
On the Economics of Infrastructure
as a Service Cloud Providers: Pricing,

Markets, and Profit Maximization

Adel Nadjaran Toosi

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

Department of Computing and Information Systems
THE UNIVERSITY OF MELBOURNE

September 2014

Copyright c© 2014 Adel Nadjaran Toosi

All rights reserved. No part of the publication may be reproduced in any form by print,
photoprint, microfilm or any other means without written permission from the author.

Abstract

CLOUD computing has introduced a major shift in the IT delivery model by offering

computing resources for hosting applications as a utility. This helps businesses

and organizations to access advanced IT facilities offered by cloud providers without the

expensive up-front investments necessary to establish their own infrastructure. In this

context, significant research efforts have already been made that aim to minimize costs for

cloud customers; less attention however, has been given to challenges and opportunities

that cloud providers face when striving for profit maximization.

This thesis presents a set of novel market and economics-inspired policies, mecha-

nisms, algorithms, and software designed to address the profit maximization problem of

Infrastructure-as-a-Service (IaaS) cloud providers. Our solutions are proposed for two

main types of providers: 1) those who rely solely on their own resources to serve cus-

tomers and 2) those who participate in a cloud federation and benefit from resource shar-

ing. We explore different tools and methods such as resource provisioning mechanisms,

financial option markets, revenue management systems, and mechanism design meth-

ods to achieve the goal of profit maximization. Our evaluation of the proposed solutions

demonstrates that IaaS cloud providers can increase their Return on Investment (ROI)

while honoring Quality of Service (QoS) requirements associated with customer applica-

tions.

In summary, the key contributions of this thesis towards profit maximization for IaaS

cloud providers are: 1) resource provisioning policies that assist a provider in a cloud

federation in deciding whether to reject, outsource or terminate spot instances to handle

incoming requests; 2) a financial option-based market mechanism designed for futures

trading of resources in a federated cloud environment; 3) admission control algorithms

iii

embedded within a revenue management framework that supports a joint offering of

usage-based, reservation-based and demand-oriented pricing models; 4) a multi-unit, on-

line recurrent auction mechanism for selling spare capacity of a data center that is envy-

free, truthful with high probability, and generates near optimal profit for the provider;

and finally 5) an implementation of the proposed auction mechanism by identifying the

Spot instance pricing as a Service (SipaaS) framework and its realization in OpenStack.

iv

Declaration

This is to certify that

1. the thesis comprises only my original work towards the PhD,

2. due acknowledgement has been made in the text to all other material used,

3. the thesis is less than 100,000 words in length, exclusive of tables, maps, bibliogra-

phies and appendices.

Adel Nadjaran Toosi, September 2014

v

This page intentionally left blank.

Acknowledgements

PhD is a rewarding journey full of wonderful experiences that is not possible without

support and encouragement of many people. And now since my journey is near to the

end, I would like to take the opportunity to express my sincere thanks to all amazing

people who helped me along the way.

First and foremost, I offer my profoundest gratitude to my supervisor, Professor Ra-

jkumar Buyya, who awarded me the opportunity to pursue my studies in his group. I

would like to thank him for continuous guidance, support, and encouragement through-

out all rough and enjoyable moments of my PhD endeavor.

I would like to express my appreciation to the members of PhD committee: To Pro-

fessor Christopher Andrew Leckie for his constructive comments and suggestions on my

work. To Dr. Rodrigo N. Calheiros, for his generous and kind helps on developing my

research skills, providing insightful comments and collaboration on my research, and

proofreading the thesis.

I would like to thank all past and current members of the CLOUDS Laboratory, at the

University of Melbourne. My deepest gratitude goes to Dr. Mohsen Amini Salehi without

him I would have not had the courage to move to Australia and begin my PhD. I would

like to thank William Voorsluys, and Deepak Poola, whose sincere friendship made my

candidature life more enjoyable. To my friend, Yaser Mansouri, for his constructive com-

ments and long discussions on improving my research and to Farzad Khodadadi for his

generous helps in practical implementation of the auction framework. I would like to

express my gratitude to Dr. Amir Vahid Dastjerdi for many helpful discussions and com-

ments, and to Nikolay Grozev for proof-reading of this thesis and his comments and

suggestions. I also like to thank in particular Atefeh Khosravi, Chanh Nguyen, Safiol-

vii

lah Heidari, and Yali Zhao for their participation in the experimental study which fur-

ther enhanced my thesis. My thanks to fellow members: Dr. Christian Vecchiola, Dr.

Saurabh Kumar Garg, Dr. Suraj Pandey, Dr. Bahman Javadi, Dr. Anton Beloglazov, Dile-

ban Karunamoorthy, Yoganathan Sivaram, Sareh Fotouhi, Maria Rodriguez, Chenhao

Qu, Jungmin Jay Son, Bowen Zhou, and to visitors of the lab, Mehran Garmehi, Deborah

Magalhaes, Tiago Justino, and Guilherme Rodrigues for their friendship and supports.

I would also like to express special thanks to my collaborators: Kurt Vanmechelen

(University of Antwerp, Belgium), Professor Ruppa K. Thulasiram (University of Man-

itoba, Canada) and Professor Kotagiri Ramamohanarao (University of Melbourne, Aus-

tralia).

I wish to acknowledge Australian Federal Government and its funding agencies, the

University of Melbourne, Australian Research Council (ARC), Google, and CLOUDS lab-

oratory for granting scholarships and travel supports enabled me to do the research in

this thesis and attend international conferences.

I would like to give heartfelt thanks to my parents, my brothers, and my parents in

law for their endless help, supports, and love. With special thanks to my younger brother,

Ehsan, who has also helped a lot in designing algorithms and developing codes.

I would like to express my sincerest thanks to my Iranian friends in Australia: Afshin

K., Ali F., Alireza K., Alireza N., Amir B., Bahareh M., Davood A., Fatemeh R., Fatima

M., Hatef M., Hoda M., Khadijeh A., Naghmeh M., Ramin Z., Rozita Z., Saeed K., and

Samira E., who helped us to forget the toughness of being far from home and family.

Lastly and most importantly, I thank my precious wife Mahsa for standing beside me,

for her endurance, supports, and unwavering love that will always be in my heart. These

few words are not enough to express my deepest appreciation for efforts she has done

during past years.

Adel Nadjaran Toosi

September 2014

viii

Contents

1 Introduction 1
1.1 Motivations . 5
1.2 Research challenges and Objectives . 7
1.3 Evaluation Methodology . 10
1.4 Contributions . 11
1.5 Thesis Organization . 14

2 Background and Literature Review 17
2.1 Introduction . 17
2.2 Pricing . 20

2.2.1 Pricing Factors . 20
2.2.2 Pricing Models . 22

2.3 Dynamic Pricing . 26
2.3.1 Auction-based . 28
2.3.2 Negotiation-based . 31
2.3.3 Yield Management . 33
2.3.4 Demand-oriented . 35

2.4 Federated Cloud Environments . 36
2.4.1 Cloud Interoperability Scenarios . 36
2.4.2 Motivations for Cloud Interoperability 39
2.4.3 Discussion . 44
2.4.4 Economic challenges and enabling approaches 44

2.5 Thesis Scope and Positioning . 50
2.6 Summary . 54

I Profit Maximization in Federated Cloud Environments 55

3 Resource Provisioning Policies to Increase Profit 59
3.1 Introduction . 59
3.2 Related Work . 61
3.3 System Model . 63

3.3.1 Interaction between customers and providers 63
3.3.2 Cloud Federation . 65

3.4 Proposed Policies . 67

ix

3.5 Evaluation . 71
3.5.1 Experimental Settings . 72
3.5.2 Workload setup . 73
3.5.3 Performance Metrics . 74
3.5.4 Results . 75

3.6 Summary and Conclusion . 79

4 Financial Option Market Model 81
4.1 Introduction . 81
4.2 Related Work . 84
4.3 The System Model . 86
4.4 The Option Market . 90
4.5 Policies . 93

4.5.1 Baseline In-house Isolated Pool Policy (IIP) 93
4.5.2 Baseline Federated Isolated Pool Policy (FIP) 93
4.5.3 Federated Shared Pool Option-Enabled Policy (FSPO) 94

4.6 Performance Evaluation . 94
4.6.1 Experimental Setup . 94
4.6.2 Performance Metrics . 97
4.6.3 Experimental Results . 98

4.7 Summary and Conclusion . 101

II Profit Maximization for a Single Cloud Provider 103

5 Revenue Management with Optimal Capacity Control 107
5.1 Introduction . 107
5.2 Related Work . 110
5.3 System Model . 113

5.3.1 Cloud Pricing Plans . 114
5.3.2 The Optimal Capacity Control Problem 117
5.3.3 Optimal Capacity Control . 119

5.4 Proposed Algorithms . 125
5.4.1 Pseudo Optimal Algorithm with an Efficient Computational Time 125
5.4.2 Heuristic Algorithm with a Low Computational Complexity 126

5.5 Revenue Management Framework . 130
5.6 Performance Evaluation . 133

5.6.1 Framework Evaluation . 133
5.6.2 Evaluation of the proposed heuristic algorithms 137

5.7 Summary and Conclusion . 140

6 An Auction Mechanism for a Cloud Spot Market 143
6.1 Introduction . 143
6.2 Related Work . 147
6.3 Preliminaries and Notation . 150
6.4 Competitive Framework . 152

x

6.5 Truthfulness . 153
6.6 Envy-freeness . 155
6.7 Extended Consensus Revenue Estimate Auction 156

6.7.1 Discussion . 162
6.8 Limited Supply and Reserve Price . 163

6.8.1 Reserve Price . 164
6.8.2 Power Usage Efficiency Model . 166

6.9 Auction Mechanisms and Benchmarks . 167
6.10 Performance Evaluation . 170

6.10.1 Order Generation . 170
6.10.2 Single Round Evaluation . 172
6.10.3 Evaluation of Misreporting Quantity 173
6.10.4 Online Auction Framework Evaluation 175

6.11 Summary and Conclusion . 181

7 Spot Instance Pricing as a Service 183
7.1 Introduction . 183
7.2 System Design and Implementation . 185

7.2.1 SipaaS Framework . 186
7.2.2 Extensions for Horizon - The OpenStack Dashboard 192
7.2.3 Pricing Mechanism . 195

7.3 Evaluation and Validation . 197
7.3.1 Experimental Testbed . 198
7.3.2 Experimental Design and Setup . 199
7.3.3 Results and Analysis . 201

7.4 Summary and Conclusion . 203

8 Conclusions and Future Directions 205
8.1 Summary of Contributions . 205
8.2 Future Research Directions . 209

8.2.1 Advanced Resource Provisioning Policies 209
8.2.2 Option Trading Strategies . 210
8.2.3 Game Theoretical Analysis of Cloud Federation 211
8.2.4 Customer Diversion in Revenue Management Framework 211
8.2.5 Revenue Management with Overbooking 212
8.2.6 Multi-dimensional Truthful Mechanism Design 212

8.3 Final Remarks . 213

xi

This page intentionally left blank.

List of Figures

1.1 Cloud computing model. 2
1.2 Worldwide public IT cloud services spending in $ billion by service model 3
1.3 Market and economics-inspired mechanisms for IaaS cloud providers

profit maximization. 4
1.4 Thesis organization. 15

2.1 Cloud service stack. 18
2.2 Pricing factors in cloud environments. 20
2.3 Common pricing models in IaaS cloud environments. 22
2.4 Dynamic pricing strategies in clouds. 28
2.5 Common goals in designing auctions. 29
2.6 Main techniques used for revenue management in cloud environments. . 34
2.7 Cloud Interoperability Scenarios. 37
2.8 Federated cloud scenario. 38
2.9 Hybrid cloud scenario. 38
2.10 Multi-cloud scenario. 39
2.11 Aggregated service broker scenario. 40
2.12 Cloud Interoperability Motivations . 40
2.13 Main challenges of the federated cloud environment from the economic

point of view. 45

3.1 Cloud Federation Architecture. 66
3.2 Impact of percentage of spot requests on (a) Profit (b) Utilization, and (c)

Number of rejected on-demand VMs for a provider with different policies. 76
3.3 Impact of percentage of persistent spot requests on (a) Profit (b) Utilization,

and (c) Number of rejected on-demand VMs, for a provider with policies. 77
3.4 Impact of load on (a) Profit (b) Utilization, and (c) Number of rejected on-

demand VMs, for a provider with different policies. 78
3.5 Impact of number of providers on (a) Profit (b) Utilization, and (c) Number

of rejected on-demand VMs for a provider with different policies. 79

4.1 Model elements and architecture. 86
4.2 Binomial tree for option pricing. 92
4.3 Combination of two Gaussian functions. 95
4.4 Generated workload during a week. 96

xiii

4.5 Impact of (a) the reserved capacity utilization and (b) the number of on-
demand requests on provider’s profit with different policies. 99

4.6 Impact of price volatility on behaviors of policies. 100

5.1 Schematic system model addressing the capacity control problem. 113
5.2 Illustration of Algorithm 2. Each small block shows the capacity unit per

time unit (e.g., instance-hour). Schematically, reserved instances occupy
the available capacity top-down and on-demand instances use the capacity
bottom-up. For sake of simplicity, spot instances are not shown in the figure.128

5.3 Key modules of the revenue management framework. 131
5.4 Three Gaussian functions for different pricing plans 135
5.5 The revenue performance of the proposed revenue management frame-

work under different algorithms normalized to the outcome of no admis-
sion control algorithm (B = 100 and T = 75). 138

5.6 The revenue performance of the pseudo optimal and heuristic algorithms
with different values of B and T. All values are normalized to the outcome
of the optimal solution (q = 0.2). 139

5.7 Impact of q, the termination probability of the running on-demand pay-as-
you-go instance in the next time slot, on the revenue performance of the
heuristic algorithm with B = 1 and T = 1. All values are normalized to
the outcome of the optimal solution. 140

6.1 Spot market and auction mechanism . 145
6.2 Effect of misreporting true value on the sale price. Truthful submission

leads to (a) winning and (b) losing. 160
6.3 Supply limited by capacity and reserve price at time t 164
6.4 Ratio of gained revenue by the Ex-CORE auction to optimal auction under

different distribution of orders. 173
6.5 Ratio of gained revenue by the Ex-CORE auction to optimal auction under

different distribution of orders when number of orders is 100. 174
6.6 Mean probability of increase in the utility value for bidders by Ex-CORE

under different distribution of orders when r = 50. A blue circle denotes
the mean value. 175

6.7 Maximum increase of the utility value among all bidders, achieved
through misreporting quantity in Ex-CORE auction under different dis-
tribution of orders when r = 50. Mean value is denoted by blue disc. . . . 176

6.8 PUE as related to load and outside temperature. 178
6.9 (a) Average profit gained and (b) number of rejected VM instances with

different auction mechanisms. 179
6.10 Reserve price (green dashed line) and spot market price generated by on-

line Ex-CORE (blue solid line) in a sample simulation run when the num-
ber of orders is 1500. 180

6.11 Average profit gained by Ex-CORE when the number of orders is 1500. . 181

7.1 System Model. 186
7.2 SipaaS Framework Components. 187

xiv

7.3 EERD of the Database. 189
7.4 Openstack components. 192
7.5 Screenshot of requesting spot instances web page. 194
7.6 EERD of the database used for horizon extensions. 195
7.7 Sequence diagram of an order submission handling. 196
7.8 Screenshot of spot pricing history web page. 197
7.9 Spot market price fluctuation during the experiment. 201

xv

This page intentionally left blank.

Chapter 1

Introduction

THE rapid development of the Internet and the emergence of cloud computing have

enabled a novel trend of purchasing and consuming Information Technology (IT)

services. Cloud computing has brought new opportunities to the Information and Com-

munication Technology (ICT) industry allowing businesses to outsource their IT facilities

to cloud providers and avoid expensive up-front investments of establishing their own

infrastructure and consequent costs of maintenance and upgrades. By means of cloud

services, cloud customers can access all their required capabilities (i.e., computational re-

sources, data, and applications) over the Internet, use what they need, and pay for what

they use without being concerned with the underlying infrastructure (see Figure 1.1). As

a result, customers experience the comfort of traditional utilities such as water, electric-

ity, gas, and telephony. Advantages such as a utility model in addition to accessibility,

scalability, and ease of management have created an industry-wide shift towards cloud

computing solutions.

According to a forecast from International Data Corporation (IDC),1 the worldwide

spending on public cloud services is expected to surpass $107 billion in 2017. Fig-

ure 1.2 depicts IDC’s forecasts on worldwide IT cloud services spending across three

main cloud computing service models, namely, Software-as-a-Service (SaaS), Platform-as-

a-Service (PaaS), and Infrastructure-as-a-Service (IaaS). Among these different forms of de-

livering cloud services, IDC recognized the IaaS model as one of the fastest growing

categories with compound annual growth rate of 27.2%. IaaS is a promising solution

for enabling on-demand access to an elastic pool of configurable and virtual computational

1International Data Corporation, http://www.idc.com/.

1

http://www.idc.com/

2 Introduction

Cloud Providers

End Users

Internet

Applications

Platform

Infrastructure

Figure 1.1: Cloud computing model.

services (e.g., computing power, storage, and networks) in a pay-as-you-go manner. An

IaaS cloud service provider owns the data center(s) and all the required equipment and

is responsible for hosting, running, and maintaining them. IaaS providers offer com-

putational services in the form of Virtual Machine (VM) instances with specific resource

characteristics such as computing power, memory, and disk along with operating system

type and installed applications. Amazon EC2,2 Windows Azure,3 Rackspace,4 Google

Compute Engine,5 and GoGrid6 are examples of commercial IaaS offerings.

In contrast to traditional distributed systems such as Grids and Clusters, which focus

on improvement of the system performance in terms of response time and throughput,

cloud computing has launched a new focal point by introducing monetary and financial

aspects. Thanks to the economies of scale, IaaS cloud providers can maintain large-scale

data centers and offer their services at a relatively low cost. Virtualization technology

also allows IaaS cloud providers to create multiple VMs on a single physical server, thus

2 Amazon EC2, http://aws.amazon.com/ec2/.
3 Windows Azure, http://azure.microsoft.com/.
4 Rackspace, http://www.rackspace.com/.
5 Google Compute Engine, https://cloud.google.com/products/compute-engine/.
6 GoGrid,http://www.gogrid.com/.
7International Data Corporation, http://www.idc.com/.

http://aws.amazon.com/ec2/
http://azure.microsoft.com/
http://www.rackspace.com/
https://cloud.google.com/products/compute-engine/
http://www.gogrid.com/
http://www.idc.com/

3

29.8

62.15.3

14

12.3

31.1

0

20

40

60

80

100

120

2013 2017

B
ill

io
n

 d
o

lla
rs

Software-as-a-Service Platform-as-a-Service Infrastructure-as-a-Servive

$107.2

$47.4

Figure 1.2: Worldwide public IT cloud services spending in billion dollars by service
model.7

improving the resource utilization and increasing the Return On Investment (ROI) [8]. This

however, does not remove the need for reducing cost and increasing revenue to ensure

the business success and techniques to sell the services competitively while still creating

profit. In other words, cloud providers need to obtain the highest possible profit from

selling available capacity while they honor the Quality of Service (QoS) level agreed with

the clients.

As appetite for cloud computing grows and more competitors emerge, the problem of

maximizing profit becomes more complicated. Therefore, it will be increasingly impor-

tant to develop market mechanisms for managing, trading, and pricing cloud resources.

The profit maximization problem of IaaS cloud providers fosters an interesting stream of

interdisciplinary research between computer science and economics. On the one hand,

IaaS cloud providers require to minimize their cost using resource management tech-

niques such as dynamic VM consolidation [8]. On the other hand, they must maximize

revenue using techniques such as adopting differentiated pricing models [32], market

segmentation [127], mechanism design [138] and demand forecasting [139].

4 Introduction

Fe
d

er
at

io
n

 S
p

o
t

m
ar

ke
t

an
d

 F
u

tu
re

 M
ar

ke
t

C
h

ap
te

r
(4

)

P
ar

t
1

C
lo

u
d

 F
ed

e
ra

ti
o

n

 Ia
aS

 C
lo

u
d

 P
ro

vi
d

e
r

 Ia
aS

 C
lo

u
d

 P
ro

vi
d

e
r

U
se

r
In

te
rf

ac
e

 Ia
aS

 C
lo

u
d

 P
ro

vi
d

e
r

U
sa

ge
-b

as
ed

Su

b
sc

ri
p

ti
o

n
-b

as
ed

R
ev

en
u

e
M

an
ag

em
en

t
Sy

st
em

 (
C

h
ap

te
r

5
)

O
u

ts
o

u
rc

in
g

(C
h

ap
te

r
3)

C
o

n
tr

ib
u

ti
n

g

(C
h

ap
te

r
3

) C
lo

u
d

 C
o

o
rd

in
at

o
r

(C
h

ap
te

r
3)

P
ar

t
2

Si
n

gl
e

C
lo

u
d

D
em

an
d

-O
ri

en
te

d

P

ri
ce

Ti

m
e

Sp
o

t
m

ar
ke

t
(C

h
ap

te
r

6
 &

 7
)

 Ia
aS

 C
lo

u
d

 P
ro

vi
d

e
r

C
lo

u
d

 C
u

st
o

m
er

s

Fi
gu

re
1.

3:
M

ar
ke

ta
nd

ec
on

om
ic

s-
in

sp
ir

ed
m

ec
ha

ni
sm

s
fo

r
Ia

aS
cl

ou
d

pr
ov

id
er

s
pr

ofi
tm

ax
im

iz
at

io
n.

1.1 Motivations 5

This thesis focuses on the profit maximization problem of IaaS cloud providers. We

investigate different market and economics-inspired mechanisms such as resource man-

agement, future markets, revenue management, and mechanism design to address the

IaaS cloud providers’ profit maximization problem as shown in Figure 1.3. Our pro-

posed techniques are developed for two main different scenarios: 1) when the provider

acts solely using their in-house resources to serve customers and 2) when it participates

in a cloud federation and benefits from outsourcing requests. The remaining parts of

this chapter detail the need for IaaS cloud provider profit maximization and discuss the

research problems, contributions, and organization of the thesis.

1.1 Motivations

Cloud services, similar to many other services, are perishable in nature, and cannot be

stored for future sale [134]. IaaS resources, such as CPU cycles, network bandwidth, and

memory space, are non-storable and if not utilized at a specific point in time they are

of no value and waste associated underlying data center capacity. From the perspec-

tive of the IaaS cloud provider, if a ready-to-use service is not requested and consumed

during its offering period, the lost revenue cannot be reclaimed in future. The fact that

computational resources sold by a cloud provider can be characterized as a non-storable

or perishable commodity motivates cloud providers to maximize capacity utilization in

order to maximize profit. Given that the IaaS cloud provider is liable to provide certain

level of Quality of Service (QoS) to honor the associated Service Level Agreement (SLA),

increasing utilization must be performed with a delicate and subtle consideration of the

promised service guarantees.

We consider a cloud federation as one possible mechanism of maximizing utilization

and consequently increasing profit. In order to avoid wasting non-storable compute

resources, underutilized providers participating in a cloud federation can lease part of

their idle capacity in the data center to other providers who require additional resources.

Besides, providers are able to overcome limitations in their local infrastructure during

spikes in demand by outsourcing requests to other members of the federation which re-

6 Introduction

sults in fewer rejections of customer requests. Participating in a cloud federation raises

many challenges and opportunities for the IaaS cloud providers with respect to revenue

maximization, especially, when the provider uses different channels of pricing to offer

the services. A part of this thesis investigates these challenges and opportunities.

The other approach for maximizing data center capacity utilization is to offer the ser-

vice via multiple categories of pricing strategies. For instance, Amazon EC2 offers three

pricing models to its customers: usage-based, subscription-based, and demand-oriented

dynamic pricing. Using multiple pricing models with different service guarantees of-

fers more flexible choices to customers and expands market demand. This allows for

accommodating requests from customers with different types of QoS requirements and

budget considerations and consequently maximizes utilization [127]. For example, of-

fering a reservation plan is attractive for applications with steady state or predictable

long term usage and customers with high-availability requirements. Services with lower

QoS offered in demand-oriented dynamic pricing can attract price-sensitive users with

short term, spiky, or unpredictable workloads. However, an important consequence of

pricing models diversification is that it introduces a non-trivial optimization problem to

the provider in relation with allocating its available data center capacity to each pricing

model. Therefore, to achieve the goal of revenue maximization, providers require effi-

cient resource management strategies.

Designing mechanisms that efficiently price perishable services is another important

factor in profit maximization. The inherent perishable nature of computational resources

sold by a cloud provider, combined with the fact that the demand for IaaS services is

non-uniform over time, motivates the use of dynamic forms of pricing to optimize profit.

Through price adjustment, based on actual and possibly forecast supply and demand

conditions, customers can be incentivized to acquire idle capacity or shift demand from

on-peak to off-peak hours. Consequently, both profit and consumer satisfaction can be

increased. Therefore, design of a market mechanism offering a dynamic pricing model,

which aims at optimizing profit by selling the spare capacity of resources available in

cloud data centers is of great value.

1.2 Research challenges and Objectives 7

1.2 Research challenges and Objectives

This thesis tackles research challenges arising from the following topic:

Designing market and economics-inspired algorithms and mechanisms to maximize

IaaS cloud providers’ profit honoring the QoS constraints associated with SLA.

As discussed in the previous section, we consider cloud federation as one possible

source of profit maximization for IaaS cloud providers. A cloud federation is a scenario

where cloud providers are able to establish a relationship to trade their resources in or-

der to achieve new business advantages [100]. Therefore, part of this thesis is devoted

to challenges regarding the profit maximization in federated cloud environments. To-

wards the IaaS cloud provider’s profit maximization, the following research problems

are investigated with respect to cloud federation:

• Resource provisioning

– How should a provider exploit resources in a federation to dynamically in-

crease their data center capacity?

– Which are the most profitable resource allocation decisions when providers

have different choices regarding incoming requests?

– When and to what extent must the provider contribute local resources to the

cloud federation?

• Pricing Models

– When and with what price providers should sell and buy resources?

– What are the proper contracts and pricing models in federated cloud environ-

ments?

• Market Mechanisms

– What are the appropriate market mechanisms in a federated cloud environ-

ment?

8 Introduction

– What are the most proper market models in cloud federation which help in

increasing the profit while mitigating the risks of 1) SLA violations or 2) high

cost due to future price uncertainties?

To deal with the challenges associated with the above research problems, the follow-

ing objectives have been delineated:

• Review, analyze, and classify the research in the area of profit maximization in fed-

erated cloud environments to gain the understanding of existing techniques and

approaches.

• Study the impact of federation as a mechanism for maximizing a cloud provider’s

profit, utilization, and reputation.

• Leverage federation potentials by creating resource provisioning policies and efficient

market mechanisms for IaaS cloud providers.

• Propose resource provisioning policies that help making decisions when providers

have different choices regarding incoming requests.

• Propose a future market mechanism for the cloud federation that can be used to

hedge against the risks of SLA violation and high cost of using shared resources in

the cloud federation market.

The second part of this thesis focuses on the profit maximization when the IaaS cloud

provider acts solely and uses their in-house resources to serve the customers. With re-

gards to profit maximization for a single cloud provider, we consider challenges regard-

ing two main cases: 1) market mechanism design for selling spare capacity of data centers

and 2) efficient allocation of available data center capacity to both different and jointly of-

fered pricing models. In particular, the following research problems are investigated:

• Allocation of capacity to jointly offered pricing models

– How can an IaaS cloud provider maximize profit by efficiently allocating ca-

pacity to different pricing models with limited resources available in the data

center?

1.2 Research challenges and Objectives 9

– How should the cloud provider control the capacity allocated to each pricing

model, considering the dynamic and stochastic nature of customers demand

in each trading channel?

• Market mechanism design for selling spare capacity

– How should a market mechanism be designed for selling the spare capacity

of the data center that maximizes profit without prior knowledge on the cus-

tomers’ service valuation?

– How to design a market mechanism that measures the true value of the service

while it is fair for all customers in the market?

Driven by these research problems, the following objectives have been identified:

• A comprehensive survey and classification of market and economics-inspired

methods of profit maximization in IaaS cloud environments.

• Formulate the optimal capacity control problem that results in profit maximization

considering the stochastic and dynamic nature of customers’ demand.

• Develop a revenue management framework supporting jointly offered different

pricing models that efficiently control the capacity assigned to each pricing model.

• Design a mechanism that efficiently prices perishable cloud resources in line with

a provider’s profit maximization goal. The mechanism must be fair (envy-free),

truthful, and generate optimal profit for the provider.

• Evaluate the proposed mechanism with respect to profit generation, truthfulness,

and rejection rates and quantify the efficiency loss caused by the lack of knowledge

on lifetime of requests.

• Implement a framework to price and sell resources in a cloud market using the

proposed pricing mechanism.

10 Introduction

1.3 Evaluation Methodology

The evaluation of the proposed algorithms and mechanisms is carried out through two

main methodologies:

1. Discrete-event simulation: The target entity in this thesis is an IaaS cloud provider

with a data center infrastructure. Conducting repeatable large-scale experiments

on a real infrastructure with real traces of customer requests is extremely difficult –

if not impossible. Therefore, to ensure the repeatability and reproducibility of our

experiments, as well as executing large-scale experiments, discrete-event simulation

has been chosen as the main method for evaluation of the performance of the pro-

posed algorithms and mechanisms. Discrete-event simulation enables us to control

and conduct the experiments with different parameters to study the behavior of

the mechanisms in diverse circumstances. We use and extend the CloudSim sim-

ulation toolkit [16] to support our pricing models, market mechanisms, and cloud

federation to conduct our experimental simulations. In some cases, if it is possi-

ble and reasonable, our proposed algorithms are evaluated in comparison with the

performance of an optimal off-line algorithm designed for the same problem.

2. Prototyping: Apart from simulations, it is important to evaluate the proposed

mechanisms on a real infrastructure. Therefore, a prototype of the proposed auction

mechanism in form of dynamic pricing framework has been implemented and used

to create a market for selling unused computational resources of a cloud provider.

In addition, an experimental study is conducted to evaluate the framework on a

practical test environment.

Workload

Due to privacy and security reasons, IaaS cloud providers are often unaware of the type

of applications running in virtualized computational resources used by cloud customers.

Therefore, the workloads used for the evaluation purposes in this thesis are based on

the VM requests, where the application type, executing in the VMs is unknown and we

1.4 Contributions 11

assume the IaaS cloud providers are always unaware of the life time of VMs. Moreover,

there is no publicly available workload traces of real-world IaaS clouds VM requests and

workload in IaaS cloud environments are often regarded as strictly confidential informa-

tion as it might expose proprietary information about the provider. Therefore, to emulate

the workloads in IaaS cloud data centers for the evaluation purposes, we create work-

loads based on models and traces suggested in the literature.

1.4 Contributions

The main contributions of this thesis can be broadly divided into 6 major categories: 1)

literature review and related work analysis, 2) resource provisioning policies in federated

cloud environments, 3) future market mechanism for federated cloud environments, 4)

revenue management framework for the IaaS marketplaces, 5) auction mechanism design

for the cloud spot market and 6) its prototyping. The key contributions of the thesis are

as follows:

1. Resource provisioning policies in federated cloud environments:

• Resource provisioning policies are proposed to help providers in making de-

cisions while having different choices regarding incoming requests: rejecting,

outsourcing, or terminating spot VM instances to free resources for more prof-

itable requests. By spot VMs we mean the instances that can be terminated by

providers whenever the current value for running such VMs (defined by the

provider) exceeds the value that the customer is willing to pay.

• A dynamic pricing model is proposed based on the idle capacity of the data

center for selling VM resources in the cloud federation market. This dynamic

pricing mechanism facilitates load balancing between federated providers,

since it results in cheaper price for providers with larger amount of available

resources.

• A thorough simulation-based evaluation of the proposed policies is per-

formed. Experimental results indicate that the proposed policies enhance the

12 Introduction

profit, utilization, and QoS of the IaaS provider in a federated cloud environ-

ment. In addition, we evaluate the impact of spot VMs termination on the

discontinuation of service usage by customers.

2. Future market mechanism for federated cloud environments:

• A financial option-based market mechanism is proposed for trading of re-

sources based on future contracts in a federated cloud environment. The pro-

posed financial option-based market helps IaaS providers manage their local

reservation-based market and achieve higher QoS guarantee by militating the

critical and risky situation of overbooking the reserved capacity of the data

center.

• The performance of the proposed market model is evaluated in a simulation-

based cloud federated environment which shows the effectiveness in increas-

ing provider’s profit without imposing any SLA violation.

3. Revenue management framework for the IaaS marketplaces:

• The optimal capacity control problem is formulated that results in the maxi-

mization of revenue as a finite horizon Markov decision process (MDP). We

propose a stochastic dynamic programming technique to compute the maxi-

mum number of reservation contracts the provider can accept from the arriv-

ing demand in order to maximize revenue. For a large capacity provider, the

use of the stochastic dynamic programming technique is computationally pro-

hibitive. We therefore present two algorithms to increase the scalability of our

solution. The first increases the spatial and temporal granularity of the prob-

lem in order to solve it in a time suitable for practical online decision making.

The second sacrifices accuracy to an acceptable extent through a number of

simplifying assumptions on reserved capacity utilization and the lifetime of

on-demand requests to increase scalability.

• Algorithmic contributions are framed within a revenue management frame-

work that supports jointly offering of usage-based, reservation-based and

1.4 Contributions 13

demand-oriented pricing models. The framework incorporates an admission

control system for requests of the reservation pricing model.

• We evaluate our proposed framework through large-scale simulations, driven

by cluster-usage traces provided by Google. We propose a scheduling algo-

rithm that generates VM requests based on the users’ resource requirements

in these traces. Under pricing conditions that are aligned with those of Ama-

zon EC2, we demonstrate that our admission control algorithms substantially

increase provider’s revenue.

4. Auction mechanism for the cloud spot market:

• A multi-unit, online recurrent auction mechanism within the context of IaaS

resource trading is designed. The proposed auction mechanism is envy-

free, truthful with high probability, and generates near optimal profit for the

provider. It adopts a greedy approach for maximizing provider profits in the

online setting.

• The proposed mechanism is evaluated with respect to revenue generation,

truthfulness, and bid rejection rates. Extensive simulations demonstrate that it

achieves near optimality with regard to maximizing revenue without requir-

ing prior knowledge on the order distributions. It also achieves low bid rejec-

tion rates which results in mitigating the bidder drop problem in online mecha-

nisms [54]. We compare the proposed mechanism to a clairvoyant and non-

clairvoyant variant of the Optimal Single Price Auction and to the Uniform Price

Auction.

• A clairvoyant optimal auction mechanism based on a dynamic programming

technique is designed as a benchmark to quantify the efficiency loss caused by

the lack of information on the amount of time a bidder wants to hold a VM

running. We present a method to dynamically compute a reserve price, based

on a formulation of coarse grained data center power usage model that can be

used by the provider within the proposed auction mechanism.

5. Spot instance pricing as a service framework:

14 Introduction

• An implementation of the proposed auction mechanism is presented by iden-

tifying a framework called Spot instance pricing as a Service (SipaaS). SipaaS

provides facilities to run a spot market using a set of web services to dynami-

cally price VM instances.

• Add-on software solution for OpenStack platform is provided to make use

of the SipaaS framework. An extension is made to Horizon – the OpenStack

dashboard project – in order to add a spot market environment to OpenStack.

• An experimental study is conducted to evaluate and validate the prototype

framework combined with the extension to OpenStack. The main goal of the

experiment is to show that the system works flawlessly in a practical test en-

vironment.

1.5 Thesis Organization

The core chapters of this thesis are derived from a set of papers written during the PhD

candidature. This thesis is organized into two main parts, the first part discusses profit

maximization in federated cloud environments and the second part is dedicated to single

cloud profit maximization. Figure 1.4 depicts the organization of the thesis as described

below:

• Chapter 2 reviews the literature and provides the background relevant for the con-

text of the thesis. This chapter is partially derived from:

– Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya, “Intercon-

nected cloud computing environments: Challenges, taxonomy, and survey,”

ACM Computing Survey (ACM CSUR), vol. 47, no. 1, pp. 7:1–7:47, May 2014.

• Chapter 3 proposes resource provisioning policies that incorporate the outsourc-

ing problem with option of terminating spot instances within a data center. This

chapter is derived from:

– Adel Nadjaran Toosi, Rodrigo N. Calheiros, Ruppa K. Thulasiram, and Rajku-

mar Buyya, “Resource provisioning policies to increase IaaS provider’s profit

1.5 Thesis Organization 15

Chapter 2
Background and Literature

Review

Chapter 3
Resource Provisioning

Policies

Chapter 5
Revenue Management

Framework

Chapter 4

Financial Option Market

Chapter 7
Prototype of Auction

Mechanism

Chapter 8
Conclusions and Future

Directions

Part I: Federated Cloud Part II: Single Cloud

Chapter 6
Auction Mechanism for the

Spot Market

Figure 1.4: Thesis organization.

in a federated cloud environment,” in Proceedings of the 13th IEEE Inter-

national Conference on High Performance Computing and Communications

(HPCC’11), Banff, Canada, Sep. 2011, pp. 279–287.

• Chapter 4 proposes a financial option market model for a federated cloud environ-

ment. This chapter is derived from:

– Adel Nadjaran Toosi, Ruppa K. Thulasiram, and Rajkumar Buyya, “Financial

option market model for federated cloud environments,” in Proceedings of

the 5th IEEE/ACM International Conference on Utility and Cloud Computing

(UCC’12), Chicago, Illinois, USA, Nov. 2012, pp. 3–12.

• Chapter 5 presents a novel revenue management framework with optimal capacity

control to maximize revenue for IaaS cloud providers. This chapter is derived from:

– Adel Nadjaran Toosi, Kurt Vanmechelen, Ramamohanarao Kotagiri, and Ra-

jkumar Buyya, “Revenue Maximization with Optimal Capacity Control in In-

16 Introduction

frastructure as a Service Cloud Markets,” IEEE Transactions on Cloud Com-

puting (TCC), 2014, doi: 10.1109/TCC.2014.2382119.

• Chapter 6 presents an auction mechanism for selling the spare capacity of the data

center in a spot market. This chapter is derived from:

– Adel Nadjaran Toosi, Kurt Vanmechelen, and Rajkumar Buyya, “An Auction

Mechanism for a Cloud Spot Market”, Technical Report CLOUDS-TR-2014-

1, Cloud Computing and Distributed Systems Laboratory, The University of

Melbourne, Dec. 4, 2014.

• Chapter 7 describes a prototype of the auction mechanism by identifying the spot

instance pricing as a service framework with the associated spot market environ-

ment in OpenStack. This chapter is derived from:

– Adel Nadjaran Toosi, Farzad Khodadadi, and Rajkumar Buyya, “SipaaS: Spot

instance pricing as a Service Framework and its Implementation in Open-

Stack”, Software: Practice and Experience (SPE), 2014, in review.

• Chapter 8 concludes the thesis with a summary of the main findings and discussion

of future research directions.

Chapter 2

Background and Literature Review

The cost benefits that cloud computing offers to its customers has been discussed extensively; how-

ever, in the competitive market of cloud computing, little attention has been assigned to the challenges

that cloud providers and vendors face to ensure business success. Thanks to the economies of scale,

cloud providers are able to maintain large-scale data centers and to offer their services at a relatively

low cost; this, however, does not eliminate the need for techniques that help providers to sell their

services competitively while still creating profit. Beyond all technological advances, cloud providers

endlessly require to reduce cost and increase revenue to remain in business. Among all the potential

techniques to achieve such goals, we explore methods such as dynamic pricing, revenue management,

resource allocation, capacity management, and cloud federation. To identify open challenges in the

area and facilitate further advancements, a review of the state of the art on the aforementioned topics

is presented in this chapter. We review the efforts and studies that help cloud providers to minimize

cost and maximize revenue and finally conclude with a discussion on the scope of the current thesis

and its positioning within the research area.

2.1 Introduction

CLOUD computing has been coined as an umbrella term to describe anything that

involves delivering of computing services over the Internet. An important aim of

cloud computing is to provide on-demand access to computational resources on pay-as-

you-go basis similar to the way in which we obtain services from public utility services

such as water, electricity, gas and telephony [15]. Such services were initially offered by

commercial providers such as Amazon, Google, and Microsoft and over the years, several

technologies such as Virtualization, Grid computing, and Service-Oriented Architecture

(SOA) significantly contributed to make cloud computing viable [123].

17

18 Background and Literature Review

Cloud computing, also known as cloud, refers to both the applications delivered as

services over the Internet and the hardware and software in the data centers that provide

those services [7]. Essentially, there are two main stakeholders in the Cloud Comput-

ing environments, which are the Cloud providers (service producers) and Cloud customers

(service consumers or clients). Cloud customers can be either software/application service

providers who have their own service consumers or end users (e.g., organization or busi-

nesses) who use cloud computing services directly. A cloud provider is a company or

vendor that offers economically efficient cloud services using the hardware and software

resources provisioned from other providers or supplied from within its own data centers.

When cloud services are available to the public, it is called public cloud and when a cloud

belongs to a business or an organization, not made available to the public, it is called

private cloud. As shown in the Figure 2.1, there are three main types of service models

usually offered by cloud providers which is also known as cloud service stack.

SaaS (Software as a Service)

PaaS (Platform as a Service)

IaaS (Infrastructure as a Service)

Resources (Compute, Storage, Network)

Figure 2.1: Cloud service stack.

Software as a Service (SaaS) model: As the name suggests, it provides applications

and softwares to the customer in utility-based model. These applications are accessible

from a thin client interface such as a Web browser. The customer does not worry about

the installation, setup and running of the applications and does not manage or control the

underlying cloud infrastructure or even application capabilities. A distinguished exam-

ple of SaaS model is Salesforce,1 which provides Customer relationship management (CRM)

as a service.

Platform as a Service (PaaS) model: This model provides programming languages

and tools to the customer to deploy their application onto the cloud infrastructure. The

1Salesforce, www.salesforce.com

www.salesforce.com

2.1 Introduction 19

customer does not manage or control the underlying cloud infrastructure, but has control

over the deployed applications and possibly application hosting environment configura-

tions. The example of PaaS model is Google App Engine2 that provider facilities to build

an application to be run reliably and even under heavy load in the cloud.

Infrastructure as a Service (IaaS): It provides capabilities for the customers to provi-

sion computational resources such as processing, storage, network, and other fundamen-

tal computing resources where the customer is able to deploy and run arbitrary applica-

tions. The customer does not manage or control the underlying physical infrastructure,

but has control over virtualized computational hosts including operating systems, stor-

age, and deployed applications. Examples of IaaS models are Amazon EC2,3 Windows

Azure,4 Rackspace,5 Google Compute Engine.6

The primary focus of designers in traditional distributed system such as Grids and

Clusters has mostly been on the improvement of the system performance in terms of

response time and throughput. The cloud computing paradigm has introduced new per-

formance metric which is cost. This has shifted a traditional distributed system into a

two-party computation, cloud providers and cloud customers, with pricing and cost as

the bridge [125]. There is a large body of research devoted to minimizing cost for cloud

customers using cloud computing services, however, relatively less work has been done

on the provider’s side to maximize revenue and reduce cost of service production. In

this thesis, we study market and economics-inspired mechanisms to maximize IaaS cloud

providers’ revenue. Therefore, this chapter is devoted to review the related literature and

to position the thesis.

The contents of this chapter are partially derived from the following published re-

search paper:

–Adel Nadjaran Toosi, Rodrigo N. Calheiros, and Rajkumar Buyya, “Interconnected

cloud computing environments: Challenges, taxonomy, and survey,” ACM Computing

Survey (ACM CSUR), vol. 47, no. 1, pp. 7:1–7:47, May 2014.

2Google App Engine, https://appengine.google.com/.
3Amazon EC2, http://aws.amazon.com/ec2/.
4Windows Azure, http://azure.microsoft.com/.
5Rackspace, http://www.rackspace.com/.
6Google Compute Engine, https://cloud.google.com/products/compute-engine/.

 https://appengine.google.com/
http://aws.amazon.com/ec2/
http://azure.microsoft.com/
http://www.rackspace.com/
https://cloud.google.com/products/compute-engine/

20 Background and Literature Review

2.2 Pricing

Pricing is the process of determining the rate or fee the provider will receive in exchange

for offering services or selling resources. Cloud providers can use a variety of pricing

strategies when selling their services or resources. Finding the right pricing strategy is

an important factor in running a successful business. Cloud service providers need to

determine the value for their services and to capture that value through pricing. Basically,

cloud computing resource pricing is a multidisciplinary area of research that embraces

both economics and computer science. Studies in this area can be divided in two main

groups: those that use economics and business methods to solve cloud pricing problem

and those that use computer science techniques to address economic issues related to

pricing. We are particularly interested in the latter group; however, we touch upon some

relevant cases from the former group to attain a broader respective.

2.2.1 Pricing Factors

As shown in Figure 2.2, we recognized three main factors that cloud providers and ven-

dors should consider when determining the price of a cloud service:

Cost of Service

Market Competition Pricing Factors

Value to the Customers

Figure 2.2: Pricing factors in cloud environments.

Cost of service: The providers must calculate the cost of service production and then

add an extra percentage to set the final price of the service in a way that they achieve the

targeted profit. To the best of our knowledge, there are no research studies on cost-plus

pricing analysis in clouds and public cloud providers use their own confidential methods

for service cost calculation and setting the price. However, there are few works in the

literature that examine the costs of service production in cloud data centers.

Greenberg et al. [41] quantify data center costs and argue that internal data center net-

2.2 Pricing 21

work agility, geo-diversifying cloud provider’s data centers, and market mechanisms for

shaping resource consumption are the key aspects to reduce costs. Negru and Cristea [79]

surveyed and analyzed existing cost models in clouds and discussed open issues related

to the topic. Their guide on cost break down in today’s cloud service data centers is

helpful for profit maximization techniques used in this thesis.

Market competition: To remain in business, cloud providers must be aware of prices

for the same services by other providers in the marketplace and set their prices compet-

itively. Cloud computing market is moving rapidly towards a highly price-competitive

environment which is termed by perfect competition by economists. There are few studies

in the literature dealing with this problem. Pal and Hui [85] devise and analyze economic

models for cloud service markets where public cloud providers jointly compete for the

price and QoS levels. The competition in prices amongst the cloud providers has been

envisaged by means of non-cooperative games amongst competitive cloud providers.

Similarly, Roh et al. [102] study the resource pricing problem in the economic context

from the perspective of cloud service providers.

Value to the Customers: To cloud customers, determining how much they are will-

ing to pay for a service might not be related to the cost of service production by cloud

providers. Setting a price for a service based on the perceived value to the customer

constitutes considerable amount of subjectivity. Substantial efforts have been made by

researchers of the information system sector to measure the service value of cloud com-

puting from a customer perspective [84]. These efforts also help cloud providers to mea-

sure how well their services are leading to value and satisfaction for their customers. This

is not in our scope to cover this area of research; however, we are interested in another

branch of studies conducted by computer scientists to develop market mechanisms to

set the price of service by asking customer to report their true valuation. Market-based

pricing mechanisms such as different types of auctions that solicit truthful reports (bids)

from customers and subsequently set the service price according their bids can be catego-

rized in this area of research. In a later part of this chapter, we cover these studies when

we review various dynamic pricing strategies.

22 Background and Literature Review

2.2.2 Pricing Models

When providers understand how much it costs to provide the service, how much com-

petitors are charging for the same service, and how customers perceive the value of ser-

vices, it is time to figure out what type of pricing model they should utilize. The most

commonly used pricing models in cloud markets, especially in infrastructure as-a-service

cloud marketplaces, are usage-based, subscription-based, and demand-oriented pricing mod-

els (Figure 2.3).

Usage-based

Subscription-based Pricing Models

Demand-oriented

Figure 2.3: Common pricing models in IaaS cloud environments.

Usage-based pricing model: Basically, cloud computing can be defined as delivery

of on-demand access to computing services on a pay-as-yo-go basis. This usage-based

model of billing and metering of service consumption is similar to utility services such

as water, electricity, gas, and telephony. A usage-based pricing model (also known as

consumption-based) relies on the scheme that customers pay according to the amounts

of services that they use or consume. Usage-based pricing model is the most common

pricing model considered by IaaS cloud service providers. In this model, the provider

quantifies the services that they provide, and charge customers accordingly. For example,

an IaaS cloud provider might charge virtual machine (instance) usage per time unit, e.g.,

instance-minute or instance-hour or might charge storage per gigabyte per month. From

the perspective of cloud customers, the pay-as-you-go pricing model offered by cloud

providers is interesting in practice as it removes the upfront costs of setting up their

own IT infrastructure and it allows organizations to expand or reduce their computing

facilities very quickly.

