
1

Title : Cluster Tools

Authors : Colin Enticott AND Julian Crooke

School of Computer Science and Software Engineering
Monash University
Caulfield Campus, Melbourne, Australia

Email : cme@csse.monash.edu.au
jcrooke@cs.monash.edu.au

2

0. Abstract

Cluster tools are tools used on clusters of computers. The nature of these tools ranges from pro-
gramming languages and variations on current languages (libraries or compilers) to tools assist-
ing in design, optimisation, and debugging of parallel programs. There are synchronisation
problems that can occur in a program that do not happen in each of the execution times, only the
important ones. Tools come in many flavours, such as: diagnostic or debugging, performance-
tuning and execution-tools. All of these tools are designed to assist the programmer achieve their
goal quickly and accurately.

This report will discuss briefly general issues with cluster tools as well as discussing three of
them in detail. The first is a debugging tool called “Message Queue Monitoring” [1] that displays
the message queues on the entire cluster computer system graphically. The second we’ll discuss
a set of “Parallel Unix commands” [2] tools for maintain the files and Unix commands on a
cluster of Unix machines. The third is a tool that coordinates the output off all the nodes on the
cluster to one host in an organise fashion, “Parallel print functions” [3].

A few other noteworthy cluster tools are mentioned near the end.

3

1. Introduction

Parallel programming over a cluster of computers enables high performance computing on a
network of computers. Distributed programming has been around for many years with cli-
ent/server implementations of past software, but these implementations have a very limited in
scalability as the one server does most of the processing. One of the goals of cluster computing is
still the same as the client/server approach, that is to have the end user think that they are just
using the computer in front of them only, and not many machines working together. This can
even be brought down to the programmer level, the programmer writes one program and un-
knowingly, sections of the program execute on different machines on the network, but all the
results and output appears on the terminal the programmer executed the program on. This can be
done with Joyce-Linda if the programmer is unaware of the implementation, but is fully aware
on how to use the “agent” command.

Cluster tools help in the designing and implementation of parallel programs including cluster
computers. The tools range from programming languages (Joyce-Linda, etc.), to variations on
existing languages (libraries or enhanced compilers), and to tools assisting in design and debug-
ging of parallel programs (parallel debuggers (e.g. pdbx, pedb), parallel tracers (e.g. VAMPIR)
and profilers (e.g. xprofiler) [all from 12]).

There are different types of tools used in cluster programming, the most common of them being
diagnostic or debugging tools. These tools assist programmers in analysing problems that cluster
and parallel programs have. The most common cluster programming difficulty must be dead-
locks. One tool that is geared toward the isolation and eradication of deadlocks, mentioned fur-
ther down, is “Message Queue Monitoring”. This graphically displays the state of the whole
cluster application message state.

Another area in cluster computing tools is performance-tuning tools. One such tool might be a
timing API, or a profiler. Cluster computing can involve any of several different node architec-
tures. One may wish to exploit this by having tasks executing on machine architectures suited to
that type of processing. But which routines run best on which architectures? Accurate cross plat-
form timing routines with a standard interface would be the best method of finding what runs
best where (guessing the performance of an architecture given a particular problem or exact pro-
gram implementation is not often going to be accurate enough, only a rough guide). Other such
performance-tuning tools may include message passing optimisation and load distribution tools.

Another group of tools are execution tools. These tools help in the execution of programs across
the cluster of computers. These tools may include a program that shows the processes state
across many computers, or a given computer, copy files to other cluster computers and possibly
begin compilation on the cluster computers (the Parallel Unix Commands could be considered
execution tools).

