
1

Cluster Programming Environments

Scott Needham AND Trevor Hansen

School of Computer Science and Software Engineering
Monash University

Clayton Campus, Melbourne, Australia

Email: {sneedham, hansen}@cs.monash.edu.au

Abstract

A major issue slowing the development of cluster computers is that programs that efficiently take advantage of
them are difficult to write. Cluster programming adds a whole facet to sequential programming; requiring specifica-
tion of not just when an operation will run, but also where it will be ran. Communications packages such as MPI and
PVM explicitly express communications between the nodes of the cluster, while object orientated schemes instead
focus on transparency, freeing the programmer from explicitly describing the parallelism.  There is currently a great
divide between the efficiency of both schemes, with MPI/PVM systems dramatically outperforming applications
based on Java.

Freeing the programmer from having to explicitly include parallel primitives is enticing indeed and when com-
bined with the interoperability and portability benefits of Java, together mean that Java will soon be a serious choice
for a high performance cluster programming environment.

1. Introduction
High performance cluster computing is the growing field of linking together many inexpensive commodity com-

puters and using them to solve difficult problems in commerce (e.g. Web Hosting ) and science (e.g. Climate Mod-
eling ). Cluster programmers require programming environments that allow them to take advantage of the clusters
performance capabilities easily. While there are many hundreds of existing parallel programming languages, each
has been designed for a specific architecture and most don’t operate well upon cluster computers. Clusters have
much higher latency and lower communications throughput than parallel computers, and so languages are required
that have as a primary design focus that of limiting I/O- something that is hardly a concern for a shared memory
parallel computer. These considerations of data distribution and locality are primary to the success of any cluster
programming environment, and immediately rule out the majority of Parallel programming languages as suitable
choices. These parallel languages would need at best major revision if they are to become cluster programming en-
vironments.

It has been realized that for clusters to be feasible, a parallel programming framework for heterogeneous distrib-
uted computing has to be developed.  This was the driving force behind the creation of the Parallel Virtual Pro-
gramming (PVM) environment.  This environment gives the user the ability to write code for the PVM virtual com-
puter and PVM takes care of how this code is execute on the computers which make up the cluster on which the
code is run.

 Further so much of the slow progress in Parallel Systems can be traced back the abundance of proprietary lan-
guages and implementations, each manufacturer had their own systems, so changing parallel computers was a sig-
nificant undertaking requiring large scale software rewriting. Successful cluster programming environments neces-
sarily have broad acceptance, providing vendors the opportunity to market their products (with minor revision ) to a
broad community of cluster users, so encouraging the development of high quality tools. Efficient, widely used
cluster programming environments facilitate the spread of mature cluster tools.

To go some way towards standardization and remedy the diversity in the message passing environments being
developed by the different parallel processor vendors, in 1993 a group of high performance computing experts gath-
ered together to define a standard in message passing between nodes in a cluster.  As a result the MPI standard was



2

created which gave the vendors a portable, high performance cluster-programming environment.  The MPI API pro-
vided a huge number of standard message passing functions, far in excess of any of the existing systems.

  Directly programming inter-node communication with sockets is the equivalent of writing sequential programs in
assembly code, cluster computing experience and software engineering generally, have shown that efficient program
development requires languages that are at a high a level as possible (until performance mandates lower level con-
trol). Explicitly programming inter-node communication produces code that while fast, is unreliable and expensive
to maintain (like assembly code). But even though the current crop of Java environments require limited code modi-
fication (really only the usage of a different compiler) they regrettably perform around 4 times worse for scientific
problem solving [6] than a similar FORTRAN application.

The load on each cluster will vary during program execution, as tasks complete and the computation shifts. The
programmer is left with the choice of either distributing computation haphazardly, producing poorly-performing
programs, or spending more development time including load-balancing code in the application.  Several cluster
programming languages automate this, including progress migration capabilities , and other load balancing strate-
gies besides those provided by the management system.

A good cluster programming environment is hardly enough to ensure the wide adoption of cluster computers gen-
erally, simultaneous increases in network speed, and the development of more advanced cluster monitoring and op-
erating systems are also necessary to continue the growth in cluster based computing.

