
Web enabled client-server model for development
environment of distributed image processing

Haresh S. Bhatt *, V. H. Patel* and A. K. Aggarwal §

* Space Applications Centre
Jodhpur Tekara,
Satellite Road,

Ahmedabad – 380 053
INDIA

{haresh,vhpatel} @ipdpg.gov.in

§ Department of Computer Science
Rollwala Computer Centre

Gujarat University
Ahmedabad – 380 009

INDIA
aka19@hotmail.com

Abstract. Image processing applications (IPA) requirements can be best met by using
the distributed environment. The authors had developed an environment over a
network of VAX/VMS and Unix for distributed image processing. The efficiency was
as high as 90-95%. This paper presents an augmentation and generalization of the
environment using Java and web technology to make it truly system independent.
Although the environment has been tested using image processing applications, the
design and architecture is truly general so that it can be used for other applications,
which require distributed processing.

Keywords: DEDIP, Parallel Image Processing, Distributed image processing

1. Introduction

Image processing applications (IPA) require processing on large volumes of data.
These also require various types of resources like high-resolution graphic displays,
drives for magnetic tape/cartridge/floppies, optical disk, database, etc. The resource
requirement changes with time due to the availability of new and better resources.
Hence, it is not possible to assume the availability of all resources on a single system.
The distributed processing environment not only helps in optimum utilization of such
resources but also helps in achieving better throughput using multiple processors in
parallel. However, if one has to use multiple heterogeneous machines in a network to
execute a set of tasks, one may have to execute a tedious set of commands. It is not
possible to expect an operator to carry out such operations on a regular basis.
Moreover in such a system, any error, occurring either during data transfer or during
processing, creates difficulties for the operator.

Development of an application having built-in automated data transfer, capability
of using multiple machines in parallel, and robust error handling is a challenging job.
This paper presents the authors’ contribution in providing a tool that makes such a
development very easy.

The research work carried out by eminent computer professionals [1-10] focused
on the parallel-processing experts’ needs. The image processing applications are

developed by scientists (mathematicians, physicists, remote sensing experts, etc) not
by parallel processing experts. Smooth operational environment, Operational setup,
and ease of use are the critical issues for scientists compared to parallel processing
experts.

We focused on the requirement of this vast community. We presented a full
fledged Development Environment for Distributed Image Processing (DEDIP) that
makes the development & operationalization of distributed applications very easy
[11]. This paper presents a WebDedip, which is redesign and generalization of
DEDIP to make it more user friendly and truly heterogeneous.

2. Generalization and Extension

The WebDedip has a novel design, which explores object oriented modeling
technique in the web domain. The new model uses three-tier architecture instead of
master-slave one. The DEDIP had provided GUI only on the host system. The
WebDedip provides browser based GUI on all nodes connected to the system. It
enables the user to use the WebDedip from any system on Internet. Thus, it provides
the roaming profile to application designers, operation managers and operators. Users
have to edit a few text files to configure their application in DEDIP. WebDedip has
made this task easier by adding new user friendly GUIs. The augmented design
addresses all the important redundancy issues making the WebDedip fault tolerant.

3. WebDedip overview

The WebDedip has a three tier architecture; GUI, DedipServer and Agents, as shown
in figure-1.

The GUI is the web enabled graphical user interface to make the entire user-
interaction truly system independent. It supports various Java Applets for application
configuration, application building, application operation initiation, application
progress monitoring, and session controlling. The user initiates the interaction by
visiting a predefined site using a standard browser. The standard web server loads the
required GUI on the web browser.

It has a back-end DedipServer running on the web site. When the GUI submits the
request to the DedipServer, it reads the application configuration information from the
configuration file. The DedipServer initiates the execution of the first process in the
interdependency chart. Normally, most of the applications have a single starting
process. If any application has multiple starting processes, it initiates execution of all
such independent processes. It informs the agent(s) on the target node to start the
execution of the process. The agent sends the status information back to the
DedipServer when the process is completed. The DedipServer finds out the dependent
processes on the successful completion of a process and initiates the execution of each
such process. The required files are transferred from one node to another. WebDedip
has a callable library in Java to interface with the FTP server [12] that helps in
transferring files. The required process is automatically inserted in the configuration

when IP designer inserts the IO dependency information (figure-5) between two
processes.

The DedipServer stores complete information about all the applications configured
on the web site. The DedipServer exchanges information with the
DedipBackupServer making the model fault tolerant.

Fig. 1. WebDedip Model

The task of the agent is very simple. It accepts requests from the DedipServer,
executes them and provides the status information when completed. It has process
building (compilation), execution, and monitoring capabilities. It can schedule
multiple processes in parallel. It does not control the synchronization among the
parallel processes, instead it depends on the DedipServer for this job. It treats each
process as a single independent entity.

The WebDedip not only caters to the requirements of the application designer, but
also addresses all the requirements of the operation manager as well as operators. The
application configuration and building is a privileged task, carried out either by the
application designer or operation manager. During the regular operations, the operator
can initiate any required application, monitor progress, do error handling, and
terminate the application, if necessary. The web server capability is used to provide
the required access control rights.

