
A Dynamic Critical Path Algorithm for Scheduling Scientific Workflow

 Applications on Global Grids

Mustafizur Rahman, Srikumar Venugopal and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

{mmrahman, srikumar, raj}@csse.unimelb.edu.au

Abstract

Effective scheduling is a key concern for the execution

of performance driven Grid applications. In this paper,

we propose a Dynamic Critical Path (DCP) based

workflow scheduling algorithm that determines effi-

cient mapping of tasks by calculating the critical path

in the workflow task graph at every step. It assigns

priority to a task in the critical path which is estimated

to complete earlier. Using simulation, we have com-

pared the performance of our proposed approach with

other existing heuristic and meta-heuristic based

scheduling strategies for different type and size of

workflows. Our results demonstrate that DCP based

approach can generate better schedule for most of the

type of workflows irrespective of their size particularly

when resource availability changes frequently.

1. Introduction

Many of the large-scale scientific applications exe-

cuted on present-day Grids are expressed as complex

e-Science workflows [1][2]. A workflow is a set of

ordered tasks that are linked by data dependencies [3].

A Workflow Management System (WMS) [3] is

generally employed to define, manage and execute

these workflow applications on Grid resources. A

WMS may use a specific scheduling strategy for

mapping the tasks in a workflow to suitable Grid

resources in order to satisfy user requirements. Numer-

ous workflow scheduling strategies have been proposed

in literature for different objective functions [4].

However, the majority of these are static scheduling

algorithms that produce a good schedule given the

current state of Grid resources and do not take into

account changes in resource availability.

 Critical path heuristics [5] have been used exten-

sively for scheduling interdependent tasks in multi-

processor systems. These aim to determine the longest

of all execution paths from the beginning to the end (or

the critical path) in a task graph, and schedule them

earliest so as to minimize the execution time for the

entire graph. Kwok and Ahmad [6] introduced the

Dynamic Critical Path (DCP) algorithm in which the

critical path is dynamically determined after each task

is scheduled. However, this algorithm is designed for

mapping tasks on to homogeneous processors, and is

static, in the sense that the schedule is only computed

once for a task graph. In this paper, we extend the DCP

algorithm to map and schedule tasks in a workflow on

to heterogeneous resources in a dynamic Grid envi-

ronment. We have extensively compared the perform-

ance of our algorithm, called DCP-G (Dynamic Critical

Path for Grids), against well-known Grid workflow

algorithms.

The rest of the paper is organized as follows. In the

next section, we describe existing heuristics and meta-

heuristics based workflow scheduling techniques on

distributed systems such as Grid. The proposed DCP-G

workflow scheduling algorithm is presented in Section

3. Experiment details and simulation results are pre-

sented in Section 4. Finally, we conclude the paper

with the direction for future work in Section 5.

2. Related Work

Generally, a workflow application is represented as

a Directed Acyclic Graph (DAG) in which graph nodes

represent tasks and graph edges represent data depend-

encies among the tasks with weights on the nodes

representing computation and weights on the edges

representing communication volume. Therefore,

workflow scheduling problem is usually considered as

a special case of the DAG scheduling problem. As the

DAG scheduling problem is NP-complete, we rely on

heuristics and meta-heuristics based scheduling strate-

gies to achieve the most efficient possible solution. In

the following, we present some of the well-known

heuristics and meta-heuristics for workflow scheduling

on Grid systems.

Myopic [7]: schedules an unmapped ready task, in

arbitrary order, to a resource which is expected to

complete that task earliest, until all tasks have been

scheduled. It is considered as the simplest method for

scheduling workflow applications.

Min-Min [8]: is a list scheduling heuristic that assigns

priority to the task based on its Expected Completion

Time (ECT) on a resource. In every step of iteration, it

discovers the task that has Minimum Expected Com-

pletion Time (MCT) among all the available tasks and

assigns it to the resource that provides the MCT. This

is repeated until all tasks are assigned. The intuition

behind Min-Min is to consider all unmapped independ-

ent tasks during each mapping decision, whereas

Myopic only considers one task at a time.

Max-Min [8]: is similar to Min-Min except that in

each iterative step, a task having the maximum ECT is

chosen to be scheduled on the resource which is

expected to complete the task at the earliest time.

Intuitively, Max-Min attempts to minimize the total

workflow execution time by assigning longer tasks to

comparatively better resources. Both Min-Min and

Max-Min have been used for scheduling workflow

tasks in Pegasus [9].

