
Chapter 2
A Taxonomy of CDNs

Mukaddim Pathan and Rajkumar Buyya

2.1 Introduction

Content Delivery Networks (CDNs) [79, 97] have received considerable research
attention in the recent past. A few studies have investigated CDNs to categorize and
analyze them, and to explore the uniqueness, weaknesses, opportunities, and future
directions in this field. Peng presents an overview of CDNs [75]. His work de-
scribes the critical issues involved in designing and implementing an effective CDN,
and surveys the approaches proposed in literature to address these problems. Vakali
et al. [95] present a survey of CDN architecture and popular CDN service providers.
The survey is focused on understanding the CDN framework and its usefulness.
They identify the characteristics and current practices in the content networking do-
main, and present an evolutionary pathway for CDNs, in order to exploit the current
content networking trends. Dilley et al. [29] provide an insight into the overall sys-
tem architecture of the leading CDN, Akamai [1]. They provide an overview of the
existing content delivery approaches and describe Akamai’s network infrastructure
and its operations in detail. They also point out the technical challenges that are to
be faced while constructing a global CDN like Akamai. Saroiu et al. [84] exam-
ine content delivery from the point of view of four content delivery systems: Hy-
pertext Transfer Protocol (HTTP) Web traffic, the Akamai CDN, Gnutella [8, 25],
and KaZaa [62, 66] peer-to-peer file sharing systems. They also present signifi-
cant implications for large organizations, service providers, network infrastructure
providers, and general content delivery providers. Kung et al. [60] describe a tax-
onomy for content networks and introduce a new class of content networks that
perform “semantic aggregation and content-sensitive placement” of content. They
classify content networks based on their attributes in two dimensions: content ag-
gregation and content placement. Sivasubramanian et al. [89] identify the issues

Mukaddim Pathan
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia,
e-mail: apathan@csse.unimelb.edu.au

Rajkumar Buyya
GRIDS Lab, Department of CSSE, The University of Melbourne, Australia,
e-mail: raj@csse.unimelb.edu.au

R. Buyya et al. (eds.), Content Delivery Networks, 33
c© Springer-Verlag Berlin Heidelberg 2008

34 M. Pathan and R. Buyya

for building a Web replica hosting system. Since caching infrastructure is a major
building block of a CDN (e.g. Akamai) and content delivery is initiated from the
origin server, they consider CDNs as replica hosting systems. In this context, they
propose an architectural framework, review related research work, and categorize
them. A survey of peer-to-peer (P2P) content distribution technologies [11] studies
current P2P systems and categorize them by identifying their non-functional proper-
ties such as security, anonymity, fairness, increased scalability, and performance, as
well as resource management, and organization capabilities. Through this study the
authors make useful insights for the influence of the system design on these prop-
erties. Cardellini et al. [20] study the state of the art of Web system architectures
that consists of multiple server nodes distributed on a local area. They provide a
taxonomy of these architectures, and analyze routing mechanisms and dispatching
algorithms for them. They also present future research directions in this context.

2.1.1 Motivations and Scope

As mentioned above, there exist a wide range of work covering different aspects of
CDNs such as content distribution, replication, caching, and Web server placement.
However, none of them attempts to perform a complete categorization of CDNs
by considering the functional and non-functional aspects. The first aspects include
technology usage and operations of a CDN, whereas the latter focus on CDN charac-
teristics such as organization, management, and performance issues. Our approach
of considering both functional and non-functional aspects of CDNs assists in exam-
ining the way in which the characteristics of a CDN are reflected in and affected
by the architectural design decision followed by the given CDN. Therefore, our aim
is to develop a comprehensive taxonomy of CDNs that identifies and categorizes
numerous solutions and techniques related to various design dynamics.

The taxonomy presented in this chapter is built around the core issues for build-
ing a CDN system. In particular, we identify the following key issues/aspects that
pose challenges in the development of a CDN:

• What is required for a harmonious CDN composition? It includes decisions
based on different CDN organization, node interactions, relationships, and con-
tent/service types.

• How to perform effective content distribution and management? It includes the
right choice of content selection, surrogate placement, content outsourcing, and
cache organization methodologies.

• How to route client requests to appropriate CDN node? It refers to the usage of
dynamic, scalable, and efficient routing techniques.

• How to measure a CDN’s performance? It refers to the ability to predict, monitor,
and ensure the end-to-end performance of a CDN.

A full-fledged CDN system design seeks to address additional issues to make the
system robust, fault tolerant (with the ability to detect wide-area failures), secure,

2 A Taxonomy of CDNs 35

and capable of wide-area application hosting. In this context, the issues to be ad-
dressed are:

• How to handle wide-area failures in a CDN? It involves the use of proper tools
and systems for failure detection.

• How to ensure security in a wide-area CDN system? It refers to the solutions to
counter distributed security threats.

• How to achieve wide-area application hosting? It seeks to develop proper tech-
niques to enable CDNs to perform application hosting.

Each of the above issues aspects is an independent research area itself and many
solutions and techniques can be found in literature and in practice. While realizing
proper solution for the additional issues is obvious for a CDN development, the
taxonomy presented in this chapter concentrates only on the first four core issues.
However, we present the ideas in the context of the additional issues and also provide
pointers to some recent related research work. Thus, the readers can get sufficient
materials to comprehend respective issues to dive directly into their interested topic.

2.1.2 Contributions and Organization

The key contributions of this chapter are twofold:

• A taxonomy of CDNs with a complete coverage of this field to provide a com-
prehensive account of applications, features, and implementation techniques.
The main aim of the taxonomy, therefore, is to explore the functional and non-
functional features of CDNs and to provide a basis for categorizing the related
solutions and techniques in this area.

• Map the taxonomy to a few representative CDNs to demonstrate its applicability
to categorize and analyze the present-day CDNs. Such a mapping helps to per-
form “gap” analysis in this domain. It also assists to interpret the related essential
concepts of this area and validates the accuracy of the taxonomy.

The remainder of this chapter is structured as follows: we start by presenting the
taxonomy of CDNs in Sect. 2.2. In the next section, we map the taxonomy to the
representative CDN systems, along with the insights perceived from this mapping.
Thus, we prove the validity and applicability of the taxonomy. We discuss the ad-
ditional issues in CDN development in Sect. 2.4 by highlighting research work in
failure handling, security, and application hosting. Finally, we summarize and con-
clude the chapter in Sect. 2.5.

2.2 Taxonomy

In this section, we present a taxonomy of CDNs based on four key issues as shown
in Fig. 2.1. They are – CDN composition, content distribution and management,
request-routing, and performance measurement.

36 M. Pathan and R. Buyya

Fig. 2.1 Issues for CDN
taxonomy Issues for CDN

Taxonomy

CDN composition

Request-routing
Content distribution and management

Performance measurement

The first issue covers several aspects of CDNs related to organization and for-
mation. This classifies the CDNs with respect to their structural attributes. The next
issue pertains to the content distribution mechanisms in the CDNs. It describes the
content distribution and management approaches of CDNs in terms of surrogate
placement, content selection and delivery, content outsourcing, and organization
of caches/replicas. Request-routing techniques in the existing CDNs are described
as the next issue. Finally, the last issue deals with the performance measurement
methodologies of CDNs.

2.2.1 CDN Composition

The analysis of the structural attributes of a CDN reveals that CDN infrastructural
components are closely related to each other. Moreover, the structure of a CDN
varies depending on the content/services it provides to its users. Within the struc-
ture of a CDN, a set of surrogates is used to build the content-delivery component,
some combinations of relationships and mechanisms are used for redirecting client
requests to a surrogate and interaction protocols are used for communications be-
tween CDN elements.

Figure 2.2 shows a taxonomy based on the various structural characteristics of
CDNs. These characteristics are central to the composition of a CDN and they ad-
dress the organization, types of servers used, relationships, and interactions among
CDN components, as well as the different content and services provided.

CDN composition

Servers Relationships Interaction
protocols

Content/
service types

CDN
Organization

Overlay
approach

Network
approach

Origin
server

Replica
server

Network element-
to-caching proxy

Client-to-
surrogate-to-origin

server

Inter-proxy

Caching proxy
arrays

Caching proxy
meshes

Network
elemetns

interaction

Inter-cache
interaction

Static
content

Streaming
media

ServicesDynamic
content

Fig. 2.2 CDN composition taxonomy

2 A Taxonomy of CDNs 37

2.2.1.1 CDN Organization

There are two general approaches for building CDNs: overlay and network ap-
proach [61]. In the overlay approach, application-specific servers and caches at sev-
eral places in the network handle the distribution of specific content types (e.g. Web
content, streaming media, and real time video). Other than providing the basic net-
work connectivity and guaranteed QoS for specific request/traffic, the core network
components such as routers and switches play no active role in content delivery.
Most of the commercial CDN providers such as Akamai and Limelight Networks
follow the overlay approach for CDN organization. These CDN providers replicate
content to cache servers worldwide. When content requests are received from the
end users, they are redirected to the nearest CDN server, thus improving Web site
response time. As the CDN providers need not to control the underlying network
elements, the management is simplified in an overlay approach and it opens oppor-
tunities for new services.

In the network approach, the network components including routers and switches
are equipped with code for identifying specific application types and for forwarding
the requests based on predefined policies. Examples of this approach include de-
vices that redirect content requests to local caches or switch traffic (coming to data
centers) to specific servers, optimized to serve specific content types. Some CDNs
(e.g. Akamai, Mirror Image) use both network and overlay approaches for CDN
organization. In such case, a network element (e.g. switch) can act at the front end
of a server farm and redirects the content request to a nearby application-specific
surrogate server.

2.2.1.2 Servers

The servers used by a CDN are of two types – origin and replica servers. The server
where the definitive version of the content resides is called origin server. It is updated
by the content provider. On the other hand, a replica server stores a copy of the
content but may act as an authoritative reference for client responses. The origin
server communicates with the distributed replica servers to update the content stored
in it. A replica server in a CDN may serve as a media server, Web server or as a cache
server. A media server serves any digital and encoded content. It consists of media
server software. Based on client requests, a media server responds to the query with
the specific video or audio clip. A Web server contains the links to the streaming
media as well as other Web-based content that a CDN wants to handle. A cache
server makes copies (i.e. caches) of content at the edge of the network in order to
bypass the need of accessing origin server to satisfy every content request.

2.2.1.3 Relationships

The complex distributed architecture of a CDN exhibits different relationships
between its constituent components. The graphical representations of these

38 M. Pathan and R. Buyya

Origin
server

Surrogates

Clients

Caching
proxy A

Master
proxy

Caching
proxy B

Caching proxy array

Network elements

Origin
server

Origin
server

Caching
proxy A

Master
proxy

Caching
proxy B

Caching proxy array

Clients

(a) (b)

Caching
proxy A

Master
proxy

Caching
proxy B

Caching proxy array

(c)

Local
caching proxy

Caching
proxy

Caching
proxy

Caching
proxy

Caching
proxy

Clients

Cache Server

(d)

Fig. 2.3 Relationships: (a) Client-to-surrogate-to-origin server; (b) Network element-to-caching
proxy; (c) Caching proxy arrays; (d) Caching proxy meshes

relationships are shown in Fig. 2.3. These relationships involve components such as
clients, surrogates, origin server, proxy caches, and other network elements. These
components communicate to replicate and cache content within a CDN. Replication
involves creating and maintaining duplicate copy of a given content on different
computer systems. It typically involves “pushing” content from the origin server to
the replica servers [17]. On the other hand, caching involves storing cacheable re-
sponses in order to reduce the response time and network bandwidth consumption
on future, equivalent requests [26, 27, 99].

In a CDN environment, the basic relationship for content delivery is among the
client, surrogates and origin servers. A client may communicate with surrogate
server(s) for requests intended for one or more origin servers. Where a surrogate
is not used, the client communicates directly with the origin server. The communi-
cation between a user and surrogate takes place in a transparent manner, as if the
communication is with the intended origin server. The surrogate serves client re-
quests from its local cache or acts as a gateway to the origin server. The relationship
among client, surrogates, and the origin server is shown in Fig. 2.3(a).

As discussed earlier, CDNs can be formed using a network approach, where
logic is deployed in the network elements (e.g. router, switch) to forward traffic
to caching servers/proxies that are capable of serving client requests. The relation-
ship in this case is among the client, network element, and caching servers/proxies
(or proxy arrays), which is shown in Fig. 2.3(b). Other than these relationships,
caching proxies within a CDN may communicate with each other. A proxy cache is
an application-layer network service for caching Web objects. Proxy caches can be

2 A Taxonomy of CDNs 39

simultaneously accessed and shared by many users. A key distinction between the
CDN proxy caches and ISP-operated caches is that the former serve content only
for certain content provider, namely CDN customers, while the latter cache content
from all Web sites [41].

Based on inter-proxy communication [26], caching proxies can be arranged in
such a way that proxy arrays (Fig. 2.3(c)) and proxy meshes (Fig. 2.3(d)) are formed.
A caching proxy array is a tightly-coupled arrangement of caching proxies. In a
caching proxy array, an authoritative proxy acts as a master to communicate with
other caching proxies. A user agent can have relationship with such an array of
proxies. A caching proxy mesh is a loosely-coupled arrangement of caching prox-
ies. Unlike the caching proxy arrays, proxy meshes are created when the caching
proxies have one-to-one relationship with other proxies. Within a caching proxy
mesh, communication can happen at the same level between peers, and with one
or more parents [26]. A cache server acts as a gateway to such a proxy mesh and
forwards client requests coming from client’s local proxy.

2.2.1.4 Interaction Protocols

Based on the communication relationships described earlier, we can identify the
interaction protocols that are used for interaction among CDN components. Such
interactions can be broadly classified into two types: interaction between network
elements and interaction between caches. Figure 2.4 shows different protocols that
are used in a CDN for interaction among CDN elements. Examples of protocols
for network element interaction are Network Element Control Protocol (NECP) and
Web Cache Control Protocol. On the other hand, Cache Array Routing Protocol
(CARP), Internet Cache Protocol (ICP), Hypertext Caching protocol (HTCP), and
Cache Digest are the examples of inter-cache interaction protocols.

