
PART

2
Cloud Application
Programming and
the Aneka Platform

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



CHAPTER

5c0005

Aneka
Cloud Application Platform

p0065 Aneka is Manjrasoft Pty. Ltd.’s solution for developing, deploying, and managing cloud applica-

tions. Aneka consists of a scalable cloud middleware that can be deployed on top of heterogeneous

computing resources. It offers an extensible collection of services coordinating the execution of

applications, helping administrators monitor the status of the cloud, and providing integration with

existing cloud technologies. One of Aneka’s key advantages is its extensible set of application pro-

gramming interfaces (APIs) associated with different types of programming models—such as Task,

Thread, and MapReduce—used for developing distributed applications, integrating new capabilities

into the cloud, and supporting different types of cloud deployment models: public, private, and

hybrid (see Figure 5.1). These features differentiate Aneka from infrastructure management soft-

ware and characterize it as a platform for developing, deploying, and managing execution of appli-

cations on various types of clouds.

p0070 This chapter provides a complete overview of the framework by first describing the architecture

of the system. It introduces Aneka’s components and the fundamental services that make up the

Aneka Cloud and discusses some common deployment scenarios.

s0010 5.1 Framework overview
p0075 Aneka is a software platform for developing cloud computing applications. It allows harnessing of

disparate computing resources and managing them into a unique virtual domain—the Aneka

Cloud—in which applications are executed. According to the Cloud Computing Reference Model

presented in Chapter 1, Aneka is a pure PaaS solution for cloud computing. Aneka is a cloud mid-

dleware product that can be deployed on a heterogeneous set of resources: a network of computers,

a multicore server, datacenters, virtual cloud infrastructures, or a mixture of these. The framework

provides both middleware for managing and scaling distributed applications and an extensible set

of APIs for developing them.

p0080 Figure 5.2 provides a complete overview of the components of the Aneka framework. The core

infrastructure of the system provides a uniform layer that allows the framework to be deployed

over different platforms and operating systems. The physical and virtual resources representing the

bare metal of the cloud are managed by the Aneka container, which is installed on each node and

constitutes the basic building block of the middleware. A collection of interconnected containers

constitute the Aneka Cloud: a single domain in which services are made available to users and

143

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



developers. The container features three different classes of services: Fabric Services, Foundation

Services, and Execution Services. These take care of infrastructure management, supporting ser-

vices for the Aneka Cloud, and application management and execution, respectively. These services

are made available to developers and administrators by means of the application management and

development layer, which includes interfaces and APIs for developing cloud applications and the

management tools and interfaces for controlling Aneka Clouds.

p0085 Aneka implements a service-oriented architecture (SOA), and services are the fundamental com-

ponents of an Aneka Cloud. Services operate at container level and, except for the platform abstrac-

tion layer, they provide developers, users, and administrators with all features offered by the

framework. Services also constitute the extension and customization point of Aneka Clouds: The

infrastructure allows for the integration of new services or replacement of the existing ones with a

different implementation. The framework includes the basic services for infrastructure and node

management, application execution, accounting, and system monitoring; existing services can be

extended and new features can be added to the cloud by dynamically plugging new ones into the

container. Such extensible and flexible infrastructure enables Aneka Clouds to support different

programming and execution models for applications. A programming model represents a collection

of abstractions that developers can use to express distributed applications; the runtime support for a

programming model is constituted by a collection of execution and foundation services interacting

together to carry out application execution. Thus, the implementation of a new model requires the

development of the specific programming abstractions used by application developers and the

Multiple Infrastructures

Multicore Cluster Grid Cloud

Thread Task ... MapReduce

Aneka

Multiple Applications

1. SDK

2. Runtime

f0010 FIGURE 5.1

Aneka’s capabilities at a glance.

144 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



services, providing runtime support for them. Programming models are just one aspect of applica-

tion management and execution. Within an Aneka Cloud environment, there are different aspects

involved in providing a scalable and elastic infrastructure and distributed runtime for applications.

These services involve:

u0050 • Elasticity and scaling. By means of the dynamic provisioning service, Aneka supports

dynamically upsizing and downsizing of the infrastructure available for applications.

u0055 • Runtime management. The runtime machinery is responsible for keeping the infrastructure up

and running and serves as a hosting environment for services. It is primarily represented by the

container and a collection of services that manage service membership and lookup, infrastructure

maintenance, and profiling.

u0060 • Resource management. Aneka is an elastic infrastructure in which resources are added and

removed dynamically according to application needs and user requirements. To provide

Application Development & Management

Middleware - Container

Application Services

P
resistence &

 S
ecurity

Foundation Services

Management: Tools, Interfaces and APls

Distributed Threads

Storage

High-Availability Resource Provisioning

Enterprise Desktop Grid Data Centers Clusters Public Cloud

Hardware Profiling

PAL – Platform Abstraction Layer

Membership

Resource Reservation Billing & Reporting

Fabric Services

infrastructure

Licensing & Accounting

MapReduce Bag of Tasks PSM Other models...

Software Development kit: APIs & Tools

f0015 FIGURE 5.2

Aneka framework overview.

1455.1 Framework overview

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



QoS-based execution, the system not only allows dynamic provisioning but also provides

capabilities for reserving nodes for exclusive use by specific applications.

u0065 • Application management. A specific subset of services is devoted to managing applications.

These services include scheduling, execution, monitoring, and storage management.

u0070 • User management. Aneka is a multitenant distributed environment in which multiple

applications, potentially belonging to different users, are executed. The framework provides an

extensible user system via which it is possible to define users, groups, and permissions. The

services devoted to user management build up the security infrastructure of the system and

constitute a fundamental element for accounting management.

u0075 • QoS/SLA management and billing. Within a cloud environment, application execution is

metered and billed. Aneka provides a collection of services that coordinate together to take into

account the usage of resources by each application and to bill the owning user accordingly.

p0120 All these services are available to specific interfaces and APIs on top of which the software

development kit (SDK) and management kit are built. The SDK mainly relates to application devel-

opment and modeling; it provides developers with APIs to develop applications with the existing

programming models and an object model for creating new models. The management kit is mostly

focused on interacting with the runtime services for managing the infrastructure, users, and applica-

tions. The management kit gives a complete view of Aneka Clouds and allows monitoring Aneka’s

status, whereas the SDK is more focused on the single application and provides means to control

its execution from a single user. Both components are meant to provide an easy-to-use interface via

which to interact and manage containers that are the core component of the Aneka framework.

s0015 5.2 Anatomy of the Aneka container
p0125 The Aneka container constitutes the building blocks of Aneka Clouds and represents the runtime

machinery available to services and applications. The container, the unit of deployment in Aneka

Clouds, is a lightweight software layer designed to host services and interact with the underlying

operating system and hardware. The main role of the container is to provide a lightweight environ-

ment in which to deploy services and some basic capabilities such as communication channels

through which it interacts with other nodes in the Aneka Cloud. Almost all operations performed

within Aneka are carried out by the services managed by the container. The services installed in

the Aneka container can be classified into three major categories:

u0080 • Fabric Services

u0085 • Foundation Services

u0090 • Application Services

p0145 The services stack resides on top of the Platform Abstraction Layer (PAL), representing the

interface to the underlying operating system and hardware. It provides a uniform view of the soft-

ware and hardware environment in which the container is running. Persistence and security traverse

all the services stack to provide a secure and reliable infrastructure. In the following sections we

discuss the components of these layers in more detail.

