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Abstract. In this paper, we discuss typical scheduling structures that oc-

cur in computational grids. Scheduling algorithms and selection strategies

applicable to these structures are introduced and classi�ed. Simulations were

used to evaluate these aspects considering combinations of di�erent Job and

Machine Models. Some of the results are presented in this paper and are

discussed in qualitative and quantitative way. For hierarchical scheduling, a

common scheduling structure, the simulation results con�rmed the bene�t

of Back�ll. Unexpected results were achieved as FCFS proves to perform

better than Back�ll when using a central job-pool.

1 Introduction

In recent years an increasing number of parallel computers have become part of so
called computational grids or metacomputers [1], [2]. Such a grid typically contains
many computers o�ering a variety of resources. The scheduling system is respon-
sible to select best suitable machines in this grid for user jobs. In large grids it
is very cumbersome for an individual user to select these resources manually. The
management and scheduling system generates job schedules for each machine in the
grid by taking static restrictions and dynamic parameters of jobs and machines into
consideration.

The job scheduling for a single parallel computer signi�cantly di�ers from schedul-
ing in a metacomputer. The scheduler of a parallel machine usually arranges the
submitted jobs in order to achieve a high utilization. The task of scheduling for a
metacomputer is more complex as many machines are involved with mostly local
scheduling policies. The metacomputing scheduler must therefore form a new level
of scheduling which is implemented on top of the job schedulers. Also, it is likely

that a large metacomputer may be subject to more frequent changes as individual
resources may join or exit the grid at any time. Note that many users take a special
advantage of a computational grid in the potential combination of many resources
to solve a single very large problem. This requires the solution of various hardware
and software challenges in several areas including scheduling.

In this paper we discuss several architectures and scheduling policies for such a
system. To this end, we are presenting a brief overview on this topic in Section 3.
Next, we show a few simple scheduling algorithms for these architectures in Section
4. These algorithms are subject of the performance evaluation in Section 5 where
preliminary simulation results are presented.



2 Background

The term metacomputing was established in 1987 by Smarr and Catlett [11]. The
concept of connecting computing resources has been subject to many research
projects. Some to be mentioned are Globus [5], Condor [10] and Legion [6].

In the area of metacomputing the topic of scheduling is an important part for
building eÆcient infrastructures. As already mentioned, the requirements of schedul-
ing in a metacomputing environment signi�cantly deviate from those for scheduling
of jobs on a single parallel machine. One important di�erence is the inclusion of net-
work resources. Additionally, metasystems are geographical distributed and often
belong to several institutions and owners. A scheduler on a single parallel machine
must not cope with system boundaries and can manage the given resources inde-
pendently of external restrictions.

A scheduling infrastructure in a metacomputing system must take those addi-
tional requirements into account. Therefore special mechanisms for security and
fault-tolerance are needed. Also the independence of resources, especially the dif-
ferent ownership, requires support for the �ne-tuning of scheduling policies de�ned
by their providers.

In the next section, this paper gives an overview of common structures in meta-
computing environments. The presented topologies are classi�ed into centralized
and decentralized schedulers. The structure of the scheduling infrastructure, the
used algorithms and strategies are very important for the quality and performance
of the system. Many of those scheduling algorithms, starting from simple FCFS
strategies to improvements like back�lling [4] known from scheduling on a single
parallel machine, can be adapted to the metasystem level. In this paper, we concen-
trate on the discussion of scheduling structures in metasystems in combination with
some common scheduling algorithms. In the following, example architectures for
scheduling infrastructures are presented. Note, that this list should not be consid-
ered complete, but gives an overview on common structures in computational grids
and metacomputing networks. Further we do not elaborate on the architecture of the
parallel computing systems itself, but only on the logical structure of the scheduling
process. First, we distinguish centralized and decentralized scheduling architectures.

2.1 Centralized Scheduling

In a centralized environment all parallel machines are scheduled by a central in-
stance. Information on the state of all available systems must be collected here.
This concept obviously does not scale well with increasing size of the computational
grid. The central scheduler may prove to be a bottleneck in some situations (e.g.
if a network error cuts o� the scheduler from its resources, system availability and
performance may be a�ected). As an advantage, the scheduler is conceptually able
to produce very eÆcient schedules, because the central instance has all necessary
information on the available resources.