The Network Element Control Protocol (NECP) [24] is a lightweight protocol for
signaling between servers and the network elements that forward traffic to them. The
network elements consist of a range of devices, including content-aware switches
and load-balancing routers. NECP allows network elements to perform load balanc-
ing across a farm of servers and redirection to interception proxies. However, it does
not dictate any specific load balancing policy. Rather, this protocol provides meth-
ods for network elements to learn about server capabilities, availability and hints as

Cache Array Routing Protocol (CARP)
Interaction
protocols

Inter-cache
interaction

Internet Cache Protocol (ICP)

Hypertext Caching Protocol (HTCP)

Cache Digest

Network
elements

interaction Web Cache Control Protocol

Network Element Control Protocol (NECP)

Fig. 2.4 Interaction protocols

40 M. Pathan and R. Buyya

to which flows can and cannot be served. Hence, network elements gather necessary
information to make load balancing decisions. Thus, it avoids the use of proprietary
and mutually incompatible protocols for this purpose. NECP is intended for use in
a wide variety of server applications, including for origin servers, proxies, and in-
terception proxies. It uses the Transport Control Protocol (TCP). When a server is
initialized, it establishes a TCP connection to the network elements using a well-
known port number. Messages can then be sent bi-directionally between the server
and network elements. Most messages consist of a request followed by a reply or
acknowledgement. Receiving a positive acknowledgement implies the recording of
some state in a peer. This state can be assumed to remain in that peer until it ex-
pires or the peer crashes. In other words, this protocol uses a “hard state” model.
Application level KEEPALIVE messages are used to detect a crashed peer in such
communications. When a node detects that its peer has been crashed, it assumes that
all the states in that peer need to be reinstalled after the peer is revived.

The Web Cache Control Protocol (WCCP) [24] specifies interaction between one
or more routers and one or more Web-caches. It runs between a router functioning
as a redirecting network element and interception proxies. The purpose of such in-
teraction is to establish and maintain the transparent redirection of selected types of
traffic flow through a group of routers. The selected traffic is redirected to a group
of Web-caches in order to increase resource utilization and to minimize response
time. WCCP allows one or more proxies to register with a single router to receive
redirected traffic. This traffic includes user requests to view pages and graphics on
World Wide Web (WWW) servers, whether internal or external to the network, and
the replies to those requests. This protocol allows one of the proxies, the designated
proxy, to dictate to the router how redirected traffic is distributed across the caching
proxy array. WCCP provides the means to negotiate the specific method used to dis-
tribute load among Web caches. It also provides methods to transport traffic between
router and cache.

The Cache Array Routing Protocol (CARP) [96] is a distributed caching protocol
based on a known list of loosely coupled proxy servers and a hash function for
dividing URL space among those proxies. An HTTP client implementing CARP
can route requests to any member of the Proxy Array. The proxy array membership
table is defined as a plain ASCII text file retrieved from an Array Configuration
URL. The hash function and the routing algorithm of CARP take a member proxy
defined in the proxy array membership table, and make an on-the-fly determination
about the proxy array member which should be the proper container for a cached
version of a resource pointed to by a URL. Since requests are sorted through the
proxies, duplication of cache content is eliminated and global cache hit rates are
improved. Downstream agents can then access a cached resource by forwarding the
proxied HTTP request for the resource to the appropriate proxy array member.

The Internet Cache Protocol (ICP) [101] is a lightweight message format used
for inter-cache communication. Caches exchange ICP queries and replies to gather
information to use in selecting the most appropriate location in order to retrieve
an object. Other than functioning as an object location protocol, ICP messages can
also be used for cache selection. ICP is a widely deployed protocol. Although, Web

2 A Taxonomy of CDNs 41

caches use HTTP for the transfer of object data, most of the caching proxy imple-
mentations support it in some form. It is used in a caching proxy mesh to locate
specific Web objects in neighboring caches. One cache sends an ICP query to its
neighbors and the neighbors respond with an ICP reply indicating a “HIT” or a
“MISS”. Failure to receive a reply from the neighbors within a short period of time
implies that the network path is either congested or broken. Usually, ICP is im-
plemented on top of User Datagram Protocol (UDP) in order to provide important
features to Web caching applications. Since UDP is an unreliable and connection-
less network transport protocol, an estimate of network congestion and availability
may be calculated by ICP loss. This sort of loss measurement together with the
round-trip-time provides a way to load balancing among caches.

The Hyper Text Caching Protocol (HTCP) [98] is a protocol for discovering
HTTP caches, cached data, managing sets of HTTP caches and monitoring cache
activity. HTCP is compatible with HTTP 1.0. This is in contrast with ICP, which
was designed for HTTP 0.9. HTCP also expands the domain of cache manage-
ment to include monitoring a remote cache’s additions and deletions, requesting
immediate deletions, and sending hints about Web objects such as the third party
locations of cacheable objects or the measured uncacheability or unavailability of
Web objects. HTCP messages may be sent over UDP or TCP. HTCP agents must
not be isolated from network failure and delays. An HTCP agent should be pre-
pared to act in useful ways in the absence of response or in case of lost or damaged
responses.

Cache Digest [42] is an exchange protocol and data format. It provides a solution
to the problems of response time and congestion associated with other inter-cache
communication protocols such as ICP and HTCP. They support peering between
cache servers without a request-response exchange taking place. Instead, other
servers who peer with it fetch a summary of the content of the server (i.e. the
Digest). When using Cache Digest it is possible to accurately determine whether
a particular server caches a given URL. It is currently performed via HTTP. A
peer answering a request for its digest will specify an expiry time for that di-
gest by using the HTTP Expires header. The requesting cache thus knows when
it should request a fresh copy of that peer’s digest. In addition to HTTP, Cache
Digest could be exchanged via FTP. Although the main use of Cache Digest is
to share summaries of which URLs are cached by a given server, it can be ex-
tended to cover other data sources. Cache Digest can be a very powerful mechanism
to eliminate redundancy and making better use of Internet server and bandwidth
resources.

2.2.1.5 Content/Service Types

CDN providers host third-party content for fast delivery of any digital content,
including – static content, dynamic content, streaming media (e.g. audio, real
time video), and different content services (e.g. directory service, e-commerce ser-
vice, and file transfer service). The sources of content are large enterprises, Web

42 M. Pathan and R. Buyya

service providers, media companies, and news broadcasters. Variation in content
and services delivered requires a CDN to adopt application-specific characteristics,
architectures, and technologies. Due to this reason, some of the CDNs are dedicated
for delivering particular content and/or services. Here, we analyze the characteristics
of the content/service types to reveal their heterogeneous nature.

Static content refers to content for which the frequency of change is low. It does
not change depending on user requests. It includes static HTML pages, embedded
images, executables, PDF documents, software patches, audio and/or video files.
All CDN providers support this type of content delivery. This type of content can
be cached easily and their freshness can be maintained using traditional caching
technologies.

Dynamic content refers to the content that is personalized for the user or cre-
ated on-demand by the execution of some application process. It changes frequently
depending on user requests. It includes animations, scripts, and DHTML. Due to
the frequently changing nature of the dynamic content, usually it is considered as
uncachable.

Streaming media can be live or on-demand. Live media delivery is used for live
events such as sports, concerts, channel, and/or news broadcast. In this case, content
is delivered “instantly” from the encoder to the media server, and then onto the
media client. In case of on-demand delivery, the content is encoded and then is
stored as streaming media files in the media servers. The content is available upon
requests from the media clients. On-demand media content can include audio and/or
video on-demand, movie files and music clips. Streaming servers are adopted with
specialized protocols for delivery of content across the IP network.

A CDN can offer its network resources to be used as a service distribution chan-
nel and thus allows the value-added services providers to make their application as
an Internet infrastructure service. When the edge servers host the software of value-
added services for content delivery, they may behave like transcoding proxy servers,
remote callout servers, or surrogate servers [64]. These servers also demonstrate ca-
pability for processing and special hosting of the value-added Internet infrastructure
services. Services provided by CDNs can be directory, Web storage, file transfer, and
e-commerce services. Directory services are provided by the CDN for accessing the
database servers. Users query for certain data is directed to the database servers and
the results of frequent queries are cached at the edge servers of the CDN. Web stor-
age service provided by the CDN is meant for storing content at the edge servers
and is essentially based on the same techniques used for static content delivery. File
transfer services facilitate the worldwide distribution of software, virus definitions,
movies on-demand, and highly detailed medical images. All these contents are static
by nature. Web services technologies are adopted by a CDN for their maintenance
and delivery. E-commerce is highly popular for business transactions through the
Web. Shopping carts for e-commerce services can be stored and maintained at the
edge servers of the CDN and online transactions (e.g. third-party verification, credit
card transactions) can be performed at the edge of CDNs. To facilitate this service,
CDN edge servers should be enabled with dynamic content caching for e-commerce
sites.

2 A Taxonomy of CDNs 43

2.2.2 Content Distribution and Management

Content distribution and management is strategically vital in a CDN for efficient
content delivery and for overall performance. Content distribution includes – content
selection and delivery based on the type and frequency of specific user requests;
placement of surrogates to some strategic positions so that the edge servers are close
to the clients; and content outsourcing to decide which outsourcing methodology
to follow. Content management is largely dependent on the techniques for cache
organization (i.e. caching techniques, cache maintenance, and cache update). The
content distribution and management taxonomy is shown in Fig. 2.5.

Surrogate
placement

Content distribution and
management

Content selection
and delivery

Content
outsourcing

Cache
organization

Single-ISP Multi-ISP

Cooperative
push-based

Non-cooperative
pull-based

Cooperative
pull-based

Caching
techniques

Cache
update

Fig. 2.5 Content distribution and management taxonomy

2.2.2.1 Content Selection and Delivery

The efficiency of content delivery lies in the right selection of content to be deliv-
ered to the end users. An appropriate content selection approach can assist in the
reduction of client download time and server load. Figure 2.6 shows the taxonomy
of content selection and delivery techniques. Content can be delivered to the cus-
tomers in full or partial.

Full-site content selection and delivery is a simplistic approach where the sur-
rogate servers perform “entire replication” in order to deliver the total content site
to the end users. With this approach, a content provider configures its DNS in such
a way that all client requests for its Web site are resolved by a CDN server, which
then delivers all of the content. The main advantage of this approach is its simplic-
ity. However, such a solution is not feasible considering the on-going increase in
the size of Web objects. Although the price of storage hardware is decreasing, suf-
ficient storage space on the edge servers is never guaranteed to store all the content

44 M. Pathan and R. Buyya

Content selection
and delivery

Full-site Partial-site

Entire replication (Delivery
of total content-site)

Partial replication (Delivery
of embedded objects)

Empirical-
based

Popularity-
based

Object-
based

Cluster-
based

URL-
based

Users’ sessions-
based

Fig. 2.6 Taxonomy of content selection and delivery

from content providers. Moreover, since the Web content is not static, the problem
of updating such a huge collection of Web objects is unmanageable.

On the other hand, in partial-site content selection and delivery, surrogate servers
perform “partial replication” to deliver only embedded objects – such as Web page
images – from the corresponding CDN. With partial-site content delivery, a content
provider modifies its content so that links to specific objects have host names in a
domain for which the CDN provider is authoritative. Thus, the base HTML page is
retrieved from the origin server, while embedded objects are retrieved from CDN
cache servers. A partial-site approach is better than the full-site approach in the
sense that the former reduces load on the origin server and on the site’s content gen-
eration infrastructure. Moreover, due to the infrequent change of embedded content,
a partial-site approach exhibits better performance.

Content selection is dependent on the suitable management strategy used for
replicating Web content. Based on the approach to select embedded objects to per-
form replication, partial-site approach can be further divided into – empirical, pop-
ularity, object, and cluster-based replication. In a empirical-based [23] approach,
the Web site administrator empirically selects the content to be replicated to the
edge servers. Heuristics are used in making such an empirical decision. The main
drawback of this approach lies in the uncertainty in choosing the right heuristics.
In a popularity-based approach, the most popular objects are replicated to the sur-
rogates. This approach is time consuming and reliable objects request statistics is
not guaranteed due to the popularity of each object varies considerably. Moreover,
such statistics are often not available for newly introduced content. In an object-
based approach, content is replicated to the surrogate servers in units of objects.
This approach is greedy because each object is replicated to the surrogate server
(under storage constraints) that gives the maximum performance gain [23, 102].
Although such a greedy approach achieve the best performance, it suffers from high

2 A Taxonomy of CDNs 45

complexity to implement on real applications. In a cluster-based approach, Web
content is grouped based on either correlation or access frequency and is replicated
in units of content clusters. The clustering procedure is performed either by fixing
the number of clusters or by fixing the maximum cluster diameter, since neither the
number nor the diameter of the clusters can ever be known. The content clustering
can be either users’ sessions-based or URL-based. In a user’s session-based [36]
approach, Web log files are used to cluster a set of users’ navigation sessions, which
show similar characteristics. This approach is beneficial because it helps to deter-
mine both the groups of users with similar browsing patterns and the groups of
pages having related content. In a URL-based approach, clustering of Web content
is done based on Web site topology [23, 36]. The most popular objects are identified
from a Web site and are replicated in units of clusters where the correlation distance
between every pair of URLs is based on a certain correlation metric. Experimental
results show that content replication based on such clustering approaches reduce
client download time and the load on servers. However, these schemes suffer from
the complexity involved to deploy them.

2.2.2.2 Surrogate Placement

Since location of surrogate servers is closely related to the content delivery process,
extra emphasis is put on the issue of choosing the best location for each surrogate.
The goal of optimal surrogate placement is to reduce user perceived latency for ac-
cessing content and to minimize the overall network bandwidth consumption for
transferring replicated content from servers to clients. The optimization of both of
these metrics results in reduced infrastructure and communication cost for the CDN
provider. Therefore, optimal placement of surrogate servers enables a CDN to pro-
vide high quality services and low CDN prices [88].