146 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



s0020 5.2.1 From the ground up: the platform abstraction layer
p0150 The core infrastructure of the system is based on the .NET technology and allows the Aneka container

to be portable over different platforms and operating systems. Any platform featuring an ECMA-334

[52] and ECMA-335 [53] compatible environment can host and run an instance of the Aneka container.

p0155 The Common Language Infrastructure (CLI), which is the specification introduced in the

ECMA-334 standard, defines a common runtime environment and application model for executing

programs but does not provide any interface to access the hardware or to collect performance data

from the hosting operating system. Moreover, each operating system has a different file system

organization and stores that information differently. The Platform Abstraction Layer (PAL)

addresses this heterogeneity and provides the container with a uniform interface for accessing the

relevant hardware and operating system information, thus allowing the rest of the container to run

unmodified on any supported platform.

p0160 The PAL is responsible for detecting the supported hosting environment and providing the cor-

responding implementation to interact with it to support the activity of the container. The PAL pro-

vides the following features:

u0095 • Uniform and platform-independent implementation interface for accessing the hosting platform

u0100 • Uniform access to extended and additional properties of the hosting platform

u0105 • Uniform and platform-independent access to remote nodes

u0110 • Uniform and platform-independent management interfaces

p0185 The PAL is a small layer of software that comprises a detection engine, which automatically

configures the container at boot time, with the platform-specific component to access the above

information and an implementation of the abstraction layer for the Windows, Linux, and Mac OS

X operating systems.

p0190 The collectible data that are exposed by the PAL are the following:

u0115 • Number of cores, frequency, and CPU usage

u0120 • Memory size and usage

u0125 • Aggregate available disk space

u0130 • Network addresses and devices attached to the node

p0215 Moreover, additional custom information can be retrieved by querying the properties of the hard-

ware. The PAL interface provides means for custom implementations to pull additional information

by using name-value pairs that can host any kind of information about the hosting platform. For

example, these properties can contain additional information about the processor, such as the model

and family, or additional data about the process running the container.

s0025 5.2.2 Fabric services
p0220 Fabric Services define the lowest level of the software stack representing the Aneka Container.

They provide access to the resource-provisioning subsystem and to the monitoring facilities imple-

mented in Aneka. Resource-provisioning services are in charge of dynamically providing new

nodes on demand by relying on virtualization technologies, while monitoring services allow for

hardware profiling and implement a basic monitoring infrastructure that can be used by all the ser-

vices installed in the container.

1475.2 Anatomy of the Aneka container

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



s0030 5.2.2.1 Profiling and monitoring
p0225 Profiling and monitoring services are mostly exposed through the Heartbeat, Monitoring, and

Reporting Services. The first makes available the information that is collected through the PAL; the

other two implement a generic infrastructure for monitoring the activity of any service in the

Aneka Cloud.

p0230 The Heartbeat Service periodically collects the dynamic performance information about the

node and publishes this information to the membership service in the Aneka Cloud. These data are

collected by the index node of the Cloud, which makes them available for services such as reserva-

tions and scheduling in order to optimize the use of a heterogeneous infrastructure. As already dis-

cussed, basic information about memory, disk space, CPU, and operating system is collected.

Moreover, additional data are pulled into the “alive” message, such as information about the

installed software in the system and any other useful information. More precisely, the infrastructure

has been designed to carry over any type of data that can be expressed by means of text-valued

properties. As previously noted, the information published by the Heartbeat Service is mostly con-

cerned with the properties of the node. A specific component, called Node Resolver, is in charge of

collecting these data and making them available to the Heartbeat Service. Aneka provides different

implementations for such component in order to cover a wide variety of hosting environments.

A variety of operating systems are supported with different implementations of the PAL, and differ-

ent node resolvers allow Aneka to capture other types of data that do not strictly depend on the

hosting operating system. For example, the retrieval of the public IP of the node is different in the

case of physical machines or virtual instances hosted in the infrastructure of an IaaS provider such

as EC2 or GoGrid. In virtual deployment, a different node resolver is used so that all other compo-

nents of the system can work transparently.

p0235 The set of built-in services for monitoring and profiling is completed by a generic monitoring

infrastructure, which allows any custom service to report its activity. This infrastructure is com-

posed of the Reporting and Monitoring Services. The Reporting Service manages the store for mon-

itored data and makes them accessible to other services or external applications for analysis

purposes. On each node, an instance of the Monitoring Service acts as a gateway to the Reporting

Service and forwards to it all the monitored data that has been collected on the node. Any service

that wants to publish monitoring data can leverage the local monitoring service without knowing

the details of the entire infrastructure. Currently several built-in services provide information

through this channel:

u0135 • The Membership Catalogue tracks the performance information of nodes.

u0140 • The Execution Service monitors several time intervals for the execution of jobs.

u0145 • The Scheduling Service tracks the state transitions of jobs.

u0150 • The Storage Service monitors and makes available information about data transfer, such as

upload and download times, filenames, and sizes.

u0155 • The Resource Provisioning Service tracks the provisioning and lifetime information of virtual

nodes.

p0265 All this information can be stored on a relational database management system (RDBMS) or a

flat file and can be further analyzed by specific applications. For example, the Management

Console provides a view on such data for administrative purposes.

148 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



s0035 5.2.2.2 Resource management
p0270 Resource management is another fundamental feature of Aneka Clouds. It comprises several tasks:

resource membership, resource reservation, and resource provisioning. Aneka provides a collection

of services that are in charge of managing resources. These are the Index Service (or Membership

Catalogue), Reservation Service, and Resource Provisioning Service.

p0275 The Membership Catalogue is Aneka’s fundamental component for resource management; it keeps

track of the basic node information for all the nodes that are connected or disconnected. The

Membership Catalogue implements the basic services of a directory service, allowing the search for

services using attributes such as names and nodes. During container startup, each instance publishes its

information to the Membership Catalogue and updates it constantly during its lifetime. Services and

external applications can query the membership catalogue to discover the available services and inter-

act with them. To speed up and enhance the performance of queries, the membership catalogue is orga-

nized as a distributed database: All the queries that pertain to information maintained locally are

resolved locally; otherwise the query is forwarded to the main index node, which has a global knowl-

edge of the entire Cloud. The Membership Catalogue is also the collector of the dynamic performance

data of each node, which are then sent to the local monitoring service to be persisted in the long term.