2. Works in this area

Name Description Remarks URL

Arjuna An object-oriented system that implicitly
handles the majority of the work usually
associated with developing parallel ap-
plications. Applications operate using a
client-server model and can execute in
a heterogeneous environment.

No longer
under de-
velopment.

http://arjuna.ncl.ac.uk/Arjuna/index.htm

CILK Inclusion of some extra primitives in the
C language. An Algorithmic multi-
threaded language Runtime system has
the responsibility of scheduling the
computations.

Down scal-
able- runs
on single
process
systems
without
modification

http://supertech.lcs.mit.edu/cilk/

HORB Injects a few commands into Java to
enable objects to be spread across a
heterogeneous cluster.

100% Java
(interoper-
able), Open
source,

http://horb.etl.go.jp/horb/doc/index

CVM Coherent Virtual Machine, automatically
load balancing, distributed shared
memory, C++ source code freely avail-
able.

No longer
under de-
velopment

http://www.cs.umd.edu/projects/cvm/

GLU Granular Lucid Toolkit, features auto-
matic load balancing, target-specific
executables,

No longer
being de-
veloped

http://www2.csl.sri.com/glu/html/papers

Linda Tuple based language-independent Great idea, http://www.cs.egr.edu/linda-group/inde



3

primitives that are inserted into the host
language

MPI A message passing interface, generally
language independent even though
bindings are included in the standard for
C and FORTRAN

One of the
most popu-
lar libraries
for cluster
computing.

http://www-unix.mcs.anl.gov/mpi/index

CHARM Extra primitives are included into C. Looks like
Joyce, but
like CILK too

http://charm.cs.uiuc.edu/

PC++ C++ extensions that permit member
functions to run on all objects simulta-
neously. A preprocessor transforms
pC++ code into C++

Straight for-
ward addi-
tion to C++

http://www.extreme.indiana.edu/sage/

JavaParty Transparently adds remote objects to
Java, a preprocessor produces straight
Java code [10]

Much faster
than RMI,
less hassle
than sock-
ets.

http://wwwipd.ira.uka.de/JavaParty/

PVM permits a heterogeneous collection of
machines to be joined together to pro-
duce a Parallel Virtual Machine.

Trade some
speed for
the virtual
machine
ideal.

http://www.epm.ornl.gov/pvm/pvm_hom

3. PVM
The development of PVM started in the summer of 1989 when Vaidy Sunderam, a professor at Emory University,

visited Oak Ridge National Laboratory to do research with Al Geist on heterogeneous distributed computing.  They
needed a framework to explore this new area and so developed the concept of Parallel Virtual Machine.  PVM is a
software package that permits a heterogeneous collection of machines, from laptops running Windows 95/NT to
multiprocessor supercomputers running Unix, to be hooked together in a network and be used as a single large par-
allel computer.  The overall objective of the PVM system is to enable a collection of such computers to be used co-
operatively for concurrent or parallel computation. So giving the user the power of a super computer via the linking
of a number of computers which is only limited by the quantity accessible by high speed LAN connections and the
world wide web. Hundreds of sites around the world are using PVM to solve important scientific, industrial, and
medical problems. With tens of thousands of users, PVM has become the de facto standard for distributed comput-
ing worldwide.

The principles upon which PVM is based include the following:

•  User-configured host pool: The application’s computational tasks execute on a set of machines that are se-
lected by the user for a given run of the PVM program. Machines can be added or deleted during operation.

•  Translucent access to hardware: We can take advantage of the capabilities of certain machines in the pool
by using then for specific tasks, or the hardware environment can be viewed as a collection of equal virtual
processing elements.

•  Process-based computation: The task is PVM’s unit of parallelism and is an independent sequential thread
of control, which partakes in both communication and computation.

•  Explicit message-passing model: This collection of tasks cooperate by explicitly sending and receiving



4

messages to one another.  There is no language dependant restriction on the size of any message.

•  Heterogeneity support: The PVM system supports heterogeneity in terms of machines, networks, and ap-
plications. With regard to message passing, PVM permits messages containing more than one datatype to be
exchanged between machines having different data representations.

•  Multiprocessor support: PVM uses the native message-passing facilities on multiprocessors to take advan-
tage of the underlying hardware.

