
Aneka: A Software Platform for

.NET-based Cloud Computing

Christian VECCHIOLA
a
, Xingchen CHU

a,b
, and Rajkumar BUYYA

a,b,1

a
 Cloud Computing and Distributed Systems (CLOUDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia
b

 Manjrasoft Pty Ltd, Melbourne, Australia

Abstract. Aneka is a platform for deploying Clouds developing applications on

top of it. It provides a runtime environment and a set of APIs that allow developers

to build .NET applications that leverage their computation on either public or

private clouds. One of the key features of Aneka is the ability of supporting

multiple programming models that are ways of expressing the execution logic of

applications by using specific abstractions. This is accomplished by creating a
customizable and extensible service oriented runtime environment represented by

a collection of software containers connected together. By leveraging on these

architecture advanced services including resource reservation, persistence, storage
management, security, and performance monitoring have been implemented. On

top of this infrastructure different programming models can be plugged to provide

support for different scenarios as demonstrated by the engineering, life science,

and industry applications.

Keywords. Cloud Computing, Enterprise frameworks for Cloud Computing,

Software Engineering, and Service Oriented Computing.

Introduction

With the advancement of the modern human society, basic and essential services are

delivered almost to everyone in a completely transparent manner. Utility services such

as water, gas, and electricity have become fundamental for carrying out our daily life

and are exploited on a pay per use basis. The existing infrastructures allow delivering

such services almost anywhere and anytime so that we can simply switch on the light,

open the tap, and use the stove. The usage of these utilities is then charged, according

to different policies, to the end user. Recently, the same idea of utility has been applied

to computing and a consistent shift towards this approach has been done with the

spread of Cloud Computing.

Cloud Computing [1] is a recent technology trend whose aim is to deliver on

demand IT resources on a pay per use basis. Previous trends were limited to a specific

class of users, or focused on making available on demand a specific IT resource,

mostly computing. Cloud Computing aims to be global and to provide such services to

the masses, ranging from the end user that hosts its personal documents on the Internet,

to enterprises outsourcing their entire IT infrastructure to external data centers. Never

1
 Corresponding Author.

before an approach to make IT a real utility has been so global and complete: not only

computing and storage resources are delivered on demand but the entire stack of

computing can be leveraged on the Cloud.

Data Centers
Clusters

Storage

Other

Grids/Clouds

Virtualization

VM Management & Deployment

Amazon S3, EC2

OpenNebula, Eucalyptus

Mosso

Data CentersData Centers
ClustersClusters

StorageStorage

Other

Grids/Clouds

Other

Grids/Clouds

Virtualization

VM Management & Deployment

Amazon S3, EC2

OpenNebula, Eucalyptus

Mosso

Web 2.0 Interface

Programming API

Scripting & Programming
Languages

Web 2.0 Interface

Programming API

Scripting & Programming
Languages

Google AppEngine

Microsoft Azure

Manjrasoft Aneka

Google AppEngine

Microsoft Azure

Manjrasoft Aneka

Google Apps (Gmail, Docs,…)

Salesforce.com

Google Apps (Gmail, Docs,…)

Salesforce.com

Public CloudPublic Cloud

Private CloudPrivate Cloud

S
o
ci

a
l N

e
tw

o
rk

s

S
c
ie

n
ti
fi
c
 C

o
m

p
u
ti
n
g

A
m

u
s
e

m
e
n
t

C
D

N
s

F
in

a
n

c
ia

l
A

p
p
lic

a
ti
o
n

s

Infrastructure as a Service

Platform as a Service

Software as a Service

Figure 1. Cloud Computing architecture.

Figure 1 provides an overall view of the scenario envisioned by Cloud Computing.

It encompasses so many aspects of computing that very hardly a single solution is able

to provide everything that is needed. More likely, specific solutions can address the

user needs and be successful in delivering IT resources as a real utility. Figure 1 also

identifies the three pillars on top of which Cloud Computing solutions are delivered to

end users. These are: Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure/Hardware as a Service (IaaS/HaaS). These new concepts are also useful

to classify the available options for leveraging on the Cloud the IT needs of everyone.

Examples of Software as a Service are Salesforce.com2 and Clarizen.com3 , which

respectively provide on line CRM and project management services. PaaS solutions,

such as Google AppEngine
4
, Microsoft Azure

5
, and Manjrasoft Aneka provide users

with a development platform for creating distributed applications that can

automatically scale on demand. Hardware and Infrastructure as a Service solutions

provide users with physical or virtual resources that are fitting the requirements of the

user applications in term of CPU, memory, operating system, and storage. These and

any others QoS parameters are established through a Service Level Agreement (SLA)

2
 http://www.salesforce.com

3 http://www.clarenz.com
4
 http://code.google.com/appengine/docs/whatisgoogleappengine.html

5
 http://www.microsoft.com/azure/

between the customer and the provider. Examples of this approach are Amazon EC2
6

and S3
7
, and Mosso

8
.

It is very unlikely that a single solution provides the complete stack of software,

platform, infrastructure and hardware as a service. More commonly, specific solutions

provide services at one (or more) of these layers in order to exploit as many as possible

the opportunities offered by Cloud Computing. Within this perspective, Aneka

provides a platform for developing distributed applications that can easily scale and

take advantage of Cloud based infrastructures. Aneka is software framework based on

the .NET technology initially developed within the Gridbus project [2] and then

commercialized by Manjrasoft
9

. It simplifies the development of distributed

applications by providing: a collection of different ways for expressing the logic of

distributed applications, a solid infrastructure that takes care of the distributed

execution of applications, and a set of advanced features such as the ability to reserve

and price computation nodes and to integrate with existing cloud infrastructures such as

Amazon EC2.

This chapter provides an overview of Aneka as a framework for developing

distributed applications and we will underline those features that make Aneka a

Platform as a Service solution in the Cloud Computing model. The remainder of this

chapter is organized as follows: Section 1 provides a brief introduction to the Cloud

Computing architecture and features a comparison between some available commercial

options. Section 2 gives an overview of Aneka by describing its service oriented

architecture and the fundamental components of the system such as the Container and

the core services. Section 3 presents application development with Aneka. In particular,

the different Programming Models supported by the framework and the Software

Development Kit are addressed. Section 4 provides an overview of the tools available

within Aneka to manage the system, deploy applications, and monitor their execution.

Section 5 describes some case studies where Aneka has been used to address the needs

of scalability for different classes of applications. Conclusions and a discussion about

the future development directions follow in Section 6.

1. Cloud Computing Reference Model and Technologies

In order to introduce a reference model for Cloud Computing, it is important to provide

some insights on the definition of the term Cloud. There is no univocally accepted

definition of the term. Fox et al. [3] notice that “Cloud Computing refers to both the

applications delivered as services over the Internet and the hardware and system

software in the datacenters that provide those services”. They then identify the Cloud

with both the datacenter hardware and the software. A more structured definition is

given by Buyya et al. [4] who define a Cloud as a “type of parallel and distributed

system consisting of a collection of interconnected and virtualized computers that are

dynamically provisioned and presented as one or more unified computing resources

based on service-level agreement”. As it can be noticed, there is an agreement on the

6
 http://aws.amazon.com/ec2/

7 http://aws.amazon.com/s3/
8
 http://www.mosso.com/

9
 http://www.manjrasoft.com/

fact that Cloud Computing refers to the practice of delivering software and

infrastructure as a service, eventually on a pay per use basis. In the following, we will

illustrate how this is accomplished by defining a reference model for Cloud

Computing.

Cloud resources

Virtual Machine (VM), VM Management and Deployment

QoS Negotiation, Admission Control, Pricing, SLA Management,
Monitoring, Execution Management, Metering, Accounting, Billing

Cloud programming: environments and tools

Web 2.0 Interfaces, Mashups, Concurrent and Distributed
Programming, Workflows, Libraries, Scripting

Cloud applications
Social computing, Enterprise, ISV, Scientific, CDNs, ...

A
d

a
p

tiv
e
 M

a
n

a
g

e
m

e
n

t

Core

Middleware

User-Level

Middleware

System level

User level

A
u

to
n

o
m

ic
 / C

lo
u

d
 E

c
o

n
o

m
y

Apps Hosting Platforms

Cloud resources

Virtual Machine (VM), VM Management and Deployment

QoS Negotiation, Admission Control, Pricing, SLA Management,
Monitoring, Execution Management, Metering, Accounting, Billing

Cloud programming: environments and tools

Web 2.0 Interfaces, Mashups, Concurrent and Distributed
Programming, Workflows, Libraries, Scripting

Cloud applications
Social computing, Enterprise, ISV, Scientific, CDNs, ...

A
d

a
p

tiv
e
 M

a
n

a
g

e
m

e
n

t

Core

Middleware

User-Level

Middleware

System level

User level

A
u

to
n

o
m

ic
 / C

lo
u

d
 E

c
o

n
o

m
y

Apps Hosting Platforms

Figure 2. Cloud Computing layered architecture.

