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Abstract 
 

Effective scheduling is a key concern for the execution 

of performance driven Grid applications. In this paper, 

we propose a Dynamic Critical Path (DCP) based 

workflow scheduling algorithm that determines effi-

cient mapping of tasks by calculating the critical path 

in the workflow task graph at every step. It assigns 

priority to a task in the critical path which is estimated 

to complete earlier. Using simulation, we have com-

pared the performance of our proposed approach with 

other existing heuristic and meta-heuristic based 

scheduling strategies for different type and size of 

workflows. Our results demonstrate that DCP based 

approach can generate better schedule for most of the 

type of workflows irrespective of their size particularly 

when resource availability changes frequently. 

1. Introduction 

Many of the large-scale scientific applications exe-

cuted on present-day Grids are expressed as complex  

e-Science workflows [1][2]. A workflow is a set of 

ordered tasks that are linked by data dependencies [3]. 

A Workflow Management System (WMS) [3] is 

generally employed to define, manage and execute 

these workflow applications on Grid resources.  A 

WMS may use a specific scheduling strategy for 

mapping the tasks in a workflow to suitable Grid 

resources in order to satisfy user requirements. Numer-

ous workflow scheduling strategies have been proposed 

in literature for different objective functions [4]. 

However, the majority of these are static scheduling 

algorithms that produce a good schedule given the 

current state of Grid resources and do not take into 

account changes in resource availability. 

 Critical path heuristics [5] have been used exten-

sively for scheduling interdependent tasks in multi-

processor systems. These aim to determine the longest 

of all execution paths from the beginning to the end (or 

the critical path) in a task graph, and schedule them 

earliest so as to minimize the execution time for the 

entire graph.  Kwok and Ahmad [6] introduced the 

Dynamic Critical Path (DCP) algorithm in which the 

critical path is dynamically determined after each task 

is scheduled. However, this algorithm is designed for 

mapping tasks on to homogeneous processors, and is 

static, in the sense that the schedule is only computed 

once for a task graph. In this paper, we extend the DCP 

algorithm to map and schedule tasks in a workflow on 

to heterogeneous resources in a dynamic Grid envi-

ronment. We have extensively compared the perform-

ance of our algorithm, called DCP-G (Dynamic Critical 

Path for Grids), against well-known Grid workflow 

algorithms.  

The rest of the paper is organized as follows. In the 

next section, we describe existing heuristics and meta-

heuristics based workflow scheduling techniques on 

distributed systems such as Grid. The proposed DCP-G 

workflow scheduling algorithm is presented in Section 

3. Experiment details and simulation results are pre-

sented in Section 4. Finally, we conclude the paper 

with the direction for future work in Section 5. 

2. Related Work 

Generally, a workflow application is represented as 

a Directed Acyclic Graph (DAG) in which graph nodes 

represent tasks and graph edges represent data depend-

encies among the tasks with weights on the nodes 

representing computation and weights on the edges 

representing communication volume. Therefore, 

workflow scheduling problem is usually considered as 

a special case of the DAG scheduling problem. As the 

DAG scheduling problem is NP-complete, we rely on 

heuristics and meta-heuristics based scheduling strate-



gies to achieve the most efficient possible solution. In 

the following, we present some of the well-known 

heuristics and meta-heuristics for workflow scheduling 

on Grid systems.  

Myopic [7]: schedules an unmapped ready task, in 

arbitrary order, to a resource which is expected to 

complete that task earliest, until all tasks have been 

scheduled. It is considered as the simplest method for 

scheduling workflow applications. 

Min-Min [8]: is a list scheduling heuristic that assigns 

priority to the task based on its Expected Completion 

Time (ECT) on a resource. In every step of iteration, it 

discovers the task that has Minimum Expected Com-

pletion Time (MCT) among all the available tasks and 

assigns it to the resource that provides the MCT. This 

is repeated until all tasks are assigned. The intuition 

behind Min-Min is to consider all unmapped independ-

ent tasks during each mapping decision, whereas 

Myopic only considers one task at a time. 

Max-Min [8]: is similar to Min-Min except that in 

each iterative step, a task having the maximum ECT is 

chosen to be scheduled on the resource which is 

expected to complete the task at the earliest time. 

Intuitively, Max-Min attempts to minimize the total 

workflow execution time by assigning longer tasks to 

comparatively better resources. Both Min-Min and 

Max-Min have been used for scheduling workflow 

tasks in Pegasus [9].  