The PVM system is composed of two parts.  The first part is a daemon, which resides on all the computers mak-
ing up the virtual machine.  It is often referred to as pvmd and is designed so any user can install this daemon on a
machine.  A virtual machine can be created by starting up PVM, after which PVM programs can be executed.  Each
user has the capability to execute several PVM applications simultaneously.

The second part of the system is a library of PVM interface routines, consisting of a repertoire of primitives that
are needed for cooperation between tasks of an application. The library provides routines for message passing,
spawning processes, coordinating tasks, and modifying the virtual machine.



5

With PVM being the leader in the rapidly growing area of heterogeneous distributed computing it’s not surprising
that we have seen a flood of PVM extensions and tools aimed at improving the capabilities and power of the PVM
environment.  Below we will discuss some of the more prominent examples:

XPVM

XPVM provides a graphical interface to the PVM console commands and information, along with several ani-
mated views to monitor the execution of PVM programs.  These views can be used to assist in debugging and per-
formance tuning by providing information about the interactions among tasks in a parallel PVM program, as well as
information on machine usage.  If we have compiled a PVM program to capture tracing information at run-time, any
task spawned from XPVM will return trace event information for analysis in real time or for post-mortem playback
from saved trace files.

CPPVM & PVM++

CPPvm is an extension of PVM that allows processes to pass C++ objects to each other.  CPPvm has some stan-
dard message passing classes, which provide functions necessary to write cluster programs, although for more so-
phisticated problems user defined message passing classes must be development.

For a C++ extension of PVM to become successful the wide spread acceptance of such a language would be re-
quired.  Then we might see the emergence of a standard message passing template library for cluster programming
applications.  Even standard parallel sorting, searching, etc classes giving the user a far more powerful environment
allowing for rapid prototyping.  PVM++ is another C++-library for PVM also focused on combing C++ into the
PVM environment.

jPVM & JPVM

jPVM extends the capabilities of PVM to the world of JavaTM, Sun Microsystems Inc.’s architecture-independent
programming language for the Internet.  jPVM allows Java applications and applets as well as existing C, C++, and
Fortran applications to communicate with one another using the PVM API.  This means that Java programs can be
built to interface to existing C, C++, and Fortran programs and use PVM to ship data from those programs to the
Java interface.  Or you could use this as a communications package as you transfer applications from C or C++ to
Java.

jPVM is not an implementation of PVM written in Java TM.  There is a package called JPVM, that is a ’PVM-like
library of object classes’ for parallel programming in JavaTM.



6

Some Other Extensions of PVM...

•  Parallel plug-in interface that allows users or applications to dynamically customize, adapt, and extend the
environments features.

•  There are a huge number of extensions of PVM that provide a more powerful application of the PVM con-
cept.  Here we will list just a few,

•  PVM Toolbox for Matlab: Javier Baldomero has created a toolkit for calling PVM from Matlab.

•  Perl-PVM, Pypvm: Perl and Python extensions for PVM.

•  HP-PVM, Compaq-PVM: Fast commercial versions of PVM.

HARNESS

Looking to the future, Harness builds on the concept of the Distributed Virtual Programming environment, but
fundamentally recreates this idea and explores dynamic capabilities beyond what PVM can supply. The Harness
project is focused on developing three key capabilities within the framework of a heterogeneous distributed com-
puting environment,

•  Parallel plug-in interface that allows users or applications to dynamically customize, adapt, and extend the
environments features.

•  Distributed peer-to-peer control that prevents single point of failure (in contrast to typical client/server
control schemes). Greatly enhances the fault tolerance that is available to large, long running simulations.

•  Multiple distributed virtual machines that can collaborate, merge, or split. This feature provides a frame-
work for collaborative simulations.

4. MPI
In contrast to the PVM API, which sprang from and continues to evolve inside a research project, the MPI was

specified by a committee of about 40 high performance computing experts from research and industry in a series of
meetings in 1993-1994.  MPI was designed to do away with the growing number of machine dependant mes-
sage-passing APIs being designed by the Massively Parallel Processor (MPP) vendors.  MPI is intended to be a
standard message-passing specification that each MPP vendor would implement on their system, making it possible
to write portable parallel applications.  MPP vendors need to be able to deliver high performance which thus became
a focus in the design of the MPI API.  This would be essential if MPP vendors were to accept the end product and in
fact the API became standard in practice.  Given this design focus, MPI is expected to always be faster than PVM
on MPP hosts.  MPI-1 contains the following main features:

•  A large set of point-to-point communication routines (richer than any other).