Heterogeneous Earliest Finish Time (HEFT) [10]:

used in the ASKALON workflow manager [7][11], is a

well-established list scheduling algorithm which

assigns higher priority to the workflow task having

higher rank value. It calculates rank value based on the

average execution time for each task and average

communication time between resources of two succes-

sive tasks, where the tasks in the ‘critical path’ get

comparatively higher rank values. In the resource

selection phase, tasks are scheduled in the order of

their priorities and each task is assigned to the resource

that can complete the task at the earliest time. The

advantage of using this technique over Min-Min or

Max-Min is that while assigning priorities to the tasks

it considers the entire workflow rather than focusing on

only unmapped independent tasks at each step.

Greedy Randomized Adaptive Search Procedure

(GRASP) [12]: is an iterative randomized search

technique. In GRASP, a number of iterations are

conducted to search a possible optimal solution for

mapping tasks on resources. A solution is generated at

each iterative step and the best solution is kept as the

final schedule. This searching procedure terminates

when the specified termination criterion, such as the

completion of a certain number of iterations, is satis-

fied. GRASP can generate better schedules than the

other scheduling techniques stated previously as it

searches the whole solution space considering entire

workflow and available resources.

Genetic Algorithm [13]: is also meta-heuristic based

scheduling technique such as GRASP. It allows a high

quality solution to be derived from a large search space

in polynomial time by applying the principles of

evolution. Instead of creating a new solution by ran-

domized search as in GRASP, GA generates new

solutions at each step by randomly modifying the good

solutions generated in previous steps which results a

better schedule within less time.

3. The Proposed DCP-G Algorithm

For a task graph, the lower and upper bounds of

starting time for a task are denoted as the Absolute

Earliest Start Time (AEST) and the Absolute Latest

Start Time (ALST) respectively. In the DCP algorithm

[6], the tasks on the critical path have equal AEST and

ALST values as delaying these tasks affects the overall

execution time for the task graph. The first task on the

critical path is mapped to the processor identified for it.

This process is repeated until all the tasks in the graph

are mapped.

However, this algorithm is designed for scheduling

all the tasks in a task graph with arbitrary computation

and communication times to a multiprocessor system

with unlimited number of fully connected identical

processors. But, Grids [14] are heterogeneous and

dynamic environments consisting of computing,

storage and network resources with different capabili-

ties and availability. Therefore, to work on Grids, the

DCP algorithm needs to be extended in the following

manner:

• For a task, the initial AEST and ALST values are

calculated for the resource which provides the mini-

mum execution time for the task. The overall objec-

tive is to reduce the length of the critical path at

every pass. We follow the intuition of the Min-Min

heuristic in which a task is assigned to the resource

that executes it fastest.

• For mapping a task on the critical path, all avail-

able resources are considered by DCP-G, as opposed

to the DCP algorithm, which considers only the re-

sources (processors) occupied by the parent and

child tasks. This is because, in the latter case, the

execution time is not varied for different processors,

and only the communication time between the tasks

could be reduced by assigning tasks to the same re-

source. However, in Grids, the communication and

computation times are both liable to change because

of resource heterogeneity.

• When a task is mapped to a resource, its execution

time and data transfer time from the parent node are

updated accordingly. This changes the AEST and

ALST of succeeding tasks.

3.1. Calculation of AEST and ALST in DCP-G

In DCP-G, the start time of a task is not finalized

until it is mapped to a resource. Here, we also intro-

duce two more attributes: the Absolute Execution Time

(AET) of a task which is the minimum execution time

of the task, and Absolute Data Transfer Time (ADTT)

which is the minimum time required to transfer the

output of the task given its current placement. Initially,

AET and ADTT are calculated as,

)}{PC(R

t) Task_size(
AET(t)

ksourceListk Remax
∈

=

)}{BW(R

t_size(t) Task_outpu
ADTT(t)

ksourceListk Remax
∈

=

 Where,)(kRPC and)(kRBW are processing capabil-

ity and transfer capacity i.e. Bandwidth of resource

kR respectively.

Whenever a task t is scheduled to a resource, the

values of)(tAET and)(tADTT are updated accordingly.

Therefore, the AEST of a task t on resource R, denoted

by),(RtAEST , is recursively defined as,

)},R(RC)AET(t),R{AEST(tAEST(t,R)
kkk ttt,tktk

pk
++=

≤≤1
max

where, t has p parent tasks, tk is the k
th

 parent task and,

0),(=RtAEST ; if t is an entry task.

0)R,(RC
kk tttt, = ; if

ktt RR =

)(),(, ktttt tADTTRRC
kk

= ; if t and tk are not scheduled.