Heterogeneous Earliest Finish Time (HEFT) [10]: 

used in the ASKALON workflow manager [7][11], is a 

well-established list scheduling algorithm which 

assigns higher priority to the workflow task having 

higher rank value. It calculates rank value based on the 

average execution time for each task and average 

communication time between resources of two succes-

sive tasks, where the tasks in the ‘critical path’ get 

comparatively higher rank values. In the resource 

selection phase, tasks are scheduled in the order of 

their priorities and each task is assigned to the resource 

that can complete the task at the earliest time. The 

advantage of using this technique over Min-Min or 

Max-Min is that while assigning priorities to the tasks 

it considers the entire workflow rather than focusing on 

only unmapped independent tasks at each step.  

Greedy Randomized Adaptive Search Procedure 

(GRASP) [12]: is an iterative randomized search 

technique. In GRASP, a number of iterations are 

conducted to search a possible optimal solution for 

mapping tasks on resources. A solution is generated at 

each iterative step and the best solution is kept as the 

final schedule.  This searching procedure terminates 

when the specified termination criterion, such as the 

completion of a certain number of iterations, is satis-

fied. GRASP can generate better schedules than the 

other scheduling techniques stated previously as it 

searches the whole solution space considering entire 

workflow and available resources. 

Genetic Algorithm [13]: is also meta-heuristic based 

scheduling technique such as GRASP. It allows a high 

quality solution to be derived from a large search space 

in polynomial time by applying the principles of 

evolution. Instead of creating a new solution by ran-

domized search as in GRASP, GA generates new 

solutions at each step by randomly modifying the good 

solutions generated in previous steps which results a 

better schedule within less time. 

3. The Proposed DCP-G Algorithm 

For a task graph, the lower and upper bounds of 

starting time for a task are denoted as the Absolute 

Earliest Start Time (AEST) and the Absolute Latest 

Start Time (ALST) respectively. In the DCP algorithm 

[6], the tasks on the critical path have equal AEST and 

ALST values as delaying these tasks affects the overall 

execution time for the task graph. The first task on the 

critical path is mapped to the processor identified for it. 

This process is repeated until all the tasks in the graph 

are mapped.  

However, this algorithm is designed for scheduling 

all the tasks in a task graph with arbitrary computation 

and communication times to a multiprocessor system 

with unlimited number of fully connected identical 

processors. But, Grids [14] are heterogeneous and 

dynamic environments consisting of computing, 

storage and network resources with different capabili-

ties and availability. Therefore, to work on Grids, the 

DCP algorithm needs to be extended in the following 

manner:  

• For a task, the initial AEST and ALST values are 

calculated for the resource which provides the mini-

mum execution time for the task. The overall objec-

tive is to reduce the length of the critical path at 

every pass. We follow the intuition of the Min-Min 

heuristic in which a task is assigned to the resource 

that executes it fastest.  

• For mapping a task on the critical path, all avail-

able resources are considered by DCP-G, as opposed 

to the DCP algorithm, which considers only the re-

sources (processors) occupied by the parent and 

child tasks. This is because, in the latter case, the 

execution time is not varied for different processors, 

and only the communication time between the tasks 

could be reduced by assigning tasks to the same re-

source. However, in Grids, the communication and 

computation times are both liable to change because 

of resource heterogeneity.  



• When a task is mapped to a resource, its execution 

time and data transfer time from the parent node are 

updated accordingly. This changes the AEST and 

ALST of succeeding tasks. 

3.1. Calculation of AEST and ALST in DCP-G 

In DCP-G, the start time of a task is not finalized 

until it is mapped to a resource. Here, we also intro-

duce two more attributes: the Absolute Execution Time 

(AET) of a task which is the minimum execution time 

of the task, and Absolute Data Transfer Time (ADTT) 

which is the minimum time required to transfer the 

output of the task given its current placement. Initially, 

AET and ADTT are calculated as, 
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     Where, )( kRPC  and )( kRBW are processing capabil-

ity and transfer capacity i.e. Bandwidth of resource 

kR respectively. 

Whenever a task t is scheduled to a resource, the 

values of )(tAET and )(tADTT are updated accordingly. 

Therefore, the AEST of a task t on resource R, denoted 

by ),( RtAEST , is recursively defined as, 
 

)},R(RC)AET(t),R{AEST(tAEST(t,R)
kkk ttt,tktk

pk
++=

≤≤1
max  

 

where, t has p parent tasks, tk is the k
th

 parent task and,  

0),( =RtAEST ; if t is an entry task. 