In the usage-based pricing model, cloud providers often charge for services only on

a fixed-rate basis. Fixed rate pricing is a relatively simple model and most often requires

easily controllable cost-plus pricing strategy. There is a large body of literature on cost

2.2 Pricing 23

analysis of running applications on clouds considering the usage-based pricing model in

clouds [108, 117, 125].

A related work by Sharma et al. [107] developed a cloud resources pricing model

that uses financial option model to give a lower bound on the prices and compounded-

Moores law taking into account the metrics such as initial investment, rate of depre-

ciation, and age of resource to give a upper bound on prices for what they call cloud

compute commodities.

Subscription-based pricing model: is a pricing model that allows customers to pay

a subscription fee to use the service for a particular time period. This is often popular

among Software-as-a-Service (SaaS) cloud providers, where vendors deliver software ca-

pability over the Internet. The idea behind subscription-based pricing is that customers

pay a fee to subscribe to a service over a predefined time period and they can regularly

use the service during the subscription period. Subscription-based pricing models with

more or less modifications are used by IaaS cloud provider as well while it is called with

different terms such as reservation contract or prepaid scheme. For example, in the case

of GoGrid,7 to use its prepaid plan, customers pay a subscription fee to reserve VM in-

stances for monthly or annual contracts and after which the usage is free for the contract

period. In Amazon Web Services,8 the customer pays an upfront reservation fee to re-

serve an instance for a one or three year term and usage-based rate for that instance is

heavily discounted.

Cloud providers can benefit from subscriptions because they are assured a predictable

cash flow from subscribed customers for the duration of the contract. This not only pro-

vides risk-free income and removes demand uncertainty for the business, but also pro-

vides long-term usage commitment to customers. However, the provider is usually liable

to provide guaranteed availability for subscriptions to honor the associated Service Level

Agreement (SLA).

Niu et al. [81] propose a guaranteed cloud service model for cloud bandwidth reser-

vation, where each customer does not require to estimate the absolute amount of band-

width he/she needs to reserve. Their objective is to determine the optimal policy for

7GoGrid, http://www.gogrid.com/.
8Amazon Web Services, http://aws.amazon.com/.

http://www.gogrid.com/
http://aws.amazon.com/

24 Background and Literature Review

pricing cloud bandwidth reservations in the presence of demand uncertainty such that

the social welfare is maximized, that is, the sum of the expected profits for all customers

and the cloud provider is maximized.

Meinl et al. [64] discuss the application of reservation systems in cloud computing

environments and point out the benefits for cloud vendors as well as their customers. The

authors analyzed the application of derivative pricing techniques and yield management

to create a model that can be utilized in real world systems.

Mohammadi et al. [75] propose a novel reservation mechanism to protect both

providers and customers from the cost overhead of over-provisioning resources. In their

reservation mechanism, consumers can communicate their workload forecasts as a pre-

reservation and then claim the pre-reserved resources if the need actually arises for the

softly reserved resources in future. Pre-reservations capture the estimated amount of re-

sources that will be required by a customer at a given future point of time as well as the

probability of actually needing these resources. The proposed approach encompasses

mechanisms to exploit the required information to be exchanged between the provider

and the customer in a way that it leverages benefits of both providers and customers.

Similarly, Lu et al. [58] provide a solution for the resource reservation problem in

IaaS providers with limited resource capacity. Their proposed method investigates the

feasibility of each submitted reservation request and if the provider is not able to accept

the request, an alternative way of accommodating the request with backward or forward

shifting in time is suggested. They utilize computational geometry to tackle the problem.

Wang et al. [130] study the resource reservation management issues inside cloud envi-

ronments. They propose an adaptive resource reservation approach by selectively accept-

ing reservation requests. The decision is made to maximize the cloud provider revenue

while it ensures the quality of service (QoS) for transactional applications.

Demand-oriented pricing model: Demand-oriented pricing model is the process of

establishing a price for a service based on the level of demand. The service price is

changed according to its demand in a way that when the demand is high the price goes

up and when it is low the price goes down. Among all pricing models discussed here,

this is the least common pricing model at real-world IaaS cloud marketplaces; however

2.2 Pricing 25

it has received the highest attention from researchers in academia due to its complexi-

ties. In the demand-oriented pricing model, the price for a service must be set based on

real-time and dynamic level of demand. When done successfully, such a dynamic pricing

model maximizes the revenue for the cloud provider.

Amazon is one of the IaaS cloud providers that publicly offers a demand-oriented

pricing model for selling IaaS resources. The resources are called spot instances and are

sold according to a dynamic pricing model that varies the price of instances in real-time

based on supply and demand according to Amazon’s claim.

A relevant study has done by Niyato et al. [82] where they present an economic

analysis of the resource market in cloud computing environment. Three types of re-

source market between private customers and service providers have been considered,

i.e., monopoly, competitive, and cooperative oligopoly. Repeated game model has been

used to analyze the cooperation behavior of the cloud providers to reach efficient and fair

profit.

Kantere et al. [49] presented an optimal pricing method achieved through the dy-

namic pricing for a caching service offered by the cloud service provider. They propose a

novel price-demand model designed for a cloud cache and a dynamic pricing scheme for

queries executed in the cloud cache. They also discuss qualitative aspects of the solution

that allows the consideration of customer satisfaction together with cloud provider profit

maximization.

A dynamic pricing scheme suitable for federated cloud environments with rational

and self-interested parties where resource demand and supply fluctuate as customers

join and leave the system has been proposed by Mihailescu and Teo [71]. They compare

the performance of their proposed strategy-proof dynamic pricing model with fixed-rate

usage-based pricing using simulations, and show that customer welfare and the percent-

age of successful requests are increased when their dynamic pricing model is applied.

As the importance of dynamic pricing in cloud pricing has been recognized by the

literature [71, 125, 134], we devote the next section to discussing and reviewing dynamic

pricing related work.

26 Background and Literature Review

2.3 Dynamic Pricing

Dynamic pricing is a time-based and price discrimination scheme that allows the service

provider to vary the price in real-time in response to various factors such as market de-

mands, the time of service offering, and the type of customer. Through price adjustment

based on actual (and possibly forecasted) supply and demand conditions, customers can

be incentivized to acquire resource or shift demand from on-peak to off-peak hours. Con-

sequently, from the provider point of view, both revenue and consumer satisfaction can

be increased.

Additionally, dynamic pricing helps cloud providers in more-effective resource man-

agement and capacity planning. By ensuring that prices match the market conditions,

fully flexible dynamic pricing mechanisms also empowers customers to manage their

cost efficiently. However, this dynamism of prices makes providers’ pricing decisions and

customers’ budget planning further challenging. This can be the main reason that cur-

rently fewer number of cloud providers are offering dynamic pricing models. Nonethe-

less, as competition among providers in cloud computing marketplace grows and more

complex pricing models appear, dynamic pricing models would gain more popularity

and approval gradually.

In general, dynamic pricing can be determined by a provider revenue maximization

problem in a monopoly market, or by a social welfare maximization problem in a com-

petitive market with multiple providers [133]. In this thesis, we study the former where

we present dynamic pricing model and revenue management techniques for IaaS clouds.

Social welfare can be specified as the summation of the welfare of all the individuals in

the system where welfare can be measured either in terms of utility values or money, or

even Pareto efficiency.9 Dynamic pricing can be used to maximize welfare (the difference

between the user utility and payment) of all participants in the market, e.g., customers

and providers.

Mihailescu and Teo [71] present dynamic pricing scheme for a federated cloud envi-

ronment aiming at maximizing individual participants’ welfare in the IaaS cloud market

9Pareto efficiency is a state of allocation of resources in which it is not possible to give one individual
more utility without giving at least one other less utility

2.3 Dynamic Pricing 27

with a large number of providers and customers. Similarly, Hassan et al. [44] study the

design of theoretical game models using a price-based resource allocation strategy among

the IaaS cloud providers in a federated cloud environment. They develop cooperative

and non-cooperative games and examine the social welfare maximization under each

game model. Menache et al. [66] use pricing as a means to maximize the social welfare in

cloud environments. They show that the socially optimal operating point is unique, and

can be induced by a per-unit pricing model with the same price to all customers.

One of the main techniques used in the literature to maximize cloud providers’ rev-

enue is dynamic pricing. Xu and Li [134] present an infinite horizon stochastic dynamic

program to maximize the cloud provider’s revenue with stochastic demand arrivals and

departures. They rely on dynamic pricing as the main technique to maximize revenue.

The problem of revenue maximization with dynamically allocating resources to spot mar-

kets has been investigated by Zhang et al. [139]. Supply adjustment and dynamic pricing

are used as a means to maximize revenue and meet customer demand. Wang et al. [127]

propose an optimal mechanism for a dynamic pricing in spot market based on the uni-

form price auction. The problem of optimal capacity segmentation between requests

form usage-based market and dynamic pricing market has been also formulated and ad-

dressed. In order to maximize the cloud provider’s revenue, a dynamic pricing model

based on genetic algorithms has been proposed by Macı́as and Guitart [61]. The proposed

method has been compared with demand-oriented pricing model proposed in previous

works from the same authors.

As shown in Figure 2.4, there are various types of dynamic pricing strategies sug-

gested by the literature for setting the price of cloud resources. These dynamic pric-

ing strategies can be categorized into two main groups: price-discovery and price-posted

models. In the former, the provider sets the price based on the communication with

the customers, e.g., asking them to report their bid. Auction-based and negotiation-based

techniques fall into this group. The latter, the price-posted model, does not necessarily

require communication with the customers and the provider posts the pre-determined

price which dynamically varies during the time based on some external factors such as

demand or time of use. The demand-oriented pricing model and yield management tech-

28 Background and Literature Review

niques are categorized in the second group. In the following subsections, we discuss

about various type of dynamic pricing suitable for cloud computing in more detail.

	

	 	

	

Price-‐Discovery	

	 Dynamic	 Pricing	 Strategies	

	
Price-‐Posted	

	

Auction	

Negotiation	

	
Yield	 Management	

Demand-‐oriented	

Figure 2.4: Dynamic pricing strategies in clouds.

2.3.1 Auction-based

Over the recent years, there has been a massive growth in the research of designing auc-

tions, largely motivated by the development of the Internet. Auction is a common mar-

ket mechanism with a set of rules determining prices and resource allocations on basis of

bids submitted from the market participants. Auctions, and specifically online auctions,

can be used for dynamic, value-based pricing in cloud marketplaces. Well-designed auc-

tion mechanisms are desired by the service providers since they: 1) incentivize users to

reveal the service value (i.e., report the price they are willing to pay for resources), 2)

ensure resources are allocated to those who value them the most, and 3) correctly price

resources in line with supply and demand conditions.

Auctions can be in assorted shapes and have different characteristics such as: single-

dimensional (e.g., only bid price) or multi-dimensional (e.g., bid price plus quantity),

single-sided (e.g., only customers submit bids) or double-sided (e.g., double auction10),

open-cry or sealed-bid, single-unit (e.g., a single good or service) or multi-unit (e.g., mul-

tiple units of the goods), single item (e.g., one type of service) or multi-item (e.g., com-

binatorial auction11). These have been extensively discussed and analyzed in the eco-

nomics literature. Interested readers are referred to [87] for a general survey on auction

mechanisms and biding from a computer science perspective.
10Type of auction that brings together multiple buyers and sellers where both side simultaneously submit

their bids to an auctioneer.
11Type of auction in which participants can place bids on combinations of items rather than individual

items, e.g., $5 for 3 apples and 2 oranges.

2.3 Dynamic Pricing 29

Apart from all the different types of auction that can be devised, auction designer

might have specific goals in designing auction for example truthfulness, revenue maximiza-

tion, allocative efficiency, and fairness. Mechanism design is a subfield of economic theory

deals with devising auction mechanisms to satisfy aforementioned goals in a strategic

settings – assuming that the different participants in the auction each acts rationally in

a game theoretic sense. Here, we review some of the most common goals in designing

auctions as illustrated in Figure 2.5.

Truthfulness

Revenue Maximization

Common Goals in Auction Design

Allocative Efficiency

Fairness

Figure 2.5: Common goals in designing auctions.

Truthfulness: An auction mechanism is truthful – also called strategy-proof or

incentive-compatible – if the dominant bidding strategy for every bidder is to always sub-

mit its true valuation irrespective of the behavior of the other bidders. In game theoretic

sense, one strategy for a given player is dominant if, regardless of what the other players

do, that strategy causes highest pay-offs for that player than any other strategy.

Revenue maximization: A fundamental objective in mechanism design, and the fo-

cus of this thesis, is revenue maximization in which the mechanism designer’s goal is

to maximize the revenue (or some times profit) for the seller (provider). This topic in

economics is referred to optimal mechanism design.

Optimal mechanism design can be categorized in two main groups [80]: Bayesian

optimal mechanism design and prior free optimal mechanism. In Bayesian optimal mechanism

design, it is assumed that the valuations of the participants in the auction are drawn from

a known prior distribution. Studies in this area often formed based on the seminal work

by Myerson [77]. When determining the prior distribution is not practical, convenient or

even possible in advance, prior free optimal mechanism design is the case.

Allocative efficiency: In some type of mechanism design the main objective is to just

30 Background and Literature Review

allocate resources among buyers in an efficient manner, i.e., social welfare is maximized.

It is well known that efficiency is optimized by Vickerey Auctions [122]; even though

efficient auction mechanisms similar to Vickerey auction are theoretically sound, they

are not common in practice as it does not necessarily maximize sellers’ or providers’

revenue. Auction mechanism often has one of the objectives of revenue maximization or

allocation efficiency [80].

Fairness: There have been many different notions of fairness associated with the

mechanism design. The main goal is to understand what is the fair way to divide the

total cost (from customers’ point of view) or revenue (from providers’ point of view)

between auction participants. In fact, fairness tries to enforce and sustain cooperation

among agents willing to cooperate and to fairly divide benefits or costs of joint effort

among participants. One relevant notion of fairness is envy-freeness. In an envy-free auc-

tion no bidder can increase its utility by adopting another bidder’s outcome, that is, no

bidder would be happier with someone else’s outcome [38].

In practice, the use of an auction-like mechanism to sell spare capacity in IaaS cloud

data centers was pioneered in late 2009 by Amazon which is called spot market in the lit-

erature. In Amazon’s spot market, customers bid the maximum hourly price they are

willing to pay to obtain a VM instance. All instances incur a uniform charge, the spot

market price. According to Amazon, this price is set dynamically based on the relation-

ship of supply and demand over time. However, Amazon has revealed little information

on the pricing and allocation rules of their pricing mechanism.

In theory and research, Danak and Manno [25] present a uniform-price auction for re-

source allocation that suits the dynamic nature of grid systems. Mihailescu and Teo [69]

investigate Amazon EC2’s spot market as a case in a federated cloud environment. They

argue that spot pricing used by Amazon is truthful only in a market with a single

provider, and show that rational users can increase their utility by being untruthful in

a federated cloud environment. Wang et al. [127] proposed an optimal recurrent auction

based on the Bayesian mechanism design. The mechanism was designed in the context

of optimally segmenting the provider’s data center capacity between on-demand and

spot market requests. A truthful dynamic auction that periodically computes the num-

2.3 Dynamic Pricing 31

ber of instances to be auctioned off in order to maximize the provider’s revenue is also

proposed by the same authors [128]. Unlike Amazon spot market, their approach offers

guaranteed services (i.e., instances are never terminated by the provider) and constant

price over time (i.e. as the price is set for the user, it remains constant as long as the user

holds the instance). Their auction charges each user different price and does not generate

a market-wide single price, that is, their mechanism is not fair in essence.

Prasad and Rao [91] present a cloud resource procurement approach and dynamic

pricing model that automates the selection of an appropriate cloud vendor. They have

presented three mechanisms to deliver allocative efficiency, incentive compatibly and in-

dividual rationality. Zaman et al. [137] have investigated the applicability of combinato-

rial auction mechanisms for allocation and pricing of VM instances in cloud computing.

Samimi et al. [105] propose an incentive-compatible combinatorial double auction for re-

source allocation in cloud environments. Another work considers combinatorial auction

model and is focused mainly on maximizing the seller’s profit and resource trading price

has presented by Wang et al. [131].

2.3.2 Negotiation-based

Even though negotiation (also known as bargaining) is a well-established topic of re-

search, there is little or no automated negotiation support for cloud computing environ-

ment. Negotiation is a form of decision-making between two or more parties intended

to reach an agreement in which no party can make decision independently, and therefore

must make concessions to achieve a compromise [110]. Negotiation can have many at-

tributes to negotiate over, e.g., Quality of Service (QoS), but for the purpose of this section

only price will be taken into account.

The main difference between negotiation and auction is that auction is an explicit set

of allocation and pricing rules on the basis of bids solicited from the market participants

to determine the value of objects while negotiation is about cooperating to create value of

the objects [110]. Negotiation is usually done in the presence of incomplete information

where parties generate offers and counteroffers during the negotiation to maximize their

own benefit. Through negotiation, resource providers are given the opportunity to max-

32 Background and Literature Review

imize the revenue and customers to minimize the cost. Negotiation techniques define

how a party must react to offers from other parties or how offers and counteroffers must

be generated during the negotiation with the ultimate goal of reaching an agreement

depending on the requirements and objectives.

There is large body of literature on negotiation and there are various types of negoti-

ation techniques and strategies. Basic concepts in automated negotiation include negoti-

ation agent, negotiation object, negotiation protocol, and negotiation strategy [29]. The impor-

tance of each concept varies according to the negotiation context, for example, in some

cases the main concern is negotiation protocol while in other cases negotiation strategy

becomes important. This is not our scope to cover all aspects of negotiation; therefore we

briefly review related work on automated negotiation techniques developed for cloud

computing environments.

Most of related work in the area focus on establishing Service Level Agreement (SLA)

through negotiation. An SLA clearly states the defined expectations with which the

provider and the customer will do business together and price of service delivery might

be one of these expectations. An example is the research conducted by Yoo and Sim [136]

that propose agent-based multilateral price negotiation model for cloud service mar-

ket. The proposed model includes a many-to-many negotiation protocol, and price-

determining factor from service level feature. Market-driven agent and adaptive con-

cession making strategies are proposed for negotiation where the former has full infor-

mation about competitors and the later has incomplete information.

An et al. [3] present a negotiation mechanism in which agents make contracts to bind

cloud resources from a provider to a customer for a fixed term interval. Each agent is

able to decommit from a contract by paying a penalty to the other contract party when it

finds it beneficial. Their model maximizes the social and improves the resource allocation

efficiency.

Zheng et al. [141] review the state of the art and outlines a research roadmap on cloud

service negotiation. They formulate three research problems, i.e., QoS measurement, QoS

negotiation, and QoS enforcement, for cloud services. Their study shows when one has

no knowledge of which strategy the opponent will play, a mixed strategy can achieve a

2.3 Dynamic Pricing 33

higher utility than the concession strategy.

Son et al. [111] propose a multi-issue negotiation mechanism to reach an agreement

on the price of a service and when to use the service. In their mechanism a negotiation

agent can concurrently make multiple proposals in each negotiation round. They also

characterize a utility function that models the preferences of the customer for different

time slots. A case study demonstrating the benefits of using their mechanism with three

pricing models of Amazon EC2 has been carried out.

2.3.3 Yield Management

Considering the perishable and non-storable nature of services in clouds, providers can

benefit from maximizing resource utilization in order to maximize revenue. Services are

in general perishable products because if a ready to use service is not requested and

consumed during its offering period, from the perspective of the service provider, this

is a lost business opportunity and the lost revenue cannot be reclaimed in future. This

is entirely different from storable goods that provider can use inventory-management ap-

proaches to store unsold products for future selling.

Yield management (also known as Revenue Management) is the process of maximiz-

ing revenue from a fixed, perishable resource capacity using pricing, and capacity control

techniques. During the last few decades, revenue management has witnessed signifi-

cant scientific and practical advances especially in the airline and hotel industries. The

literature is vast on this topic and our aim in this section is limited to review the rele-

vant existing applications of this field to cloud computing. Interested readers can find a

detailed overview of revenue management in [132].

Compared to auction mechanisms and bidding, revenue management techniques for

pricing are different, here the price is determined in the marketplace without any interac-

tion or communication between providers and customers, and it usually happens based

on stochastic analysis of the demand. Therefore, we classified the revenue management

techniques in price-posted model. In general, Revenue Management is mainly concerned

with how best to price or allocate capacity to each market segment. Here, we review these

two main techniques used for revenue management in cloud computing.

34 Background and Literature Review

Pricing

Yield Management Techniques

Capacity Control

Figure 2.6: Main techniques used for revenue management in cloud environments.

Pricing: This category of revenue management involves anticipating the value cre-

ated for customers and setting the price in a way that capture that value. This requires

developing disciplined pricing tactics to dynamically react to changes and continually

capture value and generated revenue.

Capacity control: This category of revenue management involves optimally allocat-

ing resources or capacity to each market segment in order to maximize revenue. This

requires methods of forecasting demand, measuring price sensitivity of customers and

possibly overbooking or admission control techniques.

Revenue management techniques have been previously used in the Grid comput-

ing [116] context. One of the early attempts to incorporate revenue management into

cloud computing was made by Püschel and Neumann [92, 93]. They investigate the use

of a policy-based admission control model to resource management components using

techniques such as client classification and dynamic pricing. Similar work has been done

by Meinl et al. [64] who applies derivative markets and yield management techniques

for revenue maximization. Macı́as et al. [60] propose several techniques such as dynamic

pricing, over-provisioning, and selective SLA violation to maximize cloud provider rev-

enue. Kashef et al. [50] propose a system architecture for cloud service providers that

combines demand-oriented pricing with resource provisioning. They compare two rev-

enue management techniques for cloud computing. The first sets the timing for offering

price discounts, whereas the second determines the number of VMs that should be of-

fered at full price. Anandasivam et al. [4] utilize a bid price control technique that origi-

nates from the revenue management literature for capacity management which accepts

or denies incoming requests for service in order to increase revenue. Their model consid-

ers multiple resources such as CPU, memory, storage, and bandwidth. Xu and Li [134]

present an infinite horizon stochastic dynamic program to maximize the cloud provider’s

2.3 Dynamic Pricing 35

revenue with stochastic demand arrivals and departures. They rely on dynamic pricing

in revenue management framework as the main technique to maximize revenue.

There are a few studies in the literature that consider the problem of optimally al-

locating resources to different customers from different market segment. The problem

of dynamically allocating resources to different spot markets for revenue maximization

has been investigated by Zhang et al. [139]. Supply adjustment and dynamic pricing are

used as a means to maximize revenue and meet customer demand. They model the prob-

lem as a constrained discrete-time and finite-horizon optimal control problem and adopt

Model Predictive Control techniques to design the dynamic algorithm solution. Deciding

on the optimal capacity segmentation for on-demand and spot market requests has been

formulated as a Markov decision process by Wang et al. [127]. As a part of their work,

they propose an optimal mechanism for spot market based on the uniform price auction.

In their model, they only consider usage-based and demand-oriented pricing models and

they do not consider subscription-based pricing.

There are a few other studies which they have roots in revenue management tech-

niques and are relevant to the topic. Abhishek et al. [1] characterize the equilibrium

where arriving requests can choose between fixed-rate usage-based and the demand-

oriented pricing markets. Their theoretical and simulation based analysis suggest that

fixed-rate pricing generates higher expected revenue than joint market (i.e., fixed-rate

usage-based plus demand-oriented market). Wang et al. [126] investigate the problem

of pricing in spot market to maximize the revenue of cloud providers. They argue that

pricing at present impacts on the future. In order to characterize the impact of pricing on

the present and future revenue, they present a demand curve model and formulate the

problem as a time-average optimization problem. They propose two online algorithms

to tackle the problem and their evaluation results show that both algorithms can obtain

high revenue.

2.3.4 Demand-oriented

Demand-oriented pricing model previously discussed in Section 2.2.2. Therefore, we do

not further discuss this model of dynamic pricing here.

36 Background and Literature Review

We reviewed pricing and different aspects of it as a means of maximizing revenue for

cloud providers in this section. The next section is dedicated to cloud Federation as another

way of increasing revenue and profit for IaaS cloud providers. In broader sense, we first

discuss on interconnected cloud environments including its benefit and challenges and

then, we narrow down our focus to cloud federation and its economic aspects. Finally,

We conclude by discussing on gaps and potential research areas in this regard.

2.4 Federated Cloud Environments

Recent studies show the benefits of interconnecting cloud environments and present at-

tempts for the realization of federated cloud environment [14, 30, 99]. The benefits of

interconnected cloud environments for both cloud providers and their customers are nu-

merous and there are essential motivations for cloud interoperability which will eventually

lead to the Inter-Cloud. Before discussing about benefits of cloud interoperability, we ex-

plore different feasible cloud interoperability scenarios.

2.4.1 Cloud Interoperability Scenarios

Cloud interoperability requires cloud providers to adopt and implement standard inter-

faces, protocols, formats and architectural components that facilitate collaboration. With-

out these provider-centric changes cloud interoperability is hard to achieve. Among differ-

ent provider-centric approaches Hybrid cloud, cloud federation and Inter-cloud are the most

prominent scenarios. A hybrid cloud allows a private cloud to form a partnership with

a public cloud, enabling the cloud bursting application deployment model. Cloud burst-

ing allows an application to run in a private data center and to burst into a public cloud

when the demand for computing capacity spikes. Cloud federation allows providers to

share their resources through federation regulations. In this paradigm, providers aim

to overcome resource limitations in their local infrastructure, which may result in rejec-

tion of customer requests, by outsourcing requests to other members of the federation.

Moreover, cloud federation allows providers operating at low utilization to lease part of

their resources to other federation members in order to avoid wasting their non-storable

2.4 Federated Cloud Environments 37

compute resources. Last but not least is Inter-cloud, in which all clouds are globally

interconnected, forming a worldwide cloud federation. Inter-cloud removes difficulties

related to migration and supports dynamic scaling of applications across multiple clouds.

Even if cloud interoperability is not supported by cloud providers, cloud customers are

still able to benefit from client-centric interoperability facilitated by user-side libraries or

third party brokers. Multi-cloud application deployment using adapter layer provides the

flexibility to run applications on several clouds and reduces the difficulty in migrating ap-

plications across clouds. Aggregated Service by Broker, a third-party solution in this regard,

offers an integrated service to users by coordinating access and utilization of multiple

cloud resources. Figure 2.7 depicts the discussed classification and the remaining part of

this section describe each scenario in detail.

Different combinations of Cloud providers (CPs) and Cloud customers give rise to a

number of plausible scenarios between clouds [30]. Cloud customers can be either soft-

ware/application service providers (SPs) who have their service consumers or end users

who use the cloud computing services directly. SPs offer economically efficient services

using hardware resources provisioned by cloud providers, i.e., cloud providers offer util-

ity computing service required by other parties.

Provider-centric

Interoperability Scenarios

Client-centric

Federated Cloud

Hybrid Cloud

Multi-Cloud

Aggregated service by Broker

Figure 2.7: Cloud Interoperability Scenarios.

Federated Scenario

In this scenario, SP establishes a contract with CP that itself is a member of federation. A

group of cloud providers are federated and trade their surplus resources amongst each

other to gain economies of scale, efficient use of their assets, and expansion of their ca-

pabilities [19], e.g., to overcome resource limitation during spike in demands. In this

38 Background and Literature Review

model, the computing utility service is delivered to SP using resources of either one CP,

or combination of different cloud providers. In such a scenario SP might be unaware of

the federation and its contract is with a single cloud provider (Figure 2.8).

SP/End-User

Public Cloud
Provider C

 Private Cloud
Provider B

Public Cloud
Provider A

Figure 2.8: Federated cloud scenario.

Hybrid Cloud Scenario

In hybrid cloud architecture, an organization that owns its private cloud moves part of its

operations to external CPs. The organization can also sell idle capacity to other providers

during periods of low load. This extension of a private cloud to combine local resources

with resources from remote CPs is called hybrid cloud. In this scenario, SP/end user

application can scale out through both private and public clouds when the local infras-

tructure is insufficient. Furthermore, this scenario can be extended if the organization

offers capacity from its private cloud to others when that capacity is not needed for inter-

nal operations (Figure 2.9).

SP/End-User

Public Cloud
Provider

 Private Cloud
Provider

Figure 2.9: Hybrid cloud scenario.

2.4 Federated Cloud Environments 39

Multi-Cloud Scenario

In this scenario, SP or end-users are responsible to manage resources across multiple

clouds. Service deployment, negotiating with each CP, and monitoring each CP during

service operation are performed by the SP or end-user applications. In this case, the SP

may require using an adapter layer with different APIs to run services on different clouds

or similarly end-user application needs a proper abstraction library. The important point

about this scenario is that a separated layer handles all the issues regarding aggregation

and integration of the clouds which is entirely apart from vendors and providers (Fig-

ure 2.10).

SP/End-User

Cloud
Provider C

Cloud
Provider B

Cloud
Provider A

Figure 2.10: Multi-cloud scenario.

Aggregated Service by Broker

A new stakeholder, broker, aggregates services from multiple CPs and offers an integrated

service to the SPs or end-users. The deployment and management of components has

been abstracted by the third party broker. SPs or end-users benefit greatly from this

model as the broker can provide a single entry point to multiple clouds. In this model,

providers may also require to install some internal components to support aggregated

services by a trusted broker (Figure 2.11).

2.4.2 Motivations for Cloud Interoperability

In this section, key benefits of cloud interoperability which provides essential motiva-

tions for interconnected cloud environments have been summarized (Figure 2.12).

40 Background and Literature Review

Broker

Cloud
Provider C

Cloud
Provider B

Cloud
Provider A

SP/End-User

Figure 2.11: Aggregated service broker scenario.

Scalability and Wider Resource Availability

Interoperability and Avoiding Vendor Lock-in

Availability and Disaster Recovery

 Cloud Interoperability Motivations

Geographic Distribution and Low Latency Access

Legal Issues and Meeting Regulations

Cost Efficiency and Saving Energy

Figure 2.12: Cloud Interoperability Motivations

Scalability and Wider Resource Availability

Even though one of the key features of cloud computing is the illusion of infinite re-

sources, capacity in cloud provider’s data centers is limited and eventually can be fully

utilized [6, 17]. Growth in the scale of existing applications or surge in demand for a ser-

vice may result in immediate need of additional capacity in the data center. Current ser-

vice providers handle this issue by over-provisioning of data center capacity. That is, the

average demand of the system is several times smaller than the capacity of their comput-

ing infrastructure. This strategy and the cost of its operation constitute a large expense for

cloud owners. Actual usage patterns of many real-world application services vary with

time and most of the time in unpredictable ways. Therefore, unexpected loads can poten-

tially overburden a single cloud provider and lead to unreliable and interrupted services.

It is overly restrictive in terms of small-size or private clouds. If cloud providers were able

to dynamically scale up or down their data center capacity, they could save substantial

2.4 Federated Cloud Environments 41

amount of money and overcome the above issue. Scalable provisioning of application

services under variable workload, resource, and network conditions is facilitated by in-

teroperation of the clouds [14]. Cloud Federation helps the peak-load handling capacity

of every enterprise cloud by resource sharing, without having the need to maintain or

administer any additional computing nodes or servers [99].

One may argue that public cloud providers are outstandingly elastic, with the per-

ception of unlimited resources, so providers never need immediate additional capacity in

their data center and they never fit into the above scenario. However, this claim does not

obviate the need for additional capacity by small size private clouds and for those appli-

cations requiring expansion across geographically distributed resources to meet Quality

of Service (QoS) requirements of their users [14].

Interoperability and Avoiding Vendor Lock-in

In economics, vendor lock-in is a situation where a customer becomes dependent on a

vendor for its products or services and cannot move to another vendor without consider-

able cost and technical effort. It is also perceived as one of the current drawbacks of cloud

computing [7]. With respect to cloud computing, vendor lock-in is the direct result of the

current difference between the individual vendor paradigms based on non-compatible

underlying technologies, and the implicit lack of interoperability. Contemporary cloud

technologies have not considered interoperability in design [10, 99]; hence, applications

are usually restricted to a particular enterprise cloud or a cloud service provider. By

means of cloud interoperability, cloud application deployment no longer needs to be cus-

tomized. Cloud Interoperability makes cloud services capable of working together and

also develops the ability of multiple clouds to support Cross-cloud applications [10].

Availability and Disaster Recovery

Although high availability is one of the fundamental design features for every cloud

service, failure is inevitable. For instance, recently Amazon Web Services suffered an

outage, and as a result, a group of large customers dependent on Amazon were affected

42 Background and Literature Review

seriously.12 Unexpected failures can easily impose service interruption on a single cloud

system. Aoyama and Sakai [6] look into an instance of a service failure in which a cloud

system witnesses a natural disaster. They identify the most important requirements for

disaster recovery through cloud federation. In order to enable cloud providers to con-

tinue the delivery of guaranteed service levels even in such cases, a flexible mechanism

is needed to relocate resources among the multiple cloud systems. Moreover, highly-

available cloud applications can be constructed by multiple cloud deployment to guar-

antee the required service quality, such as service availability and performance. Thus,

cloud systems complement each other by mutually requesting required resources from

their peers.

Geographic Distribution and Low Latency Access

It is highly unlikely that a single cloud provider owns data centers in all geographic loca-

tions of the world to meet the low-latency access requirement of applications. Moreover,

existing systems do not support mechanisms to dynamically coordinate load distribution

among different cloud data centers. Since predicting geographic distribution of users

consuming a cloud provider’s services is not trivial, the load coordination must happen

automatically, and distribution of services must change in response to changes in the

load [14]. Utilizing multiple clouds at the same time is the only solution for satisfying

the requirements of the geographically-dispersed service consumers who require fast re-

sponse time. Construction of a federated cloud computing environment is necessary to

facilitate provisioning of such application services. Consistent meeting of the QoS targets

of applications under variable load, resource and network conditions is possible in such

an environment.

Legal Issues and Meeting Regulations

Many cloud customers have specific restrictions about the legal boundaries in which their

data or application can be hosted [106]. Supplying resources in specific geographic loca-

12https://cloudcomputing.sys-con.com/node/2416841.

https://cloudcomputing.sys-con.com/node/2416841

2.4 Federated Cloud Environments 43

tions to meet regulations in place of those customers is an essential issue for a provider

who wants to serve them. These regulations may be legal (e.g., an existing legislation

specifying that public data must be in the geographic boundaries of a state or country) or

defined by companies’ internal policies [17]. Cloud interoperability provides an oppor-

tunity for the provider to identify another provider able to meet the regulations due to

the location of its data center.

Cost Efficiency and Saving Energy

The usage-based pay-as-you-go pricing feature of cloud Computing directly awards eco-

nomic benefits for customers by removing the cost of acquiring, provisioning, and oper-

ating their own infrastructures [7]. On the other hand, cloud computing providers should

avoid the problem of the idle capacity (where their in-house hardware is not fully utilized

all the time) and the problem of peaks in demand (where their own systems would be

overloaded for a period). As the average demand of the system is several times smaller

than the peak demand [7], providers are able to lease part of their resources to others, in

order to avoid wasting their unused resources. Moreover, they can manage peaks in de-

mand by purchasing resources form other underutilized providers. Both strategies help

them to gain economies of scale, an efficient use of their asset and enlargement of their

capabilities through enhanced resources utilization [19]. Furthermore, this cooperation

among cloud providers lower the energy usage by promoting efficient utilization of the

computing infrastructure.

In a study done by Le et al. [53], the plausibility of reducing cost and energy con-

sumption by interconnecting clouds data centers has been investigated. They present a

scenario in which a provider is able to save money by placing and migrating load across

multiple geographically distributed data centers to take advantage of time-based differ-

ences in electricity prices. In addition, their policies reduce the required cooling power

considering data centers located in areas with widely different outside temperatures. In

general, a unified interface that provides federated interoperation between clouds would

help providers saving cost and also reducing carbon footprint by energy-efficient utiliza-

tion of physical resources.

44 Background and Literature Review

2.4.3 Discussion

Among different incentives of interconnected cloud environments, scalability, wider re-

source availability, cost efficiency and saving energy advocates financial and economical

benefits for cloud providers especially in federated cloud paradigm. From the cloud

provider perspective, dynamic resource sharing among providers in federated cloud

paradigm allows for overcoming the challenges of the load variability, future demand un-

certainty, meeting regulations in place for those customers who have specific restrictions

about the legal boundaries, low-latency access requirement of geographically-dispersed

applications.

Once cloud providers are convinced that adoption of cloud cooperation and cloud

interoperability awards them financial and economical benefits, the goal of ubiquitously

interconnected clouds, i.e., Inter-cloud, is more likely to be achieved. We argue that coop-

eration between cloud providers cannot be achieved without the resolution of economic

aspects. In this thesis, we look for techniques and methods to enhance cloud provider’s

revenue or profit; we, therefore, consider cloud federation as a means of achieving this

purpose. To obtain the maximum benefit and given the complexity of federation deci-

sions, it is important to address the issues regarding economic aspects of cloud federation

which has got little attention in the literature. This requires addressing issues regarding

novel methods of pricing suitable for interconnected cloud environments, and finally

formation of Inter-cloud marketplaces. We dedicate the next section to economical chal-

lenges and components of the interconnected clouds specifically cloud federation which

is the main focus of this thesis.

2.4.4 Economic challenges and enabling approaches

Cloud interoperability and federating clouds raises many more challenges than cloud

computing both in terms of functional and non-functional aspects. To overcome these

challenges, substantial efforts are required to research and develop tools and techniques

in this regard. These challenges broadly cover security, Service Level Agreement (SLA),

monitoring, virtualization, portability, economy, networking, provisioning, and auto-

2.4 Federated Cloud Environments 45

nomics. This is not our aim in this chapter to cover all the challenges in the interconnected

cloud environments. We review four main economic-related challenges and identify pos-

sible enabling approaches. These four main challenges of federated cloud environments

from the economic point of view are shown in Figure 2.13 and will be discussed in the

followings.

	

Resource	 Allocation	 	

Market	
Cloud	 Federation	 Challenges	

(Economic	 aspects)	
Pricing	

	
Accounting	 and	 Billing	

Figure 2.13: Main challenges of the federated cloud environment from the economic point
of view.

Resource Allocation

Service selection in the customer’s side leads to resource allocation in the provider’s side.

Resource allocation is a challenging issue from the cloud provider’s perspective. Cloud

providers usually offer their virtualized resources based on different QoS levels, e.g., best

effort and reserved. Physical resources in clouds are shared between cloud users. There-

fore, allocation strategies are needed to allocate resources to the requests in a profitable

manner while fulfilling requests’ QoS requirements.

As the number of resource consumers are increasing, clouds need to share their re-

sources with each other to improve their quality of service. In general, such a collab-

orative cloud computing system (e.g., cloud federation) is prone to contention between

user requests for accessing resources [103]. Contention happens when a user request can-

not be admitted or cannot acquire sufficient resources because resources are occupied by

other requests (e.g., requests from federated cloud provider). This issue is called resource

contention in the literature.

Resource contention is not a new issue in federated environments. Various solu-

tions have been proposed for the resource contention problem in federated cloud en-

46 Background and Literature Review

vironments and other interconnected distributed computing systems [99, 103]. There is

growing interest in the adoption of market-based approaches for allocation of shared re-

sources in computational systems [73]. Mihailescu and Teo [73] propose a dynamic pric-

ing scheme for federated sharing of computing resources, where federation participants

provide and use resources. They show that in their proposed dynamic scheme, the user

welfare, the percentage of successful requests, and the percentage of allocated resources

increase in comparison to the fixed pricing [72]. Gomes et al. [40] propose and investigate

the application of market-oriented mechanisms based on the General Equilibrium Theory

to coordinate the sharing of resources between clouds in the federated cloud.

In a federated Cloud, providers can mutually collaborate to share their resources and

fulfill the demand among each others. For instance, a provider can outsource requests to

other providers when accommodating requests within local infrastructure is not possi-

ble for example in peak hours. Undoubtedly, this is the case when the expected revenue

from these customers’ requests is higher than the cost of outsourcing them. Therefore, the

provider obtains higher profit because it can provide service for more customers with-

out facing capital costs of acquiring IT equipment which might be costly. Similarly, a

provider that has underutilized resources could lease part of them to other providers in

the federation [35]. The profitability of a cloud provider in a federated scenario highly

depends on a wide range of parameters such as the provider’s incoming workload, the

cost of outsourcing additional resources, the revenue of leasing underutilized capacity,

or the cost of maintaining the provider’s resources operative. Therefore, cloud providers

require having a comprehensible understanding of the consequences of every decision

they make.

Goiri et al. [35] propose an economic model that characterizes situations that assist

decisions in a federated cloud, such as when to outsource resources to other providers,

when to admit requests from other providers, and how much capacity to contribute to the

federation. Samaan [104] addresses the problem of maximizing the IaaS cloud provider’s

long-term revenue in federation where current capacity sharing decisions depend on the

revenue obtained from previous decisions. The uncertainty in future revenue has been

taken into account as a participation incentive to sharing in the repeated game of VM

2.4 Federated Cloud Environments 47

outsourcing with the option of offering all underutilized capacity in the spot market.

A set of self-enforceable cloud providers capacity sharing strategies has proposed that

maximize the social welfare and yet can achieve more revenue than what each cloud

provider can achieve individually without participating in the federation.

Similarly in Chapter 3 of this thesis, we propose a model for trading of cloud ser-

vices based on competitive economic models. We consider circumstances in which cloud

providers offer on-demand and spot VMs while they participate in a federation.13 The

resource manager unit evaluates the cost-benefit of outsourcing an on-demand request

to a third party or allocating resources via termination of spot VMs. The ultimate objec-

tive is to increase the profit, to decrease the rejection rate, and have access to seemingly

unlimited resources for on-demand requests.

Market

Interoperability between different providers allows cloud customers to use the service

across clouds to improve scalability and reliability [71]. Computing as a utility can be

considered as one of the main goals in federated cloud computing where resources in

multiple cloud platforms are integrated in a single resource pool. A key challenge in this

regard is how cloud providers interact with each other to realize collaboration [140].

A cloud provider is able to meet the peak in resource requirements by buying re-

sources from other cloud providers. Similarly, when a cloud provider has idle resources,

it can sell these resources to the federated cloud market. In order to enable such a resource

sharing and collaboration among cloud providers, there is a need for a market-place with

exchange facilities that helps providers in trading resources amongst each other [11].

Buyya et al. [14] proposed federated network of clouds mediated by a cloud exchange

as a market maker to bring together cloud providers and customers. It supports trading

of cloud services based on competitive economic models such as commodity markets

and auctions. Blueprints for a comprehensive governance and marketplace architecture

for interconnected cloud environments can be found in [11]. Federated cloud providers

13Spot VMs are VMs that can be terminated by providers whenever the current value for running such
VMs (defined by the provider) exceeds the value that the client is willing to pay for using such resource.

48 Background and Literature Review

require a clear understanding of the ramifications of each decision they make regard-

ing selling/buying resources to/from other providers. Goiri et al. [35] present a plau-

sible characterization of providers decisions operating in a federated cloud including

outsourcing requests, or renting idle resources to other providers.

Market-based approaches for allocation of shared resources have proven their po-

tential in computational systems [70]. To address the market-based resource allocation

mechanism design problem, Mihailescu and Teo [73] propose a reverse auction-based

mechanism. The market maker selects the sellers for allocation, based on the published

price, such that the underlying resource costs are minimized. Afterwards, the actual pay-

ments for the winning sellers are determined based on the market supply.

Pricing

Pricing and profit are two important factors for cloud providers to remain in the business.

Cloud federation allows providers to trade their resources under federation regulations.

Strategies regarding selling and buying of resources in federated cloud environments are

important issues that should be considered by providers. Providers need to profoundly

consider how to price their services in the federated cloud market to assure profitability.

In fact resource pricing, market mechanism, and resource allocation and provisioning in

the federated cloud environment are correlated issues and these cannot be considered in

isolation.

Dynamic resource pricing is a necessity in interconnected cloud environments where

distributed cloud providers seek to accommodate more customers and meanwhile they

compete with each other. Li et al. [57] design algorithms for inter-cloud resource trading

and scheduling in a federation of geo-distributed clouds. For virtual machine trading

among clouds, they apply a double auction based mechanism that is strategy-proof, in-

dividual rational, and ex-post budget balanced. Their proposed method optimally sched-

ules stochastic job arrivals with different SLAs onto the VMs, and judiciously turns on

and off servers based on the current electricity prices. Similarly, Mihailescu and Teo [73]

argue that dynamic pricing is more suitable for federated sharing of computing resources,

where participants may both provide and use resources. They present an auction frame-

2.4 Federated Cloud Environments 49

work that uses dynamic pricing to allocate shared resources. They show that using their

proposed dynamic pricing scheme, the user welfare, the percentage of accepted requests,

and the percentage of allocated resources increase in comparison to fixed pricing. In this

thesis, we propose policies and a way to price resources in federated cloud. We also

propose a financial option based cloud resources pricing model to help providers in fed-

erated cloud environments.

Accounting and Billing

In a federated cloud environment, accounting and billing must be carried out in a way

that meets the requirements of federated cloud scenario. Some identified challenges may

affect the design of the accounting and billing in this environment; the actual placement

of the resources may not be known to the entire system, and may also change during

the service lifetime. Moreover, the number of required resources composing a service

can dynamically go up and down to cope with a change in demand [28]. Primarily, it is

required that resource usage is monitored for billing and accounting purposes. Addition-

ally, in federated cloud environments, cloud providers expect the federation to be honest

in its accounting and billing practices [43].

Any accounting and billing approach must be performed in a fair and standardized

way both (a) for cloud customers and cloud provider interactions; and (b) for cloud

provider to cloud provider interactions [28]. Moreover, for billing, those approaches

must take into account the postpaid and prepaid payment schemes for capacity that

varies over time in response to customer requirements. Elmroth et al. [28] presented a

solution for accounting and billing in a federated cloud environment. The focus of the

work is in the design of the accounting and billing system, utilizing existing alternatives,

for the RESERVOIR [99] project. They focused on accounting and billing between a cloud

provider and customer (retail). Provider to provider accounting and billing (wholesale)

still remains as an open issue and needs further considerations.

50 Background and Literature Review

2.5 Thesis Scope and Positioning

This thesis investigates market and economics-inspired mechanisms to maximize IaaS

cloud providers’ income with limited resource available in data centers. Therefore, four

techniques helping IaaS cloud providers to enhance their income have been proposed in

this thesis. In the remaining part of this section, we present the scope of the current thesis

and its positioning within the research area.

As stated earlier, there are two main stakeholders in cloud environments, cloud

providers and customers. In comparison to studies devoted to minimizing cost for cloud

customers, relatively much less attention has been given to techniques of maximizing

providers’ revenue. Therefore, in this thesis, we focus on benefits of IaaS cloud providers

where they offer computational services in the form of Virtual Machine (VM) instances.

The provider is faced with stochastic and dynamic arrivals and departures of customers

who submit requests to acquire the VM instances. The cloud provider is not aware of

applications that are executed inside a VM instance; and moreover the duration, that VM

instances remain active in the system is not known in advance.

In this thesis, the main objective is to maximize revenue or profit of the provider. As

the computational services offered by IaaS cloud providers are non-storable or perishable

products, in order to maximize revenue, cloud providers must accept as many requests

as possible to achieve the highest possible utilization. Nevertheless, they must guarantee

Quality of Service (QoS) based on the agreed Service Level Agreement (SLA) with cus-

tomers. The liability to provide required QoS according to the service level agreement

(SLA) introduces a number of non-trivial trade-offs to IaaS providers with respect to rev-

enue maximization. Moreover, even though one of the key features of cloud computing

is the illusion of infinite resources, capacity in cloud provider’s data centers are limited

and eventually can be fully utilized. Therefore, to achieve the goal of revenue maximiza-

tion, providers require efficient resource management strategies in addition of effective

pricing and efficient market mechanisms. Such an efficient resource management aids

in maximizing resource utilization and selecting more profitable requests while it would

help in creating trust and goodwill among customers on the cloud service providers by

lower number of QoS violation.

2.5 Thesis Scope and Positioning 51

Table 2.1: The thesis scope

Characteristic Thesis Scope
Target Party IaaS Cloud Providers (Federated and non-federated)
Objective Maximizing Revenue or Profit
Constraints Data center capacity and SLA
Methodology Market and economics-inspired mechanisms
Workload Virtual Machine Requests

Methodologies proposed in this thesis are developed for two main situations: 1) when

the provider acts solely using their in-house resources to serve customers and 2) when

it participates in a cloud federation and benefits from outsourcing requests. Each core

chapter of this thesis focuses on a different and original economics-inspired method of

maximizing the cloud provider’s income. Chapters 3 and 4 focus on cloud providers in

federated cloud environments, while center of attention is on individual cloud provider’s

revenue maximization in Chapters 5, 6 and 7. The scope of this thesis is summarized

in Table 2.1. The remainder of this section will be devoted to positioning of each core

chapter of the thesis including gap analysis and comparison to the most related work.