Figure 2.7 shows different surrogate server placement strategies. Theoretical ap-
proaches such as minimum k-center problem and k-Hierarchically well-Separated
Trees (k-HST) model the server placement problem as the center placement prob-
lem which is defined as follows: for the placement of a given number of cen-
ters, minimize the maximum distance between a node and the nearest center. The
k-HST [16, 47] algorithm solves the server placement problem according to graph
theory. In this approach, the network is represented as a graph G(V,E), where V is
the set of nodes and E ⊆ V ×V is the set of links. The algorithm consists of two

Surrogate placement strategies

Center
placement
problem

Greedy
method

Topology-informed
placement strategy

Hot spot Tree-based replica
placement

Scalable
replica

placement

Fig. 2.7 Surrogate placement strategies

46 M. Pathan and R. Buyya

phases. In the first phase, a node is arbitrarily selected from the complete graph
(parent partition) and all the nodes which are within a random radius from this node
form a new partition (child partition). The radius of the child partition is a factor of
k smaller than the diameter of the parent partition. This process continues until each
of the nodes is in a partition of its own. Thus the graph is recursively partitioned and
a tree of partitions is obtained with the root node being the entire network and the
leaf nodes being individual nodes in the network. In the second phase, a virtual node
is assigned to each of the partitions at each level. Each virtual node in a parent par-
tition becomes the parent of the virtual nodes in the child partitions and together the
virtual nodes form a tree. Afterwards, a greedy strategy is applied to find the num-
ber of centers needed for the resulted k-HST tree when the maximum center-node
distance is bounded by D. The minimum k-center problem [47] can be described
as follows: (1) Given a graph G(V,E) with all its edges arranged in non-decreasing
order of edge cost c : c(e1)≤ c(e2)≤ ≤ c(em), construct a set of square graphs
G2

1, G2
2, , G2

m. Each square graph of G, denoted by G2 is the graph containing
nodes V and edges (u,v) wherever there is a path between u and v in G. (2) Compute
the maximal independent set Mi for each G2

i. An independent set of G2 is a set of
nodes in G that are at least three hops apart in G and a maximal independent set M
is defined as an independent set V ′ such that all nodes in V −V ′ are at most one hop
away from nodes in V ′. (3) Find smallest i such that Mi ≤ K, which is defined as j.
(4) Finally, Mj is the set of K center.

Due to the computational complexity of these algorithms, some heuristics such
as Greedy replica placement and Topology-informed placement strategy have been
developed. These suboptimal algorithms take into account the existing information
from CDN, such as workload patterns and the network topology. They provide suf-
ficient solutions with lower computation cost. The greedy algorithm [59] chooses
M servers among N potential sites. In the first iteration, the cost associated with
each site is computed. It is assumed that access from all clients converges to the
site under consideration. Hence, the lowest-cost site is chosen. In the second it-
eration, the greedy algorithm searches for a second site (yielding the next lowest
cost) in conjunction with the site already chosen. The iteration continues until M
servers have been chosen. The greedy algorithm works well even with imperfect
input data. But it requires the knowledge of the clients locations in the network and
all pair wise inter-node distances. In topology-informed placement strategy [48],
servers are placed on candidate hosts in descending order of outdegrees (i.e. the
number of other nodes connected to a node). Here the assumption is that nodes with
more outdegrees can reach more nodes with smaller latency. This approach uses
Autonomous Systems (AS) topologies where each node represents a single AS and
node link corresponds to Border Gateway Protocol (BGP) peering. In an improved
topology-informed placement strategy [81], router-level Internet topology is used
instead of AS-level topology. In this approach, each LAN associated with a router
is a potential site to place a server, rather than each AS being a site.

Other server placement algorithms like Hot Spot [78] and Tree-based [63] replica
placement are also used in this context. The hotspot algorithm places replicas near
the clients generating greatest load. It sorts the N potential sites according to the

2 A Taxonomy of CDNs 47

amount of traffic generated surrounding them and places replicas at the top M sites
that generate maximum traffic. The tree-based replica placement algorithm is based
on the assumption that the underlying topologies are trees. This algorithm mod-
els the replica placement problem as a dynamic programming problem. In this ap-
proach, a tree T is divided into several small trees Ti and placement of t proxies is
achieved by placing t ′i proxies in the best way in each small tree Ti, where t = ∑i t

′
i .

Another example is Scan [21], which is a scalable replica management framework
that generates replicas on demand and organizes them into an application-level mul-
ticast tree. This approach minimizes the number of replicas while meeting clients’
latency constraints and servers’ capacity constraints. More information on Scan can
be found in Chap. 3 of this book.

For surrogate server placement, the CDN administrators also determine the op-
timal number of surrogate servers using single-ISP and multi-ISP approach [95].
In the Single-ISP approach, a CDN provider typically deploys at least 40 surro-
gate servers around the network edge to support content delivery [30]. The policy
in a single-ISP approach is to put one or two surrogates in each major city within
the ISP coverage. The ISP equips the surrogates with large caches. An ISP with
global network can thus have extensive geographical coverage without relying on
other ISPs. The drawback of this approach is that the surrogates may be placed at
a distant place from the clients of the CDN provider. In Multi-ISP approach, the
CDN provider places numerous surrogate servers at as many global ISP Points of
Presence (POPs) as possible. It overcomes the problems with single-ISP approach
and surrogates are placed close to the users and thus content is delivered reliably
and timely from the requesting client’s ISP. Large CDN providers such as Akamai
have more than 25000 servers [1, 29]. Other than the cost and complexity of setup,
the main disadvantage of the multi-ISP approach is that each surrogate server re-
ceives fewer (or no) content requests which may result in idle resources and poor
CDN performance [71]. Estimation of performance of these two approaches shows
that single-ISP approach works better for sites with low-to-medium traffic volumes,
while the multi-ISP approach is better for high-traffic sites [30].

2.2.2.3 Content Outsourcing

Given a set of properly placed surrogate servers in a CDN infrastructure and a cho-
sen content for delivery, choosing an efficient content outsourcing practice is crucial.
Content outsourcing is performed using cooperative push-based, non-cooperative
pull-based, or cooperative pull-based approaches.

Cooperative push-based approach depends on the pre-fetching of content to the
surrogates. Content is pushed to the surrogate servers from the origin, and surrogate
servers cooperate to reduce replication and update cost. In this scheme, the CDN
maintains a mapping between content and surrogate servers, and each request is
directed to the closest surrogate server or otherwise the request is directed to the
origin server. Under this approach, greedy-global heuristic algorithm is suitable for
making replication decision among cooperating surrogate servers [54]. Still it is

48 M. Pathan and R. Buyya

considered as a theoretical approach since it has not been used by any commercial
CDN provider [23, 36].

In non-cooperative pull-based approach, client requests are directed to their clos-
est surrogate servers. If there is a cache miss, surrogate servers pull content from the
origin server. Most popular CDN providers (e.g. Akamai, Mirror Image) use this ap-
proach. The drawback of this approach is that an optimal server is not always chosen
to serve content request [49]. Many CDNs use this approach since the cooperative
push-based approach is still at the experimental stage [71].

The cooperative pull-based approach differs from the non-cooperative approach
in the sense that surrogate servers cooperate with each other to get the requested con-
tent in case of a cache miss. In the cooperative pull-based approach client requests
are directed to the closest surrogate through DNS redirection. Using a distributed
index, the surrogate servers find nearby copies of requested content and store it in
the cache. The cooperative pull-based approach is reactive wherein a data object
is cached only when the client requests it. An academic CDN Coral [34], using a
distributed index, follows the cooperative pull-based approach where the proxies
cooperate each other in case of case miss.

In the context of content outsourcing, it is crucial to determine in which surrogate
servers the outsourced content should be replicated. Several works can be found in
literature demonstrating the effectiveness of different replication strategies for out-
sourced content. Kangasharju et al. [54] have used four heuristics, namely random,
popularity, greedy-single, and greedy-global, for replication of outsourced content.
Tse [94] has presented a set of greedy approaches where the placement is occurred
by balancing the loads and sizes of the surrogate servers. Pallis et al. [72] have pre-
sented a self-tuning, parameterless algorithm called lat-cdn for optimally placing
outsourced content in CDN’s surrogate servers. This algorithm uses object’s latency
to make replication decision. An object’s latency is defined as the delay between a
request for a Web object and receiving the object in its entirety. An improvement of
the lat-cdn algorithm is il2p [70], which places the outsourced objects to surrogate
servers with respect to the latency and load of the objects.

2.2.2.4 Cache Organization and Management

Content management is essential for CDN performance, which is mainly dependent
on the cache organization approach followed by the CDN. Cache organization is in
turn composed of the caching techniques used and the frequency of cache update to
ensure the freshness, availability, and reliability of content. Other than these two, the
cache organization may also involve the integrated use of caching and replication on
a CDN’s infrastructure. Such integration may be useful for a CDN for effective con-
tent management. Potential performance improvement is also possible in terms of
perceived latency, hit ratio, and byte hit ratio if replication and caching are used to-
gether in a CDN [91]. Moreover, the combination of caching with replication assists
to fortify against flash crowd events. In this context, Stamos et al. [90] have pre-
sented a generic non-parametric heuristic method that integrates Web caching with

2 A Taxonomy of CDNs 49

content replication. They have developed a placement similarity approach, called
SRC, for evaluating the level of integration. Another integrated approach called Hy-
brid, which combines static replication and Web caching using an analytic model of
LRU is presented by Bakiras et al. [13]. Hybrid gradually fills the surrogate servers
caches with static content in each iteration, as long as it contributes to the opti-
mization of response times. More information on the integrated use of caching and
replication can be found in Chap. 4 and Chap. 5 of this book.

Content caching in CDNs can be intra-cluster or inter-cluster basis. A taxonomy
of caching techniques is shown in Fig. 2.8. Query-based, digest-based, directory-
based, or hashing-based scheme can be used for intra-cluster caching of content. In
a query-based [101] scheme, on a cache miss a CDN server broadcasts a query to
other cooperating CDN servers. The problems with this scheme are the significant
query traffic and the delay because a CDN server has to wait for the last “miss”
reply from all the cooperating surrogates before concluding that none of its peers
has the requested content. Because of these drawbacks, the query-based scheme
suffers from implementation overhead. The digest-based [83] approach overcomes
the problem of flooding queries in query-based scheme. In the digest-based scheme,
each of the CDN servers maintains a digest of content held by the other cooperat-
ing surrogates. The cooperating surrogates are informed about any sort of update
of the content by the updating CDN server. On checking the content digest, a CDN
server can take the decision to route a content request to a particular surrogate. The
main drawback is that it suffers from update traffic overhead, because of the fre-
quent exchange of the update traffic to make sure that the cooperating surrogates
have correct information about each other. The directory-based [38] scheme is a
centralized version of the digest-based scheme. In directory-based scheme, a cen-
tralized server keeps content information of all the cooperating surrogates inside
a cluster. Each CDN server only notifies the directory server when local updates
occur and queries the directory server whenever there is a local cache miss. This
scheme experiences potential bottleneck and single point of failure since the di-
rectory server receives update and query traffic from all cooperating surrogates. In
a hashing-based [55, 96] scheme, the cooperating CDN servers maintain the same
hashing function. A designated CDN server holds a content based on content’s URL,
IP addresses of the CDN servers, and the hashing function. All requests for that par-
ticular content are directed to that designated server. Hashing-based scheme is more

Caching techniques

Intra-cluster
caching

Inter-cluster
caching

Query-based scheme

Digest-based scheme

Directory-based scheme

Hashing-based scheme

Semi-hashing-based scheme

Query-based scheme

Fig. 2.8 Caching techniques taxonomy

50 M. Pathan and R. Buyya

efficient than other schemes since it has the smallest implementation overhead and
highest content sharing efficiency. However, it does not scale well with local re-
quests and multimedia content delivery since the local client requests are directed
to and served by other designated CDN servers. To overcome this problem, a semi-
hashing-based scheme [24, 67] can be followed. Under the semi-hashing-based
scheme, a local CDN server allocates a certain portion of its disk space to cache
the most popular content for its local users and the remaining portion to cooperate
with other CDN servers via a hashing function. Like pure hashing, semi-hashing has
small implementation overhead and high content sharing efficiency. In addition, it
has been found to significantly increase the local hit rate of the CDN.

A hashing-based scheme is not appropriate for inter-cluster cooperative caching,
because representative CDN servers of different clusters are normally distributed
geographically. The digest-based or directory-based scheme is also not suitable
for inter-cluster caching since the representative CDN servers have to maintain
a huge content digest and/or directory including the content information of CDN
servers in other clusters. Hence, a query-based scheme can be used for inter-cluster
caching [68]. In this approach, when a cluster fails to serve a content request, it
queries other neighboring cluster(s). If the content can be obtained from this neigh-
bor, it replies with a “hit” message or if not, it forwards the request to other neigh-
boring clusters. All the CDN servers inside a cluster use hashing based scheme for
serving content request and the representative CDN server of a cluster only queries
the designated server of that cluster to serve a content request. Hence, this scheme
uses the hashing-based scheme for intra-cluster content routing and the query-based
scheme for inter-cluster content routing. This approach improves performance since
it limits flooding of query traffic and overcomes the problem of delays when re-
trieving content from remote servers through the use of a Timeout and Time-to-Live
(TTL) value with each query message.

Cached objects in the surrogate servers of a CDN have associated expiration
times after which they are considered stale. Ensuring the freshness of content is
necessary to serve the clients with up to date information. If there are delays in-
volved in propagating the content, a CDN provider should be aware that the content
may be inconsistent and/or expired. To manage the consistency and freshness of
content at replicas, CDNs deploy different cache update techniques. The taxonomy
of cache update mechanisms is shown in Fig. 2.9.

The most common cache update method is the periodic update. To ensure content
consistency and freshness, the content provider configures its origin Web servers to
provide instructions to caches about what content is cacheable, how long differ-
ent content is to be considered fresh, when to check back with the origin server

Fig. 2.9 Cache update
taxonomy

Periodic
update

Update
propagation

On-demand
update

Invalidation

Cache update

2 A Taxonomy of CDNs 51

for updated content, and so forth [41]. With this approach, caches are updated in
a regular fashion. But this approach suffers from significant levels of unnecessary
traffic generated from update traffic at each interval. The update propagation is
triggered with a change in content. It performs active content pushing to the CDN
cache servers. In this mechanism, an updated version of a document is delivered to
all caches whenever a change is made to the document at the origin server. For fre-
quently changing content, this approach generates excess update traffic. On-demand
update is a cache update mechanism where the latest copy of a document is prop-
agated to the surrogate cache server based on prior request for that content. This
approach follows an assume nothing structure and content is not updated unless it is
requested. The disadvantage of this approach is the back-and-forth traffic between
the cache and origin server in order to ensure that the delivered content is the latest.
Another cache update approach is invalidation, in which an invalidation message is
sent to all surrogate caches when a document is changed at the origin server. The sur-
rogate caches are blocked from accessing the documents when it is being changed.
Each cache needs to fetch an updated version of the document individually later.
The drawback of this approach is that it does not make full use of the distribution
network for content delivery and belated fetching of content by the caches may lead
to inefficiency of managing consistency among cached contents.

Generally, CDNs give the content provider control over freshness of content and
ensure that all CDN sites are consistent. However, content providers themselves
can build their own policies or use some heuristics to deploy organization specific
caching policies. In the first case, content providers specify their caching policies in
a format unique to the CDN provider, which propagates the rule sets to its caches.
These rules specify instructions to the caches on how to maintain the freshness of
content through ensuring consistency. In the latter case, a content provider can ap-
ply some heuristics rather than developing complex caching policies. With this ap-
proach, some of the caching servers adaptively learn over time about the frequency
of change of content at the origin server and tune their behavior accordingly.