0)R,(RC
kk tttt, = ; if 

ktt RR =  

)(),(, ktttt tADTTRRC
kk

= ; if t and tk are not scheduled.  

Here, the communication time between two tasks is 

considered to be zero if they are mapped to the same 

resource, and equal to the ADTT of parent task, if the 

child is not mapped yet. Using this definition, the 

AEST values can be computed by traversing the task 

graph in a breadth-first manner beginning from the 

entry tasks. 

Once AESTs of all the tasks are computed, it is pos-

sible to calculate Dynamic Critical Path Length 

(DCPL) which is the schedule length of the partially 

mapped workflow. DCPL can be defined as, 
 

)}(),({max
1

iti
ni

tAETRtAESTDCPL
i

+=

≤≤

  

 

where, n is the total number of tasks in the workflow. 

After computing the DCPL, the values of ALST can 

be calculated by traversing the task graph in a 

breadth-first manner but in the reverse direction. Thus, 

the ALST of a task t in resource R, denoted as 

),( RtALST , can be recursively defined as, 
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where, t has c child tasks, tk is the k
th

 child task and, 
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      As in DCP, a task in DCP-G is considered to be on 

the critical path if its AEST and ALST values are 

equal. In order to reduce the value of DCPL at every 

step, the task selected for scheduling is the one that is 

on the critical path and has no unmapped parent tasks. 

3.2. Resource Selection 

After identifying a critical task, we need to select an 

appropriate resource for that task. We select the re-

source that provides the minimum execution time for 

that task. This is discovered by checking all the avail-

able resources for one that minimizes the potential start 

time of the critical child task on the same resource, 

where the critical child task is the one with the least 

difference of AEST and ALST among all the child 

tasks of the critical task. Finally, the critical task is 

mapped to the resource that provides earliest combined 

start time. 

3.3. DCP-G Example 

Figure 1 illustrates the DCP-G algorithm with a 

step-by-step explanation of the mapping of tasks in a 

sample workflow. The sample workflow consists of 

five tasks denoted as T0, T1, T2, T3 and T4 with differ-

ent execution and data transfer requirements. The 

length and size of the output of each task shown in 

Figure 1(a) are measured in Million Instructions (MI) 

and GigaBytes (GB) respectively. The tasks are to be 

mapped to two Grid resources R1 and R2 with process-

ing capability (PC) and transfer capacity i.e. Bandwidth 

(BW) as indicated at the bottom of Figure 1. 

First, the AET and ADTT values for each task are 

calculated as shown in Figure 1(a). Then using these 

values, AEST and ALST of all the tasks are calculated 

according to Section 3.1 (Figure 1(b)). Since T0, T2, T3 

and T4 have equal AEST and ALST, they are on 

critical path with T0 as the highest task. Hence, T0 is 

selected as the critical task and mapped to resource R1 

which gives T0 the minimum combined start time. At 

the end of this step, the schedule length of the work-

flow, i.e. DCPL is 890. Similarly, in Figure 1(c), T2 is 

selected as critical task and mapped to R1. As both T0 

and T1 are mapped to R1 and the data transfer time of 

T0 is now zero, the AEST and ALST of all the tasks are 

changed and the schedule length becomes 850 (Figure 

1(d)). In the next step, T3 is mapped to R1 as well and 



the DCPL is reduced to 770 as the data transfer time 

for T2 is zero.  

     Now T4 is the only task remaining on the critical 

path (Figure 1(e)). However, one of its parent tasks, T1, 

is not mapped yet and therefore T1 is selected as 

critical task. As T2 and T3 are already mapped to R1, 

the start time of T1 on R1 is 700. Therefore, T1 is 

mapped to R2 as its start and end times on R2 are 180 

and 430 respectively. Finally, when T4 is mapped to R1 

(Figure 1(g)), all the tasks have been mapped and the 

schedule length can not be improved any further and a 

schedule length of 750 is obtained. The final schedule 

generated by DCP-G is shown in a table in Figure 1(h). 

4. Performance Evaluation 

We evaluate DCP-G by comparing the schedules 

produced by it against those produced by the other 

algorithms described previously for a variety of work-

flows in a simulated Grid environment. In this section, 

first we describe our simulation methodology and 

setup, and then present the results of experiments. 

4.1. Simulation methodology 

We use GridSim [15] to simulate the application 

and Grid environment for our simulation. We model 

different entities in GridSim in the following manner. 