This scheduling paradigm is useful e.g. at a computing center, where all resources
are used under the same objective. Due to this fact the lack of communication
bandwidth at the central scheduling instance can be neglected.
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In this scenario jobs are submitted to the central scheduler (see Figure 1). Those
jobs, that cannot be started on a machine immediately after submission, are stored
in a central job-queue for a later start.

We can further distinguish schedulers by the way how resources are combined
for a job. This applies to centralized schedulers as well as to their decentralized
alternatives that are discussed later.

Single-site scheduling A job is executed on a single parallel machine. This
means that system boundaries are not crossed. Well known scheduling algorithms
for load balancing (e.g. FCFS, Back�ll) can be used. The latency for the in-job-
communication is often not subject to scheduling considerations due to the fact that
communication inside a machine is usually very fast in comparison to distributed
execution.

Multi-site scheduling The described restriction of single-site algorithms is lifted.
Now a job can be executed on more than one machine in parallel. As job-parts are
running on di�erent machines, the latency for the communication between those
parts must be considered. Further, the scheduling system must guarantee that the
di�erent job-parts are started synchronously on all machines.

2.2 Hierarchical structure

A possible con�guration for a computational grid is the usage of a central scheduler
to which jobs are submitted, while in addition every machine uses a separate sched-
uler for the local scheduling, as shown in Figure 2. Although this structure shows
properties of centralized and decentralized scheduling, we would consider it to be a
centralized system as there is a single instance to which jobs are submitted.

The main advantage is the fact that di�erent policies can be used for local and
global job scheduling. The central scheduler is some kind of a meta-scheduler, that
redirects all submitted jobs to the local scheduling queues on the resources based
on a policy.

Fig. 1. Centralized Scheduling
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Fig. 2. Hierarchical Structure

2.3 Decentralized Scheduling

In decentralized systems, distributed schedulers interact with each other and commit
jobs to remote systems. No central instance is responsible for the job scheduling.
Therefore, information about the state of all systems is not collected at a single
point. Thus, the communication bottleneck of centralized scheduling is prevented
which makes the system more scalable. Also, the failure of a single component will
not a�ect the whole metasystem. This provides better fault-tolerance and relia-
bility than available for centralized systems without fall-back or high-availability
solutions.

The lack of a global scheduler, which knows all job and system information
at every time instant, usually leads to sub-optimal schedules. Nevertheless, di�er-
ent scheduling policies on the local sites are possible. Further, site-autonomy for
scheduling can be achieved easily as the local schedulers can be specialized on the
needs of the resource provider or the resource itself.

Unfortunately the support for multi-site applications is rather diÆcult to achieve.
As all parts of a parallel program must be active at the same time, the di�erent
schedulers must synchronize the jobs and guarantee simultaneous execution which
makes it more diÆcult to provide optimal schedules.

In the following, we present two explicit cases of decentralized architectures that
were used for the evaluation shown in Section 5. Note that all jobs are submitted
locally.

Direct communication The local schedulers can send/receive jobs to/from other
schedulers directly (see Figure 3). Either schedulers have a list of remote schedulers
they can contact or there is a directory that provides information of other systems.

If a job start is not possible on the local machine immediately, the local sched-
uler is searching for an alternative machine. If a system has been found, where an
immediate start is possible, the job and all its data is transferred to the other ma-
chine/scheduler. In our evaluation, the execution length of the job is modi�ed to
re
ect this overhead.

It can be parameterized which jobs are forwarded to another machine. Note,
that this a�ects the local queue. This can also a�ect the performance of some
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Fig. 3. Decentralized Scheduling with Direct Communication

scheduling algorithms. E.g. the back�lling algorithms (s. Section 3.2) relies on a
suitable backlog.

Fig. 4. Using a Job Pool in Decentralized Scheduling

Communication via a Central Job Pool Jobs that cannot be executed imme-
diately are sent to a central job pool instead of a remote machine (see Figure 4).
In contrast to direct communication the local schedulers can pick suitable jobs for
their schedules. In this scenario, jobs can be pushed into or pulled out of the pool. A
policy is required that all jobs from the pool are executed at some time to prevent
job starvation.