Figure 2 gives a layered view of the Cloud Computing stack. It is possible to

distinguish four different layers that progressively shift the point of view from the

system to the end user. The lowest level of the stack is characterized by the physical

resources on top of which the infrastructure is deployed. These resources can be of

different nature: clusters, datacenters, and spare desktop machines. Infrastructure

supporting commercial Cloud deployments are more likely to be constituted by

datacenters hosting hundreds or thousands of machines, while private Clouds can

provide a more heterogeneous scenario in which even the idle CPU cycles of spare

desktop machines are used to leverage the compute workload. This level provides the

“horse power” of the Cloud.

The physical infrastructure is managed by the core middleware layer whose

objectives are to provide an appropriate run time environment for applications and to

exploit at best the physical resources. In order to provide advanced services, such as

application isolation, quality of service, and sandboxing, the core middleware can rely

on virtualization technologies. Among the different solutions for virtualization,

hardware level virtualization and programming language level virtualization are the

most popular. Hardware level virtualization guarantees complete isolation of

applications and a fine partitioning of the physical resources, such as memory and

CPU, by means of virtual machines. Programming level virtualization provides

sandboxing and managed execution for applications developed with a specific

technology or programming language (i.e. Java, .NET, and Python). On top of this, the

core middleware provides a wide set of services that assist service providers in

delivering a professional and commercial service to end users. These services include:

negotiation of the quality of service, admission control, execution management and

monitoring, accounting, and billing.

Together with the physical infrastructure the core middleware represents the

platform on top of which the applications are deployed in the Cloud. It is very rare to

have direct access to this layer. More commonly, the services delivered by the core

middleware are accessed through a user level middleware. This provides environments

and tools simplifying the development and the deployment of applications in the

Cloud: web 2.0 interfaces, command line tools, libraries, and programming languages.

The user level middleware constitutes the access point of applications to the Cloud.

The Cloud Computing model introduces several benefits for applications and

enterprises. The adaptive management of the Cloud allows applications to scale on

demand according to their needs: applications can dynamically acquire more resource

to host their services in order to handle peak workloads and release when the load

decreases. Enterprises do not have to plan for the peak capacity anymore, but they can

provision as many resources as they need, for the time they need, and when they need.

Moreover, by moving their IT infrastructure into the Cloud, enterprise can reduce their

administration and maintenance costs. This opportunity becomes even more appealing

for startups, which can start their business with a small capital and increase their IT

infrastructure as their business grows. This model is also convenient for service

providers that can maximize the revenue from their physical infrastructure. Besides the

most common “pay as you go” strategy more effective pricing policies can be devised

according to the specific services delivered to the end user. The use of virtualization

technologies allows a fine control over the resources and the services that are made

available at runtime for applications. This introduces the opportunity of adopting

various pricing models that can benefit either the customers or the vendors.

The model endorsed by Cloud Computing provides the capability of leveraging the

execution of applications on a distributed infrastructure that, in case of public clouds,

belongs to third parties. While this model is certainly convenient, it also brings

additional issues from a legal and a security point of view. For example, the

infrastructure constituting the Computing Cloud can be made of datacenters and

clusters located in different countries where different laws for digital content apply.

The same application can then be considered legal or illegal according to the where is

hosted. In addition, privacy and confidentiality of data depends on the location of its

storage. For example, confidentiality of accounts in a bank located in Switzerland may

not be guaranteed by the use of data center located in United States. In order to address

this issue some Cloud Computing vendors have included the geographic location of the

hosting as a parameter of the service level agreement made with the customer. For

example, Amazon EC2 provides the concept of availability zones that identify the

location of the datacenters where applications are hosted. Users can have access to

different availability zones and decide where to host their applications. Since Cloud

Computing is still in its infancy the solutions devised to address these issues are still

being explored and will definitely become fundamental when a wider adoption of this

technology takes place.

Table 1 identifies some of the major players in the field and the kind of service

they offer. Amazon Elastic Compute Cloud (EC2) operates at the lower levels of the

Cloud Computing reference model. It provides a large computing infrastructure and a

service based on hardware virtualization. By using the Amazon Web Services users can

create Amazon Machine Images (AMIs) and save them as templates from which

multiple instances can be run. It is possible to run either Windows or Linux virtual

machines and the user is charged per hour for each of the instances running. Amazon

also provides storage services with the Amazon Simple Storage Service (S3), users can

take advantage of Amazon S3 to move large data files into the infrastructure and get

access to them from virtual machine instances.

Table 1. Feature comparison of some of the commercial offerings for Cloud Computing.

Properties Amazon EC2 Google AppEngine Microsoft

Azure

Manjrasoft Aneka

Service Type IaaS IaaS – PaaS IaaS – PaaS PaaS

Support for (value

offer)

Compute/storage Compute

(web applications)

Compute Compute

Value added service

provider

Yes Yes Yes Yes

User access interface Web APIs and
Command Line

Tools

Web APIs and
Command Line

Tools

Azure Web
Portal

Web APIs, Custom
GUI

Virtualization OS on Xen

hypervisor

Application

Container

Service

Container

Service

Container

Platform (OS &

runtime)

Linux, Windows Linux .NET on

Windows

.NET/Mono on

Windows, Linux,

MacOS X

Deployment model Customizable VM Web apps (Python,

Java, JRuby)

Azure Services Applications (C#,

C++, VB, ….)
If PaaS, ability to

deploy on 3rd pathy

IaaS

N.A.

No

No

Yes

While the commercial offer of Amazon can be classified completely as a IaaS

solutions, Google AppEngine, and Microsoft Azure are integrated solutions providing

both a computing infrastructure and a platform for developing applications. Google

AppEngine is a platform for developing scalable web applications that will be run on

top of server infrastructure of Google. It provides a set of APIs and an application

model that allow developers to take advantage of additional services provided by

Google such as Mail, Datastore, Memcache, and others. By following the provided

application model, developers can create applications in Java, Python, and JRuby.

These applications will be run within a sandbox and AppEngine will take care of

automatically scaling when needed. Google provides a free limited service and utilizes

daily and per minute quotas to meter and price applications that require a professional

service.

Azure is the solution provided by Microsoft for developing scalable applications

for the Cloud. It is a cloud services operating system that serves as the development,

run-time, and control environment for the Azure Services Platform. By using the

Microsoft Azure SDK developers can create services that leverage on the .NET

Framework. These services are then uploaded to the Microsoft Azure portal and

executed on top of Windows Azure. Microsoft Azure provides additional services such

as workflow execution and management, web services orchestration, and access to

SQL data stores. Currently, Azure is still in Community Technical Preview and its

usage is free, its commercial launch is scheduled for the second half of 2009 and users

will be charged by taking into account the CPU time, the bandwidth and the storage

used, the number of transaction performed by their services, and also the use of specific

services such as SQL or .NET services.

Differently from all the previous solutions, Aneka is a pure implementation of the

Platform as a Service model. The core value of Aneka is a service oriented runtime

environment that is deployed on both physical and virtual infrastructures and allows the

execution of applications developed with different application models. Aneka provides

a Software Development Kit (SDK) allowing developers to create cloud applications

on any language supported by the .NET runtime and a set of tools for quickly setting up

and deploying clouds on Windows and Linux based systems. Aneka can be freely

downloaded and tried for a limited period, while specific arrangements have to be made

with Manjrasoft for commercial use. In the remainder of this chapter we illustrate the

features of Aneka.

2. Aneka Architecture

Aneka is a platform and a framework for developing distributed applications on the

Cloud. It harnesses the spare CPU cycles of a heterogeneous network of desktop PCs

and servers or datacenters on demand. Aneka provides developers with a rich set of

APIs for transparently exploiting such resources and expressing the business logic of

applications by using the preferred programming abstractions. System administrators

can leverage on a collection of tools to monitor and control the deployed infrastructure.

This can be a public cloud available to anyone through the Internet, or a private cloud

constituted by a set of nodes with restricted access.

Aneka is based on the .NET framework and this is what makes it unique from a

technology point of view as opposed to the widely available Java based solutions.

While mostly designed to exploit the computing power of Windows based machines,

which are most common within an enterprise environment, Aneka is portable over

different platforms and operating systems by leveraging other implementations of the

ECMA 334 [5] and ECMA 335 [6] specifications such as Mono. This makes Aneka an

interesting solution for different types of applications in educational, academic, and

commercial environments.

2.1. Overview

Figure 3 gives an overview of the features of Aneka. The Aneka based computing

cloud is a collection of physical and virtualized resources connected through a network,

which could be the Internet or a private intranet. Each of these resources hosts an

instance of the Aneka Container representing the runtime environment in which the

distributed applications are executed. The container provides the basic management

features of the single node and leverages all the other operations on the services that it

is hosting. In particular we can identify fabric, foundation, and execution services.