4

2. Works on this area

Name Description Remarks URL
Message
Queue Man-
ager project

Parallel tool that dis-
plays a parallel pro-
grams message queue

Debugging and
performance
tuning

http://www.ptools.org/projects/
mqm/

Parallel Unix
commands

Parallel versions of fa-
miliar Unix commands

For execution
and setup of
parallel pro-
grams

http://www-
unix.mcs.anl.gov/sut/

Parallel print
functions

Standard API for
merging and identifying
the output from multi-
ple nodes in a parallel
program

Parallel program
output

http://www.llnl.gov/sccd/lc/ppf/

Portable Tim-
ing Routines

A standard API (appli-
cation program inter-
face) for measuring in-
tervals of program exe-
cution, in terms of
wallclock, user CPU,
and system CPU time

Standards for
multi-types of
processors per-
formance tim-
ing.

http://www.ptools.org/projects/
ptr/

Distributed
Array Query
and Visualiza-
tion

Tools providing access
to, and visualization of,
distributed arrays in a
parallel program

Used for debug-
ging

http://www.cs.uoregon.edu/~ha
cks/research/daqv/

Performance
Data Standard
and API

A standard API (appli-
cation program inter-
face) for obtaining the
values of hardware
counters

Performance
tuning

http://icl.cs.utk.edu/projects/pa
pi/

Dynamic
Probe Class
Library

A standard infrastruc-
ture that will make it
possible to build tools
that are portable across
HPC platforms

Tool building http://www.ptools.org/projects/
dpcl/

5

3. Message Queue Manager project

Problem

One of the common problems programmers have with distributed programming is a deadlock. A
deadlock occurs if each process running a distributed program is waiting for information to be
sent from another process. Given that they are all waiting, no task sends any information to sat-
isfy another, and the program waits indefinitely. There is no quick fix for these deadlocking
problems, and they can be dealt with in differing ways.

A possible solution

One way is to have a controlling node that instructs each of the nodes what to do and receives
the results from a node when it is done. This has the added advantage of the programmer think-
ing of the whole application linearly. It is rare for deadlocks to occur when the each node does a
task almost synchronously. This controlling node can be used for debugging as is can output the
messages it received which lets the programmer use the information to find when it did not re-
ceive an important message. The only problem with this is a whole node is wasted to just pass
messages and messages are usually doubled up as the controller node passes the results from a
node to another node. A node will run far more efficiently if it knows what needs to be processed
next and the communications network between the nodes is quicker because it is used far less.

The project

The “Message Queue Manager project” created a program that is designed to graphically display
the messages to and from each node so that a programmer can easily check when and where
deadlocks occur. The output from this program is like the output that could be obtained from a
controlling node, but does not have the network overhead. And it is also displayed graphically so
the programmer does not have to wade though mounds and mounds of output.

The program is designed for ease of use. The main window (figure 1) consists of a grid that rep-
resents all the nodes of the application. Each square in the grid has a colour that represents the
number of messages in the process queue of each node. A node can be selected and a new win-
dow that shows that nodes operation. The new windows contains two mode grids, a ‘from’ and a
‘to’ grid, and filters to display certain messages. This second window can represent a node or a
selection of nodes.

6

Figure 1 - Main window of "Message Queue Manager" [4]

Being able to analyse each node or groups of nodes makes it easier for the programmer to isolate
the problem the application is having with distributed design. One such problem would be the
dining philosophers problem. If each node was waiting for it’s previous node and the first node
is waiting on the last node, with then manner of a few clicks, it can easily be determined leaving
the programmer to implement a work around, or, re-think the problem.

In cluster computing this is a very valuable tool. It helps programmers isolate problems in their
cluster program rapidly and accurately. There is no need for guesswork as programmers can
check the current and final state of all the messages in the application. Guesswork normally leads
to placing run-time reporting in the program that requires a recompile. Recompilation on a clus-
ter of machines can take a while if there are different compiled files on each machine, as each
machine has to be instructed to recompile. Diagnostic tools like this one will speed up the find-
ing the cause of deadlocks.

The “Message Queue Manager project” software is available in source code for Tcl/Tk and C
and it is royalty-free. An implementation has been successfully integrated with Intel's Interactive
Parallel Debugger for the Paragon.