Here, the communication time between two tasks is

considered to be zero if they are mapped to the same

resource, and equal to the ADTT of parent task, if the

child is not mapped yet. Using this definition, the

AEST values can be computed by traversing the task

graph in a breadth-first manner beginning from the

entry tasks.

Once AESTs of all the tasks are computed, it is pos-

sible to calculate Dynamic Critical Path Length

(DCPL) which is the schedule length of the partially

mapped workflow. DCPL can be defined as,

)}(),({max
1

iti
ni

tAETRtAESTDCPL
i

+=

≤≤

where, n is the total number of tasks in the workflow.

After computing the DCPL, the values of ALST can

be calculated by traversing the task graph in a

breadth-first manner but in the reverse direction. Thus,

the ALST of a task t in resource R, denoted as

),(RtALST , can be recursively defined as,

)},R(RCAET(t)),R{ALST(tALST(t,R)
kkk ttt,ttk

ck

−−=

≤≤1

min

where, t has c child tasks, tk is the k
th

 child task and,

)(),(tAETDCPLRtALST −= ; if t is an exit task.

0),(, =
kk tttt RRC ; if

ktt RR =

)(),(, ktttt tADTTRRC
kk

= ; if t and tk are not mapped.

 As in DCP, a task in DCP-G is considered to be on

the critical path if its AEST and ALST values are

equal. In order to reduce the value of DCPL at every

step, the task selected for scheduling is the one that is

on the critical path and has no unmapped parent tasks.

3.2. Resource Selection

After identifying a critical task, we need to select an

appropriate resource for that task. We select the re-

source that provides the minimum execution time for

that task. This is discovered by checking all the avail-

able resources for one that minimizes the potential start

time of the critical child task on the same resource,

where the critical child task is the one with the least

difference of AEST and ALST among all the child

tasks of the critical task. Finally, the critical task is

mapped to the resource that provides earliest combined

start time.

3.3. DCP-G Example

Figure 1 illustrates the DCP-G algorithm with a

step-by-step explanation of the mapping of tasks in a

sample workflow. The sample workflow consists of

five tasks denoted as T0, T1, T2, T3 and T4 with differ-

ent execution and data transfer requirements. The

length and size of the output of each task shown in

Figure 1(a) are measured in Million Instructions (MI)

and GigaBytes (GB) respectively. The tasks are to be

mapped to two Grid resources R1 and R2 with process-

ing capability (PC) and transfer capacity i.e. Bandwidth

(BW) as indicated at the bottom of Figure 1.

First, the AET and ADTT values for each task are

calculated as shown in Figure 1(a). Then using these

values, AEST and ALST of all the tasks are calculated

according to Section 3.1 (Figure 1(b)). Since T0, T2, T3

and T4 have equal AEST and ALST, they are on

critical path with T0 as the highest task. Hence, T0 is

selected as the critical task and mapped to resource R1

which gives T0 the minimum combined start time. At

the end of this step, the schedule length of the work-

flow, i.e. DCPL is 890. Similarly, in Figure 1(c), T2 is

selected as critical task and mapped to R1. As both T0

and T1 are mapped to R1 and the data transfer time of

T0 is now zero, the AEST and ALST of all the tasks are

changed and the schedule length becomes 850 (Figure

1(d)). In the next step, T3 is mapped to R1 as well and

the DCPL is reduced to 770 as the data transfer time

for T2 is zero.

 Now T4 is the only task remaining on the critical

path (Figure 1(e)). However, one of its parent tasks, T1,

is not mapped yet and therefore T1 is selected as

critical task. As T2 and T3 are already mapped to R1,

the start time of T1 on R1 is 700. Therefore, T1 is

mapped to R2 as its start and end times on R2 are 180

and 430 respectively. Finally, when T4 is mapped to R1

(Figure 1(g)), all the tasks have been mapped and the

schedule length can not be improved any further and a

schedule length of 750 is obtained. The final schedule

generated by DCP-G is shown in a table in Figure 1(h).

4. Performance Evaluation

We evaluate DCP-G by comparing the schedules

produced by it against those produced by the other

algorithms described previously for a variety of work-

flows in a simulated Grid environment. In this section,

first we describe our simulation methodology and

setup, and then present the results of experiments.

4.1. Simulation methodology

We use GridSim [15] to simulate the application

and Grid environment for our simulation. We model

different entities in GridSim in the following manner.

Workflow model. We implement a workflow genera-

tor that can generate various formats of weighted

pseudo-application workflows. The following input

parameters are used to create a workflow.

• N, the total number of tasks in the workflow.