Fabric services directly interact with the node through the Platform Abstraction Layer

(PAL) and perform hardware profiling and dynamic resource provisioning. Foundation

services identify the core system of the Aneka middleware, they provide a set of basic

features on top of which each of the Aneka containers can be specialized to perform a

specific set of tasks. Execution services directly deal with the scheduling and execution

of applications in the Cloud. One of the key features of Aneka is the ability of

providing different ways for expressing distributed applications by offering different

programming models; execution services are mostly concerned with providing the

middleware with an implementation for these models. Additional services such as

persistence and security are transversal to the entire stack of services that are hosted by

the Container. At the application level, a set of different components and tools are

provided to: 1) simplify the development of applications (SDK); 2) porting existing

applications to the Cloud; and 3) monitoring and managing the Aneka Cloud.

Fabric services
Hardware profiling
Dynamic resource provisioning

Foundation services

Membership
Resource reservation
Storage
Licensing & Accounting

Execution Services
Independent Bags of Tasks
Distributed threads
MapReduce

P
e

rs
is

te
n

c
e

S
e

c
u

ri
ty

Middleware: Container

Infrastructure

ECMA 334-335: .NET or Mono / Windows & Linux & Mac

Physical Resources Virtualized Resources

Applications: Development & Management

SDK: API & Tools Management: Tools, Interfaces, APIs

Figure 3. Overview of the Aneka framework.

A common deployment of Aneka is presented in Figure 4. An Aneka based Cloud

is constituted by a set of interconnected resources that are dynamically modified

according to the user needs by using resource virtualization or by harnessing the spare

CPU cycles of desktop machines. If the deployment identifies a private Cloud all the

resources are in house, for example within the enterprise. This deployment is extended

by adding publicly available resources on demand or by interacting with other Aneka

public clouds providing computing resources connected over the Internet. The heart of

this infrastructure is the Aneka Container which represents the basic deployment unit

of Aneka based clouds.

Some of the most characteristic features of the Cloud Computing model are:

• flexibility,

• elasticity (scaling up or down on demand), and

• pay per usage.

The architecture and the implementation of the Container play a key role in

supporting these three features: the Aneka cloud is flexible because the collection

of services available on the container can be customized and deployed according to

the specific needs of the application. It is also elastic because it is possible to

increase on demand the number of nodes that are part of the Aneka Cloud

according to the user needs. The integration of virtual resources into the Aneka

Cloud does not introduce specific challenges: once the virtual resource is acquired

by Aneka it is only necessary to have an administrative account and a network

access to it and deploy the Container on it as it happens for any other physical

node. Moreover, because of the Container being the interface to hosting node it is

easy to monitor, meter, and charge any distributed application that runs on the

Aneka Cloud.

Executors/Schedulers

Executor

Client Libraries

Executors

Scheduler

Public Cloud

publicly available resources
(physical and virtual)

Scheduler

internet

Private Cloud

private enterprise
network

VPN

(virtual resources)

Executor

Executors/Schedulers

ExecutorExecutor

Client Libraries

Executors

SchedulerScheduler

Public Cloud

publicly available resources
(physical and virtual)

SchedulerScheduler

internet

Private Cloud

private enterprise
network

VPN

(virtual resources)

ExecutorExecutor

Figure 4. Deployment scenario for Aneka

2.2. Anatomy of the Aneka Container

The Container represents the basic deployment unit of Aneka based Clouds. The

network of containers defining the middleware of Aneka constitutes the runtime

environment hosting the execution of distributed applications. Aneka strongly relies on

a Service Oriented Architecture [7] and the Container is a lightweight component

providing basic node management features. All the other operations that are required

by the middleware are implemented as services.

Figure 3 illustrates the stack of services that can be found in a common

deployment of the Container. It is possible to identify four major groups of services:

• Fabric Services

• Foundation Services

• Execution Services

• Transversal Services

The collective execution of all these services actually creates the required runtime

environment for executing applications. Fabric services directly interface with the

hosting resource and are responsible for low level operations, foundation services

constitute the core of the runtime environment, and execution services manage the

execution of applications. A specific class – Transversal Services – operates at all

levels and provides support for security and persistence.

Additional and specific services can be seamlessly integrated into the Container by

simply updating a configuration file. This operation can be performed either by means

of an automated procedure or manually. The ability of hosting on demand new services

and unloading existing services makes the Aneka Container an extremely configurable

component able to address and elastically react to the changing needs of the

applications by scaling up or down the set of services installed in the system. Moreover,

by relying on services and message passing for implementing all the features of the

system, the Aneka Container can easily evolve and integrate new features with

minimum setup costs.

2.3. Fabric Services

Fabric services define the lowest level of the software stack representing the Aneka

Container. They provide access to the resource provisioning subsystem and to the

hardware of the hosting machine. Resource provisioning services are in charge of

dynamically providing new nodes on demand by relying on virtualization technologies,

while hardware profile services provide a platform independent interface for collecting

performance information and querying the properties of the host operating system and

hardware.

Hardware profiling services provide a platform independent interface for accessing

the operating system and the underlying hardware. These services rely on the Platform

Abstraction Layer (PAL) that allows the Container to be completely independent from

the hosting machine and the operating system and the whole framework to be portable

over different platforms. In particular the following information is collected for all the

supported runtimes and platforms:

• Static and dynamic CPU information (CPUs, operating frequency, CPU

usage);

• Static and dynamic memory information (size, available, and used);

• Static and dynamic storage information (size, available, and used);

This information is collected for each of the nodes belonging to the Aneka Cloud

and made available to the other services installed in the systems. For example,

execution services and in particular scheduling components, can take advantage of

dynamic performance information to devise a more efficient scheduling for

applications.

Dynamic resource provisioning allows the Aneka Cloud to elastically scale up and

down according to the requirements of applications. These services are in charge of

dynamically acquiring and integrating new nodes into the Aneka Cloud in order to

satisfy the computation needs of one or more applications. Dynamic resource

provisioning addresses two different scenarios: physical resource provisioning and

virtual resource provisioning. With physical resource provisioning one Aneka Cloud

simply “borrows” some nodes from other Aneka Clouds by specifying a service level

agreement and the specific characteristics required for these nodes in terms of services

and hardware. With virtual resource provisioning the nodes are dynamically acquired

by interacting with existing virtual machine managers or IaaS implementations such as

Amazon EC2 or Amazon S3. In this case, the Aneka Cloud requests as many virtual

machines as needed to deploy an Aneka Container together with the required services.

The way in which new resources are integrated into the Cloud characterizes the type of

Cloud managed by Aneka. If resources are collected from a private internal network

either via a hypervisor or another Aneka Cloud, the resulting system is still a private

Cloud. If resources are obtained by relying on a publicly available Aneka Cloud, the

entire system may be a public or hybrid Cloud. We have a public Cloud if the initial

system was a public Cloud, a hybrid Cloud otherwise.

Resource provisioning and hardware profiling are fundamental in a Cloud

environment where resources are obtained on demand and subject to specific service

level agreements. In particular resource reservation strongly relies on the information

obtained by these services. Aneka allows reserving nodes for a specific application. It

is possible to specify the set of characteristics required for each of these nodes, and the

number of nodes. The reservation service will then, if possible, reserve within the

Aneka Cloud those nodes that fulfill the requirements requested by the application. To

accomplish this it is necessary to access to the static and dynamic performance

information of the node. Advanced strategies can then rely on dynamic resource

provisioning in order to make up for the lack of resources.

2.4. Foundation Services

Together with the fabric services the foundation services represent the core of the

Aneka middleware on top of which Container customization takes place. Foundation

services constitute the pillars of the Aneka middleware and are mostly concerned with

providing runtime support for execution services and applications. The core of Aneka

addresses different issues:

• Directory and Membership;

• Resource reservation;

• Storage management;

• Licensing, accounting, and pricing;

These services can be directly consumed by users, applications, or execution

services. For example, users or applications can reserve nodes for execution, while

execution services can query the Membership Catalogue in order to discover whether

the required services are available in the Cloud to support the execution of a specific

application. Licensing, accounting, and pricing are services that will be more of interest

for single users or administrators.

2.4.1. Directory and Membership

Directory and Membership Services are responsible for setting up and maintaining the

information about the nodes and the services constituting the Aneka Cloud. These

services include Membership Catalogue, Heartbeat Service, and Discovery Service.

The Membership Catalogue acts as global directory maintaining the list of available

services and their location in the Aneka Cloud. The information in the Membership

Catalogue is dynamically updated by the Heartbeat Services installed in each node

belonging to the Cloud. The Heartbeat services collect the statistic information about

the hosting node from the Hardware profiling services and update the Membership

Catalogue periodically. The Aneka middleware exposes some autonomic properties [8]

being able not only to react to failures but also to auto-configure itself when

connections between nodes are broken and nodes are not reachable. This ability is

mostly provided by the Discovery Service, which is in charge of discovering the

available Aneka nodes on the Cloud and providing the required information for adding

a node to the Membership Catalogue. The collective execution of these three services

allows the automatic setting up of an Aneka Cloud without any static configuration

information, but simply an available network connection.