2.2.3 Request-Routing

A request-routing system is responsible for routing client requests to an appropriate
surrogate server for the delivery of content. It consists of a collection of network
elements to support request-routing for a single CDN. It directs client requests to
the replica server “closest” to the client. However, the closest server may not be the
best surrogate server for servicing the client request [22]. Hence, a request-routing
system uses a set of metrics such as network proximity, client perceived latency,
distance, and replica server load in an attempt to direct users to the closest surro-
gate that can best serve the request. The content selection and delivery techniques
(i.e. full-site and partial-site) used by a CDN have a direct impact on the design of
its request-routing system. If the full-site approach is used by a CDN, the request-
routing system assists to direct the client requests to the surrogate servers as they
hold all the outsourced content. On the other hand, if the partial-site approach is

52 M. Pathan and R. Buyya

(3) Redirect request to CDN

provider

Replica server

Replica server

Origin Server

(5) Closest replica

server serves selected

embedded objects

(1) All client requests

arrive to the origin server

of content provider

(2) Discovery’s origin

server returns the basic

index page

Index.html

Selection
Algorithm

(4) Forward
request

Selected embedded
objects to be served
by CDN provider

User

CDN Provider

Replica server

Fig. 2.10 Request-routing in a CDN environment

used, the request-routing system is designed in such a way that on receiving the
client request, the origin server delivers the basic content while surrogate servers
deliver the embedded objects. The request-routing system in a CDN has two parts:
deployment of a request-routing algorithm and use of a request-routing mechanism
[89]. A request-routing algorithm is invoked on receiving a client request. It speci-
fies how to select an edge server in response to the given client request. On the other
hand, a request-routing mechanism is a way to inform the client about the selection.
Such a mechanism at first invokes a request-routing algorithm and then informs the
client about the selection result it obtains.

Figure 2.10 provides a high-level view of the request-routing in a typical CDN
environment. The interaction flows are: (1) the client requests content from the con-
tent provider by specifying its URL in the Web browser. Client’s request is directed
to its origin server; (2) when origin server receives a request, it makes a decision to
provide only the basic content (e.g. index page of the Web site) that can be served
from its origin server; (3) to serve the high bandwidth demanding and frequently
asked content (e.g. embedded objects – fresh content, navigation bar, and banner ad-
vertisements), content provider’s origin server redirects client’s request to the CDN
provider; (4) using the proprietary selection algorithm, the CDN provider selects the
replica server which is “closest” to the client, in order to serve the requested embed-
ded objects; (5) selected replica server gets the embedded objects from the origin
server, serves the client requests and caches it for subsequent request servicing.

2.2.3.1 Request-Routing Algorithms

The algorithms invoked by the request-routing mechanisms can be adaptive or non-
adaptive (Fig. 2.11). Adaptive algorithms consider the current system condition to

2 A Taxonomy of CDNs 53

Fig. 2.11 Taxonomy of
request-routing algorithms

Request-routing
algorithms

Non-adaptive Adaptive

select a cache server for content delivery. The current condition of the system is ob-
tained by estimating some metrics like load on the replica servers or the congestion
of selected network links. Non-adaptive request-routing algorithms use some heuris-
tics for selecting a cache server rather than considering the current system condition.
A non-adaptive algorithm is easy to implement, while the former is more complex.
Complexity of adaptive algorithms arises from their ability to change behavior to cope
with an enduring situation. A non-adaptive algorithm works efficiently when the as-
sumptions made by the heuristics are met. On the other hand, an adaptive algorithm
demonstrates high system robustness [100] in the face of events like flash crowds.

An example of the most common and simple non-adaptive request-routing algo-
rithm is round-robin, which distributes all requests to the CDN cache servers and
attempts to balance load among them [93]. It is assumed that all the cache servers
have similar processing capability and that any of them can serve any client request.
Such simple algorithms are efficient for clusters, where all the replica servers are lo-
cated at the same place [69]. But the round-robin request-routing algorithm does not
perform well for wide area distributed systems where the cache servers are located
at distant places. In this case it does not consider the distance of the replica servers.
Hence, client requests may be directed to more distant replica servers, which cause
poor performance perceived by the users. Moreover, the aim of load balancing is not
fully achieved since processing different requests can involve significantly different
computational costs.

In another non-adaptive request-routing algorithm, all replica servers are ranked
according to the predicted load on them. Such prediction is done based on the num-
ber of requests each of the servers has served so far. This algorithm takes client-
server distance into account and client requests are directed to the replica servers
in such a way that load is balanced among them. The assumption here is that the
replica server load and the client-server distance are the most influencing factors for
the efficiency of request processing [89]. Though it has been observed by Aggar-
wal et al. [9] that deploying this algorithm can perform well for request-routing, the
client perceived performance may still be poor.

Severalother interestingnon-adaptive request-routingalgorithmsare implemented
in the Cisco DistributedDirector [28]. One of these algorithms considers the percent-
age of client requests that each replica server receives. A server receiving more re-
quests is assumed to be more powerful. Hence, client requests are directed to the
more powerful servers to achieve better resource utilization. Another algorithm de-
fines preference of one server over another in order to delegate the former to serve
client requests. The DistributedDirector also supports random request distribution to
replica servers. Furthermore, some other non-adaptive algorithms can be found which
considers the client’s geographic location to redirect requests to the nearby replica.

54 M. Pathan and R. Buyya

However, this algorithm suffers from the fact that client requests may be assigned to
overloaded replica servers, which may degrade client perceived performance.

Karger et al. [55] have proposed a request-routing algorithm to adapt to hotspots.
It calculates a hashing function h from a large space of identifiers, based on the
URL of the content. This hashing function is used to route client requests efficiently
to a logical ring consisting of cache servers with IDs from the same space. It is
assumed that the cache server having the smallest ID larger than h is responsible for
holding the referenced data. Hence, client requests are directed to it. Variations of
this algorithm have been used in the context of intra-cluster caching [67, 68] and
P2P file sharing systems [14].

Globule [76] uses an adaptive request-routing algorithm that selects the replica
server closest to the clients in terms of network proximity [93]. The metric estima-
tion in Globule is based on path length which is updated periodically. The metric
estimation service used in globule is passive, which does not introduce any addi-
tional traffic to the network. However, Huffaker et al. [45] show that the distance
metric estimation procedure is not very accurate.

Andrews et al. [10] and Ardiaz et al. [12] have proposed adaptive request-routing
algorithms based on client-server latency. In this approach, either client access logs
or passive server-side latency measurements are taken into account, and the algo-
rithms decide to which replica server the client requests are to be sent. Hence, they
redirect a client request to a replica which has recently reported the minimal latency
to the client. These algorithms are efficient since they consider latency measure-
ments. However, they require the maintenance of central database of measurements,
which limits the scalability of systems on which these algorithms are deployed [89].

Cisco DistributedDirector [28] has implemented an adaptive request-routing al-
gorithm. The request-routing algorithm deployed in this system takes into account
a weighted combination of three metrics, namely – inter-AS distance, intra-AS dis-
tance, and end-to-end latency. Although this algorithm is flexible since it makes
use of three metrics, the deployment of an agent in each replica server for metric
measurement makes it complex and costly. Moreover, the active latency measure-
ment techniques used by this algorithm introduce additional traffic to the Internet.
Furthermore, the isolation of DistributedDirector component from the replica server
makes it unable to probe the servers to obtain their load information.

Akamai [1, 29] uses a complex request-routing algorithm which is adaptive to
flash crowds. It takes into consideration a number of metrics such as replica server
load, the reliability of loads between the client and each of the replica servers, and
the bandwidth that is currently available to a replica server. This algorithm is pro-
prietary to Akamai and the technology details have not been revealed.

2.2.3.2 Request-Routing Mechanisms

Request-routing mechanisms inform the client about the selection of replica server
generated by the request-routing algorithms. Request-routing mechanisms can be
classified according to several criteria. In this section we classify them according

2 A Taxonomy of CDNs 55

CDN Peering

IP anycast

Request-routing
mechanims

Global Server Load
Balancing (GSLB)

URL rewriting

Anycasting

Global awareness

Smart authoritative DNS

DNS-based request routing

HTTP redirection

Automation through scripts

URL modification

Centralized directory model

Flooded request model

Document routing model

Application level anycast

Distributed Hash Table

Fig. 2.12 Taxonomy of request-routing mechanisms

to request processing. As shown in Fig. 2.12, they can be classified as: Global
Server Load Balancing (GSLB), DNS-based request-routing, HTTP redirection,
URL rewriting, anycasting, and CDN peering.

In GSLB [44] approach, service nodes, which serve content to the end users,
consisting of a GSLB-enabled Web switch and a number of real Web servers are
distributed in several locations around the world. Two new capabilities of the ser-
vice nodes allow them to support global server load balancing. The first is global
awareness and the second is smart authoritative DNS [44]. In local server load bal-
ancing, each service node is aware of the health and performance information of
the Web servers directly attached to it. In GSLB, one service node is aware of the
information in other service nodes and includes their virtual IP address in its list of
servers. Hence, the Web switches making up each service node are globally aware
and each knows the addresses of all the other service nodes. They also exchange
performance information among the Web switches in GSLB configuration. To make
use of such global awareness, the GSLB switches act as a smart authoritative DNS
for certain domains. The advantage of GSLB is that since the service nodes are
aware of each other, each GSLB switch can select the best surrogate server for any
request. Thus, this approach facilitates choosing servers not only from the pool of
locally connected real servers, but also the remote service nodes. Another significant
advantage of GSLB is that the network administrator can add GSLB capability to
the network without adding any additional networking devices. A disadvantage of
GSLB is the manual configuration of the service nodes to enable them with GSLB
capability.

In DNS-based request-routing approach, the content distribution services rely on
the modified DNS servers to perform the mapping between a surrogate server’s sym-
bolic name and its numerical IP address. It is used for full-site content selection and

56 M. Pathan and R. Buyya

delivery. In DNS-based request-routing, a domain name has multiple IP addresses
associated to it. When an end user’s content request comes, the DNS server of the
service provider returns the IP addresses of servers holding the replica of the re-
quested object. The client’s DNS resolver chooses a server among these. To decide,
the resolver may issue probes to the servers and choose based on response times
to these probes. It may also collect historical information from the clients based on
previous access to these servers. Both full and partial-site CDN providers use DNS
redirection. The performance and effectiveness of DNS-based request-routing has
been examined in a number of recent studies [15, 41, 65, 86]. The advantage of
this approach is the transparency as the services are referred to by means of their
DNS names, and not their IP addresses. DNS-based approach is extremely popu-
lar because of its simplicity and independence from any actual replicated service.
Since it is incorporated to the name resolution service it can be used by any Internet
application [89]. In addition, the ubiquity of DNS as a directory service provides ad-
vantages during request-routing. The disadvantage of DNS-based request-routing is
that, it increases network latency because of the increase in DNS lookup times. CDN
administrators typically resolve this problem by splitting CDN DNS into two levels
(low-level DNS and high-level DNS) for load distribution [58]. Another limitation
is that DNS provides the IP address of the client’s Local DNS (LDNS), rather than
the client’s IP address. Clients are assumed to be near to the LDNS. When DNS-
based server selection is used to choose a nearby server, the decision is based on the
name server’s identity, not the client’s. Thus, when clients and name servers are not
proximal, the DNS-based approach may lead to poor decisions. Most significantly,
DNS cannot be relied upon to control all incoming requests due to caching of DNS
data at both the ISP and client level. Indeed, it can have control over as little as 5%
of requests in many instances [20]. Furthermore, since clients do not access the ac-
tual domain names that serve their requests, it leads to the absence of any alternate
server to fulfill client requests in case of failure of the target surrogate server. Thus,
in order to remain responsive to changing network or server conditions, DNS-based
schemes must avoid client-side caching or decisions.

HTTP redirection propagates information about replica server sets in HTTP
headers. HTTP protocols allow a Web server to respond to a client request with
a special message that tells the client to re-submit its request to another server.
HTTP redirection can be used for both full-site and partial-site content selection
and delivery. This mechanism can be used to build a special Web server, which ac-
cepts client requests, chooses replica servers for them and redirects clients to those
servers. It requires changes to both Web servers and clients to process extra headers.
The main advantage of this approach is flexibility and simplicity. Another advantage
is that replication can be managed at fine granularity, since individual Web pages are
considered as a granule [75]. The most significant disadvantage of HTTP redirection
is the lack of transparency. Moreover, the overhead perceived through this approach
is significant since it introduces extra message round-trip into request processing as
well as over HTTP.

Though most CDN systems use a DNS based routing scheme, some systems
use the URL rewriting or Navigation hyperlink. It is mainly used for partial-site

2 A Taxonomy of CDNs 57

content selection and delivery where embedded objects are sent as a response to
client requests. In this approach, the origin server redirects the clients to different
surrogate servers by rewriting the dynamically generated pages’ URL links. For
example, with a Web page containing an HTML file and some embedded objects,
the Web server would modify references to embedded objects so that the client could
fetch them from the best surrogate server. To automate this process, CDNs provide
special scripts that transparently parse Web page content and replace embedded
URLs [58]. URL rewriting can be pro-active or reactive. In the pro-active URL
rewriting, the URLs for embedded objects of the main HTML page are formulated
before the content is loaded in the origin server. The reactive approach involves
rewriting the embedded URLs of an HTML page when the client request reaches
the origin server. The main advantage of URL rewriting is that the clients are not
bound to a single surrogate server, because the rewritten URLs contain DNS names
that point to a group of surrogate servers. Moreover, finer level of granularity can
be achieved through this approach since embedded objects can be considered as
granule. The disadvantages through this approach are the delay for URL-parsing
and the possible bottleneck introduced by an in-path element. Another disadvantage
is that content with modified reference to the nearby surrogate server rather than to
the origin server is non-cacheable.