7

4. Parallel Unix Commands

Problem

Working in a cluster environment, most users need to perform file maintenance and process
monitoring on more than one node at a time. The user may for example wish to copy some up-
dated source files to all nodes in the cluster, then build the binary executable separately on each
node. Logging in to each of the machines and uploading files and executing the commands indi-
vidually would take forever. The sequence of commands may be different every time, which
may require interactivity, so scripting is not a desired option. On a regular basis, this problem
may grow very tiresome for the user. What is needed is a way of telling many nodes to execute
the same command at once, and that is easy to learn and use.

Concept for solution

The Parallel Tools Consortium (Ptools) created a workgroup (Parallel Tools Consortium Work-
ing Group on Parallel Unix Commands) to make a solution to these problems. The solution they
came up with is designed to work for a cluster of Unix machines, and it is a set of commands
(shell commands) that run on several nodes at once. These include ‘pls’, ‘pcp’, ‘pmv’, ‘pps’, and
more. Each command starts with ‘p’ for ‘parallel’ and then usually follows with the name of a
standard Unix command (‘pcp’ = parallel copy). The syntax is always that the first parameter to
the parallel command is a node list. This can be ‘-all’ to specify all nodes, and is discussed in
more detail later.

The semantics do not follow a completely rigid rule, because it is practical sometimes not to. For
example, running ‘pcp –all newData ./inputData’ will copy the local file ‘newData’ to file
‘./inputData’ in all the nodes. Then, running ‘pmv –all inputData myprog/data’ will move the
file on each local hard-drive of each node from the current directory to ‘myprog/data’. Clarify-
ing, the pcp ‘broadcasts’ or distributes the file newData, while pmv moves the file within each
hard-disk, locally only. This is over all probably the most useful behaviour of these commands.
One rarely needs two copies of something on each of 100 nodes after all, and it is a very quick,
clear, and reliable way to spread a file across the whole cluster. On the other hand one never
really wants to move a single file from one node to all other nodes (besides, that effect could be
achieved with a ‘pcp’ followed by a local ‘rm’ anyway). Moving the same files on each node
into another directory on each node is a much more commonly desired operation.

8

Syntax of the commands

As mentioned earlier, all commands start with a ‘p’, and the first argument to each command is a
nodelist as described in the grammar below:

nodelist -> ’-all’

nodelist -> range [, nodelist]

nodelist -> nodenum [, nodelist]

range -> nodenum ’-’ nodenum

nodenum -> digit [nodenum]

This grammar describes the first argument common to all the parallel commands in the project
[from http://www-unix.mcs.anl.gov/sut/long2/node3.html] Some examples are:

‘pcp 1-5 testfile /progfiles’

This copies testfile to /progfiles on nodes 1 through 5 only.

‘pmv 1,3,5 /progfiles/testfile /progfiles/old’

Copy testfile to /progfiles/ on nodes 1, 3 and 5 only.

‘pps machineA’

List the processes running on the node named ‘machineA’ only.

‘pps 5,machineA,7-10’

List the processes running on node 5, machineA, and nodes 7 through 10.

9

Graphical display components

For commands which print output, the node number or name prefixes each line of output. Some
commands’ outputs can be passed into graphical visualization tools, such as ‘pdisp’ and ‘pinfo’:

Pdisp used here to display nodes on which a certain job is running (text is piped in to pdisp from other parallel com-
mands) [from 7]:

Pinfo used here to display ‘partition’ availability [from 7]:

10

Speed of operation

In keeping with the requirement that the commands can be used interactively, they must start
quickly and end quickly to return control back to the user for another command. Otherwise, as
mentioned in the Ptools proposal [6], users will not use the commands as casually as they should
be able to and will feel compelled not to use them as much. This is addressed in the tool design,
in a scalable fashion. The command, along with half of the node list, is sent to one of the nodes.
This is repeated until there are no nodes left in the list. (So initially one node holds the complete
node list to distribute the command to. It passes half of that list to a second node. The second
node does the same thing with its list, while the first node does the same again with its remaining
list. At step, the number of nodes the command has spread to doubles. So in O(log n) steps, the
command has been passed to all n nodes. They return the ‘finished’ message with similar haste,
before the user may enter another command.)