Workflow model. We implement a workflow genera-

tor that can generate various formats of weighted 

pseudo-application workflows. The following input 

parameters are used to create a workflow. 

• N, the total number of tasks in the workflow. 

• α, the shape parameter represents the ratio of the 

total number of tasks to the width (i.e. maximum 

number of nodes in a level). So width W = 








α

N  

• Type of workflow: Our workflow generator can 

generate three types of workflow namely parallel 

workflow, fork-join workflow and random workflow.  

Parallel workflow: In parallel workflow [16], a 

group of tasks creates a chain of tasks with one entry 

and one exit task and there can be several such chains 

in one workflow. Here, one task is dependent on only 

one task, but the tasks at the head of chains are de-

pendant on entry task and the exit task is dependant on 

the tasks at the tail of chains. Number of levels in a 

parallel workflow can be specified as,  

Number of levels = 






 −

W

2N
 

Fork-join workflow: In fork-join workflow [2], forks 

of tasks are created and then joined. So, there can be 

only one entry task and one exit task in this kind of 

workflow but the number of tasks in each level depends 

on total number of tasks and the width in that level, W. 

Number of levels in fork-join workflow can be speci-

fied as, Number of levels = 








+1W

N  
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Figure 1. Example of workflow scheduling using DCP-G algorithm 



Random workflow: In random workflow, depend-

ency and number of parent tasks of a task which equals 

to the indegree of a node in DAG representation of the 

workflow, is generated randomly. Here, task depend-

ency and the indegree are calculated as, 

Maximum Indegree (Ti) = 








2

W  

Minimum Indegree (Ti) = 1 

Parent (Ti)= {Tx| Tx ∈[T0….Ti-1]};if Ti is not a root 

task; where, x is a random number and 0 <= x <= 








2

W
 

Parent (Ti) = {ф} ; if Ti is a root task 

In Figure 2, a sample of each type of workflow is 

illustrated where N=10, and α=5. 
 

 
Figure 2. Three sample workflows : (a) Parallel 
workflow; (b) Fork-join workflow; (c) Random 

workflow 
 

In simulation, we use MI (Million Instructions) to 

denote the length of tasks and MB (Mega Bytes) to 

denote the output data size of each task. 

Resource model. As the execution environment for 

tasks in scientific workflows is heterogeneous, we use 

heterogeneous resources with different processing 

capabilities. Here, we choose 8 resources (refer to 

Table 1) from the European Data Grid (EDG) 1 test 

bed [17] used for simulation in [18]. The processing 

capability of the resources is measured in MIPS (Mil-

lion Instructions per Second) and the bandwidth in 

Mbps (Megabits per second). 

Table 1. Resources used for evaluation 
Resource Name/Site 

(Location) 

No. of 

Nodes 

Single PE 

Rating (MIPS) 

Mean 

Load 

RAL (UK) 41 1140 0.9 

NorduGrid (Norway) 17 1176 0.9 

NIKHEF (Netherlands) 18 1166 0.9 

Milano (Italy) 7 1000 0.5 

Torino (Italy) 4 1330 0.5 

Catania (Italy) 5 1200 0.6 

Padova (Italy) 13 1000 0.4 

Bologna (Italy) 20 1140 0.8 

4.2. Simulation setup 

The workflows for evaluation are generated using 

the following parameters: 

Type = {parallel, fork-join, random} 

N = {50, 100, 200, 300} 

α = {10} 

Here, the size of each task in the workflow is gener-

ated from a uniform distribution between 100,000 MI 

to 500000 MI while the output data size of each task is 

also generated from a uniform distribution between 1 

GB and 5 GB. 

For GRASP, we run 600 iterations to map tasks to 

the resources and then select the best schedule out of 

those are generated. For GA, the parameters for various 

genetic operators such as selection, crossover and 

mutation are set using those applied in previous studies 

[19]. Table 2 shows the values of different parameters 

used for simulating GA. 
 

Table 2. Parameters of Genetic Algorithm 
Parameter Value/type 

Population size 60 

Crossover probability 0.7 

Swapping mutation probability 0.5 

Replacing mutation probability 0.8 

Fitness function Makespan of workflow 

Selection scheme Elitism-Roulette Wheel 

Stopping condition 300 iterations 

Initial individuals Randomly generated 

4.3. Results and Observations 

We evaluate the scheduling heuristics on the basis 

of the total makespan produced and the time required 

for scheduling the workflows. Makespan is the total 

time required for executing an entire workflow. 