The anycasting approach can be divided into IP anycasting and Application-level
anycasting. IP anycasting, proposed by Partridge et al. [73], assumes that the same
IP address is assigned to a set of hosts and each IP router holds a path in its routing
table to the host that is closest to this router. Thus, different IP routers have paths to
different hosts with the same IP address. IP anycasting can be suitable for request-
routing and service location. It targets network-wide replication of the servers over
potentially heterogeneous platforms. A disadvantage of IP anycasting is that some
parts of the IP address space is allocated for anycast address. Fei et al. [32] pro-
posed an application level anycasting mechanism where the service consists of a
set of anycast resolvers, which perform the anycast domain names to IP address
mapping. Clients interact with the anycast resolvers by generating an anycast query.
The resolver processes the query and replies with an anycast response. A metric
database, associated with each anycast resolver contains performance data about
replica servers. The performance is estimated based on the load and the request
processing capability of the servers. The overhead of the performance measure-
ment is kept at a manageable level. The performance data can be used in the se-
lection of a server from a group, based on user-specified performance criteria. An
advantage of application level anycasting is that better flexibility can be achieved
through this approach. One disadvantage of this approach is that deploying the any-
casting mechanism for request-routing requires changes to the servers as well as to
the clients. Hence, it may lead to increased cost considering possibly large number
of servers and clients.

Peer-to-peer content networks are formed by symmetrical connections between
host computers. Peered CDNs deliver content on each other’s behalf. Thus, a CDN
could expand its reach to a larger client population by using partnered CDN servers
and their nearby forward proxies. A content provider usually has contracts with

58 M. Pathan and R. Buyya

only one CDN and each CDN contacts other peer CDNs on the content provider’s
behalf [74]. Peering CDNs are more fault-tolerant as the necessary information re-
trieval network can be developed on the peering members themselves instead of re-
lying on a dedicated infrastructure like traditional CDNs. To locate content in CDN
peering, a centralized directory model, Distributed Hash Table (DHT), flooded re-
quest model, or document routing model can be used [44, 66].

In a centralized directory model, peers contact a centralized directory where all
the peers publish content that they want to share with others. When the directory re-
ceives a request it responses with the information of the peer that holds the requested
content. When more than one peer matches the request, the best peer is selected
based on metrics such as network proximity, highest bandwidth, least congestion
and highest capacity. On receiving the response from the directory, the requesting
peer contacts the peer that it has been referred to for content retrieval. The draw-
back of this approach is that, the centralized directory is subject to a single point
of failure. Moreover, the scalability of a system based on a centralized directory is
limited to the capacity of the directory. Archi [31], WAIS [52] are the examples of
centralized directory systems for retrieving FTP files located on various systems. In
systems using DHTs, peers are indexed through hashing keys within a distributed
system. Then a peer holding the desired content can be found through applying
queries and lookup functions [43]. Example of a protocol using DHT is Chord [92].
The advantage of this approach is the ability to perform load balancing by offloading
excess loads to the less-loaded peers [18]. In the flooded request model, a request
from a peer is broadcast to the peers directly connected to it. These peers in turn for-
ward the messages to other peers directly connected to them. This process continues
until the request is answered or some broadcast limit is reached. The drawback of
this approach is that it generates unnecessary network traffic and hence, it requires
enormous bandwidth. Thus, it suffers from scalability problem and it limits the size
of the network [44]. Gnutella [8, 25] is the example of a system using the flooded
request model. In document routing model an authoritative peer is asked for referral
to get the requested content. Each peer in the model is helpful, though they partially
complete the referral information [44]. In this approach, each peer is responsible for
a range of file IDs. When a peer wants to get some file, it sends a request a request
containing the file ID. The request is forwarded to the peer whose ID is most sim-
ilar to the file ID. Once the file is located, it is transferred to the requesting peer.
The main advantage of this approach is that it can complete a comprehensive search
within a bounded O(log n) number of steps. Moreover, it shows good performance
and is scalable enough to grow significantly large.

2.2.4 Performance Measurement

Performance measurement of a CDN is done to measure its ability to serve the
customers with the desired content and/or service. Typically five key metrics are
used by the content providers to evaluate the performance of a CDN [30, 37, 58].
Those are:

2 A Taxonomy of CDNs 59

• Cache hit ratio: It is defined as the ratio of the number of cached documents
versus total documents requested. A high hit rate reflects that a CDN is using an
effective cache technique to manage its caches.

• Reserved bandwidth: It is the measure of the bandwidth used by the origin server.
It is measured in bytes and is retrieved from the origin server.

• Latency: It refers to the user perceived response time. Reduced latency indicates
that less bandwidth is reserved by the origin server.

• Surrogate server utilization: It refers to the fraction of time during which the sur-
rogate servers remain busy. This metric is used by the administrators to calculate
CPU load, number of requests served and storage I/O usage.

• Reliability: Packet-loss measurements are used to determine the reliability of a
CDN. High reliability indicates that a CDN incurs less packet loss and is always
available to the clients.

Performance measurement can be accomplished based on internal performance
measures as well as from the customer perspective. A CDN provider’s own per-
formance testing can be misleading, since it may perform well for a particular Web
site and/or content, but poorly for others. To ensure reliable performance measure-
ment, a CDN’s performance can be measured by independent third-party such as
Keynote Systems [3] or Giga Information Group [6]. The performance measure-
ment taxonomy is shown in Fig. 2.13.

Fig. 2.13 Performance mea-
surement taxonomy

Performance
measurement

Internal measurement

External measurement

2.2.4.1 Internal Measurement

CDN servers could be equipped with the ability to collect statistics in order to get
an end-to-end measurement of its performance. In addition, deployment of probes
(hardware and/or software) throughout the network and correlation of the informa-
tion collected by probes with the cache and server logs can be used to measure the
end-to-end performance.

2.2.4.2 External Measurement

In addition to internal performance measurement, external measurement of perfor-
mance by an independent third-party informs the CDN customers about the ver-
ified and guaranteed performance. This process is efficient since the independent
performance-measuring companies support benchmarking networks of strategically
located measurement computers connected through major Internet backbones in
several cities. These computers measure how a particular Web site performs from
the end user’s perspective, considering service performance metrics in critical
areas [95].

60 M. Pathan and R. Buyya

2.2.4.3 Network Statistics Acquisition for Performance Measurement

For internal and external performance measurement, different network statistics ac-
quisition techniques are deployed based on several parameters. Such techniques may
involve network probing, traffic monitoring, and feedback from surrogates. Typical
parameters in the network statistics acquisition process include geographical prox-
imity, network proximity, latency, server load, and server performance as a whole.
Figure 2.14 presents the mechanisms used by the CDNs to perform network statis-
tics acquisition.

Network probing is a measurement technique where the possible requesting en-
tities are probed in order to determine one or more metrics from each surrogate
or a set of surrogates. Network probing can be used for P2P-based cooperative
CDNs where the surrogate servers are not controlled by a single CDN provider.
Example of such probing technique is an ICMP ECHO message that is sent pe-
riodically from a surrogate or a set of surrogates to a potential requesting entity.
Active probing techniques are sometimes not suitable and limited for some reasons.
It introduces additional network latency which may be significant for small Web
requests. Moreover, performing several probes to an entity often triggers intrusion-
detection alerts, resulting in abuse complaints [35]. Probing sometimes may lead
to an inaccurate metric as ICMP traffic can be ignored or reprioritized due to con-
cerns of Distributed Denial of Service (DDoS) attacks. A distributed anycasting
system by Freedman et al. [35] has shown that ICMP probes and TCP probes to
high random ports are often dropped by firewalls and flagged as unwanted port
scans.

Traffic monitoring is a measurement technique where the traffic between the
client and the surrogate is monitored to know the actual performance metrics. Once
the client connects, the actual performance of the transfer is measured. This data
is then fed back into the request-routing system. An example of such traffic moni-
toring is to watch the packet loss from a client to a surrogate or the user perceived
response time (latency) by observing the TCP behavior. Latency is the simplest and
mostly used distance metric, which can be estimated by monitoring the number of
packets (i.e. traffic) traveled along the route between client and the surrogate. A
metric estimation system such as IDMaps [35] measures and disseminates distance
information on the global Internet in terms of latency and bandwidth. This system
considers two types of distance information based on timeliness – load sensitive and
“raw” (where distance information is obtained considering no load on the network).
The estimation of these information is performed through traffic monitoring with an
update frequency on the order of days, or if necessary, hours.

Network statistics
acquisition

Network probing

Traffic monitoring

Feedback from surrogates
Static

Dynamic

Fig. 2.14 Network statistics acquisition techniques

2 A Taxonomy of CDNs 61

Feedback from surrogates can be obtained by periodically probing a surrogate
by issuing application specific requests (e.g. HTTP) and taking related measures.
Feedback information can also be obtained from agents that are deployed in the
surrogates. These agents can communicate a variety of metrics about their nodes.
Methods for obtaining feedback information can be static or dynamic. Static meth-
ods select a route to minimize the number of hops or to optimize other static pa-
rameters. Dynamic probing allows computing round-trip time or QoS parameters in
“real time” [33].

Figure 2.15 shows the different metrics used by CDNs to measure the network
and system performance. Geographical proximity is a measure of identifying a
user’s location within a certain region. It is often used to redirect all users within
a certain region to the same Point of Presence (POP). The measurement of such net-
work proximity is typically derived through probing of BGP routing tables. The end
user perceived latency is a useful metric to select the suitable surrogate for that user.
Packet loss information through a network path is a measurement metric that is used
to select the path with lowest error rate. Average bandwidth, startup time and frame
rate are the metrics used to select the best path for streaming media delivery. Server
load state can be computed based on metrics such as CPU load, network interface
load, active connection, and storage I/O load. This metric is used to select the server
with the aggregated least load.

Latency
Measurement

metrics Average bandwidth

Packet loss

Startup time

Frame rate

Geographical proximity

Server load

Fig. 2.15 Metrics used for measuring network and system performance

2.2.4.4 Performance Measurement through Simulation

Other than using internal and external performance measurement, researchers use
simulation tools to measure a CDN’s performance. Some researchers also
experiment their CDN policies on real platforms such as PlanetLab [5]. The CDN
simulators implemented in software are valuable tools for researchers to develop,
test and diagnose a CDN’s performance, since accessing real CDN traces and logs
is not easy due to the proprietary nature of commercial CDNs. Such a simulation
process is economical because of no involvement of dedicated hardware to carry
out the experiments. Moreover, it is flexible because it is possible to simulate a
link with any bandwidth and propagation delay and a router with any queue size
and queue management technique. A simulated network environment is free of any
uncontrollable factors such as unwanted external traffic, which the researchers may
experience while running experiments in a real network. Hence, simulation results

62 M. Pathan and R. Buyya

are reproducible and easy to analyze. A wide range of network simulators [4, 7]
are available which can be used to simulate a CDN to measure its performance.
Moreover, there are also some specific CDN simulation systems [2, 7, 23, 54, 100]
that allow a (closely) realistic approach for the research community and CDN devel-
opers to measure performance and experiment their policies. However, the results
obtained from a simulation may be misleading if a CDN simulation system does
not take into account several critical factors such as the bottlenecks that are likely
to occur in a network, the number of traversed nodes etc., considering the TCP/IP
network infrastructure.

2.3 Mapping of the Taxonomy to Representative CDNs

In this section, we provide the categorization and mapping of our taxonomy to a
few representative CDNs that have been surveyed in Chap. 1 of this book. We also
present the perceived insights and a critical evaluation of the existing systems while
classifying them. Our analysis of the CDNs based on the taxonomy also examines
the validity and applicability of the taxonomy.

2.3.1 CDN Composition Taxonomy Mapping

Table 2.1 shows the annotation of the representative CDNs based on the CDN com-
position taxonomy. As shown in the table, the majority of the existing CDNs use
overlay approach for CDN organization, while some use network approach or both.
The use of both overlay and network approaches is common among commercial
CDNs such as Akamai and Mirror Image. When a CDN provider uses a combina-
tion of these two approaches for CDN formation, a network element can be used to
redirect HTTP requests to a nearby application-specific surrogate server.

Academic CDNs are built using P2P techniques, following an overlay approach.
However, each of them differs in the way the overlay is built and deployed. For ex-
ample, CoDeeN overlay consists of deployed “open” proxies, whereas Coral over-
lay (consisting of cooperative HTTP proxies and a network of DNS servers) is built
relying on an underlying indexing infrastructure, and Globule overlay is composed
of the end user nodes.

In an overlay approach, the following relationships are common – client-to-
surrogate-to-origin server and network element-to-caching proxy. Inter-proxy rela-
tionship is also common among the CDNs, which supports inter-cache interaction.
When using network approach, CDNs rely on the interaction of network elements
for providing services through deploying request-routing logic to the network el-
ements based on predefined policies. The overlay approach is preferred over the
network approach because of the scope for new services integration and simplified

2 A Taxonomy of CDNs 63

Ta
bl

e
2.

1
C

D
N

co
m

po
si

tio
n

ta
xo

no
m

y
m

ap
pi

ng

C
D

N
N

am
e

an
d

Ty
pe

C
D

N
O

rg
an

iz
at

io
n

Se
rv

er
s

R
el

at
io

ns
hi

ps
In

te
ra

ct
io

n
Pr

ot
oc

ol
s

C
on

te
nt

/S
er

vi
ce

Ty
pe

s
C

om
m

er
ci

al
C

D
N

s
A

ka
m

ai
N

et
w

or
k

an
d

ov
er

la
y

ap
pr

oa
ch

O
ri

gi
n

an
d

re
pl

ic
a

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

In
te

r-
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

St
at

ic
co

nt
en

t,
dy

na
m

ic
co

nt
en

t,
st

re
am

in
g

m
ed

ia
,a

nd
se

rv
ic

es
(n

et
w

or
k

m
on

ito
ri

ng
,

ge
og

ra
ph

ic
ta

rg
et

in
g)

E
dg

e
St

re
am

N
et

w
or

k
ap

pr
oa

ch
N

/A
N

/A
N

et
w

or
k

el
em

en
ts

in
te

ra
ct

io
n

V
id

eo
st

re
am

in
g,

vi
de

o
ho

st
in

g
se

rv
ic

es
L

im
el

ig
ht

N
et

w
or

ks
O

ve
rl

ay
ap

pr
oa

ch
O

ri
gi

n
an

d
re

pl
ic

a
se

rv
er

s
C

lie
nt

-t
o-

su
rr

og
at

e-
to

-o
ri

gi
n

se
rv

er
,

N
et

w
or

k
el

em
en

t-
to

-c
ac

hi
ng

pr
ox

y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n
St

at
ic

co
nt

en
t,

st
re

am
in

g
m

ed
ia

M
ir

ro
r

Im
ag

e
N

et
w

or
k

an
d

O
ve

rl
ay

ap
pr

oa
ch

O
ri

gi
n

an
d

re
pl

ic
a

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n
St

at
ic

co
nt

en
t,

st
re

am
in

g
m

ed
ia

,
W

eb
co

m
pu

tin
g

an
d

re
po

rt
in

g
se

rv
ic

es

A
ca

de
m

ic
C

D
N

s
C

oD
ee

N
O

ve
rl

ay
ap

pr
oa

ch
w

ith
“o

pe
n”

pr
ox

ie
s

O
ri

gi
n

an
d

re
pl

ic
a/

pr
ox

y
(f

or
w

ar
d,

re
ve

rs
e,

re
di

re
ct

or
)

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

in
te

r-
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

Pa
rt

ic
ip

at
in

g
us

er
s

re
ce

iv
e

be
tte

r
pe

rf
or

m
an

ce
to

m
os

t
si

te
s;

on
ly

pr
ov

id
es

st
at

ic
co

nt
en

t

64 M. Pathan and R. Buyya

Ta
bl

e
2.

