguistic constructs for intervention of programmers.

Issues and Challenges

Checkpointing provides fault-tolerance against transient faults only. If there is a design

fault, checkpointing cannot help recover from it [49]. Another challenge here is to decide

the number of checkpoints to be taken. As the frequency of checkpoints increases, the

overhead also increases, whereas lower checkpoints leads to excessive loss of computa-

tion [134]. The overhead imposed by checkpointing depends on the level that it is applied

(e.g., process or virtual machine level). A mathematical model is provided in [118] to cal-

culate the checkpointing overhead of virtual machines.

In message-passing systems inter-process dependencies are introduced by messages.

When one or more processes fail, these dependencies may lead to a restart even if the

processes did not fail. This is called rollback propagation that may lead the system to

the initial state. This situation is called domino effect [51]. Domino effect occurs if check-

points are taken independently in an uncoordinated fashion in a system. This can be

avoided by performing checkpoints in a coordinated manner. Further, if checkpoints are

taken to maintain system-wide consistency then domino effect can be avoided [51].

34 A Taxonomy and Survey

Taxonomy of Checkpointing

As shown in Figure 2.11, there are four major checkpointing approaches:

Application/workflow-level, task/activity level, user level, and system level implementa-

tion.

In application/workflow-level checkpointing implementation is usually performed

within the source code, or is automatically injected into the code using external tools.

It captures the state of the entire workflow and its intermediate data [48, 134]. This can

be further classified into coordinated, uncoordinated, or communication-induced [51]. Coor-

dinated approach takes checkpoints in a synchronized fashion to maintain a global state.

Recovery in this approach is simple and domino effect is not experienced in this method.

It maintains only one permanent checkpoint on a reliable storage, eliminating the need

for garbage collection. The drawback is incurring a large latency in committing the out-

put [51].

Coordinated checkpointing can further be achieved in the following ways: Non-

blocking Checkpoint Coordination, Checkpointing with Synchronized Clocks, Checkpointing

and Communication Reliability, and Minimal Checkpoint Coordination.

Non-Blocking Checkpoint Coordination: Here, the initiator takes a checkpoint and broad-

casts a checkpoint request to all other activities. Each activity or task takes a checkpoint

once it receives this checkpoint request and then further re-broadcasts the request to all

tasks/activities.

Checkpointing with Synchronized Clocks: This approach is done with loosely synchro-

nized clocks that trigger local checkpointing for all activities without an initiator.

Checkpointing and Communication Reliability: This protocol saves all the in-transit mes-

sages by their destination tasks. These messages need not be saved when communication

channels are assumed to be unreliable.

Minimal Checkpoint Coordination: In this case, only a minimum subset of the tasks/ac-

tivities is saved as checkpoints. The initiator identifies all activities with which it has

communicated since the last checkpoint and sends them a request. Upon receiving the

request, each activity further identifies other activities it has communicated since the last

checkpoint and sends them a request.

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 35

Checkpointing

System

Level

User

Level

Task/

Activity

Application/

Workflow

Communication

Induced

UncoordinatedCoordinated Hardware

Level

Operating

System Level

Heavy-WeightLight-Weight

Workflow Level

Checkpointing

Figure 2.12: Workflow-level checkpointing.

Flat Hierarchical

Failure Masking

Online Offline

Checkpointing
Scheme

Figure 2.13: Checkpointing schemes.

Uncoordinated checkpointing allows each task to decide the frequency and time to save

states. In this method, there is a possibility of a domino effect. As this approach is not

synchronized, it may take many useless checkpoints that are not part of a global consis-

tent state. This increases overhead and does not enhance the recovery process. Multiple

uncoordinated checkpoints force garbage collection to be invoked periodically.

The last type of workflow-level checkpointing is Communication-Induced Checkpoint-

ing. In this protocol the information about checkpointing is piggybacked in the appli-

cation messages. The receiver then uses this information to decide whether or not to

checkpoint.

Based on the intermediate data, workflow-level checkpointing can also be sub-

categorized into two types: Light-weight and Heavy-Weight as illustrated in Figure 2.12.

In Light-weight checkpointing the intermediate data is not stored, only a reference to it

is stored assuming that the storage is reliable. Alternatively, heavy-weight checkpoint-

ing stores the intermediate data along with the required state information in a check-

point [48, 134].

Task-level checkpointing saves the register, stack, memory, and intermediate states for

every individual task running on a virtual machine [117] or a processor [48,134]. When a

failure occurs the task can restart from the intermediate saved state and this is especially

important when the failures are independent. This helps recover individual units of the

application.

User-level checkpointing uses a library to do checkpoints and the application programs

are linked to it. This mechanism is not transparent as the applications are modified,

recompiled and re-linked. The drawback being this approach cannot checkpoint certain

shell scripts, system calls, and parallel application as the library may not be able access

system files [49].

36 A Taxonomy and Survey

System-level checkpointing can be done either at the operating system level or the hardware

level. This mechanism is transparent to the user and it does not necessarily modify the

application program code. The problem with operating system level checkpointing is

that it cannot be portable and modification at the kernel level is not always possible and

difficult to achieve [49].

Performance Optimization

As discussed earlier, optimizing performance in a checkpoint operation is a challenge.

The frequency of checkpoints impacts the storage and computation load. Checkpointing

schemes can be broadly divided into online and offline checkpointing schemes as illus-

trated in Figure 2.13.

An offline checkpointing scheme determines the frequency for a task before its exe-

cution. The drawback being it is not an adaptive approach. On the other hand, online

schemes determine the checkpointing interval dynamically based on the frequency of

fault occurrences and the workflow deadline. Dynamic checkpointing is more adaptive

and is able to optimize performance of the WFMS.

Checkpointing in WFMS

WFMSs employ checkpointing at various levels. At Workflow-level, two types of check-

pointing can be employed Light-weight and Heavy-weight as stated earlier. Light-weight

checkpointing is used by Chemomentum, GWEE, GWES, Pegasus, P-grade, and Traina

WFMS. Similarly, heavy-weight checkpointing is employed by GWEE and GWES. Task-

level checkpointing is employed by both Pegasus and P-Grade. Proactive WFMS check-

points at the operating system level [110].

Kepler also checkpoints at the workflow layer [101], whereas, Karajan allows check-

pointing the current state of the workflow at a global level. Here, timed or program-

directed checkpoints can be taken, or checkpoints can be taken automatically at precon-

figured time intervals, or it can be taken manually [139]. SwinDeW-C checkpoints using

a minimum time redundancy based selection strategy [91].

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 37

2.5.4 Provenance

Provenance is defined as the process of metadata management. It describes the origins

of data, the processes involved in its production, and the transformations it has under-

gone. Provenance can be associated with process(es) that aid data creation [127]. Prove-

nance captures multiple important information like dynamics of control and data flows,

their progressions, execution information, file locations, input and output information,

workflow structure, form, workflow evolution, and system information [141]. Prove-

nance is essential for interpreting data, determining its quality and ownership, providing

reproducible results, optimizing efficiency, troubleshooting, and also to provide fault-

tolerance [35, 36].

RetrospectiveProspective

Provenance

Failure Models Distributions

Log-NormalWeibullExponentialPoisson UniformLog-NormalWeibullExponentialPoisson Uniform

Figure 2.14: Forms of provenance.

Flat Hierarchical

Failure Masking

Online Offline

Checkpointing
Scheme

Figure 2.15: Forms of failure masking.

As detailed in Figure 2.14, provenance can be of two forms: prospective and retrospec-

tive [36]. Prospective provenance captures the specifications that need to be followed to

generate a data product or class of data products. Retrospective provenance captures the

executed steps similar to a detailed log of task execution. It also captures information

about the execution environment used to derive a specific data product.

Provenance information is used to rerun workflows, these reruns can overcome tran-

sient system errors [126]. Provenance allows users to trace state transitions and detect the

cause of inconsistencies. It is used to design recovery or undo paths from workflow fault

states at the task granularity level. It is used as an effective tool to provide fault-tolerance

in several WFMS.

2.5.5 Rescue Workflow

The rescue workflow technique ignores failed tasks and executes the rest of the workflow

until no more forward progress can be made.

A rescue workflow description called rescue DAG containing statistical information

38 A Taxonomy and Survey

of the failed nodes is generated, which is used for later resubmission [148]. Rescue work-

flow technique is used by Askalon, Kepler and DAGMan [91, 148].

2.5.6 User-Defined Exception Handling

In this fault-tolerant technique, users can specify a particular action or a predefined so-

lution for certain task failures in a workflow. Such a technique is called user-defined

exception handling [148]. This could also be used to define alternate tasks for predefined

type of failures [67].

This mechanism is employed by Karajan, GWES, Proactive, and Kepler among the

prominent WFMS [91, 110].

2.5.7 Alternate Task

The alternate task fault-tolerant scheduling technique defines an alternative implemen-

tation of a particular task. When the predefined task fails, its alternative implementation

is used for execution. This technique is particularly useful when two or more different

implementations are available for a task. Each implementation has different execution

characteristics but take the same input and produce same outputs. For example, there

could be a task with two implementations, where one is less memory or compute inten-

sive but unreliable, while the alternate implementation is memory intensive or compute

intensive but more reliable. In such cases, the later implementation can be used as an

alternative task.

This technique is also useful to semantically undo the effect of a failed task, that is,

alternate tasks can be used to clean up the states and data of a partially executed failed

task [67, 148].

2.5.8 Failure Masking

Failure masking fault-tolerant technique ensures service availability, despite failures in

tasks or resources [49]. This is typically achieved by redundancy, and in the event of

2.5 Taxonomy of Fault-Tolerant Scheduling Algorithms 39

failure the services are provided by the active (i.e., surviving) tasks or resources masking

failures. Masking can be of two forms: hierarchical group masking and flat group masking.

Hierarchical group masking uses a coordinator to monitor the redundant components

and decides which copy should replace the failed component. The major drawback of

this approach is the single point of failure of the coordinator.

Flat group masking resolves this single point of failure by being symmetric. That is, the

redundant components are transparent and a voting process is used to select the replace-

ment in adversity. This approach does not have a single point of failure, but imposes

more overhead to the system.

2.5.9 Slack Time

Task slack time represents a time window within which the task can be delayed without

extending the makespan. It is intuitively related to the robustness of the schedule. Slack

time is computed as the minimum spare time on any path from the considered node to

the exit node of the workflow. The formal definition of slack is given by Sakellariou and

Zhao in [116].

Shi et al. [124] present a robust scheduling for heterogeneous resources using slack

time to schedule tasks. They present a ε-constraint method where robustness is an ob-

jective and deadline is a constraint. This scheduling algorithm tries to find schedules

with maximum slack time without exceeding the specified deadline. Similarly, Poola et

al. [111] presented a heuristic considering heterogeneous cloud resources, they divided

the workflow into partial critical paths, and based on the deadline and budget added

slack time to these partial critical path’s estimated execution time. Slack time added to

the schedule enables the schedule time to tolerate performance variations and failures up

to a certain extent, without violating the deadline.

2.5.10 Trust-Based Scheduling Algorithms

Distributed environments have uncertainties and are unreliable, added to this, some

service providers may slightly violate SLAs (with respect to performance, startup or

shutdown times) for many reasons including profitability. Therefore, WFMS typically

40 A Taxonomy and Survey

Trust

IntegratedRecommendationDirect

GlobalLocal

Figure 2.16: Methods for evaluating trust in trust-based algorithms used for fault-tolerant
WFMS.

employ trust factor to make the schedule trustworthy. Trust is composed of many at-

tributes including reliability, dependability, honesty, truthfulness, competence, and time-

liness [142]. Including trust into workflow management significantly increases fault-

tolerance and decreases failure probability of a schedule [142, 146].

Conventionally, trust models are of two types: identity-based and behavior-based.

Identity-based trust model uses trust certificates to verify the reliabilities of components.

behavior-based models observe and take the cumulative historical transaction behavior

and also feedback of entities to evaluate the reliability [87].

Trust is evaluated by three major methods as shown in Figure 2.16: Direct trust, Recom-

mendation Trust, and Integrated Trust. Direct trust is derived from the historical transaction

between the user and the service. Here, no third party is used to evaluate the trust of

the service [87]. Direct trust can be broadly of two types local trust and global trust [130].

local trust is computed based on a local system’s transactions and similarly global trust is

evaluated considering the entire global system’s history. Yang et al. [146] use direct trust

in their scheduling algorithm to decrease failure probability of task assignments and to

improve the trustworthiness of the execution environment.

Recommendation trust is where the user consults a third party to quantify the trust

of a service [87]. Integration trust is a combination of both direct and recommendation

trust. This is usually done by a weighted approach [130]. Tan et al. [130] have proposed

a reliable workflow scheduling algorithm using fuzzy technique. They propose an inte-

grated trust metric combining direct trust and recommendation trust using a weighted

approach.

Some of the drawbacks of trust models are: 1) majority of the trust models are de-

signed for a particular environment under multiple assumptions. 2) trust is mostly stud-

2.6 Modeling of Failures in Workflow Management Systems 41

Statistical Failure Modeling

Failure Size Failure Duration Task Failure Resource Failure

Poisson Exponential Weibull Uniform Weibull Uniform Weibull Log Normal

Figure 2.17: Distributions used for modeling failures for workflows in distributed envi-
ronments.

ied in isolation without involving other system components [87].

2.6 Modeling of Failures in Workflow Management Systems

Failure models define failure rates, frequencies and other statistics observed in real sys-

tems, these models are used mainly in simulation and prediction systems to recreate

failures. Failures can follow Poisson, Exponential, Weibull, Log normal, or uniform dis-

tributions, as illustrated in Figure 2.17. Failures can be independent or co-related. Benoit

et al [14] model resource failure through Poisson distribution, they assume failures to be

statistically independent and assume a constant failure rate for each processor. Chen and

Deelman [26] also assume failure to be independent but use an exponential distribution

and also use a non constant failure rate. Dongarra et al’s. [46] work is similar to [26], but

they assume constant failure rate for each processor.

Weibull distribution is widely used in failure modeling in different ways. Litke et

al. [90] use Weibull distribution to estimate the failure probability of the next assigned

task for a specific resource based on the estimated execution time of each task on the

resource. Plankensteiner et al. [110] use a combination of distribution to model failures.

They use Weibull distribution for mean time between failure (MTBF) for clusters and

to model the size of failure. Further, they use Log-Normal distribution to estimate the

duration of failure. Rahman et al. [113] use Weibull distribution in their simulation envi-

ronment to determine whether a task execution will fail or succeed. If a task is likely to

fail, they generate a random number from a uniform distribution and if that number is

less than the failure probability of a resource at a particular grid, then the task is failed.

Distributions are used to evaluate reliability of tasks and resources. Wang et al. [143]

42 A Taxonomy and Survey

uses exponential distribution to evaluate task reliability based on real-time reputation.

The reputation is defined by using their task failure rate.

All the above works consider failures to be independent. However, Javadi et al. [70]

consider failures to be spatial and temporally correlated. Spatial correlations of failures

imply that multiple failures occur on various nodes with a specified time interval. Tem-

poral correlation denotes skewness in failures over time. They use spherical covariance

model to determine temporal failure correlation and Weibull distribution for failure mod-

eling.

2.7 Metrics Used to Quantify Fault-Tolerance

There are various metrics to measure the robustness or fault-tolerance of a workflow

schedule. Each metric measures a different aspect and reports the schedule robustness

based on certain constraints and assumptions. We present some prominent metrics used

in the literature. The makespan considered in most cases is the actual makespan and not

the predicted makespan.

Makespan Standard Deviation: It reports the standard deviation of the makespan.

Narrower the distribution, better the schedule [23].

Makespan differential Entropy: Measures the differential entropy of the distribution,

if the uncertainty is less, then the schedule is more robust [17].

Mean slack: Amount of time the task can be delayed without delaying the schedule

is called task slack time. The slack of a schedule is the summation of slack times of all the

tasks. Hence, more the slack in a schedule means more failures it can tolerate. Therefore,

the schedule is more robust [17].

Probabilistic metric: Defines the makespan probability within two bounds. If the

probability is high, then the robustness is high. This is because higher probability indi-

cates that the makespan is close to the average makespan [123].

Lateness likelihood: A schedule is late if the makespan exceeds a given deadline.

This metric gives the probability of the schedule to be late. If the lateness likelihood is

high, the robustness of the schedule is low [124].

2.7 Metrics Used to Quantify Fault-Tolerance 43

Reliability: Reliability of a compute service during a given time is defined as per the

equation 2.1,

Reliability = (1− (numFailure/n)) ∗mtt f , (2.1)

where, numFailure is the number of failures experiences by the users, n is the number of

users, and mtt f is the promised mean time to failure [58].

Workflow Failure Ratio: It is the percentage of failed workflows due to one or more

task failures [6].

Request Rejection Ratio: It is the ratio of number of rejected requests to the total

requests [6].

Workflow Success Probability: The success probability of the entire workflow is

given as a product of the success probabilities of individual tasks [155].

Standard Length Ratio: It indicates the performance of the workflow. It is the ratio

of turnaround time to the critical path time including the communication time between

tasks. Turnaround time is the workflows’ running time. Lower value of this metric sig-

nifies better performance [155].

Trust: This metric presents the trustworthiness of a particular resource. It is given by

the following equation

Trust(Si) = wi ∗ DT(Si) + (1− wi) ∗ RT(Si), (2.2)

where, DT(Si) is the direct trust based on historical experiences of the ith service, RT(Si)

is the recommendation trust by other users and wi is the weight of DT(Si) and RT(Si) for

the ith service [130].

Failure probability (Rp): It is the likelihood of the workflow to finish before the given

deadline [111, 124], which can be formulated as below:

Rp = (TotalRun− FailedRun)/(TotalRun), (2.3)

where TotalRun is number of times the experiment was conducted and FailedRun is

number of times the constraint, f inishtn 6 D was violated. Here, D is the deadline of

the workflow and f inishtn is the workflow elapsed time.

44 A Taxonomy and Survey

Tolerance time (Rt): It is the amount of time a workflow can be delayed without vi-

olating the deadline constraint. This provides an intuitive measurement of robustness

given the same schedule and resource to task mapping, expressing the amount of uncer-

tainties it can further withstand. It is given by the Equation 2.4

Rt = D− f inishtn . (2.4)

2.8 Survey of Workflow Management Systems and Frameworks

This section provides a detailed view of the state-of-the-art WFMSs and also provide

information about the different fault-tolerant techniques used, as described in section 2.5.

These WFMSs are summarized in Table 2.1.

2.8.1 Askalon

Askalon [53] is a WFMS developed at the University of Innsbruck, Austria. It facil-

itates the development and optimization of applications on grid computing environ-

ments [53, 148]. The system architecture consists of the following components: 1) Sched-

uler: maps single or multiple workflows tasks onto the grid; 2)Enactment Engine: ensures

reliable and fault-tolerant execution of applications; 3)Resource Manager: is responsible

for negotiation, reservation, allocation of resources and automatic deployment of ser-

vices. It also shields the user from low-level grid middleware technology; 4) Performance

Analysis: supports automatic instrumentation and bottleneck detection (e.g., excessive

synchronization, communication, load imbalance, inefficiency, or non scalability) within

the grid; 5) Performance Prediction service: estimates execution times of workflow activi-

ties through a training phase and statistical methods based on a combination of historical

data obtained from the training phase and analytical models [53, 54].

Askalon uses an xml-based workflow language called AGWL for workflow orchestra-

tion. It can be used to specify DAG-constructs, parallel loops and conditional statements

such as switch and if/then/else. AGWL can express sequence, parallelism choice and

2.8 Survey of Workflow Management Systems and Frameworks 45
Ta

bl
e

2.
1:

Fe
at

ur
es

,p
ro

ve
na

nc
e

in
fo

rm
at

io
n

an
d

fa
ul

t-
to

le
ra

nt
st

ra
te

gi
es

of
w

or
kfl

ow
m

an
ag

em
en

ts
ys

te
m

s

W
FM

S
Fe

at
ur

es
Pr

ov
en

an
ce

Fa
ul

t-
to

le
ra

nt
St

ra
te

gy

A
sk

al
on

U
ni

ve
rs

it
y

of
In

ns
br

uc
k

,A
us

tr
ia

.
h
t
t
p
:
/
/
w
w
w
.
d
p
s
.
u
i
b
k
.
a
c
.
a
t
/

p
r
o
j
e
c
t
s
/
a
s
k
a
l
o
n
/

•
Se

rv
ic

e
O

ri
en

te
d

A
rc

hi
te

ct
ur

e
•

Si
ng

le
A

cc
es

s
U

se
r

Po
rt

al
•

U
M

L
W

or
kfl

ow
Ed

it
or

•
X

50
9

ce
rt

ifi
ca

te
s

su
pp

or
t

•
A

m
az

on
EC

2
A

PI
su

pp
or

t
•

G
ri

ds
an

d
cl

ou
ds

N
/A

R
es

ub
m

is
si

on
,

re
pl

ic
at

io
n,

ch
ec

kp
oi

nt
in

g/
re

st
ar

t,
m

i-
gr

at
io

n,
us

er
-d

efi
ne

d
ex

ce
pt

io
n,

re
sc

ue
w

or
kfl

ow
.

Pe
ga

su
s

U
SC

In
fo

rm
at

io
n

Sc
ie

nc
es

In
st

it
ut

e
an

d
th

e
U

ni
ve

rs
it

y
of

W
is

co
ns

in
M

ad
is

on
.

h
t
t
p
:
/
/
p
e
g
a
s
u
s
.
i
s
i
.
e
d
u
/

•
Po

rt
ab

ili
ty

/
R

eu
se

•
Pe

rf
or

m
an

ce
an

d
re

lia
bi

lit
y

•
Sc

al
ab

ili
ty

•
Pr

ov
en

an
ce

•
D

at
a

M
an

ag
em

en
t

•
D

es
kt

op
s,

cl
us

te
rs

,g
ri

ds
,a

nd
cl

ou
ds

K
ee

ps
tr

ac
k

of
da

ta
lo

ca
-

ti
on

s,
da

ta
re

su
lt

s,
an

d
so

ft
-

w
ar

e
us

ed
w

it
h

it
s

pa
ra

m
e-

te
rs

.

Ta
sk

R
es

ub
m

is
si

on
,

W
or

kfl
ow

R
es

ub
m

is
si

on
,

w
or

kfl
ow

-l
ev

el
ch

ec
kp

oi
nt

in
g,

al
te

rn
at

iv
e

da
ta

so
ur

ce
s,

re
sc

ue
w

or
kfl

ow
.

Tr
ia

na
C

ar
di

ff
U

ni
ve

rs
it

y,
U

ni
te

d
K

in
gd

om
.

•
M

od
ul

ar
ja

va
w

or
kfl

ow
en

vi
ro

nm
en

t
•

Jo
b

qu
eu

in
g

•
C

om
pr

eh
en

si
ve

to
ol

bo
x

lib
ra

ri
es

•
G

ri
ds

an
d

cl
ou

ds

N
/A

Li
gh

t-
w

ei
gh

t
ch

ec
kp

oi
nt

in
g

an
d

re
st

ar
t

of
se

rv
ic

es
ar

e
su

pp
or

te
d

at
th

e
w

or
kfl

ow
le

ve
l.

R
es

ub
m

is
si

on
s

ar
e

su
pp

or
te

d
at

th
e

ta
sk

le
ve

lb
y

th
e

w
or

kfl
ow

en
gi

ne
,a

nd
al

te
rn

at
e

ta
sk

te
ch

ni
qu

e
is

al
so

em
pl

oy
ed

.

U
ni

co
re

6
C

ol
la

bo
ra

ti
on

be
tw

ee
n

G
er

m
an

re
se

ar
ch

in
st

i-
tu

ti
on

s
an

d
in

du
st

ri
es

.

•
Su

pp
or

tf
or

vi
rt

ua
lo

rg
an

iz
at

io
ns

,X
.5

09
ce

rt
ifi

-
ca

te
s

•
Im

pr
ov

ed
da

ta
m

an
ag

em
en

t
th

ro
ug

h
D

at
aF

in
de

r
•

Su
pp

or
ts

fo
re

ac
h

lo
op

s
an

d
it

er
at

io
n

ov
er

fil
e-

se
ts

•
G

ri
ds

an
d

cl
us

te
r

N
/A

R
es

ub
m

is
si

on
an

d
re

lia
bi

lit
y

m
ea

su
re

m
en

t
of

ta
sk

an
d

w
or

kfl
ow

s
ar

e
su

pp
or

te
d.

K
ep

la
r

U
C

D
av

is
,

U
C

Sa
nt

a
Ba

rb
ar

a,
an

d
U

C
Sa

n
D

ie
go

.
h
t
t
p
s
:
/
/
k
e
p
l
e
r
-
p
r
o
j
e
c
t
.
o
r
g
/

•
In

de
pe

nd
en

tl
y

Ex
te

ns
ib

le
,

R
el

ia
bl

e,
op

en
an

d
a

co
m

pr
eh

en
si

ve
sy

st
em

•
Su

pp
or

ts
m

ul
ti

-d
is

ci
pl

in
ar

y
ap

pl
ic

at
io

ns
•

G
ri

ds
,c

lu
st

er
s,

an
d

cl
ou

ds

D
at

a
an

d
pr

oc
es

s
pr

ov
e-

na
nc

e
in

fo
rm

at
io

n
is

re
co

rd
ed

.

R
es

ub
m

is
si

on
s,

ch
ec

kp
oi

nt
in

g,
al

te
rn

at
iv

e
ve

rs
io

ns
,

er
ro

r-
st

at
e

an
d

us
er

-d
efi

ne
d

ex
ce

pt
io

n
ha

nd
lin

g
m

ec
h-

an
is

m
s

to
ad

dr
es

s
is

su
es

ar
e

em
pl

oy
ed

.

C
lo

ud
bu

s
W

F
En

gi
ne

Th
e

U
ni

ve
rs

it
y

of
M

el
bo

ur
ne

,A
us

tr
al

ia
.

h
t
t
p
:
/
/
c
l
o
u
d
b
u
s
.
o
r
g
/
w
o
r
k
f
l
o
w
/

•
Ea

sy
to

us
e

G
ra

ph
ic

al
ed

it
or

•
U

se
r-

fr
ie

nd
ly

po
rt

al
fo

r
di

sc
ov

er
y,

m
on

it
or

in
g

an
d

sc
he

du
lin

g
•

G
ri

ds
,c

lu
st

er
s,

an
d

cl
ou

ds

Pr
ov

en
an

ce
in

fo
rm

at
io

n
of

da
ta

is
re

co
rd

ed
.

Fa
ilu

re
ar

e
ha

nd
le

d
by

re
su

bm
it

ti
ng

th
e

ta
sk

s
to

re
-

so
ur

ce
s.

Ta
ve

rn
a

C
re

at
ed

by
th

e
m

yG
ri

d
te

am
.

•
C

ap
ab

le
of

pe
rf

or
m

in
g

it
er

at
io

ns
an

d
lo

op
in

g
•

Su
pp

or
ts

da
ta

st
re

am
in

g
•

G
ri

ds
,c

lu
st

er
s,

an
d

cl
ou

ds

Pr
ov

en
an

ce
su

it
e

re
co

rd
s

se
rv

ic
e

in
vo

ca
ti

on
s

an
d

w
or

kfl
ow

re
su

lt
s

bo
th

in
te

rm
ed

ia
te

an
d

fin
al

.

R
es

ub
m

is
si

on
an

d
al

te
rn

at
e

re
so

ur
ce

s.

e-
Sc

ie
nc

e
C

en
tr

al
N

ew
ca

st
le

U
ni

ve
rs

it
y,

U
ni

te
d

K
in

gd
om

.
h
t
t
p
:
/
/
w
w
w
.
e
s
c
i
e
n
c
e
c
e
n
t
r
a
l
.
c
o
.
u
k
/

•
Ea

sy
an

d
ef

fic
ie

nt
ac

ce
ss

th
ro

ug
h

w
eb

br
ow

se
r

•
Pr

ov
id

es
A

PI
s

fo
r

ex
te

rn
al

ap
pl

ic
at

io
ns

•
A

ll
da

ta
ar

e
ve

rs
io

ne
d

•
Pr

iv
at

e
an

d
pu

bl
ic

cl
ou

ds

e-
SC

pr
ov

en
an

ce
se

rv
ic

e
co

lle
ct

s
in

fo
rm

at
io

n
re

ga
rd

-
in

g
al

ls
ys

te
m

ev
en

ts
.

Pr
ov

id
es

fin
e

gr
ai

ne
d

se
cu

ri
ty

co
nt

ro
lm

od
el

ed
ar

ou
nd

gr
ou

ps
an

d
us

er
-t

o-
us

er
co

nn
ec

ti
on

s.

Sw
in

D
eW

-C
Sw

in
bu

rn
e

U
ni

ve
rs

it
y

of
Te

ch
no

lo
gy

,
A

us
-

tr
al

ia
.

•
C

lo
ud

ba
se

d
pe

er
-t

o-
pe

er
W

FM
S

•
W

eb
po

rt
al

al
lo

w
s

us
er

s
to

ac
ce

ss
en

ti
re

W
FM

S
•

C
lo

ud
s

da
ta

pr
ov

en
an

ce
is

re
co

rd
ed

du
ri

ng
w

or
k-

flo
w

ex
ec

ut
io

n

C
he

ck
po

in
ti

ng
is

em
pl

oy
ed

.
Q

oS
m

an
ag

em
en

t
co

m
-

po
ne

nt
s

in
cl

ud
es

pe
rf

or
m

an
ce

m
an

ag
em

en
t,

da
ta

m
an

-
ag

em
en

ta
nd

se
cu

ri
ty

m
an

ag
em

en
t.

http://www.dps.uibk.ac.at/projects/askalon/
http://www.dps.uibk.ac.at/projects/askalon/
http://pegasus.isi.edu/
https://kepler-project.org/
http://cloudbus.org/workflow/
http://www.esciencecentral.co.uk/

46 A Taxonomy and Survey

iteration workflow structures. Askalon uses a graphical interface called Teuta to sup-

port the graphical specification of grid workflow applications based on the UML activity

diagram [53, 54].