p0280 Indexing and categorizing resources are fundamental to resource management. On top of the

basic indexing service, provisioning completes the set of features that are available for resource

management within Aneka. Deployment of container instances and their configuration are per-

formed by the infrastructure management layer and are not part of the Fabric Services.

p0285 Dynamic resource provisioning allows the integration and management of virtual resources leased

from IaaS providers into the Aneka Cloud. This service changes the structure of the Aneka Cloud by

allowing it to scale up and down according to different needs: handling node failures, ensuring the

quality of service for applications, or maintaining a constant performance and throughput of the

Cloud. Aneka defines a very flexible infrastructure for resource provisioning whereby it is possible

to change the logic that triggers provisioning, support several back-ends, and change the runtime

strategy with which a specific back-end is selected for provisioning. The resource-provisioning infra-

structure built into Aneka is mainly concentrated in the Resource Provisioning Service, which

includes all the operations that are needed for provisioning virtual instances. The implementation of

the service is based on the idea of resource pools. A resource pool abstracts the interaction with a

specific IaaS provider by exposing a common interface so that all the pools can be managed uni-

formly. A resource pool does not necessarily map to an IaaS provider but can be used to expose as

dynamic resources a private cloud managed by a Xen Hypervisor or a collection of physical

resources that are only used sporadically. The system uses an open protocol, allowing for the use of

metadata to provide additional information for describing resource pools and to customize provision-

ing requests. This infrastructure simplifies the implementation of additional features and the support

of different implementations that can be transparently integrated into the existing system.

p0290 Resource provisioning is a feature designed to support QoS requirements-driven execution of

applications. Therefore, it mostly serves requests coming from the Reservation Service or the

Scheduling Services. Despite this, external applications can directly leverage Aneka’s resource-

provisioning capabilities by dynamically retrieving a client to the service and interacting with the

infrastructure to it. This extends the resource-provisioning scenarios that can be handled by Aneka,

which can also be used as a virtual machine manager.

1495.2 Anatomy of the Aneka container

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



s0040 5.2.3 Foundation services
p0295 Fabric Services are fundamental services of the Aneka Cloud and define the basic infrastructure

management features of the system. Foundation Services are related to the logical management of

the distributed system built on top of the infrastructure and provide supporting services for the exe-

cution of distributed applications. All the supported programming models can integrate with and

leverage these services to provide advanced and comprehensive application management. These

services cover:

u0160 • Storage management for applications

u0165 • Accounting, billing, and resource pricing

u0170 • Resource reservation

p0315 Foundation Services provide a uniform approach to managing distributed applications and allow

developers to concentrate only on the logic that distinguishes a specific programming model from

the others. Together with the Fabric Services, Foundation Services constitute the core of the Aneka

middleware. These services are mostly consumed by the execution services and Management

Consoles. External applications can leverage the exposed capabilities for providing advanced appli-

cation management.

s0045 5.2.3.1 Storage management
p0320 Data management is an important aspect of any distributed system, even in computing clouds.

Applications operate on data, which are mostly persisted and moved in the format of files. Hence,

any infrastructure that supports the execution of distributed applications needs to provide facilities

for file/data transfer management and persistent storage. Aneka offers two different facilities for

storage management: a centralized file storage, which is mostly used for the execution of compute-

intensive applications, and a distributed file system, which is more suitable for the execution of

data-intensive applications. The requirements for the two types of applications are rather different.

Compute-intensive applications mostly require powerful processors and do not have high demands

in terms of storage, which in many cases is used to store small files that are easily transferred from

one node to another. In this scenario, a centralized storage node, or a pool of storage nodes, can

constitute an appropriate solution. In contrast, data-intensive applications are characterized by large

data files (gigabytes or terabytes), and the processing power required by tasks does not constitute a

performance bottleneck. In this scenario, a distributed file system harnessing the storage space of

all the nodes belonging to the cloud might be a better and more scalable solution.

p0325 Centralized storage is implemented through and managed by Aneka’s Storage Service. The ser-

vice constitutes Aneka’s data-staging facilities. It provides distributed applications with the basic

file transfer facility and abstracts the use of a specific protocol to end users and other components

of the system, which are dynamically configured at runtime according to the facilities installed in

the cloud. The option that is currently installed by default is normal File Transfer Protocol (FTP).

p0330 To support different protocols, the system introduces the concept of a file channel that identifies

a pair of components: a file channel controller and a file channel handler. The file channel control-

ler constitutes the server component of the channel, where files are stored and made available; the

file channel handler represents the client component, which is used by user applications or other

components of the system to upload, download, or browse files. The storage service uses the

150 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



configured file channel factory to first create the server component that will manage the storage

and then create the client component on demand. User applications that require support for file

transfer are automatically configured with the appropriate file channel handler and transparently

upload input files or download output files during application execution. In the same way, worker

nodes are configured by the infrastructure to retrieve the required files for the execution of the jobs

and to upload their results.

p0335 An interesting property of the file channel abstraction is the ability to chain two different chan-

nels to move files by using two different protocols. Each file in Aneka contains metadata that helps

the infrastructure select the appropriate channel for moving the file. For example, an output file

whose final location is an S3 bucket can be moved from the worker node to the Storage Service

using the internal FTP protocol and then can be staged out on S3 by the FTP channel controller

managed by the service. The Storage Service supports the execution of task-based programming

such as the Task and the Thread Model as well as Parameter Sweep-based applications.

p0340 Storage support for data-intensive applications is provided by means of a distributed file system.

The reference model for the distributed file system is the Google File System [54], which features

a highly scalable infrastructure based on commodity hardware. The architecture of the file system

is based on a master node, which contains a global map of the file system and keeps track of the

status of all the storage nodes, and a pool of chunk servers, which provide distributed storage space

in which to store files. Files are logically organized into a directory structure but are persisted on

the file system using a flat namespace based on a unique ID. Each file is organized as a collection

of chunks that are all of the same size. File chunks are assigned unique IDs and stored on different

servers, eventually replicated to provide high availability and failure tolerance. The model proposed

by the Google File System provides optimized support for a specific class of applications that

expose the following characteristics:

u0175 • Files are huge by traditional standards (multi-gigabytes).

u0180 • Files are modified by appending new data rather than rewriting existing data.

u0185 • There are two kinds of major workloads: large streaming reads and small random reads.

u0190 • It is more important to have a sustained bandwidth than a low latency.

p0365 Moreover, given the huge number of commodity machines that the file system harnesses

together, failure (process or hardware failure) is the norm rather than an exception. These character-

istics strongly influenced the design of the storage, which provides the best performance for appli-

cations specifically designed to operate on data as described. Currently, the only programming

model that makes use of the distributed file system is MapReduce [55], which has been the primary

reason for the Google File System implementation. Aneka provides a simple distributed file system

(DFS), which relies on the file system services of the Windows operating system.