Table 2.2 summarizes details and the scope of each chapter.

Chapters 3 of this thesis addresses the decision making challenges of an IaaS cloud

provider who dedicate part of the capacity to demand-oriented spot market for local cus-

tomers while participating in a cloud federation. The chapter discusses the following

questions: to what extent a provider must contribute to the federation, how much the

provider should charge other providers for their service in federation (pricing), when

it is beneficial to outsource a request to others or alternatively shrink the spot market

size and run the request in-house. The most related study has been done by Goiri et

al. [33, 35] where they present a profit-driven policy for decisions related to outsourc-

ing or selling idle resources. On that approach, providers have the option of shutting

down unused nodes of the data center to save power. However, they only consider sin-

gle pricing channel (usage-based pay-as-you-go model) to customers while in common

practice provider might sell virtual machine instances through different pricing channels

such as usage-based and demand-oriented pricing models. Moreover, they propose a

very simple discounting method for pricing in the federation which does not provide

52 Background and Literature Review

enough incentive for the self-interested cloud providers in federation to share their re-

sources. Another related work is done by Samaan [104] which follows the same goal of

maximizing the revenue by selling underutilized capacity to federation. The study tries

to regulate capacity sharing in a federation of IaaS cloud providers in the presence of

demand-oriented spot market. However, their approach differs from ours as they use

game theory approach to address the issue and no specific pricing model is imposed for

the federation.

In Chapter 4, we address the same problem as in Chapter 3 while we focus on the

challenges regarding subscription-based pricing model and future contracts. A finan-

cial option-based market mechanism is proposed which allows for hedging against the

critical and risky situation of imposing SLA violation when the cloud provider allocates

underutilized capacity of data center reserved by the subscription-based customers to

customers of other pricing channels, e.g., usage-based customers (overbooking). To the

best of our knowledge, this is the first attempt to economically manage resource reser-

vation and future contracts in federated cloud environments. The most relevant study

is done by Meinl and Neumann [65] that analyzes the use of real option in a contract

market, to manage resource reservation in Gird environments. They use option as a con-

tract to perform reservation for time and budget sensitive customers. In their model,

Grid customers want to minimize expenses, whereas Grid providers want to maximize

their return on investment. We use option as a hedging mechanism for the overbooked

reserved capacity to enhance provider profit while they focus on social welfare when

there is risk of price fluctuation and the risk of not being allocated in the future. Besides,

they consider advance reservation for Grid jobs with deadline and budget constraints,

while our reservation model is inspired by subscription-based pricing model in which

customers pay upfront fee to reserve VM instances for a period of time (e.g., one year)

and utilize the reserved capacity as need arises.

In Chapter 5, we address the problem of maximizing revenue when all three common

pricing models in IaaS marketplace, i.e., usage-based, subscription-based and demand-

oriented pricing models are jointly supported by the provider. The main research ques-

tion we address is: “with limited resources that are available, and considering the dy-

2.5 Thesis Scope and Positioning 53

Table 2.2: The thesis scope

Chapter Methodology Characteristics
3 Demand-oriented Market and Federation Allocation, Pricing, Market
4 Subscription-based Market and Federation Allocation, Pricing, Market
5 Revenue Management Capacity Control
6 Auction (Mechanism Design) Truthful, Optimal, Fair
7 Prototyping Pricing as a service

namic and stochastic nature of customers’ demand, how expected revenue can be maxi-

mized through the optimal capacity allocation to customers from each pricing channel?”.

We frame our contributions within a yield management framework that incorporates ca-

pacity control techniques. Similarly, Wang et al. [127] consider the coexistence of mul-

tiple pricing channels that only focuses on usage-based and demand-oriented market.

They formulate the problem as a Markov Decision Process model to make decision on the

optimal capacity segmentation between requests from usage-based pay-as-you-go and

demand-oriented markets. However, our work in Chapter 5 is the first attempt that has

been made to incorporate all three pricing models in revenue maximization problem.

At present, the design of an efficient, fair, and revenue-maximizing auction mech-

anism for demand-oriented pricing of cloud computing resources is an open research

challenge, and of great interest to cloud providers. Amazon Web Services (AWS) of-

fers an auction like approach to sell their computational resources; however, they have

revealed no detailed information regarding their mechanism. In contrast to Amazon’s

claim, several studies suggest that it is unlikely that prices in the spot market to be fully

set according to market supply and demand [9,134]. Moreover, there is doubts about the

efficiency and truthfulness of the mechanism used by AWS [113]. Therefore, in Chapter 6

of this thesis, we aim at design of an auction mechanism for selling the spare capacity

available in cloud data which maximizes the profit while it is fair (envy-free) and truth-

ful. There are a few studies that try to design auction mechanism suitable for demand-

oriented pricing of IaaS cloud marketplaces [128, 134, 137]. They are different in terms of

goal of auction design such as truthfulness, revenue maximization, fairness or character-

istics such as single item or multi-item, single sided or double-sided. The most relevant

work has been done by Wang et al. [127] in which they propose optimal recurrent auc-

tion for a spot market. Their work differs from ours since they adopt a Bayesian optimal

54 Background and Literature Review

auction design wherein it is assumed that the customers’ private values are drawn from

a known distribution while we focus on prior free mechanism design when no knowledge

about the distribution of values is available a priori.

Chapter 7 introduces a dynamic pricing prototype system based on the proposed

demand-oriented pricing in Chapter 6. The proposed system is an implementation of

an open source framework called Spot instance pricing as a Service (SipaaS). SipaaS pro-

vides a set of web services to facilitate running a spot market for IaaS cloud platforms.

In order to make a real spot market environment to sell computational cloud resources,

the chapter presents an extension to OpenStack – an open source platform for building

private and public clouds. Accordingly, Horizon – the OpenStack dashboard project – is

extended to make use of the SipaaS framework. To the best of our knowledge, this is

the first attempt to create a spot market environment in OpenStack. IaaS cloud providers

can run spot market resembling the Amazon EC2 spot instances using our proposed spot

instance pricing as a service framework.

2.6 Summary

This chapter described the concepts, background, and market and economics-inspired

methodologies of maximizing IaaS cloud providers’ revenue. We have investigated and

classified different pricing and market design methodologies of maximizing profit in

cloud environments. We reviewed the state-of the-art developments related to each topic.

This helped us to identify the gap and research direction and what has to be done to

address profit maximization problem of IaaS cloud providers. We discussed two main

different situations: 1) when the provider acts solely using their in-house resources to

serve customers and 2) when it participates in a cloud federation and benefits from out-

sourcing requests. We also reviewed the motivations and challenges regarding economic

aspects of cloud federation. This chapter has finally concluded with a discussion of the

scope and positioning of each core chapter of the thesis. We have analyzed open research

challenges in this regard and positioned our proposed economics-inspired methods and

techniques within this research area.

Part I

Profit Maximization in Federated
Cloud Environments

55

Introduction to Part I 57

Introduction to Part I

CLOUD federation is the practice of interconnecting cloud providers to share and

trade resources. It allows cloud providers to share their underutilized capacity

during low-demand periods and borrow capacity during peaks to maximize their profit

and enhance their customers’ experience. Interconnecting clouds raises many technical,

functional, and non-functional challenges. The first part of this thesis is dedicated to the

study of economic implications of federated cloud environments. In particular, we in-

vestigate the design and development of market mechanisms that provide incentives for

cloud providers to join the cloud federation by addressing the profit maximization prob-

lem. We also propose economics-inspired resource allocation methods helping cloud

providers to make strategic decisions in such a collaborative while competitive environ-

ment. Chapter 3 proposes policies to increase utilization and profit for a cloud provider

in a federation exchange market that help in the decision-making process of resource al-

location. Chapter 4 presents a financial option-based market designed for future trades

in a federated cloud marketplace.

This page intentionally left blank.

Chapter 3

Resource Provisioning Policies to
Increase Profit

Cloud Federation is a recent paradigm that helps Infrastructure as a Service (IaaS) providers to

overcome resource limitation during spikes in demand for Virtual Machines (VMs) by outsourcing

requests to other federation members. IaaS providers also have the option of terminating spot VMs,

i.e, cheaper VMs that can be cancelled to free resources for more profitable VM requests. By both

approaches, providers can expect to reject fewer profitable requests. For IaaS providers, pricing and

profit are two important factors, in addition to maintaining a high Quality of Service (QoS) and

utilization of their resources to remain in the business. For this, a clear understanding of the usage

patterns, types of requests, and infrastructure costs is necessary while making decisions to terminate

spot VMs, outsourcing or contributing to the federation. In this chapter, we propose policies for

decision-making process to increase resources’ utilization and profit. Simulation results indicate that

the proposed policies enhance the profit, utilization, and QoS (smaller number of rejected VM requests)

in a Cloud federation environment.

3.1 Introduction

IN recent years, Cloud Computing [7, 15, 123] has become a consolidated paradigm

for delivery of services through on-demand provisioning of virtualized resources.

By the emergence of this paradigm, along with support of companies like Amazon, Mi-

crosoft, and IBM, the long envisioned dream of computing as a utility finally has come

true. Now customers are able to use resources and services in a pay-as-you-go manner

from anywhere and at anytime. Among the different methods to deliver Cloud services,

Infrastructure as a Service (IaaS) allows Cloud provider to sell resources in the form of

Virtual Machines (VMs) to customers.

59

60 Resource Provisioning Policies to Increase Profit

One of the key motivations for IaaS providers is the possibility of making profit by

leveraging their available data center resources to serve potentially thousands of users.

Therefore, Cloud providers aspire to accept as many new requests as possible with the

main objective of maximizing profit; nevertheless, they must guarantee Quality of Service

(QoS) based on the agreed Service Level Agreement (SLA) with customers. Achieving

this goal requires efficient resource management strategies.

To be able to offer QoS guarantees without limiting the number of accepted requests,

providers must be able to dynamically increase the available resources to serve requests.

One possible source for additional resources is idle resources from other providers. In

order to enable such a scenario, coordination between providers has to be achieved, pos-

sibly through establishment of a Cloud federation [14, 51, 99].

A Cloud federation allows providers to trade their resources through federation regu-

lations. In this paradigm, providers aim to overcome resource limitation in their local in-

frastructure which may result in rejection of customer requests, by outsourcing requests

to other members of the federation. Moreover, Cloud federation allows underutilized

providers to lease part of their resources to other members of the federation, usually at

cheaper prices, in order to avoid wasting their non-storable (perishable) compute resources.

Both cases lead to the enhancement in profit and elasticity for providers, if this opportu-

nity is properly used. By this we mean that providers should make an intelligent decision

about utilization of the federation (either as a contributor or as a consumer of resources)

depending on different conditions that they might face.

A challenging condition for providers occurs when they dedicate part of their capac-

ity in the form of spot VMs. Spot VMs are VMs that can be terminated by providers

whenever the current value for running such VMs (defined by the provider) exceeds the

value that the client is willing to pay for using such resources, as in the case of Amazon

EC2 spot instances [120]. This type of VMs can be provided to users at a lower cost than

on-demand VMs, usually in the spot market which works based on supply and demand.

Existence of spot VMs certainly benefits IaaS Cloud providers, because spot VMs help

them in making profit by increasing the utilization of the data center while waiting for

incoming on-demand requests. When a federated cloud provider receives an on-demand

3.2 Related Work 61

request for VMs but has no idle resources within the data center, it has to decide between

either increasing the spot price and terminating spot VMs, or outsourcing the request to

another federation member.

Decision on outsourcing requests or renting part of idle resources to other providers is

a complex problem that has been surveyed by several studies [34, 56]. To the best of our

knowledge, the work in this chapter is the first attempt to incorporate the outsourcing

problem with the option of terminating spot VMs within a data center. Our main objec-

tive is to maximize a provider’s profit, by accommodating as many on-demand requests

as possible. Our main contribution is to propose policies that help making decisions

when providers have different choices regarding incoming requests: rejecting, outsourc-

ing, or terminating spot leases to free resources for more profitable requests1.

The remainder of this chapter is organized as follows: Related work is reviewed

in section 3.2. In section 3.3, we define the system model, including customers and

providers interaction. Section 3.4 describes the proposed policies and formalizes the de-

cision equations. Evaluation and experimental environment are presented in section 3.5.

Finally, we conclude this chapter in section 3.6.

3.2 Related Work

Despite several recently proposed platforms for Cloud federation [14, 99, 101], with dif-

ferent motivations and incentives for parties to join it, many fundamental problems and

questions about federation remain unanswered. One of these problems is deciding when

providers should outsource their local requests to other participants of the federation

or how many and at what price they should provide resources to the federation. The

outsourcing problem is not considered only in the context of federated clouds; it is also

investigated as a way of increasing capacity or scalability of applications in hybrid clouds

[27], distributed grid environment [52], and clusters [26].

Goiri et al. [34] present a profit-driven policy for decisions related to outsourcing or

selling idle resources. On that approach, providers have the option of shutting down

1 In this chapter, terms VM and resource are used interchangeably.

62 Resource Provisioning Policies to Increase Profit

unused nodes of the data center to save power. However, they did not take into account

different types of VMs (e.g. on-demand and spot) and possible actions like terminating

low priority leases.

A user satisfaction-oriented scheduling algorithm for service requests is proposed by

Lee et al. [55]. Such an algorithm tries to maximize cloud providers’ profit by accepting as

many service requests as possible, as long as QoS is kept at a certain level. In this regard,

contracting with other service providers was taken into account as a method to avoid

rejection of user requests. One of the main differences between this and our approach

is that we specifically focus on federation of IaaS providers that serve requests for VMs.

Moreover, we claim that federation, rather than being merely a technique for avoiding

service rejection at the provider level, can also be a source of profit for providers by

allowing them to negotiate on otherwise wasted resources at competitive prices.

The problem of how to value resources and how price may impact utilization is not

trivial. Current public cloud service providers like Amazon, GoGrid and RackSpace usu-

ally adopt fixed pricing strategies for the infrastructure services they provide. However,

fixed pricing models are not suitable for federated environments as a policy to be applied

between its participants, because it neither reflects current market price of resources due

to dynamism in supply and demand nor generates any incentives for providers to join the

federation. Dynamic pricing of resources, however, lies outside the scope of this chapter,

and has been a subject of other studies [71]. Hence, in this chapter, a policy based on the

provider utilization is applied by federated providers to dynamically value resources.

The subject of leveraging spot VMs has recently attracted considerable attention. An-

drzejak et al. [5] have proposed a probabilistic decision model to help users decide how

much to bid for a certain spot instance type in order to meet a certain monetary budget

or a deadline. Yi et al. [135] proposed a method to reduce monetary costs of computa-

tions using Amazon EC2s spot instances for resource provisioning. These works consider

methods for increasing customers’ benefit in using spot VMs, while we are interested in

better resource provisioning policies for providers in the presence of spot VMs. More-

over, the problem of dynamic allocation of data center resources to different spot markets

to maximize cloud provider’s total revenue has been investigated by Zhang et al. [139].

3.3 System Model 63

A few works consider the application of market-oriented mechanisms in federated

environments [40, 112]. These mechanisms mostly promote fairness and ensure mutual

benefits for parties involved in the federation. Study and development of such tech-

niques motivate both resource providers and resource consumers to join and stay in the

federation market. Niyato et al. [83] study the cooperative behavior of multiple cloud

providers and propose a cooperative game model. Our work, on the other hand, is fo-

cused on specific policies to be applied by cloud IaaS resource providers to decide when

to buy computational resources and how resources should be made available in the mar-

ket for other IaaS providers.

3.3 System Model

In this section, firstly, we describe the interaction between customers and providers in-

cluding various types of services. Afterward, the scenario, assumptions, and require-

ments for cloud federation are discussed.

3.3.1 Interaction between customers and providers

Cloud computing providers, specifically IaaS providers, offer different types of VMs with

different QoS and pricing models that help them support different types of applications

and fulfill customers’ requirements. This variety of QoS and pricing models also gives

them more flexibility in resource management and to increase utilization. For example,

Amazon Elastic Compute Cloud (EC2) [120] offers three different pricing models, on-

demand, reserved and spot.

In this work, we consider the scenario where providers support two different lev-

els of QoS and pricing models which are mostly based on Amazon pricing models. By

providers, we mean the set of autonomous IaaS cloud providers who own a data center

and serve a number of customers. Customers are either private users or other SaaS and

PaaS providers, who submit requests to IaaS providers for instantiating VMs in either

on-demand or spot types, based on their requirements.

On-demand VMs allow customers to pay for compute capacity by its hourly usage

64 Resource Provisioning Policies to Increase Profit

without a long-term commitment. Customers request for VMs, which are provisioned to

them if the provider possesses enough resources, otherwise the request is rejected. After

instantiation of VMs, customers can retain machines as long as they need them.

Spot VMs allow customers to reduce the cost of using VMs by accepting the risk of

being canceled in favor of customers willing to pay more for the same resources. In this

model, customers submit a spot VM request, including the number of spot VMs they

want to instantiate, and the maximum price they are willing to pay per VM/hour, that

is called bid. If the bid exceeds the current price, the request is served and VMs are

instantiated. Otherwise, no VM is launched and the request remains in a pending state

in the queue until the spot price goes below the bid price. VMs will run until either the

customer decides to terminate them or the price goes above the bid.

The provider charges the customer based on the current price, which is calculated

based on the minimum bid of running VMs in the system in this chpater (uniform price

auction) [139]. There is a correlation between resource availability and current price. In

case of resource shortage, the provider terminates VMs of low bid and replaces them with

higher bid VM requests or on-demand requests. Consequently, bidding at higher price

decreases the likelihood of VM termination by the provider.

Here, we consider two types of spot VM requests: one-time and persistent. One-time

are spot requests that are not restarted after termination by providers, whereas persis-

tent are spot requests that are kept in the data center to be re-executed until completed.

Providers automatically instantiate new VMs for the persistent request each time the cur-

rent spot price goes back below the bidding price.

The difference between on-demand and spot lies only in the guarantee about re-

sources availability. Other QoS characteristics of VMs (such as memory and CPU power)

are the same for both models and they are enforced by providers. Moreover, we assume

that the user request has to be entirely served in the same data center.

In this study, we assume that infrastructure providers commit the actual amount of

resources required by VMs, regardless of the actual users’ usage pattern. This means that

the resource manager does not apply methods of consolidation to increase the capacity

of the data center [31, 34]. For instance, if two VMs requiring 1 unit of processing (e.g.

3.3 System Model 65

EC2 compute unit2) and they are running on the same physical node with two units of

processing, the resource manager will not initialize another VM on that node, even if

VMs are not using the total computing power allocated to them.

Considering that over-subscribing of resources may lead to violations in SLAs,

providers have to use other methods to serve new on-demand requests if they are fully

utilized. One alternative is increasing the spot VM price, which leads to cancellation of

part of spot VMs and makes more room for on-demand requests. Another alternative is

acquiring resources from other cloud providers that can be used to serve new on-demand

requests. To make this scenario possible, it is important that providers engage in a feder-

ation so that they sell idle resources to other federation members at lower price than the

customer’s price. In exchange, they are also able to buy resources from other members

when the demand increases for their resources. Interaction between federation members

is detailed next.

3.3.2 Cloud Federation

The cloud federation scenario used in this chapter is presented in Figure 3.1, which is

mostly inspired by the InterCloud project [14]. Each provider is autonomous, and has

its own customers. Federation can help providers to absorb overloads due to spikes in

demand. At the center of this model, the Cloud Exchange service plays the role of informa-

tion service directory. With the aim of finding available resources from the members of

federation, providers send an inquiry to the Cloud Exchange Service in case of shortage

of local resources. The Cloud Exchange is responsible for generating a list of providers

with corresponding service prices that can handle the current request. Therefore, the

price list is used by providers to find suitable providers where requests can be redirected

to.

Decision on allocating additional resources from a federated cloud provider is per-

formed by a component called Cloud Coordinator. The amount of idle capacity that each

provider shares with other members and the way providers price their resources are

also decided by the Cloud Coordinator. These decisions significantly affect the profit

21 EC2 Compute unit (ECU) is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

66 Resource Provisioning Policies to Increase Profit

Figure 3.1: Cloud Federation Architecture.

of providers, and thus they are of paramount importance for the successful adoption of

the federation paradigm by cloud providers. Moreover, agreements between federation

members are necessary in order to make the federation profitable to all its members. We

call these agreements Federation Level Agreement (FLA).

In this study, FLA requires that each provider dynamically prices its contributed re-

sources (VMs) based on the idle capacity of its data center. Therefore, the instant federa-

tion price of a resource per hour can be computed as

F =
Mp −Midle

Mp
· (Fmax − Fmin) + Fmin , (3.1)

where F is the resource’s federation price; Mp and Midle are total capacity and idle ca-

pacity of the provider’s data center respectively, Fmax is the on-demand VM price to cus-

tomers and Fmin is the minimum profitable price for the provider (reserve price). The

provider does not sell resources for prices smaller than Fmin. We discuss later in Section

3.5 about Fmin that is anything larger than the price that compensates costs of keeping

nodes of the data center up. This pricing mechanism facilitates load balancing between

federated providers, since it results in cheaper price for providers with larger amount of

3.4 Proposed Policies 67

resources.

A relevant issue about this mechanism is whether it reveals sensitive information

about the provider, such as a provider’s actual resource utilization (which might lead

to inferences about a provider’s revenue). Equation 3.1 does not reveal such sensitive

information, since providers are free to advertise only a subset of their resources, and

thus members cannot determine the overall utilization of other member’s resources.

Considering the above scenario and assumptions, various policies are proposed in the

next section to investigate how different decisions made by providers affect their profit

and reputation with customers, when they provide the mentioned types of services.

3.4 Proposed Policies

A cloud provider may receive a request for on-demand VMs from its customer. Due to

unavailability of resources, this request may not be served locally without violating QoS

for other running VMs. Under such circumstances, the provider might decide to can-

cel a sufficient number of spot VMs (lowest bid first) to be able to accommodate more

profitable on-demand requests. Also providers may look up to the federation, which

provides an opportunity for outsourcing local requests to other members. In this case,

an on-demand request received by a Provider A is actually served with resources from

a Provider B. Provider B charges Provider A at the federation cost as given in Equa-

tion 3.1, which is typically lower than the prices that both Provider A and Provider B

would charge the on-demand customers.

We propose policies that help the provider to increase profit, resource utilization, and

user satisfaction, when providers are federation members and benefit from outsourc-

ing requests, and also they are able to terminate spot VMs for serving on-demand re-

quests. These policies only address the possibility of outsourcing on-demand requests.

Outsourcing spot requests is not considered here, since the proposed policies are not de-

signed to handle highly fluctuating prices of spot VMs.

To this end, we describe the proposed policies, which differ in how they handle new

on-demand requests when they cannot be served by available local resources.

68 Resource Provisioning Policies to Increase Profit

Non-Federated Totally In-house (NFTI)

In this policy, firstly providers consider termination of spot VMs with lower bids to ac-

commodate a more profitable on-demand request. If this action does not release enough

resources for the new on-demand request, it is rejected. This policy is considered as a

baseline policy in order to allow verification of maximum profit a provider can make

without the federation.

Federation-Aware Outsourcing Oriented (FAOO)

In this policy, each fully utilized provider firstly checks the Cloud exchange service for

available offers by other members. Then, it outsources the request to the provider that

offers the cheapest price. If outsourcing is not possible, Spot VMs are terminated as a last

resort to accommodate the new on-demand request. This policy is considered to show

whether always outsourcing is a profitable decision when fully utilized providers receive

an on-demand request and spot termination is also possible.

Federation-Aware Profit Oriented (FAPO)

This policy compares the profit of outsourcing with termination of spot VMs. The idea

behind this algorithm is that, in one hand, termination of spot VMs result in profit loss,

and on the other hand, replacing spot VMs by on-demand ones increase the profit. More-

over, termination of spot VMs may result in spot price increase. In this policy, decisions

are made based on P(t), the instant profit of the provider at time t , which is given by

P(t) = R(t)− C(t) , (3.2)

where R(t) and C(t) are revenue and cost at time t, respectively. R(t) can be obtained as

follow:

R(t) = Ro(t) + Rs(t) + R f ed(t) + Rout(t) , (3.3)

where Ro(t), Rs(t), R f ed(t) and Rout(t) are revenue of on-demand, spot, contributed

to federation and outsourced resources, respectively. By contributed to federation re-

3.4 Proposed Policies 69

sources, we mean those local resources used by other members of the federation to serve

their customers. Ro(t) and Rout(t) are calculated based on the following equations:

Ro(t) = vmo(t) · Fo , (3.4)

Rout(t) = vmout(t) · Fo , (3.5)

where Fo is the on-demand resource price per resource per hour, which is a constant value

for all providers, and vmo(t) and vmout(t) are the number of on-demand VMs running

locally and outsourced VMs, respectively. Rs(t) is given by

Rs(t) = vms(t) · Fs(t) , (3.6)

where vms(t) is the number of running spot VMs and Fs(t) is the price of the spot VMs at

time t. R f ed(t) is calculated based on the summation of all VMs contributed to federation

according to the following equation:

R f ed(t) =
vm f ed(t)

∑
i=1

Ff edi
, (3.7)

where vm f ed(t) is the number of VMs contributed to federation and Ff edi is the associated

price for each VM contributed to federation.

In order to determine C(t) in Equation 3.2, both operational cost and cost of outsourc-

ing are considered. Therefore, C(t) is given by

C(t) = Cp(t) + Cout(t) , (3.8)

where CP(t) is the operational cost, which includes cost of acquiring and operating the

data center servers (i.e, hardware and software acquisition, staff salary, power consump-

tion, cooling costs, physical space, amortization of facilities, etc). Cout(t) is the cost of

outsourced VMs that a provider pays to federation members hosting its requests. With-

out loss of generality, we can assume that a constant value for Cp(t) represents various

combination of the costs and effect of change in constituting parameters. Further analy-

70 Resource Provisioning Policies to Increase Profit

sis of the cost in the constituting parameters on Cp(t) is left as a future analytical work.

Here, a constant value for Cp(t) is assumed, whereas Cout(t) depends on the renting price

of the outsourced VMs. Cout(t) is given by

Cout(t) =
vmout(t)

∑
i=1

Fouti , (3.9)

where Fouti is the amount paid for each outsourced VM vmi.

By putting all the above equations together, P(t) is calculated as follows:

P(t) =vmo(t) · Fo + vms(t) · Fs(t) +
vm f ed(t)

∑
i=1

Ff edi

+ vmout(t) · Fo − Cp(t)−
vmout(t)

∑
i=1

Fouti .

(3.10)

Considering Equation 3.10, FAPO policy has two choices in order to improve the

provider’s profit. When a request for n on-demand VMs arrives at time t, and local

infrastructure can only accommodate m VMs (m < n), it can either decide to terminate

the n − m lowest bid spot VMs or outsource the new request. To choose the best ap-

proach, FAPO policy estimates the instant profit in future time t′ for both approaches

(t′ = t + ε, ε→ 0).

The spot price is always set to the value of the lowest bid being served. Therefore,

termination of the n−m lowest bid spot VMs may increase spot price from Fs(t) to Fs(t′)

(Fs(t) ≥ Fs(t′)). But, according to the proposed model, this increment only affects those

spot requests whose accounting period expires on or after t′, because the price of a spot

VM is set at the beginning of each accounting period, which is one hour. Assuming k as

the number of spot VMs whose accounting period start on t′, the estimated instant profit

of terminating (n−m) spot VMs and accommodating n on-demands VMs locally, P1(t′),

3.5 Evaluation 71

is computed as:

P1(t′) = (vmo(t) + n) · Fo + vmout(t) · Fo − Cp(t)

+ (vms(t)− (n−m)− k) · Fs(t) + k · Fs(t′)

+
vm f ed(t)

∑
i=1

Ff edi
−

vmout(t)

∑
i=1

Fouti .

(3.11)

In the case of outsourcing, estimated instant profit at time t′, P2(t′), is defined as:

P2(t′) = vmo(t) · Fo + vmout(t) · Fo

+ n · Fo − Cp(t) + vms(t) · Fs(t)

+
vm f ed(t)

∑
i=1

Ff edi
−

vmout(t)

∑
i=1

Fouti − n · Fof fer ,

(3.12)

where Fof fer is the lowest offered price in the federation. The policy compares P1(t′) and

P2(t′) to make its decision. Therefore, similar terms can be eliminated from both equa-

tions and they are calculated as follows:

P1(t′)− P2(t′) = k · Fs(t′)− (n−m + k) · Fs(t) + n · Fof fer. (3.13)

Consequently, the policy decides to outsource requests when P1(t′) − P2(t′) < 0 ;

otherwise, if P1(t′)− P2(t′) ≥ 0, termination of spot VMs is more profitable and it will be

recommended by the policy.

It is worth noting that none of the policies takes into account the duration of the

request (request lifetime), because the provider does not have information about how

long current VMs will remain in the system. Strategies that consider prediction of future

resource availability to drive decisions can be explored as future works.

3.5 Evaluation

This section presents an evaluation of the policies presented in the previous section. First,

we describe simulation settings and performance metrics, and then experimental results

72 Resource Provisioning Policies to Increase Profit

are presented and discussed.

3.5.1 Experimental Settings

The experiments presented in this section were developed using CloudSim [16] discrete-

event cloud simulator. The simulated cloud scenario is composed of a federation con-

taining multiple IaaS cloud providers. The number of providers is one of the simulation

parameters, and we evaluate the effect of the policies considering different numbers of

federation members.

For the sake of simplicity, we assume only one type of VM is offered by providers.

The VM configuration is inspired by Amazon EC2 small instances (1 CPU core, 1.7 GB

RAM, 1 EC2 Compute Unit, and 160 GB of local storage). Adding different types to the

model can be considered as an extension of the current work.

Providers follow the pricing of Amazon Web Services (AWS) [120] at the time of ex-

periments. That is, all providers charge their customers based on hourly usage, at the

cost of $0.085 per hour per on-demand VM. In the case of spot VMs, the provider charges

customers based on the spot price, which fluctuates periodically according to the mini-

mum bid in the system and resource availability. The price for each spot VM is set at the

beginning of each VM-hour for the entire hour.

On the customer side, for the purpose of the bidding algorithm of spot requests,

we assume that customers do not bid higher than the on-demand price, because higher

bids behave like on-demand requests (they are never canceled) but generate even higher

profit for the providers. Our bidding algorithm generates a uniformly-distributed ran-

dom value between the minimum of bid $0.020 and maximum of $0.085. The minimum

price is set in such a way that the value offered by customers is still enough to cover

operational costs of serving the request, even though it might result in no profit for the

provider. We also used $0.020 and $0.085 for Fmin and Fmax respectively in Equation 3.1

for pricing resources contributed by each provider in the federation.

Each simulated data center contains 128 servers, and each server supports 8 VMs.

So, each provider is able to concurrently host 1024 VMs. We assumed that operational

costs are constant and the same for all the providers, so they are not considered in the

3.5 Evaluation 73

experiment.

For the sake of accuracy, each experiment is carried out 20 times by using different

workloads and the average of the results is reported. We explain the workload setup

details in the following subsection.

3.5.2 Workload setup

Due to lack of publicly available workload models and real traces of IaaS clouds, we

apply a nine day long workload generated by the Lublin workload model [59]. To adapt

this model to our scenario, we consider the number of nodes in each Lublin request as

the number of VMs of the request, and this number is limited to 32 simultaneous VMs

for each request. The first 12 hours of simulation and the last 36 hours are warm-up and

cool-down periods respectively, and they are discarded from results. Therefore, a one

week long period of simulation is considered.

The only parameters of the Lublin workload model changed for these experiments are

job runtime parameters. We changed the first parameter of the Gamma distribution for

runtime in Lublin model from the default value of 4.2 to 7.2 in order to generate longer

VM requests. The user workload submitted to each provider is generated based on the

above configuration. Providers are equidistantly distributed among time zones. Because

the generated load has a daily cycle with peak hours, providers’ loads vary. For example,

while provider A is at its peak period, provider B will be at its off-peak time.

We intend to study the behavior of different policies in different situations. For this

purpose, effects of four input parameters are investigated.

The first input parameter is the system load. The difference in the proposed policies

lies on the action taken at the time at which a provider’s resources are fully utilized

and requires additional resources. In this direction, the arrival rate of requests has been

selected as the most suitable parameter to adjust the load of a provider. With the intention

of changing providers load, arrival rate of requests has been changed by varying the aarr

parameter of the model between 8.2 and 6.4. aarr is the shape parameter of the Gamma

distribution.

Another parameter that impacts the policies’ performance is the ratio of spot requests

74 Resource Provisioning Policies to Increase Profit

to total requests (on-demand plus spot requests). We named this parameter β (0 6 β 6

100%), and this is defined as follows. After generating the 9 days long workload, we

randomly select some of the generated requests as spot requests, so β percent of the

requests becomes spot requests.

The third parameter evaluated, α, contains the rate of spot requests that are persistent.

It impacts the provider’s profit because it determines the amount of requests that are

going to be kept in the provider to be served when resources become available.

Finally, Number of providers is another parameter that is considered. This parameter is

important because it increases the chance of members finding other members with lower

load to select as the target of outsourced requests.

3.5.3 Performance Metrics

We applied the following metrics to analyze the impact of the proposed policies in the

providers:

1. Profit. This metric is calculated for each provider and is defined as the achieved

revenue during a time period minus the cost incurred in the same time period. In

our results, we ignore operational costs. Therefore,

Pro f it(∆t) = Revenue(∆t)− Costout(∆t) , (3.14)

where Revenue(∆t) is the revenue obtained during ∆t including on-demand, spot,

contributed to the federation, and outsourced requests, whereas Costout(∆t) is the

cost of the outsourcing VMs at the same period.

2. Utilization. This metric is defined as the ratio between the number of hours of VMs

used by requests (both local and contributed to the federation) and the maximum

number of hours of VMs in a time period.

Utilization(∆t) = ∑vm
i=1 runtime(vmi)

vmmax · ∆t
, (3.15)

where vm is the total number of VMs including on-demand, spot and contributed to

3.5 Evaluation 75

federation VMs and vmmax is the maximum number of VMs that a provider can run

simultaneously in its data center. runtime(vmi) shows the corresponding runtime

for each VM.

3. Number of rejected on-demand VMs. This metric shows the number of on-demand

VMs rejected. It considers only on-demand requests, because providers never reject

spot VM requests which are kept in waiting queues until the bid price is reached.

Note that, this metric does not show the number of rejected requests because each

request may contain demand for more than one VM. We select this metric instead

of the rejected number of requests because it better shows potential revenue losses.

3.5.4 Results

Results presented for profit and utilization are the normalized values for each metric

using the result obtained form the NFTI policy as the base value. Since the NFTI policy

reflects the situation where providers do not explore capacities of the federation, the use

of normalized values allows us to quantify the benefits of federation-aware policies on

each provider.

Impact of percentage of spot requests

The first experiment aims at evaluating how changes in the ratio between spot and on-

demand requests affect performance metrics.

This experiment’s simulation scenario consists of 5 providers, each one with a work-

load whose aarr value is 6.7 and 40% of the spot requests as persistent requests. The

workload for each provider was generated as described in Section 3.5.2, but the percent-

age of spot VM requests (β) varied between 10% and 90% of the total amount of requests

submitted to each provider. Results for this scenario are presented in Figure 3.2.

Figure 3.2a shows that, for smaller amount of spot VM requests, exploiting the po-

tential of federation for outsourcing or contributing to the federation helps providers

to enhance profit. After the point that 50% of requests are spot requests, providers are

not able to increase profit since spot VM price is the most effective factor on the profit.

76 Resource Provisioning Policies to Increase Profit

(a) (b) (c)

Figure 3.2: Impact of percentage of spot requests on (a) Profit (b) Utilization, and (c)
Number of rejected on-demand VMs for a provider with different policies.

Moreover, when a significant number of running VMs in the data center belongs to spot

requests, providers are able to absorb spikes in demand just by terminating spot VMs.

Besides the fact that the presence of more spot VMs in data center decreases the po-

tential of the federation for making profit, the FAPO policy has better performance com-

paring to the FAOO policy with higher profit and less utilization.

As shown in Figure 3.2b, the utilization achieved with the FAOO and FAPO policies

are always higher than with NFTI, because providers dedicate part of their capacity to

the federation. However, FAPO witnesses smaller utilization, although it generates more

profit than FAOO. This is due to the fact that FAOO contributes to the federation more

than FAPO, and also terminates less spot VMs than FAPO, which results in lower spot

price.

As we expected, by increasing the amount of spot requests, it is less likely to reject

on-demand requests, because the chance of finding a spot VM to be terminated increases.

Moreover, Figure 3.2c shows that less rejections occur for those policies that benefit from

federation, especially when the percentage of spot VMs is low.

Impact of percentage of persistent spot requests

The second experiment demonstrates the effects of changing the percentage of persistent

spot VMs requests on providers. This experiment’s simulation scenario consists of 5 data

centers, with aarr value of 6.7 and 30% of spot requests among the total number of re-

quests for each provider. The workload for each provider was generated as described in

3.5 Evaluation 77

(a) (b) (c)

Figure 3.3: Impact of percentage of persistent spot requests on (a) Profit (b) Utilization,
and (c) Number of rejected on-demand VMs, for a provider with policies.

Section 3.5.2, but the percentage of persistent spot VMs (α) varied between 0% and 100%

of the total amount of spot requests submitted to each provider. Results for this scenario

are presented in Figure 3.3.

More persistent spot VM requests results in less usage discontinuation, since even

after termination of spot VMs the system retains the requests themselves, which can be

served in a later stage. Percentage of persistent spot VMs is significant, since termination

of spots VMs that are persistent does not cause load and revenue loss, but increases the

current spot price, and consequently provider profit.

Therefore, according to Figure 3.3a, profit making of the FAOO policy drastically de-

creases after a point where 50% of spot market is used by persistent spot VMs, because

this policy causes less spot VMs termination than other policies. The FAPO policy shows

better performance in comparison to other policies regarding profit, as it benefits from

outsourcing in lower percentage of persistent spot VMs, and termination of spot VMs in

higher percentage of persistent spot VMs.

It is expected that a smooth increase in utilization will occur when there are more

persistent spot VMs, however, it is not observable in Figure 3.3b. This is because spot

termination does not result in losing part of VM requests. Thus, when there is a higher

percentage of persistent spot VMs, policies converge to a specific utilization point be-

cause the total load remains constant in higher persistency of spot VMs.

Finally, the percentage of persistent spot requests does not have a significant effect on

the number of rejected on-demand VMs. However, due to the lack of outsourcing choice,

78 Resource Provisioning Policies to Increase Profit

(a) (b) (c)

Figure 3.4: Impact of load on (a) Profit (b) Utilization, and (c) Number of rejected on-
demand VMs, for a provider with different policies.

a higher number of rejected requests is seen when NFTI is applied.

Impact of the load

The third experiment evaluates the effect of load variation. The scenario consists of 5

data centers, α of 40% and β of 30%. The workload for each provider was generated as

described in Section 3.5.2, but the aarr parameter of the Lublin workload varied between

8.2 and 6.4 to vary the number of generated requests for all the providers.

Figure 3.4 shows the impact of varying the aarr parameter, which results in a different

number of requests, on the proposed policies. Since our policies are triggered when the

provider is fully utilized, load is the most influential parameter in our experiments. By

increasing the number of total requests, and consequently provider’s load, the provider

frequently experiences a situation where it has to decide between outsourcing and termi-

nating spot VMs. According to Figures 3.4a and 3.4b, FAPO and FAOO, which support

outsourcing, have higher profit and utilization by increasing load. However, the FAPO

policy outperforms the FAOO policy by having a higher profit with smaller utilization.

The difference between FAPO and FAOO is significant at higher loads.

By increasing the number of requests, the number of on-demand VM rejection also in-

creases, because providers are subject to a higher load. The NFTI policy is more sensitive

to this effect, because it does not support the outsourcing option.

3.6 Summary and Conclusion 79

(a) (b) (c)

Figure 3.5: Impact of number of providers on (a) Profit (b) Utilization, and (c) Number of
rejected on-demand VMs for a provider with different policies.

Impact of number of providers in the federation

This experiment evaluates the impact of number of participants in the federation on the

results delivered by each policy. In this experiment, α is 40%, β is 30%, and aarr is 6.7.

The experiment was repeated with 3, 5, and 7 providers. The results are presented in

Figure 3.5.

By increasing the number of providers, policies with an outsourcing option have a

smaller number of rejected on-demand VMs, because it is more likely that the provider

can find another provider that can serve an outsourcing request. Increasing the number

of providers does not have any impact in NFTI, as in this policy there is no interaction

with federation members. For FAOO and FAPO, an increase in the number of providers in

the federation results in lower profit, because of better matching in supply and demand.

That is, the offer price for contributing to the federation falls down and outsourcing be-

comes more profitable.

3.6 Summary and Conclusion

We proposed the policies to enhance IaaS providers’ profit when the provider is a mem-

ber of a cloud federation. Since each provider has the restricted amount of capacity,

increase in load may overload the provider’s data center and may result in QoS viola-

tion or users’ request rejection. Providers that support different types of QoS and pricing

scheme for VMs (e.g. on-demand and spot VMs) have the possibility of canceling their

80 Resource Provisioning Policies to Increase Profit

terminable less profitable VMs (e.g. spot VMs) in favor of more profitable requests (e.g.

on-demand VMs). Providers can also benefit from federation by outsourcing requests to

other members of the federation with smaller load.

Various experiments conducted to determine the impact of a provider’s decision on

its performance metrics. Evaluated parameters include the ratio of spot VMs to the to-

tal load, percentage of persistent spot VMs, number of providers in the federation and

provider’s load. Results showed that our policies help providers to enhance profit and

to decrease the number of request rejections, while they keep utilization at an acceptable

level.

Experimental results also allow us to derive some guidelines for providers. Running

on-demand requests locally is more profitable when the provider has a high ratio of spot

VMs, and the termination of spot VMs leads to less discontinuation of service usage by

customers (i.e., high number of persistent spot requests). Moreover, outsourcing is more

profitable when spot VMs are scarce and spot VM termination result in discontinuation

service usage by customers. Furthermore, federation also helps underutilized providers

in making more profit by selling idle resources to other members.

Chapter 4

Financial Option Market Model

Pay-per-use service by cloud service providers has attracted customers in the recent past and is still

evolving. Since the resources being dealt within clouds are non-storable and the physical resources

need to be replaced very often, pricing the service in a way that would return profit on the initial capital

investments to the service providers has been a major issue. Moreover, to maintain Quality of Service

(QoS) to customers who reserve the resources in advance and may or may not be using the resources

at a future date makes the resources wasted, if not allocated to other on-demand users. Therefore, a

need for a mechanism to guarantee the resources to reserved users whenever they need them, while

keeping the resources busy all the time is in very high demand. The concept of federation of cloud

service providers has been proposed in the past wherein resources are traded between the providers

whenever need arises. We propose a financial option based cloud resources pricing model to address

the above situation. This model allows a provider to hedge the critical and risky situation of reserved

users requesting the resources while all the resources have been allocated to other users, by trading

(buying or outsourcing) resources from other service providers in the cloud federation. We show that

using financial option based contracts between cloud providers in a cloud federation, providers are

able to enhance profit and acquire the needed resources at any given time. It would also help creating

a trust and goodwill from the clients on the cloud service providers with less number of Service Level

Agreement (SLA) violation.

4.1 Introduction

CLOUD providers usually offer customers two well-known payment plans: reserva-

tion and on-demand. Amazon EC21 and GoGrid2, for example, provide reservation

and on-demand plans of the infrastructure services. Customers pay in advance to reserve

1Amazon EC2, http://www.aws.amazon.con/ec2/.
2GoGrid, http://www.gogrid.com/.

81

http://www.aws.amazon.con/ec2/
http://www.gogrid.com/

82 Financial Option Market Model

the instances for the possible future usage and in exchange receive a significant discount

on the charge for running VMs in the reserved capacity. Moreover, customers receive

higher availability of the service for reserved than on-demand instances. On the one

hand, reservation plans allow the customers to acquire resources in cheaper price and

higher availability than that of on-demand plans. On the other hand, it helps providers

to attain more efficient resource management and procurement. In addition, reservation

can guarantee cash flow even if the reserved resources are not fully utilized by the cus-

tomers.

Since cloud applications such as web applications experience huge and unpredictable

variation in the load over time, defining the required amount of instances to cope with

the load experienced in a given moment is a challenging task for the users. If the load

was known beforehand, users could reserve the required amount of instances, which is

cheaper than acquiring on-demand instances. However, as loads are unpredictable and

variable, users have to combine reserved instances with on-demand instances for the

situations in which the former is not enough [20]. This provides a balance between cost

and utilization of the resources.

The pattern of utilization at user side causes reserved instances not to be deployed at

all times. This offers providers the opportunity to explore this underutilized reserved ca-

pacity for additional cash flow by releasing them to the on-demand requests. Therefore,

if the unreserved part of the data center experiences high utilization, providers are able

to accommodate on-demand requests on the underutilized reserved capacity of the data

center. However, providers are liable to provide guaranteed availability for the reserved

requests according to the service level agreement (SLA). Consequently, providers face

a risk of SLA violation by using the reserved capacity for accommodating on-demand

requests.

Cloud cooperation is a possible solution in order to hedge against the mentioned

risks by letting providers increase their resources dynamically [14, 99]. Recent works

demonstrate that federation of providers and interoperability between clouds to trade

resources in a market helps providers to enhance their profit, resource utilization, and

QoS [35]. The use of shared pool of physical nodes for on-demand and reserved in-

4.1 Introduction 83

stances along with outsourcing requests substantially mitigate the risk of SLA violation

for reserved instances. But, the provider still faces the other risk of being unable to ac-

quire required resources in the federation market. Essentially, they may end up short

selling resources without having a good knowledge of usage loads and hence violating

the promised QoS. Furthermore, according to the efficient market hypothesis in economic

markets, providers can not precisely predict the future price variations in the federation

market using past price history [96, 109].

In this chapter, a financial option-based market model is introduced for a federation of

cloud providers, which helps providers increase their profit and mitigate the risks (risk of

violating SLA and risk of paying extra money). A financial option [46] is a contract for a

future transaction between two parties: holder and seller of the contract. A financial option

gives the holder the right, but not the obligation, to buy (or to sell) an underlying asset

at a certain price, called the strike price (exercise price), within a certain period of time,

called maturity date (expiration date). The seller is obligated to fulfill the transaction. As

a compensation the seller collects an upfront payment at the beginning of the contract,

called premium. In our proposed framework model, a provider buys option contracts

as a backup capacity for the reserved resources used by on-demand instances, to gain

the right to acquire resource from the seller provider, as need arises. Since the seller is

obligated to fulfill the request, risk of not acquiring resources is removed. Moreover,

buying option contracts protects provider against high variation of the market price. In

summary, this chapter has the following main contributions:

1. A financial option-based market model in the presence of the cloud federation to

help providers to manage their reserved capacity and achieve higher QoS guaran-

tee.

2. Evaluation of the proposed model to show its effectiveness in increasing provider’s

profit without imposing any SLA violation.

The remainder part of the chapter is organized as follows: In the next section we

give an overview of the related work. The system model and problem definition are

identified in Section 3.3. Our proposed option model including the parameters setting

84 Financial Option Market Model

and pricing mechanism is explored in Section 4.4. In Section 4.5, the baseline policies

and the proposed policy based on our model is introduced. A detailed discussion on

workload and simulation setup, performance metrics, and experimental results are given

in Section 4.6. Finally, Section 4.7 presents the conclusions.

4.2 Related Work

Resource provisioning for IaaS cloud providers is a challenging issue because of the high

variability in the load over the time. Providers must be able to dynamically increase the

available resources to serve requests [35]. In order to enable such scenario, coordination

between providers has to be achieved, possibly through the establishment of a cloud fed-

eration. In recent years, different platforms for cloud federation have been proposed in

the literature [14, 99, 101]. Economic aspects of the cloud federation including motiva-

tions and incentives for parties joining the federation have been investigated by several

studies [35].

Works related to systems for market-making such as works by Song et al. [112], Mi-

hailescu and Teo [71], Gomes et al. [40], and Vanmechelen et al. [119] concern about mech-

anisms for creating markets and trading resources. In this chapter, a financial option-

based market model has been introduced for a federation of cloud providers. An intro-

duction to the foundations and basics of financial option theory can be found in [46].