Object-oriented modeling (implemented in Java) is used for the design of the
WebDedip [13]. The application is modeled as an object while the process is modeled
as an embedded object. The object inter linking capability is used to maintain
interdependency information for an application. Java distributed object architecture is

used along with the object serialization for network communication among GUI,
DedipServer and agents. Hence, WebDedip can be used on a LAN, WAN or on
Internet. Agents may run on any system over Internet. On start, an agent makes
connection with DedipServer on a predefined port and volunteers for computation
workload. Java object persistence is used in storing the information, including
dynamic information. The same is explored in communication among the GUI,
DedipServer and agents.

The Windows-explorer is used as a metaphor in developing the navigation GUI
due to its popularity and ease of use (see figure-2).

3.1 Application Configuration

The application designer first decides the configuration of his application. It depends
on the distributed resource requirement, parallel processing requirement, input/output
of each process, etc. The WebDedip supports a nice GUI for the same as shown in
figures 2-5. Figure-2 shows the overview of the application. The typical
interdependency chart, generated interactively, is shown in figure-3. The detailed
information about each process is shown in figure-4 for a typical process. The line
joining two processes shows their interdependency in top-down model. The IO
dependency, if any, is a part of this interdependency and it can be easily configured.
The typical configuration is shown in figure-5. User can modify his application
configuration file any time. The effect of the modification will be applied on next
execution of the application.

Fig. 2 Basic Information of the Application

Fig. 3 Process interdependency Information

Fig. 4 Process Information

Fig. 5 Data dependency information

3.2 Application building

An application consists of many processes. All these processes need to be compiled
on the target node. The WebDedip has automated all these compilation. The
configuration information has all the required details about each process. The
DedipServer copies the source code & make-file, required to build a process, on the
target node in a predefined temporary area. It then requests the agent on the node to
build the process using the make-file. It carries out this task for each process given in
the configuration. The agent creates designated directory and preserves the executable
in it. The application designer can build the processes externally on all systems in
case he is not willing to give the code. The GUI provides necessary support for such
external readiness indicator.

3.3 Application execution and monitoring

The operator can start execution of any application from any machine on the net using
the standard browser. GUI displays the configured applications to the operator for
selection. Operator can start/abort/suspend/resume an application. Figures 6 & 7
show the GUI for session and application progress information.

Fig 6 Session progress information

3.4 Error Handling

In case of abnormal completion, the DEDIP Server displays the error message with
error code to the operator. These error codes and error messages are provided by
application designer. WebDedip keeps this information in the configuration file. The
operator can restart the process after taking the necessary actions. In addition, the
operator has the options of either restarting the entire application or aborting it.

Fig 7 Application progress information

3.5 Session management

Each time an operator logs in, DEDIP scheduler starts/restarts a session for him. Each
session has a unique session identification number. It keeps all the information about
the session on the server. The operator has multiple options to log out. He can close
the session, terminate the session, suspend/resume the session, or submit the session
for progress in background before logging out. He can close the session only after
normal completion of all the requests he has submitted. He can terminate the session
immediately in case of emergency. In case of termination, the WebDedip kills all the
processes of all the requests submitted by the operator irrespective of the status. The
background processing is very effective in the case of non-interactive processes. The
WebDedip gives the detailed status to the operator at the next logon.

3.6 WebDedip system management

The WebDedip system consists of a DedipServer and agents. The DedipServer can
detect the agent termination. It displays the message on operators’ console as well as
operation manager console.
The DedipServer is the most important process in the entire system. Its failure, for
example, due to system crashing, can cause a severe problem. DedipBackServer is
designed to handle the failure of the DedipServer. The software package
DedipbackupServer runs on the machine of the backup server and duplicates the
required information from the DedipServer. An agent sends a trigger to
DedipBackupServer when it fails to communicate with the DedipServer. The
DedipBackupServer validates the DedipServer failure. It takes over the complete
responsibility from that moment onwards and informs the operation manager. The

servers are exchanging information only in case of external events like termination of
process, start of new process, initiation of an application by the operator, the start of
new session, etc. The frequency of such possible events is very low. Furthermore, the
volume of the information is negligible. Hence, the communication overhead for
maintaining the back-up server is very low.

4. Case study

WebDedip functionality and efficiency was tested using Microsoft NT as host and
IRIS workstations as slaves. IIS 4 was used as web server. The front-end GUI is
tested on two most popular browsers IE and Netscape

The WebDedip was tested for three cases [11] using simulated executables by three
operators in ten runs. The simulated processes were generated resembling actual
processes for image processing interaction/processing. The process dependency chart
is given in figures 8-10. The processing node is shown in the bracket if it is different
than host. DTHS stands for Data Transfer from Host to Slave while DTSH stands for
the reverse process. 'T' indicates the tape unit requirement by the process. ‘W’ &
‘W2’ indicates that the process is scheduled on workstation1 and workstation2
respectively. The time (in minutes) required by each process is shown in bracket.