• α, the shape parameter represents the ratio of the

total number of tasks to the width (i.e. maximum

number of nodes in a level). So width W = 








α

N

• Type of workflow: Our workflow generator can

generate three types of workflow namely parallel

workflow, fork-join workflow and random workflow.

Parallel workflow: In parallel workflow [16], a

group of tasks creates a chain of tasks with one entry

and one exit task and there can be several such chains

in one workflow. Here, one task is dependent on only

one task, but the tasks at the head of chains are de-

pendant on entry task and the exit task is dependant on

the tasks at the tail of chains. Number of levels in a

parallel workflow can be specified as,

Number of levels = 






 −

W

2N

Fork-join workflow: In fork-join workflow [2], forks

of tasks are created and then joined. So, there can be

only one entry task and one exit task in this kind of

workflow but the number of tasks in each level depends

on total number of tasks and the width in that level, W.

Number of levels in fork-join workflow can be speci-

fied as, Number of levels = 








+1W

N

T0

T1 T2

T3

T4

150000 MI

300000 MI 300000 MI

600000 MI

75000 MI

100 \ 40

200 \ 80200 \ 80

400 \ 20

50 \ 0

R1
PC = 1500 MIPS
BW = 100 Mbps R2

PC = 1200 MIPS
BW = 200 Mbps

1 GB

2 GB

2 GB

0.5 GB

T0

T1 T2

T3

T4

0 / 0

140 / 140140 / 560

420 / 420

840 / 840

DCPL = 890

T0 R1

T0

T1 T2

T3

T4

0 / 0

140 / 140140 / 560

420 / 420

840 / 840

DCPL = 890

T2 R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100140 / 520

380 / 380

800 / 800

DCPL = 850

T3 R1

R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100140 / 440

300 / 300

720 / 720

DCPL = 770

T2 R2

R1

R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100180 / 310

300 / 300

720 / 720

DCPL = 770

T4 R1

R1

R1

R1

R2

T Scheduled Task T Critical Task T R: Task T is assigned to Resource R

T0

T1 T2

T3

T4

0 / 0

100 / 100180 / 310

300 / 300

700 / 700

DCPL = 750

R1

R1

R1

R2

R1

(a) (b) (c)

(h)

(d)

(e) (f) (g)

AEST / ALST
T

T4

Task Resource Start End

T1

T2

T3

T0

700R1

R1

R1

R2

R1

750

0 0

180 430

100

300

300

700

Final Schedule

AET \ ADTT
T

Task size

T0

T1 T2

T3

T4

150000 MI

300000 MI 300000 MI

600000 MI

75000 MI

100 \ 40

200 \ 80200 \ 80

400 \ 20

50 \ 0

T0

T1 T2

T3

T4

150000 MI

300000 MI 300000 MI

600000 MI

75000 MI

100 \ 40

200 \ 80200 \ 80

400 \ 20

50 \ 0

R1
PC = 1500 MIPS
BW = 100 Mbps R1
PC = 1500 MIPS
BW = 100 Mbps R2

PC = 1200 MIPS
BW = 200 Mbps R2
PC = 1200 MIPS
BW = 200 Mbps

1 GB

2 GB

2 GB

0.5 GB

T0

T1 T2

T3

T4

0 / 0

140 / 140140 / 560

420 / 420

840 / 840

DCPL = 890

T0 R1

T0

T1 T2

T3

T4

0 / 0

140 / 140140 / 560

420 / 420

840 / 840

DCPL = 890

T0 R1

T0

T1 T2

T3

T4

0 / 0

140 / 140140 / 560

420 / 420

840 / 840

DCPL = 890

T2 R1

R1

T0

T1 T2

T3

T4

0 / 0

140 / 140140 / 560

420 / 420

840 / 840

DCPL = 890

T2 R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100140 / 520

380 / 380

800 / 800

DCPL = 850

T3 R1

R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100140 / 520

380 / 380

800 / 800

DCPL = 850

T3 R1

R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100140 / 440

300 / 300

720 / 720

DCPL = 770

T2 R2

R1

R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100140 / 440

300 / 300

720 / 720

DCPL = 770

T2 R2

R1

R1

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100180 / 310

300 / 300

720 / 720

DCPL = 770

T4 R1

R1

R1

R1

R2

T0

T1 T2

T3

T4

0 / 0

100 / 100180 / 310

300 / 300

720 / 720

DCPL = 770

T4 R1

R1

R1

R1

R2

T Scheduled TaskT Scheduled Task T Critical TaskT Critical Task T R:T R: Task T is assigned to Resource R