The authors in [2] propose a model based on financial option theory to price Grid

resources. They use option for pricing Grid resources in order to maintain equilibrium

between service satisfaction of Grid users and profitability of the service providers. They

do not propose a model to sell and buy options as we do and their model proposed for a

single resource provider environment. In our study, we consider multiple providers in a

cloud federation where option contracts are traded between service providers. Moreover,

note that the risk factors they are concerned with are different from the risks investigated

in this chapter.

Another work devoted to option theory in resource allocation for clouds, proposes

an approach based on the option theory to minimize cost and mitigate the risk for

4.2 Related Work 85

cloud users [96]. They introduce a novel pricing scheme based on the option that cloud

providers should provide for their own customers. Using option plan, customers can

reduce the cost of using IaaS cloud provider resources. Our work, on the other hand,

mainly aims to increase profit and mitigate risks for providers, which leads to better QoS

for the customers.

Meinl and Neumann [65] analyze the use of real options in a contract market, to eco-

nomically manage resource reservation in distributed IT environments. In fact, they use

option as a contract to perform reservation for time and budget sensitive customers. Grid

consumers want to minimize expenses, whereas Grid providers want to maximize their

return on investment. Our work is similar as we also focus on reservation, but we use

option as a hedging mechanism for the reserved capacity to enhance provider profit. Be-

sides, our reservation scheme is also different. They consider reservation for Grid jobs

with deadline and budget while our reservation scheme is like what IaaS cloud providers

offer.

Bossenbroek et al. [13] investigate the application of option contracts in the context

of a market for Grid resources, in order to deal with price volatility. They assess the

performance of three classic hedging strategies for buying options in this regard. In order

to define the underlying asset, the concept of leases is introduced. These correspond to a

right to use a Grid resource for a fixed time period (e.g. one hour). The size of a task is

expressed in a multiple of such leases, and it is assumed that the task’s load is entirely

divisible over such leases. The model is therefore not directly applicable to the cloud

computing domain considered in this chapter.

Cloud providers offer customers reservation (e.g., prepaid) and on-demand plan (e.g.,

pay per use). There are always incentives for both cloud providers and customers to use

reservation. For example, reservation may result in better capacity planning, guaran-

teed cash flow for providers, and availability of resources and discount on the usage of

such resources for customers. However, it is important for the customers to optimize the

amount of resources that they reserve to reduce the cost. Reservation is a challenging

issue, since it should be done in advance when there is an uncertainty about the actual

future demand. Under-provisioning (Reserving less) and over-provisioning (Reserving

86 Financial Option Market Model

Requests

User

Interface

Buying
Resources

Cloud Provider

Cloud Users

On-demand Reserved

Federation Spot

and

Option Market

Cloud

Provider 1

…
 …

Cloud

Provider n

Cloud

Provider 2

Figure 4.1: Model elements and architecture.

more) of reserved instances may result in extra costs for the customers. Authors in [20]

propose an algorithm to minimize total cost of resource provisioning and avoid over-

provisioning and under-provisioning of reserved instances.

Cloud providers supporting reservation should answer the question of how to allo-

cate resources between reserved and other types of requests to maximize their revenue.

A sample solution for this can be found in [63].

4.3 The System Model

In this section, we outline the system model including the markets, market participants,

their motivations, and all the corresponding parameters of the model (Figure 4.1).

Cloud users (IaaS cloud customers) submit their IT infrastructure requirements in the

form of VM requests to the Cloud provider (see Figure 4.1). Such a request submission may

lead to acquisition of VM instances for a certain amount of time by the customer. Since

customers decide when to terminate the instances, the cloud provider does not have a

priori knowledge of the holding time of the instances (lifetime of instances). Requests

can be submitted either for reserved or on-demand service and charges will be applied

accordingly.

1. On-demand plan: On-demand plan allows customers to pay for compute capacity

by its usage without long-term commitment. Price is calculated at a fixed rate per

usage time, e.g., hourly, from the time an instance is launched until it is terminated.

4.3 The System Model 87

If the provider possesses enough resources, resource provisioning for VM requests

is done, otherwise the request is rejected by the provider. After instantiation of

VMs, customers can retain machines as long as they require them.

2. Reserved plan: In this plan, customers pay an upfront fee, called reservation fee, and

in return receive a discount on the usage for the VMs. Reserved plan also assures

that the reserved capacity is always available when it is required.

We believe that customers do not always fully utilize the reserved capacity in the

reservation lifetime. Partial utilization of the reserved capacity still has benefit for cus-

tomers. For example Amazon EC2 users gain economic advantage of using Reserved In-

stances in comparison with On-Demand Instances, even if they can utilize only slightly

more than 8% of the reserved capacity in a 3-year contract3.

The Cloud provider offers its resources for each plan based on the fixed price. The cloud

provider offers best-effort and highly available service for on-demand and reserved in-

stances respectively. Allocating data center capacity (physical nodes) to reserved and

on-demand instances in order to meet the QoS of each plan is performed by the provider.

Suppose that the provider has a data center with a predefined capacity and it is able

to accommodate maximum n VM instances of similar types simultaneously. Two dif-

ferent strategies can be assumed to structure such a system to support aforementioned

plans [63]:

1. Isolated pools: In this strategy, two different pools of servers (nodes in data center)

for instances of each plan is considered in isolation of each other. The number of

nodes for reserved instances, in this case, is defined according to the total number

of reserved VMs by customers. If the entire reserved capacity size is r instances, the

on-demand pool is capable of accommodating n− r instances at most.

2. Shared pool: In the shared pool strategy, on-demand requests are offered to use phys-

ical nodes of the reserved capacity if on-demand capacity is fully utilized by on-

demand VMs. In the shared pool strategy, If the data center maximum capacity in

3http://aws.amazon.com/ec2/reserved-instances/

88 Financial Option Market Model

unit of VMs of the similar type is n, the reserved capacity size is r(r ≤ n), and m re-

served VMs are running (m ≤ r) then accommodating n−m on-demand requests

is possible while m remains unchanged.

Given that reserved instances and on-demand instances are just different in pricing

and they function identically during execution, there is no technical barrier to set up the

shared pool strategy. Note that the shared pool strategy suffers from the risk of violating

availability of the reserved instances.

A Cloud federation allows providers to trade their resources through Federation Level

Agreements (FLA) (see Chapter 3). In this paradigm, providers aim to overcome the re-

source limitation by buying resources from the market. Underutilized providers sell their

resources in this market usually at cheaper prices compared to what they would charge

their own customer, in order to avoid wasting their non-storable compute resources (e.g.,

SpotCloud4). It is worth mentioning that our model can also be applied to a hybrid cloud

scenario in which a private cloud provider buys option contracts from a large public

cloud provider.

The main element in our model is the federation spot market in which a group of feder-

ated clouds trade their resources with each other (see Figure 4.1). Note that, here the spot

market is an exchange market in which on-demand resources are traded for immediate

delivery similar to the market model presented in Chapter 3. Federation spot market

should not be mixed up with the local spot market and spot instances presented in the

previous chapter. From now onwards by the spot market we mean federation exchange

market for immediate delivery of on-demand resources unless otherwise mentioned.

Different types of underlying market mechanism can be considered for the federa-

tion spot market, such as combinatorial double auctions, commodity exchanges, reverse

Dutch auctions, and etc. The main focus of the current work is to build an option market

on top of the federation spot market. Due to general nature of our proposed model, the

option market is modeled independently from the underlying spot market mechanism.

The only outcome of the spot market which is required by the model is the spot price

at which resources are offered. Therefore, in our setting we do not specify a particular

4SpotCloud, http://www.spotcloud.com/.

http://www.spotcloud.com/

4.3 The System Model 89

spot market mechanism, and the scheme does not directly influence the model. In this

chapter, we assume that the IaaS cloud provider is able to buy resources from the spot

market at the current spot price. Strategies regarding selling resources to the market will

be explored as an extension of this work.

The cloud provider in our model attempts to increase its revenue by using a shared

pool strategy. This avoids wasting the underutilized reserved capacity by serving excess

on-demand requests on that capacity. However, the IaaS cloud provider faces the risk of

violating availability for the reserved requests. Thus joining the federation spot market

could mitigate the risk by allowing the provider to outsource reserved and on-demand

requests. However, a cloud provider participating in the federation spot market could

still bear two risks, namely:

1. the risk of price fluctuation in the spot market and high cost of outsourcing, and

2. the risk of not being able to acquire resources, which leads to rejection of the re-

served requests.

In order to hedge against above risks, we propose a market model based on the fi-

nancial option on top of the spot market for a federation of cloud providers. Using our

model, the provider is able to enhance its profit by deploying a shared pool of physical

nodes for on-demand and reserved requests. Moreover, the provider ensures the avail-

ability of the reserved instances and avoids buying resources at a price that is higher than

the one charged to its own customers.

In the current model, each time the provider accommodates an on-demand request

in the reserved capacity due to lack of space in the on-demand pool, it buys an option

to hedge against the situation of running short of resources for reserved requests. The

option is exercised (i.e., the requests are outsourced to other cloud providers in the fed-

eration) if the reserved request arrives and the provider does not have enough resources

to serve it locally. Reserved requests are submitted by customers based on the previously

submitted reservation contracts.

The important advantage of buying options in comparison to other future agreements

is that it gives the provider the right (not the obligation) to buy resources (outsource re-

90 Financial Option Market Model

quests) in the future. Therefore, if the cloud client does not request the reserved instances,

the provider will simply let the contract expire without responsibility to buy unnecessary

resources. The only cost for providers in such an arrangement is the premium paid at the

beginning of the contract. This cost, however, can translate into trust and goodwill by the

clients on the provider.

In our model, providers transfer the risk of violating SLAs to other providers by buy-

ing option contracts and paying option premium. Therefore, sellers of the option con-

tracts must consider the trade-off between the risk and expected profit. However, the

scope of the current work is limited to buyer’s strategies for purchasing required op-

tions. Strategies regarding selling options require further attention. Interested readers

are referred to the work of Markowitz et al. on decisions under uncertainty in financial

markets [62], and the work of Michalk et al. [68] on the translation of the model for cloud

Service providers.

4.4 The Option Market

This section provides the detailed discussion of the option market including pricing,

buying mechanism and exercising options. The main contribution of this chapter is to

propose a financial option-based market mechanism for a cloud federation. The main

element in such a market is the option. There are two types of option: call and put. A

call option gives its holder the right to buy the underlying asset at a specific price (strike

price) by a certain time (expiration date) [46]. A put option gives the holder the right to

sell the asset at a specific price over a given period of time. Providers with large amounts

of physical resources may buy put options that will give them the right to sell resources

at their will. However, we do not consider the use of put option in this work.

Suppose that a market participant purchases a call option for $2 with strike price of

$28 for expiration date in two months. Within two months, the spot price goes to $35, in

this case, he/she exercises the option and gains the advantage of (35− 28) − 2 = $5. If

the spot price stays below the strike price, the option holder might buy at the spot price

and allow the option to be expired. In this case, the $2 premium paid at the beginning of

4.4 The Option Market 91

the option contract is lost.

An option contract is defined by a tuple (P, K, T), where P is the price of buying the

option, K is the strike price, and T is the expiration date. In our model, the provider buys

an option, whenever it accommodates an on-demand request in the reserved capacity.

Terms of the option contract (P, K and T) need to be determined at the time the contract is

signed. In the following paragraphs, the way we set the terms of the contract is explained.

Given that the price per time unit for the reserved instances is R, the provider buys an

option with a strike price lower than R to secure its future profitability. It means that the

provider assures that the price it pays to outsource a reserved request is always lower or

equal to the price it charges its own customers, i.e., R. As long as the spot market price,

S, is lower than R, the provider submits a request for buying an option with strike price

K = S, otherwise K = R.

The provider is oblivious to the duration of the VM and its future load, so we consider

T as a fixed value, e.g., one month. We investigate the impact of the time to maturity of

the options on the model in Section 4.6. Optimization strategies regarding buying option

with the best expiration date requires load prediction strategies. It can be considered as

an extension of this work.

The option can either be exercised at expiration date (European option), or any time

during its life (American option). Since the provider buys an option to hedge the risks for

reserved requests and needs to exercise the option any time in the future according to the

load and upcoming reserved requests, the American call option is the most appropriate

for our work.

When the provider desires to purchase an option, it needs to pay the option price

or the premium to the seller. The value of an option (option price or premium) can be

estimated using a variety of quantitative techniques based on the concept of risk neutral

pricing [12, 67].

A useful and popular technique for pricing an option involves constructing the price

movement in a structured manner known as binomial lattice or tree [23]. The binomial

tree represents different possible paths that might be followed by the underlying asset

price over the life of the option. In our model, the underlying asset is the available re-

92 Financial Option Market Model

Figure 4.2: Binomial tree for option pricing.

source in the federation market.

Consider the current spot market price is S0. S0 goes to S0u with probability of p and

to S0d with probability 1− p at each time step ∆T. Let T = n.∆T, where T is the option

expiration date, then a lattice of spot price movement for n = 3 is presented in Figure 4.2.

The value of the option can be evaluated for each point at the leaf nodes of tree (time T).

The value of the option at starting node can be calculated through a procedure known as

backward induction. A call option is worth max(ST − K, 0), where ST is the spot market

price for underlying asset at time T.

Assuming risk neutral world, the value at each node at time T − ∆T is computed

according to the expected pay-off value at time T and the risk-free interest rate, r, for

the time period ∆T. In this study we assumed r = 0. Going backward using the above

procedure, the option value, P, can be obtained at time zero. American call option that

pays no dividend is never exercised early. Consequently, the following procedure is valid

for both American and European call options [46].

Factors u, d and p play crucial role in option pricing. All of the aforementioned pa-

rameters can be calculated according to a parameter called volatility. The volatility, σ, in

stock market is a measure of uncertainty about the returns provided by the stock and

future stock price. There is a wealth of literature on calculating σ in finance commu-

4.5 Policies 93

nity [95]. One common method to obtain the volatility is by using the history of the stock

price movements. We used the method provided in [46] to estimate volatility according

to the historical data. Choosing a proper size for the time frame of the historical data to

calculate σ is non-trivial. In this chapter, we set this value equal to the maturity time for

the option contract. u, d, and p can be calculated according to σ as:

p =
1− d
u− d

, u = eσ
√

∆T, d = e−σ
√

∆T

4.5 Policies

Three different policies to evaluate our model including two baseline policies and a policy

using our option market model are described in this section. We first present baseline

polices based on an isolated pool of servers with and without federation respectively,

and then the federation option-market enabled policy using a shared pool of physical

nodes is proposed.

4.5.1 Baseline In-house Isolated Pool Policy (IIP)

The first baseline policy is the simplest policy in which the provider works indepen-

dently, without participating in the federation. Moreover, the provider in this policy

uses isolated pools of physical nodes for on-demand and reserved instances in order to

guarantee high availability of reserved requests. As a result this policy rejects extra on-

demand requests even when the reserved capacity of the data center is not fully utilized.

4.5.2 Baseline Federated Isolated Pool Policy (FIP)

In this policy, we assume that the provider is able to access the federation spot market.

Resources are bought at the spot price from the cloud federation market to outsource

on-demand requests if the provider is not able to serve them locally. To be always cost-

effective, if the spot price in the federation market is higher than the local on-demand

price then the provider rejects the on-demand request. In this policy, the pool of physical

94 Financial Option Market Model

nodes for reserved and on-demand instances are isolated to prevent rejection of reserved

requests.

4.5.3 Federated Shared Pool Option-Enabled Policy (FSPO)

The third policy exploit the potential of our proposed option market model to hedge

against risk of using the shared pool strategy. In this policy, the provider accommodates

excess on-demand requests in the underutilized reserved capacity. To facilitate this, the

provider buys an option whenever it accommodates on-demand requests in the reserved

capacity. Consequently, if a reserved request comes in and the provider is not able to

serve it locally, the option is exercised and the reserved request is outsourced at the strike

price of the option.

It is necessary to mention that policies with the shared pool strategy without consid-

ering our proposed option model (e.g., In-house Shared Pool or Federated Shared Pool)

are not taken into account here. Those policies might lead to rejection of reserved re-

quests and QoS violation. However, the number of rejections occurring for the reserved

requests for those policies are reported in our experimental evaluation.

4.6 Performance Evaluation

4.6.1 Experimental Setup

Workload setup

Due to the lack of publicly available traces of real-world IaaS cloud requests, we created

a synthetic workload model to generate VM requests for an IaaS cloud.

Our workload model complies with previously reported workloads for IaaS

providers in the literature [35,74]. Generating a VM request requires a pair (S, D), where

S is the arrival time of the request and D is the holding time of the instance by the cus-

tomer.

In order to model the holding time of the instance by users, D is taken to be a Pareto

4.6 Performance Evaluation 95

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 4.3: Combination of two Gaussian functions.

distributed random variable, with shape parameter α = 1.1 and location parameter β =

1 [74]. The Probability Density Function (PDF) of the Pareto distribution is

f (x) =

 αβα/xα+1 for x ≥ β

0 for x < β
. (4.1)

The value of the random variable D represents the holding time of the VM by the user

in the scale of hours.

Arrival times of the requests are generated as follows. Given that our workload fol-

lows daily pattern, the combination of two Gaussian functions in a range of [0, 1] with

the given equation has been chosen. A Gaussian function is defined by Equation 4.2.

f (x) = e−
(x−a)2

2b2 (4.2)

The function is shown in Figure 4.3. As it can be seen in Figure 4.3, the function

can be fit into two-parts for two sets of values of a and b. With a = 0.13 and b = 0.25

the first part of the curve can be fit; and with a = 0.38 and b = 0.13, the second part

of the curve is fit. The resulting shape in Figure 4.3 has been divided in 24 buckets of

equal width, where buckets are related to a specific hour in a day and they starts at

4:00 AM. Then, the proportion of the number of requests arriving every hour of the day

is calculated according to the ratio of the area in a bucket to the total area under the curve.

Afterwards, we generate a uniformly distributed arrival time for requests in every hour.

In order to create the weekly patterns for the workload, we divided days per week in two

96 Financial Option Market Model

Fri Sat Sun Mon Tue Wed Thu
50

100

150

200

250

300

Days

L
o
a
d

Figure 4.4: Generated workload during a week.

parts: weekdays and weekend (Saturday and Sunday) with a lower number of requests

for the weekend (reduction of 50%). In our simulation the number of requests per day in

weekdays and weekends vary to increase or decrease the data center load. An example

of load generated via our workload model for one week is depicted in Figure 4.4.

We intend to study the behavior of the financial option-based market model in dif-

ferent situations of the load. For this purpose, our workload model is applied to gener-

ate reserved and on-demand requests separately with different values for weekdays and

weekends.

Simulation Setup

The experiments presented in this work were developed using the CloudSim [16], a

discrete-event cloud simulator. The simulated scenario is created according to the model

in Section 4.3.

Considering the components in Figure 4.1, the cloud provider in our simulation re-

ceives the VM requests generated by the described workload model in the previous sub-

section. Requests are either on-demand or reserved. The VM configuration is inspired

by Amazon Elastic Compute cloud (Amazon EC2) small instances.5 The pricing is also

adopted from the Amazon EC2 price of small instances in the US east region for on-

5Small instance: 1 CPU core, 1.7 GB RAM, 1 EC2 Compute Unit, and 160 GB of local storage

4.6 Performance Evaluation 97

demand and medium utilization reserved instances at the time of the experiment.6 The

provider charges their customers based on hourly usage, at the cost of $0.085 and $0.030

per hour for on-demand and reserved VMs, respectively. We do not take into account the

premium fee for the reservation contract as it only adds a constant value to the provider

revenue.

The provider capacity is set equal to the maximum number of simultaneously

runnable VMs. In our simulation, the provider capacity is set to 200 VMs. For the sake

of better analysis, the reserved capacity of the data center is considered as steady con-

stant value for the whole simulation. The reserved capacity is set to 100 VMs in all the

experiments.

Federation spot market prices are generated according to the statistical model pre-

sented in [47]. The model fits well with the price fluctuation of the spot instances in the

Amazon EC2 spot market. The model is applied in our work because of two main rea-

sons. First, correlation between generated spot prices and the price of on-demand and

reserved instances makes the evaluation of our model more significant. Second, the sta-

tistical model provides more flexibility to investigate our proposed market mechanism

in comparison to the spot price traces of Amazon as we can modify the parameters.

Option pricing is done by the previously described method in Section 4.4. The depth

of the binomial tree to calculate the option value is 30. Volatility, as we mentioned earlier,

is calculated according to the examination of the past spot prices leading to the contract

time with the same length of option maturity time.

In our experiments, the length of a simulation period is 6 months. Each experiment is

carried out 30 times and the mean value of the results are reported.

4.6.2 Performance Metrics

Two different performance metrics for evaluation purposes have been used in our exper-

iments. Our model has been developed to increase the provider’s profit while availabil-

ity of the reserved instance remains high. Therefore, profit has been selected as a first

measure to evaluate the model. Provider’s profit calculated according to the following

6Amazon EC2 pricing, http://aws.amazon.com/ec2/pricing/.

http://aws.amazon.com/ec2/pricing/

98 Financial Option Market Model

equation:

P = RO + RR − Cout,O − Cout,R − Coption − Cp , (4.3)

where RO and RR are the revenue of the on-demand and reserved instances. Cout,O and

Cout,R are cost of buying resources from another provider to outsource on-demand and

reserved instances, respectively. All RO, RR, Cout,O and Cout,R are computed by the sum-

mation of the running expenses for the served VMs of each pricing plan during the ex-

periment’s period. The running expense of a VM is calculated according to the price per

hour multiplied by the instance-hours consumed for each VM, from the time an instance

is started until it is terminated. Each partial instance-hour is considered as a full hour.

The reservation fee for the reserved instances is not considered here as it imposes a same

fixed value in calculation of the RR for all the policies. Coption is the total cost for buy-

ing options in the federation (premium costs) incurred by the provider. Finally, CP is

the provider’s cost, which includes the operational cost of the data center (i.e., hardware

and software acquisition, staff salary, power consumption, cooling costs, physical space,

amortization of facilities, etc.). We ignore Cp in our experiments as it imposes a constant

value to all policies.

The second metric is the number of rejected reserved requests, which shows the num-

ber of SLA violations for the reserved instances.

4.6.3 Experimental Results

In the first set of experiments we evaluate the profitability of the model by changing the

loads of the on-demand and reserved requests. First, all parameters of the system were

fixed and the load of the reserved capacity was increased (Figure 4.5a). The capacity of

the data center is 200 VMs, the reserved capacity is 100 VMs, the maturity time of the

options is 30 days, and the number of on-demand requests per weekdays and weekends

is 700 and 350, respectively.

Average utilization of the reserved capacity in the data center was changed by increas-

ing the number of reserved requests. As shown in Figure 4.5a, the generated profit for

4.6 Performance Evaluation 99

�����

(a)

�����

(b)

Figure 4.5: Impact of (a) the reserved capacity utilization and (b) the number of on-
demand requests on provider’s profit with different policies.

the IIP and FIP, which do not use the underutilized capacity of the reservation for accom-

modating on-demand VMs, rises smoothly with the increment of the reserved capacity

utilization. The difference between IIP and FIP is caused by the outsourcing of the excess

on-demand requests in the FIP. On the other hand, as the reserved capacity utilization

is increased, FSPO experiences less growth in profit in comparison to the other policies

as the underutilized capacity for in-house accommodation of the on-demand requests

decreases. Eventually, FSPO generates the same profit as the FIP policy.

We use the same configuration of the previous experiment while utilization of the re-

served capacity is fixed at 52% and the number of on-demand requests is varied from 300

to 800 per day for weekdays and half of that for weekends. All policies generate the same

profit at low number of on-demand requests because outsourcing on-demand requests or

accommodating them in the reserved capacity is not required. The IIP policy that does

not benefit from the potential of outsourcing, generates less profit in comparison to the

other policies. The FSPO is the most dominant policy as it utilizes both federation and

the underutilized reserved capacity.

The objective of the third experiment is to examine the effects that the volatility of

market prices has on the profit making opportunity from the proposed model. Since

the prices generated by the spot pricing model proposed by Javadi et al. [47] to model

100 Financial Option Market Model

Table 4.1: Number of On-demand (O), Reserved (R), Rejected On-demand (RO), Rejected
Reserved (RR), Outsourced On-demand (OO), and Outsourced Reserved(OR) requests
for the provider with policies.

Policy O R RO RR OO OR
IIP 106340 36590 42450 0 0 0

In-house + Shared Pool 106340 36590 19188 6636 0 0
FIP 106340 36590 219 0 42230 0

Federated + Shared Pool 106340 36590 111 38 19078 6598
FSPO 106340 36590 111 0 19078 6636

Amazon EC2 spot prices has substantially low price volatility, we increase the standard

deviations of the mixture of Gaussian distributions used by the model to achieve higher

volatility. In order to remove unrealistic very low market prices, prices below $0.025 were

ignored. Simulation parameters for this experiment were set as follows. The capacity of

the data center is 200 VMs, the reserved capacity is 100 VMs, the maturity time of the

options is 30 days, and the number of on-demand requests per weekdays and weekends

is 700 and 350, respectively, and the utilization of the reserved capacity is 64%. As shown

in Figure 4.6, FSPO is more resilient to the higher degree of volatility in comparison to

FIP, as it secures the outsourcing cost at prices below the price of reserved instances. Note

that when the spot price fluctuates more, the provider has to buy options at a higher price

to hedge against price variation.

�����

Figure 4.6: Impact of price volatility on behaviors of policies.

We added a shared pool strategy to the baseline policies. The number of rejected

reserved instances is reported in Table 4.1. It demonstrates how the option model helps

4.7 Summary and Conclusion 101

providers to hedge against the risk of SLA violations for the reserved instances. We

considered that resources are not available in the spot market of the federation, if the

spot price is higher than $0.085 (on-demand price). The higher risk of unavailability

in the market will cause more SLA violations for the Federated Shared Pool policy. The

Federated Shared Pool policy shows a small number of rejections in our experiments,

as the model we used here to generate spot prices according to the Amazon EC2 spot

market rarely generates prices higher than the on-demand price.

We also investigate the impact of the maturity time of the option in profitability of the

FSPO policy. The maturity time for the option contract was varied from 7 to 90 days and

the generated profit was reported in Table 4.2. The configuration of this experiment is

the same as the first experiment when the utilization of the reserved capacity is 52%. The

results show that the maturity time of the option contracts does not have a significant

impact on the gained profit because when the maturity time rises, the number of bought

option contracts falls.

Table 4.2: Impact of option maturity time on provider’s profit using FSPO.

Maturity time (Day) Bought Option Profit ($)
7 3086 63588
10 2612 63588
30 1913 63583
60 1745 63578
90 1701 63574

4.7 Summary and Conclusion

Cloud providers usually offer on-demand and reserved plans. Since the resources traded

in clouds are non-storable and the physical resources need to be replaced very often, ex-

ploiting part of the reserved capacity that is not used by the reserved users has a great

benefit for the providers. Nevertheless, agreed Quality of Service (QoS) with customers

who reserve resources in advance should be satisfied. Therefore, a need for a mecha-

nism to guarantee resources to reserved users whenever they need them, while keeping

resources loaded all the time is of value.

102 Financial Option Market Model

We proposed a financial option model for a federation of cloud providers to address

the above situation. This model allows a provider to hedge the critical and risky situation

of reserved users requesting the resources while all the resources have been allocated to

other users, by trading (buy or outsource) resources from other service providers in the

cloud federation.

Experimental results demonstrated that financial option based contracts between

cloud providers in a cloud federation, would help them to exploit the underutilized re-

served capacity without any concern to acquire the needed resources at any given time.

The provider’s profit will be increased by using our model, while the number of rejec-

tions of the reserved requests is negligible. The model therefore contributes to obtaining

a trust and goodwill from the provider’s client base.

Part II

Profit Maximization for a Single Cloud
Provider

103

Introduction to Part II 105

Introduction to Part II

AS popularity of cloud computing is rapidly growing and many more cloud

providers are emerging, cost efficiency and revenue maximization become two

major concerns of cloud providers to remain competitive while making profit. In the

first part of the thesis, we investigated the profit maximization problem in a federated

cloud environments where cloud providers cooperate to increase the degree of multiplex-

ing. In this part, we outline novel economics-inspired resource allocation mechanisms to

tackle the profit maximization problem from the perspective of a cloud provider acting

solely. In chapter 5, we propose admission control mechanisms tailored within a revenue

management framework to maximize revenue where various pricing plans in multiple

marketplaces are supported by the provider. In chapter 6, we propose an auction-based

dynamic pricing mechanism suitable for selling the spare capacity of the data center. In

the subsequent chapter, we present a realization of the proposed dynamic pricing mech-

anism within a pricing as a service framework.

This page intentionally left blank.

Chapter 5

Revenue Management with Optimal
Capacity Control

Infrastructure-as-a-Service cloud providers offer diverse purchasing options and pricing models,

namely on-demand, reservation, and spot market plans. This allows them to efficiently target a va-

riety of customer groups with distinct preferences and to generate more revenue accordingly. An

important consequence of this diversification however, is that it introduces a non-trivial optimiza-

tion problem to the provider with respect to the allocation of its available data center capacity to each

pricing plan. In general, despite all benefits of reservation plan, computing resources provisioned by

reservation plan generate lower revenue than that of on-demand plan. The spot market is also a choice

for selling the spare capacity in the data center. Therefore, in this work, we address a novel problem

of maximizing revenue through an optimization of capacity allocation to each pricing plan by means

of admission control for reservation contracts, in a setting where aforementioned plans are jointly of-

fered to customers. We devise both an optimal algorithm based on a stochastic dynamic programming

formulation and two other algorithms that trade-off optimality and computational complexity. Our

evaluation, which relies on an adaptation of a large scale real-world workload trace of Google, shows

that our algorithms can significantly increase revenue compared to an allocation without capacity

control given that sufficient resource contention is present in the system. In addition, we demonstrate

that our algorithms effectively allow for online decision making and quantify the revenue loss caused

by their assumptions to render the optimization problem tractable.

5.1 Introduction

IN the Infrastructure as a Service (IaaS) model of cloud computing, customers pur-

chase units of computing time in the form of virtual machine (VM) instances in a

flexible pay-as-you-go manner through the Internet [15]. Cloud providers maintain large-

107

108 Revenue Management with Optimal Capacity Control

scale data centers to offer these computational resources on-demand and at a relatively

low cost thanks to the economies of scale. Yet, to ensure business success, they need to

obtain the highest possible revenue from selling available resource capacity. Methods

such as adopting differentiated pricing plans, market segmentation [127] and demand

forecasting [139], can be used so that the maximal amount of capacity is sold at the high-

est possible price.

As the computational resources involved constitute a non-storable or perishable com-

modity [134], cloud providers benefit from maximizing resource utilization in order to

maximize revenue. Consequently, many IaaS providers offer various pricing plans (or

markets) such as reservation (subscription) and spot market-based plans, in addition to an

on-demand pay-as-you-go pricing plan. In the reservation plan, users pay an upfront reser-

vation fee (premium) to reserve resources for a specific period of time (e.g., one year). In

exchange, they receive a significant discount on the hourly resource usage price. The spot

market allows users to submit the maximum price they are willing to pay to an auction-

like mechanism as a bid. Users gain access to the acquired resources as long as their bid

exceeds the provider’s last computed market clearing price, which also determines the

resource’s uniform usage price until the next market clearing.

The segmentation of demand through different pricing plans is attractive to the

provider for a number of reasons. For instance, risk-free income from reservations, on

one hand, provides guaranteed cash flow through long-term commitments and can com-

pensate for the demand uncertainty associated with the on-demand pay-as-you-go pric-

ing plan [127]. The spot market, on the other hand, can attract price-sensitive users that

are capable of tolerating service interruptions, allowing the provider to generate addi-

tional revenue from spare capacity in the data center without being exposed to the risks

resulting from overbooking capacity.

The use of multiple pricing plans introduces a number of non-trivial trade-offs to

IaaS providers with respect to revenue maximization. Although on-demand pay-as-you-

go requests often generate the highest revenue per resource hour sold, they suffer from

future demand uncertainty. The upfront fee of the reservation plan is beneficial from a

cash flow perspective, but in the long-run, the total revenue generated is lower than the

5.1 Introduction 109

one obtained by selling equivalent usage hours under an on-demand pay-as-you-go plan.

Moreover, the provider is liable to offer guaranteed availability for reserved requests to

honor the associated Service Level Agreement (SLA), which might be costly when cus-

tomers do not fully utilize their reserved capacity in the reservation’s lifetime [4]. Al-

locating this underutilized reserved capacity to on-demand requests (i.e., overbooking

resources), creates the risk of SLA violations. Spot instances on the other hand, can be

terminated by the provider whenever their resources are required to honor commitments

made with respect to other pricing plans. The provider therefore has the freedom to ac-

commodate spot instances in the underutilized reserved capacity of the data center. Con-

sequently, the benefits of this flexibility from a revenue management perspective must be

considered when admitting new reservation contracts.

We address the problem of maximizing revenue when these three pricing models

are jointly applied. Our main research question is the following: with limited resources

available, and considering the dynamic and stochastic nature of customers’ demand, how

can expected revenue be maximized through an optimal allocation of capacity to each

pricing plan?

We frame our algorithmic contributions within a revenue management framework that

supports the three presented pricing plans and that incorporates an admission control

system for requests of the reservation plan. To the best of our knowledge, we are the first

to consider on-demand pay-as-you-go, reservation and spot market-based plans jointly

offered in a revenue maximization problem of IaaS cloud providers.

In summary, our main contributions are:

• We formulate the optimal capacity control problem that results in the maximiza-

tion of revenue as a finite horizon Markov decision process (MDP) [94]. We present a

stochastic dynamic programming technique to compute the maximum number of

reservation contracts the provider can accept from the arriving demand in order to

maximize revenue. For a large capacity provider, the use of the stochastic dynamic

programming technique is computationally prohibitive. We therefore present two

algorithms to increase the scalability of our solution. The first increases the spatial

and temporal granularity of the problem in order to solve it in a time suitable for

110 Revenue Management with Optimal Capacity Control

practical online decision making. The second sacrifices accuracy to an acceptable

extent through a number of simplifying assumptions on reserved capacity utiliza-

tion and the lifetime of on-demand requests to increase scalability.

• We evaluate our proposed framework through large-scale simulations, driven by

cluster-usage traces that are provided by Google. We propose a scheduling algo-

rithm that generates VM requests based on the user resource usage in these traces.

Under pricing conditions that are aligned with those of Amazon EC21, we demon-

strate that our admission control algorithms substantially increase revenue for the

provider.

This chapter is organized as follows: after reviewing the related work in Section 3.2,

we introduce the system model in Section 5.3. Its subsections discuss 1) the cloud pric-

ing models used in this chapter, 2) the optimal revenue management problem, and 3) a

stochastic dynamic programming technique to tackle the problem. We propose the ad-

mission control algorithms namely pseudo optimal and heuristic in Section 5.4. Section 5.5

focuses on the revenue management framework and its architecture. The performance

evaluation of the framework and a comparison between the admission control algorithms

is presented in Section 5.6. Our conclusions are presented in Section 3.6.

5.2 Related Work

Revenue management (also known as yield management) is the process of maximizing rev-

enue from a fixed, perishable resource capacity using market segmentation and demand

management techniques. During the last few decades, revenue management has wit-

nessed significant scientific and practical advances especially in the airline and hotel in-

dustries. The literature is vast on the topic and it is not our aim to cover the area exhaus-

tively, but to rather present the relevant existing applications of this field to cloud com-

puting. Interested readers can find a detailed overview of revenue management in [132].

One of the early attempts to incorporate revenue management into cloud computing

was made by Püschel and Neumann [93]. They investigate the use of a policy-based
1http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/

5.2 Related Work 111

admission control model to resource management components using techniques such as

client classification and dynamic pricing. Similar work has been done by Meinl et al. [64]

who applies derivative markets and yield management techniques for revenue maxi-

mization.

Macı́as et al. [60] propose several techniques such as dynamic pricing, over-

provisioning, and selective SLA violation to maximize cloud provider revenue. Recently,

Kashef et al. [50] proposed a system architecture for cloud service providers that com-

bines demand-based pricing with resource provisioning. They compare two revenue

management techniques for cloud computing. The first sets the timing for offering price

discounts, whereas the second determines the number of VMs that should be offered at

full price.

Anandasivam et al. [4] utilize a bid-price control technique that originates from the rev-

enue management literature for capacity management which accepts or denies incoming

requests for service in order to increase revenue. Bid-price control is an accepted and

efficient method in Airline revenue management in which threshold values, which also

called bid prices, are set for each leg of an itinerary and ticket is sold if its fare exceeds the

sum of the bid prices along the path. Their model considers multiple resources such as

CPU, memory, storage, and bandwidth, while our model comprises bundles of resources,

i.e., VM instances.

The main difference between these works and ours is that none of them considers

the joint adoption of the multiple different pricing plans presented in this chapter. As a

result they are not applicable for most current cloud providers that are offering different

pricing plans.

In our model, the provider is faced with stochastic and dynamic arrivals and depar-

tures of customers’ requests and must decide on whether to admit an incoming reserva-

tion contract or to reject it. Similarly, Nair and Bapna [78] introduced a revenue manage-

ment technique based on the admission control for the application domain of an Internet

Service Provider (ISP). They formulate the problem as a continuous time Markov deci-

sion process over an infinite planning horizon to dedicate ISP capacity to customers at

any instant of time. Despite these similarities, their application domain differs from cloud

112 Revenue Management with Optimal Capacity Control

computing and their approach cannot be directly applied in the cloud context.

Mazzucco and Dumas [63] examine the problem of allocating servers to two classes

of customers, premium and basic, in a way that maximizes provider revenue. The authors

rely on a queuing model to tackle the optimization problem. Their work differs from

ours since they have done the optimization for a case of a platform as a service provider;

therefore their assumptions, pricing plans, and experimental setting differ.

There is a large body of research devoted to minimizing cost for cloud consumers

using different pricing models, see for example [21,45,121,129]. However, limited inves-

tigation has been done on resource allocation and capacity planning techniques to max-

imize provider revenue. The problem of dynamically allocating resources to different

spot markets for revenue maximization has been investigated by Zhang et al. [139]. Sup-

ply adjustment and dynamic pricing are used as a means to maximize revenue and meet

customer demand. They model the problem as a constrained discrete-time and finite-

horizon optimal control problem and adopt Model Predictive Control (MPC) techniques to

design the dynamic algorithm solution. MPC is a widely used industrial technique for

advanced multivariable control in the presence of nonlinearities and uncertainties. The

study does not consider the coexistence of multiple markets, focusing solely on the spot

market. Deciding on the optimal capacity segmentation for on-demand and spot market

requests has been formulated as a Markov decision process by Wang et al. [127]. As a

part of their work, they propose an optimal mechanism for a spot market based on the

uniform price auction. In their model, they only consider on-demand pay-as-you-go and

spot market requests and assume that reservation contracts are always fulfilled in highest

priority.

Xu and Li [134] present an infinite horizon stochastic dynamic program to maximize

the cloud provider’s revenue with stochastic demand arrivals and departures.They aim

at maximizing revenue specifically for the spot market and do not consider the case that

the provider offers other pricing plans. Similarly, Truong-Huu and Tham [118] formulate

the competition among cloud providers as a non-cooperative stochastic game which is

modeled as Markov decision processes to maximize cloud providers’ revenue. They pro-

vide dynamic resource pricing in which providers propose optimal price policies with

5.3 System Model 113

User Interface

On-demand
pay-as-you-go

Spot Market
Reservation

(Subscription)

Revenue Management Framework
(Capacity Control)

 IaaS Cloud Provider

Cloud Customers

Figure 5.1: Schematic system model addressing the capacity control problem.

regard to the current policies of other competitors. They also introduce a novel approach

for the cooperation among providers to enhance revenue and acquire the needed re-

sources at any given time. Both studies rely on dynamic pricing as the main technique to

maximize revenue, whereas our work focuses on capacity management and admission

control without imposing any particular dynamic pricing policies.

5.3 System Model

In this section, we review common cloud pricing plans, and formulate the optimal capac-

ity control technique with a revenue maximization objective. Fig. 5.1 shows the schematic

system model.

114 Revenue Management with Optimal Capacity Control

Table 5.1: Pricing of the standard small on-demand, reserved and spot instances
(m1.small, Linux, us-east) in Amazon EC22

Pricing Plan Upfront Hourly rate
On-demand $0 $0.060

1-year Reserved (light Utilization) $61 $0.034
1-year Reserved (Medium Utilization) $139 $0.021
1-year Reserved (Heavy Utilization) $169 $0.014

Spot $0 Spot Market Price

5.3.1 Cloud Pricing Plans

On-demand pay-as-you-go plan

This plan charges customers for compute capacity based on actual usage, without requir-

ing any contractual long-term commitments. The service is charged for at a fixed rate per

billing cycle (e.g., hourly) from the time the instance is launched until it is terminated.

Given an hourly price of p the customer is charged ph for an instance held for h hours.

After instantiation of an instance, customers can retain it for as long as they wish. A re-

quest for on-demand instances can be denied if the provider has insufficient resources

available. Note that the rate for on-demand pay-as-you-go instances is fixed at most IaaS

providers for a long period of time (i.e., months to years), and can therefore be viewed

as a constant value. Moreover, the one-hour billing cycle, selected based on the Ama-

zon EC2 billing period, can be replaced with any other billing period, e.g., per-minute or

per-day billing cycle without any specific change in our model.

Reservation plan

This plan allows customers to reserve an instance for a certain reservation period (e.g.,

months or years) and assures that the reserved capacity is available whenever it is re-

quired in that period. During the reservation period, the reservation is said to be live.

The customer must pay an upfront reservation fee (premium) of ϕ, after which the

usage is either free (e.g., as in GoGrid3) or heavily discounted (e.g., Amazon EC2). The

2Amazon EC2 pricing as of March. 30, 2014, http://aws.amazon.com/ec2/pricing/.
3GoGrid, http://www.gogrid.com/.

http://aws.amazon.com/ec2/pricing/.
http://www.gogrid.com/

5.3 System Model 115

premium is a one-time fee that must be paid irrespective of how much the instance is

used during the reservation period. The total amount of instance hours consumed by a

single customer account are aggregated per billing cycle and then automatically matched

to any reserved capacity contracts the customer has in its portfolio.

Let α ∈ [0, 1] be the discount factor on the on-demand plan’s rate that is obtained

when reserving a given instance type. Then, total h hours of running the reserved in-

stance in the whole reservation period costs ϕ + αph. For example, in Amazon EC2, a

premium of $61 reserves an m1.small instance (Linux, US East, Light Utilization) for 1

year, resulting in a $0.034 per hour usage price within the reservation period compared

to the on-demand hourly rate of $0.060 (α = 0.57), see also Table 5.1. Partial utilization

of the reserved capacity can still lead to cost benefits for customers. For example, for the

m1.small reserved instance, a cost reduction is obtained if the instance runs for more

than 2347 hours (or roughly 98 days ¡¡ 1 year), that is, 61 + 2347× 0.034 ' 2347× 0.060.

Therefore, the break-even point is 98 days and reservation is only beneficial if it is used

more than roughly 98 days.

Some cloud providers offer multiple reservation plans with different reservation pe-

riods and expected utilization levels. For example, Amazon EC2 offers 1 or 3-year terms

contract for light, medium, and heavy levels of utilization. For the sake of simplicity, we

limit the discussion to one type of reservation only within a given reservation period (τ)

in number of time units (e.g., hours). Our model can be extended to include more than

one type of reservations.

Spot market

In this plan, customers submits their bids for acquiring instances and subsequently the

provider reports a market-wide clearing price at which instances are charged. The in-

stance can be terminated by the provider as soon as the spot market’s clearing price rises

above the customer’s bid. The customer therefore does not have solitary control over the

instance’s lifetime.

The provider can use a variety of market mechanisms for the spot pricing, e.g., vari-

ants of auction mechanisms that determine the allocation and pricing rules. Likewise, the

116 Revenue Management with Optimal Capacity Control

frequency of the mechanism’s clearing can be varied (e.g., upon each bid arrival, instance

termination, every hour). At present, providers offer limited transparency with respect

to the actual mechanisms used in their spot markets.

Consequently, we do not consider any specific spot pricing mechanism in this work,

and situate the fine-grained computation of spot price dynamics outside the scope of

this work. Instead, we model spot instances’ price by a constant factor β ∈ [0, 1] that

determines the average discount rate for these instances’ hourly usage relative to the on-

demand rate. We therefore assume that on average, the spot market price lies below the

on-demand rate, which is reasonable given the lower quality of service (QoS) provided.

According to Amazon EC2, recent spot prices on average are typically 86% lower com-

pared to on-demand pay-as-you-go instances, i.e., β = 0.14. We assume that provider

always retains the capability of terminating spot instances in favor of more profitable

requests as a strategic tool to increase revenue.

In general, on-demand pay-as-you-go instances can generate more revenue for the

provider, while reserved instances can provide a risk-free upfront income and foster long

term commitments by customers. A disadvantage of the reservation plans is that the

provider is liable to provide guaranteed availability for the reserved requests while cus-

tomers do not necessarily fully utilize their reserved capacity in the reservation period.

An opportunity therefore exists to make this underutilized capacity available to instance

requests originating from other pricing plans. As spot instances are allowed to be ter-

minated by the provider, we model the possibility that the provider accommodates spot

instances in the underutilized reserved capacity of the data center. In principle, it is also

possible to make underutilized capacity available to on-demand instance requests. This

however, creates the risk of SLA violations occurring as the provider has no direct control

over the lifetime of on-demand instances. In this chapter, we do not allow accommodat-

ing on-demand requests in underutilized reserved capacity, and therefore rule out this

further opportunity for revenue maximization.

5.3 System Model 117

5.3.2 The Optimal Capacity Control Problem

To maximize revenue, the cloud provider aims to optimally allocate its available capacity

to requests from different pricing plans. In this section, we formally describe the problem

of optimizing admission decisions on reservation contracts such that the overall revenue

is maximized.

Suppose that the provider’s capacity is C for a specific instance type, i.e., at any given

time, up to C instances of that type can be hosted simultaneously. We consider the given

instance type as the only one in the system. Consequently it represents our unit of ca-

pacity. However, this is not a limiting assumption as we can model other instances as

multiples of the unit capacity with a limited error.

We discretize the time horizon into identically sized slots. The slot size is aligned with

the provider’s billing cycle (e.g., an hour). We assume that, given the large degree of

workload multiplexing, the provider is able to predict upcoming demand for its different

pricing plans for Γ time slots4. Suppose that at the current time t = 0, the provider

predicts the number of requests in the reservation, on-demand and spot markets for a

window of size Γ as (dr
0, ..., dr

Γ−1), (d
o
0, ..., do

Γ−1) and (ds
0, .., ds

Γ−1) respectively. The provider

makes a decision to admit rt reservation contracts at time t with 0 ≤ rt ≤ dr
t to maximize

the revenue generated in the window. Our formulation is therefore greedy with respect

to the size of the prediction window.

Let lr
t denote the total number of previously admitted reservation contracts that re-

main live at time t (i.e., reserved capacity at time t is lr
t + rt). Similarly, the total number

of previously running on-demand and spot instances that remain active at that time are

denoted by lo
t and ls

t respectively. Therefore at time t the provider can accommodate the

maximum of ot additional on-demand instances without overbooking the infrastructure,

as per following equation:

ot = min(C− lr
t − rt − lo

t , do
t) (5.1)

Let ut ∈ [0, 1] denote the utilization of the reserved capacity at time t, e.g., if the

4Note that our aim, in this chapter, is not to present specific workload prediction techniques and this has
previously been addressed in the literature [86, 139].

118 Revenue Management with Optimal Capacity Control

total number of live reservations at time t is 1000 and 600 reserved instances are running

at that time, ut = 0.6. After accommodating the reservation contracts and on-demand

pay-as-you-go requests, the remaining capacity can be used for spot instances, that is,

min(C− ut× (lr
t + rt)− lo

t − ot, ds
t) spot instances can be accommodated, where ut× (lr

t +

rt) represents total number of reserved instances running at time t.