2.4.2. Resource Reservation

Resource reservation is a fundamental feature in any distributed middleware aiming to

support application execution with a specific quality of service (QoS). Resource

reservation identifies the ability of reserving a set of nodes and using them for

executing a specific application. Without such capability, it is impossible to guarantee

many of the most important QoS parameters, since it is not possible to control the

execution of applications. Aneka provides an advanced reservation infrastructure that

works across almost all the supported programming models, that allows users to

reserve a collection of nodes for a given time frame, and assign this reservation to a

specific application. The infrastructure guarantees that at the time specified within the

reservation the selected resources are made available for executing the application.

In order to support the ability of reserving compute resources two different

components have been implemented: Reservation Service and Allocation Manager.

The Reservation Service is a central service that keeps track of the allocation map of all

the nodes constituting the Aneka Cloud, while the Allocation Manager provides a view

of the allocation map of the local Container. The Reservation Service and the

Allocation Manager Services deployed in every Container provide the infrastructure

that enables to reservation of compute resources, and guarantee the desired QoS.

During application execution a collection of jobs are submitted to the Aneka Cloud and

each of these jobs are actually moved and executed in the runtime environment set up

by the Container on a specific resource. Reserved nodes only accept jobs that belong to

the reservation request that is currently active. In case there is no active reservation on

the node any job that matches the security requirements set by Aneka Cloud is

executed. The Allocation Manager is responsible for keeping track of the reserved time

frames in the local node and of checking – before the execution of jobs start – whether

they are admissible or not. The Reservation Service is indeed responsible for providing

a global view to the execution services and users of the status of the system, and, by

interacting with the cloud schedulers, for implementing a reservation aware application

execution.

In a cloud environment, the ability of reserving resources for application execution

is fundamental, not only because it offers a ways for guaranteeing the desired QoS, but

also because it provides an infrastructure to implement pricing mechanisms. Aneka

provides some advanced features integrated within the Reservation Service that allow a

flexible pricing scheme for applications. In particular it implements the alternate offers

protocol [9], which allows the infrastructure to provide the user with a counter offer in

case the QoS parameters of the initial request cannot be met by the system. This

feature, together with the ability of dynamically provisioning additional nodes for

computation, makes the reservation infrastructure a key and innovative characteristic of

Aneka.

2.4.3. Storage management

The availability of disk space, or more generally storage, is a fundamental feature for

any distributed system implementation. Applications normally require files to perform

their tasks, whether they are data files, configuration files, or simply executable files. In

a distributed context these files have to be moved – or at least made reachable from –

where the execution takes place. These tasks are normally carried out by the

infrastructure representing the execution middleware and in a cloud environment these

operations become even more challenging because of the dynamic nature of the system.

In order to address this issue Aneka implements a Storage Service. This service is

responsible for providing persistent, robust, file based storage for applications. It

constitutes a staging facility for all the nodes belonging to the Aneka Cloud and also

performs data transfers among Aneka nodes, the client machine, and remote servers. In

a cloud environment the user requirements can be different and dynamically change

during the lifetime of the applications. Such requirements can also affect storage

management in terms of their location and of the specific media used to transfer

information. Aneka provides an infrastructure able to support a different set of storage

facilities. The current release of Aneka provides a storage implementation based on the

File Transfer Protocol (FTP) service. Additional storage facilities can be integrated into

the system by providing a specific implementation of a data channel. A data channel

represents the interface used within Aneka to access a specific storage facility. Each

data channel implementation consists of a server component, that manages the storage

space made available with the channel, and a client component, which is used to

remotely access that space. Aneka can transparently plug any storage facility for which

a data channel implementation has been provided and transparently use it. The use of

data channels is transparent to users too, who simply specify the location of the files

needed by their application and the protocol through which they are made accessible.

Aneka will automatically the system with the components needed to import the

required files into the Cloud.

The architecture devised to address storage needs in Aneka provides a great

flexibility and extensibility. Not only different storage facilities can be integrated but

they also can be composed together in order to move data across different mediums and

protocols. This allows Aneka Clouds a great level of interoperability from the

perspective of data.

2.4.4. Licensing, Accounting, and Pricing

Aneka provides an infrastructure that allows setting up public and private clouds. In a

cloud environment, especially in the case of public clouds, it is important to implement

mechanisms for controlling resources and pricing their usage in order to charge users.

Licensing, accounting, and pricing are the tasks that collectively implement a pricing

mechanism for applications in Aneka.

The Licensing Service provides the very basic resource controlling feature that

protects the system from misuse. It restricts the number of resources that can be used

for a certain deployment. Every container that wants to join the Aneka Cloud is subject

to verification against the license installed in the system and its membership is rejected

if restrictions apply. These restrictions can involve the number of maximum nodes

allowed in the Aneka Cloud, or a specific set of services hosted by the container. This

service does not provide any direct benefit for users but prevent the system from

malicious system administrators that want to overprovision the Aneka Cloud.

The Accounting and Pricing Services, available in the next release of Aneka, are

more directly related with billing the user for using the Cloud. In particular the

Accounting Service keeps track of applications running, their reservations, and of the

users they belong to, while the Pricing Service is in charge of providing flexible pricing

strategies that benefit both the users of the Cloud and the service providers. These two

components become important in case of dynamic resource provisioning of virtual

resources: IaaS implementations such as Amazon EC2 charge the usage of the virtual

machines per hour. The way in which the cost of this service is reflected into the user

bill is the responsibility of the Pricing Service.

2.5. Execution Services

Execution services identify the set of services that are directly involved in the

execution of distributed applications in the Aneka Cloud. The application model

enforced by Aneka represents a distributed application as a collection of jobs. For any

specific programming model implemented in Aneka at least two components are

required providing execution support: Scheduling Service and Execution Service. The

Scheduling Service coordinates the execution of applications in the Aneka Cloud and is

responsible for dispatching the collection of jobs generated by applications to the

compute nodes. The Execution Service constitutes the runtime environment in which

jobs are executed. More precisely, it is in charge of retrieving all the files required for

execution, monitoring the execution of the job, and collecting the results. The number

and the type of services required to deploy a programming model varies according to

the specific nature of the programming model. Generally these two services are the

only ones required in most of the cases. The Task Model, the Thread Model, and the

MapReduce Model are implemented according to this scheme.

Execution Services can then rely on other existing services, available with a

common deployment of the Aneka Cloud, to provide a better support for application

execution. For example they can integrate with the existing Reservation Service and

Storage service to support quality of service for application execution and support for

data transfer. The integration with these services is completely dynamic and no static

binding is required.

A common deployment scenario of an Aneka Cloud concentrates the scheduling

services of all the programming models in one or few nodes, while configuring all the

other nodes with execution services, thus creating a master-slave topology. Whereas

this deployment is quite common, the service oriented architecture of Aneka does not

enforce it and more balanced and dynamic topologies can be devised by system

administrators. For example, environments characterized by thousands of machines can

more easily scale and reconfigure by means of hierarchical topologies and brokering

infrastructures. Hierarchical topologies can help in distributing the overload of

managing huge number of resources: in this setting, the scheduling service managing a

network of nodes where execution services are deployed. These scheduling services

can be then seen as multi-core from other meta schedulers which coordinate the load of

the system at a higher level. Such structure can be enhanced and made more dynamic

by integrating into the Aneka Container brokering services that, by means of dynamic

SLAs extend and enrich the set of features that are offered to the users of the Cloud.

Other solutions [10], based on a peer to peer model, can also be implemented.

2.6. Transversal Services

Aneka provides additional services that affect all the layers of the software stack

implemented in the Container. For this reason they are called transversal services, such

as the persistence layer and the security infrastructure.

2.6.1. Persistence

The persistence layer provides a complete solution for recording the status of the Cloud

and for restoring it after a system crash or a partial failure. The persistence layer keeps

track of the sensitive information for the distributed system such as: all the applications

running in the Cloud and their status; the topology information of the Cloud and the

current execution status; the status of the storage. This information is constantly

updated and saved to the persistence storage. The persistence layer is constituted by a

collection of persistence stores that are separately configured in order to provide the

best required quality of service.

The current release of Aneka provides two different implementations for these

components that can be used to configure and tune the performance of the Cloud:

• In memory persistence: this persistence model provides a volatile store that is

fast and performing but not reliable. In case of system crash or partial failure

the execution of the applications can be irreversibly compromised. While this

solution is optimal for a quick setup of the Aneka Cloud and for testing

purposes, it is not suggested for production deployments.

• Relational Database: this solution relies on the ADO.NET framework for

providing a persistent store, which is generally represented by a database

management system. In this case the information of the state of the Cloud and

its components are saved inside database tables and retrieved when necessary.

This solution provides reliability against failures and prevents from the loss of

data but requires an existing installation of the supported RDBMS. The

current implementation of Aneka supports two different backend for this kind

of solution: MySQL 5.1 and SQL Server 2005 v9.0 onward.