T0

T1 T2

T3

T4

0 / 0

100 / 100180 / 310

300 / 300

700 / 700

DCPL = 750

R1

R1

R1

R2

R1

T0

T1 T2

T3

T4

0 / 0

100 / 100180 / 310

300 / 300

700 / 700

DCPL = 750

R1

R1

R1

R2

R1

(a) (b) (c)

(h)

(d)

(e) (f) (g)

AEST / ALST
T

AEST / ALST
T

T4

Task Resource Start End

T1

T2

T3

T0

700R1

R1

R1

R2

R1

750

0 0

180 430

100

300

300

700

T4

Task Resource Start End

T1

T2

T3

T0

700R1

R1

R1

R2

R1

750

0 0

180 430

100

300

300

700

Final Schedule

AET \ ADTT
T

Task size

AET \ ADTT
T

AET \ ADTT
T

Task size

Figure 1. Example of workflow scheduling using DCP-G algorithm

Random workflow: In random workflow, depend-

ency and number of parent tasks of a task which equals

to the indegree of a node in DAG representation of the

workflow, is generated randomly. Here, task depend-

ency and the indegree are calculated as,

Maximum Indegree (Ti) = 








2

W

Minimum Indegree (Ti) = 1

Parent (Ti)= {Tx| Tx ∈[T0….Ti-1]};if Ti is not a root

task; where, x is a random number and 0 <= x <= 








2

W

Parent (Ti) = {ф} ; if Ti is a root task

In Figure 2, a sample of each type of workflow is

illustrated where N=10, and α=5.

Figure 2. Three sample workflows : (a) Parallel
workflow; (b) Fork-join workflow; (c) Random

workflow

In simulation, we use MI (Million Instructions) to

denote the length of tasks and MB (Mega Bytes) to

denote the output data size of each task.

Resource model. As the execution environment for

tasks in scientific workflows is heterogeneous, we use

heterogeneous resources with different processing

capabilities. Here, we choose 8 resources (refer to

Table 1) from the European Data Grid (EDG) 1 test

bed [17] used for simulation in [18]. The processing

capability of the resources is measured in MIPS (Mil-

lion Instructions per Second) and the bandwidth in

Mbps (Megabits per second).

Table 1. Resources used for evaluation
Resource Name/Site

(Location)

No. of

Nodes

Single PE

Rating (MIPS)

Mean

Load

RAL (UK) 41 1140 0.9

NorduGrid (Norway) 17 1176 0.9

NIKHEF (Netherlands) 18 1166 0.9

Milano (Italy) 7 1000 0.5

Torino (Italy) 4 1330 0.5

Catania (Italy) 5 1200 0.6

Padova (Italy) 13 1000 0.4

Bologna (Italy) 20 1140 0.8

4.2. Simulation setup

The workflows for evaluation are generated using

the following parameters:

Type = {parallel, fork-join, random}

N = {50, 100, 200, 300}

α = {10}

Here, the size of each task in the workflow is gener-

ated from a uniform distribution between 100,000 MI

to 500000 MI while the output data size of each task is

also generated from a uniform distribution between 1

GB and 5 GB.

For GRASP, we run 600 iterations to map tasks to

the resources and then select the best schedule out of

those are generated. For GA, the parameters for various

genetic operators such as selection, crossover and

mutation are set using those applied in previous studies

[19]. Table 2 shows the values of different parameters

used for simulating GA.

Table 2. Parameters of Genetic Algorithm
Parameter Value/type

Population size 60

Crossover probability 0.7

Swapping mutation probability 0.5

Replacing mutation probability 0.8

Fitness function Makespan of workflow

Selection scheme Elitism-Roulette Wheel

Stopping condition 300 iterations

Initial individuals Randomly generated

4.3. Results and Observations

We evaluate the scheduling heuristics on the basis

of the total makespan produced and the time required

for scheduling the workflows. Makespan is the total

time required for executing an entire workflow.

Two sets of experiments were carried out. In the

first set, we consider an ideal case where availability

and load of Grid resources remain static over time. For

this environment, we statically map tasks to resources

according to different strategies and execute tasks

accordingly. In the next set, we evaluate the strategies

on a more realistic scenario where the availability and

load of Grid resources vary over time. In this case, the

instantaneous load (i.e. number of PEs occupied) for

each resource during the simulation was derived from a

Gaussian distribution, as performed in [18].

4.3.1 Execution time in static environment. The

graphs in Figure 3 plot the execution time of parallel,

fork-join and random workflows of 50, 100, 200 and

300 tasks for seven workflow scheduling strategies

namely, Myopic, Min-Min, Max-Min, HEFT, DCP-G,

GRASP and GA in static environment.