1
(c

on
tin

ue
d)

C
D

N
N

am
e

an
d

Ty
pe

C
D

N
O

rg
an

iz
at

io
n

Se
rv

er
s

R
el

at
io

ns
hi

ps
In

te
ra

ct
io

n
Pr

ot
oc

ol
s

C
on

te
nt

/S
er

vi
ce

Ty
pe

s
C

or
al

O
ve

rl
ay

ap
pr

oa
ch

w
ith

an
un

de
rl

yi
ng

in
de

xi
ng

in
fr

as
tr

uc
tu

re

O
ri

gi
n

an
d

re
pl

ic
a/

(c
oo

pe
ra

tiv
e)

pr
ox

y
ca

ch
e

se
rv

er
s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

in
te

r-
pr

ox
y

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

M
os

tu
se

rs
re

ce
iv

e
be

tte
r

pe
rf

or
m

an
ce

to
pa

rt
ic

ip
at

in
g

si
te

s;
on

ly
pr

ov
id

es
st

at
ic

co
nt

en
t

G
lo

bu
le

O
ve

rl
ay

ap
pr

oa
ch

w
ith

en
d

us
er

no
de

s

O
ri

gi
n,

re
pl

ic
a,

ba
ck

up
an

d/
or

re
di

re
ct

or
se

rv
er

s

C
lie

nt
-t

o-
su

rr
og

at
e-

to
-o

ri
gi

n
se

rv
er

,
N

et
w

or
k

el
em

en
t-

to
-c

ac
hi

ng
pr

ox
y,

in
te

r-
no

de

N
et

w
or

k
el

em
en

ts
in

te
ra

ct
io

n,
in

te
r-

ca
ch

e
in

te
ra

ct
io

n

A
W

eb
si

te
’s

pe
rf

or
m

an
ce

an
d

av
ai

la
bi

lit
y

is
im

pr
ov

ed
;p

ro
vi

de
s

st
at

ic
co

nt
en

ta
nd

m
on

ito
ri

ng
se

rv
ic

es

2 A Taxonomy of CDNs 65

management of underlying network infrastructure. Offering a new service in overlay
approach is as simple as distributing new code to CDN servers [61].

CDNs use origin and replica servers to perform content delivery. Most of the
replica servers are used as Web servers for serving Web content. Some CDNs such
as Akamai, EdgeStream, Limelight Networks, and Mirror Image use their replica
servers as media servers for delivering streaming media and video hosting ser-
vices. Replica servers can also be used for providing services like caching, large file
transfer, reporting, and DNS services. In the academic CDN domain, proxy/replica
servers can be configured for different purposes. For example, each CoDeeN node
is capable of acting as a forward, a reverse, and a redirection proxy; Coral proxies
are cooperative; and Globule node can play the role of an origin, replica, backup,
and/or replica server.

From Table 2.1, it can also be seen that most of the CDNs are dedicated to pro-
vide particular content, since variation of services and content requires the CDNs
to adopt application-specific characteristics, architectures and technologies. Most
of them provide static content, while only some of them provide streaming me-
dia, broadcasting, and other services. While the main business goal of commercial
CDNs is to gain profit through content and/or service delivery, the goal of academic
CDNs differs from each other. As for instance, CoDeeN provides static content
with the goal of providing participating users better performance to most Web sites;
Coral aims to provide most users better performance to participating Web sites; and
Globule targets to improve a Web site’s performance, availability and resistance (to
a certain extent) to flash crowds and the Slashdot effects.

2.3.2 Content Distribution and Management Taxonomy Mapping

The mapping of the content distribution and management taxonomy to the represen-
tative CDNs is shown in Table 2.2.

Most of the CDNs support partial-site content delivery, while both full and
partial-site content delivery is also possible. CDN providers prefer to support partial-
site content delivery because it reduces load on the origin server and on the site’s
content generation infrastructure. Moreover, due to the infrequent change of embed-
ded content, partial-site approach performs better than the full-site content delivery
approach. Only few CDNs – Akamai, Mirror Image and Coral to be specific, are
found to support clustering of contents. The content distribution infrastructure of
other CDNs does not reveal any information whether other CDNs use any scheme
for content clustering. Akamai and Coral cluster content based on users’ sessions.
This approach is beneficial because it helps to determine both the groups of users
with similar browsing patterns and the groups of pages having related content. The
only CDN to use the URL-based content clustering is Mirror Image. But URL-
based approach is not popular because it suffers from the complexity involved to
deploy them.

66 M. Pathan and R. Buyya

From the table it is clear that most of the representative CDNs with extensive
geographical coverage follow the multi-ISP approach to place numerous number of
surrogate servers at many global ISP POPs. Commercial CDNs such as Akamai,
Limelight Networks, Mirror Image, and academic CDNs such as Coral [34] and
CoDeeN use multi-ISP approach. The single-ISP approach suffers from the distant
placement of the surrogates with respect to the locality of the end users. However,
the setup cost, administrative overhead, and complexity associated with deploying
and managing of the system in multi-ISP approach is higher. An exception to this
can be found for sites with high traffic volumes. Multi-ISP approach performs bet-
ter in this context since single-ISP approach is suitable only for sites with low-to-
medium traffic volumes [95].

Content outsourcing of the commercial CDNs mostly use non-cooperative pull-
based approach because of its simplicity enabled by the use of DNS redirection or
URL rewriting. Cooperative push-based approach is still theoretical and none of
the existing CDNs supports it. Cooperative pull-based approach involves complex
technologies (e.g. DHT) as compared to the non-cooperative approach and it is used
by the academic CDNs following P2P architecture [71]. Moreover, it imposes a
large communication overhead (in terms of number of messages exchanged) when
the number of clients is large. It also does not offer high fidelity when the content
changes rapidly or when the coherency requirements are stringent.

From Table 2.2 it is also evident that representative commercial and academic
CDNs with large geographic coverage, use inter-cluster (and a combination of inter
and intra-cluster) caching. CDNs mainly use on-demand update as their cache up-
date policy. Only Coral uses invalidation for updating caches since it delivers static
content which changes very infrequently. Globule follows an adaptive cache up-
date policy to dynamically choose between different cache consistency enforcement
techniques. Of all the cache update policies, periodic update has the greatest reach
since the caches are updated in a regular fashion. Thus, it has the potential to be most
effective in ensuring cache content consistency. Update propagation and invalidation
are not generally applicable as steady-state control mechanisms, and they can cause
control traffic to consume bandwidth and processor resources that could otherwise
be used for serving content [41]. Content providers themselves may administer to
deploy specific caching mechanisms or heuristics for cache update. Distributing par-
ticular caching mechanism is simpler to administer but it has limited effects. On the
other hand, cache heuristics are a good CDN feature for content providers who do
not want to develop own caching mechanisms. However, heuristics will not deliver
the same results as well-planned policy controls [41].

2.3.3 Request-Routing Taxonomy Mapping

Table 2.3 maps the request-routing taxonomy to the representative CDNs. It can be
observed from the table that DNS-based mechanisms are very popular for request-
routing. The main reason of this popularity is its simplicity and the ubiquity of

2 A Taxonomy of CDNs 67

Ta
bl

e
2.

2
C

on
te

nt
di

st
ri

bu
tio

n
an

d
m

an
ag

em
en

tt
ax

on
om

y
m

ap
pi

ng

C
D

N
N

am
e

C
on

te
nt

Se
le

ct
io

n
an

d
D

el
iv

er
y

Su
rr

og
at

e
Pl

ac
em

en
t

C
on

te
nt

O
ut

so
ur

ci
ng

C
ac

he
O

rg
an

iz
at

io
n

A
ka

m
ai

C
on

te
nt

se
le

ct
io

n
•

Fu
ll

an
d

pa
rt

ia
l-

si
te

de
liv

er
y

C
on

te
nt

C
lu

st
er

in
g

•
U

se
rs

’
se

ss
io

ns
ba

se
d

M
ul

ti-
IS

P
ap

pr
oa

ch
;H

ot
sp

ot
pl

ac
em

en
tb

y
al

lo
ca

tin
g

m
or

e
se

rv
er

s
to

si
te

s
ex

pe
ri

en
ci

ng
hi

gh
lo

ad

N
on

-c
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

U
pd

at
e

pr
op

ag
at

io
n

•
O

n-
de

m
an

d
E

dg
e

St
re

am
C

on
te

nt
se

le
ct

io
n

•
Pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
N

/A

Si
ng

le
-I

SP
ap

pr
oa

ch
N

on
-c

oo
pe

ra
tiv

e
pu

ll-
ba

se
d

C
ac

hi
ng

te
ch

ni
qu

e
•

In
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
N

/A
L

im
el

ig
ht

N
et

w
or

ks
C

on
te

nt
se

le
ct

io
n

•
Pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
N

/A

M
ul

ti-
IS

P
ap

pr
oa

ch
N

on
-c

oo
pe

ra
tiv

e
pu

ll-
ba

se
d

C
ac

hi
ng

te
ch

ni
qu

e
•

In
tr

a-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

O
n-

de
m

an
d

M
ir

ro
r

Im
ag

e
C

on
te

nt
se

le
ct

io
n

•
Pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
•

U
R

L
ba

se
d

M
ul

ti-
IS

P
ap

pr
oa

ch
;C

en
te

r
pl

ac
em

en
tf

ol
lo

w
in

g
a

co
nc

en
tr

at
ed

“S
up

er
st

or
e”

ar
ch

ite
ct

ur
e

N
on

-c
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a-

cl
us

te
r

ca
ch

in
g

C
ac

he
up

da
te

•
O

n-
de

m
an

d

68 M. Pathan and R. Buyya

Ta
bl

e
2.

2
(c

on
tin

ue
d)

C
D

N
N

am
e

C
on

te
nt

Se
le

ct
io

n
an

d
D

el
iv

er
y

Su
rr

og
at

e
Pl

ac
em

en
t

C
on

te
nt

O
ut

so
ur

ci
ng

C
ac

he
O

rg
an

iz
at

io
n

C
oD

ee
N

C
on

te
nt

se
le

ct
io

n
•

Pa
rt

ia
l-

si
te

de
liv

er
y

C
on

te
nt

C
lu

st
er

in
g

N
/A

M
ul

ti-
IS

P
ap

pr
oa

ch
;

To
po

lo
gy

-i
nf

or
m

ed
re

pl
ic

a
pl

ac
em

en
t

C
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

O
n-

de
m

an
d

C
or

al
C

on
te

nt
se

le
ct

io
n

•
Fu

ll
an

d
pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
•

U
se

rs
’

se
ss

io
ns

ba
se

d

M
ul

ti-
IS

P
ap

pr
oa

ch
;T

re
e-

ba
se

d
re

pl
ic

a
pl

ac
em

en
t

C
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

C
ac

he
in

va
lid

at
io

n
G

lo
bu

le
C

on
te

nt
se

le
ct

io
n

•
Fu

ll
an

d
pa

rt
ia

l-
si

te
de

liv
er

y
C

on
te

nt
C

lu
st

er
in

g
N

/A

Si
ng

le
-I

SP
ap

pr
oa

ch
;B

es
tr

ep
lic

a
pl

ac
em

en
ts

tr
at

eg
y

is
dy

na
m

ic
al

ly
se

le
ct

ed
th

ro
ug

h
re

gu
la

r
ev

al
ua

tio
n

of
di

ff
er

en
t

st
ra

te
gi

es

C
oo

pe
ra

tiv
e

pu
ll-

ba
se

d
C

ac
hi

ng
te

ch
ni

qu
e

•
In

tr
a

an
d

in
te

r-
cl

us
te

r
ca

ch
in

g
C

ac
he

up
da

te
•

A
da

pt
iv

e
ca

ch
e

up
da

te

2 A Taxonomy of CDNs 69

DNS as a directory service. DNS-based mechanisms mainly consist of using a
specialized DNS server in the name resolution process. Among other request-
routing mechanisms, HTTP redirection is also highly used in the CDNs because
of the finer level of granularity on the cost of introducing an explicit binding be-
tween a client and a replica server. Flexibility and simplicity are other reasons of
using HTTP redirection for request-routing in CDNs. Some CDNs such as Mir-
ror Image uses GSLB for request-routing. It is advantageous since less effort is
required to add GSLB capability to the network without adding any additional net-
work devices. Among the academic CDNs, Coral exploits overlay routing tech-
niques, where indexing abstraction for request-routing is done using DSHT. Thus,
it makes use of P2P mechanism for request redirection. As we mentioned ear-
lier, the request-routing system of a CDN is composed of a request-routing al-
gorithm and a request-routing mechanism. The request-routing algorithms used
by the CDNs are proprietary in nature. The technology details of most of them
have not been revealed. Our analysis of the existing CDNs indicates that Aka-
mai and Globule use adaptive request-routing algorithm for their request-routing
system. Akamai’s adaptive (to flash crowds) request-routing takes into account
server load and various network metrics; whereas Globule measures only the num-
ber of AS that a request needs to pass through. In case of CoDeeN, the request-
routing algorithm takes into account request locality, system load, reliability, and
proximity information. On the other hand, Coral’s request-routing algorithm im-
proves locality by exploiting on-the-fly network measurement and storing topology
hints in order to increase the possibility for the clients to discover nearby DNS
servers.

Table 2.3 Request-routing taxonomy mapping

CDN Name Request-routing Technique
Akamai • Adaptive request-routing algorithms which takes into account server load

and various network metrics
• Combination of DNS-based request-routing and URL rewriting

EdgeStream HTTP redirection
Limelight Networks DNS-based request-routing
Mirror Image Global Server Load Balancing (GSLB)

• Global awareness
• Smart authoritative DNS

CoDeeN • Request-routing algorithm takes into account request locality, system
load, reliability, and proximity information.
• HTTP redirection.