These are just two ready to use implementations of the persistence layer. Third

parties can provide a specific implementation and seamlessly integrate it into the

systems with minimum effort. The possibilities for extending the system are many: it is

possible to implement from scratch a new persistence layer or simply provide the SQL

scripts that create tables and stored procedures for the database persistence layer.

2.6.2. Security

The security layer provides access to the security infrastructure of Aneka. This layer

separates authentication – that means identifying who users are – from authorization –

that means what users are allowed to do. The implementation of these two functions

relies on providers, which abstract the two operations within the framework, and user

credentials, which contain the information required by the providers to authenticate and

authorize users. Before any operation on behalf of the user is performed on the Aneka

Cloud its credentials are verified against the authentication and authorization providers,

which can reject or authorize the operation.

Specific implementations of these two providers can be seamlessly integrated into

the infrastructure simply by editing the configuration of the Container. In this way it is

possible to run Aneka on different security infrastructure according to specific

requirements of the Cloud. Specific deployments can require the use of existing

security infrastructures. In this case, the specific implementation of security providers

will rely on the existing security model and user credentials will contain the required

information for representing the user within the underlying security system. This has

been the approach for supporting the Window Authentication in Aneka. In the case of

Windows based deployments Aneka can rely on the Windows integrated security and

provide access to the system for the specific Windows users. Alternatively, it is

possible to set up a Cloud with no security at all, simply by using the Anonymous

security providers, which do not perform any security check for user applications.

Third parties can set up their own security providers by implementing the interfaces

defined in the Aneka security APIs.

2.7. Portability and Interoperability

Aneka is a Platform as a Service implementation of the Cloud Computing model and

necessarily relies on the existing virtual and physical infrastructure for providing its

services. More specifically, being developed on top of the Common Language

Infrastructure, it requires an implementation of the ECMA 335 specification such as the

.NET framework or Mono.

Since the Cloud is a dynamic environment aggregating heterogeneous computing

resources, the choice of developing the entire framework on top of a virtual runtime

environment, provides some interesting advantages. For example it is possible to easily

support multiple platform and operating systems with reduced or no conversion costs at

all. Developing for a virtual execution environment such as Java or the Common

Language Infrastructure, does not necessarily mean to devise software that will

naturally run on any supported platform. In the case of Aneka this aspect becomes even

more challenging since some of the components of the framework directly interact with

the hardware of the machine (physical or virtual) hosting the Aneka Container.

In order to address this issue a specific layer that encapsulates all the platform

dependencies on the hosting platform behind a common interface has been integrated

into Aneka. This layer is called Platform Abstraction Layer (PAL) and provides a

unified interface for accessing all the specific properties of the Operating System and

the underlying hardware that are of interest for Aneka. The PAL is a fundamental

component of the system and constitutes the lowest layer of the software stack

implemented in the Aneka Container. It exposes the following features:

• Uniform and platform independent interface for profiling the hosting platform;

• Uniform access to extended and additional properties of the hosting platform;

• Uniform and platform independent access to remote nodes;

• Uniform and platform independent management interfaces;

The dynamic and heterogeneous nature of computing clouds necessarily requires a

high degree of flexibility in aggregating new resources. In the case of Aneka, adding

one resource to the Cloud implies obtaining access to a physical or a virtual machine

and deploying into it an instance of the Aneka Container. These operations are

performed by the PAL, which not only abstracts the process for installing and

deploying a new Container but also automatically configures it according to the hosting

platform. At startup the container probes the system, detects the required

implementation of the PAL, and loads it in memory. The configuration of the Container

is performed in a completely transparent manner and makes its deployment on virtual

and physical machines really straightforward.

The current release of Aneka provides a complete implementation of the PAL for

Windows based systems on top of the .NET framework and for the Linux platform on

top of Mono. A partial but working implementation of the PAL for Mac OS X based

systems on top of Mono is also provided.

3. Application Development

Aneka is a platform for developing applications that leverage Clouds for their

execution. It then provides a runtime infrastructure for creating public and private

Clouds and a set of abstractions and APIs through which developers can design and

implement their applications. More specifically Aneka provides developers with a set

of APIs for representing the Cloud application and controlling their execution, and a set

of Programming Models that are used to define the logic of the distributed application

itself. These components are part of the Aneka Software Development Kit.

3.1. The Aneka SDK

The Aneka Software Development Kit contains the base class libraries that allow

developers to program applications for Aneka Clouds. Beside a collection of tutorials

that thoroughly explain how to develop applications, the SDK contains a collection of

class libraries constituting the Aneka Application Model, and their specific

implementations for the supported programming models.

The Aneka Application Model defines the properties and the requirements for

distributed applications that are hosted in Aneka Clouds. Differently from other

middleware implementations Aneka does not support single task execution, but any

unit of user code is executed within the context of a distributed application. An

application in Aneka is constituted by a collection of execution units whose nature

depends on the specific programming model used. An application is the unit of

deployment in Aneka and configuration and security operates at application level.

Execution units constitute the logic of the applications. The way in which units are

scheduled and executed is specific to the programming model they belong to. By using

this generic model, the framework provides a set of services that work across all

programming model supported: storage, persistence, file management, monitoring,

accounting, and security.

+ SchedulerUri: Uri
+ UserCredential: ICredential
+ LogMessages: bool
+ PollingTime: int
+ ResubmitMode: ResubmitMode
+ Workspace: string
+ ShareOutputDirectory: bool
+ ….

Configuration

+ ApplicationManager: IApplicationManager
+ Finished: bool
+ Home: string
+ Id: string
+ DisplayName: string
+ CreatedDateTime: DateTime
+ State: ApplicationState
+ ApplicationFinished: event

ApplicationBase<M:IApplicationManager>

+ InvokeAndWait()
+ SubmitExecution()
+ StopExecution()
+ AddSharedFile(file: string)
+ RemoveSharedFile(file: string)

Application<W:WorkUnit, M:IApplicationManager>

+ AddWorkUnit(w: WorkUnit)
+ DeleteWorkUnir(w: WorkUnit)
+ StopWorkUnir(w: WorkUnit)
+ ExecuteWorkUnit(w: WorkUnit)

+ workunits: List<WorkUnit>

+ Configuration: Configuration
+ ApplicationData: ApplicationData
+ Finished: event
+ Error: event

IApplicationManager

+ Initialize()
+ Bind(id: string)
+ SubmitApplication()
+ UpdateApplication (ApplicationState)
+ StopApplication()
+ ProvideDynamicDependencies(…)

+ Id: string
+ ApplicationId: string
+ Name: string
+ ReservationId: string
+ NodeId: string
+ Exception: Exception
+ State: WorkUnitState
+ UserCredential: ICredential
+ InputFiles: IList<FileData>
+ OutputFiles: IList<FileData>
+ SubmissionTime: DateTime
+ ScheduleTime: DateTime
+ CompletionTime: DateTime
+ ResubmitMode: ResubmitMode

WorkUnit

+ AddFile(file: FileData)
+ RemoveFile(file: FileData)

+ Path: string
+ OwnerId: string
+ Type: FileDataType
+ StorageServer: string
+ IsLocal: bool
+ IsTransient: bool
+ NewPath: string

FileData

1…n

1

1…n

1…n

1

+ SchedulerUri: Uri
+ UserCredential: ICredential
+ LogMessages: bool
+ PollingTime: int
+ ResubmitMode: ResubmitMode
+ Workspace: string
+ ShareOutputDirectory: bool
+ ….

Configuration

+ SchedulerUri: Uri
+ UserCredential: ICredential
+ LogMessages: bool
+ PollingTime: int
+ ResubmitMode: ResubmitMode
+ Workspace: string
+ ShareOutputDirectory: bool
+ ….