Askalon can detect faults at the following levels. 1) Hardware level: Machine crashes

and network failures. 2) OS level: Exceeded disk quota, out of disk space, and file not

found errors. 3) Middleware-level: Failed authentication, failed job-submission, unreach-

able services and file staging failures. 4) Workflow level: Unavailable input data, data

movement faults. However, the system cannot detect task level faults such as memory

leak, uncaught exception, deadlock/livelock, incorrect output data, missing shared li-

braries, and job crashes. Further, the system can recover from the following faults at

different levels: 1) Hardware level: Machine crashes and network failures; 2) OS level:

Exceeded disk quota, out of disk space; 3) Middleware-level: Failed job-submission; 4)

Workflow level: Data movement faults. Nonetheless, it does not recover from task level

faults and user-defined exceptions. Fault-tolerant techniques like checkpointing, migra-

tion, restart, retry and replication are employed to recover from these faults [53, 54, 110].

2.8.2 Pegasus

It is a project of the USC Information Sciences Institute and the Computer Science de-

partment at the University of Wisconsin Madison, United States. Pegasus enables sci-

entists to construct workflows in abstract terms by automatically mapping the high-level

workflow descriptions onto distributed infrastructures (e.g., Condor, Globus, or Amazon

EC2). Multiple workflow applications can be executed in this WFMS [3].

Workflows can be described using DAX, a DAG XML description. The abstract work-

flow describes application components and their dependencies in the form of a DAG [42].

Workflow application can be executed in variety of target platforms including local

machine, clusters, grids and clouds. The WFMS executes jobs, manages data, monitors

execution and handles failures. Pegasus WFMS has five major components: 1) Mapper,

generates an executable workflow from an abstract workflow. It also restructures the

workflow to maximize performance. It further adds transformations aiding in data man-

agement and provenance generation; 2) Local Execution Engine, submits jobs to the local

2.8 Survey of Workflow Management Systems and Frameworks 47

scheduling queue by managing dependencies and changing the state; 3) Job Scheduler,

schedules and manages individual jobs on local and remote resources; 4) Remote Execu-

tion Engine, manages execution of one or more tasks on one or more remote nodes; 5)

Monitoring Component, monitors the workflow execution. It records the tasks logs, per-

formance and provenance information in a workflow database. It notifies events such as

failures, success and statuses [43].

Pegasus stores and queries information about the environment, such as storage sys-

tems, compute nodes, data location, through various catalogs. Pegasus discovers log-

ical files using the Replica Catalog. It looks up various user executables and binaries

in Transformation Catalog. Site Catalog is used to locate computational and storage re-

sources [42, 43].

Pegasus has its own lightweight job monitoring service called Kickstart. The map-

per embeds all jobs with Kickstart [43]. This helps in getting runtime provenance and

performance information of the job. This information is further used for monitoring the

application.

Resource selection is done using the knowledge of available resources, their char-

acteristics and the location of the input data. Pegasus supports pluggable components

where a customized approach for site selection can be performed. It has few choices of

selection algorithms, such as random, round-robin and min-min.

Pegasus can handle failures dynamically at various levels building on the features of

DAGMan and HTCondor. It is equipped to detect and recover from faults. It can de-

tect faults at the following levels: At the Hardware and Operating System levels, it can

detect exceeding CPU time limit and file non-existence. At the level of Middleware, it de-

tects authentication, file staging, and job submission faults. At Task and Workflow levels

job crashes and input unavailability are detected. DAGMan helps recover the following

failures at different levels: at Hardware level, it can recover from machine crashes and

network failures by automatically resubmitting. Middleware faults detected can also be

recovered. Data movement faults can also be treated with recovery at task and work-

flow level. At Workflow level, redundancy is used and light-weight checkpoints are sup-

ported [43,110]. If a job fails more than the set number of retries, then the job is marked as

48 A Taxonomy and Survey

a fatal failure. When a workflow fails due to such failures, the DAGMan writes a rescue

workflow. The rescue workflow is similar to the original DAG without the fatal failure

nodes. This workflow will start from the point of failure. Users can also re-plan the work-

flow, in case of workflow failures and move the computation left to an alternate resource.

Pegasus uses retries, resubmissions, and checkpointing to achieve fault-tolerance [43].

Monitoring and debugging is also done to equip users to track and monitor their

workflows. Three different logs are generated which are used to collect and process

data [43]. 1) Pegasus Mapper Log helps relate the information about the abstract work-

flow from the executable workflow allowing users to correlate user-provided tasks to the

jobs created by Pegasus. 2) Local workflow execution engine logs contain status of each

job of the workflow. 3) Job logs capture provenance information about each job. It con-

tains fine-grained execution statistics for each task. It also includes a web dashboard to

facilitate monitoring [43].

2.8.3 Triana

Triana [133] is a data-flow system developed at Cardiff University, United Kingdom. It is

a combination of an intuitive graphical interface with data analysis tools. It aims to sup-

port applications on multiple environments, such as peer-to-peer and grid computing.

Triana allows users to integrate their own middleware and services besides providing a

vast library of pre-written tools. These tools can be used in a drag-and-drop fashion to

orchestrate a workflow.

Triana addresses fault-tolerance in a user-driven and interactive manner. When faults

occur, the workflow is halted, displaying a warning, and allowing the user to rectify.

At the hardware level, machine crashes and network errors are detected. Missing files

and most other faults can be detected by the workflow engine at the operating system

level. With the exception of deadlock and memory leaks that cannot be detected at the

middleware and the task level, all other faults can be detected. In the workflow level, data

movement and input availability errors are detected. Light-weight checkpointing and

restart of services are supported at the workflow level. Retries, alternate task creations,

and restarts are supported at the task level by the workflow engine [110].

2.8 Survey of Workflow Management Systems and Frameworks 49

2.8.4 UNICORE 6

Unicore [129] is a European grid technology developed by collaboration between German

research institutions and industries. Its main objective is to access distributed resources

in a seamless, secure, and intuitive way. The architecture of UNICORE is divided into

three layers namely, client layer, service layer, and systems layer. In the client layer, various

clients, like UNICORE Rich Client (graphical interface), UNICORE command-line (UCC)

interface, and High Level API (HiLA) a programming API are available.

The service layer contains all the vital services and components. This layers has ser-

vices to maintain a single site or multiple sites. Finally, the system layer has the Tar-

get System Interface (TSI) between the UNICORE and the low-level resources. Recently

added functionalities to UNICORE 6 contains support for virtual organizations, interac-

tive access based on X.509 certificates using Shibboleth, and improved data management

through the integration of DataFinder. GridBeans and JavaGAT help users to support

their applications further. UNICORE 6 also introduces for-each-loops and iteration over

file-sets in addition to existing workflow constructs. It also supports resubmission and

reliability measurement for task and workflows. Added to these new monitoring tools,

availability and service functionality are also improved.

2.8.5 Kepler

The Kepler system [8, 92, 101] is developed and maintained by the cross-project collabo-

ration consisting of several key institutions: UC Davis, UC Santa Barbara, and UC San

Diego. Kepler system allows scientists to exchange, archive, version, and execute their

workflows.

Kepler is built on Ptolemy, a dataflow-oriented system. It focuses on an actor-oriented

modeling with multiple component interaction semantics. Kepler can perform both static

and dynamic checking on workflow and data. Scientists can prototype workflows before

the actual implementation. Kepler system provides web service extensions to instantiate

any workflow operation. Their grid service enables scientists to use grid resources over

the internet for a distributed workflow. It further supports foreign language interfaces via

50 A Taxonomy and Survey

the Java Native Interface (JNI), giving users the benefits to use existing code and tools.

Through Kepler users can link semantically compatible but syntactically incompatible

services together (using XSLT, Xquery, etc.). Kepler supports heterogeneous data and

file formats through Ecological Metadata Language (EML) ingestion. Fault-tolerance is

employed through retries, checkpointing, and alternative versions.

2.8.6 Cloudbus Workflow Management System

The WFMS [19, 107, 108] developed at The University of Melbourne provides an efficient

management technique for distributed resources. It aids users by enabling their appli-

cations to be represented as a workflow and then execute them on the cloud platform

from a higher level of abstraction. The WFMS is equipped with an easy-to-use graphical

workflow editor for application composition and modification, an XML-based workflow

language for structured representation. It further includes a user-friendly portal with

discovery, monitoring, and scheduling components.

Workflow monitor of the WFMS enables users to view the status of each task, they can

also view the resource and the site where the task is executed. It also provides the failure

history of each task. The workflow engine contains workflow language parser, resource

discovery, dispatcher, data management, and scheduler. Tuple space model, event-driven

approach, and subscription approach make WFMS flexible and loosely coupled in design,

as they allow task managers to be independent allowing their communication through

events [150]. Failures are handled by resubmitting the tasks to resources without a failure

history for such tasks. WFMS uses either Aneka [137] and/or Broker [138] to manage

applications running on distributed resources.

2.8.7 Taverna

Taverna [103,144] is an open source and domain-independent WFMS created by the my-

Grid team. It is a suite of tools used to design and execute scientific workflows and aid

in silico experimentation. Taverna engine is capable of performing iterations, looping,

and data streaming. It can interact with various types of services including web services,

2.8 Survey of Workflow Management Systems and Frameworks 51

data warehouses, grid services, cloud services, and various scripts like R, distributed

command-line, or local scripts.

The Taverna server allows workflows to be executed in distributed infrastructures

like clusters, grids and clouds. The server has an interface called Taverna Player through

which users can execute workflows from web browsers or through third-party clients.

Taverna Provenance suite records service invocations and workflow results both interme-

diate and final. It also supports pluggable architecture that facilitates extensions and

contributions to the core functionalities. Here, retries and alternate resources are used to

mitigate failures.

2.8.8 The e-Science Central (e-SC)

The e-Science Central [66] was created in 2008 as a cloud data processing system for

e-Science projects. It can be deployed on both private and public clouds. Scientists can

upload data, edit, run workflows, and share results using a Web Browser. It also provides

an application programming interface through which external application can use the

platforms functionality.

The e-SC facilitates data storage management, tools for data analysis, automation

tools, and also controlled data sharing. All data are versioned and support reproduction

of experiments, aiding investigation into data changes, and their analysis.

The e-SC provenance service collects information regarding all system events and this

provenance data model is based on the Open Provenance Model (OPM) standard. It also

provides fine grained security control modeled around groups and user-to-user connec-

tions.

2.8.9 SwinDeW-C

Swinburne Decentralized Workflow for cloud (SwinDew-C) [91] is a cloud based peer-

to-peer WFMS developed at Swinburne University of Technology, Australia. It is devel-

oped based on their earlier project for grid called SwinDeW-G. It is built on SwinCloud

infrastructure that offers unified computing and storage resources. The architecture of

52 A Taxonomy and Survey

SwinDeW-C can be mapped into four basic layers: application layer, platform layer, unified

resource layer, and fabric layer.

In SwinDeW-C users should provide workflow specification consisting of task defini-

tions, process structures, and QoS constraints. SwinDeW-C supports two types of peers:

An ordinary SwinDeW-C peer is a cloud service node with software service deployed on

a virtual machine; and SwinDeW-C coordinator peers, are special nodes with QoS, data,

and security management components. The cloud workflow specification is submitted

to any coordinated peer, which will evaluate the QoS requirement and determine its ac-

ceptance through a negotiation process. A coordinated peer is setup within every service

provider. It also has pricing and auditing components. All peers that reside in a service

provider communicate with its coordinated peer for resource provisioning. Here, each

task is executed by a SwinDeW-C peer during the run-time stage.

SwinDeW-C also allows virtual machines to be created with public clouds providers,

such as Amazon, Google, and Microsoft. Checkpointing is employed for providing relia-

bility. Additionally, QoS management components including performance management,

data management, and security management are integrated into the coordinated peers.

2.8.10 Big Data Frameworks: MapReduce, Hadoop, and Spark

Recently, big data analytics has gained considerable attention both in academia and in-

dustry. Big data analytics is heavily reliant on tools developed for such analytics. In fact,

these tools implement a specific form of workflows, known as MapReduce [39].

MapReduce framework is a runtime system for processing big data workflows. The

framework usually runs on a dedicated platform (e.g., a cluster). There are currently two

major implementations of the MapReduce framework. The original implementation with

a proprietary license was developed by Google [39]. After that, Hadoop framework [84]

was developed as an open-source product by Yahoo! and widely applied for big data

processing.

The MapReduce framework is based on two main input functions, Map and Reduce

that are implemented by the programmer. Each of these functions is executed in parallel

on large-scale data across the available computational resources. Map and Reduce collec-

2.8 Survey of Workflow Management Systems and Frameworks 53

tively form a usually huge workflow to process large datasets. The MapReduce storage

functionality for storing input, intermediate, and output data is supported by distributed

file systems developed specifically for this framework, such as Hadoop Distributed File

System (HDFS) [125] and Google File System (GFS) [60].

More specifically, every MapReduce program is composed of three subsequent phases

namely, Map, Shuffle, and Reduce. In the Map phase, the Map function implemented by

the user is executed on the input data across the computational resources. The input data

is partitioned into chunks and stored in a distributed file system (e.g., HDFS). Each Map

task loads some chunks of data from the distributed file system and produces intermedi-

ate data that are stored locally on the worker machines. Then, the intermediate data are

fed into the Reduce phase. That is, the intermediate data are partitioned to some chunks

and processed by the Reduce function, in parallel.

Distributing the intermediate data across computational resources for parallel Reduce

processing is called Shuffling. The distribution of intermediate data is accomplished in

an all-to-all manner that imposes a communication overhead and often is the bottleneck.

Once the intermediate data are distributed, the user-defined Reduce function is executed

and the output of the MapReduce is produced. It is also possible to have a chain of

MapReduce workflows (a.k.a multi-stage MapReduce), such as Yahoo! WebMap [7]. In

these workflows, the output of a MapReduce workflow is the intermediate data for the

next MapReduce workflow.

Spark [154] is a framework developed at UC Berkeley and is being utilized for re-

search and production applications. Spark offers a general-purpose programming inter-

face in the Scala programming language [102] for interactive and in-memory data mining

across clusters with large datasets. Spark has proven to be faster than Hadoop for itera-

tive applications.

MapReduce has been designed to tolerate faults that commonly occur at large scale

infrastructures where there are thousands of computers and hundreds of other devices

such as network switches, routers, and power units. Google and Hadoop MapReduce

can tolerate crashes of Map and Reduce tasks. If one of these tasks stops, it is detected

and a new instance of the same task is launched. In addition, data are stored along with

54 A Taxonomy and Survey

their checksum on disks that enables corruption detection. MapReduce [39] uses a log-

based approach for fault tolerance. That is, output of the Map and Reduce phases are

logged to the disk [95] (e.g., a local disk or a distributed file system). In this case, if a Map

task fails then it is re-executed with the same partition of data. In case of failure in the

Reduce phase, the key/value pairs for that failed Reducer have to be re-generated.

2.8.11 Other Workflow Management Systems

WFMSs are in abundance that can schedule workflows on distributed environments. In

this section, we present a brief overview of some of the less predominant systems. These

WFMS primarily schedule application on clusters and grids. Karajan [139] is one such

WFMS, that was implemented to overcome the shortcoming of GridAnt [9]. It was de-

veloped at the Argonne National Laboratory. Karajan is based on the definition of hier-

archical workflow components.

Imperial College e-Science Network Infrastructure (ICENI) [97] was developed at

London e-science centre, which provides a component-based grid-middleware. Grid-

Flow [24], Grid Workflow Execution Engine [50], P-Grade [77], Chemomentum [22] are

other WFMS that schedule workflow applications on grid platforms. Each of these work-

flow engine have their own unique properties and have different architectures supported

by a wide variety of tools and software.

2.9 Tools and Support Systems

2.9.1 Workflow Description Languages

Workflows are complicated constructs that needs to be defined at various levels. There

are numerous descriptive languages that can be used to detail every resource and service

to the workflow enactment engine.

Language based modeling uses XML based markup language to define abstract work-

flows [148]. Askalon [53] uses an XML-based language called Abstract Grid Workflow

Language (AGWL), which expresses sequence, parallelism, choice and iteration con-

2.9 Tools and Support Systems 55

structs in a workflow structure. Kepler [92] describes its input and outputs of web ser-

vices through web services description language (WSDL), which provides an XML nota-

tion. Grid Workflow Engine (GWFE) [108] uses an XML-based workflow language called

xWFL for application composition. Similarly, Pegasus [40] denotes its abstract workflow

in a XML in the form of a DAX i.e., DAG XML description. Web services do not sup-

port detailed description of data, processes and resource at a semantic level, which led

to the development of a Simple Conceptual Unified Flow Language (Scufl) [103]. It is an

XML-based conceptual language where each processing step represents one atomic task.

Graph based modeling defines workflows through a graphical definition. Users can

use drag-and-drop functionality to compose workflows. UML-based models and Petri

Nets are the major approaches used in graph based modeling. Teuta [52] is one such

graphical specification model based on UML models used as a graphical interface in

Askalon. FlowManger and XRL/Flower are few others tools used in other WFMSs [148].

ICENI use a general job description language, JDML [98], which is an XML based

language. The BPEL4WS [133] language is used to choreograph the interactions between

Web services. It is less common in scientific workflow systems but widely used in busi-

ness workflows.

Chimera proposed a Virtual Data Language (VDL) [56]. This data system combines a

virtual data catalog, with a virtual data language interpreter that translates user requests

into data definition and query operations on the database. FreeFluo [103] is another such

tool that is integrated into Taverna to transfer intermediate data and invoke services.

2.9.2 Data Management Tools

Workflow enactment engine need to move data from compute nodes to storage resources

and also from one node to another. Kepler uses GridFTP [8] to move files, to fetch files

from remote locations. Unicore uses a data management system called DataFinder [121].

It provides with management of data objects and hides the specifics of storage systems by

abstracting the data management concepts. For archival of data Tivoli Storage Manager 1

could be used. It reduces backup and recovery infrastructure. It can also back up into the

1http://www-03.ibm.com/software/products/en/tivostormana/

56 A Taxonomy and Survey

cloud with openstack and vCloud integrations. Traditional protocols like HTTP, HTTPS,

SFTP are also used for data movement.

2.9.3 Security and Fault-Tolerance Management Tools

In SwinDeW-C, secure communications are ensured through GnuPG 2, which is a free

implementation of OpenPGP. Globus uses the X.509 certificates, an established secure

format for authentication and identification. These certificates can be shared among pub-

lic key based software [91]. Unicore 6 employs an interactive access based on X.509 cer-

tificates called Shibboleth 3 that enables Single Sign-On as well as authentication and au-

thorization. The Interoperable Global Trust Federation4 (IGTF) is a trust service provider

that establishes common policies and guidelines. Similarly, The European Grid Trust

project5 provides new security services for applications using GRID middleware layer.

Access control to services can be attained through access control lists (ACLs), which

can be attached to data items so that privileges for specific users and groups can be man-

aged. DAGMan offers fault-tolerance to Pegasus through its rescue DAG. Additionally,

provenance plays an important role in fault-tolerance. Most WFMS use Open Prove-

nance Model format6 and the W3C PROV model7 to achieve and manage provenance

information.

2.9.4 Cloud Development Tools

Infrastructure resources are offered by public and private clouds. Public clouds are of-

fered by many providers like Amazon AWS, Google Compute Engine, Microsoft Azure,

IBM cloud and many others. Private clouds could be built using Openstack, Eucalyptus

and VMware to name a few. Cloud providers offer many storage solutions that can be

used by WFMSs. Some of the storage solutions offered are Amazon S3, Google’s BigTable,

2https://www.gnupg.org/
3http://www.internet2.edu/products-services/trust-identity-middleware/shibboleth/
4http://www.igtf.net/
5http://www.gridtrust.eu/gridtrust/
6http://openprovenance.org/
7http://www.w3.org/2011/prov

2.10 Summary 57

and the Microsoft Azure Storage. Oracle also offers a cloud based database as a service

for business.

Amazon through its Amazon Simple Workflow (SWF) 8 provides a fully-managed

task coordinator through which developers can build, run, and scale jobs. Chaos Mon-

key 9 is a free service that randomly terminates resources in your cloud infrastructures.

This helps test the system for failures and help develop fault-tolerant systems in cloud.

2.9.5 Support Systems

myExperiment [62] is a social network environment for e-Scientists developed by a joint

team from the universities of Southampton, Manchester and Oxford. It provides a plat-

form to discuss issues in development, to share workflows and reuse other workflows. It

is a workflow warehouse and a gateway to established environments.

Workflow Generator [2], created by Pegasus provides synthetic workflow examples

with their detailed characteristics. They also provide a synthetic workflow generator and

traces and execution logs from real workflows.

Failure Trace Archive [81] is a public repository of availability traces of parallel and

distributed systems. It also provides tools for their analysis. This will be useful in devel-

oping fault-tolerant workflow schedulers.

2.10 Summary

Workflows have emerged as a paradigm for managing complex large scale data analyt-

ics and computation. They are largely used in distributed environments such as, grids

and clouds to execute their computational tasks. Fault-tolerance is crucial for such large

scale complex applications running on failure-prone distributed environments. Given

the large body of research in this area, in this chapter, we provided a comprehensive

view on fault-tolerance for workflows in various distributed environments.

In particular, this chapter provides a detailed understanding of faults from a generic

8http://aws.amazon.com/swf/
9https://github.com/Netflix/SimianArmy/wiki/Chaos-Monkey/

58 A Taxonomy and Survey

viewpoint (e.g. transient, intermittent, and permanent) and a processor viewpoint (such

as, crash, fail-stop and byzantine). It also describes techniques such as replication, re-

submission, checkpointing, provenance, rescue-workflow, exception handling, alternate

task, failure masking, slack time, and trust-based approaches used to resolve these faults

by which, a transparent and seamless experience to workflow users can be offered.

Apart from the fault-tolerant techniques, this chapter provides an insight into nu-

merous failure models and metrics. Metrics range from makespan oriented, probabilistic

based, reliability based, and trust-based among others. These metrics inform us about

the quality of the schedule and quantify fault-tolerance of a schedule.

Prominent WFMSs are detailed and positioned with respect to their features, charac-

teristics, and uniqueness. Lastly, tools such as, those for describing workflow languages,

data-management, security and fault-tolerance, tools that aid in cloud development, and

support systems (including social networking environments, and workflow generators)

are introduced.

Chapter 3

Robust Scheduling with Deadline and
Budget Constraints

Dynamic resource provisioning and the notion of seemingly unlimited resources are attracting

scientific workflows rapidly into Cloud computing. Existing works on workflow scheduling in the

context of Clouds are either on deadline or cost optimization, ignoring the necessity for robustness.

Robust scheduling that handles performance variations of Cloud resources and failures in the

environment is essential in the context of Clouds. In this chapter, we present a robust scheduling

algorithm with resource allocation policies that schedule workflow tasks on heterogeneous Cloud

resources while trying to minimize the total elapsed time (makespan) and the cost. Our results

show that the proposed resource allocation policies provide robust and fault-tolerant schedule while

minimizing makespan. The results also show that with the increase in budget, our policies increase

the robustness of the schedule.

3.1 Introduction

CLOUD computing offers virtualized servers, which are dynamically managed,

monitored, maintained, and governed by market principles. As a subscription

based computing service, it provides a convenient platform for scientific workflows due

to features like application scalability, heterogeneous resources, dynamic resource provi-

sioning, and pay-as-you-go cost model. However, clouds are faced with challenges like

performance variations (because of resource sharing, consolidation and migration) and

failures (caused by outages and faults in computational and network components).

The performance variation of Virtual Machines (VM) in clouds affects the overall ex-

59

60 Robust Scheduling with Deadline and Budget Constraints

ecution time (i.e. makespan) of the workflow. It also increases the difficulty to estimate

the task execution time accurately. Dejun et al. [44] show that the behavior of multiple

“identical” resources vary in performance while serving exactly the same workload. A

performance variation of 4% to 16% is observed when cloud resources share network and

disk I/O [10].

Failures also affect the overall workflow execution and increase the makespan. Fail-

ures in a workflow application are mainly of the following types: task failures, VM fail-

ures, and workflow level failures [67]. Task failures may occur due to dynamic execution

environment configurations, missing input data, or system errors. VM failures are caused

by hardware failures and load in the data center, among other reasons. Workflow level

failures can occur due to server failures, cloud outages, etc. Prominent fault-tolerant tech-

niques that handle such failures are retry, alternate resource, checkpointing, and replica-

tion [148].

Workflow management systems should handle performance variations and failures

while scheduling workflows. Workflow scheduling maps tasks to suitable resources,

whilst maintaining the task dependencies. It also satisfies the performance criteria while

being bounded by user defined constraints. This is a well known NP-complete prob-

lem [73].

A schedule is said to be robust if it is able to absorb some degree of uncertainty in

the task execution time [23]. Robust schedules are much needed in mission-critical and

time-critical applications. Here, meeting the deadline is paramount and it also improves

the application dependability [59]. Robust and fault-tolerant workflow scheduling algo-

rithms identify these aspects and provide a schedule that is insensitive to these uncer-

tainties, by tolerating variations and failures in the environment up to a certain degree.

Robustness of a schedule is always measured with respect to another parameter such as

makespan, schedule length, etc. [23]. It is usually achieved with redundancy in time or

space [59] i.e. adding slack time or replication of nodes.

In this chapter, we present a robust and fault-tolerant scheduling algorithm. The

proposed algorithm is robust against uncertainties such as performance variations and

failures in cloud environments. This scheduling algorithm efficiently maps tasks on het-

3.2 Related Work 61

erogeneous cloud resources and judiciously adds slack time based on the deadline and

budget constraints to make the schedule robust. Additionally, three multi-objective re-

source selection policies are presented, which maximize robustness while minimizing

makespan and cost.

The key contribution of this chapter is a robust and fault-tolerant scheduling algo-

rithm with three multi-objective resource selection policies. This chapter also presents

two robustness metrics and a detailed performance analysis of the scheduling algorithm

using them.

3.2 Related Work

Current workflow scheduling on clouds mostly focuses on homogeneous resources [107].

One of the early attempts of exploiting the heterogeneous types of resources is presented

by Abrishami et al. [5]. They do not consider budget constraints and their scheduling

algorithm does not consider failures or performance variations.

Robust and fault-tolerant scheduling in workflows has been an active area of research

with significant amount of work done in the area of grids, clusters, and other distributed

systems. Research in robust and fault-tolerant scheduling encompasses numerous fields

like job-shop scheduling [85], supply chain [65], and distributed systems [67, 124, 128].

Many scheduling techniques have been employed to develop robust workflows. Dy-

namic scheduling or reactive scheduling reschedules tasks when unexpected events oc-

cur [65]. Trust based scheduling predicts the stability of a schedule by incorporating

a trust model for resource providers [142]. Stochastic based approaches model uncer-

tainty of system parameters in a non-deterministic way, which aid heuristic decision

making [123, 128]. Robust schedule has also been developed using fuzzy techniques,

where task execution times are represented by fuzzy logic, which is also used to model

uncertainty [55].

Shi et al. [124] proposed a robust scheduling algorithm using the technique of task

slack time. Task slack time represents a time window within which the task can be de-

layed without extending the makespan and it is intuitively related to the robustness of

62 Robust Scheduling with Deadline and Budget Constraints

the schedule. They present an ε-constraint method with deadline as a constraint. This

scheduling algorithm does not consider a cloud environment and also does not consider

any cost models. However, they find schedules with maximum slack time without ex-

ceeding the specified deadline.

To the best of our knowledge, there has been no study in workflow scheduling algo-

rithm for clouds maximizing robustness, and minimizing makespan and cost at the same

time. Also there are very few works which schedule workflow tasks on heterogeneous

cloud resources. This study tries to address these shortcomings.

3.3 System Model

The description of the system model, important definitions, assumptions, and the prob-

lem statement are discussed further in this section.

The cloud environment in our system model has a single data center that provides

heterogeneous VM/resource types, VT = {vt1, vt2, ..., vtm}. Each VM type has a specific

configuration and a price associated with it. The configuration of VM type differs with

respect to memory, CPU measured in million instructions per second (MIPS) and OS.

Each vti has a Price(vti) associated with it, charged on an unit time basis (e.g. 1 hour, 10

minutes, etc.). A static VM startup/boot time is assigned to all VMs, which influences

the start time of the task.

Uncertainties: We have considered two kinds of uncertainties, task failures and per-

formance variations of VMs. Performance variations in the system arise due to factors

like the data center load, network delays, VM consolidation, etc. Due to the performance

variation of a VM, the execution time of a task increases or decreases by a value y. Here,

y is a random variable with a certain probability distribution with a mean value of zero.

The actual execution time (AET) of a task is calculated as AET(tj) = ej(1 + y), where ej

is the expected execution time of task tj.

A Workflow can be represented as a Directed Acyclic Graph (DAG), G = (T, E),

where T is a set of nodes, T = {t1, t2, ..., tn}, and each node represents a task. Here, E

represents a set of edges between tasks, which can be control and/or data dependencies.