For random workflow (refer to Figure 3(c)), DCP-G

can generate schedules with up to 13% less makespan

than HEFT which generates better schedule than

Myopic, Min-min and Max-min. Since from any task in

the random workflow, there can be multiple paths to an

exit node, assigning priority to tasks dynamically helps

DCP-G to generate better schedules. As GRASP and

(a)

1

2

4

3

5

6

8

7

0

1

4

6

3

7

9

2

5

8

2

5

0

6 4 3

1

9

8 7

9

(b) (c)

0

GA search the entire solution space for the best sched-

ule, they generate 20-30% better schedule than DCP-G.

However, execution time of fork-join workflows

(refer to Figure 3(b)) shows a significant difference

between heuristics and meta-heuristics based ap-

proaches. During the process of task selection for

mapping, heuristics-based approaches do not consider

the impact of mapping child tasks. Thus, all the heuris-

tic based techniques generate similar schedule with

DCP-G being marginally better. However, in a fork-

join workflow, a join task depends on the output of all

the forked independent tasks that precede it. If this join

task is assigned to a resource with low bandwidths to

other resources, increase in data transfer time impacts

the makespan adversely. However, meta-heuristics

(GA, GRASP) consider the impact of mapping not only

the parent fork tasks but also the child join tasks, and

are therefore, able to generate 40-50% better schedule

than DCP-G which is the best among all the heuristics-

based methods.

According to Figure 3(a), execution time of parallel

workflow exhibits slow exponential growth with the

increase in workflow size. The reason is that, unlike

fork-join workflows, the number of unmapped ready

tasks at every step of scheduling in a parallel workflow

always equal to W and a task becomes ready as soon as

its parent finishes. Thus, when available resources are

less than unmapped ready tasks, the time spent by some

of these tasks in waiting to be scheduled results in an

increase in the total execution time. In case of parallel

workflows, DCP-G and GA generate better schedule

than others and the makespan is reduced by least 20%.

2000

4000

6000

8000

10000

12000

50 100 200 300
No of Tasks in the workflow

T
im

e
 (

se
c
)

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(a) Parallel workflow

9000

11000

13000

15000

17000

19000

50 100 200 300
No of Tasks in the workflow

T
im

e
(s

e
c
)

(b) Fork-join workflow

1000

3000

5000

7000

9000

11000

13000

15000

17000

50 100 200 300
No of Tasks in the workflow

T
im

e
 (

se
c)

(c) Random workflow

Figure 4. Execution time of different types of
workflows for dynamic environment

2000

4000

6000

8000

10000

50 100 200 300
No of Tasks in the workflow

T
im

e
 (

se
c
)

MinMin Max-Min HEFT DCP-G

Myopic GRASP GA

(a) Parallel workflow

5000

7000

9000

11000

13000

15000

17000

19000

50 100 200 300
No of Tasks in the workflow

T
im

e
(s

ec
)

(b) Fork-join workflow

1000

3000

5000

7000

9000

11000

13000

15000

50 100 200 300
No of Tasks in the workflow

T
im

e
 (

se
c
)

(c) Random workflow

Figure 3. Execution time of different type of
workflows for static environment

Here, the execution time of GRASP rises beyond that

of DCP-G as the number of candidate solutions for task

mapping increases exponentially with workflow size.

This will be explained further in Section 4.3.3.

4.3.2. Execution time in dynamic environment. In

dynamic environment, as the resource availability

changes over time, resource availability information

needs to be continuously updated after a certain period

of time and the tasks have to be re-mapped, if neces-

sary, depending on the updated availability of re-

sources. Here, we compare the performance of re-

scheduling using DCP-G and other heuristics-based

approaches against the static schedules generated by

the meta-heuristics.

Figure 4 shows the execution time of different

scheduling techniques in dynamic environment, where

resource information is updated every 50 seconds. The

number of available processing elements, and hence the

number of tasks that can start execution in a resource

varies with the load on the resource. However, for GA

and GRASP, if a resource is heavily-loaded and un-

available, the tasks mapped to that resource have to

wait to be executed. This waiting time consequently

impacts start time of other dependent tasks and in-

creases the makespan. This is reflected in the poor

performance of GA and GRASP in the graphs in Figure

4. Thus, heuristics-based approaches are able to gener-

ate up to 30% better schedule than these two meta-

heuristics based approaches. Among the heuristics,

DCP-G is able to achieve up to 6% better makespan

than the others. This is because, in DCP-G, tasks on the

critical path waiting to be executed on a heavily-loaded

resource are rescheduled on to resources with available

processing elements. This reduces the critical path

length and therefore, the makespan for the execution.