s0050 5.2.3.2 Accounting, billing, and resource pricing
p0370 Accounting Services keep track of the status of applications in the Aneka Cloud. The collected

information provides a detailed breakdown of the distributed infrastructure usage and is vital for

the proper management of resources.

p0375 The information collected for accounting is primarily related to infrastructure usage and applica-

tion execution. A complete history of application execution and storage as well as other resource

1515.2 Anatomy of the Aneka container

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



utilization parameters is captured and minded by the Accounting Services. This information consti-

tutes the foundation on which users are charged in Aneka.

p0380 Billing is another important feature of accounting. Aneka is a multitenant cloud programming

platform in which the execution of applications can involve provisioning additional resources from

commercial IaaS providers. Aneka Billing Service provides detailed information about each user’s

usage of resources, with the associated costs. Each resource can be priced differently according to

the set of services that are available on the corresponding Aneka container or the installed software

in the node. The accounting model provides an integrated view of budget spent for each applica-

tion, a summary view of the costs associated to a specific user, and the detailed information about

the execution cost of each job.

p0385 The accounting capabilities are concentrated within the Accounting Service and the Reporting

Service. The former keeps track of the information that is related to application execution, such as

the distribution of jobs among the available resources, the timing of each of job, and the associated

cost. The latter makes available the information collected from the monitoring services for account-

ing purposes: storage utilization and CPU performance. This information is primarily consumed by

the Management Console.

s0055 5.2.3.3 Resource reservation
p0390 Aneka’s Resource Reservation supports the execution of distributed applications and allows for

reserving resources for exclusive use by specific applications. Resource reservation is built out of

two different kinds of services: Resource Reservation and the Allocation Service. Resource

Reservation keeps track of all the reserved time slots in the Aneka Cloud and provides a unified

view of the system. The Allocation Service is installed on each node that features execution ser-

vices and manages the database of information regarding the allocated slots on the local node.

Applications that need to complete within a given deadline can make a reservation request for a

specific number of nodes in a given timeframe. If it is possible to satisfy the request, the

Reservation Service will return a reservation identifier as proof of the resource booking. During

application execution, such an identifier is used to select the nodes that have been reserved, and

they will be used to execute the application. On each reserved node, the execution services will

check with the Allocation Service that each job has valid permissions to occupy the execution time-

line by verifying the reservation identifier. Even though this is the general reference model for the

reservation infrastructure, Aneka allows for different implementations of the service, which mostly

vary in the protocol that is used to reserve resources or the parameters that can be specified while

making a reservation request. Different protocol and strategies are integrated in a completely trans-

parent manner, and Aneka provides extensible APIs for supporting advanced services. At the

moment, the framework supports three different implementations:

u0195 • Basic Reservation. Features the basic capability to reserve execution slots on nodes and

implements the alternate offers protocol, which provides alternative options in case the initial

reservation requests cannot be satisfied.

u0200 • Libra Reservation. Represents a variation of the previous implementation that features the

ability to price nodes differently according to their hardware capabilities.

u0205 • Relay Reservation. Constitutes a very thin implementation that allows a resource broker to

reserve nodes in Aneka Clouds and control the logic with which these nodes are reserved. This

152 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



implementation is useful in integration scenarios in which Aneka operates in an intercloud

environment.

p0410 Resource reservation is fundamental to ensuring the quality of service that is negotiated for

applications. It allows Aneka to have a predictable environment in which applications can complete

within the deadline or not be executed at all. The assumptions made by the reservation service for

accepting reservation requests are based on the static allocation of such requests to the existing

physical (or virtual) infrastructure available at the time of the requests and by taking into account

the current and future load. This solution is sensitive to node failures that could make Aneka unable

to fulfill the service-level agreement (SLA) made with users. Specific implementations of the ser-

vice tend to delay the allocation of nodes to reservation requests as late as possible in order to cope

with temporary failures or limited outages, but in the case of serious outages in which the remain-

ing available nodes are not able to cover the demand, this strategy is not enough. In this case,

resource provisioning can provide an effective solution: Additional nodes can be provisioned from

external resource providers in order to cover the outage and meet the SLA defined for applications.

The current implementation of the resource reservation infrastructure leverages the provisioning

capabilities of the fabric layer when the current availability in the system is not able to address the

reservation requests already confirmed. Such behavior solves the problems of both insufficient

resources and temporary failures.

s0060 5.2.4 Application services
p0415 Application Services manage the execution of applications and constitute a layer that differentiates

according to the specific programming model used for developing distributed applications on top of

Aneka. The types and the number of services that compose this layer for each of the programming

models may vary according to the specific needs or features of the selected model. It is possible to

identify two major types of activities that are common across all the supported models: scheduling

and execution. Aneka defines a reference model for implementing the runtime support for program-

ming models that abstracts these two activities in corresponding services: the Scheduling Service

and the Execution Service. Moreover, it also defines base implementations that can be extended in

order to integrate new models.

s0065 5.2.4.1 Scheduling
p0420 Scheduling Services are in charge of planning the execution of distributed applications on top of

Aneka and governing the allocation of jobs composing an application to nodes. They also constitute

the integration point with several other Foundation and Fabric Services, such as the Resource

Provisioning Service, the Reservation Service, the Accounting Service, and the Reporting Service.

Common tasks that are performed by the scheduling component are the following:

u0210 • Job to node mapping

u0215 • Rescheduling of failed jobs

u0220 • Job status monitoring

u0225 • Application status monitoring

1535.2 Anatomy of the Aneka container

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



p0445 Aneka does not provide a centralized scheduling engine, but each programming model features

its own scheduling service that needs to work in synergy with the existing services of the middle-

ware. As already mentioned, these services mostly belong to the fabric and the foundation layers of

the architecture shown in Figure 5.2. The possibility of having different scheduling engines for dif-

ferent models gives great freedom in implementing scheduling and resource allocation strategies

but, at the same time, requires a careful design of use of shared resources. In this scenario, common

situations that have to be appropriately managed are the following: multiple jobs sent to the same

node at the same time; jobs without reservations sent to reserved nodes; and jobs sent to nodes

where the required services are not installed. Aneka’s Foundation Services provide sufficient infor-

mation to avoid these cases, but the runtime infrastructure does not feature specific policies to

detect these conditions and provide corrective action. The current design philosophy in Aneka is to

keep the scheduling engines completely separate from each other and to leverage existing services

when needed. As a result, it is possible to enforce that only one job per programming model is run

on each node at any given time, but the execution of applications is not mutually exclusive unless

Resource Reservation is used.