3.3 System Model 63

Each workflow is bounded by a user defined deadline D and budget B constraints. Ad-

ditionally, each workflow task tj has a task length lenj given in Million Instructions. We

assume all tasks to be CPU intensive and model task execution time accordingly. Mod-

els for data or I/O intensive tasks can also be incorporated to estimate task execution

without affecting the scheduling algorithm. Task length and the MIPS value of the VM

are used to estimate the execution time on a particular VM type. We also account for

data transfer times between tasks. The data transfer time between two tasks is calcu-

lated based on the size of the data transferred and the cloud data center internal network

bandwidth.

Makespan, M, is the total elapsed time required to execute the entire workflow. The

deadline D is considered as a constraint where the Makespan M should not be more than

the deadline (M 6 D). The makespan of the workflow is computed as following:

M = f inishtn − ST, (3.1)

where ST is the submission time of the workflow to the scheduler and f inishtn is the

finish time of the exit node.

Total Cost, C, is the total cost of the workflow execution, which is the sum of the price

for the VMs used to execute the workflow. Each VM type has a price associated with it,

depending on its characteristics and type. The price of each VM is calculated based on its

type and the duration of time it was provisioned. The duration of the time is calculated

based on the number of hours a VM executes, from the time of its instantiation, until it is

terminated or stopped. The time duration is always rounded to the next full hour (e.g. 5.1

hours is rounded to 6 hours). It is important to mention that multiple tasks can execute

in a VM depending on the schedule. Moreover, to execute the entire workflow, multiple

VMs of different types can be used. Therefore, the total execution cost, C, is the sum price

of all the VMs of different types used in the workflow execution. Additionally, there is a

budget B as a constraint, such that the total cost should be less than the budget (C 6 B).

Robustness of a schedule is measured using two metrics. The first metric is robust-

ness probability, Rp, which is the likelihood of the workflow to finish before the given

64 Robust Scheduling with Deadline and Budget Constraints

deadline [124], which can be formulated as below:

Rp = (TotalRun− FailedRun)/(TotalRun), (3.2)

where TotalRun is number of times the experiment was conducted and FailedRun is

number of times the constraint, f inishtn 6 D was violated. This equation is based on

the methodology offered by Dastjerdi et al. [34].

The second metric is the tolerance time, Rt, which is the amount of time a workflow

can be delayed without violating the deadline constraint. This provides an intuitive mea-

surement of robustness, expressing the amount of uncertainties it can further withstand.

Rt = D− f inishtn . (3.3)

Assumptions: Data transfer cost between VMs are considered to be zero, as in many

real clouds, data transfer inside a cloud data center is free. Storage cost associated with

the workflow tasks is assumed to be free, since storage costs have no effect on our algo-

rithm. The data center is assumed to have sufficient resources, avoiding VM rejections

due to resource contention. This is not a prohibitive assumption as the resources required

are much smaller than the data center capacity.

Problem Statement: The problem we address in this work is to find a mapping of

workflow tasks onto heterogeneous VM types, such that the schedule is robust to the

uncertainties in the system, and the makespan and cost is minimized, while executing

within the given deadline and budget constraints.

3.4 Proposed Approach

In this section, our algorithm and policies are presented. Before presenting the algorithm,

some important definitions are detailed. The critical path of a workflow is the execution

path between the entry and the exit nodes of the workflow with the longest execution

time [4]. Critical path determines the execution time of the workflow. The critical parent

(CP) of tj is the parent tp, whose sum of start time, data transfer time and execution time

3.4 Proposed Approach 65

Algorithm 1: FindPCP(t)

1 //Determine the PCP and allocate a VM for it.
input : task t

2 while t has unassigned parent do
3 PCP← null, tj ← t
4 while there exists an unassigned parent of tj do
5 add critical parent tp of tj to PCP
6 tj ← tp

7 call AllocateResource(PCP)
8 for tj ∈ PCP do
9 marks tj as assigned

10 call FindPCP(tj)

to tj is maximum among other parent nodes of tj.

The partial critical path (PCP) of node tj is a group of dependent tasks in the workflow

graph. PCP is determined by identifying the unassigned parents. Unassigned parent is

a node that is not scheduled or assigned to any PCP. Further, PCP is created by finding

the unassigned critical parent of the node, starting at the exit node, and repeating the

same for the critical parent recursively until there are no further unassigned parents.

Algorithm 1 is invoked by the scheduler and it details the procedure to find the PCP of

a node. Partial critical paths can be scheduled on a single resource, optimizing time and

cost [4]. This algorithm decomposes the workflow into smaller groups of tasks, which

helps in scheduling. PCPs of a workflow are mutually exclusive, i.e., each task can be in

only one PCP.

For every PCP, the best suitable VM type with a robustness type is selected. The

robustness type defines the amount of slack that will be added to the PCP execution

time. It dictates the amount of fluctuation in the execution time a PCP can tolerate. Four

types of robustness that can be associated with a PCP are defined: 1) No robustness: this

robustness type does not add any slack time to the execution time of a PCP. 2) Slack :

this robustness type adds a predefined limit of time for the PCP execution time i.e. it

can tolerate fluctuations in execution time up to a defined limit. 3) One Node Failure: in

this robustness type, the largest execution time among the PCP nodes is added to the

PCP execution time. This robustness type provides sufficient slack time to handle the

66 Robust Scheduling with Deadline and Budget Constraints

failure of the task with the largest execution time in the PCP. 4) Two Node Failure: here,

the execution time of the largest two nodes is added to the PCP execution time; this is

done only when the PCP consists of at least three nodes. PCP with this robustness type

can tolerate up to two task failures. Four robustness types up to two node failures are

proposed. However, robustness types with higher number of node failures can also be

developed.

Algorithm 2 details the selection of a VM type and its associated robustness type. An

exhaustive solution set, SS = {s1, s2, ..., sm∗l} is generated, where m is the number of VM

types and l is the number of robustness types. The solution set SS consists of solutions

with every possible robustness type for every VM type defined. Each solution, si =

{vti, RTi, PCPci, PCPti}, consists of a robustness type (RTi), PCP cost (PCPci) and PCP

execution time (PCPti) for VM type vti. As m and l are usual smaller in range, typically

ranging between 1 and 100 at the most, the time and space required are reasonable.

The solution set SS is reduced based on deadline and budget constraints into a smaller

set of feasible solutions. The deadline constraint D is evaluated by adding the PCP exe-

cution time of the chosen instance and robustness type with top level and bottom level.

TopLevel + PCPt + BottomLevel 6 D, (3.4)

where TopLevel of PCP is the sum of execution times of nodes on the longest path from

the entry node to the first node of PCP. BottomLevel of PCP is the sum of execution times

of nodes on the longest path from the end node of the PCP to the exit node.

Budget Constraint is evaluated by the following equation:

PCPc 6 PCPb, (3.5)

where PCPc is the total cost of the PCP. PCP Budget, PCPb, is the amount that can be

spent on the PCP; this is decomposed from the overall budget according to the following

equation,

PCPb = (PCPt/TT) ∗ B, (3.6)

where, TT is the total time of the workflow, which is calculated by adding the execution

3.4 Proposed Approach 67

Algorithm 2: AllocateResource(PCP)

1 //Allocate a suitable robust resource to the PCP
input : PCP
output: Robust Resource for PCP

2 //Create Solution Set SS;
3 for Every Instance type do
4 for Every Robustness type do
5 Create Solution set with PCPt and PCPc

6 FS = null;
7 Calculate PCPb according to equation 3.6;
8 //Create a Feasible Solution Set FS;
9 for Every solution in SS do

10 time = PCPt + TopLevel + BottomLevel;
11 if time <= D and PCPc <= PCPb then
12 Add to FS

13 //finds the best solution according to the chosen policy
RobustResource = f indBestSolution(FS, Policy); Assign every task in PCP to the
RobustResource.

times of the tasks on the reference VM type, vtre f . VM with the least MIPS value is

considered as the reference type, vtre f . PCPt is the total execution time of the PCP on

vtre f . When PCPb is less than LPr, which is the price required to execute on the cheapest

resource, then PCPb is assigned the value LPr.

A feasible solution set FS is created using these two constraints as outlined in Algo-

rithm 2.

The findBestSolution, function described in Algorithm 2, chooses the appropriate VM

type vti for a PCP, based on the resource selection policy from the feasible solution set FS.

The three resource selection policies used by this method are described in the following

section.

3.4.1 Proposed Policies

In this section, three resource selection policies are explained. These policies select the

best solution from the feasible solution set FS for each PCP. Each of them has three objec-

tives, namely robustness, time and cost and the priorities among these objectives change

68 Robust Scheduling with Deadline and Budget Constraints

for each of these policies. The description of the policies is given below:

1 Robustness-Cost-Time (RCT): The objective of this policy is to maximize robust-

ness and minimize cost and makespan. This policy sorts the feasible solution set

based on the robustness type, and among the solutions with the same robustness

type, they are sorted in the increasing order of cost. Solutions with the same ro-

bustness type and cost are sorted with increasing order of time. The best solution

from this sorted list is picked and the VM type with the associated robustness type

is mapped to the tasks of the PCP. Solutions chosen by this policy have high robust-

ness with a lower cost.

2 Robustness-Time-Cost (RTC): RTC policy is similar to RCT policy described above

with different priorities. This policy gives priority to robustness, followed by time

and finally cost. This policy selects a solution that is robust with lowest possible

makespan. Choices of RTC and RCT policies might have the same robustness type,

but will vary with respect to the VM type they select. RTC policy selects a solution

with high robustness and lowest possible makespan.

3 Weighted: With this policy users can define their own objective function using the

three parameters (robustness, time and cost) and assign weights for each of them.

Each value is normalized by taking the minimum and maximum values for that

parameter. The weights are applied to the normalized values of robustness, time

and cost, and based on these weights the best solution is selected. Weighted pol-

icy is a generalized policy, which can be used to find solutions according to user

preferences.

Our algorithm with the chosen policy finds a suitable VM type associated with a

robustness type for every PCP. Further, the algorithm allocates the PCP tasks on a VM of

the chosen type. The resource allocator, first attempts to find a VM of the specified type

among the running VMs. If such a VM is found, the algorithm checks if its end time is

less than the start time of the PCP. If this condition is satisfied, the algorithm allocates

PCP tasks on this existing VM; otherwise a new VM is created to allocate the tasks. This

3.5 Performance Evaluation 69

reduces the number of VMs instantiated and also minimizes the makespan as new VMs

take time to boot, which delays the schedule.

3.4.2 Fault-Tolerant Strategy

Checkpointing is employed in our algorithm as a fault-tolerant strategy. When a task

fails, the algorithm resumes the task from the last checkpoint and checkpointing of tasks

is done at regular intervals. The robustness type selected by the resource selection policy

provides the necessary slack for the failed task. Additionally, checkpointing strategy

helps to recover the task from the last checkpoint.

3.4.3 Time Complexity

Creating a Solution Set SS depends on the number of robustness types and VM types.

The time complexity for creating such a set is O(m.l), where m is the number of VM types

and l is the number of robustness types. The time complexity for sorting and choosing

the best solution based on the policy is O(m logm). The parameters m and l can take a

maximum value of n, where n is the number of tasks. Therefore, the time complexity

of AllocateResource is O(n2). The time complexity of FindPCP is O(n) as the maximum

number of times this method can be recursively invoked is equal to the number of tasks

n. Hence, the overall time complexity of our algorithm is O(n2).

3.5 Performance Evaluation

3.5.1 Simulation Setup

CloudSim [21] was used to simulate the cloud environment. It was extended to support

workflow applications, making it easy to define, deploy and schedule workflows. A

failure event generator was also integrated into the CloudSim, which generates failures

from an input failure trace. Five types of workflow applications and two failure models

are used in our simulation as described below.

70 Robust Scheduling with Deadline and Budget Constraints

Application Modeling

Three workflows (CyberShake, LIGO, and Montage) were considered. Their character-

istics are explained in detail by Bharathi et al. [74]. These workflows cover all the ba-

sic components such as, pipeline, data aggregration, data distribution and data redis-

tribution. Three different sizes of these workflows are chosen, small (around 30 tasks),

medium (around 100 tasks) and large (1000 tasks).

Resource Modeling

A cloud model with a single data center offering 10 different types of VMs is con-

sidered. The characteristics of VMs are modeled similar to the Amazon EC2 in-

stances (t1.micro, m1.small, m1.medium, m1.large, m1.xlarge, m2.xlarge, m2.2xlarge,

m2.4xlarge, c1.medium, c1.xlarge). A charging period of 60 minutes is considered for

these VMs, similar to the most prominent cloud providers.

Failure Modeling

Two types of failure models are considered for our experiments. First, failures are sim-

ulated from failure traces (FT). Due to lack of publicly available cloud specific failure

traces, Condor (CAE) Grid failure dataset [147], available as a part of Failure Trace

Archive [81] was chosen. Secondly, a failure model with 10% failure probability (FP)

is considered, i.e., for each node there is 10% probability of failure based on uniform dis-

tribution. The failed nodes may fail again with the same probability until they complete

their execution.

Each VM undergoes a performance variation, which affects the task execution time.

We model the variance in the task execution time as a normal distribution y = N(0, σ2),

where the standard deviation σ is 10% of the execution time of the task, as suggested

by Dejun et al. [44]. They have analyzed and presented the performance variations of

Amazon EC2 instances in their study.

3.5 Performance Evaluation 71

Reference Algorithms

Two reference algorithms to compare our resource allocation policies are implemented.

The first algorithm is a deadline constrained algorithm proposed by Abrishami et al. [5].

The IaaS cloud Partial Critical Path (ICPCP) algorithm, similar to our algorithm, divides

the workflow tasks into PCPs. ICPCP is non-robust algorithm bounded by a deadline

constraint.

The second reference algorithm implemented is a robust bi-objective genetic algo-

rithm (GA) [124]. This GA considers heterogeneous resources with the objective of max-

imizing the robustness by increasing the slack time between the tasks. This algorithm

considers deadline as a threshold and verifies that the schedule does not violate the dead-

line. The fitness function, selection and mutation operators for the GA are implemented

as described in [124]. The parameters of GA are set as follows: population size = 2000,

cross over probability = 0.9 and mutation probability = 0.1, as defined by the authors.

Maximum number of iterations is set to 800.

These algorithms are chosen for their similarity with our approach. ICPCP schedules

tasks by grouping them into PCPs, similar to our algorithm and GA tries to maximize the

slack time to be robust, which is the approach we adapt as well.

In this chapter, we have executed the experiments for three workflow applications

with two failure models. For each workflow, we varied the deadline with a fixed bud-

get and also varied the budget keeping the deadline fixed to measure the performance

with regards to robustness, makespan and cost. Each experiment was executed 10 times,

the mean of which is reported. For the weighted policy, the weights considered for ro-

bustness, time and cost are 0.5, 0.3 and 0.2 respectively. We intend to study the effect of

varying weights in future. We present our analysis and results in the following section.

3.5.2 Analysis and Results

The CyberShake workflow uses the Probabilistic Seismic Hazard Analysis (PSHA) tech-

nique to characterize earth-quake hazards in a region and the LIGO Workflow detects

gravitational waves of cosmic origin by observing stars and black holes [74]. We present

72 Robust Scheduling with Deadline and Budget Constraints

4.54.03.53.02.52.01.51.0

600

400

200

0

-200

-400

Deadline Factor

M
e
a
n
 o
f
T
o
le
r
a
n
c
e
 T
im
e

(a) Cybershake with fixed Budget and with FP
failure model

4.54.03.53.02.52.01.51.0

800

700

600

500

400

300

200

100

0

Budget Factor

M
e
a
n
 o
f
T
o
le
ra
n
c
e
 T
im
e

(b) LIGO with fixed Deadline and with FT fail-
ure model

4.54.03.53.02.52.01.51.0

600

400

200

0

-200

-400

Deadline

M
e
a
n
 o
f
S
a
fe
 T
im
e

GA

ICPCP

RCT

RTC

Weighted

Line Plot of Mean(Safe Time)

Figure 3.1: Effect on robustness with tolerance time Rt

4.54.03.53.02.52.01.51.0

550

500

450

400

350

300

250

200

4.54.03.53.02.52.01.51.0

Actual

Deadline Factor

M
e
a
n
 o
f
M
a
k
e
s
p
a
n

Estimated

(a) Cybershake with fixed Budget and with FP
failure model

4.54.03.53.02.52.01.51.0

2400

2200

2000

1800

1600

1400

1200

1000

800

600

4.54.03.53.02.52.01.51.0

Actual

Budget Factor

M
e
a
n
 o
f
M
a
k
e
S
p
a
n

Estimated

(b) LIGO with fixed Deadline and with FT fail-
ure model

4.54.03.53.02.52.01.51.0

600

400

200

0

-200

-400

Deadline

M
e
a
n
 o
f
S
a
fe
 T
im
e

GA

ICPCP

RCT

RTC

Weighted

Line Plot of Mean(Safe Time)

Figure 3.2: Effect on makespan for large sized CyberShake and LIGO workflow

4.54.03.53.02.52.01.51.0

3000

2500

2000

1500

1000

500

4.54.03.53.02.52.01.51.0

Actual

Deadline Factor

M
e
a
n
 o
f
C
o
s
t

Estimated

(a) Cybershake with fixed Budget and FP fail-
ure model

4.54.03.53.02.52.01.51.0

16000

14000

12000

10000

8000

6000

4000

2000

4.54.03.53.02.52.01.51.0

Actual

Budget Factor

M
e
a
n
 o
f
C
o
s
t

Estimated

(b) LIGO with fixed Deadline and with a FT fail-
ure model

4.54.03.53.02.52.01.51.0

600

400

200

0

-200

-400

Deadline

M
e
a
n
 o
f
S
a
fe
 T
im
e

GA

ICPCP

RCT

RTC

Weighted

Line Plot of Mean(Safe Time)

Figure 3.3: Effect on cost for large sized CyberShake and LIGO workflow

3.5 Performance Evaluation 73

Table 3.1: Robustness probability Rp of large montage work-
flow with failure probability model (FP) for different policies.

Deadline Budget ICPCP GA RCT WGHT* RTC

Strict
Strict 0.00 0.10 0.20 0.40 0.70
Normal 0.00 0.10 0.20 0.70 0.90
Relaxed 0.00 0.00 0.20 0.70 0.90

Relaxed
Strict 1.00 0.90 1.00 1.00 1.00
Normal 1.00 0.90 1.00 1.00 1.00
Relaxed 1.00 0.80 1.00 1.00 1.00

* WGHT is an abbreviation for the weighted policy.

two experiments considering large workflow types. In the first experiment, we vary the

deadline with a fixed surplus budget for large CyberShake workflow and the failures are

generated using the failure probability model (FP), with a 10% probability. In the second

experiment, we vary the budget with a fixed strict deadline for large LIGO workflow

and the failures are generated through the failure trace model (FT). Both these experi-

ments are carefully devised to cover all combinations of deadline and budget, showing

the performance of the algorithms under all conditions. For these experiments, we find

the lowest makespan Mlow, which is the time taken to execute on the most expensive VM.

We also find the lowest cost Clow, which is the cost needed to execute on the cheapest VM.

We introduce a deadline factor α similar to [5], based on which we vary the deadlines for

workflows according to α.Mlow. We vary α from 1 to 4.5 with a step length of 0.5. Sim-

ilarly we introduce a budget factor β and the budget is varied according to β.Clow. We

vary β from 1 to 4.5 with a step length of 0.5.

The analysis of these experiments and its effect on robustness, makespan and cost are

presented below.

Effect on Robustness

Figure 3.1 presents the tolerance time Rt of Cybershake and LIGO workflows. Positive

values of Rt represent robust solutions that have finished execution within the deadline

even with failures and performance variations. Negative values represent schedules that

74 Robust Scheduling with Deadline and Budget Constraints

have violated the deadline constraint. In Figure 3.1, we observe that the RTC policy

has the highest mean tolerance time, conveying that the policy is not just robust but can

withstand more failures. RTC policy outperforms other policies emerging as the most

robust policy. We observe that robustness increases as deadline or budget increases. We

observe in Figure 3.1(b) that tolerance time Rt of ICPCP and GA do not vary with increase

in budget. This is because these algorithms do not take budget as an input and do not

show any effect as the budget varies.

In 97.5% of the cases weighted policy outperforms ICPCP for CyberShake workflow

as seen in Figure 3.1(a). Under strict deadline, weighted and RCT policies perform better

than GA in 67.5% of the cases. Under relaxed deadline GA has a higher tolerance time

than weighted and RCT policy in 72.5% of the cases, but the cost of execution for GA

is 2.6 times higher than RCT and weighted policies. RCT and weighted policies tries to

achieve a robust solution while minimizing cost, even under a relaxed deadline we have

a robust solution with costs much lower than GA.

In the LIGO workflow experiment, we see that our policies have higher tolerance time

in comparison to ICPCP and GA algorithm as shown 3.1(b). We can also observe that the

mean tolerance time increases with increase in budget for our policies unlike ICPCP and

GA.

Table 3.1 presents the robustness probability Rp for the large Montage workflow with

varying deadline and budget. We report the large Montage workflow as it is the most

complex and failures in its task nodes have high adverse effect on the makespan and cost.

Other workflows show similar trends and have better results for our policies. This table

provides a measure of robustness probability, Rp, which is the probability of a schedule

being within the deadline. In this table, the deadline factor between 1.0 to 1.5 is consid-

ered strict and values between 1.5 to 4.5 are considered relaxed. Similarly, for budget,

the budget factor between 1.0 to 1.5 is considered strict, values between 1.5 to 3.0 are

considered normal, and values between 3.0 to 4.5 are considered relaxed.

It can be seen that the RTC is the most robust policy and has the highest probability of

being within the deadline. The robustness probability, Rp for weighted and RCT policies

outperform GA and ICPCP. It can also be observed that our policies perform with high

3.5 Performance Evaluation 75

levels of robustness even under strict deadlines and budgets.

Effect on Makespan

Figure 3.2 shows the effect on makespan for CyberShake and LIGO workflows. Figures

3.2 and 3.3 have graphs with two panels, where the actual panel represents schedules

after execution with uncertainties and the estimated panel depicts schedules before exe-

cution without failures. Figures 3.2(a) and 3.2(b) show that makespan increases as dead-

line increases and makespan decreases as budget increases. Our policies have a higher

makespan when the schedule is estimated in comparison to ICPCP or GA; however the

actual makespan after failures and performance variations of resources is comparatively

minimal for our policies. RTC provides schedules with smallest makespan under the sce-

narios of failures and performance variations because it chooses robust resources with

least execution time. The average makespan of weighted policy is 19% lower than ICPCP

for both CyberShake and LIGO workflows. The average makespan of RCT policy is 14%

and 11% lower than ICPCP for CyberShake and LIGO workflows respectively.

In Figure 3.2(b), the estimated panel of the graph shows the working of the RTC pol-

icy. As the budget increases, the makespan increases steadily and then decreases steadily

as shown. This is because as the budget increases, the algorithm has the flexibility to

either add more slack time or choose an expensive VM. Therefore, with smaller increase

in budget, the algorithm chooses inexpensive VMs and adds slack time based on the in-

creases in budget, which increases the estimated makespan. With sufficient increase in

budget, the algorithm chooses expensive VM resulting in the decrease of the estimated

makespan. The actual panel of the graphs shows that the makespan of our policies are

much lower than ICPCP and GA. The RTC policy gives lower makespan consistently,

while the makespan of RCT and weighted policies increases slightly with increase in

deadline and decreases with increase in budget.

76 Robust Scheduling with Deadline and Budget Constraints

Effect on Cost

Figure 3.3 presents the effects on cost, Figure 3.3(a) shows that the cost decreases for RCT

and weighted policies, as the deadline increases with a fixed budget and Figure 3.3(b)

shows that cost increases for our policies as budget increases with a fixed deadline.

For CyberShake workflow, we observe that our policies RCT and weighted have

lower costs in comparison with ICPCP and GA. RTC policy has a 98% higher cost than

ICPCP and 12% lower cost than GA, but has a 39.7% and 33.6% lower makespan than

ICPCP and GA respectively. RTC policy chooses resources that are robust with a lower

makespan; on the other hand RCT policy chooses a robust schedule with lower costs.

For LIGO workflow, as depicted in Figure 3.3(b) we see increase in costs for our poli-

cies as the budget increases, but we can also observe that the robustness increases and

makespan decreases with increasing budget as shown in Figure 3.1(b) and 3.2(b). We can

see that the costs of our policies are much lower than GA in most of the cases.

Experiments show that our policies consistently offer schedules with high robust-

ness. RTC policy gives robust schedules with increase in costs but lower makespan, and

RCT policy provides robust schedules, which minimizes costs under relaxed deadline or

increases costs under surplus budget. Under strict deadline or a stringent budget our

policies behave comparable to ICPCP with respect to cost, yet provides a robust schedule

with lower makespan. Our weighted policy in this experiment is tested with only one set

of weights, which are comparable to our RCT policy and hence the results show similar

trends. The users can use this policy according to their priorities and get schedules that

are aligned to their priorities.

3.6 Summary

This chapter presents three resource allocation policies with robustness, makespan and

cost as its objectives. This is one of the early works in robust and fault-tolerant workflow

scheduling on clouds, considering deadline and budget constraints. The resource allo-

cation policies judiciously add slack time to make the schedule robust considering the

deadline and budget constraints. We test our policies with two failure models for three

3.6 Summary 77

scientific workflows with two metrics for robustness. Results indicated that our policies

are robust against uncertainties like task failures and performance variations of VMs. As

a future work, we propose to validate the proposed algorithm in a realistic cloud envi-

ronment.

Among the proposed policies presented, the RTC policy shows the highest robustness

and at the same time minimizes makespan of the workflow. The RCT policy provides a

robust schedule with costs marginally higher than the reference algorithms considered.

The weights of the weighted policy can be varied according to the user priorities. Overall,

our policies provide robust schedules with the lowest possible makespan. They also

show that with increase in budget, our policies increase the robustness of the schedule

with reasonable increase in cost.

This page intentionally left blank.

Chapter 4

Fault-Tolerant Scheduling Using Spot
Instances

Scientific workflows are used to model applications of high throughput computation and complex

large scale data analysis. In recent years, Cloud computing is fast evolving as the target platform

for such applications among researchers. Furthermore, new pricing models have been pioneered

by Cloud providers that allow users to provision resources and to use them in an efficient manner

with significant cost reductions. In this chapter, we propose a scheduling algorithm that schedules

tasks on Cloud resources using two different pricing models (spot and on-demand instances) to

reduce the cost of execution whilst meeting the workflow deadline. The proposed algorithm is fault

tolerant against the premature termination of spot instances and also robust against performance

variations of Cloud resources. Experimental results demonstrate that our heuristic reduces up to

70% execution cost as against using only on-demand instances.

4.1 Introduction

CLOUD computing is increasingly used amidst researchers for scientific workflows

to perform high throughput computing and data analysis [89]. Numerous disci-

plines use scientific workflows to perform large scale complex analyses. Workflows en-

able scientists to easily define computational components, data and their dependencies

in a declarative way. This makes them easier to execute automatically, improving the ap-

plication performance, and reducing the time required to obtain scientific results [75,76].

Clouds are realizing the vision of utility computing by delivering computing re-

sources as services. This is facilitating Cloud providers to evolve various business models

79

80 Fault-Tolerant Scheduling Using Spot Instances

around these services. Most providers provision Cloud resources (e.g., Virtual Machines

(VMs) instances) on a pay-as-you-go basis charging fixed set price per unit time. How-

ever, Amazon, one of the pioneers in this space, started selling idle or unused data center

capacity as Spot Instances (SI) from around December 2009. The provider determines the

price of a SI (spot price) based on the instance type and demand within the data center,

among other parameters [71]. Spot price of a instance varies with time and it is different

for different instance types. The price also varies between regions and availability zones.

Here, the users participate in an auction-like market and bid a maximum price they are

willing to pay for SIs. The user is oblivious to the number of bidders and their bid prices.

The user is provided the resource/instance whenever their bid is higher than or equal to

the spot price 1. However, when the spot price becomes higher than the user bid, Ama-

zon terminates the resources. Users do not pay the bid price, they pay the spot price that

was applicable at the start time of the instance. Users are not charged for the partial hour

when terminated by the provider. Nevertheless, when the user terminates the instance,

they have to pay for the full hour.

On-demand and SIs have the same configurations and characteristics. Nonetheless,

SIs offers Cloud users reduction in costs of up to 60% for multiple applications like bag-

of-tasks, web services and MapReduce workflows [105, 140]. Significant cost reductions

are achieved due to lower QoS, which make them less reliable and prone to out-of-bid

failures. This introduces a new aspect of reliability into the SLAs and the existing trade-

offs making it challenging for Cloud users [71].

Scientific workflows can benefit from SIs with an effective bidding and an efficient

fault-tolerant mechanism. If such a mechanism could tolerate out-of-bid failures, it

would help reduce the cost immensely.

In this chapter, we present a just-in-time and adaptive scheduling heuristic. It uses

spot and on-demand instances to schedule workflow tasks. It minimizes the execution

cost of the workflow and at the same time provides a robust schedule that satisfies the

deadline constraint. The scheduling algorithm, for every ready task, evaluates the critical

path and computes the slack time, which is the time difference between the deadline and

1http://aws.amazon.com/ec2/purchasing-options/spot-instances/

4.2 Related Work 81

the critical path time. The main motivation of the work is to exploit SIs to the extent

possible within the slack time. As the slack time decreases due to failures or performance

variations in the system, the algorithm adaptively switches to on-demand instances. The

algorithm employs a bidding strategy and checkpointing to minimize cost and to comply

with the deadline constraint. Checkpointing can tolerate instance failures and reduce

execution cost, in spite of an inherent overhead [120] .