This method can be modi�ed, so that all jobs are pushed directly in the job-pool
after submission. This way all small jobs requiring few resources can be used for
utilizing free resources on all machines.
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3 Scheduling Algorithms

The allocation process of a scheduler consists of two parts, the selection of the
machine and the scheduling over time.

3.1 Selection-Strategies

We de�ne four strategies for selecting suitable machines for a job request. In the
following, Mmax denotes all machines that are able to execute a speci�c job in the
metacomputer. Mfree is the subset of machines that have currently enough free
resources to start the job immediately.

{ BiggestFree takes the machine from Mfree with the largest number of free re-
sources. A disadvantage of this strategy is a possible delay of a wide job, as
small jobs may take the critical resources necessary for the next wide job.

{ Random chooses a machine from the setsMmax orMfree by random. On average
it provides a fair distribution of the jobs on the available machines.

{ BestFit takes the machine either from Mmax or Mfree that leaves the least free
resources if the job is started. In comparison to BiggestFree this strategy does
not unnecessarily �ll up larger machines with smaller jobs.

{ EqualUtil chooses the machine with the lowest utilization to balance the load on
all machines [13]. Note, that this strategy does not try to keep larger machines
free for larger jobs which may be a drawback.

3.2 Scheduling Algorithms

Most common algorithms in scheduling are based on list-scheduling. In the following
three variants are presented that we used for our evaluation [8].

{ First-Come-First-Serve: The scheduler starts the jobs in the order of their sub-
mission. If not enough resources are currently available, the scheduler waits until
the job can be started. The other jobs in the submission queue are stalled. This
strategy is known to be ineÆcient for many workloads as wide jobs waiting for
execution can result in unnecessary idle time of some resources.

{ Random: The next job to be scheduled is randomly selected among all jobs that
are submitted but not yet started, therefore the schedule is non-deterministic.
No job is preferred, but jobs submitted earlier have a higher probability to be
started before a given time instant.

{ Back�ll: This is an out-of-order version of FCFS scheduling that tries to prevent
the unnecessary idle time caused by wide jobs. Two common variants are EASY-
and conservative-back�lling [4, 9]. In case that a wide job is waiting for execution
other jobs can be started under the premise that the wide job is not delayed.
Note, that the performance of this algorithm relies on a suÆcient backlog.

4 Evaluation

4.1 Description of the Simulation Environment

For performance evaluation of the di�erent structures and algorithms we used a
simulation environment based on discrete event simulation. It allows the evaluation
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of di�erent con�gurations by providing results for common evaluation criteria, like
schedule-length (makespan), average response-time and utilization of the machines.

Information on workload traces from the 430 node IBM RS6000/SP of the Cor-
nell Theory Center [7] and a workload trace of the Intel PARAGON from the FZ
J�ulich were used to generate di�erent Job Sets. Thereby the jobs contain all relevant
information necessary for the scheduling.

The traces were modi�ed to produce larger backlogs, which was done by a du-
plication of the jobs.

A job consists of a submission time and a requested number of resources. Also
for some algorithms (back�lling) the actual or estimated execution length of a job
is used.

We use a simple abstract Machine Model of homogeneous resources (nodes).
The communication inside a machine does not prefer any speci�c communication
patterns. Therefore, jobs can be distributed on a machine in any fashion. Every
machine is capable of starting every job as long as enough resources are available.
The nodes are used in an exclusive manner. After the start of a job, the subset of
nodes cannot be changed and therefore no support for migration is provided here.

Some machine models used in the simulations are presented in Table 1 with
information on the size of each machine and the total number of resources. The �rst
Machine Model nrw is based on the machines available in the NRW-Metacomputing
project [3].

Total Number of

Name Sizes of Machines Resources Machine

nrw 10, 12, 16, 32,48, 192, 512, 512 1334 8

equal 256, 256, 256, 256, 256, 256, 256, 256 2048 8

4small 4big 32, 32, 32, 32, 256, 256, 256, 256 1152 8

2powN 2, 4, 8, 16, 32, 64, 128, 256 510 8

Table 1. Resource Con�gurations

An overview on the evaluated combinations of algorithms and selection strategies
is given in Table 2. Each scheduler is simulated with di�erent job and machine
models.