Problem definition: The provider’s problem is to find r0, r1, ..., rΓ−1, or, in other

words, to decide how many reservation contracts must be admitted for each time slot

such that the revenue obtained within the prediction window is maximized. The total

revenue that can be obtained within the window is:

Γ−1

∑
t=0

rt ϕ + αput(lr
t + rt) + p(lo

t + ot) + βp(ls
t + st) , (5.2)

where the first term is the revenue from the upfront reservation fees and the second, third

and fourth terms are the revenues per time slot from running reserved, on-demand, and

spot instances respectively. The maximization problem can therefore be defined as:

max
rt

Γ−1

∑
t=0

rt ϕ + αput(lr
t + rt) + p(lo

t + ot) + βp(ls
t + st)

s.t lr
t + rt + lo

t + ot ≤ C ,

ut(lr
t + rt) + lo

t + ot + ls
t + st ≤ C ,

∀t = 0, ..., Γ− 1 . (5.3)

Here, the first constraint ensures that the number of live reservations and running

on-demand instances remains within the provider’s capacity, thereby ensuring that no

SLA violations on the reservation contracts can occur. The second constraint limits the

total amount of running instances over all pricing plans to the same capacity.

The optimization problem (5.3) is non-trivial and by no means easy to solve. The root

cause of the problem’s complexity lies in the fact that the number of running instances in

each slot for each pricing plan depends on the history of admitted requests in previous

slots. Moreover, the duration that instances remain active in the system is not known a

priori as the provider is often unaware of the application type running in the instance.

5.3 System Model 119

In the next section, first we make a few assumptions that make the problem tractable

and reduces the problem’s complexity. Afterwards, we propose a stochastic dynamic

programming solution to tackle problem (5.3). For reference, Table 5.2 summarizes the

symbols used throughout the chapter and their definitions.

5.3.3 Optimal Capacity Control

We devise a stochastic dynamic programming formulation to tackle problem (5.3) in this

section. First, we introduce a number of assumptions made for solving the optimization

problem. After that, using a set of recursive Bellman equations [94], we show that the

problem can be broken down into simpler sub-problems, each of which can be solved

optimally. Finally, we present our stochastic dynamic programming approach, while

optimal is computationally prohibitive to use for cloud providers of large scale.

Assumptions

In general, the lifetime of on-demand pay-as-you-go instances is not known to the

provider in advance. By lifetime, we mean the amount of time the customer runs the

instance from the time it is started until it is stopped or terminated. We denote by hj the

lifetime of instance j. To make the analysis tractable, similar to [127] we assume that hj’s

are exponentially i.i.d. (Independent and Identically Distributed) random variables. In

our discrete settings, this means that hj follows a geometric distribution [94] with a prob-

ability mass function (pmf) of P(hj = k) = (1− q)k−1q for k = 1, 2, 3, ..., where q is the

probability that the customer terminates the currently running instance in the next time

slot. Since the expected value of hj is 1/q, the expected payment over the lifetime of an

on-demand pay-as-you-go instance is E[hj p] = p/q.

In practice, the spot market’s underlying market mechanism must be run at each time

slot, involving bids from newly arrived requests and currently running spot instances. In

fact, the provider does not distinguish newly submitted requests and those requests that

are admitted previously in each round of auction [127]. Moreover, spot instances can be

terminated by the provider at any time during their execution by adjustment of the mar-

120 Revenue Management with Optimal Capacity Control

Table 5.2: Symbols and Definitions.

Symbol Definition

Γ Prediction window size

p On-demand pay-as-you-go instance price per hour

ϕ Upfront reservation fee (premium)

α Discount rate due to reservation, the reserved instance price is αp per
hour

β Ratio of average price of spot to on-demand instances

rt Number of reservation contracts admitted at time t

ot Number of on-demand pay-as-you-go instances accepted at time t

st Number of spot pay-as-you-go instances accepted at time t

dr
t Predicted number of reservation contracts at time t

do
t Predicted number for on-demand pay-as-you-go requests at time t

ds
t Predicted number of spot instances at time t

lr
t Total number of live reservation contracts at time t

lo
t Total number of active on-demand instances at time t

ls
t Total number of active spot instances at that time t

τ Reservation period in number of time slots

ut Utilized reserved capacity by reserved instances at time t

it Reserved capacity utilization class interval to which the reserved ca-
pacity utilization at time t belongs

|Z| Number of reserved capacity utilization class intervals

zi Representative value of the class interval i

hj lifetime of instance j in number of hours

ςt Data center state at stage t, ςt = (lr
t , lo

t , it)

q Termination probability of the running on-demand pay-as-you-go in-
stance in the next time slot

λt Discount factor for upfront reservation fee at time t

ū Mean reserved capacity utilization

er
t Number of expired reservations by the end of time t

V(ςt) Expected revenue obtained from t = 0 to τ − 1

P(ςt+1|ςt, rt) Transition probability from ςt to ςt+1 given the chosen action rt

γ(ςt, rt) The revenue for each state-action pair

B Number of instances per block of capacity

T Number of billing cycles (hours) per each time slot

5.3 System Model 121

ket clearing price. This allows the provider to shape the load according to the available

capacity and user bids. Therefore, to avoid the resulting complexity with respect to the

lifetime of spot instances, we assume that the load for the spot market in each time slot

is independent of the previous slots and is solely defined by demand on that time slot

(ds
t), i.e., ls

t = 0. The load prediction component in our framework therefore computes ds
t

based on the aggregated load of the spot market in past time slots, that is, ds
t implicitly

includes ls
t .

We treat ut, the reserved capacity utilization at time t, as a categorical random vari-

able. We categorize the reserved capacity utilization range into a set of |Z| classes. Each

class is associated to a utilization interval, denoted by i, of which the midpoint is used as

the representative value of the corresponding class. The representative value of the i’th

class interval is denoted by zi ∈ Z with 0 ≤ i < |Z|. For instance, if we take |Z| = 5,

the utilization range of [0, 1] is divided to five class intervals of [0, 0.2], [0.2, 0.4], ..., [0.8, 1].

Z = {0.1, 0.3, 0.5, 0.7, 0.9} is used as a set of discrete values for categorizing the reserved

capacity utilization. If ut lies within [0.2, 0.4], then it belongs to the class interval 1 and the

class interval representative value of 0.3 is used as utilization value at time t. Note that

the class interval to which the reserved capacity utilization at time t belongs is denoted

by it, and in our calculation, we use representative value of that class as the reserved

capacity utilization at that time (i.e., zit).

Treating ut as a discrete random variable is necessary for the dynamic programming

solution we propose in this section and the number of class intervals can be chosen de-

pending on the desired granularity of the analysis. The provider is assumed to have

sufficient data center load history available in order to derive the pmf of ut in advance,

i.e., P(ut = zit) is known for all zit .

Suppose ςt denote the state at time t that holds all information about the load in the

data center at time t. In order to find an optimal solution for problem (5.3) using dynamic

programming, each state ςt at time t is required to depend solely on the state at time t− 1

(ςt−1) and be independent of all earlier states ςt−2, ςt−3, ..., ς0. As we know, every state ςt

must include the total number of live reservations at time t. Clearly, with a reservation

period of size τ, the total number of live reservations at time t depends on rt−τ+1, ..., rt−1,

122 Revenue Management with Optimal Capacity Control

as reservations admitted earlier than t− τ + 1 will no be longer available at t. To make ςt

only dependent on ςt−1, one could resort to the inclusion of τ− 1 values in the state, each

one representing the number of instances reserved at t− i, i = τ − 1, ..., 1. This leads to a

high-dimensional state space. Note that τ is often large (e.g., the number of hours in one

year) and the number of instances that are reserved at each time slot t can be as large as

C. Iteration over the possible states in the problem space therefore results in exponential

time complexity, leading to the curse of dimensionality [90].

In practical online cases, the provider is interested in finding the admission threshold

at the current time instantly. Moreover, the impact of admitting a reservation at t is only

affected by future events in the reservation period [t, t + τ − 1]. We therefore limit the

prediction window Γ = τ. This significantly reduces the dimensional space of each state

as every admitted reservation in the window remains live until the end of the prediction

window. Therefore, state ςt only encompasses the total number of live reservations at

time t which only depends on lr
t and rt the number of accepted reservation contracts in

that state.

Dynamic Programming Formulation

We start our formulation by defining stages (decision epochs) and states. The decision

problem consists of τ stages indexed 0 to τ − 1, each representing a time slot. The

provider must decide on the number of admitted reservation contracts (rt) at each time

slot t to maximize revenue.

A state at stage t is denoted by ςt = (lr
t , lo

t , it). ςt holds all information about the load

in the data center at time t, i.e., the number of reservations that remain live from previous

time slots in time slot t (lr
t) and the total number of running on-demand (lo

t) instances. The

number of running reserved instances can be computed based on zit as well. The number

of spot instances is bounded by the available capacity or the spot market demand:

st = min(C− (lr
t + rt)zit − (lo

t + ot), ds
t) . (5.4)

The provider must decide to perform one of the possible actions to admit rt reservation

5.3 System Model 123

contracts at stage t, with 0 ≤ rt ≤ dr
t .

We define λt as a discount factor that linearly scales the reservation fee with respect

to the remaining time until the end of the prediction window. This measure is required

as the prediction window is taken to be as large as the reservation period, which in itself

is required for making sound optimization decisions. A reservation admitted at time t

expires at time t + τ− 1, which for all 0 ≤ t < τ total τ− t time slots of which are within

the window period. Therefore, we apply a discount on the premium fee (ϕ) proportional

to the effective reservation period in the window. In each stage t, we thus define λt =

(τ − t)/τ with 0 ≤ t < τ.

In our model, the amount of the revenue obtained by the provider in each stage de-

pends on the current state (ςt) and the provider’s choice for rt. The revenue of each

state-action pair is defined as:

γ(ςt, rt) = λtrt ϕ + αp(lr
t + rt)zit + p(lo

t + ot) + βpst , (5.5)

where the first, second, third and fourth term are the total revenue of reservations, re-

served, on-demand, and spot instances respectively.

Suppose there are n running on-demand pay-as-you-go instances in the data center

at time t − 1 (i.e., n = lo
t−1) and right before t, X of them are terminated by customers.

There are lo
t = n− X active instances remaining at the beginning of t. According to the

assumption of the geometric lifetime of on-demand instances, one can see that X follows

a binomial distribution [94] with P(X = k) = Bin(k; n, q), where Bin(k; n, q) = (n
k)q

k(1−

q)n−k. Here, q is the probability that the running on-demand instance is terminated in the

next time slot.

As stated before, each admitted reservation within the window remains active until

the last stage (t = τ− 1). However, at the beginning of each time slot t, some reservations

expire as they are admitted before time t = 0. We define er
t as the number of reservations

that are expired by the end of t. Therefore, for a window of size τ, (er
0, ..., er

τ−2) encodes

all information regarding expired reservations in each stage. (er
0, ..., er

τ−2) can easily be

obtained based on the provider’s history of admitted reservation contracts.

From the above discussion, it follows that ςt+1 can be computed based on ςt only.

124 Revenue Management with Optimal Capacity Control

In fact, total number of live reservations at time t solely depends on lr
t , er

t and rt by the

relation lr
t+1 = lr

t + rt − er
t .

From the memorylessness5 property of the geometric distribution, lo
t+1 can also be eas-

ily computed only using the previous state. Finally, according to the definition, zit+1 is

independent of zit . Therefore, we make an important observation, that state ςt+1 only

depends on state ςt at the previous time and is independent of earlier states ς0, ..., ςt−1.

Let us define V(ςt) as the expected revenue obtained from t = 0 to τ − 1. The prob-

lem of revenue maximization through optimal admittance of reservation contracts can be

characterized by the following Bellman equations [94]:

V(ςt) = max
rt

[γ(ςt, rt) + ∑
ςt+1

P(ςt+1|ςt, rt)V(ςt+1)] . (5.6)

In (5.6), the maximum revenue the provider can obtain at state ςt by optimally choos-

ing rt is given by the expected maximum revenue over all possible states ςt+1. The bound-

ary conditions of (5.6) are given by V(ςτ) = 0 for all ςτ. P(ςt+1|ςt, rt) represents the

transition probability to ςt+1 given state ςt and action rt. Given k = (lo
t + ot)− lo

t+1, the

desired transition probability is computed as follows:

P(ςt+1|ςt, rt) = P(ut+1 = zit+1)× Bin(k; lo
t + ot, q) , (5.7)

where P(ut+1 = zit+1) shows the probability that the reserved capacity utilization at stage

t + 1 falls in the class interval it+1 and Bin(k; lo
t + ot, q) shows the probability that k on-

demand instances are terminated in a transition from ςt to ςt+1. Since these two events

are independent, the probability of both occurring is the product of the probabilities.

Note that the probability of change in reserved capacity from lr
t to lr

t+1 is equal to 1 given

the exact value of rt. That is, it is known how many of reservation contracts will expire

at the end of time slot t based on the admittance history. The above analysis converts

problem (5.3) into a dynamic programming problem (5.6).

5In probability theory, memorylessness is a property of those distributions (e.g., the exponential distri-
butions and the geometric distributions), wherein any derived probability from a set of random samples is
distinct and has no information of earlier samples.

5.4 Proposed Algorithms 125

Complexity of Optimal Capacity Control

Equation (5.6) represents a Markov decision process that can be solved by numerical dy-

namic programming through backward induction. It commences the search for a solution

by simulating the load for each pricing plan (market) based on the predicted demand in

the last stage τ − 1 and calculating the optimal number of reservations that must be ad-

mitted in that stage. Using results for the last stage, it then proceeds to determine the

optimal solution for the previous stage (backward induction). This process continues until

the optimal solution at stage t = 0 is obtained.

The number of possible actions at each stage is at most C+ 1 taking into consideration

dr
t ≤ C. The number of possible states at stage t, i.e., |ςt| is at most (C + 1)2 × |Z| since

0 ≤ lr
t , lo

t ≤ C. In each stage t, the maximization must be done over every possible action

for all states which by itself requires a computation of expected revenue over all possible

states at stage t+ 1. Therefore, the complexity of a single-stage calculation is O(C× (C2×

|Z|)2). As there are τ stages, the overall computational complexity is O(τ × C5 × |Z|2).

For IaaS cloud providers with large capacity (e.g, C = 105) and long reservation pe-

riod (e.g., τ = 1 year) finding exact solution to the (5.6) is computationally prohibitive as

decisions need to be made in real time. However, solving problem (5.6) at the granularity

of a single VM and a billing cycle of an hour is not essential for large cloud providers

with a massive amount of cash flow. Thus, we define our pseudo optimal algorithm based

on larger blocks of capacity and time which approximates the optimal solution and can

solve the problem in a reasonable time. We also propose a heuristic algorithm which sig-

nificantly reduces the time complexity at the price of sacrificing a fraction of the revenue.

5.4 Proposed Algorithms

5.4.1 Pseudo Optimal Algorithm with an Efficient Computational Time

In order to overcome the complexity of the proposed stochastic dynamic programming

technique, we present a Pseudo Optimal heuristic that allows for a reduction in dimensions

of the problem. Suppose B be the number of VM instances per block of capacity (e.g.,

126 Revenue Management with Optimal Capacity Control

B = 100 VMs) and T be the number of billing cycles per time slot (e.g., T = 168 hours).

We apply the same approach presented in subsection 5.3.3, while increasing the granu-

larity of the problem formulation with respect to capacity and time. We therefore map

the values of the original problem variables onto representative values given the chosen

block sizes and use these in Algorithm 1 to find the solution. For example, for B = 100,

all capacity values are rounded to the nearest multiple of 100. On line (17) of Algorithm

(1), the revenue of each state-action pair is therefore scaled in terms of T and B. Note

that all previously used notations related to the capacity or time must be interpreted in

multiples of B and T, e.g., if T = 24 hours and the reservation period is 365× 24 hours

(365 days) then τ = 365. Likewise, if B = 100 and the total number of reservations that

remain live at time t equals 500 then lr
t = 5.

Reducing the granularity of the optimization problem not only reduces the problem

size but also removes the necessity for accurately predicting future demand at the fine-

grained level of VMs and billing cycles.

5.4.2 Heuristic Algorithm with a Low Computational Complexity

The pseudo optimal algorithm proposed in the previous section can be run in an ac-

ceptable time frame if T and B are taken to be sufficiently large. But it still suffers from

the prohibitively high polynomial order for small values of T and B (e.g., an hour and

one VM). Therefore, we propose our heuristic algorithm with a lower computational time

complexity that can find an approximated solution quickly for any values of T and B.

The idea behind the heuristic algorithm is that whenever the provider admits a reser-

vation it might require to reject upcoming future on-demand requests in order to fully

guarantee the availability of the reserved instances. Clearly, the admission of a reserva-

tion contract is well justified if and only if the revenue loss due to rejections of on-demand

instances does not exceed the total revenue the reservation generates. Two main factors

can affect that revenue: 1) the utilization of the reserved capacity, and 2) the demand in

the spot market. The more the reservation is utilized, the higher revenue it generates in

total. As stated in earlier sections of this chapter, the provider is able to accommodate

spot instances in the reserved capacity without any concern for the availability of the re-

5.4 Proposed Algorithms 127

Algorithm 1 Pseudo Optimal Algorithm

Input: t, lr
t , lo

t , it
Output: maxrev

1: dp← {−1} . matrix dp is used for memoization and all cells are initialized with -1.
2: function V(t, lr

t , lo
t , it)

3: if dp[t][lr
t][l

o
t][it] 6= −1 then

4: return dp[t][lr
t][l

o
t][it]

5: end if
6: if t = τ then
7: dp[t][lr

t][l
o
t][it] = 0

8: return 0
9: end if

10: maxrev← 0
11: for rt ← 0 to min(C− lr

t − lo
t , dr

t) do
12: rev← 0
13: lr

t+1 ← lr
t + rt − er

t
14: ot ← min(C− lr

t − lo
t − rt, do

t)
15: st ← min(C− (lr

t + rt)zit − lo
t − ot, ds

t)
16: λ← (τ − t)/τ
17: γ(ςt, rt)← Bλrt ϕ + BT(αp(lr

t + rt)zit+
p(lo

t + ot) + βpst)
18: for lo

t+1 ← 0 to lo
t + ot do

19: for it+1 ← 0 to |Z| do
20: P(ςt+1|ςt, rt)← P(ut = zit+1)× Bin(lo

t + ot − lo
t+1; lo

t + ot, q)
21: rev← rev + γ(ςt, rt) + P(ςt+1|ςt, rt)× V(t + 1, lr

t+1, lo
t+1, it+1)

22: end for
23: end for
24: if rev ≥ maxrev then
25: maxrev← rev
26: end if
27: end for
28: dp[t][lr

t][l
o
t][it]← maxrev

29: return maxrev
30: end function

128 Revenue Management with Optimal Capacity Control

 Time

Window

t=0 t=τ-1

C
ap

ac
it

y

C

?

? ?

max ? ?

On-demand instance

Reserved instance

Empty slot

Reserved Capacity
Ca

Figure 5.2: Illustration of Algorithm 2. Each small block shows the capacity unit per time
unit (e.g., instance-hour). Schematically, reserved instances occupy the available capacity
top-down and on-demand instances use the capacity bottom-up. For sake of simplicity,
spot instances are not shown in the figure.

served instances, since spot instances can be terminated as the need arises. Therefore, if

admission of a reservation provides capacity for accommodation of a spot request that

might be rejected previously due to the lack of capacity, this additional revenue must be

taken into account by the revenue management system.

The heuristic algorithm has two main simplifications compared to the pseudo opti-

mal algorithm. First, instead of using the instance lifetime distribution to estimate load

induced by on-demand requests, the future load is generated assuming all arriving re-

quests pertain to instances with the same lifetime of mean value. Second, it relies on the

average utilization of the reserved capacity ū to control admission of reservation con-

tracts. In fact, ū is the expected value of the categorical pmf related to reserved capacity

utilization.

Algorithm 2 presents the details of the proposed heuristic and Fig. 5.2 illustrates the

operation of the algorithm. As we estimate the load in the on-demand pay-as-you-go

market beforehand, with a slight abuse of notation, suppose lr
t and lo

t be the number live

reservations (reserved capacity) and the number of running on-demand instances at time

slot t respectively. lo
t is computed according to the previously instantiated VMs (before

time t = 0) and arriving demand (dr
t) when each request has the mean lifetime. The

shaded area in the bottom of Fig. 5.2 exemplifies such a load. Using er
t and history of

5.4 Proposed Algorithms 129

Algorithm 2 Heuristic Algorithm

Input: lr, lo . lr
t is the initial reserved capacity at time t for those requests

admitted before time t = 0. lo
t indicates the number of on-demand instances at time

t taking into account previously instantiated VMs, arriving demand, and assuming
that every on-demand instance has the same lifetime of mean value.

Output: r
1: function HEURISTIC(lr, lo)
2: r ← {0} . Create the array r with size of τ and initialize all elements with zero.
3: loop
4: max ← −∞, index ← −1, sum← 0, sw← 0
5: for t← τ − 1 to 0 do
6: lr

t ← lr
t + 1

7: if lr
t > C then

8: lr
t ← lr

t − 1, sw← 1, break
9: end if

10: ls← 0
11: if C < lr

t + lo
t then

12: sum← sum + T × B(pαū− p)
13: ls← ds

t
14: else
15: sum← sum + T × B(pαū)
16: ls← ds

t − (C− lr
t − lo

t)
17: end if
18: if (lr

t − 1)× (1− ū) < ls then
19: sum← sum + T × B(1− ū)βp
20: end if
21: λ← (τ − t)/τ
22: if sum + Bϕλ ≥ max and dr

t > 0 then
23: max ← sum + Bϕλ
24: index ← t
25: end if
26: end for
27: if index = −1 or max < 0 then
28: break
29: end if
30: if sw = 0 then
31: for t← 0 to index− 1 do
32: lr

t ← lr
t − 1

33: end for
34: end if
35: rindex ← rindex + 1, dr

t ← dr
t − 1

36: end loop
37: return r
38: end function

130 Revenue Management with Optimal Capacity Control

reservation contracts admitted earlier than t = 0, initial value of lr
t is computed within

the prediction window.

The algorithm attempts to admit as many reservation contracts as possible by filling

the slots from the end of the window to the beginning (denoted by the question marks

in Fig. 5.2). In each iteration, it adds one unit to lr
t , computes the revenue this additional

reservation generates and adds this to the sum of the total revenue (Lines 12 and 15). This

computation takes into account the potential revenue that spot instances can generate as

well. The spot market demand that must be accommodated in the underutilized reserved

capacity is computed (ls) and its revenue which is proportional to the underutilized re-

served capacity is added (Line 19), if the revenue of ls is not compensated by previously

admitted requests.

If the admission of a reservation overlaps with on-demand pay-as-you-go load for

the specific capacity block and time slot (see Fig. 5.2), the corresponding price of on-

demand instances (B× T × p) must be deducted from the total revenue until this point

(Line 12). Lines 22-25 keep track of the maximum revenue found thus far. The upfront

reservation fee that is proportional to the effective part of the reservation period in the

window is also taken into account in finding the maximum revenue value (max). After

the maximum value and its corresponding time slot have been found, if there is available

reservation demand on that time slot (dr
t > 0) then the reservation contracts is admitted

(rt = rt + 1) and dr
t is reduced by one unit. The process finishes when the maximum

value is negative (Line 27) or the reservation load exceeds the available capacity (Line 7).

The computational complexity of Algorithm 2 is O(τ × C), as in the worst case all

available slots in the window must be investigated. The heuristic is thus considerably

more efficient than the pseudo optimal algorithm in terms of computational complexity

which makes it suitable for online admission control.

5.5 Revenue Management Framework

In this section, we briefly discuss how Algorithms 1 and 2 can be practically implemented

for online use in a real-world system. The algorithms are deployed in the admission con-

5.5 Revenue Management Framework 131

Prediction

Module

Admission

Controller

Algorithm

Reserved

Capacity

Analyzer

Revenue Management Framework

Collector

Future Demands (d)

Utilization (u)

Requests

Reservation

Requests

Accept

Reject

History

Figure 5.3: Key modules of the revenue management framework.

trol module of revenue management framework of which the key modules are illustrated

in Fig. 5.3 and discussed next.

The collector collects and stores demand information for different markets (pricing

plans). It also tracks the number of rejected requests for different markets. The collected

information is used by the prediction module and the reserved capacity analyzer to be fed

into the admission controller.

The main role of the reserved capacity analyzer is obtaining the categorical probabil-

ity distribution of the reserved capacity utilization for the pseudo optimal algorithm or

the expected value (ū) for the heuristic algorithm. In our implementation, the probabil-

ity distribution is dynamically derived from the history of the data center load. During

each time slot, the reserved capacity analyzer measures the period of time that the uti-

lized reserved capacity falls into the different utilization class intervals introduced in

Section 5.3.3. It then computes the probability of each utilization class interval occurring

based on the statistics collected in each time slot. Eventually, the categorical pmf is gen-

erated by averaging the computed probabilities of the last τ time slots. We also use the

expected value of the distribution to set ū in case of the heuristic algorithm.

The prediction module forecasts future demands for a window of size τ for each mar-

132 Revenue Management with Optimal Capacity Control

ket. Forecasting future demand is a well-studied area in the literature [86, 139] and it is

beyond the scope of this chapter to present the best forecasting method here. Hence, we

adopt a basic method for forecasting future demands, which can be replaced with a cus-

tomized prediction method in practical implementations. In our model, the prediction

module forecasts demands based on the history of the load in the data center in the sense

that the predictor assumes the observed demands for past τ time slots would be repeated

for future τ time slots.

For the reservation market, the number of reservation contracts received by the

provider per time slot is rounded to the nearest multiple of B. A similar transformation is

used for the demand in the on-demand market. For spot instances, the prediction mod-

ule computes the average load per time slot and rounds it to the nearest capacity block

representative value (B). That is, the area below the spot market’s load curve is computed

and divided by the slot time duration. The prediction module also incorporates the re-

jected demands into the predicted future demand using the number of rejected requests

per slot and the mean lifetime of instances. The number of rejected requests in each slot

is divided by multiplication of the mean lifetime of VMs and the size of the time slots.

Using the above framework, the provider adaptively updates the required parameters by

the admission control algorithm.

At the beginning of each time slot, the predicted future demands and the computed

pmf of ut are fed into the admission control module that calculates the maximum number

of reservations (r0) that must be admitted in this time slot based on the admission control

algorithm. The admission control module accepts reservation contracts while received

demand is lower than r0 during the time slot. Note that admission control algorithm

is repeated for each time slot and only r0 is used to perform actions during upcoming

time slot. The produced result by the admission control algorithm remains valid as long

as the observed demand is lower than the predicted demand or r0 < dr
0 for the current

slot. The algorithm in admission controller module runs periodically and is executed at

the beginning of each time slot. It then uses the updated information from the reserved

capacity analyzer and prediction modules.

5.6 Performance Evaluation 133

5.6 Performance Evaluation

In this section, we conduct two different groups of experiments to evaluate the proposed

model. First, using a large scale simulation scenario, we evaluate the revenue manage-

ment framework exploiting the proposed admission control algorithms. Then, we further

evaluate the performance of the algorithms by conducting small scale simulations.

5.6.1 Framework Evaluation

Workload Setup

To our knowledge, no publicly available workload traces of real-world IaaS clouds cur-

rently exist as such information is often regarded by providers as being strictly confi-

dential. Recently, Google has published a dataset pertaining to workloads on Google

Compute Clusters [98]. This dataset includes the resource requirements of tasks submit-

ted by users to a cluster of 12k physical machines over a time period of 29 days. Although

the Google cluster does not constitute an actual public IaaS cloud, we argue that its usage

can represent demands of public cloud users to some extent as it has resulted from the

execution of actual cloud application services provided by Google.

An issue with these traces however is that they do not include any details on VM

instances used to execute the application-level requests. For our experimentation, we

therefore generate VM requests for each user as if the user was running the trace’s work-

load in a virtualized IaaS cloud such as EC2. In this regard, it is worth mentioning that

in the Google cluster tasks of different users might be scheduled onto a single machine,

while in a public IaaS cloud a customer’s VM executes only requests originating from ap-

plications that are hosted by that customer. In the following, we provide the details of the

VM scheduling algorithm that is used to generate VM requests based on the workload of

each user.

VM scheduling: The Google cluster trace includes records of a user/application sub-

mitting several tasks, each of which has resource requirements related to CPU, memory

and disk [98]. We assume that the cluster’s nodes are homogeneous as most of machines

134 Revenue Management with Optimal Capacity Control

in the Google cluster have the same computing capacity, with 93% having the same com-

puting capability [129].

We set our VM instance (i.e., capacity unit block) to have the same computing capac-

ity as a node in the cluster. This enables us to accurately map resource requirements of

tasks in the trace to VM instances. For each user, we use the following simple scheduling

algorithm to instantiate and terminate VM instances based on the resource requirements

of the tasks. Whenever, a user submits a task, the scheduling algorithm checks if there

is available capacity in the pool of currently running VM instances; otherwise it instanti-

ates a new VM instance. The scheduling algorithm also terminates running VM instances

when there is no running task on the VM. The scheduling algorithm groups the VM re-

quests that are instantiated at the same time as a single request for multiple VMs directed

to the provider. As such, we obtain VM requests for each user and create a trace of

250, 171 VM requests.

Labeling Requests with Different Pricing Plans: After generation of the VM re-

quests, they need to be assigned to one of the pricing plans offered by the provider. In

IaaS public clouds, customers submit requests to a given market based on their applica-

tions’ requirements and cost considerations. Customers who are interested to run their

application at very low compute prices and those that require a large amount of capacity

for a short period of time usually use spot market. The average lifetime of VM instances

in this market is therefore shorter than in the other markets as instances face interruption

from time to time. Applications with steady state or predictable long term usage usually

utilize reserved instances. Their lifetime is therefore longer than in the other two markets.

Applications with short term, spiky, or unpredictable workloads that cannot tolerate in-

terruption usually rely on on-demand instances, which have a lifetime in between the

other two categories.

On the basis of the above discussion, we use the following, necessarily synthetic,

approach to associate each request to one of the markets. First, we normalize the lifetime

of VM requests to the maximum lifetime in the traces and sort requests in ascending order

of lifetime. Next, we generate random requests based on the three Gaussian distributions

shown in Fig. 5.4. This results in 17, 000 requests assigned to the reserved market, 120, 000

5.6 Performance Evaluation 135

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Spot
(0.25,0.2)

On−demand
(0.5,0.2)

Reserved
(0.75, 0.2)

Figure 5.4: Three Gaussian functions for different pricing plans

requests to the spot market and all remaining requests to the on-demand market.

Reservation Requests: Up to this point, we generated workload traces for on-

demand pay-as-you-go, reserved and spot instances. In order to generate requests for

obtaining an actual reserved contract (reservation), we devise an online lazy reserva-

tion strategy for each user. Whenever the user submits a request directed to a reserved

instance and does not have enough reserved capacity to handle the request, a new reser-

vation contract is created. Using this technique, we assure that there is enough reserved

capacity at each point in time to run all reserved instances of the user. If more than one

reservation contract must be submitted to the system at the same time, we group them as

a single reservation contract for multiple instances.

Simulation Setup

We extend CloudSim [16] to evaluate our revenue management framework. CloudSim is

a discrete-event Cloud simulator that includes models of virtualized computing infras-

tructures and various VM provisioning policies. Our extensions relate to the support for

the different pricing plans discussed in this chapter and the proposed revenue manage-

ment system.

Pricing: We adopt the pricing details of Amazon EC2 in the us-east region at the

time of writing. The VM configuration used for evaluating the revenue management

system is aligned with Amazon EC2 standard small instances. Rates of $0.06, $0.021 and

136 Revenue Management with Optimal Capacity Control

$0.012 per hour are used for the on-demand, reserved, and spot instances respectively

and accordingly values of α '= 0.35 and β = 0.2 are computed. Similar to Amazon

EC2, spot instances are not charged for their last partial hour upon their termination.

On-demand or reserved instances that are terminated by their owner are charged for a

discrete number of hours, with the last partial hour of usage accounted for as a full hour.

Since the used Google traces only span 29 days, we map each 5 minutes of workload

data to one hour by linear scaling, resulting in a total simulation time of 12 months. We

assume each reservation is effective for two months (τ = 60 days) and that the upfront

reservation fee is $22.849 which is proportional to Amazon EC2’s value of ϕ for a stan-

dard small instance (Linux, us-east, medium utilization) for a 1-year term.

Benchmark Algorithm: We compare the proposed pseudo optimal and heuristic algo-

rithms with a benchmark algorithm that uses no admission control referred to as no-

control. As its name implies, it admits all reservation contracts and gives preference to

them over requests from the on-demand and spot markets. All reported revenues in

Section 5.6.1 are normalized to the outcome of the no-control algorithm.

Experimental Results

We evaluate the revenue performance of the proposed framework using the pseudo opti-

mal and heuristic algorithms. We consider the case where the workload is fixed through-

out the simulation and the capacity (C) varies from 600 to 3400 with a step size of 400.

We configure B = 100, T = 75 and |Z| = 5. The first and last two months of the 12-

month simulation period are used as warm-up and cool-down periods, their respective

outcomes are omitted from the experiment data. The lifetime of the on-demand instances

in our workload trace does not precisely follow a geometric distribution. However, we

assume the mean lifetime of on-demand instances to be equal to the expected value of

the geometric distribution, i.e., 1/q. We therefore set q to T divided by mean lifetime of

on-demand instances in the workload.

The box plots in Fig. 5.5 show the revenue normalized to the no-control algorithm for

30 runs of the experiment. As expected, the revenue management system significantly

improves revenue, especially when resources are scarce. As capacity increases, revenue

5.6 Performance Evaluation 137

gains decrease due to the fact that less opportunities for admission control arise and there

is no resource contention. However, in no condition, it does lead to lower revenues com-

pared to the no-control policy. In C = 3400 when the demand to supply ratio (DSR) is

sufficiently low and there is no resource contention, both algorithms generate the same

revenue performance as no-control. Note that, at a capacity level of 600 with a correspond-

ingly high DSR, the no-control algorithm assigns the whole capacity to reservation con-

tracts and all underutilized reserved capacity to the spot market. Our admission control

algorithms increase revenue drastically under such high levels of resource contention.

In such cases however, a real-world provider would likely increase C instead of entirely

relying on admission control. This is an investment decision we would like to address in

future developments of our revenue management framework.

According to Fig. 5.5, the pseudo optimal algorithm generates slightly more revenue

than the heuristic algorithm; however, as stated before it suffers from a high order of

computational complexity. The heuristic algorithm generates competitively high revenue

with a significantly lower order of complexity. Therefore, in online cases, it can preform

in a reasonable time frame with considerably finer values of T and B.

5.6.2 Evaluation of the proposed heuristic algorithms

In the previous section, we showed that the revenue management system performs well

even in case of simple future demand prediction model and large values of T and B. Due

to high computational complexity of the optimal algorithm, we could not compare our

proposed algorithms with the optimal algorithm. In addition, prediction model errors

and specific characteristics of the workload do not allow us to conduct fair experiments

to show how close the algorithms can approximate the optimal solution. In this section,

we evaluate the efficiency of the algorithms in comparison with optimal solution and we

also investigate the impact of system parameters on the performance of the proposed

algorithms in scenarios of smaller scale.

In our small scale evaluation, both capacity (C) and reservation period (τ) are set

to 30. All pricing values are borrowed from the previous section and remain the same,

except for the reservation fee which is updated to the 30-hour period, i.e., $0.48. The

138 Revenue Management with Optimal Capacity Control

3400300026002200180014001000600

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1.0

N
o

rm
a

li
ze

d
 R

e
v

e
n

u
e

Heuristic

Pseudo Optimal

Algorithm

Boxplot of normal

Capacity

Figure 5.5: The revenue performance of the proposed revenue management framework
under different algorithms normalized to the outcome of no admission control algorithm
(B = 100 and T = 75).

amount of requests in the different markets are generated based on a Poisson distribu-

tion with parameter λ = 1.5 requests per hour. We used a Binomial distribution with

parameters q = 0.5 and n = |Z| = 5 for the categorical pmf related to the reserved ca-

pacity utilization. All reported values of the revenue in this section are normalized to the

outcome of the optimal algorithm and each experiment is carried out 30 times. For each

experiment, we generate requests randomly according to the corresponding probability

distributions. Afterwards, we schedule the arriving requests for a period of τ based on

the computed actions by each algorithm separately. In this step, the expected revenue is

computed based on the application of the same computed actions for 1000 runs in each of

which the lifetime of on-demand pay-as-you-go requests are randomly generated based

on the Binomial distribution and the related parameter q.

Fig. 5.6 shows box plots of the normalized revenue for the pseudo optimal and heuris-

tic algorithms with different values of B and T when q = 0.2. The figure shows as T and B

increase, the revenue performance of the algorithms decrease. The top left panel demon-

strates head-to-head comparison of the revenue performance of the heuristic and pseudo

5.6 Performance Evaluation 139

0.950.850.75

0.950.850.75 0.950.850.75

1, 1

Normalized Revenue

1, 2 1, 3

2, 1 2, 2 2, 3

3, 1 3, 2 3, 3

Heuristic

Pseudo Optimal

Algorithm

Panel variables: B, T

Figure 5.6: The revenue performance of the pseudo optimal and heuristic algorithms
with different values of B and T. All values are normalized to the outcome of the optimal
solution (q = 0.2).

optimal algorithm with T = 1 and B = 1 (i.e., optimal solution).

One important observation which may not be obvious from the figure is that even

though the increase in the values B and T decreases the performance, the decrease is

smaller when the two values are increased simultaneously. The reason is that scaling

in only one dimension without considering the others causes the rounding errors to in-

crease. In other words, increase in T enlarges the number of requests in one time slot and

dividing large values to a predefined value of B results in a smaller rounding error.

Our sensitivity analysis reveals the only parameter which has significant effect on the

revenue performance of the algorithms is q. Fig. 5.7 shows the box plots for the revenue

performance of the heuristic algorithm with regards to q. As shown in the figure, as q

increases, the revenue performance of the heuristic algorithm improves compared to the

optimal solution. This is due to the fact that the optimal solution takes the probability

140 Revenue Management with Optimal Capacity Control

1.00.90.80.70.60.50.40.30.20.1

1.00

0.99

0.98

0.97

0.96

0.95

0.94

0.93

q

N
o

rm
a

li
ze

d
 R

e
v

e
n

u
e

Figure 5.7: Impact of q, the termination probability of the running on-demand pay-as-
you-go instance in the next time slot, on the revenue performance of the heuristic algo-
rithm with B = 1 and T = 1. All values are normalized to the outcome of the optimal
solution.

distribution of the instances’ lifetime into account, while heuristic algorithm only uses

the mean lifetime value to maximize revenue. Larger values of q result in smaller life-

time values, consequently the estimated shape of load generated by heuristic algorithm

gets closer to the real shape of the load when eventually it perfectly matches at q = 1.

This leads to a lower error for the solution found by the heuristic algorithm, around one

percent at q = 1. Finally, it is worth mentioning that the low computational complexity

and considerably high revenue performance of the heuristic algorithm make it a suitable

choice by cloud providers aimed at revenue maximization in practical online cases.

5.7 Summary and Conclusion

In this chapter, we presented a revenue management framework to tackle the problem

of optimal capacity control for allocating resources among customers of the IaaS cloud

5.7 Summary and Conclusion 141

provider who are segmented into different cloud markets, i.e., reservation, on-demand

pay-as-you and spot markets. The main challenge is that the provider must find an op-

timal capacity to admit demands from reservation market such that the expected rev-

enue is maximized. We consider the stochastic lifetime of on-demand pay-as-you-go re-

quests and reserved capacity utilization and we formulate the problem as a finite horizon

Markov decision process. Finding the optimal solution is computationally prohibitive in

practical settings, we therefore present two algorithms namely pseudo optimal and heuristic

which reduce the computational complexity. Large-scale simulations driven by Google

cluster-usage traces under Amazon EC2 pricing is conducted to evaluate the revenue

performance of the proposed revenue management framework using our capacity con-

trol algorithms. We further evaluated the proposed algorithms with comparison to the

optimal algorithm in a small scale scenario. Our experimental results suggest that signif-

icant revenue increment can be expected from using the proposed revenue management

system given that sufficient resource contention is present in the system.

This page intentionally left blank.

Chapter 6

An Auction Mechanism for a Cloud
Spot Market

Dynamic resource pricing has recently been introduced by Infrastructure as a Service (IaaS)

providers, in order to maximize profit and balance the supply and demand of resources. The design

of a mechanism that efficiently prices perishable cloud resources in line with a provider’s profit maxi-

mization goal, however, remains an open research challenge. In this chapter, we propose an adaptation

of the Consensus Revenue Estimate auction mechanism to the setting of a multi-unit online auction

for cloud resources. The mechanism is envy-free, has a high probability of being truthful, and gen-

erates a near optimal profit for the provider. We combine the proposed auction design with a scheme

for dynamically calculating reserve prices based on data center Power Usage Effectiveness (PUE) and

electricity costs. Our simulation-based evaluation of the mechanism demonstrates its effectiveness

under a broad variety of market conditions. In particular, we show how it can improve on the classical

uniform price auction and investigate the value of prior knowledge on the execution time of virtual

machines, for maximizing profit.

6.1 Introduction

THE increased adoption and maturity of cloud computing offerings has been ac-

companied by a growing role and significance of pricing mechanisms for trading

computational resources. Especially Infrastructure as a Service (IaaS) cloud providers

that offer computational services in the form of Virtual Machine (VM) instances with

specific resource characteristics, have gradually expanded their pricing plans in order

to maximize their profits and further attract demand. Currently, the most widely used

model remains a fixed pay-as-you-go pricing plan wherein the consumer is charged the

amount of time a VM instance was used at a fixed rate. However, the fact that com-

143

144 An Auction Mechanism for a Cloud Spot Market

putational resources sold by a cloud provider can be characterized as a non-storable or

perishable commodity1, combined with the fact that demand for computational resources

is non-uniform over time, motivates the use of dynamic forms of pricing in order to op-

timize revenue [54]. Through price adjustment based on actual (and possibly forecasted)

supply and demand conditions, consumers can be incentivized to acquire spare capacity

or shift demand from on-peak to off-peak hours. Consequently, both profit and consumer

satisfaction can be increased.

Market-based pricing mechanisms that solicit reports (bids) from consumers and sub-

sequently use an allocation rule and pricing rule to compute the allocation of resources to

consumers and their associated prices respectively, are well fit to realize such dynamic

forms of pricing. Recently, they have received significant attention for selling underuti-

lized capacity in cloud infrastructures [61]. Well-designed auction mechanisms can be

particularly effective since they: 1) incentivize users to bid in a truthful manner (i.e., re-

port the price they are willing to pay for resources), 2) ensure resources are allocated to

those who value them the most, and 3) correctly price resources in line with supply and

demand conditions by creating competition among buyers.

Amazon Web Services (AWS) has adopted an auction-like approach to expand its

pricing plans with Spot Instances for the Amazon Elastic Compute Cloud (EC2). In

this scheme, consumers communicate their bids for a VM instance hour to AWS. Sub-

sequently, AWS reports a market-wide spot price at which VM instance use is charged,

while terminating any instances that are executing under a bid price that is lower than

the market price. Although Amazon is not the only provider to offer dynamic pric-

ing, it is currently the only IaaS provider that publicly offers an auction-like mecha-

nism for selling IaaS resources. Nevertheless, attempts for creating such mechanisms

have already been reported by other companies [115] and have also received attention by

academia [9, 25, 127, 139].

AWS has revealed no detailed information regarding their auction mechanism and

the calculation of the spot price. At present, the design of an efficient, fair, and profit-

maximizing auction mechanism for pricing cloud computing resources is an open re-

1Note that resources tied to a VM are qualified as non-storable (perishable), as a non-used hour of CPU
time or memory space can never be reclaimed and therefore wastes data center capacity.

6.1 Introduction 145

search challenge, and of great interest to cloud providers.

In this chapter, we design such an auction mechanism aimed at generating additional

profit from the spare capacity of non-storable resources available in cloud data centers.

We refer to the marketplace in which this mechanism is used to sell VMs as the cloud spot

market (Fig. 6.1).

Capacity = C

Cloud Provider

Spot Market

(ri , bi)

n bidders

Figure 6.1: Spot market and auction mechanism

The spare capacity that can be offered by an IaaS cloud provider in the spot market is

usually much larger than the demand2. Therefore a provider is potentially able to accept

all consumer requests. In this context, popular auction mechanisms such as the second-

price Vickrey [122] auction may fail to generate a reasonable revenue for the provider. In

general, when supply exceeds demand, bidders are less motivated to bid competitively,

which can prevent providers to collect an optimal revenue. Providers therefore require

an auction mechanism that can maximize revenue while incentivizing bidders to reveal

their true value. Hence, we restrict our focus to truthful auction designs. An auction

mechanism is truthful if for each bidder i and any choice of order values by all other bid-

ders, bidder i’s dominant strategy is to report her private information with respect to her

order truthfully. A strategy is dominant if a bidder cannot increase the pay-off derived

from participating in the mechanism, by diverging from it.

If perfect knowledge about the distribution from which the bidders valuations are

drawn is available, such a truthful auction mechanism can be designed [127]. Unfortu-

nately, this is not always the case and pricing depends heavily on the accuracy of the

2This can be explained by the promise of Clouds providing infinite capacity of resources [7] and recent
reports that suggest the overall utilization in large data centers is lower than 30% most of the time [36].

146 An Auction Mechanism for a Cloud Spot Market

underlying market analysis. Such analysis also needs to be updated frequently in order

to adapt to changes in the market. Moreover, since customers of cloud services are dis-

tributed globally and experience different latency for the same service, assuming that the

valuations for all bidders are drawn i.i.d. might be invalid.

This chapter focuses on designing a truthful auction mechanism for a cloud spot mar-

ket aimed at maximizing the cloud provider’s profit. The cloud spot market context

influences our auction design in the sense that the design needs to: support multi-unit

bids, operate in an online recurrent manner, result in a single market-wide price and fair

outcomes, operate under a limitation of the maximal quantity a consumer can request,

operate without prior knowledge on the distribution of bidders’ valuations, and finally,

allow for reserve prices to be set during oversupply conditions. The chapter’s key con-

tributions are:

• The design and application of a multi-unit, online recurrent auction mechanism

within the context of IaaS resource trading. The mechanism extends the off-line

single-round auction with a single-unit demand model of the consensus revenue

estimate (CORE) mechanism proposed by Goldberg and Hartline [37], to a two-

dimensional bid domain. The proposed auction mechanism is envy-free, truthful

with high probability and generates near optimal profit for the provider. It adopts a

greedy approach for maximizing provider profits in the online setting. It is initially

designed for the unlimited supply case, and is subsequently extended to the limited

supply case.

• The evaluation of the proposed mechanism with respect to revenue generation,

truthfulness, and bid rejection rates. Extensive simulation results are presented that

demonstrate that it achieves near optimality w.r.t. maximizing revenue without re-

quiring prior knowledge on the order distributions. It is also shown to achieve low

bid rejection rates, mitigating the bidder drop problem in online mechanisms [54]. We

compare the proposed mechanism to a clairvoyant and non-clairvoyant variant of

the Optimal Single Price Auction and to the Uniform Price Auction.

• A clairvoyant optimal auction mechanism (HTA-OPT) that uses dynamic program-

6.2 Related Work 147

ming to calculate the set of accepted bids. HTA-OPT serves as a benchmark that is

used to quantify the efficiency loss caused by the lack of information on the amount

of time a bidder wants to run a VM, when applying the allocation rule in a single

auction round.

• The presentation of a method for dynamically computing a reserve price, based on

a coarse grained data center power usage model that can be used by the provider

within the proposed auction mechanism. The resulting prices are shown to corre-

spond to actual minimal spot prices observed on the EC2 spot market.

The remainder of this chapter is organized as follows: After reviewing related work

in Section 6.2, we introduce required terminology and notations in Section 6.3. Sec-

tions 6.4, 6.5 and 6.6 discuss respectively the competitiveness, truthfulness and envy-

freeness properties for our auction design. Section 6.7 describes the proposed auction

mechanism, while Section 6.8 focuses on the limited supply setting and the computa-

tion of the reserve price in that setting. Section 6.9 describes the online version of the

proposed auction mechanism and mechanisms used in the comparative analysis. Our

experimental evaluation of the mechanism can be found in Section 6.10. We compare its

performance to the Optimal Single Price Auction and the Uniform Price Auction, and

investigate the impact of perfect knowledge on the execution time of a VM. We also pro-

vide simulation results concerning the probability that any bidder can benefit from an

untruthful reporting of the number of VM instances required. Our conclusions follow in

Section 6.11.

6.2 Related Work

The use of an auction-like mechanism to sell spare capacity in cloud data centers was

pioneered in late 2009 by Amazon. In Amazon’s spot market, customers bid the maxi-

mum hourly price they are willing to pay to obtain a VM instance3. All instances incur

a uniform charge, the spot market price. According to Amazon, this price is set dynam-

ically based on the relationship of supply and demand over time. A unique feature of
3http://aws.amazon.com/ec2/spot-instances/

http://aws.amazon.com/ec2/spot-instances/

148 An Auction Mechanism for a Cloud Spot Market

spot instances is that the provider has the right to terminate them when their associated

bid falls below the spot market price. As a result, the resulting quality of service (QoS)

may be lower compared to on-demand and reserved instances, depending on the bid made.