Evaluation

Here is the list of available commands, and a brief inspection of their functionality is available
also [7].

Table of commands included in the project at time of proposal [from 7]:

That is fairly good selection of powerful commands to have at one’s fingertips. As seen, graphi-
cal front ends can be added with ease (pdisp comes as part of the project) due to the simple out-
put of the commands. For setting up and maintaining files and processes in a cluster, this is a
very useful tool.

11

5. Parallel Print Function

Problem

Programming parallel programs can involve the use of special parallel debuggers and analysis
tools. But many people prefer to work with print statements [7]. They are usually scattered
through code to indicate arrival at execution checkpoints, communication events, intermediate
results and so on. The actions or states of different processes are printed in this way through the
execution of the program. This output can be used to analyse the flow of data and events, but
often the volume of ASCII data that comes from several nodes all printing out the same mes-
sages can hamper efforts to investigate any problem at hand. One must be perpetually attentive
to print-statement placement in order to avoid printing things over and over. One often needs to
add extra code to every print-statement which prints the number (or name) of the originating
node:

e.g.
printf(“Node %d says hello there.\n”, myRank);

This code running on 3 nodes would produce something like:
Node 1 says hello there.
Node 0 says hello there.
Node 2 says hello there.

The repeat printing problem can be easily solved for cases where only one particular process will
print the message:

if (myRank == 1)
printf(“Node %d says hello there.\n”, myRank);

But there are often cases where we can’t know easily what is going to be printed by each node.
For example, say each node could detect whether its CPU was overheating. We print the status
of the CPU:

if (meOverHeating)
printf(“Node %d says Water Please!\n”, myRank);

else
printf(“Node %d says I’m Cool.\n”, myRank);

12

This will print something like this when run on 4 nodes:
Node 0 says I’m Cool.
Node 1 says Water Please!
Node 3 says I’m Cool.
Node 2 says Water Please!

Which follows no sequence, and expresses the information inefficiently. What we really wanted
was probably something more like this:

Nodes 0 and 3 say I’m Cool.
Nodes 1 and 2 say Water Please!

Reducing output by two lines.

Another common trait of print-statements in parallel applications is their unfortunate tendency to
interrupt one another mid-line resulting with text inserted at strange points. This creates output
that is consistently harder to read and may possibly be truly ambiguous, for example (a tragic
rerun of before):

Node 0 says Node 1 says Water Please!
Node 2 says I’m Cool.
Water Please!
Node 3 says I’m Cool.

This is already quite hard to follow with only three nodes involved (albeit an unlikely pathologi-
cal case). But fear not, for we will see a tool offered as a solution to all these problems, which
adheres to sensible requirements of user familiarity and ease of use.

A possible solution

Ptools created a workgroup (Parallel Tools Consortium Working Group on PPF - Parallel Print
Function) to satisfy the problem at hand.

The group had the realization that if all N nodes are printing “hello there”, then there is no rea-
son to actually print “hello there”, N times over. (This is confirmed in the study of information
theory, from which arises the result that a repeated message has low entropy, which implies low
information content.) Since this is a major problem with conventional printing, it seems sensible
that the PPF’s primary function should be to collapse identical messages from multiple nodes
down to one message. The single message will contain a list of nodes (ID or rank) at the begin-
ning, indicating which tasks printed the message.

e.g.
PPF_Print(MPI_COMM_WORLD, “Node says hello there.\n”);

When run on 3 tasks, this would output:

0-2 Node says hello there.

Note that this is doubly optimized, firstly the printed lines are collapsed from three down to one.

13

Secondly the list of nodes at the start of the line is briefly expressed as a range (similar to the in-
put node lists in Parallel Unix Commands).