•  A large set of collective communication routines for communication among groups of processes.

•  A communication context that provides support for the design of safe parallel software libraries.

•  The ability to specify communication topologies.

•  The ability to create derived datatypes that describe messages of noncontiguous data.

•  Because of portability issues across a network of in 1995 the MPI committee began meeting to design the
MPI-2 which was enhanced to include:

•  MPI SPAWN functions to start both MPI and non-MPI processes.

•  One-sided communication functions such as put and get.

•  Non-blocking collective communication functions.

•  Language bindings for C++.



7

Some Differences Between MPI and PVM

PVM fully implements process control, that is the ability to start and stop tasks, to find out which tasks are run-
ning, and possibly where they are running.  On the other hand MPI-1 has no method to start a parallel program,
MPI-2 is being designed to handle these problems [7].

PVM’s inherently dynamic nature gives it the power to do resource management.  Computing resources, or
“hosts”, can be added or deleted at will, either from a system “console” or even from within the user's application.
MPI lacks such dynamics and is, in fact, specifically designed to be static in nature to improve performance.

In MPI a group of tasks can be arranged in a specific logical interconnection topology.  The topology with which
the tasks communicate within should then be mapped to the underlying physical network topology resulting in-
creased speed for message transfers. PVM does not support such an abstraction.

PVM has supports a basic fault notification scheme which is under the control of the user.  Tasks can register with
PVM to be “notified” when the status of the virtual machine changes. This notification comes in the form of special
event messages that contain information about the particular event. The current MPI standard does not include any
mechanisms for fault tolerance, although MPI-2 is being designed to incorporate fault tolerance similar to that of
PVMs.

One of the major differences between the two environments is the MPI communicator.  The communicator can be
thought of as a binding of a communication context to a group of processes. Having a communication context al-
lows library packages written in message passing systems to protect or mark their messages so that they are not re-
ceived by the user's code.

PVMPI

At University of Tennessee and Oak Ridge National Laboratory an investigation has recently begun looking at the
possibility of combining the features of both MPI and PVM to create PVMPI.  This will result in an environment
with virtual machine features of PVM and the advanced message passing features of MPI.  The enhanced environ-
ment will now include PVM’s access to virtual machine resource control and fault tolerance and would use PVM’s
network communication to transfer data between different vendor’s MPI implementations allowing them to inter-
operate within the larger virtual machine.

5.HORB
HORB is a Java based distributed object system, an ORB (Object Request Broker) that enables object oriented

computing; it can even be ran across clusters or distributed networks that aren’t necessarily running the same Oper-
ating System. Methods are called via proxy objects which contain program stubs that make requests to the ORB for
methods to be called up the actual object. Java is a multi-threaded single processor language but it can only be ran
on a single machine, HORB allows us to spread the execution over many different machines and many types of ma-
chines.

An Object Request Broker is a layer that manages requests that are made to objects that are not located on the
current computer, other ORBs besides HORB exist the most noteworthy being DCOM, and the OMG’s CORBA.
These are both general ORBs while HORB is specifically designed for Java

Due to HORB’s implementation being 100% Java, and it being a primary design consideration of Java to achieve
interoperability. HORB has the advantage over other Cluster programming environments that the cluster need not
even be running the same Operating System.  The Java programs ran on the cluster do not even need to be recom-
piled when used on a heterogeneous cluster- a great advantage when varied computers comprise the cluster. Many
programming environments offer source level interoperability, but binary level interoperability is one of the great
advantages of HORB and other Java based cluster programming environments. The Java basis is another strong ad-
vantage it is enough to remember the lists of computers that other Cluster Programming Environments support- Li-
nux, Solaris, AIX,. But since HORB is Java based it doesn’t require a port, just a virtual machine!.

It can’t be stated enough the advantages of HORB and similar ORB schemes, they take normal Java code and en-
able it to be parallelised across a cluster with at most trivial changes to the source code. Admittedly a strong C-
FORTRAN implementation will easily outperform a Java-HORB one ( see bellow for examples)  but just as today it
takes an expert assembly programmer to outperform a C-compiler, soon the day will come when only with great



8

care a C-FORTRAN will outperform an automatically generated ORB system.