The key contributions of this chapter are: 1) A just in-time scheduling heuristic that

uses spot and on-demand resources to schedule workflow tasks in a robust manner. 2)

An intelligent bidding strategy that minimizes cost.

4.2 Related Work

Multiple applications use SIs for resource provisioning. Voorsluys et al. [140] use SIs to

provision compute-intensive bag-of-tasks jobs constrained by deadline. They show that

applications can run faster and economically by reducing costs up to 60%. However, they

use a bag-of-task application and use only SIs to execute the jobs. Mazzucco et al. [96]

exploit SIs for providing web services as a Software-as-a-Service(SaaS). They develop an

optimal and truthful bidding scheme to optimize revenue. Chohan et al. [29] similarly

use SIs for MapReduce workflows to reduce costs and also detail the effects of prema-

ture failures. Ostermann et al. [105] study the impact of using SI with grid resources for

scientific workflows. They use SIs when grid resources are not available and use static

bidding mechanism to show reduction in cost.

In this work, we schedule workflow tasks entirely on Cloud resources, exploiting both

spot and on-demand instances to minimize the cost. This work presents a dynamic and

adaptive scheduling heuristic, whilst providing a robust schedule. An intelligent and

adaptive bidding strategy is also presented, which bids such that the price is minimized.

Amazon does not reveal the details of spot price modeling and their market strategies.

Therefore, understanding the dynamics of the market and the frequency of price changes

is crucial for bidding effectively. Javadi et al. [71] provide a comprehensive analysis of

SIs. They analyze the spot market with respect to two parameters: spot price and inter-

82 Fault-Tolerant Scheduling Using Spot Instances

price time i.e. the time between price changes. They also propose a statistical model

representing the spot price dynamics as a mixture of Gaussian distributions and inter-

price time as an exponential distribution, which models spot price with a high degree of

accuracy.

Yehuda et al. [11] provide a model through reverse engineering. They speculate that

prices are not always market-driven, but generated randomly via a dynamic hidden re-

serve price. Reserve price is a hidden price below which Amazon ignores all bids. These

works give a deeper understanding of the price dynamics of the spot market and help in

modeling the same.

Yi et al. [3] have simulated how checkpointing policies reduce costs of computations

by providing fault-tolerance using EC2 SIs. Their evaluation shows that in spite of the

inherent overhead, checkpointing schemes can tolerate instance failures. We also use

checkpointing policy as a fault-tolerant mechanism and to further reduce computation

costs.

The details of our system model and heuristics are discussed in the following sections.

4.3 Background

A Workflow is represented as a Directed Acyclic Graph (DAG), as mentioned in Section

3.3. Each workflow is bounded by a user defined deadline D. We also account for data

transfer time between tasks. The data transfer time between two tasks is calculated based

on the size of the data transferred and the Cloud data center internal network bandwidth.

Additionally, each workflow task tj also has a task length lenj given in Million Instruc-

tions, which is used to estimate the task execution time. For each workflow, a dummy

exit and entry node is added to have one start and end node.

Makespan, M, is the total elapsed time required to execute the entire workflow. The

deadline D is considered as a constraint, where makespan should not be more than the

deadline (M 6 D). The makespan of the workflow is computed as M = f inishtn −

ST, where ST is the submission time and f inishtn is finish time of the exit node of the

workflow.

4.3 Background 83

Pricing models: In our model, we adapt two types of instances from the Amazon

model, which vary in their pricing structure. The two pricing models considered are:

1) On-Demand instance: the user pays by the hour based on the instance type. 2) Spot

Instance: users bid for the instance and it is made available as long as their bid is higher

than the spot price. Spot prices change dynamically and it can change during the instance

runtime. The price of a SI (spot price) is determined by the provider based on the instance

type and demand within the data center, among other parameters [71].

Critical Path, CP, is the longest path from the start node to the exit node of the work-

flow. Critical path determines the makespan of a workflow. The critical path is evaluated

in a breadth-first manner calculating the weights of each node. The node weight is the

maximum among the predecessors’ estimated finish time and the data transfer time cal-

culated as per Equation 4.1 given by Topcuoglu et al. [135],

weight(ti) = max
tp∈pred(ti)

{weight(tp) + wp + cp,i} (4.1)

where, pred(ti) is all the parent nodes of ti, wi is the execution time of node ti on an

instance type chosen by the algorithm. cp,i is the data transfer time from node ti to tp. The

maximum weight among the exit nodes is the critical path time. When a node completes

execution its weight and data transfer time to all its child nodes is made zero, and the

critical path is recomputed.

Latest Time to On-Demand, LTO is the latest time the algorithm has to switch to

on-demand instances to satisfy the deadline constraint. The algorithm exploits the spot

market before the LTO and switches to on-demand instance later. LTO aids in choosing

the right instance, to speed up or slow down and choose the apt pricing model. It is

determined for every ready task and the scheduling decisions are made based on the

current time t and the LTO. LTO at time t is the difference between the deadline and the

critical path (LTOt = D− CPt).

Total Cost, C, is the sum of the cost of all the instances used for the workflow ex-

ecution, based on their instance type and pricing model. The cost of each instance is

calculated as per the Amazon model. If the instance is an on-demand instance, the on-

demand price of that instance is used. If the instance is spot, the spot price of the instance

84 Fault-Tolerant Scheduling Using Spot Instances

Figure 4.1: System architecture.

is used to calculate the cost. All partial hours are rounded up to full hours for both spot

and on-demand instances (e.g. 5.1 hours is rounded up to 6 hours).

4.4 System Model

The system architecture is presented in Figure 4.1. The workflow engine acts as a middle

layer between the user application and the Cloud. Users submit a workflow application

into the engine, which schedules the workflow tasks, provides fault tolerance mecha-

nism, and allocates resources in a transparent manner.

The Dispatcher analyses the data and/or control dependencies between the tasks and

submits the ready tasks to the task scheduler. Ready tasks are those tasks whose prede-

cessor tasks have completed their execution and have received all input files, and are

prepared to be scheduled.

Fault Tolerant Strategy : SIs are prone to out-of-bid failures and an efficient fault toler-

ant strategy is crucial for a deadline constraint workflow scheduling. Checkpointing is an

effective fault tolerant mechanism [120] for spot markets, it takes a snapshot periodically

and saves redundant computation in case of failure. It is especially useful in a SI scenario

as we save partial computation in the event of failure and do not pay for that. We use

4.4 System Model 85

checkpointing mechanism as a fault tolerant strategy. Checkpoints are taken periodically

at a user defined frequency. A static checkpointing overhead time is taken into account.

However, the cost of storing checkpoints is not considered, as the price of storage service

is negligible compared to cost of VMs [120]. Moreover, checkpointing can be done in par-

allel with the computation, so the time taken to transfer checkpointing data is ignored as

it is insignificant.

Resource Allocation: Task scheduler chooses Cloud resource type and also the pric-

ing model (e.g. spot or on-demand). This module allocates the appropriate resource as

chosen by the task scheduler.

The task scheduler employs a scheduling algorithm to find a suitable Cloud resource

for every task. The details of the scheduling algorithm are outlined in the next section.

Runtime Estimation: To determine the runtime of a workflow task on a particular

instance type, we use Downey’s analytical model [47]. Downey’s model requires a task’s

average parallelism A, coefficient of variance of parallelism σ, the task length and the

number of cores of the target instance type to estimate the runtime. We have used the

model of Cirne et al. [30] for generating the values of A and σ for each task. This model

has been shown to capture the behavior of moldable jobs in parallel production envi-

ronments. With the use of these two models the task’s runtime is estimated on different

instance types.

Failure Estimator estimates the failure probability, FP of a particular bid price (bidt)

based on the spot price history. The history price of one month prior to the start of the

execution and the spot prices until the point of estimation is used. The failure probability

estimator analyzes the spot price history for the bid value in consideration, for which

the total time of the spot price history, HT, and the total out of bid time, OBTbidt for the

bid bidt is measured. The total out of bid time is the aggregated time in history when

the spot price was higher than the bid bidt. These two factors are used to estimate the

probability of failure as shown in Equation 4.2. This estimation is used while evaluating

the bid value and also while scheduling the task.

FPbidt = OBTbidt /HT (4.2)

86 Fault-Tolerant Scheduling Using Spot Instances

The problem we address in this work is to find a mapping of workflow tasks onto

heterogeneous VM types, using a mixture of on-demand and SIs such that the cost of

workflow execution is minimized within the deadline. The schedule should also be ro-

bust against premature termination of SIs and performance variations of the resources.

Assumptions: Data transfer cost between VMs are considered to be zero, as in most

public Clouds, data transfer inside a Cloud data center is free. The data center is assumed

to have sufficient resources, avoiding VM rejections due to resource contention. This is

not a prohibitive assumption as the resources required are much smaller than the data

center capacity. The number of VM types available and the number of VM types used by

the workflow engine are known and limited. Additionally, only one task is executed on

an instance at a particular time

4.5 Proposed Approach

4.5.1 Scheduling Algorithm

The proposed just in-time scheduling algorithm maps ready tasks submitted by the task

dispatcher onto Cloud resources. It selects a suitable instance type based on the deadline

constraint and the LTO. The algorithm along with a suitable instance type also selects an

apt pricing model to minimize the overall cost. The outline of the algorithm is given in

Algorithm 3. Mapping workflow tasks onto heterogeneous instance types with different

pricing models is a well known NP-complete problem [73]. Hence, we propose a heuristic

to address the same.

The crux of the algorithm is to map tasks that arrive before the LTO to SIs and those

that arrive after the LTO to on-demand instances. In this approach, a single SI type is

used. This instance has lowest cost. The rationale behind this is to minimize the overall

execution cost. On the other hand, multiple types of on-demand instances are used. This

helps to speed up and slow down execution.

Initially, CP and LTO are computed before the workflow execution. They are recom-

puted for all ready tasks during execution. Whilst recomputing the CP time, if there are

any running tasks in the critical path, the time left for their execution is only accounted.

4.5 Proposed Approach 87

This reflects a realistic CP time at that point, giving the algorithm a strong approximation

of the time left for the completion of the workflow.

Run time of a particular task varies with different instance types. Similarly, the critical

path also varies depending on the instance type used to estimate the same. Henceforth,

the LTO also varies accordingly. The scheduling decision changes depending on the in-

stance type used to estimate the critical path. We have developed two algorithms keeping

this aspect in consideration, namely Conservative and Aggressive.

Conservative algorithm: it estimates the CP and LTO on the lowest cost instance

type. The CP estimated in this approach is usually the longest. Hence, it uses SIs only

when the deadlines are relaxed. Under tight and moderate deadlines, it does not generate

enough slack time to utilize SIs and therefore maps tasks predominantly to on-demand

instances. It is conservative in approach and utilizes SIs in a cautious manner only under

relaxed deadline making it more robust.

Aggressive algorithm: it estimates the CP and LTO on a highest cost instance type.

Here, the CP is smaller than the Conservative algorithm. This approach generates more

slack time than the Conservative algorithm and therefore uses SIs even with a strict dead-

line. This offers significant reduction in cost under moderately relaxed deadline. Under

relaxed deadline both algorithms perform similarly. When the market is volatile inducing

failures, this approach has less slack time. Hence, it has to opt for on-demand instances

that are expensive, increasing the overall cost. The performance of these two algorithms

is investigated in the evaluation section.

Algorithm 5 outlines the generic heuristic, which is common to both Conservative

and the Aggressive algorithms. When a new task is ready to be mapped, the algorithm

through the method FindFreeSpace tries to pick free slots among the existing running in-

stances. Free slots are those time slots in an active running instance, when no task is

being executed. If there is no free slot it searches for a running instance that will be free

before the task’s latest start time. Latest start time is the latest time a task can start its ex-

ecution such that the whole workflow can finish within the deadline. Finding such free

slots reduces cost as the algorithm avoids creating new instances for every task. This also

saves time as the initiation time for starting a new instance is avoided. Additionally, the

88 Fault-Tolerant Scheduling Using Spot Instances

99
0

96
0

93
0

90
0

87
0

84
0

81
0

78
0

75
0

72
0

69
0

66
0

63
0

60
0

57
0

54
0

51
0

48
0

45
0

42
0

39
0

36
0

33
0

30
0

27
0

24
0

21
0

18
0

15
0

12
09060300

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

Latest time to On-Demand instances (LTO) in seconds

P
ri
c
e
 (
$
)

BID

SpotPrice

Figure 4.2: Generation of bid value through Intelligent Bidding Strategy.

algorithm creates a new instance when there are no existing instances available before

the latest start time of the task.

SIs offer the compute instance at a much lower price. These are terminated prema-

turely if the bid price goes below the spot price. The failure of SIs is governed by the

bid price. Hence, an intelligently calculated bid price reduces the risks of failures. The

bid price is provided by one of the bidding strategies, which is explained later. If the bid

price is higher than the on-demand price, the algorithm chooses on-demand instances

as they offer higher QoS, as shown in line 15-16. Additionally, the bid price fluctuates

with the spot price. Therefore, the algorithm makes sure the bid price is higher than the

previous bid price, if not the previous bid price is used. The algorithm also estimates the

failure probability of a bid price based on the spot price history (line 17-19). Failure prob-

ability of the current bid price is estimated by the failure estimator as explained earlier. If

the failure probability is higher than a user defined threshold, the algorithm chooses on-

demand instance instead of SI. Lines 14-19 of the Algorithm 5 show that, while creating a

SI, it also evaluates the risk propositions and bids intelligently. SI with the calculated bid

price is instantiated by the resource provisioner.

The other important aspect of the algorithm is choosing the right instance type. When

the algorithm chooses SIs, it selects the cheapest instance type to minimize the cost. How-

ever, while choosing on-demand instances the algorithm has to select a cost-effective in-

stance type to satisfy the deadline constraint. The FindSuitableInstances method in Line

20 computes the critical path time for all instance types and creates a list of instance

types whose critical path time satisfy the deadline constraint. The algorithm further tries

4.5 Proposed Approach 89

to find an already running instance of type contained in the list to assign to the task. If

no suitable instance type is found, the FindCostPer f E f f ectiveVM method estimates the

critical path time for the each instance type. It then calculates the cost of the estimated

critical path times with their respective on-demand prices. The instance that can execute

with the lowest cost is selected. The algorithm does not select an instance type with low-

est price, it selects an instance whose price to performance ratio is the lowest. Further,

through the resource provisioner the selected instance type is instantiated.

The time complexity for calculating the critical path and re-computing the same for all

ready tasks is O(n2) in the worst case, where n is the number of tasks. The complexity

of the algorithm for finding a suitable instance for every task is O(n). The complexity of

finding the suitable instance depends on the number of instances considered, which is

negligible. Hence, the asymptotic time complexity of the algorithm is O(n2).

4.5.2 Bidding Strategies

Three bidding strategies are presented here, which are used by the scheduling algorithm

to obtain a bid price whilst instantiating a SI.

1. Intelligent Bidding Strategy: this strategy takes into account the current spot price

(pspot), on-demand price (pOD), failure probability (FP) of the previous bid price,

LTO, the current time (CT), α and β. α, as seen in Equation 4.3, dictates how much

higher the bid value must be above the current spot price. β determines how fast

the bid value reaches the on-demand price. FP of the previous bid is used as a

feedback to the current bid price, the current bid price varies in accordance to the

FP adding intelligence to the bidding strategy. The bid price is calculated according

to Equation 4.3 given below. The bid value increases gradually with the workflow

execution and as the CT moves closer to the LTO. The bid starts around the initial

spot price and ends closer to the on-demand price. The rationale of increasing the

bid price is to lower the risk of out-of-bid events as the execution nears the LTO

making sure that the deadline constraint is not violated. Lower the value of α,

higher is the value of the bid w.r.t the spot price. Figure 4.2 shows the working

on this bidding strategy with spot price varying with time, it also shows that the

90 Fault-Tolerant Scheduling Using Spot Instances

Algorithm 3: Schedule(t)
input : task ti

1 vms← all VMs currently in the pool;
2 types← available instance types;
3 estimates← compute estimated runtime of task ti on each type ∈ types;
4 Recompute CP and LTO.
5 timeLe f t = LTO− currentTime
6 if timeLeft > 0 then
7 decision← FindFreeSpace(ti, vms, PriceModel.ANY);
8 if decision.allocated = true return decision;
9 if decision.allocated = false then

10 decision← FindRunningVM(ti, vms, PriceModel.ANY);
11 if decision.allocated = true return decision;

12 timeLe f t = timeLe f t− vmInitTime
13 if timeLeft > 0 then
14 bid← EstimateBidPrice(ti, type);
15 if bid > on-demand price then
16 Map to on-demand instance and return decision.

17 failProb← EstimateFailureProbability(bid);
18 if failProb < threshold then
19 Map to spot instance and return decision;

20 InstanceList← FindSuitableInstances(CP, D)
21 decision← FindFreeSpace(ti, InstanceList, PriceModel.ONDEMAND);
22 if decision.allocated = true return decision;
23 if decision.allocated = false then
24 decision← FindRunningVM(ti, InstanceList, PriceModel.ONDEMAND);
25 if decision.allocated = true return decision;

26 // If no running instance is found from InstanceList return decision←
FindCostPerfEffectiveVM(ti, InstanceList);

4.6 Performance Evaluation 91

bid value steeps up towards the end to reach closer to the on-demand price. This

increase in bid price closer to the on-demand price as the CT reaches closer to the

LTO is attributed to the parameter β. The higher value of β, the faster the bid

reaches closer to on-demand price. The bidding strategy considers all these factors

and calculates a bid value in accordance to the situation.

γ = (−α(LTO− CT))/FP

bid = eγ ∗ pOD + (1− eγ ∗ (β ∗ pOD + (1− β) ∗ pspot)) (4.3)

2. On-Demand Bidding Strategy uses the on-demand price as the bid price.

3. Naive Bidding Strategy: uses the current spot price as the bid price for the instance.

4.6 Performance Evaluation

4.6.1 Simulation Setup

CloudSim [21] was used to simulate the Cloud environment. It was extended to support

workflow applications. It was also extended to model the Amazon spot market. It uses

Amazon spot market traces to simulate spot prices.

Application Modeling: Large LIGO workflow with size of 1000 tasks was consid-

ered, its characteristics is explained in detail by Juve et al. [74]. This workflow covers

all the basic components such as, pipeline, data aggregation, data distribution and data

redistribution.

Resource Modeling: A Cloud model with a single data center is considered. The

VMs/Cloud resources are modeled similar to Amazon EC2 instances. We have consid-

ered 9 instance types (m1.small, m1.medium, m1.large, m1.xlarge, m3.xlarge, m3.2xlarge,

m2.xlarge, m2.2xlarge, m2.4xlarge) for on-demand instances and m1.small for SI. The

prices of on-demand instances are adapted from the Linux based instances of Amazon

EC2 US West region (North California availability zone). The spot price history is taken

from the same region from the period of July 2013 - October 2013. The spot price for

92 Fault-Tolerant Scheduling Using Spot Instances

1500001400001300001200001100001000009000080000700006000050000

700

600

500

400

300

200

100

0

E
x
e
c
u
ti
o
n
 C
o
s
t
($
)

ODB

CIB

AIB

SPB

Deadline in seconds

Figure 4.3: Mean execution cost of algo-
rithms with varying deadline (with 95%
confidence interval).

1500001400001300001200001100001000009000080000700006000050000

700

600

500

400

300

200

100

0

E
x
e
c
u
ti
o
n
 C
o
s
t
($
)

CIB

CODB

AIB

AODB

Deadline in Seconds

Figure 4.4: Mean execution cost of bidding
strategies with varying deadline (with 95%
confidence interval).

this period has a mean of $0.05475 with a standard deviation of 0.239 and a minimum

of $0.007 and a maximum of $3. In this period, the spot market has around 445 peaks

exceeding the on-demand price, making it highly volatile and a suitable time period for

testing our methods. A charging period of 60 minutes is considered. A boot/startup time

of 100 seconds is considered for each instance [94].

Baseline Algorithms: We developed six baseline algorithms to compare our heuris-

tics and bidding strategy. We developed a full on-demand baseline algorithm (ODB) which

works similar to our conservative algorithm but maps tasks only to on-demand instances.

Similarly, we developed a full spot baseline algorithm (SPB), which uses only SIs with

a naive bidding strategy. Additionally, a conservative with on-demand bidding strategy

(CODB), conservative with naive bidding strategy (CNB), aggressive with on-demand bidding

strategy (AODB) and aggressive with naive bidding strategy (ANB) are also presented.

4.6.2 Analysis and Results

In this section, we discuss the execution cost incurred by our algorithms, effect of bidding

strategies on execution cost, and also the effect of checkpointing on our model. Here, the

performance of the algorithms Conservative with intelligent bidding (CIB) and Aggressive

with intelligent bidding (AIB) is investigated against the baseline algorithms. Each experi-

ment runs for 30 times, on each run we randomly change the execution start time in the

spot trace, to experience the effect of different price changes. The average value of these

30 runs is reported. Additionally, a sensitivity analysis for the Intelligent Bidding Strat-

4.6 Performance Evaluation 93

egy parameters α and β was performed. Values 0.0005 and 0.9 for α and β respectively

gave the best results, which are used in the following experiments. Failure threshold

parameter value was set to 1 in these experiments, to demonstrate the working of the

algorithm and the bidding strategy.

In our experiments, the deadline varies from strict to moderate to relaxed. A strict

deadline being one where high performance instances are needed to complete the execu-

tion (e.g. deadlines 50000-80000 seconds in Figures 4.3, 4.4 and 4.5). A moderate deadline

is met using a combination of low and high performance instances (e.g. deadlines be-

tween 90000-120000). Lastly, a relaxed deadline can be achieved using slow performance

instances (e.g. deadlines above 130000).

The monetary cost incurred by our algorithms can be observed in Figure 4.3. AIB and

CIB perform similar to on-demand baseline algorithm with strict and relaxed deadline.

AIB algorithm starts using SIs under moderately relaxed deadline giving 28.8% reduction

in costs in comparison to ODB and 13.7% w.r.t CIB algorithm. When the deadline is

lenient, AIB reduces cost as large as 67.5% w.r.t ODB. On the other hand, the CIB uses SIs

more cautiously. CIB offers 16.6% lower cost in comparison to the ODB algorithm when

the deadline is moderately relaxed. However, when the deadline is relaxed, it generates

saving as high as 71% compared to ODB algorithm. CIB and AIB predominantly use on-

demand instances when the deadline is strict. Therefore, have higher costs with lower

deadline violations. They also perform better under relaxed deadline as compared to

SPB. This is because they use an efficient bidding strategy and use SIs only when its price

is lower than the on-demand price. Thenceforth, the costs of CIB and AIB under relaxed

deadline are 25.8% and 33.7% lower than SPB respectively.

The effectiveness of our bidding strategy is presented in Figure 4.4. Our bidding

strategy is compared against the on-demand bidding strategy, which bids the on-demand

price of the instance. Figure 4.4 shows that Conservative algorithm performs similarly

with both the bidding strategies. However, the aggressive algorithm performs better

under intelligent bidding strategy, especially with moderate deadlines. AIB saves 20.3%

cost as against AODB. AIB is able to reduce cost as it bids low initially, and since it has

enough slack time it is able to tolerate out-of-bid failures. Additionally, checkpointing

94 Fault-Tolerant Scheduling Using Spot Instances

1500001400001300001200001100001000009000080000700006000050000

12000

10000

8000

6000

4000

2000

0

DEADLINE

N
u
m
b
e
r
 o
f
T
a
s
k
 F
a
il
u
r
e
s

CNB

ANB

CIB

CODB

AIB

AODB

Figure 4.5: Mean of task failures due to
bidding strategies.

0

50

100

150

200

250

300

350

400

V0.4 V0.5 V0.6 V0.7 V0.8 V0.9 V1

E
x

e
c
u

ti
o

n
 C

o
s
t

($
)

Volatility of Spot Market

CHKPT0 CHKPT5 CHKPT15 CHKPT30

Figure 4.6: Effect of checkpointing on
execution cost.

also saves redundant computing reducing the makespan. Even though the task failures

for AIB are higher than AODB as shown in Figure 4.5, it does not violate the deadline.

Moreover, it reduces costs due to its dynamic bidding strategy.

Figure 4.5 shows the number of failures for conservative and aggressive algorithms

under different bidding strategies. It can be observed that naive bidding strategy has

the highest failures. However, as the algorithm is adaptive, the impact of failures is not

reflected on the execution time. As the figure shows, failures under strict and moderate

deadlines are low as the slack time is less. Failures are high under relaxed deadline as the

slack time is high. Experimental results show that there is no deadline violation and the

algorithm is able to withstand failures irrespective of the bidding strategy.

Figure 4.6 demonstrates the effectiveness of checkpointing. Here, checkpointing with

four different frequencies is used for different volatilities of the spot market. The volatil-

ity of the spot market is varied by changing the scale of the inter price time i.e., the time

between two spot prices. Time between two consequent price change events is reduced,

making the price changes more frequent. This in effect compresses the spot market to a

smaller time interval. This makes the peaks in the spot market more frequent increas-

ing the risk of pre-emptions. Four different frequencies of checkpointing are used: no

checkpointing (CHKPT0), every 5 minutes (CHKPT5), every 15 minutes (CHKPT15) and

30 minutes (CHKPT30). It can be observed that when there is no checkpointing, the cost

of execution is 9-14% higher. CHKPT5 gives better reduction in costs than CHKPT15 and

4.7 Summary 95

CHKPT30. It can be observed that the execution cost between the CHKPT5, CHKPT15

and CHKPT30 are comparable without significant difference. This can be attributed to

low spot prices, the price history we have considered has 82.7% of price changes below

$0.01. Therefore, when the average spot price is higher, we will observe a significant dif-

ference. Under the spot market considered, CHKPT30 is better as the overhead is lower

than CHKPT5, CHKPT15.

4.7 Summary

In this chapter, two scheduling heuristics that map workflow tasks onto spot and on-

demand instance are presented. They minimize the execution cost. They are shown to

be robust and fault-tolerant towards out-of-bid failures and performance variations of

Cloud instances. A bidding strategy that bids in accordance to the workflow require-

ments to minimize the cost is also presented. This work also demonstrates the use of

checkpointing and offers cost savings up to 14%. Simulation results show that cost re-

ductions of upto 70% are achieved under relaxed deadlines, when SIs are used.

This page intentionally left blank.

Chapter 5

Reliable Workflow Execution Using
Replication and Spot Instances

Cloud environments offer low-cost computing resources as a subscription-based service. These

resources are elastically scalable and dynamically provisioned. Furthermore, cloud providers have

also pioneered new pricing models like spot instances that are cost-effective. As a result, scientific

workflows are increasingly adopting cloud computing. However, spot instances are terminated

when the market price exceeds the users bid price. Likewise, cloud is not a utopian environment.

Failures are inevitable in such large complex distributed systems. It is also well studied that

cloud resources experience fluctuations in the delivered performance. These challenges make fault-

tolerance an important criterion in workflow scheduling. This chapter presents an adaptive, just-

in time scheduling algorithm for scientific workflows. This algorithm judiciously uses both spot

and on-demand instances to reduce cost and provide fault-tolerance. The proposed scheduling

algorithm also consolidates resources to further minimize execution time and cost. Extensive

simulations show that the proposed heuristics are fault-tolerant and effective, especially under

short deadlines, providing robust schedules with the lowest possible makespan and cost.

5.1 Introduction

ALTHOUGH, scheduling scientific workflows on cloud will immensely reduce cost

and makespan. Cloud computing, like any other distributed system, is also prone

to resource failures. These failures are generally due to software faults, hardware faults,

errors in network, data staging issues, failures due to virtualization, disk errors, power

issues and many others. These failures from a workflow application perspective can

97

98 Reliable Workflow Execution Using Replication and Spot Instances

be classified into 1) task failures, 2) VM failures, and 3) workflow level failures [67].

Nonetheless, failures are inevitable whilst running a complex application like workflows

consisting of thousands of tasks.

Furthermore, cloud resources also experience performance variations because of re-

source sharing, consolidation and migration among other factors. Performance variation

of cloud resources affects the overall execution time (i.e. makespan) of the workflow.

It further increases the difficulty to estimate the task execution time accurately. Dejun

et al. [44] show that the behavior of multiple “identical” resources vary in performance

while serving exactly the same workload. A performance variation of 4% to 16% is ob-

served when cloud resources share network and disk I/O [10].

Most providers provision cloud resources (e.g., Virtual Machines (VMs) instances) on

a pay-as-you-go basis (similar to On-Demand instances) charging fixed prices per time

unit. However, Amazon, one of the pioneers in this space, started selling idle or un-

used data center capacity through bidding in an auction-like market as Spot Instances

(SI) since December 2009. On-demand and SIs have the same configurations and charac-

teristics. Nonetheless, SIs offers cloud users reduction in costs of up to 70% for multiple

applications like bag-of-tasks, web services and MapReduce workflows [105, 112, 140].

Significant cost reductions are achieved due to lower QoS, which makes SIs less reliable

and prone to out-of-bid failures. This introduces a new aspect of reliability into the SLAs

and the existing trade-offs making it challenging for cloud users [71].

These challenges emphasize the necessity for an effective fault-tolerant and robust

workflow scheduling algorithm to mitigate resource failures and performance variations.