4.2 Results

The di�erent combinations of con�gurations, algorithms and structures produced
a large amount of data. In the following, we can only discuss some of the results,
while the complete listing is found in [12].

Single-Site Scheduling First, we compare FCFS and Back�lling in the Single-Site
scenario, see Table 3.

As expected Back�ll is much more eÆcient than FCFS in single-site scheduling
and also better than Random. Especially with the BiggestFree strategy, Back�ll-
ing is vastly superior to FCFS. As already mentioned before, large backlogs cause
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Selection

Structure Scheduler Strategy

Single-Site FCFS, BestFit Free,

Random, BiggestFree,

Back�ll Random Free

Central Multi-Site - -

FCFS, BestFit Max,

Hierarchical Back�ll EqualUtil Max,

Random Max

Direct Com- FCFS, -

Decentral munication Back�ll

Job Pool FCFS, -

Back�ll
Table 2. Simulated combinations

Scheduling Selection Average

Algorithm Strategy Makespan Response Time Utilization

BestFit Free 14.878.363 s 12.445 s 66,28 %

Back�ll BiggestFree 14.878.363 s 13.060 s 66,28 %

Random Free 14.878.363 s 12.769 s 66,28 %

BestFit Free 16.361.362 s 881.155 s 60,27 %

FCFS BiggestFree 18.086.122 s 1.806.165 s 54,52 %

Random Free 17.033.913 s 1.312.609 s 57,89 %

BestFit Free 14.879.165 s 13.951 s 66,27 %

Random BiggestFree 15.639.085 s 40.166 s 63,05 %

Random Free 15.240.330 s 31.356 s 64,70 %
Table 3. Exemplary results of single-site scheduling. Machine model 2powN and job model

are based on trace data from CTC.

the Back�ll scheduler to be more eÆcient. Note that, the simple random strategy
performs only slightly worse than Back�ll.

In comparison to the other selection strategies (see Section 3.1) BiggestFree per-
forms worst, because resources are allocated without regard of wide jobs potentially
submitted in near future. BestFit Free unveils the best results in all cases as it
leaves less resources idle. Random Free which e�ectively represents a mixture of
both variants achieves average results.

Multi-Site Scheduling Four computation methods are used exemplary to modify
the execution length of jobs running on several machines.

1. (1 + p)f

2. maxi[(1 + p)ri ]
3. (1 + p) � f
4. maxi[(1 + p) � ri]

{ f speci�es the number of job segments
{ ri speci�es the number of requested resources by each job part i
{ p denotes a unit value for the partitioning overhead
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The segmentation of a job to run in parallel on several machines leads to an over-
head. The size increases are described by the parameter p. Generally a larger p
results in a longer average response time (ART). While the �rst three procedures
show a monotonous behavior in this context, the last one seems not to share this
trend.

An additional parameter (minJobSize) prevents a job smaller than minJobSize
from being partitioned in segments. Therefore we expect a larger makespan and a
larger ART for a bigger minJobSize, but obtained di�erent results. Further research
must determine whether there is a turning point at which the originally expected
correlation begins. As to be expected, multi-site scheduling does not perform as well
as single-site scheduling.

Hierarchical Scheduling The Tables 4 and 5 present the results for di�erent
selection strategies and Machine Models.

Machine Size 256 256 256 256 256 256 256 256

Random Max 6,85 % 6,47 % 7,27 % 8,16 % 7,53 % 7,84 % 7,38 % 6,94 %

EqualUtil Max 7,28 % 7,35 % 7,28 % 7,35 % 7,49 % 7,30 % 7,30 % 7,30 %
Table 4. Exemplary utilization results for each machine with di�erent selection strategies

in hierarchical scheduling. Machine model equal respectively 2powN and job model are

based on trace data from CTC.