HORB consists of the HORBC compiler which uses a non-modified javac compiler as the back-end, and can
compile unmodified Java programs into distributed objects. The HORB server which is the object request broker,
and the HORB class library. It works with the Javac compiler, interpreter and system classes distributed by Sun, but
none of Sun’s code needs to be modified for HORB.

Many cluster/parallel programming environments have been created- many are listed in the above table that are
no longer being developed, of interest is that the systems that have maintained viability are those that inject primi-
tives into languages. New parallel languages have been proposed that better enable the programmer to express in-
herent parallelism, but rather than completely new parallel languages, programmers prefer slight additions to cur-
rently known languages . This is a great strength of HORB! as shown below it injects only half a dozen new primi-
tives into Java all of which are very common sense, this feature in no way ensures popularity, Linda for example
adds very few primitives, but remains little known.  A common failing of other Java Distributed object systems is
that they require distributed objects to either have a specific interface(e.g. remote for JavaRMI)  or inherit special
“distributed classes” because Multiple inheritance is not allowed in Java this causes grievous limits on the inheri-
tance hierarchy, in some cases requiring considerable redesign, HORB has the advantage that no “distributed class”
needs to be inherited!.

An advantage of HORB is type safety and that polymorphism is maintained. The objects can be casted and
treated just like normal, providing much freedom to the programmer. Further it uses Global Garbage Collection,
reference counting keeps track of  the current number of references to an object, and when it is no longer referred to
it is destroyed, just like normal!

Model of HORB structure[10]

In this example a client object whishes to take advantage of the methods of an object housed on a different com-
puter, it accesses these methods through a proxy class. Which directs the request to the Object request broker, given
identification on which object is required it locates the actual object and  via a skeleton object calls the method upon
that. The proxy in this case behaves exactly like the actual object, appearing to the client as if it is actually the ob-
ject.  The proxy and skeleton object are automatically generated by the HORBC compiler, so the programmer is
freed from the task of explicitly including the necessary parallelism.

This is scheme best describes functional rather than domain decomposition, In the functional decomposition ap-
proach the focus is on dividing the computation into disjoint tasks. An example of a modern problem for which
functional decomposition is most appropriate is those where the problem involves a number of simpler models con-
nected through interfaces. For examples, a simulation of the earth’s climate may comprise components representing
land, air, ocean, would benefit immensely from a model like HORB.

class Server{ // This server class is standard Java compiled by HORBC

String greetings (String name)



9

{ Return “Hello,”  + name;}}

 Class Client{

Public static void main (string[]) {

Server_Proxy server = new Server_Proxy(“horb://www.etl.go.jp:8887/” );

System.Out.println(server.greetings(“World!” )); }}

Example Java Code using HORB [2]

The “server” code is normal Java code, the client object that is making a call upon the server creates a proxy
class to the object (new Server_Proxy). In this example the actual object is created on the distant computer
www.etl.go.jp, the next line shows the remote object being used via the proxy. It should be noted that the object
may or may not be actually being created on the  remote computer when the new command is issued, firstly the cli-
ent needs to have the required access, secondly unlike CORBA and JavaRMI, HORB supports both object connec-
tion and object creation. In the object connection model all of the clients share one remote object, and the instance
variables are either stored in special data storage or transmitted on each call. In the object creation model a new ob-
ject is created on each “new” this a remote object will have the client’s specific data Since one objects are owned .
HORB allows both schemes while CORBA and JavaRMI are limited to the object creation model.

This example illustrates both the major ideas and failing of HORB it is really designed as a client-server commu-
nication model, many people believe that the cluster is actually a peer group, and that models such as HORB which
emphasize a client-server nature are ill-conceived.

The Object Management Group’s (OMG) CORBA(Common Object Request Broker Architecture) is another ex-
ample of an object broker, but CORBA is intended to realize interoperability among languages. To achieve this it
uses IDL files, for each class that is defined a new IDL file needs to be written. HORB being specifically a Java
system has no such constraints, and automatically generates the required proxy and skeleton classes and so requires
less of the programmer and so provides less burdensome application development.