s0070 5.2.4.2 Execution
p0450 Execution Services control the execution of single jobs that compose applications. They are in

charge of setting up the runtime environment hosting the execution of jobs. As happens for the

scheduling services, each programming model has its own requirements, but it is possible to iden-

tify some common operations that apply across all the range of supported models:

u0230 • Unpacking the jobs received from the scheduler

u0235 • Retrieval of input files required for job execution

u0240 • Sandboxed execution of jobs

u0245 • Submission of output files at the end of execution

u0250 • Execution failure management (i.e., capturing sufficient contextual information useful to

identify the nature of the failure)

u0255 • Performance monitoring

u0260 • Packing jobs and sending them back to the scheduler

p0490 Execution Services constitute a more self-contained unit with respect to the corresponding

scheduling services. They handle less information and are required to integrate themselves only

with the Storage Service and the local Allocation and Monitoring Services. Aneka provides a refer-

ence implementation of execution services that has built-in integration with all these services, and

currently two of the supported programming models specialize on the reference implementation.

p0495 Application Services constitute the runtime support of the programming model in the Aneka

Cloud. Currently there are several supported models:

u0265 • Task Model. This model provides the support for the independent “bag of tasks” applications

and many computing tasks. In this model, an application is modeled as a collection of tasks that

are independent from each other and whose execution can be sequenced in any order.

u0270 • Thread Model. This model provides an extension to the classical multithreaded programming to

a distributed infrastructure and uses the abstraction of Thread to wrap a method that is executed

remotely.

154 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



u0275 • MapReduce Model. This is an implementation of MapReduce as proposed by Google on top of

Aneka.

u0280 • Parameter Sweep Model. This model is a specialization of the Task Model for applications that

can be described by a template task whose instances are created by generating different

combinations of parameters, which identify a specific point into the domain of interest.

p0520 Other programming models have been developed for internal use and are at an experimental

stage. These are the Dataflow Model [56], the Message-Passing Interface, and the Actor Model [57].

s0075 5.3 Building aneka clouds
p0525 Aneka is primarily a platform for developing distributed applications for clouds. As a software plat-

form it requires infrastructure on which to be deployed; this infrastructure needs to be managed.

Infrastructure management tools are specifically designed for this task, and building clouds is one

of the primary tasks of administrators. Aneka supports various deployment models for public, pri-

vate, and hybrid clouds.

s0080 5.3.1 Infrastructure organization
p0530 Figure 5.3 provides an overview of Aneka Clouds from an infrastructure point of view. The sce-

nario is a reference model for all the different deployments Aneka supports. A central role is played

by the Administrative Console, which performs all the required management operations. A funda-

mental element for Aneka Cloud deployment is constituted by repositories. A repository provides

storage for all the libraries required to lay out and install the basic Aneka platform. These libraries

constitute the software image for the node manager and the container programs. Repositories can

make libraries available through a variety of communication channels, such as HTTP, FTP, com-

mon file sharing, and so on. The Management Console can manage multiple repositories and select

the one that best suits the specific deployment. The infrastructure is deployed by harnessing a col-

lection of nodes and installing on them the Aneka node manager, also called the Aneka daemon.

The daemon constitutes the remote management service used to deploy and control container

instances. The collection of resulting containers identifies the Aneka Cloud.

p0535 From an infrastructure point of view, the management of physical or virtual nodes is performed

uniformly as long as it is possible to have an Internet connection and remote administrative access

to the node. A different scenario is constituted by the dynamic provisioning of virtual instances;

these are generally created by prepackaged images already containing an installation of Aneka,

which only need to be configured to join a specific Aneka Cloud. It is also possible to simply

install the container or install the Aneka daemon, and the selection of the proper solution mostly

depends on the lifetime of virtual resources.

s0085 5.3.2 Logical organization
p0540 The logical organization of Aneka Clouds can be very diverse, since it strongly depends on the con-

figuration selected for each of the container instances belonging to the Cloud. The most common

1555.3 Building aneka clouds

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



scenario is to use a master-worker configuration with separate nodes for storage, as shown in

Figure 5.4.

p0545 The master node features all the services that are most likely to be present in one single copy

and that provide the intelligence of the Aneka Cloud. What specifically characterizes a node as a

master node is the presence of the Index Service (or Membership Catalogue) configured in master

mode; all the other services, except for those that are mandatory, might be present or located in

other nodes. A common configuration of the master node is as follows:

u0285 • Index Service (master copy)

u0290 • Heartbeat Service

u0295 • Logging Service

u0300 • Reservation Service

u0305 • Resource Provisioning Service

u0310 • Accounting Service

u0315 • Reporting and Monitoring Service

u0320 • Scheduling Services for the supported programming models

Aneka Repository

up
da

te

Aneka
Containers

Node
Manager

Node
Manager Aneka

Containers

Aneka
Containers

Node
Manager

Node
Manager Aneka

Containers

Management
Console 

HTTP

File Share

……

f0020 FIGURE 5.3

Aneka cloud infrastructure overview.

156 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



p0590 The master node also provides connection to an RDBMS facility where the state of several ser-

vices is maintained. For the same reason, all the scheduling services are maintained in the master

node. They share the application store that is normally persisted on the RDBMS in order to provide

a fault-tolerant infrastructure. The master configuration can then be replicated in several nodes to

provide a highly available infrastructure based on the failover mechanism.

p0595 The worker nodes constitute the workforce of the Aneka Cloud and are generally configured for

the execution of applications. They feature the mandatory services and the specific execution ser-

vices of each of the supported programming models in the Cloud. A very common configuration is

the following:

u0325 • Index Service

u0330 • Heartbeat Service

u0335 • Logging Service

u0340 • Allocation Service

u0345 • Monitoring Service

u0350 • Execution Services for the supported programming models

Reservation

Provisioning

Reporting

Accounting

Mandatory

Index (master)

Scheduling

Failover
Mandatory

Index (slave)

Storage

Storage Node

Allocation

Mandatory

Index (slave)

Execution

Worker Node

Reservation

Provisioning

Reporting

Accounting

Mandatory

Index (master)

Scheduling

Master Node

Allocation

Mandatory

Index (slave)

Execution

Worker Node

Allocation

Mandatory

Index (slave)

Execution

Worker Node

Mandatory

Index (slave)

Storage

Storage Node

f0025 FIGURE 5.4

Logical organization of an Aneka cloud.