It can also be seen that heuristic-based approaches

perform better in dynamic than static environments for

the same workflows and experimental setup. This can

be attributed to the fact that not only the load but the

resource availability in dynamic environments is

updated regularly. This means that the heuristics are

able to adapt to better resources being more frequently

available and therefore, produce better schedules.

4.3.3 Scheduling time. Table 3 shows the average

scheduling time (in milliseconds) for one task of

parallel, fork-join and random workflows to generate a

single schedule for different scheduling techniques. To

generate a single schedule, Myopic, Min-Min, Max-

Min and HEFT require nearly 1 millisecond for each

task irrespective of workflow size and type whereas the

average scheduling time of one task for DCP-G is 16 to

17 milliseconds, and does not vary with the type of

workflow as the task selection procedure is independ-

ent of workflow structure.

Scheduling time using GRASP increases exponen-

tially not only with the increase of tasks in a workflow

but also with change in workflow structure. In each

iteration, GRASP creates Restricted Candidate List

(RCL) for each unmapped ready task and then selects

resource for the task in random. When number of tasks

increases, RCL increases exponentially resulting in

increased scheduling time. But the size of the RCL is

also dependent on workflow structure. For example,

when a workflow consists of 300 tasks, parallel and

fork-join structures contain 30 tasks in each level,

whereas the random structure contains random number

of levels as well as random number of tasks in each

level. Thus, at every step a parallel workflow has 30

ready tasks, fork-join workflow has maximum 30 ready

tasks and average number of ready tasks in each level

of random workflow is less than 30. Therefore, sched-

uling time for random workflow is the lowest and

parallel workflow is the highest in this case.

Table 3. Average scheduling time per task
Scheduling

Strategy

Random

workflow(ms)

Fork-join

workflow(ms)

Parallel

workflow(ms)

Myopic 1 1 1

Min-Min 1 1 1

Max-Min 1 1 1

HEFT 1 1 1

DCP-G 17 16 16

GRASP 1180 2840 5720

GA 1940 1780 1750

However, scheduling time for GA does not change

much with the type of workflow because it executes

same number of genetic operations irrespective of

workflow structure. But the size of each individual in

the solution space is equal to number of tasks in work-

flow. So, scheduling time increases with the increase in

the size of the workflow.

While it is possible to reschedule at regular intervals

in GA and GRASP, Table 3 shows that the scheduling

times for these are at least 100 times that of DCP-G,

and increases with the size of the workflow as well.

Hence, we did not incorporate rescheduling for GA and

GRASP in the experiments for dynamic environment.

4.3. Discussion

From Figure 3, it is evident that among the heuris-

tics-based scheduling techniques, DCP-G can generate

better schedule by up to 20% in static environment,

especially for random and parallel workflow, irrespec-

tive or workflow size. GA and GRASP can generate

more effective schedule than DCP-G for random and

fork-join workflow, but they suffer from the problem of

higher scheduling time. In our simulation, for parallel

workflow of 300 tasks, DCP-G takes 6 seconds to map

the tasks to resources, whereas GA and GRASP take

580 and 2076 seconds respectively.

In dynamic environment, heuristics based tech-

niques adapt to the dynamic nature of resources and

can avoid performance degradation. But meta-

heuristics based techniques perform worse in this

situation due to the unavailability of mapped resources

at certain intervals. However, in dynamic environment,

DCP-G can generate better schedule than other ap-

proaches irrespective of workflow type and size.

5. Conclusion and Future Work

In this paper, we have presented DCP-G algorithm

for scheduling Grid workflows. Using simulation, we

have compared the performance of our proposed

approach with other existing heuristic and meta-

heuristic based scheduling strategies for different type

and size of workflows. The results show that our

approach can generate better schedule for most of the

type of workflows irrespective of their size particularly

when resource availability changes frequently.

In future work, we will endeavor to combine the

advantages of DCP-G and GA or GRASP to develop a

failure-aware scheduling strategy for a volatile Grid

environment. We will develop methods to generate the

first schedule using meta-heuristics and then use the

concept of DCP whenever rescheduling is necessary

due to failure of resources which will enhance robust

and efficient execution of e-Science workflow applica-

tions on dynamic Grids.

Acknowledgement

This work is partially supported by Australian Re-

search Council (ARC) Discovery Project grant.

References

[1] C. Laity, N. Anagnostou, B. Berriman, J. Good, J. C.

Jacob, and D. S. Katz, “Montage: An Astronomical

Image Mosaic Service for the NVO”, Astronomical

Data Analysis Software & Systems (ADASS) XIV,

Pasadena, California, October 2004.