Scientific workflows can also benefit from SIs with an effective bidding and an efficient

fault-tolerant mechanism. Such a mechanism can tolerate out-of-bid failures and further

reduce the cost immensely.

Therefore, in this chapter we present a just in-time, fault-tolerant and adaptive

scheduling heuristic. It uses spot and on-demand instances to schedule workflow tasks.

It minimizes the execution cost of the workflow and at the same time provides a robust

schedule that satisfies the deadline constraint.

The key contributions of this chapter are: 1) A just in-time scheduling heuristic that

5.2 Related Work 99

uses spot and on-demand resources to schedule workflow tasks in a robust manner. 2) A

replication strategy for cloud environments that utilize different pricing models offered

by clouds.

5.2 Related Work

Cloud resources experience failures and performance variations that demand fault-

tolerance in a schedule. Studies [44,104] have shown that performance of VMs in a cloud

environment exhibits variability, and it varies for different instance types, different avail-

ability zone, different data centers and different time of the day. Mao et al. [94] have

shown that there is significant variation in VM start up time, and it varies with size, OS,

and type of instance. They also show that up to 8% of VMs fail while they are acquired.

Failures in a distributed system are inevitable and they occur at multiple sources. Failures

occur in any of the following levels: hardware, operating system, middleware, network,

storage, and task or at the user level. Some of the most common reasons for failure are

low memory or disk space, network congestion, unavailability of input files at the right

moment, non-responding services, errors in file staging, authentication, uncaught excep-

tion, missing libraries, task crashes and many more [110]. Li et al. [86] emphasize the

need for fault-tolerance in workflow applications on a cloud environment. Prominent

fault-tolerant techniques that can mitigate failures are retry, alternate resource, check-

pointing, and replication [25, 148]. In essence, redundancy is fundamental in providing

fault-tolerance and it is mainly in two forms: space and time [59].

Redundancy in space is one of the widely used mechanisms for providing fault-

tolerance. Redundancy in space is achieved by proving duplication or replication of

resources. There are broadly two variants in this approach, task duplication and data

replication.

Task duplication creates replica of tasks. Replication of tasks can be done concur-

rently [31], where all the replicas of a particular task start executing simultaneously.

When tasks are replicated concurrently, the child tasks start its execution depending on

the schedule type.

100 Reliable Workflow Execution Using Replication and Spot Instances

Schedules are of two types, first, where the child task starts only when all the replicas

have finished execution [12]. In the other schedule type, the child tasks start execution as

soon as one of the replica finishes execution [31].

Replication of task is also done in a backup mode, where the replicated task is acti-

vated when the primary task fails [100]. This technique is similar to retry or redundancy

in time. However, here they employ a backup overloading technique, which schedules

the backups for multiple tasks in the same time period to effectively utilize the processor

time.

Duplication is employed to achieve multiple objectives, the most common being fault-

tolerance [12, 64, 78, 155]. When one task fails, the redundant task helps in completion of

the execution. Additionally, algorithms also employ data duplication where data is repli-

cated and pre-staged, thereby moving data near computation especially in data intensive

workflows to improve performance and reliability [27]. Furthermore, estimating task

execution time a priori in a distributed environment is arduous. Replicas are used to cir-

cumvent this issue using the result of the earliest completed replica. This minimizes the

schedule length to achieve hard deadlines [33, 45, 114, 132], as it is effective in handling

performance variations [31]. Calheiros et al. [20] replicated tasks in idle time slots to re-

duce the schedule length. These replicas also increase resource utilization without any

extra cost.

Task duplication is achieved by replicating tasks in either idle cycles [20] of the re-

sources or exclusively on new resources. Some schedules use a hybrid approach repli-

cating tasks in both idle cycles and new resources. Idle cycles are those slots in the re-

source usage time period where the resources are unused by the application. Schedules

that replicate in these idle cycles profile resources to find unused time slot and replicate

tasks in those slots. This approach achieves benefits of task duplication and simultane-

ously minimizes monetary costs. In most cases, these idle slots might not be sufficient to

achieve the needed objective. Hence, many algorithms place their task replicas on new

resources. These algorithms trade off resource costs to their objectives.

There is significant body of work in this area encompassing platforms like cluster,

grids, and clouds [12, 18, 33, 45, 64, 78, 114, 132, 155]. Resources considered can either be

5.3 Background 101

bounded or unbounded depending on the platform and the technique. Algorithms with

bounded resources consider a limited set of resources. Similarly, an unlimited number

of resources are assumed in an unbounded system environment. Resource types used

can either be homogeneous or heterogeneous in nature. Darbha et al. [33] is one of the

early works, which presents an enhanced search and duplication based scheduling algo-

rithm (SDBS) that takes into account the variable task execution time. They consider a

distributed system with homogeneous resources and assume an unbounded number of

processors in their system.

Resubmission and task redundancy are the most prominent fault-tolerant strategy

amongst workflow management systems [110]. They resolve most failures mentioned

above in a distributed environment like the cloud. In this work, we employ both redun-

dancy in space and time. We use task replication and task retry to achieve fault-tolerance,

to minimize makespan, and also to maximize resource utilization. Here, the proposed al-

gorithm replicates tasks both on idle slots as well as on new resources. Our proposed

system model uses an unbounded number of processors, which are heterogeneous in

character.

5.3 Background

In this section, we define the important concept of Essential Critical Tasks and metrics

that will be further referred in the text. The other essential concepts about workflow,

makespan, critical path, latest time to on-demand, pricing models, total cost are defined

in Section 4.3 of Chapter 4.

Additionally, in this section we present the problem statement and the assumptions

for the research question considered.

Essentially Critical Tasks (ESCT). It is important to define the notion of Earliest

Finish Time, (EFT) and the Latest Finish Time, LFT to explain ESCTs. To explain the

concept of EFT we introduce Earliest Start Time, (EST), which is the earliest time a task

102 Reliable Workflow Execution Using Replication and Spot Instances

(a) (b)

Figure 5.1: Figure(a) shows a workflow at time t0, where there is enough slack time.
Under such situation the tasks are scheduled onto spot instances. Figure(b) shows a
workflow at time t1, where there is no slack time. It also shows some completed tasks.
Under such situation, ESCTs are scheduled onto on-demand instances and replicated on
spot instances. Other tasks with slack time are scheduled on spot instances.

can start, given by the equation 5.1 [5],

EST(tstart) = 0.

EST(ti) = max
tp∈pred(ti)

{EST(tp) + MT(tp) + cp,i},
(5.1)

where, MT(tp) is the Minimum Execution Time of tp on any instance type. This leads

to the definition of Earliest Finish Time, (EFT), which is the earliest a task can finish its

execution and is determined by the equation 5.2 [5].

EFT(ti) = EST(ti) + MT(ti). (5.2)

Finally, Latest Finish Time, LFT, is the latest time a task has to finish execution so that the

deadline constraint is not violated. It is described by the equation 5.3 [5]

LFT(texit) = D.

LFT(ti) = min
ts∈succ(ti)

{LFT(ts)−MT(ts)− ci,s},
(5.3)

where, succ(ti) is all the children nodes of ti.

Hitherto, Essentially Critical Tasks are the tasks that have no slack time to finish their

5.4 Proposed Approaches 103

execution, i.e., if the EFT(ti) ≥ LFT(ti) then the task is an ESCT. In other words, ESCT

is not just a task on the critical path but a task which does not have any slack time and

must finish by their EFT, this is shown diagrammatically in Figure 5.1(b). The algorithm

schedules ESCTs on instances that offer low execution time to avoid ESCTs further in the

workflow execution.

Two metrics are used in this chapter to measure the robustness of a schedule 1) failure

probability, Rp, and 2) tolerance time, Rt. The details are presented in Section 3.3 with

equations 3.2 and 3.3, respectively.

Replication Factor is the ratio of the total number of replicas created to the number

of workflow tasks. This gives an estimate about the number of replicas created for a

workflow with a known number of tasks.

The problem we address in this work is to find a mapping of workflow tasks onto

heterogeneous VM types, using a mixture of on-demand and SIs such that the cost of

workflow execution is minimized within the deadline. The schedule should also be ro-

bust against resource failures including premature termination of SIs and performance

variations of the resources.

Assumptions: Data transfer cost between VMs are considered to be zero, as in most

public clouds, data transfer inside a cloud data center is free. The data center is assumed

to have sufficient resources, avoiding VM rejections due to resource contention. This is

not a prohibitive assumption as the resources required are much smaller than the data

center capacity.

5.4 Proposed Approaches

Replication is the most widely used mechanism for enhancing availability and reliabil-

ity of services. Replication can be done either in space (task duplication) or time (task

resubmission). The rationale behind task duplication with n number of replicas is that

it can tolerate (n-1) failures without affecting the makespan of the workflow. The down-

side of task duplication is consumption of extra resources. Task resubmission or retry is

an effective fault tolerant strategy where tasks are resubmitted onto a new resource only

104 Reliable Workflow Execution Using Replication and Spot Instances

when resources fail, hence, it is cost effective although it increases the makespan of the

workflow.

In this chapter, the proposed heuristic employs both these fault tolerant mechanisms.

When the deadline is short, it employs task duplication, and as the deadlines becomes

lenient, it employs task retry to mitigate failures. The working of this heuristic is depicted

in the Figure 5.1. The proposed heuristics are detailed in the next subsection.

5.4.1 Heuristics

Scheduling workflow tasks onto heterogeneous VMs is an NP-Complete problem [73].

Hence, we propose an adaptive, just-in-time heuristic. The task dispatcher dispatches

ready tasks to the scheduler. It monitors the execution of tasks and resubmits the task

if it fails, or submits the child task when all its parent tasks have completed execution.

The scheduler maps these ready tasks onto the best suitable resource, such that cost and

makespan is minimized and the schedule is fault tolerant. We detail the working of the

proposed heuristics in this section.

Once the scheduler receives a task from the task dispatcher, it estimates the critical

path. The critical path will potentially be different for every instance type used to esti-

mate it. Therefore, after a task completes its execution, its critical path weight is made

zero and for every ready task the critical path time is recomputed. Based on the deadline

and the estimated critical path time, the time flag LTO is computed. The difference be-

tween LTO and the current time dictates the type of resource and the pricing model that

will be selected.

The heuristic acts based on the position of the time flag LTO with respect to the cur-

rent time. We explain the heuristics presented in Algorithm 5 in four possible scenarios.

Scenario 1 and 2 are when LTO is ahead of the current time connoting sufficient slack

time to complete workflow execution before the deadline. Under such circumstances,

tasks are mapped to spot instances. Scenario 1 illustrates the task mapping onto running

instances to consolidate resource usage reducing cost and time. In scenario 2 tasks are

mapped onto new spot instances, when no suitable running instance was found. On the

other hand, in scenario 3 and 4, when the LTO is before the current time, then the algo-

5.4 Proposed Approaches 105

Algorithm 4: FindFreeSlot(t,vms)
input : task t, InstanceList, PriceModel P
output: Suitable VM

1 types← available instance types;
2 estimates← compute estimated runtime of task ti on each type ∈ types;
3 minComplTime←MaxValue;
4 for ∀v ∈ InstanceList do
5 if P = ANY or v.pricemodel = P then
6 ERT ← estimates(tv);
7 GT ← MET − EIT;
8 ECT ← D− CPT − ERT;
9 if EIT ≤ MST and ERT ≤ GT then

10 TCT ← EIT + ERT;
11 if TCT < ECT and TCT < minComplTime then
12 minComplTime← TCT;
13 suitableVM← v;

14 return suitableVM;

rithm has to choose expensive and high performing machine to speed up the execution

to meet the deadline. Here, tasks are duplicated to provide fault-tolerance as there is no

slack time. Replication is done on spot instances to save cost. Hitherto, fault tolerance

is achieved by replication. Tasks are either replicated in time or in space based on the

deadline, LTO, and the current time.

Scenario 1: Mapping Task on Already Running Spot Instances

First, let us consider the case in which the LTO is conveniently ahead of the current time.

In such a case, the algorithm first tries to map the tasks onto spot instances as they are

cheap and even if they fail due to out-of-bid events, there is enough slack time to rerun

them. Before mapping onto spot instances the heuristic searches for free slots among the

resources already in use. If no free slot is found, the scheduler searches for resources,

which are running and can finish execution within the task’s latest finish time. The latest

finish time is the time beyond which if any delay occurs it will violate the workflow

deadline.

Free slots are unused idle time periods in instances before the end of their charged

106 Reliable Workflow Execution Using Replication and Spot Instances

time period. Algorithm 4 describes the methodology of finding these free slots. This

method explores only among the specified instances of a particular price model stated by

the function call. Here, for every instance in use, the time it will become idle is estimated

i.e., expected idle time, EIT. Further, gratis time, GT is computed, which is the difference

between EIT and the end time, MET, until which the machine is leased. This gives an

estimate of the available idle time in that resource. Furthermore, estimated completion

time (ECT) and max start time (MST) for the task is estimated. Estimated completion

time (ECT) is computed as shown in line 8 of Algorithm 4, where ERT is the estimated

task run time on that instance type and CPT is the critical path time, which is the time

taken on the slowest instance. Estimated completion time is a virtual task deadline in-

dicating that the task has to finish within this time to avoid any delay. Hence, the task

has to complete its execution before ECT. If the conditions EIT ≤ MST and ERT < GT

are met, then task completion time, TCT is computed as shown in line 10. Finally, the

suitable instance is selected if the TCT on that instance is less than the ECT and its TCT

is the minimum among all considered instances.

In the event when no free slots are found, the algorithm finds a suitable running

instance which can be used instead of starting a new instance. The rationale being that

such instances are readily available, saving boot time. The method FindRunningVM is

very similar to the method FindFreeSlot, the prominent difference being in the line 9 of

Algorithm 4, where the condition ERT ≤ GT is omitted. In other words, the algorithm

does not validate if the estimated task run time is less than or equal to the gratis time.

Scenario 2: Mapping Task on a New Spot Instance

When no running instance has either a free slot or is capable of honoring the deadline,

the heuristic investigates further and checks whether there is sufficient time to run on

a new spot instance. If so, the bid price is estimated using a bidding strategy, then the

failure probability for that bid price is estimated. Here, Intelligent Bidding Strategy is

used to estimate bid prices, which was proposed in Chapter 4. This strategy takes into

account the current spot price (pspot), on-demand price (pOD), LTO, failure probability

(FP) of the previous bid price, the current time (CT), α and β. α, as shown in Section 4.5.2

5.4 Proposed Approaches 107

Algorithm 5: Schedule(t)
input : task ti
/* Variable Initializations */

1 vms← all VMs currently in the pool;
2 types← available instance types;
3 estimates← compute estimated runtime of task ti on each type ∈ types;
4 decisionList← null;
5 Recompute CP and LTO.
6 timeLe f t = LTO− currentTime
7 if timeLeft > 0 then // If there is sufficient slack time, then
find a running instance

8 decision← FindFreeSlot(ti, vms, PriceModel.ANY);
9 if decision.allocated = true then decisionList.add(decision);

10 if decision.allocated = false then
11 decision← FindRunningVM(ti, vms, PriceModel.ANY);
12 if decision.allocated = true then decisionList.add(decision);

13 timeLe f t = timeLe f t− vmInitTime
14 if timeLeft > 0 then // Initialize a new spot instance as no

running instance was found
15 bid← EstimateBidPrice(ti, type);
16 if bid > on-demand price then
17 Map to on-demand instance and decisionList.add(decision).

18 failProb← EstimateFailureProbability(bid);
19 if failProb < threshold then
20 Map to spot instance and decisionList.add(decision);

21 InstanceList← FindSuitableInstances(CP, D) ; // Find Instance types
that can honor the deadline
/* Finding on-demand instances as sufficient slack time is

not available */
22 decision← FindFreeSpace(ti, InstanceList, PriceModel.ONDEMAND);
23 if decision.allocated = true then decisionList.add(decision);
24 if decision.allocated = false then
25 decision← FindRunningVM(ti, InstanceList, PriceModel.ONDEMAND);
26 if decision.allocated = true then decisionList.add(decision);

27 decision← FindCostPerfEffectiveVM(ti, InstanceList); // Finding an
appropriate new on-demand instance

28 ...

108 Reliable Workflow Execution Using Replication and Spot Instances

Algorithm 5: Schedule(t) - Part Two

29 compute EFT and LFT for task ti
30 if Number of Replicas of ti ≤ 1 then /* Task Duplication under short

deadline */
31 if EFT + VMinitTime ≥ LFT then
32 unusedInstance← instances not used to map replicas of Ti
33 repDecision← FindFreeSpace(ti, unusedInstance, PriceModel.ANY);
34 if repDecision.allocated = true then decisionList.add(repDecision);
35 if repDecision.allocated = false then
36 repDecision← FindRunningVM(ti, unusedInstance, PriceModel.ANY);
37 if repDecision.allocated = true then decisionList.add(repDecision);

38 if null = repDecision then
39 InstanceList← FindSuitableInstances(CP, D)
40 InstanceType← FindCostPerfEffectiveVM(ti, InstanceList);
41 bid← EstimateBidPrice(ti, InstanceType);
42 if bid > on-demand price then
43 Map to on-demand instance and decisionList.add(repDecision).

44 Map to spot instance and decisionList.add(repDecision);

45 return decisionList;

with Equation 4.3. This equation dictates how much higher the bid value must be above

the current spot price. Lower the value of α, higher is the value of the bid with respect

to the spot price. β determines how fast the bid value reaches the on-demand price. The

increase in bid price closer to the on-demand price as the CT reaches closer to the LTO is

attributed to the parameter β. The higher value of β, the faster the bid reaches closer to

on-demand price. FP of the previous bid is used as a feedback to the current bid price,

the current bid price varies in accordance to the FP adding intelligence to the bidding

strategy. The bid price is calculated as per the Equation 4.3. The bid value increases

gradually with the workflow execution and as the CT moves closer to the LTO. The bid

starts around the initial spot price and ends closer to the on-demand price. The rationale

of increasing the bid price is to lower the risk of out-of-bid events as the execution nears

the LTO making sure that the deadline constraint is not violated. Figure 4.2 shows the

working on this bidding strategy with spot price varying with time. It also shows that

the bid value steeps up towards the end to reach closer to the on-demand price. The

bidding strategy considers all these factors and calculates a bid value in accordance to

5.4 Proposed Approaches 109

the situation.

Scenario 3: Mapping Task to an On-Demand Instance

Let us now examine the case where LTO is behind the current time i.e. there is no slack

time, or the estimated bid price is higher than the on-demand price, or the failure prob-

ability is higher than the threshold. In such cases the algorithm tries to find a suitable

on-demand instance, as on-demand instances have higher QoS guarantees. Before find-

ing an instance, a list of suitable instance types that can honor the deadline are found as

shown in Algorithm 6.

In this method Find Suitable Instances, critical tasks are determined for every in-

stance type. Ideally, the critical path can vary for different instance types and so does

the tasks on it. In other words, tasks have different run times on different instance types

and therefore, critical path will also change based on the instance type used to estimate

it. Hence, this method evaluates the critical path per instance type and maintains a list

of critical tasks per instance type. This computation is done initially and when a task

finishes execution, the task dispatcher checks whether the task was critical. If it was, then

the critical path for those instance types (i.e. where the completed task was critical) are

recomputed. This increases efficiency and avoid computing critical path for every task

mapping. Once the critical path tasks are computed, the lines 7- 12 adds the task run

time, the transfer time for all the tasks on the critical path. Finally, the total critical path

time is computed and if this is less than the remaining deadline, then the instance type is

added into the eligible instance list.

This instance list is a list of instance types that can comply with the deadline con-

straint. Akin to scenario 1, the algorithm first tries to find a free slot among the in-

stance list, if no free slot is found, then an instance is found among the running instances

that can execute the task without delaying the deadline. If no instances are found, then

FindCostPer f E f f ectiveVM method calculates the cost of the estimated critical path times

with their respective on-demand prices. The instance that can execute with the lowest

cost is selected. The algorithm does not select an instance type with lowest price; it se-

lects an instance whose price to performance ratio is the lowest.

110 Reliable Workflow Execution Using Replication and Spot Instances

Algorithm 6: FindSuitableInstances(estimates)
input : estimates
output: Eligible Instance List

1 types← available instance types;
2 InstanceList← null
3 for ∀i ∈ InstanceTypes do
4 CPTasks← computeCPTasks(i);
5 prevTask← null;
6 CPTime← 0;
7 for ∀t ∈ CPTasks do
8 if prevTask 6= null then
9 edgeTime← edgeTime(prevTask, t);

10 CPTime+ = estimates(t) + edgeTime;
11 prevTime← t;

12 totalCPTime = CPTime + VMInitTime;
13 if totalCPTime ≤ D− currenttime then
14 InstanceList.add(i);

15 return InstanceList;

Scenario 4: Task Duplication Under Short Deadline

Critical tasks are replicated to provide fault tolerance when the deadline is short. We pro-

pose two variants of this heuristic. The two heuristics are very similar, with the difference

being the tasks they replicate.

Essential Critical Path Task Replication (ECPTR) heuristic: The algorithm 5 de-

tails its working. Here, when the LTO has passed the current time, and the task has

no slack time, then a replica is created. In other words, all ESCTs are replicated. Simi-

lar to the scenarios presented before, first free slots are found among the instances that

have not been used to map the replicas of the task considered. If no free slots are found,

then a running instance is found that can be used to the map the task without violat-

ing the deadline. When neither free slots nor running instances are found, the heuristic

maps the replica onto a spot instance. The type of spot instance is decided by methods

FindSuitableInstances and FindCostPer f E f f ectiveVM as shown in lines 39 to 40. Finally,

using the bidding strategy, a bid price is estimated for the spot price and if this bid price

is less than the on-demand price then a spot instance is instantiated mapping the replica

5.5 Performance Evaluation 111

task.

Furthermore, when a resource fails, the tasks on the resource are resubmitted as ready

tasks to the scheduler. In such a case, the task duplication is done only when the number

of replicas of the task is zero or one as shown in line 30. In other words, we do not

have more than one replica at any particular time for a given task. When the execution

of the task finishes, all the replicas are terminated, so that the resources can be freed to

accommodate other tasks.

The other heuristic is Critical Task Replication (CTR). Here, all the critical tasks are

replicated, i.e. once the LTO has moved passed the current time then all tasks are repli-

cated. The replicated tasks are mapped to spot instances to minimize cost. This heuristic

is very similar to Algorithm 5, the only difference being, the validation in line 31 is omit-

ted in this heuristic. In other words, under short deadline all tasks will be replicated,

although only one replica will be created for a given task at anytime.

5.4.2 Time Complexity

The time complexity for calculating the critical path and re-computing the same for all

ready tasks is O(n2) in the worst case, where n is the number of tasks. The complexity of

algorithm for finding a suitable instance for every task is O(n). The complexity of finding

the suitable instance depends on the number of instances considered, which is negligible.

Hence, the asymptotic time complexity of the algorithm is O(n2).

5.5 Performance Evaluation

5.5.1 Simulation Setup

We used CloudSim [21] to simulate the cloud environment. It was extended to support

workflow applications. It was also extended to model the Amazon spot market. It uses

Amazon spot market traces to simulate spot prices.

Application Modeling: The Laser Interferometer Gravitational Wave Observatory

(LIGO) workflow with size of 1000 tasks was considered. Its characteristics are explained

112 Reliable Workflow Execution Using Replication and Spot Instances

Table 5.1: Spot instance characteristics for US west region (North California AZ)

Instance Average St Dev Max Min Peaks

m1.small 0.063283 0.055774 0.24 0.0071 570

m1.medium 0.008131 7.30E-05 0.0085 0.008 0

m1.large 0.0163 5.79E-04 0.025 0.016 0

m1.xlarge 0.229384 0.478334 1.92 0.0322 132

m2.xlarge 0.042649 0.116727 1.07 0.0161 18

m2.2xlarge 0.089227 0.204482 2.45 0.0321 48

m2.4xlarge 0.115971 0.160712 2 0.0645 2

m3.xlarge 1.37942 1.763904 6 0.5 167

m3.2xlarge 1.495879 0.544046 2 0.064 64

in detail by Juve et al. [74]. This workflow covers all the basic components such as,

pipeline, data aggregation, data distribution and data redistribution.

Resource Modeling: A cloud model with a single data center is considered. The

VMs/cloud resources are modeled similar to Amazon EC2 instances. We have consid-

ered 9 instance types (m1.small, m1.medium, m1.large, m1.xlarge, m3.xlarge, m3.2xlarge,

m2.xlarge, m2.2xlarge, m2.4xlarge) for on-demand instances and SIs. The prices of on-

demand instances are adapted from the Linux based instances of Amazon EC2 US West

region (North California availability zone). The spot price history is taken from the same

region from the period of June 2014 - September 2014. The characteristics of the spot

prices for all instances are given in the Table 5.1. Here, we have reported the average

spot price, standard deviation (St Dev), minimum and maximum spot prices for the pe-

riod considered and also the peaks, which is the number of times the spot price was

higher than its on-demand price. A charging period of 60 minutes is considered. A

boot/startup time of 100 seconds is considered for each instance [94].

Failure Modeling: Failures are modeled by Weibull distribution similar to many

other prominent works [68, 70, 81, 90, 110, 131, 147]. We assume these resources to be

fail-stop processors, implying that after a failure the resource does not become available

again. Further, the failures are considered to be independent. The distribution models

the time to failure for a particular resource. The parameters of the Weibull distribution

5.5 Performance Evaluation 113

7
0
0
0
0

6
7
5
0
0

6
5
0
0
0

6
2
5
0
0

6
0
0
0
0

5
7
5
0
0

5
5
0
0
0

5
2
5
0
0

5
0
0
0
0

4
7
5
0
0

4
5
0
0
0

4
2
5
0
0

4
0
0
0
0

3
7
5
0
0

3
5
0
0
0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Deadline(secs)

F
a
il
u
re
 P
ro
b
a
b
il
it
y

CIB

CTR

ECPTR

Figure 5.2: Failure probability of algorithms
with varying deadline.

7
0
00
0

6
7
50
0

6
5
00
0

6
2
50
0

6
0
00
0

5
7
50
0

5
5
00
0

5
2
50
0

5
0
00
0

4
7
50
0

4
5
00
0

4
2
50
0

4
0
00
0

3
7
50
0

3
5
00
0

25000

20000

15000

10000

5000

0

-5000

-10000

T
o
le
ra
n
c
e
T
im
e
 (
s
e
c
s
)

CIB

CTR

ECPTR

DEADLINE (secs)

Figure 5.3: Tolerance time of algorithms
with varying deadline (with 95% confidence
interval).

are modeled similar to the parameters used in [70].

Baseline Algorithms: We compare our heuristics with the ones proposed in [112],

which also uses spot instances to reduce cost. This baseline algorithm uses retry as a fault-

tolerant mechanism, whereas the proposed solution in this chapter uses both retry and

replication. This is one of the few works that uses spot instances for workflow schedul-

ing for fault-tolerance, hence we use this as a baseline for our work. We have also in-

troduced an Essential Critical Path Task Replication without Resource Maximization al-

gorithm (ECPTRRM) similar to ECPTR without resource utilization maximization. This

algorithm performs similar to ECPTR but does not place tasks on the same resource max-

imizing its usage. ECPTRRM demonstrates the effect of maximizing resource utilization

on makespan and cost.

5.5.2 Results

In this section, we analyze the performance of our heuristics. We investigate them on the

parameters of fault-tolerance, makespan, cost, and resource utilization. Each experiment

was run 100 times, with each run starting at a different point in the trace. In other words,

for each run we choose a date and time randomly between the start date and end date

of the spot market trace to create randomness in the spot prices. We have run for three

different combinations of deadline: 1) short deadline (35000 - 45000), 2) moderate (47500

114 Reliable Workflow Execution Using Replication and Spot Instances

- 57500) and 3) relaxed deadline (60000 - 70000) as shown in the Figures 5.2-5.8. Next, we

present results and their analysis on the performance of our heuristics with regards to

different parameters.

Fault Tolerance

Providing fault-tolerant schedules is the main objective of this proposed algorithm. Fig-

ures 5.2 and 5.3 show the performance of our heuristics with respect to two metrics,

failure probability and tolerance time. The details of the metrics were mentioned earlier

in section 5.3.

The failure probabilities of the different algorithms are shown in Figure 5.2. It can

be observed that under relaxed deadline, all algorithms have substantially lower failure

probabilities. When the deadline is short, it can be observed that the heuristics CTR and

ECPTR perform considerably better than the baseline CIB. Failure probability of CTR

and ECPTR are lower than CIB by 79.75% and 72.36% respectively on average under

short deadlines. This is a strong indication that our heuristics have a high probability of

success in spite of failures in the environment.

Figure 5.3 depicts the results with respect to the tolerance time. It can be observed

that the baseline algorithm CIB has negative tolerance time under short deadlines. This

implies that CIB algorithm is not fault-tolerant under short deadline, whereas on the

other hand both the proposed heuristics CTR and ECPTR have significantly positive tol-

erance time. This suggests that they are fault-tolerant and can withstand more failures

and performance variations given the same schedule. It is also evident from the figure

that ECPTR has a higher tolerance time than CTR and this difference becomes larger

as the deadline becomes relaxed. Additionally, the tolerance time of CIB and ECPTR

become similar as the deadline is relaxed. This is due to the fact that CIB and ECPTR

perform similar to each other under relaxed deadlines.