1575.3 Building aneka clouds

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



p0630 A different option is to partition the pool of worker nodes with a different selection of execution

services in order to balance the load between programming models and reserve some nodes for a

specific class of applications.

p0635 Storage nodes are optimized to provide storage support to applications. They feature, among the

mandatory and usual services, the presence of the Storage Service. The number of storage nodes

strictly depends on the predicted workload and storage consumption of applications. Storage nodes

mostly reside on machines that have considerable disk space to accommodate a large quantity of

files. The common configuration of a storage node is the following:

u0355 • Index Service

u0360 • Heartbeat Service

u0365 • Logging Service

u0370 • Monitoring Service

u0375 • Storage Service

p0665 In specific cases, when the data transfer requirements are not demanding, there might be only

one storage node. In some cases, for very small deployments, there is no need to have a separate

storage node, and the Storage Service is installed and hosted on the master node.

p0670 All nodes are registered with the master node and transparently refer to any failover partner in

the case of a high-availability configuration.

s0090 5.3.3 Private cloud deployment mode
p0675 A private deployment mode is mostly constituted by local physical resources and infrastructure

management software providing access to a local pool of nodes, which might be virtualized. In this

scenario Aneka Clouds are created by harnessing a heterogeneous pool of resources such has desk-

top machines, clusters, or workstations. These resources can be partitioned into different groups,

and Aneka can be configured to leverage these resources according to application needs. Moreover,

leveraging the Resource Provisioning Service, it is possible to integrate virtual nodes provisioned

from a local resource pool managed by systems such as XenServer, Eucalyptus, and OpenStack.

p0680 Figure 5.5 shows a common deployment for a private Aneka Cloud. This deployment is

acceptable for a scenario in which the workload of the system is predictable and a local virtual machine

manager can easily address excess capacity demand. Most of the Aneka nodes are constituted of physi-

cal nodes with a long lifetime and a static configuration and generally do not need to be reconfigured

often. The different nature of the machines harnessed in a private environment allows for specific poli-

cies on resource management and usage that can be accomplished by means of the Reservation

Service. For example, desktop machines that are used during the day for office automation can be

exploited outside the standard working hours to execute distributed applications. Workstation clusters

might have some specific legacy software that is required for supporting the execution of applications

and should be preferred for the execution of applications with special requirements.

s0095 5.3.4 Public cloud deployment mode
p0685 Public Cloud deployment mode features the installation of Aneka master and worker nodes over a

completely virtualized infrastructure that is hosted on the infrastructure of one or more resource

158 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



providers such as Amazon EC2 or GoGrid. In this case it is possible to have a static deployment

where the nodes are provisioned beforehand and used as though they were real machines. This

deployment merely replicates a classic Aneka installation on a physical infrastructure without any

dynamic provisioning capability. More interesting is the use of the elastic features of IaaS providers

and the creation of a Cloud that is completely dynamic. Figure 5.6 provides an overview of this

scenario.

p0690 The deployment is generally contained within the infrastructure boundaries of a single IaaS pro-

vider. The reasons for this are to minimize the data transfer between different providers, which is

generally priced at a higher cost, and to have better network performance. In this scenario it is pos-

sible to deploy an Aneka Cloud composed of only one node and to completely leverage dynamic

provisioning to elastically scale the infrastructure on demand. A fundamental role is played by the

Resource Provisioning Service, which can be configured with different images and templates to

instantiate. Other important services that have to be included in the master node are the Accounting

and Reporting Services. These provide details about resource utilization by users and applications

and are fundamental in a multitenant Cloud where users are billed according to their consumption

of Cloud capabilities.

p0695 Dynamic instances provisioned on demand will mostly be configured as worker nodes, and, in

the specific case of Amazon EC2, different images featuring a different hardware setup can be

made available to instantiate worker containers. Applications with specific requirements for com-

puting capacity or memory can provide additional information to the scheduler that will trigger the

appropriate provisioning request. Application execution is not the only use of dynamic instances;

any service requiring elastic scaling can leverage dynamic provisioning. Another example is the

Storage Service. In multitenant Clouds, multiple applications can leverage the support for storage;

Resource
Provisioning 

Application
Management &

Scheduling
Resource
Reservation 

Master Node

Desktop Machines

Virtual Clusters

Eucalyptus
Systems

Workstations Clusters

f0030 FIGURE 5.5

Private cloud deployment.

1595.3 Building aneka clouds

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



in this scenario it is then possible to introduce bottlenecks or simply reach the quota limits allocated

for storage on the node. Dynamic provisioning can easily solve this issue as it does for increasing

the computing capability of an Aneka Cloud.

p0700 Deployments using different providers are unlikely to happen because of the data transfer costs

among providers, but they might be a possible scenario for federated Aneka Clouds [58]. In this

scenario resources can be shared or leased among providers under specific agreements and more

convenient prices. In this case the specific policies installed in the Resource Provisioning Service

can discriminate among different resource providers, mapping different IaaS providers to provide

the best solution to a provisioning request.

s0100 5.3.5 Hybrid cloud deployment mode
p0705 The hybrid deployment model constitutes the most common deployment of Aneka. In many cases,

there is an existing computing infrastructure that can be leveraged to address the computing needs

of applications. This infrastructure will constitute the static deployment of Aneka that can be elasti-

cally scaled on demand when additional resources are required. An overview of this deployment is

presented in Figure 5.7.

p0710 This scenario constitutes the most complete deployment for Aneka that is able to leverage all

the capabilities of the framework:

u0380 • Dynamic Resource Provisioning

u0385 • Resource Reservation

u0390 • Workload Partitioning

u0395 • Accounting, Monitoring, and Reporting

Resource
Provisioning 

Application
Management &

Scheduling

Master Node

Reporting,
Billing, Accounting 

Amazon EC2 Instance

Amazon EC2 Instances

Slave Nodes

EC2 Boundaries

f0035 FIGURE 5.6

Public Aneka cloud deployment.

160 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



p0735 Moreover, if the local premises offer some virtual machine management capabilities, it is possible to

provide a very efficient use of resources, thus minimizing the expenditure for application execution.

p0740 In a hybrid scenario, heterogeneous resources can be used for different purposes. As we discussed

in the case of a private cloud deployment, desktop machines can be reserved for low priority work-

load outside the common working hours. The majority of the applications will be executed on work-

stations and clusters, which are the nodes that are constantly connected to the Aneka Cloud. Any

additional computing capability demand can be primarily addressed by the local virtualization facili-

ties, and if more computing power is required, it is possible to leverage external IaaS providers.

p0745 Different from the Aneka Public Cloud deployment is the case in which it makes more sense to

leverage a variety of resource providers to provision virtual resources. Since part of the infrastructure

is local, a cost in data transfer to the external IaaS infrastructure cannot be avoided. It is then impor-

tant to select the most suitable option to address application needs. The Resource Provisioning

Provisioning
Service

Public Clouds

Application
Management & Scheduling

Reporting, Billing, Accounting

Desktops & Workstations Clusters Virtual Cluster Resources

Eucalyptus
Systems

Resource
Reservation 

Master Node

Local Infrastructure

f0040 FIGURE 5.7

Hybrid cloud deployment.

1615.3 Building aneka clouds

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



Service implemented in Aneka exposes the capability of leveraging several resource pools at the

same time and configuring specific policies to select the most appropriate pool for satisfying a provi-

sioning request. These features simplify the development of custom policies that can better serve the

needs of a specific hybrid deployment.

s0105 5.4 Cloud programming and management
p0750 Aneka’s primary purpose is to provide a scalable middleware product in which to execute distrib-

uted applications. Application development and management constitute the two major features that

are exposed to developers and system administrators. To simplify these activities, Aneka provides

developers with a comprehensive and extensible set of APIs and administrators with powerful and

intuitive management tools. The APIs for development are mostly concentrated in the Aneka SDK;

management tools are exposed through the Management Console.

s0110 5.4.1 Aneka SDK
p0755 Aneka provides APIs for developing applications on top of existing programming models, imple-

menting new programming models, and developing new services to integrate into the Aneka Cloud.