Configuration

+ ApplicationManager: IApplicationManager
+ Finished: bool
+ Home: string
+ Id: string
+ DisplayName: string
+ CreatedDateTime: DateTime
+ State: ApplicationState
+ ApplicationFinished: event

ApplicationBase<M:IApplicationManager>

+ InvokeAndWait()
+ SubmitExecution()
+ StopExecution()
+ AddSharedFile(file: string)
+ RemoveSharedFile(file: string)

+ ApplicationManager: IApplicationManager
+ Finished: bool
+ Home: string
+ Id: string
+ DisplayName: string
+ CreatedDateTime: DateTime
+ State: ApplicationState
+ ApplicationFinished: event

ApplicationBase<M:IApplicationManager>

+ InvokeAndWait()
+ SubmitExecution()
+ StopExecution()
+ AddSharedFile(file: string)
+ RemoveSharedFile(file: string)

Application<W:WorkUnit, M:IApplicationManager>

+ AddWorkUnit(w: WorkUnit)
+ DeleteWorkUnir(w: WorkUnit)
+ StopWorkUnir(w: WorkUnit)
+ ExecuteWorkUnit(w: WorkUnit)

+ workunits: List<WorkUnit>

Application<W:WorkUnit, M:IApplicationManager>

+ AddWorkUnit(w: WorkUnit)
+ DeleteWorkUnir(w: WorkUnit)
+ StopWorkUnir(w: WorkUnit)
+ ExecuteWorkUnit(w: WorkUnit)

+ workunits: List<WorkUnit>

+ Configuration: Configuration
+ ApplicationData: ApplicationData
+ Finished: event
+ Error: event

IApplicationManager

+ Initialize()
+ Bind(id: string)
+ SubmitApplication()
+ UpdateApplication (ApplicationState)
+ StopApplication()
+ ProvideDynamicDependencies(…)

+ Configuration: Configuration
+ ApplicationData: ApplicationData
+ Finished: event
+ Error: event

IApplicationManager

+ Initialize()
+ Bind(id: string)
+ SubmitApplication()
+ UpdateApplication (ApplicationState)
+ StopApplication()
+ ProvideDynamicDependencies(…)

+ Id: string
+ ApplicationId: string
+ Name: string
+ ReservationId: string
+ NodeId: string
+ Exception: Exception
+ State: WorkUnitState
+ UserCredential: ICredential
+ InputFiles: IList<FileData>
+ OutputFiles: IList<FileData>
+ SubmissionTime: DateTime
+ ScheduleTime: DateTime
+ CompletionTime: DateTime
+ ResubmitMode: ResubmitMode

WorkUnit

+ AddFile(file: FileData)
+ RemoveFile(file: FileData)

+ Path: string
+ OwnerId: string
+ Type: FileDataType
+ StorageServer: string
+ IsLocal: bool
+ IsTransient: bool
+ NewPath: string

FileData

+ Path: string
+ OwnerId: string
+ Type: FileDataType
+ StorageServer: string
+ IsLocal: bool
+ IsTransient: bool
+ NewPath: string

FileData

1…n

1

1…n

1…n

1

Figure 5. Aneka application model.

Figure 5 illustrates the key elements of the Aneka Application Model. As

previously introduced an application is a collection of work units that are executed by

the middleware. While the Application class contains the common operations for all the

supported programming models, its template specialization customizes its behavior for

a specific model. In particular each of the programming model implementations has to

specify two types: the specific type of work unit and the specific type of application

manager. The work unit represents the basic unit of execution of the distributed

application, while the application manager is an internal component that is used to

submit the work units to the middleware. The SDK provides base class

implementations for these two types and developers can easily extend them and taking

advantage of the services built for them.

The Software Development Kit also provides facilities for implementing the

components required by the middleware for executing a programming model. In

particular, it provides some base classes that can be inherited and extended for

implementing schedulers and executors components. Developers that are interested in

developing a new programming model can take as a reference the existing

programming models and implement new models as a variation of them or they can

completely from scratch by using the base classes. Moreover, the Aneka SDK also

exposes APIs for implementing custom services that can be seamlessly plugged into

the Aneka Container by editing its configuration file.

3.2. Programming Models

A programming model represents a way for expressing a distributed application within

Aneka. It defines the abstractions used by the user to model their application and the

execution logic of these applications as a whole in the Aneka Cloud. Every application

that is executed in the Aneka Cloud is expressed in terms of a specific programming

model. The current release of Aneka includes three different programming models

ready to use for developing applications. These are: Task Programming Model, Thread

Programming Model, and MapReduce Programming Model.

3.2.1. Task Programming Model

The Task Programming Model provides developers with the ability of expressing bag

of tasks applications. By using the Task Model the user can create a distributed

application and submit a collection of tasks to Aneka. The submission can be either

static or dynamic. The scheduling and execution services will manage the execution of

these tasks according to the available resources in the Aneka network.

Developers can use predefined tasks that cover the basic functionalities available

from the OS shell or define new tasks by programming their logic. With tasks being

independent from each other, this programming model does not enforce any execution

order or sequencing but these operations have to be completely managed by the

developer on the client application if needed.

The task programming model is the most straightforward programming model

available with Aneka and can be used as a base on top of which other models can be

implemented. For example the parameter sweeping APIs used by the Design Explorer

rely on the Task Model APIs to create and submit the tasks that are generated for each

of the combinations of parameters that need to be explored. More complex models such

as workflows can take advantage of this simple and thin implementation for

distributing the execution of tasks.

3.2.2. Thread Programming Model

The Thread Programming Model allows quickly porting multi-threaded applications

into a distributed environment. Developers familiar with threading API exposed by

the .NET framework or Java can easily take advantage of the set of compute resources

available with Aneka in order to improve the performance of their applications.

The Thread Model provides as fundamental component for building distributed

applications the concept of distributed thread. A distributed thread exposes the same

APIs of a thread in the .NET framework but is executed remotely. Developers familiar

with the multi-threaded applications can create, start, join, and stop threads in the same

way in which these operations are performed on local threads. Aneka will take care of

distributing and coordinating the execution of these threads.

Compared to the Task Model the Thread Model provides a more complex,

powerful, and lower level API. While the common usage for the Task Model is “submit

and forget” – that means that users submit tasks and forget of their existence until they

terminate – in the case of the Thread Model the developer is supposed to have a finer

control on the single threads. This model is definitely the best option when a pre-

existing multi-threaded application needs to be ported to a distributed environment for

improving its performance. In this case minimal changes to the existing code have to be

made to run such application by using the Thread Model.

3.2.3. MapReduce Programming Model

The MapReduce Programming Model [11] is an implementation of MapReduce [12],

as proposed by Google, for .NET and integrated with Aneka. MapReduce is originated

by two functions from the functional language: map and reduce. The map function

processes a key/value pair to generate a set of intermediate key/value pairs, and the

reduce function merges all intermediate values associated with the same intermediate

key. This model is particular useful for data intensive applications.

The MapReduce Programming Model provides a set of client APIs that allow

developers to specify their map and reduce functions, to locate the input data, and

whether to collect the results if required. In order to execute a MapReduce application

on Aneka, developers need to create a MapReduce application, configure the map and

reduce components, and – as happens for any other programming model – submit the

execution to Aneka.

MapReduce is good example for the flexibility of the architecture of Aneka in

supporting different programming abstractions. With MapReduce the tasks are not

created by the user, as with the other supported programming models, but by the

MapReduce runtime itself. This peculiarity of the model is hidden within the internal

implementation of MapReduce, and it is transparently supported by the infrastructure.

3.3. Extending Aneka

Aneka has been designed to support multiple programming models and its service

oriented architecture allows for the integration of additional services. Adding a new

programming model then becomes then as easy as integrating a set of services in the

Aneka middleware. The support for a specific programming model in Aneka requires

the implementation of the following components:

• Abstractions for application composition;

• Client components;

• Scheduling and execution components;

Abstractions define the user view of the programming model, while the other

components are internally used by the middleware to support the execution. Aneka

provides a default implementation of all these components that can be further

specialized to address the specific needs of the programming model. The

implementation effort required to integrate a new programming model within Aneka

strictly depends on the features of the programming model itself. In order to simplify

this process Aneka provides a set of services that can be reused by any model. These

are application store, file transfer management, resource reservation, and

authentication.

Another way of implementing a new programming model is extending one of the

pre-existing models and simply adding the additional features that are required. This

could be the case of a workflow implementation on top the Task Model.

3.4. Parameter Sweeping Based Applications

Aneka provides support for directly running existing application on the Cloud without

the need of changing their execution logic or behavior. This opportunity can be

exploited when the behavior of the application is controlled by a set of parameters

representing the application input data. In this case, the most common scenario is

characterized by applications that have to be run multiple times with a different set of

values for these parameters. Generally, all the possible combinations of parameter

values have to be explored. Aneka provides a set of APIs and tools through which it is

possible to leverage multiple executions on the Aneka Cloud. These are respectively

the Parameter Sweeping APIs and the Design Explorer.

The Parameter Sweeping APIs are built on top of the Task Programming Model

and provide support for generating a collection of tasks that will cover all possible

combinations of parameter values that are contained in a reference task. The Aneka

SDK includes some ready to use task classes that provide the basic operations for

composing the task template: execute an application, copy, rename, and delete a file. It

also provides an interface that allows developers to create task classes supporting

parameter sweeping.

The Design Explorer is a visual environment that helps users to quickly create

parameter sweeping applications and run it in few steps. More precisely, the Design

Explorer provides a wizard allowing users to:

• Identify the executable required to run the application;

• Define the parameters that control application execution and their domains;

• Provide the required input files for running the application;

• Define all the output files that will be produced by the application and made

available to the user;

• Define the sequence of commands that compose the task template that will be

run remotely;

Once the template is complete, the Design Explorer allows the user to directly run

it on Aneka Clouds by using the parameter sweeping APIs. Different visualizations are

provided and statistics collected by the environment in order to monitor the progress of

the application.