Current spot market data shows customers can acquire VMs at price reductions between

50% to 93% compared to on-demand instances.

Amazon has revealed little information on the pricing and allocation rules of their

pricing mechanism. Ben-Yehuda et al. [9] examined the price history of the EC2 spot

market through a reverse engineering process, and found that the mechanism was not

completely driven by demand and supply. Their analysis suggests that spot prices are

usually drawn from a tight, fixed price interval, and reflect a random non-disclosed re-

serve price. In this chapter, we propose an auction mechanism with transparent alloca-

tion and pricing rules, while sharing similar properties with the EC2 spot market.

Several authors have presented strategies for customers to utilize Amazon spot in-

stances (cost-)effectively [22, 47, 114, 124, 135]. However, as of yet a limited amount of

work has been conducted that focuses on the design of auction mechanisms to the bene-

fit of cloud providers, and the associated algorithms for allocating resources and capacity

planning to maximize the provider’s revenue. The problem of dynamically allocating re-

sources to different spot markets in order to maximize a cloud provider’s revenue has

been investigated by Zhang et al. [139]. Danak and Manno [25] present a uniform-price

auction for resource allocation that suits the dynamic nature of grid systems. Mihailescu

and Teo [69] investigate Amazon EC2’s spot market as a case in a federated cloud en-

vironment. They argue that spot pricing used by Amazon is truthful only in a market

with a single provider, and show that rational users can increase their utility by being

untruthful in a federated cloud environment. Recently, Zaman et al. have investigated

the applicability of combinatorial auction mechanisms for allocation and pricing of VM

instances in cloud computing [137].

Wang et al. [127] proposed an optimal recurrent auction for a spot market based on the

seminal work of Myerson [77]. The mechanism was designed in the context of optimally

segmenting the provider’s data center capacity between on-demand and spot market re-

quests. Their work differs from ours since they adopt a Bayesian approach wherein it is

6.2 Related Work 149

assumed that the customers’ private values are drawn from a known distribution. They

also propose a truthful dynamic auction [128] that periodically computes the number of

instances to be auctioned off in order to maximize providers revenue. Unlike EC2 spot

marketplace, their approach offers guaranteed services (i.e., instances are never be termi-

nated by the provider) and constant price over time (i.e. as the price is set for the user,

it remains constant as long as the user holds the instance). Their auction charges each

user a different price and does not generate a market-wide single price. Moreover, their

auction mechanism requires a priori known distribution of valuations and near future

demand prediction.

In contrast, we propose an auction mechanism designed to maximize profit based

on a competitive auctioning framework proposed by Goldberg and Hartline [39]. The

mechanism computes a uniform price outcome, and focuses on maximizing profit when

the seller knows very little about the bidders valuations. In order to achieve truthfulness

in this context, we rely on a consensus estimation technique [37].

Our work differs from that of Goldberg et al., in several aspects. First, their analysis

relies on the assumption that each customer is restricted to formulate unit demand, which

is not the case for cloud consumers as they can ask and bid for multiple VM instances.

Consequently, we revisit the definition and truthfulness analysis of the mechanism for

the multi-unit case. Second, their auction mechanism is designed for off-line single-round

scenarios. The context of a cloud spot market however requires an online auction where

customers arrive over time and resources allocated by VM instances can be released and

subsequently reused by other consumers. We adopt a greedy approach in realizing the

online character of the auction, and investigate its performance compared to a clairvoyant

optimal mechanism that relies on dynamic programming. Finally, the production cost of

goods is not taken into account in their work. In the IaaS setting, taking this cost into

account is important as a seller has the option to either shut down server capacity or sell

the capacity at a given reserve price. We add such reserve pricing to the mechanism and

introduce a coarse-grained cost model to determine that.

Lee and Szymanski [54] have proposed an auction mechanism for time sensitive e-

services where services must be resold for future time periods repeatedly. They inves-

150 An Auction Mechanism for a Cloud Spot Market

tigated the bidder drop problem in recurrent auctions that occurs when the least wealthy

bidders tend to withdraw from the future auction rounds due to repeatedly losing the

auction. Our proposed auction is not specifically designed to address this issue, however

our evaluation shows that it rejects a lower number of requests compared to the Optimal

Single Price auction while generating near optimal revenue.

6.3 Preliminaries and Notation

Consider a cloud provider with capacity C for a specific type of VM. That is, at a given

time t up to C instances of the specific type can be hosted simultaneously. The provider

runs a sealed-bid auction, A, to sell this capacity. First, we assume the case that the

provider’s capacity far exceeds the total demand, in line with the cloud’s promise of

delivering an unlimited supply of resources. Subsequently, we generalize the results to a

scenario in which supply is limited and lower than total demand.

Suppose there are n customers joining the auction at time t. Each bidder i (1 ≤ i ≤ n)

requires qi VM instances and has a private valuation vi, denoting the maximum amount

i is willing to pay for each VM instance per time slot (e.g., 1 hour). Customers submit an

order (request), (ri, bi), where ri represents the number of required VM instances and bi

the bid price. We denote by d the vector of all submitted orders. The ith element of d, di,

is the order by customer i.

Given d, the provider (auctioneer) computes an allocation vector, x = (x1, x2, ..., xn),

and a price vector, p = (p1, p2, ..., pn). The ith component xi of the allocation vector

indicates whether bidder i receives the ri VMs requested in its order (if xi = 1) or not

(xi = 0). A bidder for which xi = 1 is called a winner and pays the corresponding

price pi, otherwise, the bidder is called a loser and does not make any payment to the

mechanism. As we focus on single price auctions, all pi are equal for all winning bidders

and we therefore refer to the sale price as p. Partial fulfillment of requests, in which only a

fraction of the number of VM instances requested is allocated to a winning bidder, is only

considered in the case of limited supply and when bi = p. We allow for partial fulfillment

for those orders in line with the behavior of the EC2 spot market.

6.3 Preliminaries and Notation 151

Note that bidders are individually rational users that try to maximize their utility.

Therefore, as long as it is deemed beneficial, a customer will strategically misreport her

bid or the required number of VMs i.e., bi 6= vi or ri 6= qi, where vi and qi are private

information known only to customer i. We define customer i’s utility at time t for one

time slot of VM usage as follows:

ui(ri, bi) =

 (qivi − ri pi)xi , if bi ≥ pi and ri ≥ qi;

0 , otherwise.
(6.1)

The values of ri and vi for each customer are drawn from distributions that are un-

known to the provider. Customer i’s optimal bidding strategy must be defined so that it

maximizes i’s utility over all time slots. However, assuming that customers are not aware

of the future and have no time-dependent valuation for resources, we define the utility

function in (6.1) based on a single time slot. Winners in an auction round are awarded

their requested VM instances and automatically attend the next round of the auction un-

til they cancel their requests on their own account or they lose the auction. In the latter

case, VMs held by an outbid customer are terminated by the provider without any prior

notice.

The holding time of a VM is the specific amount of time a customer wants to run the

VM. The VM’s actual holding time might be smaller than the expected time if it is termi-

nated by the provider instead of the owner. The holding time of a VM by the customer is

not known to the provider (or to the mechanism) in advance. Therefore, in our model, a

provider acts in a greedy manner to maximize revenue according to the arriving requests

and the current existing requests in each round of auction. This can be modeled as a sin-

gle round auction which is recurrently conducted by the provider as new requests arrive

or current requests are terminated. In section 6.10.4, we compare the performance of this

greedy strategy to the optimal strategy that has prior knowledge on the VM holding time.

From this point onwards, we limit our discussion only to a single round of the auction.

In Section 6.9, we introduce the recurrent version of the mechanism.

152 An Auction Mechanism for a Cloud Spot Market

6.4 Competitive Framework

The revenue generated by auction A in a time slot equals:

A(d) = ∑
i

ri pi . (6.2)

The problem of maximizing revenue in an auction for cloud resources can be solved

optimally if the seller knows the distribution from which the bidders’ valuations are

drawn i.i.d. [127]. In conventional economics this is called Bayesian Optimal Mechanism

Design [77, 80]. However, we assume that the distributions from which the bidder’s pri-

vate information are drawn are unknown to the provider. Therefore, we base our ap-

proach on the competitive mechanism design proposed by Goldberg et al. [39]. We will

compare the revenue attained by our mechanism to that of the Optimal Single Price auction

for the unlimited capacity case.

Definition 1. The Optimal Single Price auction, F , is defined as follows: Let d be an order

vector. Without loss of generality, suppose the components of d are sorted in descending order

by bid values. So, (ri, bi) is the ith largest bid in d regardless of ri. The auction F on input

d determines the value k such that bk ∑k
i=1 ri is maximized. We denote by σk(d) the sum of

the number of requested instances in the sorted vector of orders from the first order to kth order

(σk(d) = ∑k
i=1 ri). All bidders with bi ≥ bk win at price bk and all remaining bidders lose. Thus,

the revenue of F on input d is

F (d) = max
i

biσi(d) . (6.3)

If more than one value of i maximizes biσi(d), choosing the price point that results

in a lower transacted volume is preferable considering the cost of accommodating VM

instances (e.g., electricity cost). From this point forward, we assume d is sorted decreas-

ingly by bids values (bi), unless otherwise mentioned.

We are interested in an auction mechanism that is competitive with F on every pos-

sible input; however, if a single bidder’s utility dominates the total utility of the other

bidders, no auction can compete with F as shown by Goldberg et al. [39]. We do not

consider this to be an issue in our setting, because the cloud environment can be viewed

6.5 Truthfulness 153

as a mass-market where the number of winners of the optimal single price auction is

typically large. In a mass-market, removing one order does consequently not change the

maximum extractable profit significantly.

Definition 2. (Mass-market): Let F (d) be the revenue of F and hb(d) denote the maximum

value of b in d, then F (d)� hb(d) in mass-markets, which implies that F sells m� 1 units.

We say that auction A is competitive if there exists a constant β such that A(d) ≥

F (d)/β. For a randomized mechanism4, the previous equation for competitiveness be-

comes:

E[A(d)] ≥ F (d)
β

.

Assuming the fact that F sells at least m units, we define β(m)-competitiveness for a

mass-market as below:

Definition 3. Auction A is β(m)-competitive for a mass-market if for all order vectors d such

that F sells at least m units, we have:

E[A(d)] ≥ F (d)
β(m)

. (6.4)

6.5 Truthfulness

Let d−i denote the vector of orders d with (ri, bi) removed, i.e., d−i =

((r1, b1), ... , (ri−1, bi−1), (ri+1, bi+1), ... , (rn, bn)) , and further introduce the notation

F ((ri, bi) , d−i) = F (d).

Proposition 1. F is not truthful.

Proof. Suppose F is truthful, then utility for each bidder i is maximized if bi = vi and

ri = qi for any choice of d−i.

Consider d as any arbitrary vector of orders, assume F (d) is the maximum revenue

by F and bk is the sale price. Suppose F2(d) is the second largest revenue which can be

obtained by F and we limit d to those vectors such that F (d) > F2(d). Given a fixed

4The mechanism’s allocation and/or pricing rule procedure has a randomized component.

154 An Auction Mechanism for a Cloud Spot Market

d−k, rk, qk, bidder k is able to reduce her bid from bk to b′k and still be the winner as long as

F ((rk, b′k) , d−k) > F2(d). As a result, fixing other variables and considering that bidder

k is a winner (xk = 1), bidder k is able to increase her utility from qkvk− rkbk to qkvk− rkb′k.

So there exists a d−i and a bidder i such that ui can be increased by misreporting i’s true

value, i.e., bi 6= vi. This contradicts the supposition that F is truthful. A similar proof

can be constructed for the number of requested instances, which we omit here for space

considerations.

In order to create a truthful auction, an intuitive idea is to design the mechanism in a

way that a bidder believes that her own order does not affect the price she pays. This is

called an order-independent auction since the price the bidder is offered in the auction is

independent of the bidder’s bid value [39]. An order-independent auction can be viewed

as a function that maps d−i to a price for each bidder.

Definition 4. The order-independent auction offers a price pi to bidder i computed by the

function f according to the order vector d−i, i.e., pi = f (d−i). If bidder i’s bid is greater or equal

to pi (bi ≥ pi), the bidder wins the auction (xi = 1) and pays pi; otherwise the bidder loses the

auction (xi = 0) and pays zero.

Lemma 1. The order-independent auction is truthful.

Proof. Following Definition 4, bidder i’s order does not affect the price she ends up pay-

ing, so the bidder is not able to increase her utility by changing her order. As a result, the

bidder has no incentive to misreport her bid or quantity levels as this does not change

the amount she pays.

Following [39], we introduce the optimal order-independent auction. To define it, first

we define the notion of the optimal single sale price for a set of orders.

Definition 5. Let d be a sorted vector of orders by descending values of bids. Denote opt(d) the

optimal single sale price for d that maximizes the revenue for the auctioneer, i.e.,

opt(d) = argmax
bi

biσi(d) . (6.5)

6.6 Envy-freeness 155

Now we can define the optimal order-independent auction, which is a truthful auction,

as follows:

Definition 6. The optimal order-independent auction is defined by the order-independent

function f such that f (d−i) = opt(d−i) .

Unfortunately, even though the optimal order-independent auction is truthful, it has

two main characteristics that make it unsuitable for our purposes. Firstly, it is not single

price and secondly, a bidder j might lose the auction while bidder i with bi < bj wins and

is charged pi < bj. In this case the auction’s outcome is not fair and the losing bidder

envies the winning bidder’s outcome. This might happen as the sale price for bidder i is

computed based on d−i which is different for each bidder. Proof of Lemma 2 provides

examples of these outcomes.

6.6 Envy-freeness

In an envy-free auction no bidder can increase its utility by adopting another bidder’s out-

come. For our case, an envy-free auction requires a single sale price. All bidders willing

to pay this price are provided with VM instances and charged at that price uniformly.

In this work, it will be irrelevant how bids that equal the sale price are treated, how-

ever, we assume that they are always provided with VM instances if the provider’s ca-

pacity allows for it. Note that, according to the utility function in Equation 6.1, the utility

value (ui) is always zero for those bidders with true bid values (vi) equal to p, irrespective

of them winning or losing. Therefore, those bidders are assumed to have no preference

over the two possible outcomes.

Lemma 2. The optimal order-independent auction is not envy-free.

Proof. It suffices to construct an example showing that the optimal order-independent

auction is not single price. Consider three bidders with the following orders d1 = (1, $8),

d2 = (2, $7), and d3 = (4, $2). In order to calculate the sale price for each bidder i, first we

obtain d−i by removing bidder i’s order from d. Then opt(d−i) is computed according to

(6.5). Performing the above process for all bidders, we obtain the outcome for each bidder

156 An Auction Mechanism for a Cloud Spot Market

as follows. Bidder one and two win the auction and pay $7 and $2 respectively, while

bidder three loses the auction and pays zero. This shows that optimal order-independent

auction is not single price.

In addition, the order-independent auction is not fair as there are situations in which

a bidder might lose the auction while another bidder with a lower bid price wins the

auction. Consider four bidders with orders d1 = (2, $13), d2 = (5, $3), d3 = (1, $2) and

d4 = (20, $1). Bidder one and three win the auction and both pay bidder four’s bid price,

i.e., $1 per instance, while bidder two with a bid price higher than bidder three ($3 > $2)

loses the auction.

Goldberg and Hartline [38] showed that no truthful, envy-free auction can be constant

competitive and they provided the lower bound of log(n)/log (log(n)) with n the num-

ber of bidders. In order to obtain a constant competitive auction mechanism, we relax

the assumption of truthfulness and extend the proposed Consensus Revenue Estimate

(CORE) auction [38] for our case. The proposed auction is envy-free but is only truthful

with high probability.

Definition 7. An auction is truthful with probability 1− ε if the probability that any bidder can

benefit from an untruthful bid is at most ε. If ε is inverse polynomial in some specified parameters

of the auction (such as the number of items or bidders) then we say the mechanism is truthful

with high probability.

In the following section, we show that the proposed auction mechanism is truthful

with high probability with respect to the bid price dimension. We also provide simu-

lation results concerning the probability that any bidder can benefit from an untruthful

reporting of the number of VM instances required.

6.7 Extended Consensus Revenue Estimate Auction

Recall that the optimal order-independent auction in Section 6.5 is truthful since it is

order-independent. Due to the fact that it is not single price, and therefore not envy-free,

it is not suitable for our problem context. The question therefore arises as to how a single

6.7 Extended Consensus Revenue Estimate Auction 157

price can be computed for an order-independent auction while attaining the revenue of

the optimal auction, that is, F (d). It is clear that F (d) cannot be computed from d−i and

consequently, a function f that generates the optimal sale price based on d−i cannot be

built. Therefore, we are interested in a mechanism that provides us with a sufficiently

accurate estimate of F (d) that is constant on d−i for all i (i.e., it achieves consensus). If

F (d−i) is limited by a constant fraction of F (d), it is possible to pick a good estimate of

F (d) such that it achieves consensus with high probability [38]. In the remainder of this

section, we will outline how this estimate is computed.

In mass-markets such as clouds, F (d) is much larger than the highest bid. Let hb(d)

denote the maximum bid value in d, thenF (d) ≥ αhb(d) in mass-markets, which implies

that F sells at least α units.

Let m (m ≥ α) be the number of sold units in F . If m is sufficiently large and the

maximum number of units that can be requested by a customer is limited, removing an

order does not change F (d) considerably. We show this in Lemma 3.

Enforcing a restriction on the maximum number of VM instances that can be simulta-

neously acquired by a customer is reasonable and done by public cloud providers such

as Amazon5. Such restriction reduces the chance of system stability being threatened by

very large unpredicted requests. In addition, it reduces the risk of starvation for cus-

tomers with small requests in the presence of wealthy customers.

Lemma 3. Let r denote the supremum of the number of requested units in d, i.e., ri ≤ r for all

bidders, 1 ≤ i ≤ n. If m, the number of sold units in F , is sufficiently large, then for any i,

m− r
m
F (d) ≤ F (d−i) ≤ F (d) . (6.6)

Proof. Without loss of generality, suppose d is sorted in descending order of bids (bi), i.e.,

b1 ≥ b2 ≥ ... ≥ bn. Suppose k is the rank of the bidder in d whose bid maximizes biσi(d),

i.e., F (d) = bkσk(d). By removing order i from d, the maximum reduction in F (d) is ribk

(when i ≤ k), and the minimum reduction is zero (when i > k). Therefore,

F (d)− ribk ≤ F (d−i) ≤ F (d) .
5http://aws.amazon.com/ec2/faqs/#How_many_Spot_Instances_can_I_request

http://aws.amazon.com/ec2/faqs/#How_many_Spot_Instances_can_I_request

158 An Auction Mechanism for a Cloud Spot Market

m =
k

∑
j=1

rj ⇒ bk =
F (d)

m
,

ri ≤ r ⇒ ribk ≤ r
F (d)

m
⇒

m− r
m
F (d) ≤ F (d−i) ≤ F (d) .

We introduce ρ for m
m−r . In mass-markets, 1

ρF (d) ≤ F (d−i) ≤ F (d), meaning that

F (d−i) is at least a constant fraction of F (d).

The Extended Consensus Revenue Estimate Auction (Ex-CORE) combines two gen-

eral ideas as its name implies: consensus estimation and revenue extraction. For consensus

estimation, it picks a function that estimates F (.) with high quality and achieves consen-

sus with high probability. A function that works well in our case is g, defined as:

g(F (.)) = F (.) rounded down to the nearest cl+u

where c > ρ is a constant chosen as to maximize the quality of the estimation, u is a

uniform random value on [0, 1], and l is the largest integer so that cl+u ≤ F (.).

Lemma 4. [37] For c > ρ and any d with 1
ρF (d) ≤ F (d−i) ≤ F (d), the probability that g

outputs a value which is constant on all d−i (i.e., achieves consensus) is 1− logc ρ.

Lemma 5. [37] If payoff for g, γg, is defined as:

γg(F (.)) =

 g(F (.)) , if g achieves consensus;

0 , otherwise.
(6.7)

then for all F (.), we have:

E[γg(F (.))] =
F (.)
ln(c)

(
1
ρ
− 1

c

)
. (6.8)

Let us now discuss how to choose the value of c. We are interested in the expected

payoff to be large relative to F (.), i.e., E[γg(F (.))]/F (.) is large over different values of

F (.). For a fixed value of ρ, we can choose the value of c that maximizes 1
ln(c)

(
1
ρ −

1
c

)
.

This function is differentiable on c ∈ (1, ∞) and it has an absolute maximum on that

6.7 Extended Consensus Revenue Estimate Auction 159

interval. Therefore, by taking the derivative of it w.r.t. c and setting it to zero, we have:

∂E[γg(F (.))]/F (.)
∂c

= 0⇒

ρ ln(c) + ρ− c
ρ c2 ln2(c)

= 0, ρ > 1, c > ρ⇒

ρ ln(c) + ρ− c = 0 (6.9)

Note that (6.9) does not have an exact solution and needs to be solved by numerical

methods.

The second component of Ex-CORE, a revenue extraction mechanism, extracts a tar-

get revenue from the set of bidders if this is possible. The algorithm is based on the

cost sharing mechanism proposed by Moulin and Shenkar [76]. Given an order vector d

sorted in descending order of bids and a target revenue R, the revenue extractor function

eR(d) finds the largest k such that R/σk(d) ≥ bk. In other words, it finds the k bidders

with the highest bid values that allow for the extraction of R. R is then shared among

these k bidders based on the number of requested instances by each bidder, that is, each

of these bidders are charged R/σk(d). If no subset of bidders can share R, the auction has

no winners.

Lemma 6. Given a target revenue R, the revenue extraction mechanism is truthful for the price

dimension but not for the quantity dimension.

Proof. Without loss of generality, we consider d as sorted. The revenue extraction mech-

anism is truthful if ui(qi, vi) ≥ ui(ri, bi) for all values of bi and ri and for every bidder i,

1 ≤ i ≤ n. First, we show that given a fixed ri any untruthful submission of the bid price,

i.e., bi 6= vi decreases bidder’s i utility. It suffices to consider the following two cases:

Case 1: Suppose the truthful submission (vi = bi) leads to bidder i winning the auc-

tion, it is easy to verify that reporting bi > vi only decreases the rank of bidder i in d,

assuming d remains unchanged except for bidder i. Therefore, it does not change the

sale price and as a result, bidder i’s utility also remains unchanged.

If bidder i reports bi < vi, as long as bi ≥ p (p is the sale price), p remains unchanged.

Hence, bidder i’s utility does not increase or decrease. However, as soon as bi < p,

160 An Auction Mechanism for a Cloud Spot Market

Bid price

Quantity

p
bi

vi

Quantity

p’

Bid price

(a) Reporting bi < vi increases the price to p′ > vi.

Bid price

vi

s

Bid price

Quantity

s’

Quantity

s’

bi p

p’

s’’

(b) Reporting bi > vi decreases the price to p′ > vi.

Figure 6.2: Effect of misreporting true value on the sale price. Truthful submission leads
to (a) winning and (b) losing.

bidder i loses the auction, the sale price rises, and the bidder’s utility drops to zero. This

is illustrated in Fig. 6.2a. Consequently, submitting bi < vi might not improve bidder i’s

utility and might reduce it to zero.

Case 2: Suppose the truthful submission (vi = bi) leads to the bidder losing the auc-

tion, then reporting bi < vi would clearly not change the zero utility of the bidder.

If reporting bi = vi leads to bidder i losing the auction, it follows that p > vi. Assume

p = R/s, where s is the sum of the number of requested units by largest group of k

bidders with highest bid values that can at least generate a revenue of R. Consider s′ =

σi(d), as a result s′ > s, since we know bi is a losing bid.

Suppose bidder i reports her bid bi > vi, we argue that new sale price p′ is always

6.7 Extended Consensus Revenue Estimate Auction 161

larger than vi (p′ > vi). That is, increasing bi might increase s up to s′ at most. This is

shown in Fig. 6.2b.

Using reductio ad absurdum, assume by increasing bi, s can be increased to a value

s′′ > s′. Hence, we know that there is a bidder j whose bid price, bj, is larger than R/s′′

(R/s′′ ≤ bj). We know that i < j and bj ≤ vi, because s′′ > s′ requires j to be placed after

i in the sorted vector. If R ≤ s′′bj after increasing bi, then R ≤ s′′bj before increasing as

well, because bidder i is placed in the lower rank either bidding at bi = vi or bi > vi in the

sorted vector of orders. That is, bidder i is a winner in either of cases. This contradicts

our initial assumption that reporting bi = vi leads to bidder i losing the auction. So,

s′′ ≤ s′ ⇒ p′ > vi.

Hence, bidding bi > vi leads to negative utility for bidder i and bidder i would be

worse off.

Second, we provide an example that demonstrates that the revenue extraction mech-

anism is not truthful for the quantity dimension. That is, bidders are able to increase

their utility by misreporting their required number of instances. Assume R = $7 and an

order vector d = {(1, $8), (5, $1)}. Bidder one is charged 7/1 = 7 and bidder two loses

according to the revenue extraction mechanism. The utility for bidder one is then com-

puted as follows: 1× 8− 1× 7 = 1. Now, consider that bidder one misreports 2 as the

required number of instances. Then, the largest group of bidders able to share R includes

the orders of both bidders. Therefore the price for bidder one is 7/7 = 1 and its utility is

computed as: 1× 8− 2× 1 = 6.

Definition 8. Extended Consensus Revenue Estimate Auction (Ex-CORE): For constant c,

and a random value u, uniformly chosen from [0, 1], find g(.) as F (.) rounded down to nearest

cl+u for integer l. The sale price by Ex-CORE is then defined as p = eR(d) where R = g(F (d)).

Lemma 7. For order vector d, constant c and a choice of u, if g(F (d−i)) = R for all i, 1 ≤ i ≤ n,

i.e., it is a consensus, then the Ex-CORE auction is truthful with respect to bid prices.

Proof. It suffices to show that if g(F (d−i)) = R for all i, no bidder can increase her utility

by bidding any value other than their true bid value. Note that If g(F (d−i)) = R for all

162 An Auction Mechanism for a Cloud Spot Market

i then g(F (d)) = R. Now consider that bidder i submits an order (ri, bi) where bi 6= vi

resulting in d′ (d′ is identical to d except for bidder i’s bid price).

As long as g(F (d′)) = g(F (d)) = R, bidder i is not able to benefit out of misre-

porting. Because the sale price p is computed as p = eR(d), and according to Lemma 6,

the revenue extraction mechanism is truthful. Therefore, bidder i’s utility cannot be im-

proved by misreporting vi; thus bidder i’s best strategy is to bid at vi.

The proof is in fact very straightforward. For every user i, since F (d−i) = F (d),

changing bid bi to b′i will lead to a new order vector d′ the same as the original d except

component i. As a result, d′−i = d−i. Hence g(F (d′−i)) = g(F (d−i)) = g(F (d)) = R.

This essentially implies that user i will be given exactly the same price as before. Conse-

quently, the sale price cannot be decreased and bidder i’s utility cannot be increased.

Proposition 2. The Extended Consensus Revenue Estimate Auction (Ex-CORE) is envy-free,

truthful with probability 1− logc ρ for the bid price dimension, and 1
ln(c)

(
1
ρ −

1
c

)
-competitive

for mass markets.

Proof. Definition 8 and Lemmas 4, 5 and 7 are enough to prove the proposition.

6.7.1 Discussion

The Ex-CORE auction is not two-dimensionally truthful because the revenue extraction

mechanism is not truthful for the quantity dimension (Lemma 6). In the cloud spot mar-

ket however, no customer has an incentive to request fewer instances than needed (as

ui(ri, bi) = 0 whenever ri < qi). Our detailed investigation of the proposed mechanism

shows that bidders are able to increase their utility in some cases by requesting a higher

number of instances than what they actually require. Devising a two-dimensional truth-

ful mechanism for this highly complex strategy space remains as a future work. Never-

theless, we believe that the proposed mechanism retains its practical value due to several

key reasons.

First, users who misreport the required number of instances end up paying for a

higher number of instances. In order to increase utility, the increment in ri must cause a

6.8 Limited Supply and Reserve Price 163

sufficient reduction in the market price to compensate for the surplus cost a bidder pays

for the additional instances. Considering that the bidder is not aware of the other orders,

there is always a risk of decrease in utility by misreporting.

Second, F (d) is monotonically increasing w.r.t ri (the rationale is intuitive) and Ex-

CORE calculates the sale price based on the estimation of F (d). Given that r (the maxi-

mum number of requested instances) is a constant and m → ∞ in a cloud mass-market,

in expectation R (the estimated value of F (d)) rises as the bidder increases demand. The

revenue extraction mechanism computes the price by R/σk(d). Therefore the risk of in-

creasing the market price increases by misreporting the number of required instances,

as the numerator of the fraction (R) is increasing while there is no certainty about the

decrease or increase in the denominator (σk(d)).

Last but not the least, r is constrained by a limit. As the number of sold instances in

the cloud market is usually high, the effect on the market price of a bidder misreporting

demand is typically low given the assumption of non-collusive behavior of bidders.

In Section 6.10, we demonstrate through simulation that in markets of sufficient size,

an individual bidder indeed has a very low probability of gaining utility by misreporting

VM demand.

6.8 Limited Supply and Reserve Price

Up to this point, we have considered an unlimited capacity setting. In reality, however,

situations arise wherein a cloud provider needs to reject requests due to lack of supply.

We modify the auction mechanisms to take into account that C(t), the number of VM

instances available for sale at time t, can be lower than the demand.

As the provider wishes to maximize revenue, it can select a set of high-value bidders

such that the total amount of requested VMs by this set is smaller or equal to C(t). This set

of bidders subsequently participates in the auction mechanism for the unlimited supply

case, while the remaining bids are rejected. Fig. 6.3 depicts how supply is limited by C(t).

This method allows us to extend our discussion into the bounded supply case. In order to

be envy-free in the bounded supply case, we need to ensure that none of the bidders win

164 An Auction Mechanism for a Cloud Spot Market

C(t)

γ(t)

Bid price

Quantity

Figure 6.3: Supply limited by capacity and reserve price at time t

at a price lower than the highest losing bid. Therefore, we ensure that p = max(blost, p),

with blost the highest losing bid.

If a bidder accepts partial fulfillment of an order, the fraction of required instances

that fits in the provider’s available capacity can be allocated. When multiple winning

consumers are subject to such partial delivery, ties can be broken randomly.

6.8.1 Reserve Price

If profit instead of revenue is of concern, the provider needs to take its costs for delivering

a VM instance into account. Let γ(t), the reserve price at time t, be the lowest possible price

that the provider accepts for one slot of usage of a VM instance, at time t; orders with bids

below this level are ignored by the auction. In this section, we propose a method for a

provider to compute γ(t). Fig. 6.3 depicts how the order vector is shaped by γ(t).

The reserve price for most perishable goods and services is considerably low at their

expiration time. For instance, the reserve price for flight seats is theoretically negligible;

as soon as boarding is closed on a particular flight, all the unsold seats on that flight

are completely wasted. Thus, selling a remaining seat at a reasonable low price is often

a better option compared to wasting the seat capacity without generating any revenue.

However, there is a fundamental difference between cloud resources and other perish-

6.8 Limited Supply and Reserve Price 165

able goods and services. A significant part of the service cost in cloud data centers is

related to power consumption of physical servers. The cost of power drawn by servers

and associated cooling systems is comparable to the amortized capital investments for

purchasing the servers themselves [88]. Thus, when considering the perishable nature of

VM services, taking into account the marginal cost of instantiating a VM is important in

this case6.

The overall cost of the data center, Coverall , can be divided into capital and operational

costs, Coverall = Ccap + Copr. The parameter Ccap includes upfront investments and all

one-time expenses that are depreciated over the lifetime of the data center, e.g., those

related to the purchase of land, buildings, construction, buying physical servers and soft-

ware, installing power delivery and cooling infrastructures etc. Copr includes electricity

costs, staff salaries and ISP costs. Operational costs can further be categorized as being

fixed or variable, Copr = Copr f ixed + Coprvar . The parameter Copr f ixed includes costs that re-

main identical no matter the data center is operating at full capacity or not, e.g., staff

salaries. However, components of Coprvar may increase or decrease depending on data

center utilization, e.g., electricity costs.

The provider is not able to avoid the incurrence of Ccap and Copr f ixed , whereas Coprvar can

be avoided to a large extent. Coprvar over any specific time period is dominated by the cost

of power consumption, Cpwr, and can be strongly approximated by it (Coprvar ≈ Cpwr).

Cloud providers are able to measure instant power consumption in the data center.

Knowing the power consumption and electricity prices, Cpwr can be easily calculated.

We argue that the cloud provider should define the reserve price in a way that accom-

modating a VM with a specific bid must at least generate sufficient revenue to offset the

contribution of VM to Coprvar . Assuming all VMs are of the same type, γ(t) can therefore

be derived as follows:

γ(t) = Cpwr/VMn(t), (6.10)

where VMn(t) is the number of running VMs in the data center at time t, and Cpwr is the

cost of power consumption at that time. Knowing the electricity price, ϕ, and total data

6In economics, the marginal cost is the change in total cost that arises as a result of one additional unit of
production.

166 An Auction Mechanism for a Cloud Spot Market

center power consumption, Powertotal , Cpwr can be computed as Cpwr = Powertotal× ϕ. As

γ(t) is primarily affected by factors such as IT load, electricity price, data center outside

air temperature and humidity [89], it should vary dynamically.

Because we resort to simulation for the experimental performance evaluation of our

proposed solution, we require a model for Cpwr. Detailed modeling of data center power

usage however is difficult because of the complexity and diversity of the infrastruc-

ture [89]. Consequently, we propose abstract model based on the concept of Power Usage

Effectiveness (PUE).

6.8.2 Power Usage Efficiency Model

PUE is a measure of how efficiently a data center consumes its power. It is computed as

the ratio of total data center power consumption, Powertotal , to IT load power, PowerIT,

i.e., power consumed by servers, storage and network equipment:

PUE = Powertotal/PowerIT. (6.11)

PUE measures the power overhead consumed in supporting the IT load. The over-

head is caused by cooling and humidification systems (e.g., chiller), power distribu-

tion (e.g., PDU), power conditioning system (e.g., UPS), and lighting. Ideally PUE = 1.

Inefficient data centers have a PUE of 2.0 to 3.0, while PUE scores lower than 1.14 are ad-

vertised by leading companies such as Facebook and Google [41]. PUE reported in this

way is usually an average value over a specific period of time (e.g., one year), whereas

instant PUE is not a constant value. The efficiency of the data center varies over time by

changes in the data center conditions.

One of the most important conditions is the outside ambient temperature [97], as the

energy required to remove heat generated within the data center grows with it [89]. To

some degree, outside air humidity affects cooling power as well, but we do not consider

it in this work in order to limit model complexity.

A second important condition that changes over time and affects PUE is the IT load.

This follows from the fact that the efficiency of power conditioning system and cooling

6.9 Auction Mechanisms and Benchmarks 167

equipments increases under higher load [42]. We represent IT load by the percentage of

ON physical servers in the data center (referred to as data center utilization). We model

PUE as function of load and outside ambient temperature, i.e., PUE = f (load, temp). In

order to simplify the model, we assume that every server in the data center consumes

its peak load power if it is ON; and none otherwise. PowerIT, is therefore computed

according to (6.12).

PowerIT = NSrv−ON × PowerSrv, (6.12)

where NSrv−ON is the number of non-idle servers in the data center, and Powersrv is the

peak power consumption by servers. The contribution of networking equipment in (6.12)

is not taken into account as it is small and its power draw does not vary significantly with

data center load [89].

In this study, we assume that the provider commits to provide the actual amount

of resources required by a VM, regardless of the actual resource usage pattern of the

applications it executes. Moreover, we assume the cloud provider periodically packs the

data center’s workload into a minimum number of servers, powering off any inactive

ones.

6.9 Auction Mechanisms and Benchmarks

In this section we review the different auction mechanisms that are included in our ex-

perimental evaluation.

Optimal Single Price Auction (OPT): The extractable revenue in a single-round,

single-price auction is at most F (d) which can be achieved by an optimal price choice.

Since we are interested in maximizing the provider’s revenue, we use the Optimal Single

Price Auction (OPT) described in Definition 1 as a benchmark. In the online version of

OPT, the auction is executed upon every arrival of an order or termination of an instance.

Online Extended Consensus Revenue Estimate Auction (Online Ex-CORE): Details

of the Ex-CORE auction can be found in Section 6.7. Our online version of Ex-CORE

(outlined in Algorithm 3) records the optimal sale price computed by OPT in the previous

round, and updates the sale price using the Ex-CORE algorithm. Only when the optimal

168 An Auction Mechanism for a Cloud Spot Market

Algorithm 3 The Online Ex-CORE Auction

Input: d, pcur, poptprv . d is the list of orders, sorted in descending order of bids, pcur is
current market price, poptprv is the optimal single price in the previous round.

Output: p . Sale Price
1: popt ← opt(d)
2: if popt = poptprv then
3: return pcur
4: end if
5: r ← the largest ri in d
6: m← argmax

σi(d)
biσi(d)

7: if m ≤ r then
8: return popt . single optimal price
9: else

10: ρ← m
m−r

11: Find c in ρ ln(c) + ρ− c = 0
12: u← rnd(0, 1) . chosen uniformly random on [0,1]
13: l ← blogc(F (d))− uc
14: R← c(l+u)

15: j← the largest k such that R
σk(d)

≥ bk

16: return R
σj(d)

17: end if

sale price calculated in the current round differs from the one in the previous round of the

auction, a new price is computed (lines 1-4). This prevents the market to be exposed to

a high number of price fluctuations due to randomness in the Ex-CORE algorithm. Note

that it does not violate a possibly existing consensus established in the previous round of

the Ex-CORE auction, as arriving or leaving orders have not changed the optimal price.

Lines 5 and 6 compute r, the maximum number of requested units in the order list,

and m, the maximum number of units sold by OPT. As our mechanism is designed to

work for mass-market scenarios it requires m to be larger than r (m � r). In the rare

event when this condition would not hold, the algorithm returns the price computed by

OPT.

On line 10, ρ is computed, followed by the computation of the optimal value for c,

for which we use Newton-Raphson. Subsequently, c is used to generate an estimation

of F (.) that achieves the consensus with high probability (lines 12-14). Finally, the es-

timated value is converted to the market clearing price through the revenue extraction

6.9 Auction Mechanisms and Benchmarks 169

mechanism.

Holding Time Aware Optimal Auction (HTA-OPT): Due to a lack of prior knowl-

edge on the holding time of VMs, the online version of the Ex-CORE auction operates

in a greedy manner, as it attempts to maximize revenue given the newly arriving order

and the existing orders at a given time. In order to quantify the efficiency loss caused

by this lack of information, we use HTA-OPT as a benchmark algorithm that uses prior

knowledge on VM holding times. HTA-OPT takes into account the fact that an order

with a long holding time and a low bid can potentially generate more revenue than a

short order with a high bid.

Algorithm 4 calculates the optimal sale price using dynamic programming. The price

is computed based on the maximum possible revenue that can be generated by current

orders in the system and the corresponding remaining time of these orders. The main

reasoning is that if the algorithm sets the price at a specific bid price, all orders with bid

prices lower than that price are not available for the next time slot. Assuming bidders

are charged on an hourly basis of VM usage, we express duration similarly in an hourly

basis. Each partial hour is considered as a full hour (e.g., 2.5 hours is considered as 3

hours of usage).

Algorithm 4 has the following input arguments: the list of orders d, sorted in de-

scending order of bids, an order index i set to the number of orders in the first call of the

function, a time slot index t set to 1 for the first call, and a boolean argument f irstCall

indicating that it is the first call to the function. Lines 5-15 initialize the revenue array rev

such that each element in rev is set to the revenue that can be generated in that time slot,

provided that the price is set to a corresponding bid price. Line 16 ends the recursion

when the termination conditions are reached.

In lines 24-29, the algorithm chooses the most profitable path given two choices for

dealing with order i at time t. This is done by recursively computing the total revenue in

case the market price is kept below the order’s bid at time t (ans1), and computing the

revenue in case the decision is made to let the market price exceed the order’s bid at t

(ans2).

The most profitable decision path is stored in the dp array with the aggregated rev-

170 An Auction Mechanism for a Cloud Spot Market

enue for the checked paths. Finally, we find the highest possible revenue within the first

column of dp, and return the corresponding price. We break ties by favoring the market

price with the lowest transaction volume.

Uniform Price Auction: In the uniform price auction, the provider serves the highest

bidder first, allocating the requested number of instances. This is followed by an alloca-

tion for the second highest bidder and so forth until supply is exhausted or there are no

more orders. All bidders are charged the lowest winning bid.

6.10 Performance Evaluation

Our evaluation of the proposed auction framework includes three parts. In the first, we

simulate Ex-CORE in a single-round, unlimited supply setting using several order distri-

butions. In the second part, the impact of misreporting the number of required instances

on the utility obtained by an individual bidder is explored. The last part evaluates the

auction framework under bounded supply. Auctions then occur recurrently by arriving

and finishing orders, and the marginal cost of VM production changes dynamically over

time.

6.10.1 Order Generation

Due to the lack of real-world data on bidder valuations and order sizing, we need to

resort to a synthetic generation of orders. In line with [39], we adopt the following four

distributions for the generation of bids:

1. uniform (l, h): Bid prices are drawn from a uniform distribution bounded by l and

h.

2. normal (µ, σ): Bid prices are drawn from a normal distribution with mean µ and

standard deviation σ. Bids less than or equal to zero are discarded and a new bid is

drawn from the distribution. This causes the normal distribution to be skewed as

zero and negative bid values are not permitted.

6.10 Performance Evaluation 171

Algorithm 4 Holding Time-Aware Optimal Auction

Input: d, i, t, f irstCall
Output: p . Sale Price

1: maxDuration← max
i

(DURATION(di)) . The duration function returns the time

remaining from the holding time of the orders in unit of hours.
2: dp[|d|][maxDuration]← {−1}
3: rev[|d|][maxDuration]← {0} . Create dp and rev arrays with |d| (size of d) rows

and maxDuration columns, and initialize all cells with −1 and 0 respectively.
4: function HTA-OPT(d, i, t, f irstCall)
5: if f irstCall then
6: for j← 1 to maxDuration do
7: prvCount← 0
8: for k← 1 to |d| do
9: if j ≤ DURATION(dk) then

10: rev[k][j] = dk × (rk + prvCount)
11: prvCount← prvCount + rk
12: end if
13: end for
14: end for
15: end if
16: if i = 0 or t > DURATION(di) then
17: return 0;
18: end if
19: if dp[i][t] = −1 then
20: ans1← 0, ans2← 0
21: if t ≤ DURATION(di) then
22: ans1← HTA-OPT(d, i, t + 1, f alse) + rev[i][t]
23: end if
24: if i ≥ 1 then
25: ans2← HTA-OPT(d, i− 1, t, f alse)
26: end if
27: if ans1 > ans2 then dp[i][t]← ans1
28: else dp[i][t]← ans2
29: end if
30: end if
31: if f irstCall then
32: k← argmax

i
(dp[i][0]) . In case of ties, pick lowest i, i.e., higher price and

selling less instances
33: return bk
34: end if
35: return dp[i][t]
36: end function

172 An Auction Mechanism for a Cloud Spot Market

3. Zipf (h, θ): Bid prices are drawn from a Zipf distribution with parameters h as the

highest bid price and parameter θ. This distribution is a generalization of the Pareto

principle that 80% of the total bid value originates from 20% of the bidders.

4. bipolar (l, h): Bid prices are generated by randomly choosing either l or h with

equal probability.

For requested number of instances in each order, we consider three types of distribu-

tions :

1. constant(ζ): The number of instances for all orders equal ζ ≤ r where r is the

supremum on the number of requested units.

2. uniform (l, h): The number of instances for an order is drawn from a uniform

distribution between l = 1 and h = r .

3. normal (µ, σ): The number of instances for an order is drawn from a normal dis-

tribution as a discrete value with mean µ and standard deviation σ. Values smaller

than 1 or larger than r are discarded.

6.10.2 Single Round Evaluation

We investigate the generated revenue for different combinations of distributions for the

bid price and the number of requested units per order. The number of orders varies be-

tween 10 and 100000 and the ratio of generated revenue by Ex-CORE (R) to F is reported

(R/F). Each experiment is carried out 30 times and the mean value of R/F is reported.

Fig. 6.4 shows the simulation results when r = 50. As the number of orders increases,

R/F approaches 1 regardless of the distribution used for order generation as we ex-

pected. Although there is a small difference between the revenue obtained by Ex-CORE

for different distributions as shown in Fig. 6.4, the distribution of orders does not have a

significant effect on the generated revenue, especially when the number of orders in the

market is large. Fig. 6.5 shows separate box plots of R/F for different order distributions

when the number of orders equals 100. Statistical analysis certifies that the performance

does not change significantly under different order distributions. By design, Ex-CORE

6.10 Performance Evaluation 173

10000010000100010010

1.0

0.8

0.6

0.4

10000010000100010010

1.0

0.8

0.6

0.4

bipolar (1, 60)

Number of Orders

R
/F

normal (30, 30)

uniform (1, 60) zipf (50, 0.5)

constant (50)

normal (12.5, 12.5)

normal (25, 12.5)

uniform (1, 50)

Quantity distribution

r = 50

Panel variable: Bid distribution

Figure 6.4: Ratio of gained revenue by the Ex-CORE auction to optimal auction under
different distribution of orders.

does not require a priori knowledge about the order distribution. Therefore, the provider

does not need to rely on frequent investigation and monitoring of changes in the market

conditions in order to maximize its revenue.

A sensitivity analysis with respect to r showed that its value does significantly impact

the results, as long as r is sufficiently small compared to the total demand volume, and

the total supply volume in the market is sufficiently large. This can be easily justified by

Lemma 3. For brevity, we omit a discussion on these experiments.

6.10.3 Evaluation of Misreporting Quantity

As the Ex-CORE mechanism is not two-dimensionally truthful, we investigate the poten-

tial for a bidder to gain utility by misreporting the number of required units in her order.

First, we generate list of orders with the same settings used for experiment 1 and assume

each generated order to be truthful. The utility obtained by every bidder is subsequently

174 An Auction Mechanism for a Cloud Spot Market

uniform (1, 50)

normal (2
5, 12.5)

normal (1
2.5, 12.5)

constant (5
0)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

zipf (5
0, 0.5)

uniform (1, 60)

normal (3
0, 30)

bipolar (1
, 60)

1.0

0.9

0.8

0.7

0.6

R
/F

Number of Orders = 100, r = 50

constant (50) normal (12.5, 12.5) normal(25, 12.5) uniform (1, 50)

Figure 6.5: Ratio of gained revenue by the Ex-CORE auction to optimal auction under
different distribution of orders when number of orders is 100.

calculated according to (6.1).

Assuming there is no collusion among bidders, we increase the requested number of

instances (ri) for an individual bidder i up to the maximum number of instances that can

be requested (r) by the step size of one, while keeping the orders of the other bidders

unchanged. For every stepwise increase, we calculate the bidder’s utility and compare

it with the utility attained under a truthful report. We then compute the probability of a

bidder increasing its utility through a misreport of quantity, by dividing the number of

cases in which utility increased to the total number of steps.

The experiment is repeated for every bidder with the same random number seed for

each step and is subsequently carried out 30 times with different seeds. Fig. 6.6 shows

the mean and box plot of the mean probability of increase in the utility by misreporting

the quantity after 30 runs under different order distributions. The constant distribution

of the requested units is removed from the set of quantity distributions, as there is no

opportunity to change ri. As one can observe in the figure, the probability of gaining

utility through misreports converges to zero as the market size grows under all order

distributions. Moreover, there is no predictable pattern for the user to increase the utility

value due to the implicit random component of Ex-CORE and the lack of knowledge

about other bidders. Fig. 6.7 shows the maximum increase of the utility value among

all bidders, achieved through misreporting quantity. As can be seen in the figure, the

maximum possible gain in the utility value for all bidders through misreporting number

of instances converges to zero as the market size grows.