The development of applications mostly focuses on the use of existing features and leveraging the

services of the middleware, while the implementation of new programming models or new services

enriches the features of Aneka. The SDK provides support for both programming models and ser-

vices by means of the Application Model and the Service Model. The former covers the develop-

ment of applications and new programming models; the latter defines the general infrastructure for

service development.

s0115 5.4.1.1 Application model
p0760 Aneka provides support for distributed execution in the Cloud with the abstraction of programming

models. A programming model identifies both the abstraction used by the developers and the run-

time support for the execution of programs on top of Aneka. The Application Model represents the

minimum set of APIs that is common to all the programming models for representing and program-

ming distributed applications on top of Aneka. This model is further specialized according to the

needs and the particular features of each of the programming models.

p0765 An overview of the components that define the Aneka Application Model is shown in

Figure 5.8. Each distributed application running on top of Aneka is an instance of the

ApplicationBase,M. class, where M identifies the specific type of application manager used to

control the application. Application classes constitute the developers’ view of a distributed applica-

tion on Aneka Clouds, whereas application managers are internal components that interact with

Aneka Clouds in order to monitor and control the execution of the application. Application man-

agers are also the first element of specialization of the model and vary according to the specific

programming model used.

p0770 Whichever the specific model used, a distributed application can be conceived as a set of tasks

for which the collective execution defines the execution of the application on the Cloud. Aneka fur-

ther specializes applications into two main categories: (1) applications whose tasks are generated

162 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



f0
0
4
5

FI
G
U
R
E
5
.8

T
h
e
A
n
e
k
a
a
p
p
lic
a
tio
n
m
o
d
e
l.

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



by the user and (2) applications whose tasks are generated by the runtime infrastructure. These two

categories generally correspond to different application base classes and different implementations

of the application manager.

p0775 The first category is the most common and it is used as a reference for several programming

models supported by Aneka: the Task Model, the Thread Model, and the Parameter Sweep Model.

Applications that fall into this category are composed of a collection of units of work submitted by

the user and represented by the WorkUnit class. Each unit of work can have input and output files,

the transfer of which is transparently managed by the runtime. The specific type of WorkUnit class

used to represent the unit of work depends on the programming model used (AnekaTask for the

Task Model and AnekaThread for the Thread Model). All the applications that fall into this cate-

gory inherit or are instances of AnekaApplication,W,M., where W is the specific type of

WorkUnit class used, and M is the type of application manager used to implement the

IManualApplicationManager interface.

p0780 The second category covers the case of MapReduce and all those other scenarios in which the

units of work are generated by the runtime infrastructure rather than the user. In this case there is

no common unit-of-work class used, and the specific classes used by application developers strictly

depend on the requirements of the programming model used. For example, in the case of the

MapReduce programming model, developers express their distributed applications in terms of two

functions, map and reduce; hence, the MapReduceApplication class provides an interface for speci-

fying the Mapper,K,V. and Reducer,K,V. types and the input files required by the applica-

tion. Other programming models might have different requirements and expose different interfaces.

For this reason there are no common base types for this category except for

ApplicationBase,M., where M implements IAutoApplicationManager.

p0785 A set of additional classes completes the object model. Among these classes, the most

notable are the Configuration class, which is used to specify the settings required to initialize the

application and customize its behavior, and the ApplicationData class, which contains the runtime

information of the application.

p0790 Table 5.1 summarizes the features that are available in the Aneka Application Model and the

way they reflect into the supported programming model. The model has been designed to be exten-

sible, and these classes can be used as a starting point to implement a new programming model.

This can be done by augmenting the features (or specializing) an existing implementation of a

t0010 Table 5.1 Aneka’s Application Model Features

Category Description Base Application Type Work
Units?

Programming
Models

Manual Units of work are generated
by the user and submitted
through the application.

AnekaApplication,W,M.
IManualApplicationManager,W.
ManualApplicationManager,W.

Yes Task Model
Thread Model
Parameter
Sweep Model

Auto Units of work are generated
by the runtime infrastructure
and managed internally.

ApplicationBase,M.
IAutoApplicationManager

No MapReduce
Model

164 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



programming model or by using the base classes to define new models and abstractions. For exam-

ple, the Parameter Sweep Model is a specialization of the Task Model, and it has been implemented

in the context of management of applications on Aneka. It is achieved by providing a different

interface to end users who just need to define a template task and the parameters that customize it.

s0120 5.4.1.2 Service model
p0795 The Aneka Service Model defines the basic requirements to implement a service that can be hosted

in an Aneka Cloud. The container defines the runtime environment in which services are hosted.

Each service that is hosted in the container must be compliant with the IService interface, which

exposes the following methods and properties:

u0400 • Name and status

u0405 • Control operations such as Start, Stop, Pause, and Continue methods

u0410 • Message handling by means of the HandleMessage method

p0815 Specific services can also provide clients if they are meant to directly interact with end users.

Examples of such services might be Resource Provisioning and Resource Reservation Services,

which ship their own clients for allowing resource provisioning and reservation. Apart from control

operations, which are used by the container to set up and shut down the service during the container

life cycle, the core logic of a service resides in its message-processing functionalities that are con-

tained in the HandleMessage method. Each operation that is requested to a service is triggered by a

specific message, and results are communicated back to the caller by means of messages.

p0820 Figure 5.9 describes the reference life cycle of each service instance in the Aneka container.

The shaded balloons indicate transient states; the white balloons indicate steady states. A service

instance can initially be in the Unknown or Initialized state, a condition that refers to the creation

of the service instance by invoking its constructor during the configuration of the container. Once

the container is started, it will iteratively call the Start method on each service method. As a result

the service instance is expected to be in a Starting state until the startup process is completed, after

which it will exhibit the Running state. This is the condition in which the service will last as long

as the container is active and running. This is the only state in which the service is able to process

messages. If an exception occurs while starting the service, it is expected that the service will fall

back to the Unknown state, thus signaling an error.

p0825 When a service is running it is possible to pause its activity by calling the Pause method and

resume it by calling Continue. As described in the figure, the service moves first into the Pausing

state, thus reaching the Paused state. From this state, it moves into the Resuming state while restor-

ing its activity to return to the Running state. Not all the services need to support the pause/con-

tinue operations, and the current implementation of the framework does not feature any service

with these capabilities.

p0830 When the container shuts down, the Stop method is iteratively called on each service running,

and services move first into the transient Stopping state to reach the final Stopped state, where all

resources that were initially allocated have been released.