An excellent performance evaluation is detailed in Hirano[10] which compares the then HORB implementation to
a socket implementation and javaRMI. It finds that HORB is significantly faster than both other schemes. Further in
their comparison of JavaParty with RMI and Sockets, Philippsen et. Al. [10] find that RMI and sockets require sig-
nificantly more effort to implement than a corresponding ORB implementation.

We run our programs on high performance clusters inorder to speed execution, but Java is often accused of being
too slow for serious programming, especially for scientific problem solving. In their study of the speed of a Java Vs.
FORTRAN geophysical modeling system, they find the Java code compiled with the  JIT compiler and using RMI
was 4 times slower than the equivalent. But promising research on object serialization [5] coupled with ongoing
development is reducing this difference dramatically.

6. Summary and Conclusions
PVM is an environment that allows a programmer to use a single virtual machine as an interface to a cluster of

possibly heterogeneous machines, while not as efficient as MPI it provides a more intuitive programming environ-
ment, so speeding program development.  The MPI standard is a collection of communication routines that is in-
serted into a language to allow the explicit specification of inter-node communication, currently MPI though has the
failing of, unlike PVM, not allowing dynamic process creation, but the latest addition to the standard MPI-2 in-
cludes this facility. Many programmers are turning to the newly defined MPI standard, because of its enhanced
message passing facilities, although they are reluctant to let go of some of the superior PVM features. The MPI2
standard currently in development is set to remedy some of these inadequacies and could see PVM becoming obso-
lete.

HORB and other object based cluster paradigms share more with PVM than MPI, they usually require only small
changes to generate the cluster algorithm, while MPI requires the explicit specification of the inter node communi-
cation and the allocation of tasks.  HORB provides an extension to the popular Java programming environment, the
HORB language is valuable because it requires the user to have virtually no knowledge of the under lying parallel
system.  Java’s object orientated approach allows rapid program development, encourages software reuse, and is



10

binary rather than source interoperable- meaning that source doesn’t need to be recompiled when a heterogeneous
cluster is being used. Currently HORB and other similar systems like the JavaRMI are slower than equivalent FOR-
TRAN/MPI systems but their maintainability, and ease of construction means that as performance improves they
will become only more used.

MPI provides an extremely efficient basis for an application, partly because of its large range of message passing
functions, but also because of its restrictions on expensive operations, like dynamic task creation. MPI is the library
of choice for performance critical applications.

  HORB/ PVM and other systems that abstract away the cluster's detail , are ideal for rapid program development,
programs built using these systems will not have the performance of their MPI counterparts, but this may be com-
pensated for by their ease of construction.

The success of Cluster Programming environments is seen in the wide spread use of cluster computers, nowadays
the cutting edge Web Servers, Scientific Modeling Systems, and  Data Warehouses problems are all implemented on
cluster computers.

There is a bright future indeed for cluster computing, the huge demand for computer power coupled with the inex-
pensive of commodity components means that cluster computing will only become more prevalent. The develop-
ment of new generation languages and other cluster tools means that program development will become easier and
more straightforward.

References
[1] HORB users guide: http://horb.etl.go.jp/horb/doc/guide/intro.htm

[2] Hirano, Satoshi, HORB: Distributed Execution of Java Programs,  pp29-42 Proceedings of WWCB ’97 LNCS,
V1274 Springer, Berlin ’97

[3] Philippsen, M & Zenger M. Java Party- Transparent Remote Objects in Java, Concurrenty: Pratice & Experi-
ence, Vlume 9, Number 11, pp. 1225-1242, November 97

[4] Phillippsend, Imperative concurrent object-oriented languages. Techinical Report TR-95-050, Internation Com-
puter Science Institute . Berkeley, August 1995.

[5] Philippsen,B et. al. More Efficient Object Serialization. Parallel and Distributed Processing, LNCS 1586
pp718-732, International Workshop on Java for parallel and distributed computing, San Juan. Puerto Rico.
April 12, 1999

[6] Jacob, M. et al. Large-Scale Geophysical Algorithms in Java: A Feasibility Study Concurrency: Practice and
Experience, 10(11-13): 1143-1154 September-November 1998.

[7] G. A. Geist, J. A. Kohl, P. M. Papadopoulos, PVM and MPI: a comparison of Features, G. A. Geist. J. A. Kohl.