6.10 Performance Evaluation 175

100000

10000

1000
100

10

0.4

0.2

0.0

0.4

0.2

0.0

0.4

0.2

0.0

100000

10000

1000
10010

0.4

0.2

0.0

100000

10000

1000
10010

bipolar (1, 60), normal (12.5, 12.5)

Number of Orders

M
e

a
n

 P
ro

b
a

b
il

it
y

 o
f

In
cr

e
a

se
 i

n
 t

h
e

 U
ti

li
ty

 V
a

lu
e

bipolar (1, 60), normal (25, 12.5) bipolar (1, 60), uniform (1, 50)

normal (30, 30), normal (12.5, 12.5) normal (30, 30), normal (25, 12.5) normal (30, 30), uniform (1, 50)

uniform (1, 60), normal (12.5, 12.5) uniform (1, 60), normal (25, 12.5) uniform (1, 60), uniform (1, 50)

zipf (50, 0.5), normal (12.5, 12.5) zipf (50, 0.5), normal (25, 12.5) zipf (50, 0.5), uniform (1, 50)

Panel variables: Bid Distribution, Quantity Distribution

Figure 6.6: Mean probability of increase in the utility value for bidders by Ex-CORE
under different distribution of orders when r = 50. A blue circle denotes the mean value.

6.10.4 Online Auction Framework Evaluation

We evaluate the profit of the online Ex-CORE auction through simulation. We consider

the case where capacity (C) is bounded fixed throughout the simulation at C = 8× 104.

In real-world scenarios, a provider may offer several pricing plans (e.g., on-demand, re-

served pricing plans) or different types of VMs (e.g., small, medium, large). Under such

circumstances, the capacity allocated for a specific VM type in the auction market can be

dynamically adjusted in order to maximize profit [127, 139]. We consider the auction op-

erates for just one type of VM. Similar auctions can be run separately for the provider’s

VM types.

We simulate the market for 24 hours. Customers submit their orders independently

following a Poisson process with λ set at the total number of requests in the whole sim-

ulation divided by 24. As the distribution of the bid prices and the quantity of requested

176 An Auction Mechanism for a Cloud Spot Market

2

1

0

10000010000100010010 10000010000100010010

2

1

0

10000010000100010010

2

1

0

10000010000100010010

normal (12.5, 12.5), bipolar (1, 60)

Number of Orders

M
a

x
im

u
m

 I
n

cr
e

a
se

 o
f

th
e

 U
ti

li
ty

 V
a

lu
e

 (
$

)

normal (12.5, 12.5), normal (30, 30) normal (12.5, 12.5), uniform (1, 60) normal (12.5, 12.5), zipf (50, 0.5)

normal (25, 12.5), bipolar (1, 60) normal (25, 12.5), normal (30, 30) normal (25, 12.5), uniform (1, 60) normal (25, 12.5), zipf (50, 0.5)

uniform (1, 50), bipolar (1, 60) uniform (1, 50), normal (30, 30) uniform (1, 50), uniform (1, 60) uniform (1, 50), zipf (50, 0.5)

Panel variables: Quantity Distribution, Bid Distribution

Figure 6.7: Maximum increase of the utility value among all bidders, achieved through
misreporting quantity in Ex-CORE auction under different distribution of orders when
r = 50. Mean value is denoted by blue disc.

units do not significantly impact the revenue results, we use uniform distributions for

both.

Bid prices in dollars are drawn from a uniform distribution on [0, 0.06]. The maximum

bid price is derived from the Amazon EC2 price of on-demand small instances in the US

east region7. Considering the lower QoS for VMs in the spot market and the truthfulness

properties of the mechanism, bidding higher than the on-demand price seems unreason-

able. However, in real-world scenarios there might be orders with a bid higher than the

on-demand price, as observed on the EC2 spot market. This is not of concern in our

model.

The requested number of instances per order for each bidder is modeled by i.i.d. ran-

dom variables uniformly distributed on [1, 50]. Amazon EC2 similarly imposes a limit of

100 VM instances per region that can be acquired by a customer in the spot market8.

7http://aws.amazon.com/ec2/pricing/
8http://aws.amazon.com/ec2/spot-instances/

http://aws.amazon.com/ec2/spot-instances/

6.10 Performance Evaluation 177

Following Mills et al. [74], the holding time of the VM instances by users is modeled

by i.i.d Pareto distributed random variables, with shape parameter 1 and location pa-

rameter 1. Each generated random value represents the time in hours that VM instances

remain in the system. If the order’s bid price is lower than the current market price, the

order remains in the queue for a maximum time period of half an hour. The order is con-

sidered in every auction round during this period. If the order is not serviced at the end

of this period, it is labeled as rejected. The VMs that are instantiated following the accep-

tance of an order can be terminated at any time if the market price exceeds the order’s

bid. Upon termination, these VMs are not charged for their last partial hour. VMs that

are terminated by their owner are charged for a discrete number of hours, with a partial

hour of usage accounted for as a full hour.

To model the marginal cost of running VMs, we assume that the data center is pop-

ulated with BL460c G6 blade servers that host a quad-core Intel Xeon E5504 2.0 GHz

processor. The peak power usage per blade server is rated at 400 W. Using the Amazon

EC2 small instances type, each server is able to host up to 8 VMs. Two sets of electricity

prices are considered for the data center, one for “on-peak” hours from 7am to 9pm and

another for “off-peak” hours from 9pm to 7am. Following work by [53], we adopt a peak

price of 0.108$/KWh and an off-peak price reduction of 50%. We compute PUE based

on data center load and outside air temperature. Taking models by Goiri et al. [36] and

Rasmussen [97] into account, Fig. 6.8 illustrates our modeling of the PUE as a function

of outside temperature. Drastic jumps in PUE occur due to chiller activation when out-

side temperature crosses the 20◦C mark [36]. We consider a relatively warm day with

minimum temperature of 14◦C and maximum temperature of 33◦C. We estimate hourly

temperatures throughout the day based on a method by Gaylon et al. [18].

The green dashed line in Fig. 6.10 depicts the reserve price generated based on our

model in a sample simulation run. Our investigation on the historical price data of spot

instances for the past 90 days prior to 14th of November 2013 shows that the spot market

price never goes below $0.007 for the small instances in the US-east region. The value

complies with our computed reserve price for that instance type when the physical server

characteristics, as well as the electricity prices and outside air temperature parameters are

178 An Auction Mechanism for a Cloud Spot Market

−10
0

10
20

30
40

50

0

50

100

1

1.5

2

2.5

3

3.5

Data center utilization (%)

Outside Temperature (°C)

P
U

E

Figure 6.8: PUE as related to load and outside temperature.

based on realistic data for an Amazon data center in the US-East region. The same holds

true for the modeled and observed minimum spot price for the other instance types in the

m1 instance class, as they are based on hardware with similar power draw characteristics.

Experimental Results

We evaluate the online Ex-CORE auction by comparing profit and number of rejected VM

requests to the other auction mechanisms outlined in Section 6.9. The computed profit

is the total generated revenue minus the cost of electricity. The capital cost and all other

fixed cost are not considered, as they are identical for all mechanisms. Each experiment

is carried out 30 times and the mean value is reported. The results are illustrated in

Fig. 6.9a and Fig. 6.9b, where the number of orders in a 24-hour simulation is increased

from 500 to 7500, and scenarios with or without the adoption of a reserve price are shown.

Fig. 6.9a shows that gained profit by all mechanisms increases with the number of

orders. The OPT, HTA-OPT and online Ex-CORE auctions generate comparable profits,

while there is a big gap between uniform price auction and the other mechanisms. When

supply is higher than demand and there is no competition among bidders, all orders

are accepted by the uniform price auction; and consequently the uniform price auction

6.10 Performance Evaluation 179

7500650055004500350025001500500

8000

7000

6000

5000

4000

3000

2000

1000

0

-1000

7500650055004500350025001500500

Reserve Price Active

Number of orders

M
e

a
n

 o
f

P
ro

fi
t

($
)

Reserve Price Inactive

UNIFORM

Online Ex-CORE

OPT

HTA-OPT

Auction Mechanism

(a)

7500650055004500350025001500500

140000

120000

100000

80000

60000

40000

20000

0

7500650055004500350025001500500

Reserve Price Active

Number of orders

M
e

a
n

 o
f

N
u

m
b

e
r

o
f

re
je

ct
e

d
 V

M
s

Reserve Price Inactive

UNIFORM

Online Ex-CORE

OPT

HTA-OPT

Auction Mechanism

(b)

Figure 6.9: (a) Average profit gained and (b) number of rejected VM instances with dif-
ferent auction mechanisms.

performs poorly under such circumstances. This supports the idea that the traditional

auction mechanisms such as the Vickrey Auction [122] or Uniform price auction are not

suitable for the cloud spot market in which supply is often higher than demand.

The benefit of using the online Ex-CORE auction is that, in spite of a small difference

in generated profit compared to OPT and HTA-OPT (6% lower on average), it accom-

modates a considerably higher number of VMs (17% and 14% less rejections on average

respectively). This reduces the impact of the bidder drop problem, introduced by Lee

and Szymanski [54] that can be caused by frequent rejection of customers with low valu-

ations.

180 An Auction Mechanism for a Cloud Spot Market

As illustrated in Fig. 6.9a and Fig. 6.9b, the reserve price only affects the outcome of

the uniform price auction. Considering the range and distribution of bid values used in

the simulation, the market price generated by online Ex-CORE, OPT and HTA-OPT is

always higher than the reserve price. To exemplify further, Fig. 6.10 provides the reserve

price and the market price generated by online Ex-CORE in a sample simulation run.

This, however, does not mean that the reserve price is of no importance and can be ig-

nored in real-world scenarios. In order to show the impact of the reserve price, different

highest submitted bid prices are used to decrease the average market price as shown in

Fig. 6.11. As can be seen in the figure, when the highest submitted bid price is low and

therefore the market price is lower on average, the absence of reserve price can lead to

loss or lower profit due to execution of VMs at a price below their variable cost.

0 6 12 18 24
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
ar

ke
t

P
ri

ce
 (

$)

Time (Hour)

Figure 6.10: Reserve price (green dashed line) and spot market price generated by online
Ex-CORE (blue solid line) in a sample simulation run when the number of orders is 1500.

As we are interested in the importance of a priori knowledge on the holding time of

VMs by customers, the profit and the number of rejected VMs by OPT and HTA-OPT are

investigated further. The results of a paired T-Test comparing the profit performance of

OPT with HTA-OPT when the number of orders is 4500 and the holding time of VMs is

distributed i.i.d. based on a Pareto distribution with both shape and location parameters

equal to one are shown in Table 6.1. Given a null hypothesis of no statistically significant

difference in mean profit by OPT and HTA-OPT, the p-value is relatively high (p-value

= 0.846), suggesting that there is no strong evidence that the null hypothesis is false,

i.e. there is no credible evidence that OPT and HTA-OPT on average generate different

6.11 Summary and Conclusion 181

0
.0
3
8

0
.0
3
5

0
.0
3
2

0
.0
2
9

0
.0
2
6

0
.0
2
3

0
.0
2
0

0
.0
1
7

0
.0
1
4

0
.0
1
1

0
.0
0
8

0
.0
0
5

600

400

200

0

-200

-400

-600

-800

Highest Bid Price ($)

M
e

a
n

 o
f

P
ro

fi
t

($
)

Active

Inactive

Price

Reserve

Figure 6.11: Average profit gained by Ex-CORE when the number of orders is 1500.

Table 6.1: Paired T-Test with 95% Confidence Interval (CI) for comparison of difference
in mean of profit and number of rejected VMs generated by OPT and HTA-OPT (OPT −
HTA-OPT) when the number of orders is 4500.

OPT HTA-OPT Difference (95% CI) P-value
Profit 5358.7 5361.6 -2.9 (-33.6, 27.7) =0.846

Rejected 68575 66423 2152 (1192, 3111) <0.001

profit. However, there is a statistically significant difference in the mean number of re-

jected VMs. HTA-OPT rejected 2152 less VMs on average as it results in outcomes with a

lower market price. Considering the reported 95% Confidence Interval (CI), we can state

that knowing the holding time of VMs by itself does not change the amount of profit a

provider generates as it is not aware of upcoming orders’ bid prices.

6.11 Summary and Conclusion

With the rapid adoption of cloud computing environments, balancing supply and de-

mand for cloud resources through dynamic forms of pricing is quickly gaining impor-

tance. In this chapter, we presented an envy-free auction that is truthful with high prob-

ability and that generates a near optimal profit for the cloud provider. The auction oper-

ates under conditions similar to the EC2 spot market. The truthfulness of the mechanism

frees bidders from understanding its intricacies, thereby lowering the complexity of par-

182 An Auction Mechanism for a Cloud Spot Market

ticipation and the options for strategic behavior. At the same time, the mechanism aims

to achieve a maximal profit for the provider, and achieves envy-freeness through the use

of a uniform price. The mechanism is a generalization and extension of the consensus

revenue estimate (CORE) auction that enables its application in the cloud computing set-

ting, which requires an online recurrent auction with multi-unit requests. In order to

incorporate marginal costs of production in the resource trading process, we pair the

auctioning scheme with a method that calculates dynamic reserve prices based on a cost

model that incorporates data center PUE, load, and electricity cost.

An important benefit of the proposed auction design is that it achieves near optimality

w.r.t. maximizing revenue without requiring prior knowledge on the bid distributions.

Our evaluation demonstrates its performance in this regard under a variety of order dis-

tributions. The proposed mechanism is shown to significantly outperform the uniform

price auction and to closely approximate the profit outcome of the revenue maximiz-

ing, but non-truthful, optimal single price auction in an online setting (within 6% in our

experiments), while improving on the number of rejected VMs (up to 17% in our experi-

ments). Finally, our results show that the generated revenue does not differ significantly

from the revenue attained by a mechanism based on dynamic programming that relies

on prior knowledge regarding the holding time of VMs.

Chapter 7

Spot Instance Pricing as a Service

The previous chapter introduced an auction mechanism for cloud spot markets that efficiently prices

cloud resources in line with a provider’s profit maximization goal. This chapter presents the imple-

mentation of the proposed mechanism by identifying a framework called Spot instance pricing as

a Service (SipaaS)a. SipaaS is an open source project offering a set of web services to price and sell

VM instances in a spot market. Cloud providers, who aim at utilizing SipaaS, should install add-ons

in their existing platform to make use of the framework. As an instance, we provide an extension to

the Horizon –the OpenStack dashboard project– to employ SipaaS web services and to add a spot

market environment to OpenStack. The design and implementation of the framework followed by its

evaluation and validation are described in detail in this chapter.

aSipaaS in Persian language means thank.

7.1 Introduction

RECENTLY, Infrastructure-as-a-Service (IaaS) cloud providers have started offering

unused computational resources in the form of dynamically priced virtual ma-

chines (VM instances). The fact that demand for computational resources is non-uniform

over time motivates the use of dynamic forms of pricing in order to optimize revenue.

Hence, design and implementation of dynamic pricing mechanisms have received con-

siderable attention in the literature [9, 127, 134].

Among the pioneers who sell spare capacity of data centers using an auction-like

dynamic pricing mechanism is Amazon Web Services (AWS)1. In Amazon terminology,

VM instances trading in this form of pricing is known as spot instances and the market in

which spot instances are traded is called spot market.

1Amazon Web Services (AWS), http://aws.amazon.com.

183

http://aws.amazon.com

184 Spot Instance Pricing as a Service

Spot market, since introduced by AWS, has been considered as one of the first steps

towards a full-fledged market economy for computational resources [139]. In the spot

market, customers communicate their bids for an instance-hour to AWS in order to ac-

quire required number of instances. Subsequently, AWS reports a market-wide spot price

at which VM instance use is charged, while terminating any instances that are executing

on a bid price that is lower than the market price (out-of-bid situation). Prices vary inde-

pendently for each instance type and available data center (or availability zone in Amazon

terminology).

AWS has revealed no detailed information regarding their pricing mechanism and

the computation of the spot price. At present, the design of dynamic forms of pricing for

cloud computing resources is an open research challenge, and of great interest to both

cloud providers and researchers. An auction mechanism is truthful, if for each bidder

and irrespective of any choice of bid by all other bidders, the dominant strategy for the

bidder is to report his/her true information. We presented a pricing mechanism called

Online Extended Consensus Revenue Estimate (online Ex-CORE) auction that is truthful with

high probability and generates a near optimal profit for the cloud provider in Chapter 6.

In this chapter, we describe an open source framework called Spot instance pricing

as a Service (SipaaS). SipaaS offers a set of web services that can be used by IaaS cloud

providers to run a spot market resembling the AWS spot market. It provides services to

price VM instances using the internal pricing module that works based on the online Ex-

CORE auction mechanism. The extensible architecture of the SipaaS framework allows

for implementation of any new pricing mechanism without the necessity to modify the

design of the web services.

Cloud providers, who aim at utilizing SipaaS, require to extend their platform to

make use of the framework. In this chapter, we provide an extension to the OpenStack

project2, as an example, to employ SipaaS web services. Accordingly, we extended the

Horizon – the OpenStack dashboard project – to run a spot market environment using web

services provided by SipaaS.

To validate and evaluate the system consisting of the SipaaS framework combined

2OpenStack: An open source software for building private and public clouds, http://www.
openstack.org/.

http://www.openstack.org/
http://www.openstack.org/

7.2 System Design and Implementation 185

with the extension to OpenStack, we conducted an experimental study with a group of

ten participants utilizing the provided spot market. Results show that the system per-

forms perfectly in a practical test environment and experimentally confirm the theoreti-

cally proven truthfulness feature of the Ex-CORE auction.

The remainder of this chapter is organized as follows: Section 7.2 discusses the system

design and implementation where we describe SipaaS, extensions to Horizon, and Ex-

CORE pricing mechanism in subsections 7.2.1, 7.2.2, and 7.2.3, respectively. Evaluation

and validation of the system is conducted in Section 7.3. Conclusions are presented in

Section 7.4.

7.2 System Design and Implementation

The aim of SipaaS is to provide an extensible framework for dynamic pricing of VM in-

stances in a spot market based on a set of RESTful services. By extensibility, we mean the

ability to implement new pricing mechanisms and apply them in the framework with-

out the necessity to modify the design of the web services. Different implementations of

pricing mechanisms can be plugged into the framework by replacing the pricing mod-

ule, which will be discussed in the later part of this chapter. The implementation of the

SipaaS framework encompasses the proposed auction mechanism in Chapter 6 that can

be easily replaced by any arbitrary dynamic pricing mechanism.

SipaaS provides services for adding, removing, or updating bidders’ orders (bid price

and quantity) for various types of VMs for each provider (or data center) and dynamically

computing prices for each type. The SipaaS framework considers each type of VM for

each cloud provider as a distinct spot market and computes prices in each market based

on the submitted orders for the corresponding type. The framework is agnostic to the

cloud platform and resource management system used by the cloud provider; therefore,

cloud providers are supposed to implement their own extension to make use of services

provided by SipaaS.

As shown in Figure 7.1, the system is composed of two main parts:

1) SipaaS Framework: A set of RESTful services written in Java and deployed on a

186 Spot Instance Pricing as a Service

SipaaS Framework

Pricing

Module

W
eb

 Services

Database

Extension
Module

Resource Manager

User Interface

Cloud

Provider

Web Services Call

Response

Cloud Customers

Figure 7.1: System Model.

host to provide web services required for running the spot market. Detailed information

about the web services SipaaS offers are presented in Section 7.2.1.

2) Cloud Provider’s Platform Extensions: An add-on software that must be installed

as a module on the cloud provider’s platform to make use of web services provided

by SipaaS. Detailed information on such an extension to OpenStack is presented in Sec-

tion 7.2.2.

As shown in Figure 7.1, add-on software on the provider’s platform calls web services

on SipaaS framework using the REST API (i.e., HTTP Requests) and receives responses

in JSON [24] format in case of successful calls or error messages in case of errors.

7.2.1 SipaaS Framework

SipaaS stands for Spot instance pricing as a Service. As its name implies, the main goal

of SipaaS is to provide pricing for spot instances in the form of services. Thus, it has

been designed based on a set of web services, by invoking them, the cloud provider is

able to price the spot instances. SipaaS web services are implemented based on Spring

MVC [48]. As shown in Figure 7.2, SipaaS contains three main components:

1. Pricing Module: This component is the heart of the system and embodies the tech-

nique used for pricing spot instances. The pricing module computes the market-

wide single price based on the submitted orders by customers. The pricing tech-

7.2 System Design and Implementation 187

Dispatcher Servlet

(Front Controller)

View

(JSON Objects)

Relational

Database
Spring MVC
 Framework

Pricing Module

(Java Class)

Hibernate

(Java Library)

Http Request
(REST Call)

Controller

(Java Class)

Http Response
(JSON objects)

Web Services

Figure 7.2: SipaaS Framework Components.

nique used in SipaaS is designed and implemented according to the proposed auc-

tion mechanism in Chapter 6. The pricing module receives a list of orders with the

reserve price and the available capacity in number of VMs, which have been set by

the provider and computes the spot market price accordingly. Details of auction

mechanism employed in SipaaS are given in Section 7.2.3.

2. Database: A relational database is utilized by SipaaS to store information related

to each spot market. MySQL is chosen as a Database Management System (DBMS),

which can be replaced by any other type of DBMS according to the requirements.

The database server can be deployed either on the same host where SipaaS is in-

stalled or on a dedicated host. Figure 7.3 depicts the Enhanced Entity Relationship

Diagram (EERD) of the SipaaS’ database. As it is shown in the figure, the database

contains 8 main tables:

(a) provider: The provider table stores information about providers (or data centers)

which register themselves in SipaaS. Each provider has a unique id, accesskey,

and secretkey. The provider might have any arbitrary name as well. Providers

188 Spot Instance Pricing as a Service

require their accesskey and secretkey to invoke web services provided by SipaaS.

(b) vmtype: Providers might have different types of VMs for each of which a dis-

tinct spot market executes. The vmtype table stores information about these

types for every provider. The information contains: a unique id (id), provider’s

id (provider) and the type name (type).

(c) order: The order table stores information about orders by customers for each

VM type and each provider. The information contains: a unique id (id),

provider’s id (provider), VM type id (type), the requested number of VMs (qty),

bid price (bid) and a unique reference id (bidref) which must be generated by

the cloud provider and is used for any future reference to this order.

(d) price: The price table stores information about spot market price generated by

the pricing module. Each price contains id, provider, vmtype, time, and price.

The time attribute records the timestamp for a given date and time of day the

price is computed.

(e) available: The available table stores data on available capacity of the provider

for each spot market. The table contains: id, provider, vmtype, amount, and time.

The amount and time attributes are used to store the total number of available

VMs for the corresponding VM type and timestamp the available capacity is

set respectively. If the available capacity is not set by the provider, SipaaS

assumes infinite availability.

It is worth noting that as demand for each type of VMs can fluctuate over

time, providers are supposed to dynamically adjust the capacity allocated to

each spot market to match the demand in order to maximize total revenue. In

the current implementation of the SipaaS framework, the provider is respon-

sible for adjusting the spot market capacity and continuously updating the

availability if demand surpasses supply. One possible future extension can be

adding components to handle the dynamic capacity control for each spot mar-

ket. Work similar to that of Zhang et al. [139] would be useful in this regard.

(f) reserveprice: The reserveprice table, similar to available table, stores data on the

reserve price for each spot market. Reserve price is the lowest bid price that

7.2 System Design and Implementation 189

available

id INT(11)

provider INT(11)

vmtype INT(11)

amount SMALLINT(6)

time DATETIME

Indexes

order

id INT(11)

provider INT(11)

type INT(11)

qty SMALLINT(6)

bid DOUBLE

bidref VARCHAR(36)

Indexes

maxprice

id INT(11)

provider INT(11)

vmtype INT(11)

price DOUBLE

time DATETIME

Indexes

maxqty

id INT(11)

provider INT(11)

vmtype INT(11)

quantity SMALLINT(6)

time DATETIME

Indexes
price

id INT(11)

provider INT(11)

vmtype INT(11)

time DATETIME

price DOUBLE

Indexes

provider

id INT(11)

name VARCHAR(100)

accesskey VARCHAR(36)

secretkey VARCHAR(36)

Indexes

reserveprice

id INT(11)

provider INT(11)

vmtype INT(11)

price DOUBLE

time DATETIME

Indexes

vmtype

id INT(11)

provider INT(11)

type VARCHAR(30)

Indexes

Figure 7.3: EERD of the Database.

the provider accepts for a time slot of VM instance usage (e.g., instance-hour).

This table contains: id, provider, vmtype, price, and time. If the reserve price is

not set by the provider, the minimum value of zero is assumed.

(g) maxprice: The maxprice table stores the maximum bid price acceptable by the

pricing module. This table contains: id, provider, vmtype, price, and time. No

maximum bid price suggests no limit on the bid price.

(h) maxqty: The maxqty table stores maximum number of VMs that can be re-

quested by a customer (i.e., an order). This table contains: id, provider, vmtype,

quantity, and time.

3. Web Services: SipaaS provides a set of web services that facilitate the execution of

spot markets by cloud providers. Table 7.1 shows the list of main web services

190 Spot Instance Pricing as a Service

Table 7.1: SipaaS Framework Web Services.

Web Service Input Parameter(s) Output
register name credentials

unregister accesskey,secretkey status

regvmtype accesskey,secretkey,type status

unregvmtype accesskey,secretkey,type status

setavailables accesskey,secretkey,vmtype,quantity price

setmaxqty accesskey,secretkey,vmtype,quantity status

setreserveprice accesskey,secretkey,vmtype,value price

setmaxprice accesskey,secretkey,vmtype,value status

addorder accesskey,secretkey,vmtype,quantity,bid,ref price

updateorder accesskey,secretkey,quantity,ref price

removeorder accesskey,secretkey,ref price

pricehistory accesskey,secretkey,vmtype,fromdate,todate price(s)

available in SipaaS. All services are RESTful web services designed to produce re-

sponses in the JSON format. SipaaS utilizes RESTful web services as they are easy

to implement and minimal middleware is necessary, that is, only HTTP support

is required. JSON is also a highly portable data transfer format that can be easily

recognized by client applications. The cloud provider aiming at utilizing SipaaS

framework services requires a clear understanding of the context as well as the

content that must be passed through each web service invocation. The following

parameters are mostly common among different web services:

(a) accesskey: is an alphanumeric text string that is uniquely assigned to the

provider and identifies its owner. This parameter is used to differentiate cloud

providers from each other.

(b) secretkey: plays the role of a password for the provider. A secretkey with ac-

cesskey form a secure information set that confirms the provider’s identity.

(c) vmtype: determines the type of VM or equally a specific spot market. The

vmtype is a string containing the VM type name and is used to relate each

request to the corresponding spot market.

Below we describe the main web services provided by the framework:

(a) register: This service allows the provider to register itself with framework.

7.2 System Design and Implementation 191

It receives one string parameter called name as an input representing the

provider’s name. In response to successful registration, the web service gen-

erates as output a pair of accesskey and secrectkey in JSON format.

(b) unregister: The provider is able to unregister from SipaaS by invoking this web

service.

(c) regvmtype: Using this web service, the cloud provider is able to register differ-

ent types of VMs in the system. In addition to accesskey and secretkey, another

input parameter called type must be provided. The type parameter is a string

value representing the VM type name. As stated earlier, each VM type to-

gether with a provider stands for a distinct spot market.

(d) unregvmtype: As its name implies, it removes a VM type.

(e) setavaialables: This web service receives vmtype and quantity as inputs to specify

the maximum available capacity in number of VMs for the specific spot mar-

ket. The setavaialables web service can be called any time and multiple times

throughout the spot market lifetime. The output of this web service is a spot

market price computed according to the updated capacity.

(f) setmaxqty: It performs similarly to setavailables, whereas it specifies the maxi-

mum number of VMs user can request in one order.

(g) setreserveprice: This web service performs similar to setavaialables and specifies

the reserve price. It is important to mention that invoking setreserveprice and

setavaialables might not result in a new spot market price, in that case, the JSON

response includes the same spot price as the latest one.

(h) setmaxprice: It specifies the maximum bid price allowed in an order. By using

setmaxprice and setreserveprice, a provider is able to limit the range of bid prices

submitted by spot market users.

(i) addorder: The addorder web service allows providers to insert a new order (bid

price plus quantity) to the system. The ref parameter is a unique value provided

for each order and is used for future references to this order. The output of the

service is the spot market price.

192 Spot Instance Pricing as a Service

Keystone

(Identity

Service)
Glance

(Image store)

Neutron

(Networking)

Cinder

(Volume Service)

Nova

(Compute Node)

Swift

(Object Store)

Horizon

(Dashboard)

Figure 7.4: Openstack components.

(j) updateorder: The updateorder web service allows providers to update a previ-

ously submitted order to the system. This web service is called when a cus-

tomer terminates part of requested running instances under the specific order.

(k) removeorder: The removeorder web service allows provider to remove a previ-

ously submitted order. This web service is called whenever all VM instances

of the accepted order are terminated.

(l) getpricehistory: This web service receives the input parameters fromdate and

todate and in response provides the pricing history of a certain spot market.

7.2.2 Extensions for Horizon - The OpenStack Dashboard

As stated earlier, cloud providers which are interested in utilizing the SipaaS framework

need to setup their own customized extension software capable of interacting with SipaaS

web services. In this section, we discuss about such an extension designed and imple-

mented for the OpenStack platform.

OpenStack is an open-source cloud management platform, developed to control pools

of compute, storage, and networking resources in a data center. OpenStack has been de-

signed as a series of loosely coupled components that are easy to integrate with a variety

of solutions and hardware platforms. One of these components is Horizon, which pro-

vides users and administrators with management capabilities via a web interface. As

schematically shown in Figure 7.4, Horizon provides a dashboard interface for accessing

OpenStack services provided through its main components. In the following, we briefly

describe the main components of OpenStack platform:

• OpenStack Dashboard (Horizon): It provides a web based user interface to other ser-

7.2 System Design and Implementation 193

vices such as Nova, Swift, and Keystone. Management actions enabled by this

component include VM image management, VM instance life cycle management,

and storage management;

• OpenStack Compute (Nova): It manages the VM instance life cycle from scheduling

and resource provisioning to live migration;

• OpenStack Storage (Swift): Swift is a scalable redundant storage system responsible

for enabling data replication and ensuring integrity;

• Block Storage (Cinder): The block storage system allows users to create block-level

storage devices that can be attached to or detached from VM instances;

• OpenStack Networking (Neutron): Neutron is a system for managing networks and

IP addresses. The system allows users to create their own networks and assign IP

addresses to VM instances;

• OpenStack Identity (Keystone): Keystone is an account management service that acts

as an authentication and access control system;

• OpenStack Image (Glance): It supplies a range of VM image management capabilities

from discovery and registration to delivery of services for disk and server images.

To add spot market facilities to OpenStack, we extended Horizon to be capable of

using the services provided by SipaaS. Horizon’s main panel includes two different sec-

tions, one for members with system administration role and another section for other

standard users. Since the admin section is only visible to users with administrator priv-

ileges, we added a new panel to this section, through which system administrators are

capable of enabling spot market support and can define global settings such as maximum

and minimum amount of bid price for users, number of available VMs for allocation, and

the maximum number of VMs a user can request. These parameters are passed to SipaaS

by calling corresponding services defined in SipaaS and discussed in earlier parts of this

section.

We also added another panel to the section visible to standard OpenStack users, la-

beled as Spot Instances. As it can be seen in Figure 7.5, this panel allows users to submit

194 Spot Instance Pricing as a Service

Figure 7.5: Screenshot of requesting spot instances web page.

their bids and the number of required spot instances (i.e., orders) to the system. At the

backend, when a user submits his request for using spot instances, a unique reference

number is created for each order and this reference number with corresponding bid price

and number of requested instances are sent to Sipaas by calling its addorder service and

are stored in a database table named order. According to the computed and returned price

by SipaaS, if user’s bid amount is greater than the price, which means the request can be

fulfilled, requested instances are created and two local database tables named order and

instance are updated. Figure 7.6 shows an EERD of the local database including order and

instance tables created in the OpenStack platform.

In the instance table, order reference created at the previous step and instance ids cre-

ated after launching VMs are stored. Later, if a user terminates any of the spot instances,

the table is updated accordingly and the updateorder service of SipaaS is invoked to cal-

culate the new price. If a user terminates all the instances belonging to a single order,

7.2 System Design and Implementation 195

order

ref VARCHAR(32)

user VARCHAR(32)

vmtype VARCHAR(32)

bid DECIMAL(10,4)

quantity INT(11)

Indexes

instance

id INT(11)

instanceid VARCHAR(32)

ref VARCHAR(32)

Indexes

Figure 7.6: EERD of the database used for horizon extensions.

then removeorder is called and after both mentioned operations, the instances of other

users, which belong to an order with bid price lower than the current market price, are

terminated automatically (out-of-bid orders termination). Figure 7.7 shows the sequence

diagram of the process of handling an order submission by a user.

There is another added panel labeled spot pricing history, in which users are able to

view the history of spot price fluctuations. By supplying the desired duration, users can

see the plotted result from the invoked pricehistory service of Sipaas. A sample screenshot

of the spot pricing history panel is depicted in Figure 7.8.

7.2.3 Pricing Mechanism

This section discusses the implemented algorithm in the pricing module of SipaaS. It is

important to note that the presented algorithm is not the main focus of the current chap-

ter, and it can be replaced by any arbitrary pricing mechanism. The pricing mechanism

plugged into the SipaaS framework works based on the online Ex-CORE auction algo-

rithm proposed in Chapter 6. Here, we discuss the general concepts of online Ex-CORE

auction while details of the proposed auction can be found in Chapter 6.

The Ex-CORE algorithm generates a market-wide single price for each auction round

according to the current available orders in the market. The main aim of the Ex-CORE

algorithm is to maximize the provider’s profit while it is strategy-proof (truthful). An

auction mechanism is strategy-proof –also called truthful or incentive-compatible– if the

dominant bidding strategy for every bidder is to always report their true valuation irre-

spective of the behavior of the other bidders. In Chapter 6, it is shown that the Ex-CORE

auction has a high probability of being truthful, and generates a near optimal profit for

196 Spot Instance Pricing as a Service

Figure 7.7: Sequence diagram of an order submission handling.

the provider in each round of auction.

The online Ex-CORE auction operates in a greedy manner where it attempts to maxi-

mize the revenue given the newly arriving order and the existing orders at a given time.

To maximize revenue, the random component of the auction mechanism must generate

the price in a way that the gained revenue is a good estimate of the revenue generated by

the Optimal Single Price auction. The Optimal Single Price auction, F , is defined as follows:

Definition 9. Let d be an order vector. An order, di, is a pair of (ri, bi), where ri represents the

number of required items and bi the bid price. Without loss of generality, suppose the components

of d are sorted in descending order by bid prices. The auction F on input d determines the value

k such that bk ∑k
i=1 ri is maximized. All bidders with bi ≥ bk win at price bk and all remaining

7.3 Evaluation and Validation 197

Figure 7.8: Screenshot of spot pricing history web page.

bidders lose. Thus, the revenue of F on input d is

F (d) = max
i

bi

i

∑
j=1

rj . (7.1)

We omit details of the online Ex-CORE auction in this chapter and the interested read-

ers are referred to Chapter 6. To retrieve price, web services in SipaaS call the auction

algorithm in pricing module. For example, each time addorder, updateorder, and remove-

order web services are invoked, the auction algorithm is called to generate the current

price based on the newly updated order vector. The online Ex-CORE records the optimal

sale price computed by Optimal Single Price auction in each round, and updates the sale

price only when the optimal sale price calculated in the current round differs from the

one in the previous round of the auction. This prevents the market to be exposed to high

price fluctuations due to existing random component in the Ex-CORE algorithm.

7.3 Evaluation and Validation

In this section, we support our proposed framework by conducting an experimental

study in a real environment. The goals are two-fold: (i) to demonstrate that the exten-

sion software to the Openstack combined with the SipaaS framework can operate in a

practical environment to provide spot market facilities and (ii) to evaluate the system’s

198 Spot Instance Pricing as a Service

Table 7.2: Types of VM instances and their specifications used to host system components
in the experiment.

Instance Type Cores CPU (ECU*) Memory (GB) Storage (GB)
m1.small 1 1 1.7 160

m3.2xlarge 8 26 30 160
* One ECU (EC2 Compute Unit) is equivalent to CPU capacity of a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor.

behavior and our auction pricing model in a test experiment.

7.3.1 Experimental Testbed

The testbed used for the evaluation of the system consists of two main hosts both running

Ubuntu 14.04 as operating system. One was used for running SipaaS and the other one

used for running all the OpenStack services. The devstack OpenStack3, which is suitable

for development and operational testing, is used in the experiment. Hosts used in the

experiment are m1.small and m3.2xlarge VM instances running on Amazon EC2 in

Asia Pacific-Sydney region. Resource configuration of VM instance types used in

the experiment can be seen in Table 7.2.

The m1.small machine was chosen to deploy SipaaS Web services on Apache Tom-

cat 6 web server4 and MySQL as a DBMS to host and manage the database. The

m3.2xlarge was used to host all the OpenStack services including Horizon and its ex-

tension, deployed on Apache HTTP server Version 2. MySQL was also installed in this

machine to host the database for storing all the required data for the extension software.

In the experimental study, users can use their own desktop or labtop PC with a web

browser (preferably Google chrome) to connect to the dashboard and use the spot market

services.

3Deploying OpenStack for Developers, http://devstack.org/.
4Apache Tomcat, http://tomcat.apache.org/

http://devstack.org/
http://tomcat.apache.org/

7.3 Evaluation and Validation 199

7.3.2 Experimental Design and Setup

We conducted a 20-minute experiment with 10 participants (i.e., spot market users). Par-

ticipants were divided into two groups of five: (i) Group T or truthful bidders and (ii)

Group C or counterpart bidders who have the freedom to misreport their true private

values to maximize their utility. Participants of the latter are selected from a group of

professional cloud users who have satisfactory level of knowledge about the spot market.

Each participant was provided with a user name and password to access the OpenStack

dashboard. We provided participants of the experiment with a pair of uniformly random

generated quantity and price values that must be considered as their true private values.

Considering the scale of the experiment, we limited the maximum number of simul-

taneous VM instances each user can run in the system to 2. Accordingly, we chose uni-

formly random true quantity values from {1, 2}. For price values, we adopted the pricing

details of Amazon EC2 m3.medium in the Asia Pacific-Sydney region region at the

time of the experiment, while we replaced per hour charging period with 30 seconds in

our experiment. True price values in dollars are drawn from a uniform distribution of

the interval [0.0081, 0.0700], where $0.0081 and $0.0700 are the minimum spot instance

(reserve price) and the on-demand price per hour for m3.medium instances in Amazon,

respectively. The maximum possible bid price is also derived from the maximum allowed

bid price in Amazon EC2 for the same type of spot instances, i.e., $0.4520/hour.

Assuming that the provider offers on-demand pricing concurrently and QoS for spot

instances are lower than equivalent to on-demand ones, true values higher than on-

demand price seems unreasonable. Therefore, we distributed true private price values

between the minimum spot price and on-demand price for m3.medium instances. How-

ever, experiment participants are allowed to submit orders with a bid price higher than

the on-demand price. Table 7.3 shows true private price and quantity values for partici-

pants of each group.

Similar to Amazon, spot instances are not charged for their partial 30 seconds upon

their termination by the provider, while a partial 30 seconds of usage accounted for as a

full 30 seconds upon termination by the user. Each full time slot usage (i.e., 30 seconds)

is charged based on the spot market price at the beginning of the time slot.

200 Spot Instance Pricing as a Service

Table 7.3: True private values of experiment participants.

User Price Value ($) Quantity
T1, C1 0.0691 2
T2, C2 0.0092 1
T3, C3 0.0475 1
T4, C4 0.0232 2
T5, C5 0.0184 1

Participants of the experiment are provided with the details of the online Ex-CORE

auction algorithm and their utility function for one time slot instance usage, formulated

as below:

u(r, b) =

 (qv− rp)x , if b ≥ p and r ≥ q;

0 , otherwise.
(7.2)

where r, b, q, v, p, and x are the requested number of instances, bid price value, true

private quantity value, true private price value, spot market price at the time of order

submission, and a Boolean value describing whether the order is accepted or not, respec-

tively.

Participants are asked to acquire VM instances of type m1.nano as long as they can

according to their true private values using the OpenStack dashboard. Participants of

group T are obliged to submit their true values to acquire instances through the whole

experiment regardless of the market price fluctuation. Participants of group C are asked

to try to maximize their utility based on rules of the experiment and given pricing infor-

mation. Therefore, if it is deemed beneficial, a participant of group C might strategically

misreport her/his bid price or the quantity, i.e., b 6= v or r 6= q. To provide enough

incentives for participant of group C to act rationally in the experiment, we considered

a prize for the winner of the experiment. The winner of the experiment is the one who

can achieve the highest positive difference of the utility value with his/her counterpart

truthful bidders.

All participants are taught the goal, rules and details of the experiment. The exper-

iment was conducted in the real environment where participants have been able to run

instances according to their order submissions. The results of the experiment are dis-

7.3 Evaluation and Validation 201

Figure 7.9: Spot market price fluctuation during the experiment.

cussed in the following section.

7.3.3 Results and Analysis

The main goal of the conducted experiment is to show that the system works flawlessly

in a practical test environment. All the participants experienced valid system behavior in

the experiment. They were able to submit their orders into the system and boot up their

instances whenever their bid was higher than the market price. As soon as market price

went above of the submitted bid price, acquired instances were terminated by the system

immediately without any prior notice.

Figure 7.9 depicts the market price fluctuation during the experiment. As shown in

the figure, the price reaches the maximum bid price in multiple cases. This happened

due to the reason that some low value participants, for example C4 and C2, who were

starving in the market, tried to terminate other participants’ instances by submitting very

high bid price and terminating their instances immediately to submit their new orders.

This, however, affected their utility value since they were charged multiple times higher

than their true values.

In Chapter 6, it is proved that Ex-CORE auction mechanism is truthful with high

probability. Therefore, as we expected, excluding T3, all truthful users (i.e., participants

of group T) achieved higher utility value than their counterpart users who misreported

202 Spot Instance Pricing as a Service

their true values. Table 7.4 shows the total cost and achieved utility values by all users

based on the utility function in Equation (7.2).

In order to investigate how user C3 could achieve the highest positive difference with

his/her paired truthful participant, we analyzed the submitted orders by all users. The

result of our analysis shows that C3 is the most truthful user among the participants

of group C, who continuously submitted the true quantity value and bid price values

significantly close to his/her true value. The only reason C3 achieved highest difference

is that she/he was quicker in submitting orders and could obtain two additional full

time slots of instance usage while the truthful user T3 was also able to do the same with

submitting his/her true values at the same time.

Table 7.4: Total cost, the number of full time slots usage, and utility values of experiment
participants.

User Total Cost ($) Number of Full Time Slots Utility Value ($)
T1 1.2964 16 0.9148
C1 1.8216 17 0.5278
T2 0.0000 0 0.0000
C2 10.0227 18 -9.8571
T3 0.1896 6 0.0954
C3 0.2280 8 0.1520
T4 0.0436 1 0.0030
C4 3.6810 5 -3.4490
T5 0.0000 0 0.0000
C5 0.0738 2 -0.0370

As it can be seen in Table 7.4, T2 and T5 could not acquire instances for a full time slot

at all, since the market price was often higher than their true price values. T4 similarly

ends up running instances for only one time slot. Comparatively, paired users from group

C acquired instances for higher number of time slots. However, their overall utility values

are negative, as they ended up paying more than their true values.

Results of the experiment reported in Table 7.4 supports the theoretically proven sup-

position that Ex-CORE algorithm is truthful with high probability. This confirms the

fact that rational users’ dominant strategy in a truthful auction mechanism is to report

their true private values. Moreover, our investigation on the historical price data of spot

instances in Amazon EC2 shows that price spikes similar to what happened in our ex-

7.4 Summary and Conclusion 203

periment are occurring in Amazon’s spot market as well. This might happen due to the

same experience we had in our experiment where some users submit very high bids or

possibly sudden spikes in demand. Intuitively, without knowing how the spot market

mechanism works, no user has the incentive to strategize over its bid. This has been

suggested by other studies as well [9, 127].

7.4 Summary and Conclusion

In this chapter, we introduced an open source Spot instance pricing as a Service (SipaaS)

framework that provides a set of web services to facilitate running a spot market. We also

presented our extension software to Horizon – OpenStack dashboard project – that makes

use of the SipaaS framework to run a spot market in the OpenStack platform. In order to

evaluate and validate our proposed system, we conducted an experimental study with

a group of ten participants. The results of the experimental study support the validity

of the proposed system and demonstrates the behavior of the system. In addition, our

study experimentally confirms the truthfulness of the auction pricing mechanism used

in the SipaaS framework. To conclude, those IaaS cloud providers interested to run spot

market resembling the Amazon EC2 spot instances could consider our proposed spot in-

stance pricing as a service framework using the Ex-CORE auction algorithm as a relevant

replacement. Considering that both are of similar structures, we would expect the same

market reaction and similar market pricing behavior.

This page intentionally left blank.

Chapter 8

Conclusions and Future Directions

This chapter summarizes the research work on market and economics-inspired mechanisms for max-

imizing IaaS cloud providers’ profit and highlights the major findings in this thesis. It also discusses

future research directions and open research problems in the area.

8.1 Summary of Contributions

CLOUD computing is changing the way industries and enterprises do their busi-

nesses by delivering IT as a service. This computing paradigm has been driving

the massive migration from single-user, in-house computing servers to multi-tenant, cen-

trally hosted cloud based alternatives. While migration to cloud helps customers to avoid

upfront technology investments and offers significant cost benefits, which have been ex-

tensively discussed, comparatively lower attention has been devoted to challenges and

opportunities of cloud vendor companies in respect to their profitability.

In this regard, the thesis set out with one general goal to maximize IaaS cloud provider’s

profit breaking down into objectives delineated in Chapter 1. In order to achieve these

objectives, we proposed and investigated a set of market and economics-inspired mecha-

nisms for IaaS cloud providers, including resource management, financial option market,

revenue management, and auction mechanism design. Our proposed mechanisms have

been designed for two main scenarios forming two main parts of the thesis: 1) when the

provider acts solely using their in-house computing resources to serve customers and

2) when it participates in a cloud federation and benefits from resource sharing among

providers.

Chapter 2 presented an in-depth review and analysis of the related work including

205

206 Conclusions and Future Directions

the background and classification of methods and mechanisms for profit maximization

of cloud providers. In addition, it surveyed the relevant aspects that motivate cloud

federation and studied economics-related challenges of cloud federation. The literature

review has helped us to identify gaps, open challenges, and the research direction of the

thesis.

Chapter 3 proposed policies to enhance an IaaS provider’s profit when the provider is

a member of a cloud federation. The proposed resource provisioning policies have been

designed for IaaS cloud providers supporting two different and jointly offered types of

QoS and pricing models namely spot and on-demand. This allows to cancel less prof-

itable VMs (i.e., spot VMs) in favor of more profitable requests (i.e., on-demand VMs).

Moreover, in order to leverage the cloud federation potentials, we proposed a cloud

exchange market and appropriate demand-oriented pricing model for federated cloud

environments.

Using our policies, we evaluated the impact of different parameters such as ratio of

spot VMs to the total number of VMs, percentage of persistent spot VMs, number of

providers in the federation, and provider’s load on various performance metrics such

as profit, utilization, and rejection rate. Results demonstrated that our policies help

providers to increase profit and to reject fewer requests, while keeping utilization at an

acceptable level. Experimental results also allowed us to derive some guidelines for IaaS

providers. For example, running on-demand requests locally is more profitable if ratio of

spot VMs to total number of VMs is high and termination of spot VMs may lead to less

discontinuation of the service consumption. Moreover, outsourcing is more profitable

when spot VMs are scarce and termination may result in discontinuation of the service

consumption.

To address the next objective, Chapter 4 considered a cloud provider offering

subscription-based pricing model in addition to on-demand pay-as-you-go pricing

model in a federated cloud environment. Customers reserve resources in advance and

may or may not fully utilize the resources later on. The main aim of the chapter is to

exploit the underutilized reserved capacity to accommodate requests form customers of

other pricing channels. Nevertheless, Quality of Service (QoS) to customers who reserve

8.1 Summary of Contributions 207

resources in advance should be satisfied. Therefore, a financial option market model for

cloud federation was proposed. The proposed model guaranties resources to reserved

customers whenever they need them, while keeping resources utilized all the time. This

model allows the provider to hedge against the critical and risky situation in which cus-

tomers request their reserved resources while all the resources have been allocated to

other users, by trading (buy or outsource) resources from other service providers in the

cloud federation.

Experimental results showed that financial option-based contracts between cloud

providers in a cloud federation would help them to exploit the underutilized reserved

capacity without any concern to acquire the needed resources at any given time. Using

our model, the provider can increase the profit while keeping the rejection rate of re-

served requests at a negligible level. The model therefore, contributes to obtaining a trust

and goodwill from the provider’s client base.