p0835 Aneka provides a default base class for simplifying service implementation and a set of guide-

lines that service developers should follow to design and implement services that are compliant

with Aneka. In particular, the guidelines define a ServiceBase class that can be further extended to

1655.4 Cloud programming and management

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



provide a proper implementation. This class is the base class of several services in the framework

and provides some built-in features:

u0415 • Implementation of the basic properties exposed by IService

u0420 • Implementation of the control operations with logging capabilities and state control

u0425 • Built-in infrastructure for delivering a service specific client

u0430 • Support for service monitoring

p0860 Developers are provided with template methods for specializing the behavior of control opera-

tions, implementing their own message-processing logic, and providing a service-specific client.

p0865 Aneka uses a strongly typed message-passing communication model, whereby each service

defines its own messages, which are in turn the only ones that the service is able to process. As a

result, developers who implement new services in Aneka need also to define the type of messages

that the services will use to communicate with services and clients. Each message type inherits

from the base class Message defining common properties such as:

u0435 • Source node and target node

u0440 • Source service and target service

Unknown Initialized

Running Paused

Stopped

Pausing

Resuming

Starting

Stopping

IService.Start()

IService.Stop() IService.Continue()

IService.Pause()<Error>

f0050 FIGURE 5.9

Service life cycle.

166 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



u0445 • Security credentials

p0885 Additional properties are added to carry the specific information for each type. Messages are

generally used inside the Aneka infrastructure. In case the service exposes features directly used by

applications, they may expose a service client that provides an object-oriented interface to the

operations exposed by the service. Aneka features a ready-to-use infrastructure for dynamically

injecting service clients into applications by querying the middleware. Services inheriting from the

ServiceBase class already support such a feature and only need to define an interface and a specific

implementation for the service client. Service clients are useful to integrate Aneka services into

existing applications that do not necessarily need support for the execution of distributed applica-

tions or require access to additional services.

p0890 Aneka also provides advanced capabilities for service configuration. Developers can define edi-

tors and configuration classes that allow Aneka’s management tools to integrate the configuration

of services within the common workflow required by the container configuration.

s0125 5.4.2 Management tools
p0895 Aneka is a pure PaaS implementation and requires virtual or physical hardware to be deployed.

Hence, infrastructure management, together with facilities for installing logical clouds on such

infrastructure, is a fundamental feature of Aneka’s management layer. This layer also includes

capabilities for managing services and applications running in the Aneka Cloud.

s0130 5.4.2.1 Infrastructure management
p0900 Aneka leverages virtual and physical hardware in order to deploy Aneka Clouds. Virtual hardware

is generally managed by means of the Resource Provisioning Service, which acquires resources on

demand according to the need of applications, while physical hardware is directly managed by the

Administrative Console by leveraging the Aneka management API of the PAL. The management

features are mostly concerned with the provisioning of physical hardware and the remote installa-

tion of Aneka on the hardware.

s0135 5.4.2.2 Platform management
p0905 Infrastructure management provides the basic layer on top of which Aneka Clouds are deployed.

The creation of Clouds is orchestrated by deploying a collection of services on the physical infra-

structure that allows the installation and the management of containers. A collection of connected

containers defines the platform on top of which applications are executed. The features available

for platform management are mostly concerned with the logical organization and structure of

Aneka Clouds. It is possible to partition the available hardware into several Clouds variably config-

ured for different purposes. Services implement the core features of Aneka Clouds and the manage-

ment layer exposes operations for some of them, such as Cloud monitoring, resource provisioning

and reservation, user management, and application profiling.

s0140 5.4.2.3 Application management
p0910 Applications identify the user contribution to the Cloud. The management APIs provide administra-

tors with monitoring and profiling features that help them track the usage of resources and relate

them to users and applications. This is an important feature in a cloud computing scenario in which

1675.4 Cloud programming and management

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



users are billed for their resource usage. Aneka exposes capabilities for giving summary and

detailed information about application execution and resource utilization.

p0915 All these features are made accessible through the Aneka Cloud Management Studio, which

constitutes the main Administrative Console for the Cloud.

s0145 SUMMARY

p0920 In this chapter we introduced Aneka, a platform for application programming in the cloud. Aneka

is a pure PaaS implementation of the Cloud Computing Reference Model and constitutes a middle-

ware product that enables the creation of computing clouds on top of heterogeneous hardware:

desktop machines, clusters, and public virtual resources.

p0925 One of the key aspects of Aneka’s framework is its configurable runtime environment, which

allows for the creation of a service-based middleware where applications are executed. A funda-

mental element of the infrastructure is the container, which represents the deployment unit of

Aneka Clouds. The container hosts a collection of services that define the capabilities of the mid-

dleware. Fundamental services in the Aneka middleware are:

u0450 • Fabric Services for monitoring, resource provisioning, hardware profiling, and membership

u0455 • Foundation Services for storage, resource reservation, billing, accounting, and reporting

u0460 • Application Services for scheduling and execution

p0945 From an application programming point of view, Aneka provides the capability of supporting

different programming models, thus allowing developers to express distributed applications with

different abstractions. The framework currently supports three different models: independent “bag

of tasks” applications, multithreaded applications, and MapReduce.

p0950 The infrastructure is extensible, and Aneka provides both an application model and a service

model that can be easily extended to integrate new services and programming models.

s0150 Review questions
o0010 1. Describe in a few words the main characteristics of Aneka.

o0015 2. What is the Aneka container and what is its use?

o0020 3. Which types of services are hosted inside the Aneka container?

o0025 4. Describe Aneka’s resource-provisioning capabilities.

o0030 5. Describe the storage architecture implemented in Aneka.

o0035 6. What is a programming model?

o0040 7. List the programming models supported by Aneka.

o0045 8. Which are the components that compose the Aneka infrastructure?

o0050 9. Discuss the logical organization of an Aneka Cloud.

o0055 10. Which services are hosted in a worker node?

o0060 11. Discuss the private deployment of Aneka Clouds.

o0065 12. Discuss the public deployment of Aneka Clouds.

168 CHAPTER 5 Aneka

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



o0070 13. Discuss the role of dynamic provisioning in hybrid deployments.

o0075 14. Which facilities does Aneka provide for development?

o0080 15. Discuss the major features of the Aneka Application Model.

o0085 16. Discuss the major features of the Aneka Service Model.

o0090 17. Describe the features of the Aneka management tools in terms of infrastructure, platform, and

applications.

169Review questions

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.



NON-PRINT ITEM

Abstract

This chapter provides a complete overview of the cloud application framework by first describing

the architecture of the system. It introduces Aneka’s components and the fundamental services that

make up the Aneka Cloud and discusses some common deployment scenarios.

Keywords

Platform-as-a-Service (PaaS), Pure PaaS, middleware, programming models, Aneka, Cloud

Application Platform

Buyya 978-0-12-411454-8 00005

To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s),
reviewer(s), Elsevier and typesetter MPS. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and
is confidential until formal publication.