Effect on Makespan

Makespan is the other important objective that we consider. We attempt to minimize

it especially when the deadline is short. Figures 5.4 and 5.5 are presented, showing the

5.5 Performance Evaluation 115

7
0
0
0
0

6
7
5
0
0

6
5
0
0
0

6
2
5
0
0

6
0
0
0
0

5
7
5
0
0

5
5
0
0
0

5
2
5
0
0

5
0
0
0
0

4
7
5
0
0

4
5
0
0
0

4
2
5
0
0

4
0
0
0
0

3
7
5
0
0

3
5
0
0
0

55000

50000

45000

40000

35000

30000

M
A
K
E
S
P
A
N
 (
s
e
c
s
)

CIB

CTR

ECPTR

DEADLINE (secs)

Figure 5.4: Mean makespan of the proposed
algorithms against the baseline with varying
deadlines (with 95% confidence interval).

7
0
00
0

6
7
50
0

6
5
00
0

6
2
50
0

6
0
00
0

5
7
50
0

5
5
00
0

5
2
50
0

5
0
00
0

4
7
50
0

4
5
00
0

4
2
50
0

4
0
00
0

3
7
50
0

3
5
00
0

65000

60000

55000

50000

45000

40000

35000

30000

M
A
K
E
S
P
A
N
 (
s
e
c
s
)

ECPTR

ECPTRRM

DEADLINE (secs)

Figure 5.5: Showing the effect of resource
consolidation on makespan for ECPTR
heuristic (with 95% confidence interval).

7
0
0
0
0

6
7
5
0
0

6
5
0
0
0

6
2
5
0
0

6
0
0
0
0

5
7
5
0
0

5
5
0
0
0

5
2
5
0
0

5
0
0
0
0

4
7
5
0
0

4
5
0
0
0

4
2
5
0
0

4
0
0
0
0

3
7
5
0
0

3
5
0
0
0

450

400

350

300

250

200

150

100

C
O
S
T
 (
$
)

CIB

CTR

ECPTR

DEADLINE (secs)

Figure 5.6: Mean execution cost of the pro-
posed algorithms against the baseline with
varying deadline (with 95% confidence in-
terval).

7
0
00
0

6
7
50
0

6
5
00
0

6
2
50
0

6
0
00
0

5
7
50
0

5
5
00
0

5
2
50
0

5
0
00
0

4
7
50
0

4
5
00
0

4
2
50
0

4
0
00
0

3
7
50
0

3
5
00
0

1

0.8

0.6

0.4

0.2

0

DEADLINE (secs)

R
e
p
li
c
a
ti
o
n
 F
a
c
to
r

CIB

CTR

ECPTR

Figure 5.7: Replication factor for the algo-
rithms with varying deadline.

116 Reliable Workflow Execution Using Replication and Spot Instances

performance of our algorithms with respect to makespan. The working of our algorithms

with respect to the baseline algorithm is depicted in Figure 5.4. Additionally, the effect of

resource maximization on makespan is shown in Figure 5.5.

The proposed heuristics in comparison with the baseline generate schedules with

makespan lower than the baseline. The Figure 5.4 shows the results with a 95% confi-

dence interval. It can be observed from the figure that CTR outperforms both CIB and

ECPTR, which is essentially because CTR generates more replicas. Task duplication helps

generate effective schedules with lower makespan in spite of failures and performance

variations.

ECPTR has makespan lower than CIB by 14.47%, 25.14% and 32.17% respectively

when the deadline is short, moderate and relaxed respectively. Similarly, CTR has a

makespan lower by 43.43%, 56.44% and 55.95% under short, moderate and relaxed dead-

lines respectively against CIB algorithm. Furthermore, schedules generated by CTR are

23.93% lower in makespan than ECPTR schedules.

Figure 5.5 shows the results when resource consolidation is considered. The effect on

makespan is lower when the deadline is short, the reason being compaction of resource

are not possible to a significant extent due to deadline constraints. Whereas, under mod-

erate and relaxed deadlines, ECPTR generates schedules with 11.37% and 14.24% lower

makespan respectively, when compared to ECPTRRM. This reinforces that maximizing

resource utilization reduces makespan. It reduces data transfer time, and the boot time

needed to initialize new instance, by mapping two or more tasks onto the same resource.

These experiments solidify the facts that task duplication and maximizing resource

utilization help lower the makespan significantly.

Effect on Cost

Execution cost is the third objective we strive to minimize. The proposed algorithms

use a mixture of spot and on-demand instances to reduce cost. Here, spot instances are

used for replication when the deadline is tight and spot instances are used as the primary

resource when there is sufficient slack time. This dynamic approach makes the best use

of the available pricing models to significantly reduce cost. Cost savings when using spot

5.6 Summary 117

7
00
0
0

6
75
0
0

6
50
0
0

6
25
0
0

6
00
0
0

5
75
0
0

5
50
0
0

5
25
0
0

5
00
0
0

4
75
0
0

4
50
0
0

4
25
0
0

4
00
0
0

3
75
0
0

3
50
0
0

600

500

400

300

200

100

C
O
S
T
 (
$
)

ECPTR

ECPTRRM

DEADLINE (secs)

Figure 5.8: Showing the effect of resource consolidation on cost for ECPTR heuristic (with
95% confidence interval).

instances are quantified in the paper [112].

However, in Figure 5.6, the costs of algorithms ECPTR and CTR are higher than the

baseline algorithm. This increase is attributed to the replicas these algorithms create. It

can be further noticed that the cost of ECPTR is higher than CTR, as ECPTR generates

more replicas than CTR. Figure 5.7 shows the number of replicas created by each algo-

rithm for different deadlines. It can also be observed that as the deadline becomes more

relaxed, the number of replicas is also reduced and this is more significant for ECPTR

heuristic. Similarly, the cost difference between CIB and ECPTR is also reduced as the

deadline becomes relaxed.

Apart from the efficient use of pricing models, effective resource usage also reduce

costs considerably. Figure 5.8 testifies this, it can be observed here that the cost of ECPTR

is much lower than the ECPTRRM algorithm. When tasks are packed into a single re-

source the costs can be reduced significantly. Figure 5.8 shows that when the deadline

is short, execution cost of ECPTR is 38.86% lower than ECPTRRM and it 24.34% lower

under relaxed deadlines.

5.6 Summary

Cloud computing offers low-cost computing services as a subscription based service,

which are elastically scalable, and dynamically provisioned. Additionally, it offers at-

tractive pricing models like on-demand and spot instances. Because of which scientific

118 Reliable Workflow Execution Using Replication and Spot Instances

workflow management systems are rapidly moving towards clouds.

However, cloud environments are prone to failures and performance variations

among resources. Failures are traditionally mitigated using replication, which increases

the execution cost and time. Whereas with innovative pricing models cloud offers, the

cost for providing fault-tolerance can be drastically reduced. In this chapter, we have

proposed two just-in-time adaptive workflow scheduling heuristics for clouds. These

heuristics use on-demand and spot instances to provide fault-tolerant schedules whilst

minimizing time and cost. They are fault-tolerant against performance variations, out-

of-bid failures and resource failures. Extensive simulations have shown that the pro-

posed heuristics generate schedules with significantly lower failure probabilities. The

makespan of these schedules is much lower than the baseline algorithm. These heuristics

are also shown to maximize resource utilization. These experiments establish that pricing

models offered by cloud providers can be used to reduce costs and makespan and at the

same time provide robust and resilient schedules.

Chapter 6

Framework for Reliable Workflow
Execution on Multiple Clouds

In this chapter, we extend the Cloudbus workflow management to dynamically provision resources

for multiple clouds. The broker is enhanced to provision resources dynamically on the go. Addi-

tionally, an effective fault-tolerant technique is developed to retry tasks after failures. Finally, a

resource provisioning algorithm to demonstrate the multi-cloud capabilities is proposed and its

effectiveness is shown.

6.1 Introduction

SCIENTIFIC workflows are executed with the help of workflow management sys-

tems. Workflow management systems take workflows as input, analyze their de-

pendencies and map the workflow tasks on to distributed resources. They also maintain

and manage the storage requirements of the workflows.

Diverse areas such as high-energy physics, life sciences, genomics, bioinformatics and

astronomy extensively represent their applications as scientific workflows. These are

executed on distributed systems to obtains their scientific experimental results. These

applications have increasingly adopted cloud environments. These applications can be

either compute, or data, or I/O intensive applications.

Most workflow management systems have moved to cloud computing and are bene-

fiting from its pricing models and on-demand dynamic provisioning. However, multiple

cloud providers offer clouds resource in an attractive way. An application running in

a multi-cloud environment can benefit in more than one way. Pricing is a very impor-

119

120 Framework for Reliable Workflow Execution on Multiple Clouds

tant factor for moving towards multiple clouds. Different cloud providers price their

resources differently. Resource characteristics also vary across cloud providers and a

wide choice will benefit the application significantly. A hybrid cloud scenario consisting

of public and private clouds, where running on a private cloud is cheaper, but resources

are limited. On the other hand, a public cloud has vast amount of resources, but resource

cost, data transfer time and cost are involved. To balance cost and workload in such

an environment is an interesting case for multiple clouds. Additionally, in a workflow

management system capable to provisioning resources on multiple clouds, it is easier to

switch between different clouds eliminating the need to integrate multiple API’s of dif-

ferent providers. Finally, regulatory and legal issues concerning data location, its privacy

and security effect are also addressed by a multi-cloud environment [63].

This chapter presents a workflow management system developed as part of the

Cloudbus toolkit at the CLOUDS Lab in the University of Melbourne, Australia [19].

The presented workflow system is a mature system springing from years of research and

development. This system deploys various strategies, resource selection and allocation

policies in a pluggable manner. It also supports complex control and data dependencies

for scientific workflow applications. In this chapter, we first provide an overview of the

workflow management system, its architecture, components, and functionalities. Then

we introduce the necessity of multi-cloud environments and detail the implementation of

the new multi-cloud feature. Further, we test this implementation with a case study of an

astronomy application explaining its nature, implementation details and results. Finally,

we describe the related works in the area of workflow management systems.

The key contributions of this chapter are: 1) Integrating the Apache jclouds toolkit

into the Cloudbus workflow management system. This enables the workflow manage-

ment system to provision resources on demand and on the fly. It facilitates provisioning

of resources on multiple cloud providers. Therefore, the Cloudbus workflow manage-

ment system can provision resources on a single cloud providers or a combination of

cloud providers. 2) We have developed a resource provisioning algorithm for a multi-

cloud environment with two kinds of cloud resources. 3) Lastly, a task retry fault-tolerant

mechanism is developed to mitigate cloud failures.

6.2 Cloudbus Workflow Management System Architecture 121

6.2 Cloudbus Workflow Management System Architecture

This section presents various components and their relationships with plug-in services

of the Cloudbus workflow management system. The architecture of the Cloudbus work-

flow management system is shown in Figure 6.1.

Workflow management systems facilitate the modeling/composition, submission, ex-

ecution, and fault, data and provenance management of the workflow. The Cloudbus

workflow management system consists of a web portal, a workflow engine and services

that support its execution. The workflow execution can be performed either through a

web portal or through a standalone application [107].

The Workflow portal aids in workflow composition, design and modeling. Workflow

applications are specified in an XML-based workflow language called xWFL format. The

Workflow portal accepts workflows through a workflow editor, or through a workflow

specification in xWFL format that will be submitted to the workflow engine.

Cloudbus Workflow management system [108] uses xWFL for application composi-

tion. This language allows users to define, tasks, data dependencies, QoS constraints, and

I/O models. xWFL allows tasks to be defined as a single task or as a parameter sweep

task. This provides researchers with the flexibility to perform experiments with a range

of parameters. Similarly, data dependencies specify the flow of data between tasks. Alter-

natively, I/O models explicitly specify the data handling capabilities of each task. Three

types of I/O models are supported many-to-many, many-to-one and synchronization [150].

Input data for a task might be generated by multiple tasks. How these input will be

processed and when the output will be generated by the task and its sub-tasks determines

the I/O model. For instance, many-to-many model start to process data and generate

output data as and when the input data is available. Alternatively, many-to-one starts to

process data once an input is available but generates output data based on its earlier sub-

jobs. Finally, synchronization model processes data only when all input data is available.

The workflow engine accepts the workflow application composed or submitted by

the portal. It submits the workflow to the workflow submission handler. Once a workflow is

submitted to the system the workflow language parser translates it into tasks, dependen-

cies, data objects, exceptions and parameter specifications. The workflow management

122 Framework for Reliable Workflow Execution on Multiple Clouds

Task
Dispatcher

Fault-Tolerant
Management

Resource
Allocation

Workflow Engine

Public Cloud

Cloud

Workflow
Editor

Workflow Modeling
 and Definition

Database
Management

Workflow
Coordinator

Negotiation
Services

Provenance
Management

Vm
Images

Application
Catalogue

Data
Catalogue

Database

Workflow Por tal

D irectory and
Catalogue Services

Hybrid CloudPrivate Cloud

Security & Identity
Management

Workflow
Planner

Workflow Submission Handler

Workflow Language Parser (XWFL, BPEL,...)

Parameters Dependencies

SourcesConditionsExceptions

Tasks

Event
Service

Workflow Scheduler

Monitor

Task Manager

Resource Plug-in

Gridbus Resource
Broker Jclouds

Figure 6.1: Cloudbus workflow management system.

6.2 Cloudbus Workflow Management System Architecture 123

Event
Service

Scheduling Strategy

Workflow Coordinator

Tasks

MonitorResource
Provisioning

Task
Manager

Tasks

MonitorResource
Provisioning

Task
Manager

Figure 6.2: Components of workflow scheduling.

system also allows different workflow language parsers to be plugged-in.

These specifications are submitted to the workflow scheduler for execution. The work-

flow scheduling architecture specifies the placement of the scheduler in a WFMS and it

can be broadly categorized into three types: centralized, hierarchical, and decentralized [148].

In the centralized approach, a centralized scheduler makes all the scheduling decisions for

the entire workflow. The drawback of this approach is that it is not scalable; however, it

can produce efficient schedules as the centralized scheduler has all the necessary infor-

mation. In hierarchical scheduling, there is a central manager responsible for controlling

the workflow execution and assigning the sub-workflows to low-level schedulers. The

low-level schedulers map tasks of the sub-workflows assigned by the central manager. In

contrast, decentralized scheduling has no central controller. It allows tasks to be scheduled

by multiple schedulers, each scheduler communicates with each other and schedules a

sub-workflow or a task [148]. The Cloudbus workflow management system uses a de-

centralized scheduling architecture for workflow execution [150].

As shown in Figure 6.2, the execution of workflow is mainly performed by the Work-

flow Coordinator, which is a part of the workflow scheduler in our workflow manage-

ment system. The workflow coordinator outsources the workflow execution to the Task

Managers and the Event Service providing a decentralized architecture to the workflow

management system.

A task manager is created for each task, which can handle the processing of a task,

124 Framework for Reliable Workflow Execution on Multiple Clouds

including resource allocation and discovery, monitoring, negotiation services, and fault-

tolerant management. Each task manager employs their own strategies for resource pro-

visioning, SLA and data management. They also have monitors to monitor the task exe-

cution status on a cloud resource. As shown in the Figure 6.2, each task has its own task

manager.

Additionally, two fault handling techniques are available and they are retry and task

replication [150]. Retry mechanism reschedules a failed job to an available resource. It

also records the number of failed jobs for each resource. A warning threshold is set for

the number of failed jobs on a particular resource, and if this threshold is exceeded the

scheduler decreases the quantum of jobs submitted to this resource. However, if the

number of failed jobs exceeds a critical threshold, then the scheduler stops submitting

jobs to that resource.

The task replication technique replicates a task on more than one resource. The earli-

est resource to produce the output is used. These two mechanisms help mitigate failures

and performance variations that can be experienced in distributed environments.

To manage the entire workflow execution coherently, there is a necessity for a com-

munication model, as every task manager is an independent and parallel thread for task

execution. However, these tasks managers are dependent on other tasks through data

and/or control dependencies and these dependencies could be one-to-one or many-to-

many.

Event service addresses this requirement by providing an event-driven mechanism

with subscription-notification model to control and manage execution activities. This ser-

vice registers events from tasks managers and notifies the workflow coordinator. There-

fore, task managers do not communicate with each other, making the event service a

loosely coupled design allowing new and easily pluggable extension into the architec-

ture.

Event services allow three types of events basically: status event, output events and con-

trol events. Task managers send status and output events informing about their execution

statuses and results. Workflow coordinator sends control events to task managers, such

as pause and resume.

6.3 Multi-Cloud Framework for Cloudbus Workflow Engine 125

Once the workflow scheduler maps a task to a resource, the dispatcher dispatches the

tasks to the right middleware. The workflow management system is designed to support

multiple middleware and this is done by creating dispatchers for each middleware. The

dispatcher supports interaction with resources of a specific kind. Currently, the Cloudbus

WFMS supports Aneka, Globus, and fork-based middleware.

Plug-ins supports various services that aid in workflow execution on different envi-

ronments and platforms. The workflow management system has several plug-ins for:

• Determining task, data, and resources characteristics through metadata informa-

tion or through trace files.

• Data transfer between broker, resources and storage.

• Monitoring the status of tasks, application, and resources.

• Catalogues services for resources, tasks, and their replicas.

6.3 Multi-Cloud Framework for Cloudbus Workflow Engine

Workflow management systems have migrated in huge numbers from grids to clouds.

Multiple large software companies have ventured into the cloud domain offering cloud

resources with innovative and attractive pricing and other benefits. To leverage these fea-

tures from multiple cloud providers, its imperative that existing workflow management

system evolve to work in a multi-cloud environment and not be locked in to a single

cloud provider.

Advantages of a multi-cloud environment are manifold: 1) Pricing: multiple cloud

providers offer cloud resources through various pricing models. For example, AWS offer

spot instances which are very cheap but have lower SLAs guarantee. Similarly, there are

reserved instances, and on-demand instances, and each pricing model has its pros and

cons. 2) Billing Periods: cloud providers provision cloud resources with different billing

periods, for example, AWS bills resources per hour, Google bills per minute. Depending

on the workflow task length, choosing the right billing period can increase cost savings

significantly. 3) Resource characteristics: cloud providers offer resources with different

126 Framework for Reliable Workflow Execution on Multiple Clouds

characteristics with varying RAM, CPU and others, this enables the workflow manage-

ment system to pick the right configuration for a task based on whether it is compute

intensive, data intensive, or I/O intensive. 4) Private cloud: many organization and in-

stitutes have private clouds, where computation is generally free. However, resources

are limited in such an environment and a combination of private and public cloud in-

frastructures could address these resource limitations. 5) Regulatory and legal: issues con-

cerning data location, its privacy and security affect in choosing an appropriate cloud

provider [63].

Multi-cloud frameworks address all these issues and help large and complex work-

flows to execute seamlessly. However, moving to multi-cloud environment has its own

challenges. Latency between users and different clouds could impact the application

performance largely. Cloud providers do not have similar API’s for accessing their cloud

infrastructures. Therefore, interoperability is a major issue. Additionally, time and cost

of data transfer in and out of cloud data centers is an important challenge.

In this work, we have used an open source toolkit called Apache jclouds to help work-

flow management system to work with a multi-cloud framework. This toolkit supports

most of the major cloud providers available today through a simple API. This toolkit

is integrated into our system, which enables it to provision resources dynamically on

multiple clouds on the fly effortlessly. In the next section, we detail this toolkit and its

integration with our system.

6.4 Apache Jclouds: Supporting Multi-Cloud Architecture

Jclouds is a java-based multi-cloud toolkit developed by the Apache foundation. It is

an open source library that provides APIs, which allow portable abstractions for cloud-

specific features. jclouds supports 30 cloud providers and cloud software stacks such as,

OpenStack, Amazon, Google, Rackspace, and Azure [1].

Among the several API abstractions, the prominent ones are the BlobStore and Com-

puteService. BlobStore is a simple and portable way to manage storage providers. It pro-

vides a map view of the storage container for accessing data. On the other hand, Com-

6.4 Apache Jclouds: Supporting Multi-Cloud Architecture 127

Cloud
API

Endpoint
Credentials

Locations
Configurations

Defaults

Services

Abstractions
Compute Service
Blob Store
Load Balancer

Provider

Application

Figure 6.3: Apache jclouds system integration architecture.

puteService provides a simple abstraction to create multiple instances in multiple clouds

through simple APIs and further provide convenient methods to install software on these

machines. jclouds also provide Load balancer API to configure load balancers of any cloud

through a common interface [1].

Apache jclouds is an easy to plug toolkit that facilitate multi-cloud features to the ap-

plication and provide features like high availability, privacy, monetary and performance

benefits. It helps existing applications to connect to multiple cloud services seamless

through simple layers of abstraction. It provides consistent integration pattern that is

essential while managing multi-cloud environment. It offers pluggable components that

help in extending the application smoothly; it also assists in error or retry handling. The

system integration architecture of jclouds with an arbitrary application is shown in Fig-

ure 6.3.

Apache jclouds offers a connection to a provider through a context, which can

be done in two ways as shown in the Listings 6.1 and 6.2. The compute ser-

vice context provides a handle to a cloud provider and it can be used to create a

ComputeService through which, instances can be created, destroyed, suspended and

resumed. ComputeService can also be used to get information about nodes, loca-

tions, images, hardware types and keypairs. This shows that jclouds has a rich

128 Framework for Reliable Workflow Execution on Multiple Clouds

set of cloud specific services and it can be used seamlessly in an effortless manner.

Listing 6.1: Context Creation

ComputeServiceContext ctx = ContextBuilder.newBuilder("Cloud-Provider")

.credentials("identity","credential")

.buildView(ComputeServiceContext.class);

Listing 6.2: Context Creation through Endpoint

ComputeServiceContext ctx = ContextBuilder.newBuilder("Cloud-Provider")

.credentials("identity","credential")

.endpoint("endpoint-url");

.buildView(ComputeServiceContext.class);

6.5 Apache Jclouds and Cloudbus Workflow Management Sys-
tems

Workflow
Coordinator CreateComputeService StoreManager

cs

createInstance

ComputeService cs =
createComputeService()

instance metadata

saveComputeService(instanceDetails)

Figure 6.4: Sequence diagram of jclouds integration.

To leverage the advantages of multi-clouds, we have integrated jclouds into our

Cloudbus workflow management system. Figures 6.4 and 6.5 illustrate how the jclouds

toolkit is plugged into the system. As shown in Figure 6.4, the workflow coordinator

6.5 Apache Jclouds and Cloudbus Workflow Management Systems 129

WorkflowCoordinator

+ diGraphs: List<DiGraph>
- tupleSpace: TupleSpace
- incomingQueue: Queue
- executingQueue: Set<String>
- schedAlgo: WfSchedulingAlgorithm

- getApplication(): WorkflowApplication
- getTasks(): List<WfTasks>
- getLinks(): List<DataConstraints>
- registerTupleSpace(): void
- copyResultBack(TaskNode): boolean
+ addDigraph(DiGraph): void
+ removeDigraph(DiGraph): void
+ schedule(): void
+ reschedule(): void
+ finalize(): void

StoreManager

- store: BrokerStorage
- appId: String
- workflowBudget: double
- freeServices: List<Service>
- resourceToTask: Map<Long, List<Task>>

+ getComputeServices(): List<Service>
+ createPoolofResources(): List<Service>
+ createOnDemandResource: Service
+ getServiceforTask(Task): Service

<<interface>>
CreateComputeService

+ createComputeService(): ComputeService
+ createInstances(): List<String>
+ destroyAllInstances(): void
+ destroyInstance(String): void
+ getProvider(): String
+ close(): void

Ec2ComputeService

+ provider: String
+ identity: String
+ credential: String
+ imageId: String
...

+ createComputeService(): ComputeService
+ createInstances(): List<String>
+ destroyAllInstances(): void
+ destroyInstance(String): void
+ getProvider(): String
+ close(): void

OpenStackComputeService

+ provider: String
+ identity: String
+ credential: String
+ imageId: String
...

+ createComputeService(): ComputeService
+ createInstances(): List<String>
+ destroyAllInstances(): void
+ destroyInstance(String): void
+ getProvider(): String
+ close(): void

0..1 0..1

Figure 6.5: Class diagram representing resource provisioning through Apache jclouds.

class interacts with the StoreManager to provision resource. The store manager creates

and manages the resource. It also assigns the most suitable resource to a particular task

based on the resources capabilities. The next subsection details this resource provisioning

heuristic.

The store manager invokes an implementation of the abstract createComputeService

class depending on the inputs from the workflow coordinator. Through the compute

service, class instances of any supported kind can be created using the create instance

method. The number of instances that need to be created can also be mentioned and

jclouds creates these instances and provides the metadata information. The workflow co-

ordinator further stores these instance details into the database through a store manager.

Task retry is developed in the task manager as a part of the fault-tolerant mechanism.

When a task fails due to resource, task, or network failure, the job monitor notifies the tu-

ple space through an event. The task manager of the failed task reads the status and then

apply a corrective action. The task manager remaps the failed task to another resource,

additionally, the store manager is notified of the failed resource so that no further tasks

are mapped to that failed task.

The task manager, before submitting the task to a resource, verifies with the store

130 Framework for Reliable Workflow Execution on Multiple Clouds

manager whether the resource is active or not. This avoids submitting tasks to failed

resources, which where scheduled on that resource before it failed.

In the following subsection, we briefly describe the overall algorithm and the pro-

posed multi-cloud resource provisioning heuristic.

6.5.1 Multi-Cloud Resource Provisioning Heuristic

Algorithm 7: FindComputeResource(task)
input : Task t
output: Compute Resource

1 freeResources← available compute resources;
2 resourceToTasksMap← null
/* Find a free compute resource. */

3 if f reeResources.size() > 0 then
4 Resource r = freeResources.remove(0);
5 Add an entry of task t and resource r in resourceToTasksMap,
6 If r exists add t to r’s list of tasks.
7 return r;

/* Create new compute resource. */
8 else if (budget− resourcePricePerHr) ≥ 0 then
9 Resource r = create on-demand instance;

10 Add an entry of task t and resource r in resourceToTasksMap
11 return r;

/* Find a suitable and available compute resource. */
12 else
13 parentsList← Get list of parent for task t
14 resourceList← null
15 for ∀resourcer ∈ resourceToTasksMap do
16 if taskList of r is empty then
17 resourceList.add(r);

18 else if taskList contains any task from parentsList then
19 resourceList.add(r);

20 return a resource that can start the earliest from resourceList;

The workflow coordinator supports a just-in-time scheduling heuristic. Here, initially

the first level tasks or the entry nodes are assigned to a compute resource. Then, as the

parent tasks finishes execution and produces the relevant output files, the dependent

tasks are made ready for execution [106]. The scheduler assigns an available resource

6.5 Apache Jclouds and Cloudbus Workflow Management Systems 131

to these ready tasks through a resource provisioning policy. The workflow coordinator

invokes this resource allocation to get a compute resource for the task.

The contribution of this chapter is developing a novel multi-cloud resource provision-

ing policy that allocates resources from two cloud providers and two types of resources

i.e., spot instances and on-demand instances.

The scheduling heuristic is also fault-tolerant. When a failure occurs, the task man-

ager is notified and it reschedules the failed task onto another resource and removes the

resource from the resource pool. This ensures that other tasks are not mapped to the

failed resource.

The proposed multi-cloud resource allocation policy is outlined in Algorithm 7. Ini-

tially, a pool of spot instances are created and assigned to the freeResources set. This is

done because spot instances take longer time to boot up [94]. The budget is given by the

user and the number of on-demand and spot resources created is based on this budget.

If the spot-instances go out-of-bid or extend beyond their charging period, the budget is

updated accordingly.

The proposed resource allocation policy initially finds a free resource for the given

task. On finding a free resource, the resourceToTasksMap is updated for book keeping. If

multiple free resources are found, the first resource is chosen. If no free resource is found

and if there is sufficient budget to create a new on-demand resource, then an on-demand

resource is instantiated. If there is no sufficient budget to create new instances, then the

resource allocation policy finds the best possible resource from the available resources.

The resource allocation policy evaluates all the resources and chooses a resource that is

available in the earliest. If possible, it selects a resource that is running a parent task as

it reduces the data transfer time. For this reason, the resource allocation policy creates a

list of all parents of the given task. It iterates through each resource from the resourceTo-

TasksMap adding suitable resources into a resourceList. It is a list of all feasible resources. If

the resource has no tasks then it is a free resource with no tasks running or scheduled on

it, therefore, the resource is added to the resource list. If the resource has tasks, i.e., run-

ning or scheduled tasks, then the policy checks whether the running or scheduled tasks

contain any of the parents tasks. If it does, then that resource will reduce the data transfer

132 Framework for Reliable Workflow Execution on Multiple Clouds

Montage
Workflow

OpenStack
Private Cloud

AWS EC2
Public Cloud

CloudBus Resource Broker

Apache jClouds Resource Plus-In

Storage
Host

Master
Node

WorkerWorker WorkerWorker

CloudBus Workflow Management System

Tuple
Space

Figure 6.6: Testbed environment setup illustration.

time and it is added on to the resource list. Finally after all the iterations a resource that

is available in the earliest is chosen from resource list.