Two sets of experiments were carried out. In the 

first set, we consider an ideal case where availability 

and load of Grid resources remain static over time. For 

this environment, we statically map tasks to resources 

according to different strategies and execute tasks 

accordingly. In the next set, we evaluate the strategies 

on a more realistic scenario where the availability and 

load of Grid resources vary over time. In this case, the 

instantaneous load (i.e. number of PEs occupied) for 

each resource during the simulation was derived from a 

Gaussian distribution, as performed in [18]. 

4.3.1 Execution time in static environment. The 

graphs in Figure 3 plot the execution time of parallel, 

fork-join and random workflows of 50, 100, 200 and 

300 tasks for seven workflow scheduling strategies 

namely, Myopic, Min-Min, Max-Min, HEFT, DCP-G, 

GRASP and GA in static environment.  

For random workflow (refer to Figure 3(c)), DCP-G 

can generate schedules with up to 13% less makespan 

than HEFT which generates better schedule than 

Myopic, Min-min and Max-min. Since from any task in 

the random workflow, there can be multiple paths to an 

exit node, assigning priority to tasks dynamically helps 

DCP-G to generate better schedules. As GRASP and 
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GA search the entire solution space for the best sched-

ule, they generate 20-30% better schedule than DCP-G. 

However, execution time of fork-join workflows 

(refer to Figure 3(b)) shows a significant difference 

between heuristics and meta-heuristics based ap-

proaches. During the process of task selection for 

mapping, heuristics-based approaches do not consider 

the impact of mapping child tasks. Thus, all the heuris-

tic based techniques generate similar schedule with 

DCP-G being marginally better. However, in a fork-

join workflow, a join task depends on the output of all 

the forked independent tasks that precede it. If this join 

task is assigned to a resource with low bandwidths to 

other resources, increase in data transfer time impacts 

the makespan adversely. However, meta-heuristics 

(GA, GRASP) consider the impact of mapping not only 

the parent fork tasks but also the child join tasks, and 

are therefore, able to generate 40-50% better schedule 

than DCP-G which is the best among all the heuristics-

based methods.        

According to Figure 3(a), execution time of parallel 

workflow exhibits slow exponential growth with the 

increase in workflow size. The reason is that, unlike 

fork-join workflows, the number of unmapped ready 

tasks at every step of scheduling in a parallel workflow 

always equal to W and a task becomes ready as soon as 

its parent finishes. Thus, when available resources are  

less than unmapped ready tasks, the time spent by some 

of these tasks in waiting to be scheduled results in an 

increase in the total execution time. In case of parallel 

workflows, DCP-G and GA generate better schedule 

than others and the makespan is reduced by least 20%. 
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Figure 4. Execution time of different types of 
workflows for dynamic environment 
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Figure 3. Execution time of different type of 
workflows for static environment 



Here, the execution time of GRASP rises beyond that 

of DCP-G as the number of candidate solutions for task 

mapping increases exponentially with workflow size. 

This will be explained further in Section 4.3.3. 

4.3.2. Execution time in dynamic environment. In 

dynamic environment, as the resource availability 

changes over time, resource availability information 

needs to be continuously updated after a certain period 

of time and the tasks have to be re-mapped, if neces-

sary, depending on the updated availability of re-

sources. Here, we compare the performance of re-

scheduling using DCP-G and other heuristics-based 

approaches against the static schedules generated by 

the meta-heuristics.  

Figure 4 shows the execution time of different 

scheduling techniques in dynamic environment, where 

resource information is updated every 50 seconds.  The 

number of available processing elements, and hence the 

number of tasks that can start execution in a resource 

varies with the load on the resource. However, for GA 

and GRASP, if a resource is heavily-loaded and un-

available, the tasks mapped to that resource have to 

wait to be executed. This waiting time consequently 

impacts start time of other dependent tasks and in-

creases the makespan. This is reflected in the poor 

performance of GA and GRASP in the graphs in Figure 

4. Thus, heuristics-based approaches are able to gener-

ate up to 30% better schedule than these two meta-

heuristics based approaches. Among the heuristics, 

DCP-G is able to achieve up to 6% better makespan 

than the others. This is because, in DCP-G, tasks on the 

critical path waiting to be executed on a heavily-loaded 

resource are rescheduled on to resources with available 

processing elements. This reduces the critical path 

length and therefore, the makespan for the execution.  