Machine Size 2 4 8 16 32 64 128 256

Random Max 3,20 % 3,71 % 35,85 % 21,31 % 21,40 % 16,99 % 17,76 % 40,08 %

EqualUtil Max 14,73 % 14,86 % 24,67 % 24,85 % 24,90 % 24,78 % 24,80 % 28,53 %
Table 5. Exemplary utilization results for each machine with di�erent selection strategies

in hierarchical scheduling. Machine model equal respectively 2powN and job model are

based on trace data from CTC.

In both cases EqualUtil Max performs slightly better than the Random selection
strategy, nevertheless both produce fairly good results. The use of EqualUtil Max
proves to be advantageous if machine sizes vary. If all machines in the metasystem
are equipped with the same number of resources (e.g. 8 machines with 256 resources
each) the di�erences between both strategies are negligible.

Especially in combination with the EqualUtil strategy and heterogeneous struc-
tures, the Back�ll scheduler is much more e�ective than FCFS as shown in Table
6.

Direct Communication The increase of the execution length (see Sec. 2.3) leads
to an expected decrease in performance (see Table 7). But it is negligible as only few
jobs are a�ected. Overall the results for distributed structures are highly dependent
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Scheduling Average

Algorithm Makespan Response Time Utilization

FCFS 120.662.772 s 32.836.642 s 8,17 %

Back�ll 16.189.537 s 94.377 s 60,91 %

Table 6. Exemplary results for selection strategy EqualUtil Free in hierarchical schedul-

ing. Machine model 2powN and job model are based on trace data from CTC.

on the resource con�guration. In a con�guration where all machines are similar
in size as in set equal, there is no signi�cant di�erence between centralized and
decentralized scheduling. In an environment of machines with varying size, decentral
scheduling produces much worse results.

CTC

extension time of Average

transferred jobs Makespan Response Time Utilization

20 s 28.005.954 s 2.615.614 s 34,27 %

50 s 28.775.899 s 4.167.194 s 35,21 %

KFA

parameter p (relative Average

length modi�cation) Makespan Response Time Utilization

0.1 23.485.345 s 26.135 s 29,31 %

0.2 23.485.635 s 26.154 s 29,31 %
Table 7. Exemplary results for absolute modi�cation of the execution length using

Back�ll-Schedulers with Direct Communication. Machine model 2powN and job model are

based on trace data from CTC.

Using a Job Pool The scheduling depends mostly on established (fairness) poli-
cies. For instance, a job is only forwarded to the job pool, if it cannot be handled
locally. Therefore, the balancing between the local and the remote queue is of major
importance to prevent jobs to accumulate in one of them.

Scheduling Average

Algorithm Makespan Response Time Utilization

FCFS 23.465.816 s 1.036 s 9,55 %

Back�ll 23.466.498 s 1.075 s 9,54 %
Table 8. Comparing FCFS and Back�ll with equal settings of parameters. Machine model

nrw and job model are based on trace data from KFA.

Back�ll schedulers prefer the local queue for their back�lling, whereas FCFS
based schedulers always use the job-pool to utilize their idle times. Therefore, FCFS
has a wider variety of jobs to choose from, if enough backlog exists. Under this
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circumstances FCFS shows a slightly better performance than Back�ll. First simu-
lations verify this e�ect as presented in Table 8.

The increase of the execution length for the overhead as mentioned in Section
2.3 shows a decrease in performance as to be expected. If enough small jobs are
forwarded to the central pool, the results are comparable to central scheduling.

Besides the scheduling aspect the use of a common job-pool requires certain
management features. Jobs exceeding the maximum size of any resource set of the
system must be rejected.

5 Conclusion

In this paper, we discussed some scheduling structures that typically occur in meta-
systems or computational grids. As evaluating such structures highly depends on the
used algorithms and strategies of the scheduling itself, a selection of them has been
presented. Besides the discussion of scheduling structures, simulations were used to
evaluate their run-time performance. Discrete-event simulation has been used with
workload from real machine traces and sample machine con�gurations. The results
are not meant to be complete, but give an overview on the methodology and some
interesting relations. Future work will extend the studies to more architectures and
include more detailed parameter and con�guration variation. This is important as
the current results show that the performance of the examined algorithms for the
scheduling structure are highly dependent on the parameters, machine con�gura-
tions and workload.
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