Coral • Request-routing algorithms with improved locality by exploiting on-the-
fly network measurement and storing topology hints

• DNS-based request-routing
Globule • Adaptive request-routing algorithms considering AS-based proximity

• Single-tier DNS-based request-routing

70 M. Pathan and R. Buyya

2.3.4 Performance Measurement Taxonomy Mapping

Table 2.4 shows the mapping of different performance measurement techniques to
representative CDNs.

Performance measurement of a CDN through some metric estimation measures
its ability to serve the customers with the desired content and/or services. A CDN’s
performance should be evaluated in terms of cache hit ratio, bandwidth consump-
tion, latency, surrogate server utilization, and reliability. In addition, other factors
such as storage, communication overhead, and scalability can also be taken into
account. The estimation of performance metrics gives an indication of system con-
ditions and helps for efficient request-routing and load balancing in large systems. It
is important to a content provider to conduct performance study of a CDN for select-
ing the most appropriate CDN provider. However, the proprietary nature of the CDN
providers does not allow a content provider to conduct performance measurement
on them.

From Table 2.4, we can see that performance measurement of a CDN is done
through internal measurement technologies as well as from the customer perspec-
tive. It is evident that, most of the CDNs use internal measurement based on network
probing, traffic monitoring or the like. Akamai uses proactive traffic monitoring and
network probing for measuring performance. In the academic domain, CoDeeN has
the local monitoring ability that examines a service’s primary resources, such as free
file descriptors/sockets, CPU cycles, and DNS resolver service; Coral has the ability

Table 2.4 Performance measurement taxonomy mapping

CDN Name Performance Measurement

Akamai Internal measurement
• Network probing
• Traffic monitoring (proactive)
External measurement
• Performed by a third party (Giga Information group)

EdgeStream Internal measurement
• Traffic monitoring through Real Time Performance Monitoring Service

(RPMS)
Limelight Networks N/A
Mirror Image Internal measurement

• Network probing
• Traffic monitoring and reporting

CoDeeN Internal measurement
• Local traffic and system monitoring

Coral Internal measurement
• Traffic monitoring
• Liveness checking of a proxy via UDP RPC

Globule Internal measurement
• Traffic monitoring
• Monitoring of server availability by the redirectors

2 A Taxonomy of CDNs 71

to perform a proxy’s liveness check (via UDP remote procedure call (RPC)) prior to
replying to a DNS query; whereas, Globule has monitoring ability implemented in
its redirector servers which checks for the availability of other servers.

External performance measurement of CDN providers is not common because
most of the operating CDNs are commercial enterprises, which are not run trans-
parently, and there are commercial advantages to keep the performance metrics and
methodologies undisclosed. Despite this, some CDNs such as Akamai allow a third-
party to perform external measurements.

2.4 Discussion

As stated at the beginning of this chapter, a full-fledged CDN development requires
addressing additional issues (other than the four core issues considered for the tax-
onomy) such as fault tolerance, security, and ability for Web application hosting. In
this section, we present a brief discussion on them and assist the readers to compre-
hend respective fields by providing referral to relevant research materials.

CDNs being a complex fabric of distributed network elements, failures can occur
at many places. Following a concentrated architecture such as local clustering may
improve fault-tolerance. However, it creates a single-point of failure, when the ISP
connectivity to the cluster is lost. This problem can be solved through deploying
Web clusters in distributed locations (mirroring) or using multiple ISPs to provide
connectivity (multihoming). While clustering, mirroring, or multihoming addresses
the CDN robustness issue to some extent, they introduce additional problems. Clus-
tering suffers from scalability, while mirroring requires each mirror to carry entire
load, and multihoming requires each connection to carry the entire traffic. Commer-
cial CDNs follow their own proprietary approaches to provide fault-tolerance and
scalability. As for instance, Akamai developed a distributed monitoring service that
ensures that server or network failures are handled immediately without affecting
the end users. Other than this, there are numerous solutions available in literature,
some of which are widely used in real systems. Interested readers are referred to
[46, 77, 85] to find descriptions on the explicit fault-tolerance solutions in wide-
area systems such as CDNs.

Ensuring security in CDNs pose extra challenges in system development. There
are security concerns at different levels of a CDN such as network, routers, DNS
or Web clusters. One common security threat is the DDoS attack. The DDoS attack
can be aimed at (a) consumption of scarce resources such as network bandwidth or
CPU; (b) destruction or modification of configuration information; and (c) physical
destruction or modifications of network components [82]. Security threats also in-
clude attacks which exploit software vulnerabilities (intrusion attacks) and protocol
inconsistencies (protocol attacks). There exist many prior works addressing various
wide-area security problems. Extensive coverage and documentation of security re-
lated solutions are available in the literature [40, 50, 51, 53, 56, 57, 82].

Nowadays, commercial CDNs such as Akamai provide usage-based content and
application delivery solutions to the end users. Akamai Edge Computing

72 M. Pathan and R. Buyya

Infrastructure (ECI) [1], Active Cache [19], and ACDN [80] replicate the applica-
tion code to the edge servers without replicating the application data itself. Rather,
the data is kept in a centralized server. It enables the Web tier applications to extend
to the CDN platform so that end user requests for application object would execute
at the replica server rather than at the origin. However, this approach suffers from
increased wide-area latency due to excessive data access and bottleneck due to the
concentration on a centralized server. To overcome these limitations, Sivasubrama-
nian et al. [87] propose an approach for replicating Web applications on-demand.
This approach employs partial replication to replicate data units only to the servers
who access them often. In another work, application specific edge service architec-
ture [39] is presented where the application itself is responsible for its replication
with the compromise of a weaker consistency model. For more information on host-
ing wide-area applications readers are referred to [88].

2.5 Summary and Conclusions

In this chapter, we have analyzed and categorized CDNs according to the func-
tional and non-functional attributes. We have developed a comprehensive taxon-
omy for CDNs based on four issues: CDN composition, content distribution and
management, request-routing, and performance measurement. We further built up
taxonomies for each of these paradigms to classify the common trends, solu-
tions, and techniques in content networking. Additionally, we identify three issues,
namely, fault tolerance, security, and ability for Web application hosting as to in-
troduce challenges in CDN development. Hereby, we provided pointers to related
research work in this context. Our taxonomy provides a basis for comparison of
existing CDNs. In doing so, we assist the readers to gain insights into the technol-
ogy, services, strategies, and practices that are currently followed in this field. We
have also performed a mapping of the taxonomy to representative commercial and
academic CDN systems. Such a mapping provides a basis to realize an in-depth un-
derstanding of the state-of-the-art technologies in content distribution space, and to
validate the applicability and accuracy of the taxonomy.

Recently, the CDN industry is getting consolidated as a result of acquisitions
and/or mergers. During the preparation of this chapter, we have experienced signifi-
cant changes in the content distribution landscape due to this consolidation. Conse-
quently, content distribution, caching, and replication techniques are gaining more
attention in order to meet up the new technical and infrastructure requirements for
the next generation CDNs. This may lead to new issues in the design, architecture,
and development of CDNs. Present trends in content networking domain indicate
that better understanding and interpretation of the essential concepts in this area is
necessary. Therefore, we hope that the comprehensive comparison framework based
on our taxonomy, presented in this chapter, will not only serve as a tool to under-
stand this complex area, but also will help to map the future research efforts in
content networking.

2 A Taxonomy of CDNs 73

Acknowledgements We would like to acknowledge the efforts of all the developers of the com-
mercial and academic CDNs surveyed in this paper. We thank the anonymous reviewers for their
insightful comments and suggestions that have improved the presentation and correctness of this
chapter. We also thank our colleagues at the University of Melbourne – James Broberg, Marcos
Assunção, and Charity Lourdes for sharing thoughts and for making incisive comments and sug-
gestions on this chapter. We would like to express our gratitude to Athena Vakali (Aristotle Univer-
sity of Thessaloniki, Greece), George Pallis (The University of Cyprus, Cyprus), Carlo Mastroianni
(ICAR-CNR, Italy), Giancarlo Fortino (Università della Calabria, Italy), Christian Vecchiola (Uni-
versity of Genova, Italy), and Vivek Pai (Princeton University, USA) for their visionary comments
on various parts of the taxonomy. We are also thankful to Fahim Husain (Akamai Technologies,
Inc., USA), William Good (Mirror Image Internet, Inc., USA), and Lisa Amini (IBM T. J. Watson
Research Center, USA) for providing valuable research papers, technical reports, white papers, and
data sheet while preparing the manuscript.

References

1. Akamai Technologies, 2007. www.akamai.com
2. CDNSim, A Content Distribution Network Simulator, 2007. http://oswinds.csd.

auth.gr/∼cdnsim/
3. Keynote Systems—Web and Mobile Service Performance Testing Corporation, 2007.

http://www.keynote.com/
4. Network simulators, 2007. http://www-nrg.ee.lbl.gov/kfall/netsims.html
5. PlanetLab Consortium, 2007. http://www.planet-lab.org/
6. The GigaWeb Corporation, 2007. http://www.gigaWeb.com/
7. The network simulator – ns-2, 2007. http://www.isi.edu/nsnam/ns/
8. Aberer, K. and Hauswirth, M. An overview on peer-to-peer information systems. In Proc. of

the Workshop on Distributed Data and Structures (WDAS), France, 2002.
9. Aggarwal, A. and Rabinovich, M. Performance of dynamic replication schemes for an Inter-

net hosting service. Technical Report, HA6177000-981030-01-TM, AT&T Research Labs,
Florham Park, NJ, USA, 1998.

10. Andrews, M., Shepherd, B., Srinivasan, A., Winkler, P., and Zane, F. Clustering and server
selection using passive monitoring. In Proc. of IEEE INFOCOM, NY, USA, 2002.

11. Androutsellis-Theotokis, S. and Spinellis, D. A survey of peer-to-peer content distribution
technologies. ACM Computing Surveys, 36(4), ACM Press, NY, USA, pp. 335–371, 2004.

12. Ardaiz, O., Freitag, F., and Navarro, L. Improving the service time of Web clients using
server redirection. ACM SIGMETRICS Performance Evaluation Review, 29(2), ACM Press,
NY, USA, pp. 39–44, 2001.

13. Bakiras, S. and Loukopoulos, T. Combining replica placement and caching techniques in
content distribution networks. Computer Communications, 28(9), pp. 1062–1073, 2005.

14. Balakrishnan, H., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. Looking up data in
P2P systems. Communications of the ACM, 46(2), ACM Press, NY, USA, pp. 43–48, 2003.

15. Barbir, A., Cain, B., Nair, R., and Spatscheck, O. Known content network request-routing
mechanisms. Internet Engineering Task Force RFC 3568, 2003. www.ietf.org/rfc/rfc3568.txt

16. Bartal, Y. Probabilistic approximation of metric space and its algorithmic applications. In
Proc. of 37th Annual IEEE Symposium on Foundations of Computer Science, 1996.

17. Brussee, R., Eertink, H., Huijsen, W., Hulsebosch, B., Rougoor, M., Teeuw, W., Wibbels, M.,
and Zandbelt, H. Content distribution network state of the art,” Telematica Instituut, 2001.

18. Byers, J., Considine, J., and Mitzenmacher, J. Simple load balancing for distributed
hash tables. In Proc. of 2nd International Workshop on Peer-to-Peer Systems (IPTPS’03),
pp. 31–35, 2003.

19. Cao, P., Zhang, J., and Beach, K. Active cache: Caching dynamic contents on the Web. In
Proc. of the Middleware Conference, pp. 373–388, 1998.

74 M. Pathan and R. Buyya

20. Cardellini, V., Casalicchio, E., Colajanni, M., and Yu, P. S. The state of the art in locally
distributed Web-server systems. ACM Computing Surveys, 34(2), ACM Press, NY, USA, pp.
263–311, 2002.

21. Chen, Y., Katz, R. H., and Kubiatowicz, J. D. Dynamic replica placement for scalable content
delivery. In Proc. of International Workshop on Peer-to-Peer Systems (IPTPS 02), LNCS
2429, Springer-Verlag, pp. 306–318, 2002.

22. Chen, C. M., Ling, Y., Pang, M., Chen, W., Cai, S., Suwa, Y., Altintas, O. Scalable
request-routing with next-neighbor load sharing in multi-server environments. In Proc. of
the 19th International Conference on Advanced Information Networking and Applications,
IEEE Computer Society, Washington, DC, USA, pp. 441–446, 2005.

23. Chen, Y., Qiu, L., Chen, W., Nguyen, L., and Katz, R. H. Efficient and adaptive Web repli-
cation using content clustering. IEEE Journal on Selected Areas in Communications, 21(6),
pp. 979–994, 2003.

24. Cieslak, M., Foster, D., Tiwana, G., and Wilson, R. Web cache coordination protocol version
2. http://www.Web-cache.com/Writings/Internet-Drafts/draft-wilson-wrec-wccp-v2-00.txt

25. Clip2 Distributed Search Solutions, The Gnutella Protocol Specification v0.4. www.content-
networking.com/papers/gnutella-protocol-04.pdf

26. Cooper, I., Melve, I., and Tomlinson, G. Internet Web replication and caching taxonomy.
Internet Engineering Task Force RFC 3040, 2001. www.ietf.org/rfc/rfc3040.txt

27. Davison, B. D. Web caching and content delivery resources. http://www.Web-caching.com,
2007.

28. Delgadillo, K. Cisco DistributedDirector, Cisco Systems, Inc., 1997.
29. Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman, R., and Weihl, B. Globally distributed

content delivery. IEEE Internet Computing, pp. 50–58, 2002.
30. Douglis, F. and Kaashoek, M. F. Scalable Internet services. IEEE Internet Computing, 5(4),

pp. 36–37, 2001.
31. Emtage, A. and Deutsch, P. Archie: an electronic directory service for the Internet. In Proc.

of the Winter Usenix Conference, San Francisco, CA, USA, pp. 93–110, January 1992.
32. Fei, Z., Bhattacharjee, S., Zugura, E. W., and Ammar, M. H. A novel server selection tech-

nique for improving the response time of a replicated service. In Proc. of IEEE INFOCOM,
San Francisco, California, USA, pp. 783–791, 1998.

33. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. IDMaps: a global
Internet host distance estimation service. IEEE/ACM Transactions on Networking (TON),
9(5), ACM Press, NY, USA, pp. 525–540, 2001.

34. Freedman, M. J., Freudenthal, E., and Mazières, D. Democratizing content publication with
Coral. In Proc. of 1st USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation, San Francisco, CA, USA, 2004.

35. Freedman, M. J., Lakshminarayanan, K., and Mazières, K. OASIS: anycast for any service.
In Proc. of 3rd Symposium of Networked Systems Design and Implementation (NSDI’06),
Boston, MA, USA, 2006.