6.6 Testbed Setup

This section provides the implementation details of the Cloudbus workflow management

system as shown in Figure 6.6. As pointed out in the earlier section, this system uses IBM

TSpaces [145], which provides a loosely-coupled design for an event-driven mechanism

with subscription notifications. The components communicate through these events. The

application, resource, environment and experiment details are provided below:

6.6.1 Montage: A Case Study of Astronomy Workflow

Astronomy studies celestial bodies and space through image data sets that cover a wide

range of electromagnetic spectrum. These images are presented to astronomers in vari-

ous coordinate systems, variety of map projections, image sizes, pixel densities and spa-

tial samplings. Additionally, more than the individual image, the mosaic of these images

6.6 Testbed Setup 133

Table 6.1: Description of montage workflow tasks

Component Description

mProjectPP

Produces a re-projected image to the scale de-
fined in the template file and also an ‘area’ im-
age sky area containing the fractional input pix-
els

mDiffFit
Image difference for two overlapping images
(i.e., pixels line up accurately) is done.

mConcatFit
It is a compute intensive job, which aggregates
the data produced from all the mDiffFit jobs.

mBgModel
Achieve a global fit for each image by applying
a set of corrections.

mBackground Image’s background is removed.

mImgTbl Aggregates image metadata and creates a table.

mAdd
Co-adds two re-projected images from the
same metadata table, using a common FITS
header template

mShrink FITS image’s size is compressed.

mJPEG
JPEG image is created from the shrunken im-
age.

mDiffExec
mOverlaps determines identical pairs and this
module executes mDiff on those.

mFitplane
An image is fitted into a plane ignoring its out-
lier pixels.

134 Framework for Reliable Workflow Execution on Multiple Clouds

Figure 6.7: Montage workflow.

holds greater importance and significance to astronomers representing significant struc-

tures, such as star formations, regions, and cluster of galaxies, etc.

These complexities require comprehensive image mosaic software that meets as-

tronomer’s requirements (e.g., coordinates, rotation, size, projections). The Montage

software toolkit is designed for this specific requirement. Montage widens astronomical

research avenues by enabling mosaic generation through software tools, and it also in-

cludes deep source detection by studying wavelength-dependent structures, combining

multiple wavelength data, and detecting minuscule features through image differencing.

Montage toolkit was designed to process tasks that compute such mosaics through

independent modules using simple executables. This toolkit can be run on desktops,

clusters, grids, supercomputers and clouds, and it effectively uses parallel computing

environments to scale and speed-up on as many processors as possible.

Montage application [16] is a complex astronomy workflow. We have used a montage

workflow consisting of 110 tasks, where the number of the tasks indicates the number of

images used. It is a I/O intensive application, which produces a mosaic of astronomic

images.

The Architecture of Montage

Montage computes an image mosaic through the following steps:

6.6 Testbed Setup 135

1 Re-projecting images onto a common coordinate system, spatial scale, and world

coordinate system projection.

2 Minimizing the inter-image differences and achieving common flux scales through

modeling the background radiation.

3 Rectifying background level and common flux scale of images.

4 Addition of re-projected and corrected images into a final mosaic.

The independent modules of the Montage toolkit that comprise of a workflow are

listed with brief description in Table 6.1 and the workflow of montage is depicted in

Figure 6.7.

6.6.2 Resource Characteristics

Workflow management system requires three kinds of resources:

• Master Node: this is where the portal, engine and the resource broker is hosted.

This node was hosted in the OpenStack private cloud.

• Storage Host: this node hosts all the data, input, output, and the intermediate files.

The node was in the Amazon AWS Sydney region.

• Worker Node: this node performs the workflow execution. It could be created

either in the OpenStack cloud or the Amazon AWS cloud.

Resources communicate with each other through password-less SSH. The configurations

for this where made in the cloud resources respectively.

6.6.3 Environment

We have used two cloud environments. We have used an OpenStack private cloud de-

ployed in The University of Melbourne. The OpenStack environment is setup on three

IBM X3500 M4 servers, each with 12 cores (2 x Intel Xeon 2.0GHz Processor , 15MB Cache)

136 Framework for Reliable Workflow Execution on Multiple Clouds

with 2.1 TB disk space and 64GB RAM. Instance of m1.tiny where used for worker nodes.

M2.4xlarge was used for the master node.

The second cloud we have considered is the Amazon EC2 cloud. We have considered

the Asia Pacific (Sydney) region as it is the closest to us and will have the minimum

latency. T1.Micro instances where used for worker and storage nodes in the public cloud.

6.6.4 Failure Model

Resource failures was orchestrated to demonstrate the fault-tolerance of the workflow

management system. mProjectPP and mBackground tasks types where choosen to be

failed, as they are higher in number and they affect two levels of workflow execution.

The workflow variant we have choosen has 25 tasks each of these types. Failing any of

these task impacts the execution similarly. Three from each of these types where choosen

randomly. A combination of these two types among the randomly choosen tasks where

failed based on the failure size given as an input. For example if a failure size of 3 was

given as an input, one task of type mProjectPP and two mBackground where selected

and their corresponding resources where terminated to orchestrate failure events.

6.7 Results

In this section, the results to illustrate the key contributions of this chapter are provided.

The resource provisioner instantiated a pool of spot instances initially on the public AWS

cloud and on-demand instances where created when needed on private cloud. The fault-

tolerance and on-demand provisioning of our system are discussed in this section.

Figure 6.8 illustrates the effect of failures on the workflow makespan. We can observe

that as the failures increase, the makespan increases. Since a retry fault-tolerant technique

is used, failures increase the makespan. This experiment demonstrates that the workflow

management system can mitigate resource or other failures and can successfully retry the

task on another resource ensuring successful execution. After a resource fails, the algo-

rithm remaps all tasks that where scheduled on the failed resource, thus saving execution

time.

6.7 Results 137

39.45

44.55

46.05

46.92

34

36

38

40

42

44

46

48

0 1 3 5

T
im

e
 (

m
in

)

Number of resource failures

Figure 6.8: Effect on makespan under fail-
ures.

0 3 6 9 12 14 15

11118

13122

0

2000

4000

6000

8000

10000

12000

14000

1 2 3 4 5 6 7 8 9

T
im

e
 (

m
il

li
 s

e
co

n
d

s)

Total Number of resources

Figure 6.9: Resource instantiation time.

Figure 6.9 shows the resource instantiation times. It can be noticed that a bulk of re-

sources where created initially within the first 15 milliseconds, as stated in the algorithm

and few resources where created at the later part of the execution when required by the

scheduler in an on-demand fashion. This demonstrates the capability of the algorithm to

create cloud resources on-demand in a dynamic manner.

The workflow makespan is higher as it schedules the resources on two cloud infras-

tructures. The data transfer time, the data movement time between tasks, and the report-

ing time to the broker and the storage host increases in such an environment, affecting

the overall makespan. Running a workflow in a single cloud infrastructure produces far

lower makespan. To validate this, we ran the entire workflow on the private cloud and

could achieve makespan of 7.84 minutes i.e., 80.13% lower makespan than running on

two cloud infrastructures subject to latency and network delays. Running on two cloud

infrastructures is essential when there is a private cloud and its resources are limited but

the cost of running is free. So a public cloud could be used for the additional workloads

reducing. Such a system would increase the time but will reduce the cost significantly

than running the entire application on a public cloud.

Nonetheless, we have successfully demonstrated that the Cloudbus workflow man-

agement system can provision resources on a multi-cloud environment seamlessly in ro-

bust manner. Figure 6.10 is the output mosaic of the montage workflow.

138 Framework for Reliable Workflow Execution on Multiple Clouds

Figure 6.10: Output mosaic of the montage workflow.

6.8 Related Work

Workflow management system presented in this chapter is a flexible, loosely-coupled

system that allows multiple plug-ins and it provides an extensive scope for extension. It

uses a host of middleware services such as, file and data movement, provenance, replica

management, and various middleware dispatchers provided by the gridbus broker [150]

There are quite a few workflow management systems that are cloud-oriented.

Askalon [53] is system built with a service oriented architecture, and uses a single ac-

cess user portal for workflow submission. It has API support for leasing Amazon EC2

instances for its execution. Similarly Pegasus [3,42] provides a workflow engine that sup-

ports portability and reuse of components. Pegasus emphasizes performance, reliability,

and scalability. It supports desktops, clusters, grids and clouds computing environments.

Triana [133] is a modular java workflow environment developed at the Cardiff University.

It provides comprehensive library toolbox and allows deployment in grids and clouds.

Kepler [8,92,101] is another independently extensible, reliable, and open comprehensive

system that supports multi-disciplinary applications on grids and clouds. The SwinDeW-

C [91] project developed at the Swinburne University, Melbourne is a cloud based peer-

to-peer system that is fully accessible through a web based portal.

6.9 Summary 139

In comparison to the above listed projects, our workflow management system renders

a decentralized scheduling architecture and also allows a loosely-coupled architecture

that fosters modularity and aids extensibility. Additionally, this workflow management

system has introduced a multi-cloud feature that will facilitate the execution of workflow

tasks on multiple cloud infrastructures.

6.9 Summary

In this chapter, the Cloudbus workflow management system a project of CLOUDS Lab

at the University of Melbourne has been extended to support dynamic provisioning of

cloud resources, supporting multiple cloud providers. This extension to support mul-

tiple cloud providers is achieved through the integration of opensource Apache jclouds

toolkit. We have also presented a resource provisioning algorithm for a multi-cloud en-

vironment. Additionally, we have implemented a retry fault-tolerant mechanism to mit-

igate failures at task, resource or network levels. Faults at various task stages, such as

ready, submitted, stage-in, stage-out can be handled seamlessly and this is demonstrated

through our experiments using an astronomy application case study.

This page intentionally left blank.

Chapter 7

Conclusions and Future Directions

This chapter summarizes the research work on robust and fault-tolerant workflow scheduling on

cloud computing platforms presented in this thesis and highlights the major findings. It also

outlines the future directions and open research challenges in this area.

7.1 Summary of Contributions

CLOUD computing offers low-cost computing services as a subscription based ser-

vice, which are elastically scalable, and dynamically provisioned. Additionally, it

also provides attractive pricing models like on-demand and spot instances. Because of

which, scientific workflow management systems are rapidly moving towards it. How-

ever, cloud environments are prone to failures and performance variations among re-

sources.

In this regard, this thesis set out with one core objective to develop fault-tolerant

scheduling algorithms for workflows. To accomplish this, we proposed and investigated

various fault-tolerant techniques, pricing models, scheduling heuristics, and resource se-

lection policies. Further, in this section we detail each of these findings.

Fault-tolerance is crucial for such large scale complex applications running on failure-

prone distributed environments. Given the large body of research in this area, in chap-

ter 2, we provided a comprehensive view on fault-tolerance for workflows in various

distributed environments.

In particular, this chapter provided a detailed understanding of faults from a generic

viewpoint (e.g. transient, intermittent, and permanent) and a processor viewpoint (such

141

142 Conclusions and Future Directions

as, crash, fail-stop and byzantine). It also described techniques such as replication re-

submission, checkpointing, provenance, rescue-workflow, exception handling, alternate

task, failure masking, slack time, and trust-based approaches used to resolve these faults

by which, a transparent and seamless experience to workflow users can be offered.

Apart from the fault-tolerant techniques, we provided an insight into numerous fail-

ure models and metrics. Metrics range from makespan oriented, probabilistic based, re-

liability based, and trust-based among others. These metrics inform us about the quality

of the schedule and quantify fault-tolerance of a schedule.

Prominent WFMSs are detailed and positioned with respect to their features, charac-

teristics, and uniqueness. Lastly, tools such as those for describing workflow languages,

data-management, security and fault-tolerance, tools that aid in cloud development, and

support systems (including social networking environments, and workflow generators),

were introduced.

Chapter 3 presented three resource allocation policies with robustness, makespan,

and cost as its objectives. This is one of the early works in robust and fault-tolerant work-

flow scheduling on Clouds, considering deadline and budget constraints. The resource

allocation policies judiciously add slack time to make the schedule robust considering

the deadline and budget constraints. We test our policies with two failure models for five

scientific workflows with two metrics for robustness. Results indicated that our policies

are robust against uncertainties like task failures and performance variations of VMs.

Among the proposed policies presented, one of the policies showed the highest ro-

bustness and at the same time minimized makespan of the workflow. This policy pro-

vided a robust schedule with costs marginally higher than the reference algorithms con-

sidered. The weights of the weighted policy presented in this chapter can be varied

according to the user priorities. Overall, our policies provided robust schedules with a

the lowest possible makespan. They also show that with increase in budget, our policies

increase the robustness of the schedule with reasonable increase in cost.

In Chapter 4, two scheduling heuristics that map workflow tasks onto spot and on-

demand instance were presented. They minimize the execution cost by intelligently uti-

lizing the variety of pricing models offered by the cloud providers. They are shown to

7.2 Future Research Directions 143

be robust and fault-tolerant towards out-of-bid failures and performance variations of

cloud instances. A bidding strategy that bids in accordance to the workflow require-

ments to minimize the cost was also presented. This work also demonstrated the use of

checkpointing and offers cost savings up to 14%. Simulation results showed that cost re-

ductions of upto 70% were achieved under relaxed deadlines, when spot instances were

used.

In Chapter 5, we have proposed two just-in-time adaptive workflow scheduling

heuristics for clouds that use task retry and task replication fault-tolerant techniques.

These heuristics use on-demand and spot instances to provide fault-tolerant schedules

whilst minimizing time and cost. They are fault-tolerant against performance variations,

out-of-bid failures, and resource failures. Extensive simulations have shown that the pro-

posed heuristics generate schedules with significantly lower failure probabilities. The

makespan of these schedules are also much lower than the baseline algorithm. These

heuristics are also shown to maximize resource utilization. These experiments establish

that pricing models offered by cloud providers can be used to reduce costs and makespan

and at the same time offer robust and resilient schedules.

Finally, in Chapter 6 we have developed a multi-cloud framework for the cloudbus

workflow management system. Workflow applications can use this resource plug-in

to schedule resources in a multi-cloud environment. We demonstrated this capability

through an astronomy workflow application case study using a openstack private cloud

and an Amazon AWS public cloud. In this chapter we also developed a novel heuristic

for multi-cloud environment.

7.2 Future Research Directions

The research pertaining to thesis is expected to continuously evolve along with the devel-

opments in the cloud computing field. Therefore, the challenges and issues also evolve

and need fresh contributions. In spite of the significant contributions of this thesis in de-

veloping fault-tolerant scheduling algorithms for cloud computing platforms, there are

several open research challenges that need to be addressed. This section delineates open

144 Conclusions and Future Directions

research areas and future directions in this regard.

7.2.1 Cloud Failure Characteristics

Although fault types are known in the current works, the frequency of each type of fail-

ure, especially in a cloud environment, is not publicly available. There are few traces of

public cloud failures; however, the information that can be obtained from them is min-

imal. Understanding failures and their frequencies in cloud environments can enhance

the research of robust workflow management. Failure rates and types vary among pri-

vate clouds, public clouds, multi-cloud, hybrid clouds, and commodity clouds. Similarly,

understanding performance variations of resources among various types of clouds is an

open area of research with a great importance to develop robust and reliable WFMSs

tailored for each of these environments.

7.2.2 Metrics for Fault-Tolerance

Quantifying fault-tolerance is another challenge as there are multiple metrics with no

proper consensus among them. Metrics have been developed for specific problems for

various computing environments with multiple assumptions. Developing a generic met-

ric applicable for multiple mechanisms and environments can help to compare different

fault-tolerant mechanisms and rank them based on their performance. Proposing such

a widely acceptable metric would be a significant contribution in this domain. In this

thesis, prominent metrics have been documented that can be helpful in this research.

7.2.3 Cloud Pricing Models

Pricing is an important aspect for a cloud environment. Research that consider a com-

bination of pricing models and their SLAs to provide fault-tolerant mechanisms that are

cost-effective are still in their infancy. Additionally, analyzing the impact of the fault-

tolerant mechanisms on the incurred cost is also essential. For example, replication uses

more resources and adds more cost to the schedule; on the other hand, resubmission in-

creases the execution time with slight increase in cost. It is important to understand the

7.2 Future Research Directions 145

cost implications of a particular fault-tolerant mechanism.

Recently, spot instance characteristics have also changed. Amazon allows a two

minute notice before terminating the instances. This allows for better fault-tolerant be-

havior. Our proposed algorithms can be extended to addresses this development and

this can provided further fault-tolerance in a schedule.

Different cloud providers price instances with different time units. Some price in-

stances per hour, some per minute with or without a flag fall. These pricing behaviors

impact different workflows in multiple ways. Choosing the right pricing model for spe-

cific workflows is an exciting research question. Added to this, investigation into fault-

tolerance in such environments is challenging and needs to be addressed.

7.2.4 Multiple Tasks on a Single Instance

Traditionally, workflows schedule one task on one instance at a given time. However,

cloud resources are multi-core processors and some workflow tasks are not moldable

i.e., they are not multi-threaded and cannot use all the processors. Therefore, scheduling

multiple tasks on a single instance can enable significant cost benefits, although the per-

formance might be impacted. Additionally, it increases the failure probability of those

tasks. This is open area where new heuristics can be developed for such a combination

of challenges.

7.2.5 Workflow Specific Scheduling

WFMSs can typically run a single workflow, multiple workflows, or a workflow ensem-

ble, i.e., it might vary from a single workflow to a collection of workflows of similar

or different types. Challenges in each context are unique and the allocation mechanism

must consider this perspective. Associating this aspect with fault-tolerance will make

WFMSs more resilient.

A deep understanding of the workflow helps in developing efficient algorithms.

Data-intensive workflows require different allocation and fault-tolerant mechanisms

than a compute-intensive workflow. WFMS or the user should be able to identify the

146 Conclusions and Future Directions

workflow types and address their constraints. Intelligent systems need to be built that

can capture this information and devise schedule in lieu with them.

7.2.6 Multi-Cloud Challenges

Workflow scheduling, specially for e-science application, involves collaborations spread

across geographic regions. Using a multi-cloud environment could address the latency

issues involved. However, the prices of resources change from region to region. The

failure rates of resources are different. The data transfer cost would need to considered.

Models need to be developed to schedule on such a system with multiple heterogeneity.

The study of cost and time implications would be a significant contribution in this area.

7.2.7 Energy-Efficient Scheduling

Cloud infrastructures consume vast amount of energy leaving large carbon footprints.

Added to this, increase in electricity prices stress the need for energy efficient data cen-

ters. Therefore cloud providers and applications using cloud infrastructures must de-

velop energy efficient solutions.

Workflow scheduling algorithms extensively use large number of cloud resources.

Hence, a focus on energy-efficient workflow scheduling is much required in addition to

existing performance parameters.

7.3 Final Remarks

Cloud computing offers virtualized servers, which are dynamically managed, monitored,

maintained, and governed by market principles. As a subscription based computing ser-

vice, it provides a convenient platform for scientific workflows due to features like appli-

cation scalability, heterogeneous resources, dynamic resource provisioning, and pay-as-

you-go cost model. Fault-tolerant scheduling heuristics developed in this thesis enable

workflow managements system to schedule complex large scale workflow applications

on cloud computing platforms in a robust and fault-tolerant manner whilst minimizing

7.3 Final Remarks 147

time and cost. Research such as this, is essential due to the performance variations ex-

perienced among cloud resources and various kinds of failure found in the application,

environment and the network. The contributions of this thesis helps in making the exe-

cution of workflow seamless on cloud computing platforms.

This page intentionally left blank.

Bibliography

[1] “Apache jclouds,” https://jclouds.apache.org/, 2014, [Online; accessed 12-May-

2015].

[2] “Pegasus workflow generator,” https://confluence.pegasus.isi.edu/display/

pegasus/WorkflowGenerator/, 2014, [Online; accessed 5-December-2014].

[3] “Pegasus workflow management system,” https://pegasus.isi.edu/, 2014, [On-

line; accessed 01-December-2014].

[4] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven scheduling of grid

workflows using partial critical paths,” IEEE Transactions on Parallel and Distributed

Systems, vol. 23, no. 8, pp. 1400 –1414, aug. 2012.

[5] ——, “Deadline-constrained workflow scheduling algorithms for infrastructure as

a service clouds,” Future Generation Computer Systems, vol. 29, no. 1, pp. 158 – 169,

2013.

[6] S. Adabi, A. Movaghar, and A. M. Rahmani, “Bi-level fuzzy based advanced reser-

vation of cloud workflow applications on distributed grid resources,” The Journal

of Supercomputing, vol. 67, no. 1, pp. 175–218, 2014.

[7] O. Alaçam and M. Dalcı, “A usability study of webmaps with eye tracking tool:

The effects of iconic representation of information,” in Proceedings of the 13th Inter-

national Conference on Human-Computer Interaction., Sep 2009, pp. 12–21.

[8] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludascher, and S. Mock, “Kepler: an

extensible system for design and execution of scientific workflows,” in Proceedings

149

https://jclouds.apache.org/
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator/
https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator/
https://pegasus.isi.edu/

150 BIBLIOGRAPHY

of the 16th International Conference on Scientific and Statistical Database Management.,

June 2004, pp. 423–424.

[9] K. Amin, G. von Laszewski, M. Hategan, N. Zaluzec, S. Hampton, and A. Rossi,

“Gridant: a client-controllable grid workflow system,” in Proceedings of the 37th

Annual Hawaii International Conference on System Sciences., Jan 2004, pp. 10–pp.

[10] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Pat-

terson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,” ACM

Communications, vol. 53, no. 4, pp. 50–58, Apr. 2010.

[11] O. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Deconstructing ama-

zon EC2 spot instance pricing,” in Proceedings of the IEEE 3rd International Conference

on Cloud Computing Technology and Science, 2011.

[12] A. Benoit, M. Hakem, and Y. Robert, “Fault tolerant scheduling of precedence task

graphs on heterogeneous platforms,” in Proceedings of the IEEE International Sympo-

sium on Parallel and Distributed Processing, 2008. IPDPS 2008., April 2008, pp. 1–8.

[13] A. Benoit, L.-C. Canon, E. Jeannot, and Y. Robert, “Reliability of task graph sched-

ules with transient and fail-stop failures: complexity and algorithms,” Journal of

Scheduling, vol. 15, no. 5, pp. 615–627, 2012.

[14] A. Benoit, M. Hakem, and Y. Robert, “Multi-criteria scheduling of precedence task

graphs on heterogeneous platforms,” The Computer Journal, vol. 53, no. 6, pp. 772–

785, 2010.

[15] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail, A. Dasgupta, W. Deng,

J. Dongarra, L. Johnsson, K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal,

G. Marin, M. Mazina, J. Mellor-Crummey, C. Mendes, A. Olugbile, M. Patel,

D. Reed, Z. Shi, O. Sievert, H. Xia, and A. YarKhan, “New grid scheduling and

rescheduling methods in the GrADS project,” International Journal of Parallel Pro-

gramming, vol. 33, no. 2-3, pp. 209–229, 2005.

BIBLIOGRAPHY 151

[16] G. Berriman, E. Deelman, J. Good, J. Jacob, D. Katz, A. Laity, T. Prince, G. Singh, and

M.-H. Su, “Generating complex astronomy workflows,” in Workflows for e-Science,

I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds., 2007, pp. 19–38.

[17] L. Bölöni and D. C. Marinescu, “Robust scheduling of metaprograms,” Journal of

Scheduling, vol. 5, no. 5, pp. 395–412, 2002.

[18] I. Brandic, D. Music, and S. Dustdar, “Service mediation and negotiation bootstrap-

ping as first achievements towards self-adaptable grid and cloud services,” in Pro-

ceedings of the 6th International Conference Industry Session on Grids Meets Autonomic

Computing, ser. GMAC ’09, New York, NY, USA, 2009, pp. 1–8.

[19] R. Buyya, S. Pandey, and C. Vecchiola, “Cloudbus toolkit for market-oriented

cloud computing,” in Cloud Computing, ser. Lecture Notes in Computer Science,

M. Jaatun, G. Zhao, and C. Rong, Eds., 2009, vol. 5931, pp. 24–44.

[20] R. Calheiros and R. Buyya, “Meeting deadlines of scientific workflows in public

clouds with tasks replication,” IEEE Transactions on Parallel and Distributed Systems,,

vol. 25, no. 5, pp. 1787–1796, 2014.

[21] R. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and R. Buyya, “CloudSim: a

toolkit for modeling and simulation of cloud computing environments and evalua-

tion of resource provisioning algorithms,” Software: Practice and Experience,, vol. 41,

no. 1, pp. 23–50, 2011.

[22] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T. Vo, “Vis-

trails: Visualization meets data management,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data, ser. SIGMOD ’06, New York, NY,

USA, 2006, pp. 745–747.

[23] L. Canon and E. Jeannot, “Evaluation and optimization of the robustness of dag

schedules in heterogeneous environments,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 21, no. 4, pp. 532–546, 2010.

152 BIBLIOGRAPHY

[24] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “Gridflow: workflow management

for grid computing,” in Proceedings of the 3rd IEEE/ACM International Symposium on

Cluster Computing and the Grid. CCGrid., May 2003, pp. 198–205.

[25] J. Chen and Y. Yang, “Adaptive selection of necessary and sufficient checkpoints

for dynamic verification of temporal constraints in grid workflow systems,” ACM

Transactions on Autonomous and Adaptive Systems, vol. 2, no. 2, Jun. 2007.

[26] W. Chen and E. Deelman, “Fault tolerant clustering in scientific workflows,” in

Proceedings of the IEEE 8th World Congress on Services. SERVICES., June 2012, pp.

9–16.

[27] A. Chervenak, E. Deelman, M. Livny, M. Su, R. Schuler, S. Bharathi, G. Mehta, and

K. Vahi, “Data placement for scientific applications in distributed environments,”

in Proceedings of the 8th IEEE/ACM International Conference on Grid Computing, ser.

GRID ’07, Washington, DC, USA, 2007, pp. 267–274.

[28] A. Chervenak, E. Deelman, M. Livny, M. H. Su, R. Schuler, S. Bharathi, G. Mehta,

and K. Vahi, “Data placement for scientific applications in distributed environ-

ments,” in Proceedings of the 8th IEEE/ACM International Conference on Grid Com-

puting, ser. GRID ’07, Sep 2007, pp. 267–274.

[29] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz, “See

spot run: using spot instances for mapreduce workflows,” in Proceedings of the 2nd

USENIX conference on Hot Topics in cloud Computing. USENIX Association, 2010.

[30] W. Cirne and F. Berman, “A model for moldable supercomputer jobs,” in Proceed-

ings of 15th International Symposium of Parallel and Distributed Processing., 2001, pp.

8–pp.

[31] W. Cirne, F. Brasileiro, D. Paranhos, L. Goes, and W. Voorsluys, “On the efficacy,

efficiency and emergent behavior of task replication in large distributed systems,”

Parallel Computing, vol. 33, no. 3, pp. 213 – 234, 2007.

BIBLIOGRAPHY 153

[32] C. Dabrowski, “Reliability in grid computing systems,” Concurrency and Computa-

tion: Practice and Experience, vol. 21, no. 8, pp. 927–959, 2009.

[33] S. Darbha and D. Agrawal, “A task duplication based optimal scheduling algo-

rithm for variable execution time tasks,” in Proceedings of the International Confer-

enceon Parallel Processing. Vol. 1. ICPP., vol. 2, Aug 1994, pp. 52–56.

[34] A. Dastjerdi and R. Buyya, “An autonomous reliability-aware negotiation strategy

for cloud computing environments,” in Proceedings of the 12th IEEE/ACM Interna-

tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2012. IEEE, 2012,

pp. 284–291.

[35] S. B. Davidson, S. C. Boulakia, A. Eyal, B. Ludäscher, T. M. McPhillips, S. Bowers,

M. K. Anand, and J. Freire, “Provenance in scientific workflow systems.” IEEE Data

Eng. Bull., vol. 30, no. 4, pp. 44–50, 2007.

[36] S. B. Davidson and J. Freire, “Provenance and scientific workflows: Challenges

and opportunities,” in Proceedings of the ACM SIGMOD International Conference on

Management of Data, ser. SIGMOD ’08, New York, NY, USA, 2008, pp. 1345–1350.

[37] J. Dean, “Experiences with mapreduce, an abstraction for large-scale computation,”

in Proceedings of the 15th International Conference on Parallel Architectures and Compi-

lation Techniques, ser. PACT ’06, 2006.

[38] ——, “Software engineering advice from building large-scale distributed systems,”

http://research.google.com/people/jeff/stanford-295-talk.pdf, 2007.

[39] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clus-

ters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, Jan 2008.

[40] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi,

and M. Livny, “Pegasus: Mapping scientific workflows onto the grid,” in Grid Com-

puting, ser. Lecture Notes in Computer Science, M. Dikaiakos, Ed., 2004, vol. 3165,

pp. 11–20.

http://research.google.com/people/jeff/stanford-295-talk.pdf

154 BIBLIOGRAPHY

[41] E. Deelman, D. Gannon, M. Shields, and I. Taylor, “Workflows and e-science: An

overview of workflow system features and capabilities,” Future Generation Com-

puter Systems, vol. 25, no. 5, pp. 528 – 540, 2009.

[42] E. Deelman, G. Singh, M. H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi,

G. B. Berriman, J. Good, A. Laity, and K. D. S. Jacob, J. C., “Pegasus: A framework

for mapping complex scientific workflows onto distributed systems,” Scientific Pro-

gramming, vol. 13, no. 3, pp. 219–237, 2005.

[43] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J. Maechling, R. Mayani,

W. Chen, R. F. da Silva, M. Livny, and K. Wenger, “Pegasus, a workflow manage-

ment system for science automation,” Future Generation Computer Systems, vol. 46,

no. C, pp. 17 – 35, 2015.

[44] J. Dejun, G. Pierre, and C. Chi, “EC2 performance analysis for resource provision-

ing of service-oriented applications,” in Workshop on Service-Oriented Computing.

ICSOC/ServiceWave 2009. Springer, 2010, pp. 197–207.