4. Cloud Maintenance and Monitoring

Aneka provides a platform on top of which it is possible to develop applications for the

Cloud. The Software Development Kit addresses all the needs from a development

point of view but it is just a part of the feature set required by a Cloud Computing

platform. Essential in this case is the support for monitoring, managing, maintaining,

and setting up computing clouds. These operations are exposed by the management

API and the Platform Abstraction Layer on top of which all the management tools and

interfaces have been designed. Of a particular interest are the Management Studio and

the web management interfaces.

The Management Studio is an important tool for system administrators. It is a

comprehensive environment that allows them to manage every aspect of Aneka Clouds

from an easy to use graphical user interface. Since Clouds are constituted of hundreds

and even thousands of machines both physical and virtual, it is not possible to reach

and setup each single machine by hand. Having a tool that allows remote and global

management is then a basic requirement. Briefly, the set of operations that can be

performed through the Management Studio are the following:

• Quick setup of computing clouds;

• Remote installation and configuration of nodes;

• Remote control of containers;

• System load monitoring and tuning.

Besides the remote control features, which dramatically simplify the management

of the Cloud, it is important to notice the support for viewing the aggregate dynamic

statistics of Aneka Clouds. This helps administrators to tune the overall performance of

the Cloud. It is also possible to probe each single node and collect the single

performance statistics: the CPU and memory load information is collected from each

container and by inspecting the container configuration it is possible to identify

bottlenecks in the Cloud. As the entire framework, the Management Studio has been

designed to be extensible: it is possible to add new features and new services by

implementing management plugins that are loaded into the environment and get access

to the Cloud.

The Management Studio is not the only tool available for controlling Aneka

Clouds. The framework also provides a set of web interfaces that provide a

programmatic management of Aneka. Currently, only a restricted set of features –

resource reservation and negotiation, task submission, and monitoring – is available

through web services, while the others are still under development and testing.

5. Case Studies

Aneka has been used either in the academic field or in the industry as a middleware for

Cloud Computing. In this section we will briefly present some case studies that span

from the scientific research to the manufacturing and gaming industry. In all of these

cases Aneka has successfully contributed to solve the scalability issues faced and to

increase the performance of the applications that leverage the Cloud for their

computation needs.

5.1. Scientific Research

Aneka has been used to provide support for distributed execution of evolutionary

optimizers and learning classifiers. In both of the cases a significant speed up has been

obtained compared to the execution on a single local machine. In both of the cases an

existing legacy application has been packaged to run in a distributed environment with

the aid of a small software component coordinating the distributed execution.

5.1.1. Distributed Evolutionary Optimization: EMO

EMO (Evolutionary Multi-objective Optimizer) [13] is an evolutionary optimizer based

on genetic algorithms. More precisely, it is a variation of the popular NSGA-II

algorithm [14] that uses the information about how individuals are connected to each

other – that represents the topology of the population – to drive the evolutionary

process. A distributed version of EMO has been implemented on top of Aneka to

reduce the execution time of the algorithm and improve the quality of the solutions.

Genetic algorithms [15] are iterative heuristics exploiting the concepts of

individual, population, and genes, to define evolving optimizers. These tune their

parameters by using mutation, crossover, and mating between individuals, which

represent specific points in the solution space. Genetic algorithms have a brute force

approach and generally require a large number of iterations to obtain acceptable results.

These requirements become even more important in the case of EMO: in order to take

advantage of the topology information a large number of individuals and iterations of

the algorithms are required. The search for good solutions could require hours, and in

the worst case up to one day, even for benchmark problems.

In order to address this issue a distributed implementation of EMO on top of

Aneka has been developed [16]. The distributed version of EMO adopts a “divide and

conquer” strategy and partitions the original population of individuals into smaller

populations which are used to run the EMO algorithm in parallel. At the end of each

parallel evaluation the results are merged and the next iteration starts. This process is

repeated for a predefined number of times.

 Speed Up
0.11
10100

100 300 500IndividualsSpeed up (log10)
ZDT1ZDT2ZDT3ZDT4ZDT5ZDT6DLTZ1DLTZ2DLTZ3DLTZ4DLTZ5DLTZ6

Figure 6. Speedup of EMO on Aneka.

Figure 6 and Figure 7 shows the results of running the EMO optimizer on Aneka

Clouds for a set of well known benchmark problems ([17] and [18]). The optimization

functions used for benchmarking the distributed execution are: ZDT1 to ZDT6, and

DLTZ1 to DLTZ6. For each of the optimization functions tested, the graphs

respectively show the speedup and the overhead generated while running the optimizer

on the Aneka Cloud. It is interesting to notice that for a small number of individual

there is no advantage in leveraging the execution on Aneka Clouds. As previously

introduced, one of the peculiarities of EMO is the use of topology information for

driving the evolutionary process. This information becomes useful when dealing with

large number of individuals, at least 1000. As shown by the graphs, the speed up is

significant already for 500 individuals, while for 1000 individuals the distribution

overhead is completely negligible for all the tested problems.

 Distribution Overhead
00.20.40.6

0.81
100 300 500 1000Individuals

ZDT1ZDT2ZDT3ZDT4ZDT5ZDT6DLTZ1DLTZ2DLTZ3DLTZ4DLTZ5DLTZ6

Figure 7. Distribution overhead of EMO on Aneka.

5.1.2. Distributed Learning Classifiers for Bioinformatics: XCS

Classifier systems are software systems implementing a function that maps a given

attribute set x to a class y. In most of the cases there is no analytic expression for the

mapping function. Hence, classifiers use heuristics methods to mimic expected

behavior of the mapping function. In particular Learning Classifier Systems (LCS) [19]

learn from the input data the structure of the mapping function and adopts genetic

algorithms to evolve the set of rules that provides the best performance of the classifier.

Several classifiers are derived from LCS. Among these, the eXtended Classifier System

(XCS) [20] is popular for the accuracy of the classifiers obtained.

Classifier systems are compute intensive algorithms whose execution time strongly

depends on the number of attributes used to classify the samples of a given dataset.

Large datasets or simply small datasets with a large number of attributes cause long

execution times. In the field of bioinformatics, some specific large datasets containing

huge amount of information are used as databases for identifying diseases or finding

interesting patterns. Within this context, learning classifiers can be applied to learn

from existing classified datasets in order to evolve into classifiers that can support the

classification of unseen datasets. The drawback of this approach is that the learning

process can last days and does not produce good classifiers. In this scenario the need of

having a fast learning process can help bioinformatics researchers to properly tune their

classifiers in a reasonable time frame.

In order to reduce the time spent in the learning process of XCS classifiers a

distributed implementation based on Aneka has been provided. In particular, a

distributed version of XCS has been tuned to support the diagnosis of breast cancer

disease by learning from Gene Expression datasets. In order to distribute the learning

process the initial dataset has been partitioned into sections that have been used to

evolve into different classifiers in parallel for a predefined number of iterations. At the

end of each of the iterations the results obtained from each classifier are merged

according to different strategies to propagate the good results. The preliminary results

have shown that the use of Aneka has contributed to reduce the execution time of the

learning process to the twenty percent of the execution on a single machine.

5.2. Manufacturing and Gaming Industry

Besides the research field, Aneka has been used to support real life applications and to

address scalability issues in the manufacturing and gaming industry. In particular, the

load generated by the rendering of train models and the online processing of

multiplayer game logs have been leveraged on a private Aneka Cloud.

5.2.1. Distributed Train Model Rendering: GoFront Group

GoFront Group is China’s premier and largest nationwide research and manufacturing

group of rail electric traction equipment. Its products include high speed electric

locomotives, metro cars, urban transportation vehicles, and motor train sets. The IT

department of the group is responsible for providing the design and prototype of the

products including the high speed electric locomotives, metro cars, urban transportation

vehicles, and motor trains. The raw designs of the prototypes are required to be

rendered to high quality 3D images using the Autodesk rendering software called Maya.

By examining the 3D images, engineers are able to identify any potential problems

from the original design and make the appropriate changes.

The creation of a design suitable for mass production can take many months or

even years. The rendering of three dimensional models is one of the phases that absorb

a significant amount of time since the 3D model of the train has to be rendered from

different points of views and for many frames. A single frame with one camera angle

defined can take up to 2 minutes to render the image. The rendering of a complete set

of images from one design require three days. Moreover, this process has to be repeated

every time a change is applied to the model. It is then fundamental for GoFront to

reduce the rendering times, in order to be competitive and speed up the design process.

In order to face this problem, a private Aneka Cloud has been set up by using the

existing desktop computers and servers available in the IT department of GoFront.

Figure 8 provides an overall view of the installed system. The setup is constituted by a

classic master slave configuration in which the master node concentrates the scheduling

and storage facilities and thirty slave nodes are configured with execution services. The

task programming model has been used to design the specific solution implemented in

GoFront. A specific software tool that distributes the rendering of frames in the Aneka

Cloud and composes the final rendering has been implemented to help the engineers at

GoFront. By using the software, they can select the parameters required for rendering

and perform the computation on the private cloud. Figure 9 illustrates the speed up

obtained by distributing the rendering phase on the Aneka Cloud, compared to the

previous set up constituted by a single four-core machine. As it can be noticed, by

simply using a private cloud infrastructure that harnessed on demand the spare cycles

of 30 desktop machines in the department, the rendering process has been reduced from

days to few hours.