36. Fujita, N., Ishikawa, Y., Iwata, A., and Izmailov, R. Coarse-grain replica management strate-
gies for dynamic replication of Web contents. Computer Networks: The International Journal
of Computer and Telecommunications Networking, 45(1), pp. 19–34, 2004.

37. Gadde, S., Chase, J., and Rabinovich, M. Web caching and content distribution: a view from
the interior. Computer Communications, 24(2), pp. 222–231, 2001.

38. Gadde, S., Rabinovich, M., and Chase, J. Reduce, reuse, recycle: an approach to build-
ing large Internet caches. In Proc. of 6th Workshop on Hot Topics in Operating Systems,
pp. 93–98, 1997.

39. Gao, L., Dahlin, M., Nayate, A., Zheng, J., and Iyengar, A. Application specific data repli-
cation for edge services. In Proc. of the Twelfth International World-Wide Web Conference,
Hungary, pp. 449–460, 2003.

40. Garg, A. and Reddy, A. L. N. Mitigating denial of service attacks using qos regulation. In
Proc. of International Workshop on Quality of Service (IWQoS), 2002.

41. Gayek, P., Nesbitt, R., Pearthree, H., Shaikh, A., and Snitzer, B. A Web content serving
utility. IBM Systems Journal, 43(1), pp. 43–63, 2004.

2 A Taxonomy of CDNs 75

42. Hamilton, M., Rousskov, A., and Wessels, D. Cache digest specification – version 5. 1998.
http://www.squid-cache.org/CacheDigest/cache-digest-v5.txt

43. Harren, M., Hellerstein, J. M., Huebsch, R., Loo, B. T., Shenker, S., and Stoica, I. Complex
queries in DHT-based peer-to-peer networks. In Proc. of 1st International Workshop on Peer-
to-Peer Systems (IPTPS’02), 2002.

44. Hofmann, M. and Beaumont, L. R. Content Networking: Architecture, Protocols, and Prac-
tice. Morgan Kaufmann Publishers, San Francisco, CA, USA, pp. 129–134, 2005.

45. Huffaker, B., Fomenkov, M., Plummer, D. J., Moore, D., and Claffy, K. Distance metrics in
the Internet. In Proc. of IEEE International Telecommunications Symposium, IEEE CS Press,
Los Alamitos, CA, USA, 2002.

46. Jalote, P. Fault Tolerance in Distributed Systems. Prentice Hall, Englewood Cliffs, NJ, USA,
1994.

47. Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., and Zhang, L. On the placement of Internet
instrumentation. In Proc. of IEEE INFOCOM, Tel-Aviv, Israel, pp. 295–304, 2000.

48. Jamin, S., Jin, C., Kure, A. R., Raz, D., and Shavitt, Y. Constrained mirror placement on the
Internet. In Proc. of IEEE INFOCOM, Anchorage, Alaska, USA, 2001.

49. Johnson, K. L., Carr, J. F., Day, M. S., and Kaashoek, M. F. The measured performance of
content distribution networks. Computer Communications, 24(2), pp. 202–206, 2001.

50. Jung, J., Krishnamurthy, B. and Rabinovich, M. Flash crowds and denial of service attacks:
Characterization and implications for CDNs and Web sites. In Proc. of the International
World Wide Web Conference, Hawaii, USA, pp. 252–262, 2002.

51. Jung, J., Paxson, V., Berger, A. W., and Balakrishnan, H. Fast portscan detection using se-
quential hypothesis testing. In Proc. of IEEE Symposium on Security and Privacy, Oakland,
2004.

52. Kahle, B. and Medlar, A. An information system for corporate users: wide area information
servers. ConneXions—The Interoperability Report, 5(11), November 1991.

53. Kandula, S., Katabi, D., Jacob, M., and Berger, A. W. Botz-4-sale: Surviving organized ddos
attacks that mimic flash crowds. In Proc. of Symposium on Networked Systems Design and
Implementation (NSDI), Boston, 2005.

54. Kangasharju, J., Roberts, J., and Ross, K. W. Object replication strategies in content distri-
bution networks. Computer Communications, 25(4), pp. 367–383, 2002.

55. Karger, D., Sherman, A., Berkheimer, A., Bogstad, B., Dhanidina, R., Iwamoto, K., Kim, B.,
Matkins, L., and Yerushalmi, Y. Web caching with consistent hashing. Computer Networks,
31(11–16), pp. 1203–1213, 1999.

56. Kargl, F., Maier, J., and Weber, M. Protecting Web servers from distributed denial of service
attacks, In Proc. of the International World Wide Web Conference, pages 514–524, Hong
Kong, 2001.

57. Kim, Y., Lau, W. C., Chuah, M. C., and Chao, H. J. Packetscore: Statistics based overload
control against distributed denial-of-service attacks. In Proc. of INFOCOM, Hong Kong,
2004.

58. Krishnamurthy, B., Willis, C., and Zhang, Y. On the use and performance of content distri-
bution network. In Proc. of 1st International Internet Measurement Workshop, ACM Press,
pp. 169–182, 2001.

59. Krishnan, P., Raz, D., and Shavitt, Y. The cache location problem. IEEE/ACM Transaction
on Networking, 8(5), 2000.

60. Kung, H. T. and Wu, C. H. Content networks: taxonomy and new approaches. The Internet as
a Large-Scale Complex System, (Kihong Park and Walter Willinger eds.), Oxford University
Press, 2002.

61. Lazar, I. and Terrill, W. Exploring content delivery networking. IT Professional, 3(4), pp.
47–49, 2001.

62. Lee, J. An End-User Perspective on File-Sharing Systems. Communications of the ACM,
46(2), ACM Press, NY, USA, pp. 49–53, 2003.

63. Li, B., Golin, M. J., Italiano, G. F., Xin, D., and Sohraby, K. On the optimal placement of
Web proxies in the Internet. In Proc. of IEEE INFOCOM, NY, USA, pp. 1282–1290, 1999.

76 M. Pathan and R. Buyya

64. Ma, W. Y., Shen, B., and Brassil, J. T. Content services network: architecture and protocols.
In Proc. of 6th International Workshop on Web Caching and Content Distribution (IWCW6),
2001.

65. Mao, Z. M., Cranor, C. D., Douglis, F., Rabinovich, M., Spatscheck, O., and Wang, J. A pre-
cise and efficient evaluation of the proximity between Web clients and their Local DNS
servers. In Proc. of the USENIX 2002 Annual Technical Conference, Monterey, CA, USA,
pp. 229–242, 2002.

66. Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S.,
and Xu, Z. Peer-to-peer computing. Technical Report, HP Laboratories, Palo Alto, CA, HPL-
2002-57, 2002. www.hpl.hp.com/techreports/2002/HPL-2002-57.pdf

67. Ni, J. and Tsang, D. H. K. Large scale cooperative caching and application-level multicast in
multimedia content delivery networks. IEEE Communications, 43(5), pp. 98–105, 2005.

68. Ni, J., Tsang, D. H. K., Yeung, I. S. H., and Hei, X. Hierarchical content routing in large-
scale multimedia content delivery network. In Proc. of IEEE International Conference on
Communications (ICC), pp. 854–859, 2003.

69. Pai, V. S., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.
Locality-aware request distribution in cluster-based network servers. ACM SIGPLAN No-
tices, 33(11), ACM Press, NY, USA, pp. 205–216, 1998.

70. Pallis, G., Stamos, K., Vakali, A., Sidiropoulos, A., Katsaros, D., and Manolopoulos, Y.
Replication-based on objects load under a content distribution network. In Proc. of the 2nd
International Workshop on Challenges in Web Information Retrieval and Integration (WIRI),
Altanta, Georgia, USA, 2006.

71. Pallis, G. and Vakali, A. Insight and perspectives for content delivery networks. Communi-
cations of the ACM, 49(1), ACM Press, NY, USA, pp. 101–106, 2006.

72. Pallis, G., Vakali, A., Stamos, K., Sidiropoulos, A., Katsaros, D., and Manolopoulos, Y. A
latency-based object placement approach in content distribution networks. In Proc. of the
3rd Latin American Web Congress (La-Web 2005), IEEE Press, Buenos Aires, Argentina,
pp. 140–147, 2005.

73. Partridge, C., Mendez, T., and Milliken, W. Host anycasting service. Internet Engineering
Task Force RFC 1546, 1993. www.ietf.org/rfc/rfc1546.txt

74. Pathan, M., Broberg, J., Bubendorfer, K., Kim, K. H., and Buyya, R. An Architecture for Vir-
tual Organization (VO)-Based Effective Peering of Content Delivery Networks, UPGRADE-
CN’07. In Proc. of the 16th IEEE International Symposium on High Performance Distributed
Computing (HPDC), Monterey, California, USA, 2007.

75. Peng, G. CDN: Content distribution network. Technical Report TR-125, Experimental Com-
puter Systems Lab, Department of Computer Science, State University of New York, Stony
Brook, NY, 2003. http://citeseer.ist.psu.edu/peng03cdn.html

76. Pierre, G. and van Steen, M. Globule: a collaborative content delivery network. IEEE Com-
munications, 44(8), 2006.

77. Pradhan, D. Fault-Tolerant Computer System Design. Prentice Hall, Englewood Cliffs, NJ,
USA, 1996.

78. Qiu, L., Padmanabhan, V. N., and Voelker, G. M. On the placement of Web server replicas.
In Proc. of IEEE INFOCOM, Anchorage, Alaska, USA, pp. 1587–1596, 2001.

79. Rabinovich, M. and Spatscheck, O. Web Caching and Replication, Addison Wesley, USA,
2002.

80. Rabinovich, M., Xiao, Z., and Agarwal, A. Computing on the edge: A platform for replicating
internet applications. In Proc. of the Eighth International Workshop on Web Content Caching
and Distribution, Hawthorne, NY, USA, 2003.

81. Radoslavov, P., Govindan, R., and Estrin, D. Topology-informed Internet replica placement.
In Proc. of Sixth International Workshop on Web Caching and Content Distribution, Boston,
Massachusetts, 2001.

82. Ranjan, S., Swaminathan, R., Uysal, M., and Knightly, E. DDoS-Resilient scheduling
to counter application layer attacks under Imperfect Detection. In Proc. of INFOCOM,
pp. 1–13, 2006

2 A Taxonomy of CDNs 77

83. Rousskov, A. and Wessels, D. Cache digests. Computer Networks and ISDN Systems, 30(22),
pp. 2155–2168, November 1998.

84. Saroiu, S., Gummadi, K. P., Dunn, R. J., Gribble, S. D., and Levy, H. M. An analy-
sis of Internet content delivery systems. ACM SIGOPS Operating Systems Review, 36,
pp. 315–328, 2002.

85. Schneider, F. Implementing Fault-Tolerant Services Using the State Machine Approach: A
Tutorial, 1 ACM Computing Surveys, 22(4), pp.299–320, 1990.

86. Shaikh, A., Tewari, R., and Agrawal, M. On the effectiveness of DNS-based server selection.”
In Proceedings of IEEE INFOCOM, Anchorage, AK, USA, pp. 1801–1810, April 2001.

87. Sivasubramanian, S., Pierre, G., and van Steen, M. Replicating Web applications on-demand.
In Proc. of IEEE International Conference on Services Computing (SCC), pp. 227–236,
China, 2004.

88. Sivasubramanian, S., Pierre, G., van Steen, M., and Alonso, G. Analysis of caching and repli-
cation strategies for Web applications. IEEE Internet Computing, 11(1), pp. 60–66, 2007.

89. Sivasubramanian, S., Szymaniak, M., Pierre, G., and Van Steen, M. Replication of Web host-
ing systems. ACM Computing Surveys, 36(3), ACM Press, NY, USA, 2004.

90. Stamos, K., Pallis, G., Thomos, C., and Vakali, A. A similarity-based approach for integrated
Web caching and content replication in CDNs. In Proc. of 10th International Databased
Engineering and Applications Symposium (IDEAS 2006), IEEE Press, New Delhi, India,
2006.

91. Stamos, K., Pallis, G., and Vakali, A. Integrating caching techniques on a content distribu-
tion network. In Proc. of 10th East-European Conference on Advances in Databases and
Information Systems (ADBIS 2006), Springer-Verlag, Thessaloniki, Greece, 2006.

92. Stoica, I., Morris, R., Liben-Nowell, D., Karger, D. R., Kaashoek, M. F., Dabek, F., and
Balakrishnan, H. Chord: a scalable peer-to-peer lookup protocol for Internet applications,”
IEEE/ACM Transactions on Networking (TON), 11(1), ACM Press, NY, USA, pp. 17–32,
2003.

93. Szymaniak, M., Pierre, G., and van Steen, M. Netairt: a DNS-based redirection system for
apache. In Proc. of International Conference WWW/Internet, Algrave, Portugal, 2003.

94. Tse, S. S. H. Approximate algorithms for document placement in distributed Web servers.
IEEE Transactions on Parallel and Distributed Systems, 16(6), pp. 489–496, 2005.

95. Vakali, A. and Pallis, G. Content delivery networks: status and trends. IEEE Internet Com-
puting, 7(6), IEEE Computer Society, pp. 68–74, 2003.

96. Valloppillil, V. and Ross, K. W. Cache array routing protocol v1.0. Internet Draft, 1998.
97. Verma, D. C. Content Distribution Networks: An Engineering Approach, John Wiley & Sons,

Inc., New York, 2002.
98. Vixie, P. and Wessels, D. Hyper text caching protocol (HTCP/0.0). Internet Engineering Task

Force RFC 2756, 2000. www.ietf.org/rfc/rfc2756.txt
99. Wang, J. A survey of Web caching schemes for the Internet. SIGCOMM Computer Commu-

nication Review, 29(5), ACM Press, NY, USA, pp. 36–46, 1999.
100. Wang, L., Pai, V. S., and Peterson, L. The effectiveness of request redirection on CDN robust-

ness. In Proc. of 5th Symposium on Operating Systems Design and Implementation, Boston,
MA, USA, pp. 345–360, 2002.

101. Wessels, D. and Claffy, K. Internet cache protocol (ICP) version 2. Internet Engineering Task
Force RFC 2186, 1997. www.ietf.org/rfc/rfc2186.txt

102. Wu, B. and Kshemkalyani, A. D. Objective-optimal algorithms for long-term Web Prefetch-
ing. IEEE Transactions on Computers, 55(1), pp. 2–17, 2006.

http://www.springer.com/978-3-540-77886-8