Note also the MPI_COMM_WORLD. This determines which nodes are printing. All of the
nodes in the specified communicator must call parallel print, otherwise the program will hang, if
for some nodes we don’t want to print anything, NULL can be passed in as the format string, and
the node has then satisfied the call, but not printed anything. Even though all the processes must
call the print before moving on, this does not imply that the PPF synchronises like a barrier.

Here is an example where we use MPI_COMM_SELF instead:

PPF_Print(MPI_COMM_SELF, “Node says hello there.\n”);

Run on 3 nodes would produce something like:

2 Node says hello there.
0 Node says hello there.
1 Node says hello there.

Any grouping and ordering is dissolved because the prints were all to separate communicators.

One more feature is the use of a %N format specifier to set the position to print the node list:

PPF_Print(MPI_COMM_WORLD, “Node %N says hello there.\n”);

Run on 3 nodes would produce something like:

Node 0-2 says hello there.

Evaluation

Apparently the input format strings may be no longer than 255 characters, none of which may be
of the value 1 or 2 (these are reserved as internal markers). Also, only one %N can be added to
the format string. These are the limitations mentioned in the prospectus [8], but each are very
mild limitations indeed.

The tool is based on MPI specifically in C (printf) and Fortran (PRINT), but is MPI implemen-
tation-independent. This means it is fairly widely available and quite portable. Having been
tested and working on several systems including an IBM RS6000/SP and a DEC Alpha cluster
(each with two implementations of MPI), PPF appears a worthwhile addition to any MPI pro-
grammer’s toolkit.

14

6. Success Stories

The “Message Queue Manager project”[5] has been successfully integrated with Intel's Interac-
tive Parallel Debugger for the Paragon.

Another tool worth mentioning perhaps is GA, “Global Arrays toolkit”[9]. It implements an effi-
cient way of storing and accessing a distributed array as though it were stored on a shared mem-
ory architecture. Numerous awards associated with the project have been presented to the ven-
dors.

“Condor”[10] is another noteworthy project - a tool aimed at seeking idle nodes in a network and
using their spare cycles to compute some specified problem. (“Condor - a hunter of idle work-
stations” is the title of one conference paper regarding it [not referenced].)

7. Summary and Conclusions

There are three types of parallel tools that we discussed in this document. Diagnostic or debug-
ging, performance-tuning and execution tools. Each of these tools helps programmer to achieve
reliable software rapidly.

The Ptools consortium designed and created all three of the tools we introduced, to aid the de-
bugging of cluster programming. By displaying the message queues for all nodes graphically
with MQM, deadlocks and other problems can be identified and solutions derived. Parallel Unix
Commands tools help set up, rationalize, and maintain the overall configuration of the nodes in a
cluster. And PPF smooths the progress of tracking down errors in the ways users are accustomed
to when programming in MPI.

Tools like these are likely to be valuable if the development of large distributed computing ap-
plications is to be carried out on schedule and within monetary constraints.

15

8. References

[1] “Message Queue Manager project” - http://www.ptools.org/projects/mqm/
[2] “Parallel Unix commands” - http://www-unix.mcs.anl.gov/sut/
[3] “Parallel print functions” - http://www.llnl.gov/sccd/lc/ppf/
[4] Picture from http://www.ptools.org/projects/mqm/flyer.html
[5] “Message Queue Manager project” - http://www.ptools.org/projects/mqm/
[6] “Scalable Unix Commands on Parallel Computers” - http://www-unix.mcs.anl.gov/sut/proposal.html
[7] “Unix Tools on Massively Parallel Processors” - http://www-unix.mcs.anl.gov/sut/long2/long2.html
[8] “Parallel print functions” - http://www.llnl.gov/sccd/lc/ppf/ppf_prospectus.html
[9] “Global Arrays” - http://www.emsl.pnl.gov:2080/docs/global/ga.html
[10] “The Condor Project Homepage” - http://www.cs.wisc.edu/condor/
[11] “Parallel Tools Consortium Projects” - http://www.ptools.org/projects.html
[12] “Cornell Theory Center. Parallel Tools” - http://www.tc.cornell.edu/UserDoc/Software/PTools/