[2] P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka

and J. Luitz, “WIEN2k, An Augmented Plane Wave +

Local Orbitals Program for Calculating Crystal Prop-

erties”, Karlheinz Schwarz, Techn. Universität Wien,

Austria, 2001. ISBN 3-9501031-1-2.

[3] J. Yu and R. Buyya, “Taxonomy of Workflow

Management Systems for Grid Computing”, Journal

of Grid Computing, 3(3-4): 171-200, Springer, New

York, USA, Sept. 2005.

[4] J. Yu and R. Buyya, “Workflow Scheduling Algo-

rithms for Grid Computing”, Tech. Rep., GRIDS-TR-

2007-10, University of Melbourne, Australia.

[5] S. Kim, and J. Browne, “A General Approach to

Mapping of Parallel Computation upon Multiproces-

sor Architectures”, Proceedings of IEEE International

Conference on Parallel Processing, 1988, IEEE press.

[6] Y. Kwok and I. Ahmad, “Dynamic Critical-Path

Scheduling: An Effective Technique for Allocating

Task Graphs to Multiprocessors”, IEEE Trans on Par

and Dist Systems, 5(7): 506-521, May 1996.

[7] M. Wieczorek, R. Prodan, and T. Fahringer. “Sched-

uling of Scientific Workflows in the ASKALON Grid

Enviornment”, ACM SIGMOD Record, 34(3): 56-62,

Sept. 2005.

[8] M. Maheswaran, S. Ali, H.J.Siegel, D. Hensgen, and

R. Freund, “Dynamic Matching and Scheduling of a

Class of Independent Tasks onto Heterogeneous

Computng Systems”, 8th Heterogeneous Computing

Workshop (HCW’99), Apr. 1999.

[9] A. Mandal et al., “Scheduling Strategies for Mapping

Application Workflows onto the Grid”, Proceedings

of IEEE International Symposium on High Perform-

ance Distributed Computing (HPDC 2005), 2005.

[10] H. Topcuoglu, S. Hariri, and M. Y. Wu. “Perform-

ance-Effective and Low-Complexity Task Scheduling

for Heterogeneous Computing”, IEEE Trans on Par

and Dist Systems, 13(3): 260-274, March 2002.

[11] T. Fahringer et al., “ASKALON: a tool set for cluster

and Grid computing”, Concurrency and Computation:

Practice and Experience, 17:143-169, Wiley Inter-

Science, 2005.

[12] J. Blythe et al., “Task Scheduling Strategies for

Workflow-based Applications in Grids”, Proceedings

of IEEE International Symposium on Cluster Comput-

ing and the Grid (CCGrid 2005).

[13] D. E. Goldberg, “Genetic Algorithms in Search,

Optimization, and Machine Learning”, Addison-

Wesley, 1989.

[14] I. Foster and C. Kesselman, “The Grid: Blueprint for a

New Computing Infrastructure”, Morgan Kauffmann

Publishers, Inc., 1999.

[15] R. Buyya, and M. Murshed, “GridSim: A Toolkit for

the Modeling and Simulation of Distributed Resource

Management and Scheduling for Grid Computing”,

Concurrency and Computation: Practice and Experi-

ence, 14(13-15): 1175-1220, Wiley Press, USA, 2002.

[16] P. Rutschmann and D. Theiner, “An Inverse Modeling

Approach for the Estimation of Hydrological Model

Parameters”, Journal of Hydroinformatics, 2005.

[17] W. H. Bell, D. G. Cameron, L. Capozza, A. P. Millar,

K. Stockinger, F. Zini, Simulation of Dynamic Grid

Replication Strategies in OptorSim, in: Proceedings of

the 3rd International Workshop on Grid Comput-

ing(GRID ‘02), Springer-Verlag, Berlin, Germany,

Baltimore, MD ,USA, 2002, pp. 46–57.

[18] S. Venugopal, and R. Buyya, “A Set Coverage-based

Mapping Heuristic for Scheduling Distributed Data-

Intensive Applications on Global Grids”, Proceedings

of 7th IEEE/ACM International Conference on Grid

Computing, Barcelona, Sept. 2006, IEEE CS press.

[19] J. Yu and R. Buyya, “A Budget Constrained Schedul-

ing of Workflow Applications on Utility Grids using

Genetic Algorithms”, Workshop on Workflows in

Support of Large-Scale Science, Proceedings of the

15th IEEE International Symposium on High Per-

formance Distributed Computing (HPDC), 2006.