It can also be seen that heuristic-based approaches 

perform better in dynamic than static environments for 

the same workflows and experimental setup. This can 

be attributed to the fact that not only the load but the 

resource availability in dynamic environments is 

updated regularly. This means that the heuristics are 

able to adapt to better resources being more frequently 

available and therefore, produce better schedules. 

4.3.3 Scheduling time. Table 3 shows the average 

scheduling time (in milliseconds) for one task of 

parallel, fork-join and random workflows to generate a 

single schedule for different scheduling techniques. To 

generate a single schedule, Myopic, Min-Min, Max-

Min and HEFT require nearly 1 millisecond for each 

task irrespective of workflow size and type whereas the 

average scheduling time of one task for DCP-G is 16 to 

17 milliseconds, and does not vary with the type of 

workflow as the task selection procedure is independ-

ent of workflow structure. 

Scheduling time using GRASP increases exponen-

tially not only with the increase of tasks in a workflow 

but also with change in workflow structure. In each 

iteration, GRASP creates Restricted Candidate List 

(RCL) for each unmapped ready task and then selects 

resource for the task in random. When number of tasks 

increases, RCL increases exponentially resulting in 

increased scheduling time. But the size of the RCL is 

also dependent on workflow structure. For example, 

when a workflow consists of 300 tasks, parallel and 

fork-join structures contain 30 tasks in each level, 

whereas the random structure contains random number 

of levels as well as random number of tasks in each 

level. Thus, at every step a parallel workflow has 30 

ready tasks, fork-join workflow has maximum 30 ready 

tasks and average number of ready tasks in each level 

of random workflow is less than 30. Therefore, sched-

uling time for random workflow is the lowest and 

parallel workflow is the highest in this case. 
 

Table 3. Average scheduling time per task 
Scheduling 

Strategy 

Random  

workflow(ms) 

Fork-join 

workflow(ms) 

Parallel 

workflow(ms) 

Myopic 1 1 1 

Min-Min 1 1 1 

Max-Min 1 1 1 

HEFT 1 1 1 

DCP-G 17 16 16 

GRASP 1180 2840 5720 

GA 1940 1780 1750 
 

However, scheduling time for GA does not change 

much with the type of workflow because it executes 

same number of genetic operations irrespective of 

workflow structure. But the size of each individual in 

the solution space is equal to number of tasks in work-

flow. So, scheduling time increases with the increase in 

the size of the workflow.  

While it is possible to reschedule at regular intervals 

in GA and GRASP, Table 3 shows that the scheduling 

times for these are at least 100 times that of DCP-G, 

and increases with the size of the workflow as well. 

Hence, we did not incorporate rescheduling for GA and 

GRASP in the experiments for dynamic environment.  

4.3. Discussion 

From Figure 3, it is evident that among the heuris-

tics-based scheduling techniques, DCP-G can generate 

better schedule by up to 20% in static environment, 

especially for random and parallel workflow, irrespec-

tive or workflow size. GA and GRASP can generate 

more effective schedule than DCP-G for random and 

fork-join workflow, but they suffer from the problem of 

higher scheduling time. In our simulation, for parallel 

workflow of 300 tasks, DCP-G takes 6 seconds to map 

the tasks to resources, whereas GA and GRASP take 

580 and 2076 seconds respectively. 



In dynamic environment, heuristics based tech-

niques adapt to the dynamic nature of resources and 

can avoid performance degradation. But meta-

heuristics based techniques perform worse in this 

situation due to the unavailability of mapped resources 

at certain intervals. However, in dynamic environment, 

DCP-G can generate better schedule than other ap-

proaches irrespective of workflow type and size.   

5. Conclusion and Future Work 

In this paper, we have presented DCP-G algorithm 

for scheduling Grid workflows. Using simulation, we 

have compared the performance of our proposed 

approach with other existing heuristic and meta-

heuristic based scheduling strategies for different type 

and size of workflows. The results show that our 

approach can generate better schedule for most of the 

type of workflows irrespective of their size particularly 

when resource availability changes frequently. 

In future work, we will endeavor to combine the 

advantages of DCP-G and GA or GRASP to develop a 

failure-aware scheduling strategy for a volatile Grid 

environment. We will develop methods to generate the 

first schedule using meta-heuristics and then use the 

concept of DCP whenever rescheduling is necessary 

due to failure of resources which will enhance robust 

and efficient execution of e-Science workflow applica-

tions on dynamic Grids.  
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