In Chapter 5, we presented a revenue management framework to tackle the problem

of optimal capacity control for allocating resources among customers who are segmented

into three main markets, i.e., reservation, on-demand pay-as-you, and spot markets. The

main challenge is that the provider must determine the optimal capacity to admit de-

mands from the reservation market such that the expected revenue is maximized. We

considered the stochastic lifetime of on-demand pay-as-you-go requests and reserved ca-

pacity utilization and accordingly we formulated the problem as a finite horizon Markov

decision processes. Because finding the optimal solution is computationally prohibitive

in practical settings, we presented two algorithms, namely pseudo optimal and heuristic,

that reduce the computational complexity. Large-scale simulations based on Google clus-

ter usage traces with Amazon EC2 pricing were conducted to evaluate the revenue per-

formance of the proposed revenue management framework using our capacity control

algorithms. We further evaluated the proposed algorithms with comparison to the opti-

mal algorithm in a small-scale scenario. Our experimental results suggest that significant

revenue increase could be expected through the proposed revenue management system

given that sufficient resource contention is present in the system.

In Chapter 6, we presented an envy-free auction that is truthful with high probability

208 Conclusions and Future Directions

and generates a near optimal profit for the cloud provider. The auction operates similarly

to the AWS EC2 spot market. The truthfulness of the mechanism frees bidders from

having to understand its intricacies, thereby lowering the complexity of participation

and the options for strategic behavior. At the same time, the mechanism aims to attain a

maximal profit for the provider, and achieves the property of being envy-free through the

use of a uniform price. In addition, in order to incorporate marginal costs of production in

the resource trading process, we pair the auctioning scheme with a method that calculates

dynamic reserve prices based on a marginal cost model considering data center PUE,

load, and electricity cost. An important benefit of the proposed auction design is that

it achieves near optimality in the form of maximizing revenue without requiring prior

knowledge on the bid distribution.

Our evaluation demonstrated the proposed auction mechanism performance under

a variety of order distributions. We showed that the proposed mechanism significantly

outperforms the uniform price auction. It also closely approximates the profit outcome

of the revenue maximizing, but non-truthful, optimal single price auction in an online

setting (within 6% in our experiments), while improving on the number of rejected VMs

(up to 17% in our experiments). Finally, our results showed that the generated revenue

does not differ significantly from the revenue attained by a benchmark mechanism based

on dynamic programming relying on prior knowledge regarding the holding time of

VMs.

Finally, Chapter 7 introduced an open source framework called Spot instance pricing

as a Service (SipaaS) that is a realization of the proposed auction pricing in Chapter 6.

Our prototype system provides a set of web services to facilitate running a spot market

in IaaS cloud environments. Extension plugin software for the OpenStack dashboard

project was presented to make use of the framework’s web services. By using the offered

web services and the implemented extension to the dashboard program, one can execute

a spot market in the OpenStack platform for selling VM instances based on dynamic form

of pricing.

In order to evaluate and validate the system, we conducted an experimental study

with a group of ten professional cloud users familiar with the spot market concept. The

8.2 Future Research Directions 209

result of the experimental study demonstrated the validity of the framework and showed

that the proposed auction pricing mechanism used in the framework is truthful with

high probability. In addition, the built spot market using our framework exhibited an

analogous market reaction and market pricing behavior to that of spot instances in the

AWS environment.

8.2 Future Research Directions

Few publications have been done about opportunities and challenges regarding the eco-

nomic structure of cloud service providers as a multidisciplinary area of research shared

among disciplines such as economics, business, finance and computer science. Market

mechanisms are still in their infancy and pricing models are relatively immature. In ad-

dition, technologies and mechanisms to maximize the Return on Investment (ROI) for

cloud service providers are yet to be investigated in more detail. In spite of the signif-

icant contributions of the current thesis in developing and introducing mechanisms for

maximizing profit for IaaS cloud providers, there are many open research challenges that

need to be addressed in order to further advance the area. This section outlines several

open issues that can serve as a starting point for future research.

8.2.1 Advanced Resource Provisioning Policies

In Chapter 3, we proposed policies that help in the decision-making process to increase

utilization and profit of a federated IaaS cloud provider. In our model, providers bene-

fit from outsourcing on-demand pay-as-you-go requests while they also have the option

of terminating spot VMs in favor of these requests. Our proposed policies only address

outsourcing on-demand requests, not spot requests. Hence, design of market mecha-

nisms for federated cloud environments that allows for outsourcing spot requests with

dynamic pricing model is of great value. Decision equations in this case must be de-

signed to handle the highly fluctuating spot VM prices. Dynamic pricing of resources to

sell idle capacity of the data center for an individual cloud has been explored in Chap-

ter 6. However design of efficient dynamic pricing models suitable for federated cloud

210 Conclusions and Future Directions

environments has been left as an open issue.

Furthermore, in our decision equations, we did not include the cost savings occurring

via unused physical servers shutdown. It is important to design and investigate strate-

gies that include cost of shutting down unused physical servers of the data centers due

to reduction of electric power consumption, in addition to termination of spot VMs and

outsourcing of on-demand VM requests.

Lastly, proposed resource-provisioning policies are designed to act based on instant

time profit calculation without any knowledge about future requests and lifetime of ac-

cepted requests. Developing online algorithms that consider the prediction of future

demand and resource availability to drive outsourcing decisions can be explored as an

extension to our study.

8.2.2 Option Trading Strategies

Chapter 4 of this thesis aimed at designing a financial option market for federated cloud

environments. It also proposed basic strategies regarding buying and selling option con-

tracts in the market. Design and development of advanced option trading strategies can

be considered as an extension point for the current work.

For example, in real-world option markets, various option contracts can be combined

into an option portfolio according to the hedging strategy. Thus, depending on the ex-

pected volatility in the market, such combinations can lead to a higher value. Further-

more, our proposed strategy needs to buy option contracts if the on-demand request is

accommodated in the reserved capacity. However, for providers with a large amount of

physical resources, it might be more beneficial to buy option contracts in bulk with longer

expiration dates beforehand. This deals with efficient load and price prediction to gain a

significant advantage of acquisition of the option contracts.

Another potential improvement is to design efficient strategies for selling option con-

tracts. Terms of option contracts, i.e., the premium, the strike price, and the expiration date

must be determined by the seller of the contract in a way that maximizes cloud provider’s

profit. Moreover, each provider must decide on the number of option contracts to sell.

The following research questions in this regard must be rigorously investigated: 1) How

8.2 Future Research Directions 211

many options to sell? 2) What should be the expiration date of option? 3) For which

price, i.e., premium and strike, are they sold? Furthermore, in proposed option market,

we only explored trading call options. It will be interesting to extend the market for trad-

ing put options that will give providers with a large amount of physical resources the

right to sell resources at their will.

8.2.3 Game Theoretical Analysis of Cloud Federation

This thesis considered cloud federation (i.e., the ability to acquire third party capacity)

as a potential basis of increasing profit. It is conceivable that IaaS providers can obtain

significant economic value from access to third party resources. In fact, a federation in-

creases the degree of elasticity for the cloud providers. However, Chapters 3 and 4 only

investigate resource sharing from the perspective of an individual cloud provider which

is selfishly trying to maximize its own profit. To achieve coordination between providers

and to establish a cloud federation, it is important to precisely investigate the interactions

among these selfish cloud providers. Economic models and strategies must be developed

to regulate the capacity sharing among cloud providers, aimed at maximizing their own

profit. These strategies must guarantee the benefits for all cloud providers (Social wel-

fare) and provide enough incentives for each individual to contribute resources in the

cloud federation. In this regard, one possible research direction is the development of

game theoretical approaches to model cooperation and conflicts in the resource sharing

between rational and selfish cloud providers in a cloud federation.

8.2.4 Customer Diversion in Revenue Management Framework

The broad literature of revenue management provides many relevant future directions

to the revenue management framework proposed in Chapter 5. The proposed revenue

management framework incorporates an admission control to compute the maximum

number of reservation contracts the provider can accept. Rejection of a reservation con-

tract (also known as bumping a customer) might result in disappointed customers who

diverge from subscription-based pricing model to other pricing models or even similar

212 Conclusions and Future Directions

services from other providers. This customer switching behavior is called diversion in the

literature and has been investigated in revenue management systems for Airline and Ho-

tel industries. However, more research needs to be done on modeling customer reaction

as well as how they switch between markets in cloud computing environments once they

are bumped by the admission control mechanism. Optimization algorithms must incor-

porate the diversion of customers to other pricing models and competitors. In addition,

future research needs to be done to integrate our proposed reserved capacity control with

support for investment decisions on extending the infrastructure in a practical real-world

system to prevent excessive rejection of requests.

8.2.5 Revenue Management with Overbooking

Cloud providers offering the subscription-based pricing model are liable to offer guar-

anteed availability for these VM requests to honor the associated SLA. In order to guar-

antee the availability, the proposed revenue management framework does not allocate

requests from other pricing channels to underutilized reserved capacity of the data cen-

ter. Allowing requests from other pricing channels to be accommodated in the reserved

capacity of data center might result in capacity overbooking and creates a risk of SLA vio-

lation. However, such overbooking generates more revenue for the cloud provider. One

possible future direction of this work can be the extension of the revenue management

framework with support for overbooking techniques.

8.2.6 Multi-dimensional Truthful Mechanism Design

Chapter 6 presented a design and application of a multi-unit, online recurrent auction

mechanism within the context of IaaS resource trading. The proposed auction mecha-

nism generates near optimal profit for the provider and with high probability is truthful

in the bid price dimension while it is not truthful in the quantity dimension. The design

limits the maximum number of instances that a customer can request to certify the truth-

fulness in bid price dimension. It is also shown through simulation that as the market

size grows, the probability of raising utility through misreporting quantity converges to

8.3 Final Remarks 213

zero. In addition, the proposed mechanism sets the price and allocations in a greedy

manner in each auction round. That is, the lifetime (duration) of requests has not been

taken into account. The chapter proposed the oracle optimal auction mechanism that

knows the lifetime of VM requests in advance to calculate the price and the set of ac-

cepted orders. The proposed algorithm however is not truthful and inquires about the

duration of requests, which is not common knowledge in cloud marketplaces.

Although designing a multi-dimensional truthful mechanism without a priori knowl-

edge of the order distribution and lifetime of requests might be very complex, a potential

future research direction could be the design of mechanisms that are two-dimensionally

truthful (i.e., bid price and quantity) and somehow take into account requests’ duration.

8.3 Final Remarks

Cloud computing has evolved as a key IT platform that aims at providing computing

resources for hosting applications as a utility. Market and economics-inspired mecha-

nisms explored in this thesis will enable cloud providers to increase their return on in-

vestment while they honor QoS requirements of customer applications. Cloud comput-

ing, as a disruptive technology with great potential to transform IT industry, promises

ever-increasing market demands, and consequently more competition prevailing among

cloud providers. Research similar to what has been done in this thesis, therefore, becomes

more important in driving further innovation and development in cloud computing.

This page intentionally left blank.

Bibliography

[1] V. Abhishek, I. A. Kash, and P. Key, “Fixed and market pricing for cloud services,”

in Proceedings of IEEE Conference on Computer Communications Workshops (INFOCOM

WKSHPS), Orlando, Florida, USA, Mar. 2012, pp. 157–162.

[2] D. Allenotor and R. K. Thulasiram, “Grid resources pricing: A novel financial op-

tion based quality of service-profit quasi-static equilibrium model,” in Proceedings

of the 9th IEEE/ACM International Conference on Grid Computing, 29 2008-oct. 1 2008,

pp. 75 –84.

[3] B. An, V. Lesser, D. Irwin, and M. Zink, “Automated negotiation with decommit-

ment for dynamic resource allocation in cloud computing,” in Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems (AAMAS’10),

Toronto, Canada, May 2010, pp. 981–988.

[4] A. Anandasivam, S. Buschek, and R. Buyya, “A heuristic approach for capacity

control in clouds,” in Proceedings of IEEE Conference on Commerce and Enterprise Com-

puting (CEC’09), Vienna, Austria, July 2009, pp. 90–97.

[5] A. Andrzejak, D. Kondo, and S. Yi, “Decision model for cloud computing under

SLA constraints,” in Proceedings of the IEEE International Symposium on Modeling,

Analysis Simulation of Computer and Telecommunication Systems (MASCOTS’10). Mi-

ami: IEEE, Aug. 2010, pp. 257 –266.

[6] T. Aoyama and H. Sakai, “Inter-cloud computing,” Business & Information Systems

Engineering, vol. 3, pp. 173–177, 2011.

215

216 BIBLIOGRAPHY

[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,

D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “A view of cloud computing,”

Communications of the ACM, vol. 53, no. 4, pp. 50–58, 2010.

[8] A. Beloglazov and R. Buyya, “Managing overloaded hosts for dynamic consolida-

tion of virtual machines in cloud data centers under quality of service constraints,”

IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 7, pp. 1366–1379,

July 2013.

[9] O. A. Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir, “Deconstructing

amazon ec2 spot instance pricing,” ACM Transaction Economy Computing, vol. 1,

no. 3, pp. 16:1–16:20, Sept. 2013.

[10] D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow, “Blueprint

for the InterCloud - protocols and formats for cloud computing interoperability,”

in Proceedings of the 4th International Conference on Internet and Web Applications and

Services, Venice, Italy, May 2009, pp. 328–336.

[11] D. Bernstein, D. Vij, and S. Diamond, “An intercloud cloud computing economy -

technology, governance, and market blueprints,” in Proceedings of 2011 Annual SRII

Global Conference (SRII), San Jose, California, USA, Apr. 2011, pp. 293 –299.

[12] F. Black and M. Scholes, “The pricing of options and corporate liabilities,” Journal

of Political Economy, vol. 81, pp. 637–654, Jan 1973.

[13] A. Bossenbroek, A. Tirado-Ramos, and P. M. A. Sloot, “Grid resource allocation by

means of option contracts,” Systems Journal, IEEE, vol. 3, no. 1, pp. 49–64, March

2009.

[14] R. Buyya, R. Ranjan, and R. N. Calheiros, “InterCloud: Utility-oriented federation

of cloud computing environments for scaling of application services,” in Proceed-

ings of the 10th International Conference on Algorithms and Architectures for Parallel

Processing (ICA3PP’10), vol. 6081, Busan, South Korea, May 2010, pp. 13–31.

BIBLIOGRAPHY 217

[15] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing

and emerging IT platforms: Vision, hype, and reality for delivering computing as

the 5th utility,” Future Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[16] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya,

“CloudSim: A toolkit for modeling and simulation of cloud computing environ-

ments and evaluation of resource provisioning algorithms,” Software: Practice and

Experience, vol. 41, no. 1, pp. 23–50, Jan. 2011.

[17] R. N. Calheiros, A. N. Toosi, C. Vecchiola, and R. Buyya, “A coordinator for scaling

elastic applications across multiple clouds,” Future Generation Computer Systems,

vol. 28, no. 8, pp. 1350–1362, Mar. 2012.

[18] G. S. Campbell and J. M. Norman, Introduction to Environmental Biophysics.

Springer Verlag, 1998.

[19] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud architectures

to enable cross-federation,” in Proceedings of the 3rd International Conference on Cloud

Computing (Cloud’10), Miami, USA, Jul. 2010, pp. 337–345.

[20] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimal virtual machine placement across

multiple cloud providers,” in Proceedings of IEEE Asia-Pacific Services Computing

Conference (APSCC’09). Jeju Island: IEEE, Dec. 2009, pp. 103–110.

[21] ——, “Optimization of resource provisioning cost in cloud computing,” IEEE

Transactions on Services Computing, vol. 5, no. 2, pp. 164–177, April 2012.

[22] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. Tantawi, and C. Krintz, “See

spot run: using spot instances for mapreduce workflows,” in Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing. USENIX Association, 2010.

[23] J. C. Cox, S. A. Ross, and M. Rubinstein, “Options pricing: a simplified approach,”

Journal of Financial Economics, vol. 7, pp. 229–263, 1979.

[24] D. Crockford, “The application/json media type for javascript object notation

(JSON),” 2006.

218 BIBLIOGRAPHY

[25] A. Danak and S. Mannor, “Resource allocation with supply adjustment in dis-

tributed computing systems,” in Proceedings of the 30th International Conference on

Distributed Computing Systems (ICDCS’10), Genoa, Italy, Jun. 2010, pp. 498–506.

[26] M. D. de Assunção, A. di Costanzo, and R. Buyya, “A cost-benefit analysis of using

cloud computing to extend the capacity of clusters,” Cluster Computing, vol. 13,

no. 3, pp. 335–347, Sep. 2010.

[27] R. V. den Bossche, K. Vanmechelen, and J. Broeckhove, “Cost-optimal scheduling

in hybrid IaaS clouds for deadline constrained workloads,” in Proceedings of the 3rd

IEEE International Conference on Cloud Computing (Cloud’10). Los Alamitos: IEEE

Computer Society, Jul. 2010, pp. 228–235.

[28] E. Elmroth, F. G. Marquez, D. Henriksson, and D. P. Ferrera, “Accounting and

billing for federated cloud infrastructures,” in Proceedings of the Eighth International

Conference on Grid and Cooperative Computing (GCC’09), Lanzhou, China, Aug. 2009,

pp. 268–275.

[29] P. Faratin, C. Sierra, and N. R. Jennings, “Negotiation decision functions for au-

tonomous agents,” Robotics and Autonomous Systems, vol. 24, no. 3, pp. 159–182,

1998.

[30] A. J. Ferrer, F. Hernández, J. Tordsson, E. Elmroth, A. Ali-Eldin, C. Zsigri, R. Sir-

vent, J. Guitart, R. M. Badia, K. Djemame, W. Ziegler, T. Dimitrakos, S. K. Nair,

G. Kousiouris, K. Konstanteli, T. Varvarigou, B. Hudzia, A. Kipp, S. Wesner, M. Cor-

rales, N. Forgó, T. Sharif, and C. Sheridan, “OPTIMIS: A holistic approach to cloud

service provisioning,” Future Generation Computer Systems, vol. 28, no. 1, pp. 66–77,

2012.

[31] D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper, “Resource pool management:

Reactive versus proactive or let’s be friends,” Computer Networks, vol. 53, no. 17,

pp. 2905 – 2922, 2009, virtualized Data Centers.

BIBLIOGRAPHY 219

[32] A. Gohad, N. C. Narendra, and P. Ramachandran, “Cloud pricing models: A sur-

vey and position paper.” in Proceedings of IEEE International Conference on cloud Com-

puting in Emerging Markets (CCEM’13), Oct 2013, pp. 1–8.

[33] Í. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation for enhancing

providers’ profit,” in Proceedings of the 3rd International Conference on Cloud Comput-

ing. Miami: IEEE Computer Society, Jul. 2010, pp. 123–130.

[34] Í. Goiri, F. Julià, J. Fitó, M. Macı́as, and J. Guitart, “Resource-level QoS metric for

CPU-based guarantees in cloud providers,” in Economics of Grids, Clouds, Systems,

and Services, ser. Lecture Notes in Computer Science, J. Altmann and O. Rana, Eds.

Springer Berlin / Heidelberg, 2010, vol. 6296, pp. 34–47.

[35] Í. Goiri, J. Guitart, and J. Torres, “Economic model of a cloud provider operating in

a federated cloud,” Information Systems Frontiers, vol. 14, no. 4, pp. 827–843, 2011.

[36] Í. Goiri, K. Le, J. Guitart, J. Torres, and R. Bianchini, “Intelligent placement of data-

centers for internet services,” in Proceedings of the 31st IEEE International Conference

on Distributed Computing Systems (ICDCS’11), Minneapolis, Minnesota, USA, Jun.

2011, pp. 131–142.

[37] A. V. Goldberg and J. D. Hartline, “Competitiveness via consensus,” in Proceedings

of the fourteenth annual ACM-SIAM symposium on Discrete algorithms (SODA’03), Bal-

timore, Maryland, USA, Jan. 2003, pp. 215–222.

[38] ——, “Envy-free auctions for digital goods,” in Proceedings of the 4th ACM conference

on Electronic Commerce (EC’03), San Diego, CA, USA, Jun. 2003, pp. 29–35.

[39] A. V. Goldberg, J. D. Hartline, A. R. Karlin, M. Saks, and A. Wright, “Competitive

auctions,” Games and Economic Behavior, vol. 55, no. 2, pp. 242 – 269, 2006.

[40] E. R. Gomes, Q. B. Vo, and R. Kowalczyk, “Pure exchange markets for resource

sharing in federated clouds,” Concurrency and Computation: Practice and Experience,

vol. 23, no. 9, pp. 977–991, 2012.

220 BIBLIOGRAPHY

[41] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud: research

problems in data center networks,” SIGCOMM Computing Communication Review,

vol. 39, no. 1, pp. 68–73, 2008.

[42] S. Greenberg, E. Mills, B. Tschudi, P. Rumsey, and B. Myat, “Best practices for

data centers: Lessons learned from benchmarking 22 data centers,” ACEEE Summer

Study on Energy Efficiency in Buildings in Asilomar, CA., vol. 3, pp. 76–87, 2006.

[43] P. Harsh, Y. Jegou, R. Cascella, and C. Morin, “Contrail virtual execution platform

challenges in being part of a cloud federation,” in Towards a Service-Based Internet,

ser. Lecture Notes in Computer Science, W. Abramowicz, I. Llorente, M. Surridge,

A. Zisman, and J. Vayssire, Eds. Springer Berlin Heidelberg, 2011, vol. 6994, pp.

50–61.

[44] M. M. Hassan, B. Song, and E.-N. Huh, “Distributed resource allocation games in

horizontal dynamic cloud federation platform,” in Proceedings of the 13th IEEE Inter-

national Conference on High Performance Computing and Communications (HPCC’11),

Banff, Canada, Sep. 2011, pp. 822–827.

[45] Y.-J. Hong, J. Xue, and M. Thottethodi, “Dynamic server provisioning to minimize

cost in an iaas cloud,” in Proceedings of the ACM SIGMETRICS joint international

conference on Measurement and modeling of computer systems. San Jose, California,

USA: ACM, 2011, pp. 147–148.

[46] J. Hull, Options, futures and other derivatives. Pearson Prentice Hall, 2009.

[47] B. Javadi, R. K. Thulasiram, and R. Buyya, “Statistical modeling of spot instance

prices in public cloud environments,” in Proceedings of the Fourth IEEE International

Conference on Utility and Cloud Computing (UCC’11), Melbourne, Dec. 2011, pp. 219–

228.

[48] R. Johnson, J. Hoeller, A. Arendsen, and R. Thomas, Professional Java Development

with the Spring Framework. John Wiley & Sons, 2009.

BIBLIOGRAPHY 221

[49] V. Kantere, D. Dash, G. Francois, S. Kyriakopoulou, and A. Ailamaki, “Optimal ser-

vice pricing for a cloud cache,” IEEE Transactions on Knowledge and Data Engineering,

vol. 23, no. 9, pp. 1345–1358, Sept. 2011.

[50] M. M. Kashef, A. Uzbekov, J. Altmann, and M. Hovestadt, “Comparison of two

yield management strategies for cloud service providers,” in Grid and Pervasive

Computing, ser. Lecture Notes in Computer Science, J. Park, H. Arabnia, C. Kim,

W. Shi, and J.-M. Gil, Eds. Springer Berlin Heidelberg, 2013, vol. 7861, pp. 170–

180.

[51] K. Keahey, M. Tsugawa, A. Matsunaga, and J. A. B. Fortes, “Sky computing,” IEEE

Internet Computing, vol. 13, no. 5, pp. 43–51, 2009.

[52] H. Kim, Y. el Khamra, S. Jha, and M. Parashar, “Exploring application and infras-

tructure adaptation on hybrid Grid-Cloud infrastructure,” in Proceedings of the 19th

ACM International Symposium on High Performance Distributed Computing. Chicago:

ACM, June 2010, pp. 402–412.

[53] K. Le, R. Bianchini, J. Zhang, Y. Jaluria, J. Meng, and T. D. Nguyen, “Reducing

electricity cost through virtual machine placement in high performance computing

clouds,” in Proceedings of the International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’11), Seattle, USA, Nov. 2011, pp. 22:1–22:12.

[54] J.-S. Lee and B. Szymanski, “A novel auction mechanism for selling time-sensitive

e-services,” in Proceedings of Seventh IEEE International Conference on E-Commerce

Technology, (CEC’05), Hong Kong, Jul. 2005, pp. 75–82.

[55] Y. Lee, C. Wang, J. Taheri, A. Zomaya, and B. Zhou, “On the effect of using third-

party clouds for maximizing profit,” in Algorithms and Architectures for Parallel Pro-

cessing, ser. Lecture Notes in Computer Science, C.-H. Hsu, L. Yang, J. Park, and

S.-S. Yeo, Eds. Springer Berlin / Heidelberg, 2010, vol. 6081, pp. 381–390.

[56] Y. C. Lee and A. Zomaya, “Rescheduling for reliable job completion with the sup-

port of clouds,” Future Generation Computer Systems, vol. 26, no. 8, pp. 1192–1199,

Oct. 2010.

222 BIBLIOGRAPHY

[57] H. Li, C. Wu, Z. Li, and F. C. M. Lau, “Profit-maximizing virtual machine trading in

a federation of selfish clouds,” in Proceedings of International Conference on Computer

Communications (INFOCOM’13), Turin, Italy, April 2013, pp. 25–29.

[58] K. Lu, T. Roblitz, R. Yahyapour, E. Yaqub, and C. Kotsokalis, “QoS-aware SLA-

based advanced reservation of infrastructure as a service,” in Proceedings of Third

IEEE International Conference on Cloud Computing Technology and Science (Cloud-

Com’11),, Athens, Greece, Nov 2011, pp. 288–295.

[59] U. Lublin and D. G. Feitelson, “The workload on parallel supercomputers: mod-

eling the characteristics of rigid jobs,” Journal of Parallel and Distributed Computing,

vol. 63, no. 11, pp. 1105 – 1122, 2003.

[60] M. Macı́as, J. O. Fitó, and J. Guitart, “Rule-based SLA management for revenue

maximisation in cloud computing markets,” in Proceedings of International Confer-

ence on Network and Service Management (CNSM’10), Niagara Falls, Canada, Oct

2010, pp. 354–357.

[61] M. Macı́as and J. Guitart, “A genetic model for pricing in cloud computing mar-

kets,” in Proceedings of the 2011 ACM Symposium on Applied Computing (SAC’11),

Taichung, Taiwan, Mar. 2011, pp. 113–118.

[62] H. Markowitz, “Portfolio selection,” The journal of finance, vol. 7, no. 1, pp. 77–91,

1952.

[63] M. Mazzucco and M. Dumas, “Reserved or On-demand instances? a revenue max-

imization model for cloud providers,” in Proceedings of 4th IEEE International Con-

ference on Cloud Computing (CLOUD’11). Washington: IEEE, Jul. 2011, pp. 428–435.

[64] T. Meinl, A. Anandasivam, and M. Tatsubori, “Enabling cloud service reservation

with derivatives and yield management,” in Proceedings of 12th IEEE Conference on

Commerce and Enterprise Computing (CEC’10), Nov 2010, pp. 150–155.

BIBLIOGRAPHY 223

[65] T. Meinl and D. Neumann, “A real options model for risk hedging in Grid comput-

ing scenarios,” in Proceedings of the 42nd Hawaii International Conference on System

Sciences, 2009 (HICSS’09). Hawaii: IEEE, Jan. 2009, pp. 1–10.

[66] I. Menache, A. Ozdaglar, and N. Shimkin, “Socially optimal pricing of cloud com-

puting resources,” in Proceedings of the 5th International ICST Conference on Perfor-

mance Evaluation Methodologies and Tools (VALUETOOLS’11). Paris, France: ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications En-

gineering), 2011, pp. 322–331.

[67] R. C. Merton, “Theory of rational option pricing,” Bell Journal of Economics, vol. 4,

pp. 141–183, 1973.

[68] W. Michalk, L. Lilia Filipova-Neumann, B. Blau, and C. Weinhardt, “Reducing Risk

or Increasing Profit? Provider Decisions in Agreement Networks,” Service Science,

vol. 3, no. 3, pp. 206–222, 2011.

[69] M. Mihailescu and Y.-M. Teo, “The impact of user rationality in federated clouds,”

in Proceedings of the 12th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid’12), Ottawa, Canada, May 2012, pp. 620–627.

[70] M. Mihailescu and Y. Teo, “A distributed market framework for large-scale re-

source sharing,” in Euro-Par 2010 - Parallel Processing, ser. Lecture Notes in Com-

puter Science, P. DAmbra, M. Guarracino, and D. Talia, Eds. Springer Berlin Hei-

delberg, 2010, vol. 6271, pp. 418–430.

[71] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing on federated clouds,” in

Proceedings of the 10th IEEE/ACM International Conference on Cluster, Cloud and Grid

Computing (CCGrid’10), Melbourne, Australia, May 2010, pp. 513 –517.

[72] ——, “On economic and computational-efficient resource pricing in large dis-

tributed systems,” in Proceedings of the 10th IEEE/ACM International Conference on-

Cluster, Cloud and Grid Computing (CCGrid’10), Melbourne, Australia, May 2010, pp.

838–843.

224 BIBLIOGRAPHY

[73] ——, “Strategy-proof dynamic resource pricing of multiple resource types on fed-

erated clouds,” in Proceedings of the 10th International Conference on Algorithms and

Architectures for Parallel Processing (ICA3PP’10), ser. Lecture Notes in Computer Sci-

ence, vol. 6081. Busan: Springer, May 2010, pp. 337–350.

[74] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-placement algorithms for

on-demand clouds,” in Proceedings of Third International Conference on Cloud Com-

puting Technology and Science (CloudCom’12), Taipei, Taiwan, Dec. 2011, pp. 91–98.

[75] S. V. Mohammadi, S. Kounev, A. Juan-Verdejo, and B. Surajbali, “Soft Reservations:

Uncertainty-Aware Resource Reservations in IaaS Environments,” in Proceedings of

the 3rd International Symposium on Business Modeling and Software Design (BMSD’13),

Noordwijkerhout, The Netherlands, July 2013.

[76] H. Moulin and S. Shenker, “Strategyproof sharing of submodular costs: budget

balance versus efficiency,” Economic Theory, vol. 18, no. 3, pp. 511–533, 2001.

[77] R. B. Myerson, “Optimal auction design,” Mathematics of operations research, vol. 6,

no. 1, pp. 58–73, 1981.

[78] S. K. Nair and R. Bapna, “An application of yield management for internet service

providers,” Naval Research Logistics (NRL), vol. 48, no. 5, pp. 348–362, 2001.

[79] C. Negru and V. Cristea, “Cost modelspillars for efficient cloud computing: posi-

tion paper,” International Journal of Intelligent Systems Technologies and Applications,

vol. 12, no. 1, pp. 28–38, Jan. 2013.

[80] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic game theory.

Cambridge University Press, 2007.

[81] D. Niu, C. Feng, and B. Li, “Pricing cloud bandwidth reservations under demand

uncertainty,” SIGMETRICS Performance Evaluation Review, vol. 40, no. 1, pp. 151–

162, June 2012.

BIBLIOGRAPHY 225

[82] D. Niyato, S. Chaisiri, and B.-S. Lee, “Economic analysis of resource market in

cloud computing environment,” in Proceedings of IEEE Asia-Pacific Services Com-

puting Conference (APSCC’09), Biopolis, Singapore, Dec. 2009, pp. 156–162.

[83] D. Niyato, A. V. Vasilakos, and Z. Kun, “Resource and revenue sharing with coali-

tion formation of cloud providers: Game theoretic approach,” in Proceedings of

IEEE International Symposium on Cluster Computing and the Grid (CCGrid). New-

port Beach: IEEE, May 2011, pp. 215–224.

[84] R. S. Padilla, S. K. Milton, and L. W. Johnson, “Service value in IT outsourcing,”

International Journal of Engineering and Management Sciences, vol. 4, no. 3, pp. 285–

302, 2013.

[85] R. Pal and P. Hui, “Economic models for cloud service markets,” in Distributed Com-

puting and Networking, ser. Lecture Notes in Computer Science, L. Bononi, A. Datta,

S. Devismes, and A. Misra, Eds. Springer Berlin Heidelberg, 2012, vol. 7129, pp.

382–396.

[86] K. Papagiannaki, N. Taft, Z.-L. Zhang, and C. Diot, “Long-term forecasting of in-

ternet backbone traffic: observations and initial models,” in Proceedings of Twenty-

Second Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM ’03), vol. 2, San Francisco, California, USA, March 2003, pp. 1178–1188.

[87] S. Parsons, J. A. Rodriguez-Aguilar, and M. Klein, “Auctions and bidding: A guide

for computer scientists,” ACM Computing Survey, vol. 43, no. 2, pp. 10:1–10:59, Feb.

2011.

[88] M. K. Patterson, “The effect of data center temperature on energy efficiency,” in Pro-

ceedings of 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in

Electronic Systems (ITHERM’08), Orlando, Florida, USA, May 2008, pp. 1167–1174.

[89] S. Pelley, D. Meisner, T. F. Wenisch, and J. W. VanGilder, “Understanding

and abstracting total data center power,” in Workshop on Energy-Efficient Design

(WEED’09), 2009.

226 BIBLIOGRAPHY

[90] W. B. Powell, Approximate Dynamic Programming: Solving the curses of dimensionality.

John Wiley & Sons, 2007, vol. 703.

[91] A. S. Prasad and S. Rao, “A mechanism design approach to resource procurement

in cloud computing,” IEEE Transactions on Computers, vol. 63, no. 1, pp. 17–30, Jan

2014.

[92] T. Püschel, A. Anandasivam, S. Buschek, and D. Neumann, “Making money with

clouds: Revenue optimization through automated policy decisions.” in Proceedings

of the 17th European Conference on Information Systems (ECIS’09), 2009, pp. 2303–2314.

[93] T. Püschel and D. Neumann, “Management of cloud infastructures: Policy-based

revenue optimization,” in Proceedings of International Conference on Information Sys-

tems (ICIS’09), Phoenix, Arizona, Dec. 2009, pp. 2303–2314.

[94] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming.

Wiley, 2005.

[95] S. Rahmail, I. Shiller, and R. K. Thulasiram, “Different estimators of the underlying

asset’s volatility and option pricing errors: parallel Monte Carlo simulation,” in

Proceedings of International Conference on Computational Finance and its Applications,

Bologna, April 2004, pp. 121–131.

[96] M. R. Rahman, Y. Lu, and I. Gupta, “Risk aware resource allocation for clouds,” De-

partment of Computer Science, University of Illinois at Urbana-Champaign, Tech.

Rep., 2011.

[97] N. Rasmussen, “Electrical efficiency measurement for data centers,” White Paper by

Schneider Electric - Data Center Science Center, vol. 154 revision 2, 2011.

[98] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: for-

mat + schema,” Google Inc., Mountain View, CA, USA, Technical Report, Nov

2011, [Online]. Available: http://code.google.com/p/googleclusterdata/wiki/

TraceVersion2.

http://code.google.com/p/googleclusterdata/wiki/TraceVersion2
http://code.google.com/p/googleclusterdata/wiki/TraceVersion2

BIBLIOGRAPHY 227

[99] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M. Llorente, R. Montero,

Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-Yehuda, W. Emmerich, and F. Galan,

“The Reservoir model and architecture for open federated cloud computing,” IBM

Journal of Research and Development, vol. 53, no. 4, pp. 1–11, 2009.

[100] B. Rochwerger et al., “Reservoir—when one cloud is not enough,” Computer, vol. 44,

no. 3, pp. 44–51, March 2011.

[101] L. Rodero-Merino, L. M. Vaquero, V. Gil, F. Galán, J. Fontán, R. S. Montero, and

I. M. Llorente, “From infrastructure delivery to service management in clouds,”

Future Generation Computer Systems, vol. 26, no. 8, pp. 1226–1240, Oct. 2010.

[102] H. Roh, C. Jung, W. Lee, and D.-Z. Du, “Resource pricing game in geo-distributed

clouds,” in Proceedings of International Conference on Computer Communications (IN-

FOCOM’13), Turin, Italy, April 2013, pp. 1519–1527.

[103] M. A. Salehi, B. Javadi, and R. Buyya, “QoS and preemption aware scheduling

in federated and virtualized grid computing environments,” Journal of Parallel and

Distributed Computing (JPDC), vol. 72, no. 2, pp. 231–245, 2012.

[104] N. Samaan, “A novel economic sharing model in a federation of selfish cloud

providers,” IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp.

12–21, Jan. 2014.

[105] P. Samimi, Y. Teimouri, and M. Mukhtar, “A combinatorial double auction resource

allocation model in cloud computing,” Information Sciences, 2014.

[106] L. Schubert, K. Jeffery, and B. Neidecker-Lutz, “The future for cloud

computing: Opportunities for european cloud computing beyond 2010,” Tech.

Rep., 2010. [Online]. Available: http://cordis.europa.eu/fp7/ict/ssai/docs/

cloud-report-final.pdf

[107] B. Sharma, R. K. Thulasiram, P. Thulasiraman, S. K. Garg, and R. Buyya, “Pricing

cloud compute commodities: A novel financial economic model,” in Proceedings

http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf
http://cordis.europa.eu/fp7/ict/ssai/docs/cloud-report-final.pdf

228 BIBLIOGRAPHY

of the 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

(CCGrid’12), Ottawa, Canada, May 2012, pp. 451–457.

[108] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware elasticity provisioning

system for the cloud,” in Proceedings of 31st International Conference on Distributed

Computing Systems (ICDCS’11), Minneapolis, U.S.A, June 2011, pp. 559–570.

[109] W. F. Sharpe, “Capital asset prices: A theory of market equilibrium under condi-

tions of risk,” Finance, vol. XIX, no. 3, pp. 425–442, Sep. 1964.

[110] K.-M. Sim, “Grid resource negotiation: Survey and new directions,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, vol. 40, no. 3,

pp. 245–257, May 2010.

[111] S. Son and K.-M. Sim, “A price- and-time-slot-negotiation mechanism for cloud

service reservations,” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 42, no. 3, pp. 713–728, June 2012.

[112] B. Song, M. M. Hassan, and E.-N. Huh, “A novel cloud market infrastructure for

trading service,” in Proceedings of the 9th International Conference on Computational

Science and Its Applications (ICCSA). Suwon: IEEE Computer Society, Jun. 2009,

pp. 44–50.

[113] K. Song, Y. Yao, and L. Golubchik, “Exploring the profit-reliability trade-off in

amazon’s spot instance market: A better pricing mechanism,” in Proceedings of

21st IEEE/ACM International Symposium on Quality of Service (IWQoS’13), Montreal,

Canada, June 2013, pp. 1–10.

[114] Y. Song, M. Zafer, and K.-W. Lee, “Optimal bidding in spot instance market,” in

Proceedings of the 31st International Conference on Computer Communications (INFO-

COM’12), Orlando, Florida, USA, Mar. 2012, pp. 190–198.

[115] M. Stokely, J. Winget, E. Keyes, C. Grimes, and B. Yolken, “Using a market economy

to provision compute resources across planet-wide clusters,” in Proceedings of IEEE

BIBLIOGRAPHY 229

International Symposium on Parallel Distributed Processing (IPDPS’09), Rome, Italy,

May 2009, pp. 1–8.

[116] A. Sulistio, K. H. Kim, and R. Buyya, “Using revenue management to determine

pricing of reservations,” in IEEE International Conference on e-Science and Grid Com-

puting, Bangalore, India, Dec 2007, pp. 396–405.

[117] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To move or not to move: The

economics of cloud computing,” in Proceedings of the 3rd USENIX Conference on Hot

Topics in Cloud Computing (HotCloud’11), Portland, Oregon, USA, June 2011.

[118] T. Truong-Huu and C.-K. Tham, “A novel model for competition and coopera-

tion among cloud providers,” IEEE Transactions on Cloud Computing, vol. 99, no.

PrePrints, p. 1, 2014.

[119] K. Vanmechelen, W. Depoorter, and J. Broeckhove, “Combining futures and spot

markets: A hybrid market approach to economic Grid resource management,”

Journal of Grid Computing, vol. 9, no. 1, pp. 81–94, Mar. 2011.

[120] J. Varia, “Best practices in architecting cloud applications in the AWS cloud,” in

Cloud Computing: Principles and Paradigms, R. Buyya, J. Broberg, and A. Goscinski,

Eds. Wiley Press, 2011, ch. 18, pp. 459–490.

[121] K. Vermeersch, “A broker for cost-efficient QoS aware resource allocation in ec2,”

Master’s thesis, University of Antwerp, 2011.

[122] W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,” The

Journal of finance, vol. 16, no. 1, pp. 8–37, 1961.

[123] W. Voorsluys, J. Broberg, and R. Buyya, Introduction to Cloud Computing, R. Buyya,

J. Broberg, and A. Goscinski, Eds. John Wiley & Sons, Inc., 2011.

[124] W. Voorsluys and R. Buyya, “Reliable provisioning of spot instances for compute-

intensive applications,” in Proceedings of 26th International Conference on Advanced

Information Networking and Applications (AINA’12), Fukuoka, Japan, Mar. 2012, pp.

542–549.

230 BIBLIOGRAPHY

[125] H. Wang, Q. Jing, R. Chen, B. He, Z. Qian, and L. Zhou, “Distributed systems meet

economics: pricing in the cloud,” in Proceedings of the 2nd USENIX conference on Hot

topics in cloud computing (HotCloud’10), Boston, Massachusetts, USA, June 2010.

[126] P. Wang, Y. Qi, D. Hui, L. Rao, and X. Liu, “Present or future: Optimal pricing for

spot instances,” in Proceedings of 33rd IEEE International Conference on Distributed

Computing Systems (ICDCS’13), Philadelphia, USA, Jul. 2013, pp. 410–419.

[127] W. Wang, B. Li, and B. Liang, “Towards optimal capacity segmentation with hybrid

cloud pricing,” in Proceedings of the 32nd IEEE International Conference on Distributed

Computing Systems (ICDCS’12), Macau, China, Jun. 2012, pp. 425–434.

[128] W. Wang, B. Liang, and B. Li, “Revenue maximization with dynamic auctions in

IaaS cloud markets,” in Proceedings of the 21st IEEE/ACM International Symposium

on Quality of Service (IWQoS’13), 2013, pp. 1–6.

[129] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource reservation via

cloud brokerage,” in Proceedings of IEEE 33rd International Conference on Distributed

Computing Systems (ICDCS’13), Philadelphia, Pennsylvania, US, July 2013, pp. 400–

409.

[130] X. Wang, Y. Xue, L. Fan, R. Wang, and Z. Du, “Research on adaptive QoS-aware

resource reservation management in cloud service environments,” in Proceedings of

IEEE Asia-Pacific Services Computing Conference (APSCC’11), Jeju, Korea, Dec. 2011,

pp. 147–152.

[131] X. W. Wang, X. Y. Wang, and M. Huang, “A resource allocation method based on

the limited english combinatorial auction under cloud computing environment,”

in Proceedings of the 9th International Conference on Fuzzy Systems and Knowledge Dis-

covery (FSKD’12), May 2012, pp. 905–909.

[132] L. R. Weatherford and S. E. Bodily, “A taxonomy and research overview of

perishable-asset revenue management: Yield management, overbooking, and pric-

ing,” Operations Research, vol. 40, no. 5, pp. 831–844, 1992.

BIBLIOGRAPHY 231

[133] H. Xu and B. Li, “A study of pricing for cloud resources,” SIGMETRICS Performance

Evaluation Review, vol. 40, no. 4, pp. 3–12, Apr. 2013.

[134] ——, “Dynamic cloud pricing for revenue maximization,” IEEE Transactions on

Cloud Computing, vol. 1, no. 2, pp. 158–171, July 2013.

[135] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of Spot instances via check-

pointing in the Amazon Elastic Compute Cloud,” in In Proceedings of the 2010 IEEE

3rd International Conference on Cloud Computing (Cloud ’10), Washington, USA, 2010,

pp. 236–243.

[136] D. Yoo and K.-M. Sim, “A multilateral negotiation model for cloud service market,”

in Grid and Distributed Computing, Control and Automation, ser. Communications in

Computer and Information Science, T.-h. Kim, S. S. Yau, O. Gervasi, B.-H. Kang,

A. Stoica, and D. Ślȩzak, Eds. Springer Berlin Heidelberg, 2010, vol. 121, pp. 54–

63.

[137] S. Zaman and D. Grosu, “Combinatorial auction-based allocation of virtual ma-

chine instances in clouds,” Journal of Parallel and Distributed Computing, vol. 73,

no. 4, pp. 495–508, 2013.

[138] L. Zhang, Z. Li, and C. Wu, “Dynamic resource provisioning in cloud computing:

A randomized auction approach,” in Proceedings of IEEE INFOCOM, 2014.

[139] Q. Zhang, Q. Zhu, and R. Boutaba, “Dynamic resource allocation for spot mar-

kets in cloud computing environments,” in Proceedings of the Fourth IEEE Interna-

tional Conference on Utility and Cloud Computing (UCC’11), Melbourne, Australia,

Dec. 2011, pp. 178–185.

[140] Z. Zhang and X. Zhang, “An economic model for the evaluation of the economic

value of cloud computing federation,” in Future Communication, Computing, Con-

trol and Management, ser. Lecture Notes in Electrical Engineering, Y. Zhang, Ed.

Springer Berlin Heidelberg, 2012, vol. 141, pp. 571–577.

232 BIBLIOGRAPHY

[141] X. Zheng, P. Martin, and K. Brohman, “Cloud service negotiation: A research

roadmap,” in Proceedings of IEEE International Conference on Services Computing

(SCC’13), Santa Clara Marriott, California, USA, June 2013, pp. 627–634.

	Introduction
	Motivations
	Research challenges and Objectives
	Evaluation Methodology
	Contributions
	Thesis Organization

	Background and Literature Review
	Introduction
	Pricing
	Pricing Factors
	Pricing Models

	Dynamic Pricing
	Auction-based
	Negotiation-based
	Yield Management
	Demand-oriented

	Federated Cloud Environments
	Cloud Interoperability Scenarios
	Motivations for Cloud Interoperability
	Discussion
	Economic challenges and enabling approaches

	Thesis Scope and Positioning
	Summary

	I Profit Maximization in Federated Cloud Environments
	Resource Provisioning Policies to Increase Profit
	Introduction
	Related Work
	System Model
	Interaction between customers and providers
	Cloud Federation

	Proposed Policies
	Evaluation
	Experimental Settings
	Workload setup
	Performance Metrics
	Results

	Summary and Conclusion

	Financial Option Market Model
	Introduction
	Related Work
	The System Model
	The Option Market
	Policies
	Baseline In-house Isolated Pool Policy (IIP)
	Baseline Federated Isolated Pool Policy (FIP)
	Federated Shared Pool Option-Enabled Policy (FSPO)

	Performance Evaluation
	Experimental Setup
	Performance Metrics
	Experimental Results

	Summary and Conclusion

	II Profit Maximization for a Single Cloud Provider
	Revenue Management with Optimal Capacity Control
	Introduction
	Related Work
	System Model
	Cloud Pricing Plans
	The Optimal Capacity Control Problem
	Optimal Capacity Control

	Proposed Algorithms
	Pseudo Optimal Algorithm with an Efficient Computational Time
	Heuristic Algorithm with a Low Computational Complexity

	Revenue Management Framework
	Performance Evaluation
	Framework Evaluation
	Evaluation of the proposed heuristic algorithms

	Summary and Conclusion

	An Auction Mechanism for a Cloud Spot Market
	Introduction
	Related Work
	Preliminaries and Notation
	Competitive Framework
	Truthfulness
	Envy-freeness
	Extended Consensus Revenue Estimate Auction
	Discussion

	Limited Supply and Reserve Price
	Reserve Price
	Power Usage Efficiency Model

	Auction Mechanisms and Benchmarks
	Performance Evaluation
	Order Generation
	Single Round Evaluation
	Evaluation of Misreporting Quantity
	Online Auction Framework Evaluation

	Summary and Conclusion

	Spot Instance Pricing as a Service
	Introduction
	System Design and Implementation
	SipaaS Framework
	Extensions for Horizon - The OpenStack Dashboard
	Pricing Mechanism

	Evaluation and Validation
	Experimental Testbed
	Experimental Design and Setup
	Results and Analysis

	Summary and Conclusion

	Conclusions and Future Directions
	Summary of Contributions
	Future Research Directions
	Advanced Resource Provisioning Policies
	Option Trading Strategies
	Game Theoretical Analysis of Cloud Federation
	Customer Diversion in Revenue Management Framework
	Revenue Management with Overbooking
	Multi-dimensional Truthful Mechanism Design

	Final Remarks