[45] A. Dogan and F. Ozguner, “LDBS: a duplication based scheduling algorithm for

heterogeneous computing systems,” in Proceedings of the International Conference on

Parallel Processing., 2002, pp. 352–359.

[46] J. J. Dongarra, E. Jeannot, E. Saule, and Z. Shi, “Bi-objective scheduling algorithms

for optimizing makespan and reliability on heterogeneous systems,” in Proceedings

of the 19th Annual ACM Symposium on Parallel Algorithms and Architectures, ser. SPAA

’07, New York, NY, USA, 2007, pp. 280–288.

[47] A. B. Downey, A model for speedup of parallel programs, 1997.

[48] R. Duan, R. Prodan, and T. Fahringer, “DEE: a distributed fault tolerant workflow

enactment engine for grid computing,” in High Performance Computing and Commu-

nications, ser. Lecture Notes in Computer Science, L. Yang, O. Rana, B. Di Martino,

and J. Dongarra, Eds., 2005, vol. 3726, pp. 704–716.

BIBLIOGRAPHY 155

[49] I. Egwutuoha, D. Levy, B. Selic, and S. Chen, “A survey of fault tolerance mech-

anisms and checkpoint/restart implementations for high performance computing

systems,” The Journal of Supercomputing, vol. 65, no. 3, pp. 1302–1326, 2013.

[50] E. Elmroth, F. Hernández, and J. Tordsson, “A light-weight grid workflow execu-

tion engine enabling client and middleware independence,” in Parallel Processing

and Applied Mathematics, ser. Lecture Notes in Computer Science, R. Wyrzykowski,

J. Dongarra, K. Karczewski, and J. Wasniewski, Eds., 2008, vol. 4967, pp. 754–761.

[51] E. N. Elnozahy, L. Alvisi, Y. Wang, and D. B. Johnson, “A survey of rollback-

recovery protocols in message-passing systems,” ACM Computing Surveys, vol. 34,

no. 3, pp. 375–408, Sep. 2002.

[52] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H. Truong,

“Askalon: a tool set for cluster and grid computing,” Concurrency and Computation:

Practice and Experience, vol. 17, no. 2-4, pp. 143–169, 2005.

[53] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri, S. Podlipnig,

J. Qin, M. Siddiqui, H. Truong, A. Villazon, and M. Wieczorek, “Askalon: A devel-

opment and grid computing environment for scientific workflows,” in Workflows

for e-Science, I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds., 2007, pp. 450–

471.

[54] T. Fahringer, R. Prodan, R. Duan, F. Nerieri, S. Podlipnig, J. Qin, M. Siddiqui,

H. Truong, A. Villazon, and M. Wieczorek, “Askalon: A grid application devel-

opment and computing environment,” in Proceedings of the 6th IEEE/ACM Interna-

tional Workshop on Grid Computing, ser. GRID ’05, Washington, DC, USA, 2005, pp.

122–131.

[55] C. Fayad, J. Garibaldi, and D. Ouelhadj, “Fuzzy grid scheduling using tabu search,”

in Proceedings of the IEEE International Conference on Fuzzy Systems. FUZZ-IEEE 2007,

July 2007, pp. 1 –6.

[56] I. Foster, J. Vockler, M. Wilde, and Y. Zhao, “Chimera: a virtual data system for

representing, querying, and automating data derivation,” in Proceedings of the 14th

156 BIBLIOGRAPHY

International Conference on Scientific and Statistical Database Management., 2002, pp.

37–46.

[57] Y. Gao, S. Gupta, Y. Wang, and M. Pedram, “An energy-aware fault tolerant

scheduling framework for soft error resilient cloud computing systems,” in Pro-

ceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014, March 2014, pp. 1–6.

[58] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking of cloud comput-

ing services,” Future Generation Computer Systems, vol. 29, no. 4, pp. 1012 – 1023,

2013, special Section: Utility and Cloud Computing.

[59] F. Gärtner, “Fundamentals of fault-tolerant distributed computing in asynchronous

environments,” ACM Computing Surveys, vol. 31, no. 1, pp. 1–26, Mar. 1999.

[60] S. Ghemawat, H. Gobioff, and S. Leung, “The google file system,” in Proceedings of

the 19th ACM Symposium on Operating Systems Principles, ser. SOSP ’03, Oct 2003,

pp. 29–43.

[61] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,

M. Livny, L. Moreau, and J. Myers, “Examining the challenges of scientific work-

flows,” Computer, vol. 40, no. 12, pp. 24–32, 2007.

[62] C. A. Goble and D. C. De Roure, “myExperiment: Social networking for workflow-

using e-scientists,” in Proceedings of the 2nd Workshop on Workflows in Support of

Large-scale Science, ser. WORKS ’07, New York, NY, USA, 2007, pp. 1–2.

[63] N. Grozev and R. Buyya, “Multi-cloud provisioning and load distribution for three-

tier applications,” ACM Transactions on Autonomous and Adaptive Systems, vol. 9,

no. 3, pp. 13:1–13:21, Oct. 2014.

[64] K. Hashimoto, T. Tsuchiya, and T. Kikuno, “Effective scheduling of duplicated

tasks for fault tolerance in multiprocessor systems,” IEICE Transactions on Infor-

mation and Systems, vol. 85, no. 3, pp. 525–534, 2002.

BIBLIOGRAPHY 157

[65] W. Herroelen and R. Leus, “Project scheduling under uncertainty: Survey and re-

search potentials,” European journal of operational research, vol. 165, no. 2, pp. 289–

306, 2005.

[66] H. Hiden, S. Woodman, P. Watson, and J. Cala, “Developing cloud applications

using the e-science central platform,” Philosophical Transactions of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, vol. 371, no. 1983, 2012.

[67] S. Hwang and C. Kesselman, “Grid workflow: a flexible failure handling frame-

work for the grid,” in Proceedings of the 12th IEEE International Symposium on High

Performance Distributed Computing., June 2003, pp. 126–137.

[68] A. Iosup, M. Jan, O. Sonmez, and D. Epema, “On the dynamic resource availability

in grids,” in Proceedings of the 8th IEEE/ACM International Conference on Grid Com-

puting, ser. GRID ’07, Washington, DC, USA, 2007, pp. 26–33.

[69] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed data-

parallel programs from sequential building blocks,” in Proceedings of the 2nd ACM

SIGOPS/EuroSys European Conference on Computer Systems, ser. EuroSys ’07, 2007,

pp. 59–72.

[70] B. Javadi, J. Abawajy, and R. Buyya, “Failure-aware resource provisioning for hy-

brid cloud infrastructure,” Journal of Parallel and Distributed Computing, vol. 72,

no. 10, pp. 1318 – 1331, 2012.

[71] B. Javadi, R. Thulasiram, and R. Buyya, “Statistical modeling of spot instance prices

in public cloud environments,” in Proceedings of the 4th IEEE International Conference

on Utility and Cloud Computing, 2011, pp. 219–228.

[72] B. Javadi, D. Kondo, A. Iosup, and D. Epema, “The failure trace archive: Enabling

the comparison of failure measurements and models of distributed systems,” Jour-

nal of Parallel and Distributed Computing, vol. 73, no. 8, pp. 1208 – 1223, 2013.

[73] D. Johnson and M. Garey, Computers and Intractability-A Guide to the Theory of NP-

Completeness, 1979.

158 BIBLIOGRAPHY

[74] G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G. Mehta, and K. Vahi, “Char-

acterizing and profiling scientific workflows,” Future Generation Computer Systems,

vol. 29, no. 3, 2013.

[75] G. Juve and E. Deelman, “Scientific workflows and clouds,” Crossroads, vol. 16,

no. 3, pp. 14–18, 2010.

[76] G. Juve, M. Rynge, E. Deelman, J.-S. Vockler, and G. Berriman, “Comparing Future-

Grid, Amazon EC2, and Open Science Grid for Scientific Workflows,” Computing

in Science Engineering, vol. 15, no. 4, pp. 20–29, July 2013.

[77] P. Kacsuk and G. Sipos, “Multi-grid, multi-user workflows in the p-grade grid por-

tal,” Journal of Grid Computing, vol. 3, no. 3-4, pp. 221–238, 2005.

[78] G. Kandaswamy, A. Mandal, and D. Reed, “Fault tolerance and recovery of scien-

tific workflows on computational grids,” in Proceedings of the 8th IEEE International

Symposium on Cluster Computing and the Grid., May 2008, pp. 777–782.

[79] S. Y. Ko, I. Hoque, B. Cho, and I. Gupta, “Making cloud intermediate data fault-

tolerant,” in Proceedings of the 1st ACM Symposium on Cloud Computing, ser. SoCC

’10, June 2010, pp. 181–192.

[80] S. R. Ko and S. S. Lee, “Cloud computing vulnerability incidents: A statistical

overview,” Cloud Security Alliance, 2013.

[81] D. Kondo, B. Javadi, A. Iosup, and D. Epema, “The failure trace archive: Enabling

comparative analysis of failures in diverse distributed systems,” in Proceedings of

the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

(CCGrid), 2010. IEEE, 2010, pp. 398–407.

[82] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed task

graphs to multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406–471,

Dec. 1999.

BIBLIOGRAPHY 159

[83] M. Lackovic, D. Talia, R. Tolosana-Calasanz, J. Banares, and O. Rana, “A taxonomy

for the analysis of scientific workflow faults,” in Proceedings of the 13th IEEE Inter-

national Conference on Computational Science and Engineering., Dec 2010, pp. 398–403.

[84] C. Lam, Hadoop in Action, 1st ed., Greenwich, CT, USA, 2010.

[85] V. Leon, S. Wu, and R. Storer, “Robustness measures and robust scheduling for job

shops,” IIE Transactions, vol. 26, no. 5, pp. 32–43, 1994.

[86] J. Li, M. Humphrey, Y. Cheah, Y. Ryu, D. Agarwal, K. Jackson, and C. van Ingen,

“Fault tolerance and scaling in e-science cloud applications: Observations from the

continuing development of modisazure,” in Proceedings of the IEEE 6th International

Conference on e-Science (e-Science), 2010., Dec 2010, pp. 246–253.

[87] W. Li, J. Wu, Q. Zhang, K. Hu, and J. Li, “Trust-driven and QoS demand clustering

analysis based cloud workflow scheduling strategies,” Cluster Computing, vol. 17,

no. 3, pp. 1013–1030, 2014.

[88] W. Li, Y. Yang, and D. Yuan, “A novel cost-effective dynamic data replication strat-

egy for reliability in cloud data centres,” in Proceedings of the 9th IEEE International

Conference on Dependable, Autonomic and Secure Computing, ser. DASC ’11, Oct 2011,

pp. 496–502.

[89] D. Lifka, I. Foster, S. Mehringer, M. Parashar, P. Redfern, C. Stewart, and S. Tuecke,

“Xsede cloud survey report,” National Science Foundation, USA, Tech. Rep., 2013.

[90] A. Litke, D. Skoutas, K. Tserpes, and T. Varvarigou, “Efficient task replication and

management for adaptive fault tolerance in mobile grid environments,” Future

Generation Computer Systems, vol. 23, no. 2, pp. 163 – 178, 2007.

[91] X. Liu, D. Yuan, G. Zhang, J. Chen, and Y. Yang, “SwinDeW-C: A peer-to-peer

based cloud workflow system,” in Handbook of Cloud Computing, B. Furht and A. Es-

calante, Eds., 2010, pp. 309–332.

[92] B. Ludascher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao,

and Y. Zhao, “Scientific workflow management and the kepler system,” Concur-

160 BIBLIOGRAPHY

rency and Computation: Practice and Experience, vol. 18, no. 10, pp. 1039–1065, Aug

2006.

[93] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski, “Pregel: A system for large-scale graph processing,” in Proceedings

of the ACM SIGMOD International Conference on Management of Data, ser. SIGMOD

’10, June 2010, pp. 135–146.

[94] M. Mao and M. Humphrey, “A performance study on the VM startup time in the

cloud,” in Proceedings of the IEEE 5th International Conference on Cloud Computing,

2012, pp. 423–430.

[95] A. Martin, T. Knauth, S. Creutz, D. Becker, S. Weigert, C. Fetzer, and A. Brito, “Low-

overhead fault tolerance for high-throughput data processing systems,” in Proceed-

ings of the 31st International Conference on Distributed Computing Systems, ser. ICDCS

’11, May 2011, pp. 689–699.

[96] M. Mazzucco and M. Dumas, “Achieving performance and availability guarantees

with spot instances,” in Proceedings of the 13th IEEE International Conference on High

Performance Computing and Communications. IEEE, 2011.

[97] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington, “Workflow en-

actment in ICENI,” in UK e-Science All Hands Meeting, 2004, pp. 894–900.

[98] S. c. e. a. McGough, “A common job description markup language written in xml,”

in Global Grid Forum, http://www. ggf. org, 2003.

[99] P. Mell and T. Grance, “The NIST definition of cloud computing,” National Institute

of Standards and Technology, vol. 53, no. 6, p. 50, 2009.

[100] D. Mosse, R. Melhem, and S. Ghosh, “Analysis of a fault-tolerant multiprocessor

scheduling algorithm,” in Proceedings of the 24th International Symposium on Fault-

Tolerant Computing. FTCS-24., June 1994, pp. 16–25.

[101] P. Mouallem, D. Crawl, I. Altintas, M. Vouk, and U. Yildiz, “A fault-tolerance ar-

chitecture for kepler-based distributed scientific workflows,” in Scientific and Sta-

BIBLIOGRAPHY 161

tistical Database Management, ser. Lecture Notes in Computer Science, M. Gertz and

B. Ludscher, Eds., 2010, vol. 6187, pp. 452–460.

[102] M. Odersky, L. Spoon, and B. Venners, Programming in Scala: A Comprehensive Step-

by-step Guide, 1st ed., USA, 2008.

[103] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,

K. Glover, M. R. Pocock, A. Wipat, and P. Li, “Taverna: a tool for the composi-

tion and enactment of bioinformatics workflows,” Bioinformatics, vol. 20, no. 17,

pp. 3045–3054, 2004.

[104] S. Ostermann, A. Iosup, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema, “A

performance analysis of EC2 cloud computing services for scientific computing,”

Cloud Computing, vol. 34, pp. 115–131, 2010.

[105] S. Ostermann and R. Prodan, “Impact of variable priced cloud resources on scien-

tific workflow scheduling,” in Parallel Processing Euro-Par, 2012, vol. 7484.

[106] S. Pandey and R. Buyya, “Scheduling and management techniques for data-

intensive application workflows,” 2009.

[107] S. Pandey, D. Karunamoorthy, and R. Buyya, “Workflow engine for clouds,” Cloud

Computing: Principles and Paradigms, pp. 321–344, 2011.

[108] S. Pandey, W. Voorsluys, M. Rahman, R. Buyya, J. E. Dobson, and K. Chiu, “A

grid workflow environment for brain imaging analysis on distributed systems,”

Concurrency and Computation: Practice and Experience, vol. 21, no. 16, pp. 2118–2139,

2009.

[109] K. Plankensteiner and R. Prodan, “Meeting soft deadlines in scientific workflows

using resubmission impact,” IEEE Transactions on Parallel and Distributed Systems.,

vol. 23, no. 5, pp. 890–901, May 2012.

[110] K. Plankensteiner, R. Prodan, T. Fahringer, A. Kertesz, and P. Kacsuk, “Fault de-

tection, prevention and recovery in current grid workflow systems,” in Grid and

Services Evolution, 2009, pp. 1–13.

162 BIBLIOGRAPHY

[111] D. Poola, S. K. Garg, R. Buyya, Y. Yang, and K. Ramamohanarao, “Robust schedul-

ing of scientific workflows with deadline and budget constraints in clouds,” in Pro-

ceedings of the 28th IEEE International Conference on Advanced Information Networking

and Applications (AINA-2014), 2014, pp. 1–8.

[112] D. Poola, K. Ramamohanarao, and R. Buyya, “Fault-tolerant workflow scheduling

using spot instances on clouds,” Proceedings of the International Conference on Com-

putational Science in the Procedia Computer Science, 2014., vol. 29, pp. 523 – 533, 2014,

2014 International Conference on Computational Science.

[113] M. Rahman, R. Ranjan, and R. Buyya, “Reputation-based dependable scheduling

of workflow applications in peer-to-peer grids,” Computer Networks, vol. 54, no. 18,

pp. 3341 – 3359, 2010.

[114] S. Ranaweera and D. Agrawal, “A task duplication based scheduling algorithm

for heterogeneous systems,” in Proceedings of the 14th International Parallel and Dis-

tributed Processing Symposium., 2000, pp. 445–450.

[115] B. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud computing sys-

tems,” in Proceedings of the 5th International Joint Conference on INC, IMS and IDC,

2009. NCM ’09., Aug 2009, pp. 44–51.

[116] R. Sakellariou and H. Zhao, “A low-cost rescheduling policy for efficient mapping

of workflows on grid systems,” Scientific Programming, vol. 12, no. 4, pp. 253–262,

2004.

[117] M. A. Salehi, J. Abawajy, and R. Buyya, “Taxonomy of contention management in

interconnected distributed systems,” in Computing Handbook, Third Edition: Com-

puter Science and Software Engineering, 2014, pp. 57: 1–33.

[118] M. A. Salehi, B. Javadi, and R. Buyya, “Resource provisioning based on preempting

virtual machines in distributed systems,” Concurrency and Computation: Practice and

Experience, vol. 26, no. 2, pp. 412–433, 2014.

BIBLIOGRAPHY 163

[119] M. A. Salehi, A. N. Toosi, and R. Buyya, “Contention management in federated vir-

tualized distributed systems: implementation and evaluation,” Journal of Software -

Practice & Experience (SPE), vol. 44, no. 3, pp. 353–368, 2014.

[120] Y. Sangho, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances via

checkpointing in the amazon elastic compute cloud,” in Proceedings of the 3rd IEEE

International Conference on Cloud Computing, 2010, pp. 236–243.

[121] T. Schlauch and A. Schreiber, “Datafinder–a scientific data management solution,”

Ensuring the Long-Term Preservation and Value Adding to Scientific and Technical Data,

PV, 2007.

[122] R. D. Schlichting and F. B. Schneider, “Fail-stop processors: An approach to de-

signing fault-tolerant computing systems,” ACM Transactions on Computer Systems,

vol. 1, no. 3, pp. 222–238, Aug. 1983.

[123] V. Shestak, J. Smith, H. Siegel, and A. Maciejewski, “A stochastic approach to mea-

suring the robustness of resource allocations in distributed systems,” in Proceedings

of the International Conference on Parallel Processing, 2006. ICPP. IEEE, 2006, pp.

459–470.

[124] Z. Shi, E. Jeannot, and J. Dongarra, “Robust task scheduling in non-deterministic

heterogeneous computing systems,” in Proceedings of the IEEE International Confer-

ence on Cluster Computing, 2006. IEEE, 2006, pp. 1–10.

[125] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The hadoop distributed file

system,” in Proceedings of the 26th IEEE Symposium on Mass Storage Systems and Tech-

nologies, ser. MSST ’10, 2010, pp. 1–10.

[126] Y. Simmhan, R. Barga, C. van Ingen, E. Lazowska, and A. Szalay, “Building the

trident scientific workflow workbench for data management in the cloud,” in Pro-

ceedings of the 3rd International Conference on Advanced Engineering Computing and

Applications in Sciences, 2009. ADVCOMP ’09., Oct 2009, pp. 41–50.

164 BIBLIOGRAPHY

[127] Y. L. Simmhan, B. Plale, and D. Gannon, “A survey of data provenance in e-

science,” SIGMOD Rec., vol. 34, no. 3, pp. 31–36, Sep. 2005.

[128] J. Smith, H. Siegel, and A. Maciejewski, Robust resource allocation in heterogeneous

parallel and distributed computing systems, 2009.

[129] A. Streit, P. Bala, A. Beck-Ratzka, K. Benedyczak, S. Bergmann, R. Breu, J. Daivandy,

B. Demuth, A. Eifer, A. Giesler, B. Hagemeier, S. Holl, V. Huber, N. Lamla, D. Mall-

mann, A. Memon, M. Memon, M. Rambadt, M. Riedel, M. Romberg, B. Schuller,

T. Schlauch, A. Schreiber, T. Soddemann, and W. Ziegler, “Unicore 6 - recent and

future advancements,” Annals of Telecommunications, vol. 65, no. 11-12, pp. 757–762,

2010.

[130] W. Tan, Y. Sun, L. X. Li, G. Lu, and T. Wang, “A trust service-oriented scheduling

model for workflow applications in cloud computing,” IEEE Systems Journal, vol. 8,

no. 3, pp. 868–878, Sept 2014.

[131] X. Tang, K. Li, and G. Liao, “An effective reliability-driven technique of allocating

tasks on heterogeneous cluster systems,” Cluster Computing, vol. 17, no. 4, pp. 1413–

1425, 2014.

[132] X. Tang, X. Li, G. Liao, and R. Li, “List scheduling with duplication for heteroge-

neous computing systems,” Journal of Parallel and Distributed Computing, vol. 70,

no. 4, pp. 323 – 329, 2010.

[133] I. Taylor, M. Shields, I. Wang, and A. Harrison, “The triana workflow environment:

Architecture and applications,” in Workflows for e-Science, I. Taylor, E. Deelman,

D. Gannon, and M. Shields, Eds., 2007, pp. 320–339.

[134] R. Tolosana-Calasanz, J. Baòares, P. Álvarez, J. Ezpeleta, and O. Rana, “An uncoor-

dinated asynchronous checkpointing model for hierarchical scientific workflows,”

Journal of Computer and System Sciences, vol. 76, no. 6, pp. 403–415, Sep 2010.

BIBLIOGRAPHY 165

[135] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling algorithms for heteroge-

neous processors,” in Proceedings of the 8th Heterogeneous Computing Workshop, 1999,

pp. 3–14.

[136] J. Varia, “Best practices in architecting cloud applications in the AWS cloud,” Cloud

Computing: Principles and Paradigms, pp. 459–490, 2011.

[137] C. Vecchiola, X. Chu, and R. Buyya, “Aneka: a software platform for .net-based

cloud computing,” High Speed and Large Scale Scientific Computing, pp. 267–295,

2009.

[138] S. Venugopal, K. Nadiminti, H. Gibbins, and R. Buyya, “Designing a resource bro-

ker for heterogeneous grids,” Software: Practice and Experience, vol. 38, no. 8, pp.

793–825, 2008.

[139] G. von Laszewski, M. Hategan, and D. Kodeboyina, “Java cog kit workflow,” in

Workflows for e-Science, I. Taylor, E. Deelman, D. Gannon, and M. Shields, Eds.,

2007, pp. 340–356.

[140] W. Voorsluys, S. Garg, and R. Buyya, “Provisioning spot market cloud resources

to create cost-effective virtual clusters,” in Algorithms and Architectures for Parallel

Processing, vol. 7016, 2011, pp. 395–408.

[141] M. A. Vouk, “Cloud computing–issues, research and implementations,” CIT. Jour-

nal of Computing and Information Technology, vol. 16, no. 4, pp. 235–246, 2008.

[142] M. Wang, K. Ramamohanarao, and J. Chen, “Trust-based robust scheduling and

runtime adaptation of scientific workflow,” Concurrency and Computation: Practice

and Experience, vol. 21, no. 16, pp. 1982–1998, 2009.

[143] X. Wang, C. S. Yeo, R. Buyya, and J. Su, “Optimizing the makespan and reliability

for workflow applications with reputation and a look-ahead genetic algorithm,”

Future Generation Computer Systems, vol. 27, no. 8, pp. 1124 – 1134, 2011.

[144] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen,

S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, J. Bhagat, K. Belhajjame, F. Bacall,

166 BIBLIOGRAPHY

A. Hardisty, A. Nieva de la Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble,

“The taverna workflow suite: designing and executing workflows of web services

on the desktop, web or in the cloud,” Nucleic Acids Research, 2013.

[145] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford, “T spaces,” IBM Systems Journal,

vol. 37, no. 3, pp. 454–474, 1998.

[146] Y. Yang and X. Peng, “Trust-based scheduling strategy for workflow applications in

cloud environment,” in Proceedings of the 8th International Conference on P2P, Parallel,

Grid, Cloud and Internet Computing (3PGCIC)., Oct 2013, pp. 316–320.

[147] N. Yigitbasi, M. Gallet, D. Kondo, A. Iosup, and D. Epema, “Analysis and modeling

of time-correlated failures in large-scale distributed systems,” in Proceedings of the

11th IEEE/ACM International Conference on Grid Computing (GRID), 2010, oct. 2010,

pp. 65 –72.

[148] J. Yu and R. Buyya, “A taxonomy of scientific workflow systems for grid comput-

ing,” SIGMOD Rec., vol. 34, no. 3, pp. 44–49, Sep. 2005.

[149] J. Yu, R. Buyya, and K. Ramamohanarao, “Workflow scheduling algorithms for

grid computing,” in Metaheuristics for Scheduling in Distributed Computing Environ-

ments, ser. Studies in Computational Intelligence, F. Xhafa and A. Abraham, Eds.,

2008, vol. 146, pp. 173–214.

[150] J. Yu and R. Buyya, “Gridbus workflow enactment engine,” Grid Computing: Infras-

tructure, Service, and Applications, L. Wang, W. Jie, and J. Chen Eds, CRC Press, Boca

Raton, FL, USA, pp. 119–146, 2009.

[151] Z. Yu and W. Shi, “An adaptive rescheduling strategy for grid workflow appli-

cations,” in Proceedings of the IEEE International Parallel and Distributed Processing

Symposium. IPDPS., March 2007, pp. 1–8.

[152] D. Yuan, L. Cui, and X. Liu, “Cloud data management for scientific workflows:

Research issues, methodologies, and state-of-the-art,” in Proceedings of the 10th In-

ternational Conference on Semantics, Knowledge and Grids (SKG), Aug 2014, pp. 21–28.

BIBLIOGRAPHY 167

[153] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing,” in Proceedings of the 9th USENIX Conference on

Networked Systems Design and Implementation, ser. NSDI’12, 2012, pp. 2–12.

[154] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster

computing with working sets,” in Proceedings of the 2nd USENIX Conference on Hot

Topics in Cloud Computing, ser. HotCloud’10, June 2010, pp. 10–15.

[155] Y. Zhang, A. Mandal, C. Koelbel, and K. Cooper, “Combined fault tolerance and

scheduling techniques for workflow applications on computational grids,” in Pro-

ceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the

Grid. CCGRID., May 2009, pp. 244–251.

	Introduction
	Introduction to Cloud Computing
	Research Challenges and Objectives
	Methodology
	Spot Market Traces
	Failure Traces
	Workflow Applications
	Case Study Application

	Contributions
	Thesis Organization

	A Taxonomy and Survey
	Introduction
	Background
	Workflow Management Systems
	Workflow Scheduling

	Introduction to Fault-Tolerance
	Necessity for Fault-Tolerance in Distributed Systems

	Taxonomy of Faults
	Taxonomy of Fault-Tolerant Scheduling Algorithms
	Replication
	Resubmission
	Checkpointing
	Provenance
	Rescue Workflow
	User-Defined Exception Handling
	Alternate Task
	Failure Masking
	Slack Time
	Trust-Based Scheduling Algorithms

	Modeling of Failures in Workflow Management Systems
	Metrics Used to Quantify Fault-Tolerance
	Survey of Workflow Management Systems and Frameworks
	Askalon
	Pegasus
	Triana
	UNICORE 6
	Kepler
	Cloudbus Workflow Management System
	blackTaverna
	The e-Science Central (e-SC)
	SwinDeW-C
	blackBig Data Frameworks: MapReduce, Hadoop, and Spark
	Other Workflow Management Systems

	Tools and Support Systems
	Workflow Description Languages
	Data Management Tools
	Security and Fault-Tolerance Management Tools
	Cloud Development Tools
	Support Systems

	Summary

	Robust Scheduling with Deadline and Budget Constraints
	Introduction
	Related Work
	System Model
	Proposed Approach
	Proposed Policies
	Fault-Tolerant Strategy
	Time Complexity

	Performance Evaluation
	Simulation Setup
	Analysis and Results

	Summary

	Fault-Tolerant Scheduling Using Spot Instances
	Introduction
	Related Work
	Background
	System Model
	Proposed Approach
	Scheduling Algorithm
	Bidding Strategies

	Performance Evaluation
	Simulation Setup
	Analysis and Results

	Summary

	Reliable Workflow Execution Using Replication and Spot Instances
	Introduction
	Related Work
	Background
	Proposed Approaches
	Heuristics
	Time Complexity

	Performance Evaluation
	Simulation Setup
	Results

	Summary

	Framework for Reliable Workflow Execution on Multiple Clouds
	Introduction
	Cloudbus Workflow Management System Architecture
	Multi-Cloud Framework for Cloudbus Workflow Engine
	Apache Jclouds: Supporting Multi-Cloud Architecture
	Apache Jclouds and Cloudbus Workflow Management Systems
	Multi-Cloud Resource Provisioning Heuristic

	Testbed Setup
	Montage: A Case Study of Astronomy Workflow
	Resource Characteristics
	Environment
	Failure Model

	Results
	Related Work
	Summary

	Conclusions and Future Directions
	Summary of Contributions
	Future Research Directions
	Cloud Failure Characteristics
	Metrics for Fault-Tolerance
	Cloud Pricing Models
	Multiple Tasks on a Single Instance
	Workflow Specific Scheduling
	Multi-Cloud Challenges
	Energy-Efficient Scheduling

	Final Remarks