Private Cloud
LAN (heterogeneous resources)

Master Node

Slave Nodes

Slave Nodes

Slave Nodes

Rendering Tasks

Customized Front-end

Private Cloud
LAN (heterogeneous resources)

Master Node

Slave Nodes

Slave Nodes

Slave Nodes

Rendering Tasks

Customized Front-end

Figure 8. Cloud setup at GoFront.

Single Server Aneka Cloud

Time
(in hrs)

Single Server Aneka Cloud

Time
(in hrs)

Figure 9. Speed up of the rendering process.

5.2.2. Distributed Log Processing: TitanStrike Gaming

TitanStrike Gaming provides an online community for gamers, accessible through a

web portal, where they can register their profile, select their preferred multiplayer

game, and play on line matches by joining a team. The service provided by TitanStrike

is not providing facilities for online gaming, but building a community around them

where players can keep and show their statistics and challenge each other. In order to

provide such services, the processing of game logs, is fundamental.

An online multiplayer game is generally characterized by a game server that

controls one or more matches. While a match is running, players can join and play and

the information of everything happening in the game is dumped into the game logs that

are used as medium for updating the status of the local view of the game of each player.

By analyzing the game logs it is then possible to build the statistics of each player.

Game servers generally provide an end point that can be used to obtain the log of a

specific game. A single log generates information with a low frequency since the entire

process is driven by humans. But in case of a portal for gaming, where multiple games

are played at the same time and many players are involved in one match, the overload

generated by the processing of game logs can be huge and scalability issues arise.

In order to provide a scalable infrastructure able to support the update of statistics

in real time and improve their user experience, a private Aneka Cloud has been set up

and integrated into the TitanStrike portal. Figure 10 provides an overall view of the

cloud setup. The role of the Aneka Cloud is to provide the horse power required to

simultaneously process as many game logs as possible by distributing the log parsing

among all the nodes that belong to the cloud. This solution allows TitanStrike to scale

on demand when there are flash crowds generated by a huge numbers of games played

at the same time.

Private Cloud
LAN (server array)

Master Node

Slave Nodes

Log Parsing Plugins

Titan WebServer

Game Server

Game Server

Game Server

Game Server

Private Cloud
LAN (server array)

Master Node

Slave Nodes

Log Parsing Plugins

Titan WebServer

Game Server

Game Server

Game Server

Game Server

Figure 10. Cloud set up at TitanStrike.

6. Conclusions and Future Directions

In this book chapter we have presented Aneka, a framework providing a platform for

cloud computing applications. As discussed in the introduction there are different

solutions for providing support for Cloud Computing. Aneka is an implementation of

the Platform as a Service approach, which focuses on providing a set of APIs that can

be used to design and implement applications for the Cloud.

The framework is based on an extensible and service oriented architecture that

simplifies the deployment of clouds and their maintenance and provides a customizable

environment that supports different design patterns for distributed applications. The

heart of the framework is represented by the Aneka Container which is the minimum

unit of deployment for Aneka Clouds and also the runtime environment for distributed

applications. The container hosts a collection of services that perform all the operations

required to create an execution environment for applications. They include resource

reservation, storage and file management, persistence, scheduling, and execution.

Moreover, services constitute the extension point of the container which can be

customized to support specific needs or scenarios.

By using services different programming models have been integrated in Aneka. A

programming model is a specific way of expressing the execution logic of distributed

applications. It provides some familiar abstractions that developers can use to define

the execution flow of applications and its component. From an implementation point of

view a programming model also includes a collection of services – more precisely

scheduling and execution services – that make possible its execution on top of Aneka

Clouds. Aneka provides a reference model for implementing new programming models

and the current release supports three different programming models: independent bag

of tasks, distributed threads, and MapReduce. In order to simplify the development

with Aneka a Software Development Kit contains ready to use samples, tutorials, and a

full API documentation which helps starting to investigate the large range of features

offered by the framework.

Aneka also provides support for deploying and managing clouds. By using the

Management Studio it is possible to set up either public or private clouds, monitor their

status, update their configuration, and perform the basic management operations.

Moreover, a set of web interfaces allows to programmatically managing Aneka Clouds.

The flexibility of Aneka has been demonstrated by using the framework in

different scenarios: from scientific research, to educational teaching, and to industry. A

set of case studies representing the success stories of Aneka has been reported to

demonstrate that Aneka is mature enough to address real life problems used in a

commercial environment.

Aneka is under continuous development. The development team is now working

on providing full support for the elastic scaling of Aneka Clouds by relying on

virtualized resources. Initial tests have been successfully conducted in using Amazon

EC2 as a provider of virtual resources for Aneka. This feature, and the ability of

interacting with other virtual machine managers, will be included in the next version of

the management APIs that will simplify and extend the set of management tasks

available for Aneka Clouds.

Acknowledgements

The authors would like to thank Al Mukaddim Pathan and Dexter Duncan for their

precious insights in organizing the contents of this chapter.

References

[1] L. Vaquero, L. Rodero-Marino, J. Caceres, M. Lindner, A break in the clouds: towards a cloud definition,

SIGCOMM Computer Communication Review, 39 (2009), 137–150.
[2] R. Buyya, S. Venugopal, The Gridbus Toolkit for service oriented grid and Utility Computing: An

overview and status report, Proc. of the First IEEE International Workshop on Grid Economics and

Business Models (GECON 2004), (2004), 19–36.
[3] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoika, M. Zaharia, Above the Clouds: a Berkeley view of Cloud Computing, Technical Report, UC

Berkeley Reliable Adaptive Distributed Systems Laboratory, available at

http://abovetheclouds.cs.berkeley.edu

[4] R, Buyya, C.S. Yeo, S. Venugopal, J. Broberg, I. Brandic, Cloud Computing and emerging IT platforms:

vision, hype, and reality for delivering IT services as the 5th utility, Future Generation of Computer

Systems, 25 (2009), 599–616.

[5] J. Jagger, N. Perry, P. Sestoft, C# Annotated Standard, Morgan Kaufmann, 2007.

[6] J.S. Miller, S. Ragsdale, The Common Language Infrastructure Annotated Standard, Addison Wesley,

2004.

[7] T. Erl, Service Oriented Architecture (SOA): Concepts, Technology, and Design, Prentice Hall, 2005.

[8] J.O. Kephart, D.M. Chess, The vision of autonomic computing, IEEE Computer, 36 (2003), 41–50.

[9] S. Venugopal, X. Chu, and R. Buyya, A negotiation mechanism for advance resource reservation using

the alternate offers protocol, Proc. of the 16th International Workshop on Quality of Service (IWQoS

2008), Twente, The Netherlands, IEEE Communications Society Press, New York, USA, (2008), 40–49.

[10] R. Ranjan, R. Buyya, Decentralized overlay for federation of Enterprise Clouds, Handbook of Research

of Scalable Computing Technologies, IGI Global USA, (2009).
[11] C. Jin, R. Buyya, MapReduce programming model for .NET-based distributed computing, Proc. 15th

European Conference on Parallel Processing (Euro-Par 2009), (2009)

[12] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters, Proc. of OSDI'04:

Sixth Symposium on Operating System Design and Implementation, (2004), 137–150.

[13] M. Kirley, R. Stewart, An analysis of the effects of population structure on scalable multi-objective

optimization problems. SIGEVO Genetic and Evolutionary Computation Conference (GECCO-2007),

ACM Press, (2007), 845–852.

[14] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast elitist multi-objective genetic algorithm: NGSA-II,

Transactions on Evolutionary Computation, 6 (2000), 182–197.

[15] K.A. De Jong, Evolutionary Computation: A Unified Approach, The MIT Press, 2002.

[16] C. Vecchiola, M. Kirley, R. Buyya, Multi-objective problem solving with Offspring on Enterprise

Clouds, Proc. of the 10th International Conference on High-Performance Computing in Asia-Pacific

Region (HPC Asia 2009), (2009), 132–139.

[17] K. Deb, Multi-objective genetic algorithms: Problem difficulties and construction of test problems,

Evolutionary Computing Journal, 7 (1999), 205–150.
[18] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multi-objective

optimization, Evolutonary Multiobjective Optmization, Springer-Verlag, (2005), 105–145.

[19] O. Sigaud, S.W. Wilson, Learning classifier systems: a survey, Soft Computing – A Fusion of

Foundations, Methodlogies, and Applications, 11 (2007), 1065–1078.

[20] M.V. Butz, P.L. Lanzi, T. Kovacs, S.W. Wilson, How XCS evolves accurate classifiers, in Proc. of the

Genetic and Evolutionary Computation Conference (GECCO-2001), (2001), 927–934.