Fig. 8. Simulated case-1 for testing

Fig. 9. Simulated case-2 for testing

Fig. 10. Simulated case-3 for testing

Case 1: Single package requiring sequential scheduling is shown in figure 8
depicting the simplest case.

Case 2: Single package requiring parallel scheduling is shown in figure 9.

Case 3: Parallel execution of two packages, each package requiring sequential
scheduling, is shown in figure 10.

Table 1 : Results for the case studies (time in minutes)

Case Theoretical Without Dedip WebDedip

1
2
3

 30.0
 23.5
 42.0

32
52
74

32.0
25.0
46.0

The efficiency results are almost the same as those achieved in the earlier version,
ie 90-95%. The page & applet loading time over the network is excluded. The access
time in case of WebDedip is mainly due to two reasons: (1) action communication
delay and (2) DedipServer overheads. This action communication delay was
measured for various actions by repeated exercises. It was found out to be
approximately 10 to 40 seconds on this type of action. The remaining are the
DedipServer overheads.

Recently, a few scientists were engaged in developing web-based project
management & work flow applications [14] like hierarchical progress reporting &
compilation, meeting management, project task management, personal task
management, document authentication, resource booking, complaint management, job
work flow and remote system configuration detection. These applications were having
distributed processing requirement amongst the browser based remote machines, web
server, database server and mail server. They used WebDedip instead of Java
servlets. The used their own GUI could communicate to DedipServer and agents
using RequestObject, a message passing object from WebDedip library [13].

5. Related Work

In this section, we summarize the research efforts that are closely related to our
work. JPVM [1], and Java MPI [2] are the Java extensions of PVM and MPI
respectively. JavaParty [3], ParaWeb [4], Charlotte [5], Popcorn [6], and Javelin [7]
are Java based systems for distributed computing using Java. JavaParty provides
mechanisms for transparently distributing remote objects. ParaWeb is an
implementation of the JVM that allows Java threads to be transparently executed
remotely. Charlotte provides high level solution that decouples programming
environment from the execution. Its disadvantage is that the programmer does not
have explicit control over resource utilization. However, its eager scheduling enables
the runtime systems to efficiently provide load balancing. Popcorn provides a Java
API for writing parallel programs for Internet distribution. Applications are
decomposed, by the programmer, into small, self-contained subcomputations, called
computelets. The Popcorn is based on buyer-seller concept. It has a centralized entity
called market that determines which CPU seller executes the computelet. Javelin is an
infrastructure for Internet based parallel computing. Any free computer system can
volunteer to execute a task using the applets supported by the Javelin. It follows a
client-broker-server architecture. Bayanihan [8] and Ninflet [9] are also very similar
to the Javelin.

 The methods, reported in most of the above, concentrate in providing computation
power to a large and complex application efficiently. All of them expect efficient
parallel and distributed programming skills. Their definition of ease of use is around
application compilation, scalability, load balancing, fault tolerance, etc. The
WebFlow [10] is closest to our work. It provides Java-Swing based visual
programming environment for metacomputing using Java. It supports Globus [15]
metacomputing toolkit at the backend.

The programmer needs to use Java for metacomputing language in the above
models. Furthermore, the GUIs of the above models support the monitoring and
controlling an application (large & complex) in stand-alone mode. Therefore, they do
not require elegant & easy GUI for simultaneous execution, monitoring and
controlling of multiple applications.

WebDedip (& DEDIP) concentrated on the vast community of scientists rather
than efficient programmers. It made the distributed application development very
easy. It supports all languages like Fortran, C, C++ and Java. Its GUI supports all the
needs of operational environment executing multiple heterogeneous applications
simultaneously. It has its own backend support for process scheduling and
monitoring.

6. Conclusion

The WebDedip provides a useful facility to the designer to develop the distributed
image processing application in a user-friendly environment. The browser based GUI
enables him to use the system functionality from anywhere over the Internet. The
graphical user interface makes it easy to visualize and configure the application.

Furthermore, WebDedip addresses all the critical elements for smooth operations. The
option of back-up server support makes the entire system robust.

The results obtained from the simulated test cases for the WebDedip match with
those of the earlier version. The communication delay over the network is the only
additional delay. The earlier version of the model was used by 15 scientists for
development and operationalization of 10 distributed image processing applications
for Indian Remote sensing Satellite (IRS). The same is likely to be replaced by the
new WebDedip.

Although the WebDedip has been tailored for the requirement of image processing
applications, its design and architecture is truly general so that it may be used for
other applications also. Collaboration is being worked out with Nirma Institute of
Technology to use WebDedip in field of advanced computing for civil engineering.

A study is being carried out for interfacing WebDedip and PVM.

References

1. A.J. Ferrari, JPVM - The Java Virtual Machine,
http://www.cs.virginia.edu/ajf2j/jpvm.html.

2. S. Taylor, Prototype of Java-MPI package, Available at
http://cisr.anu.edu.au/sam/java/jav.mpi.prototype.html.

3. M. Philippsen, M. Zenger, JavaParty – trasnperent remote objects in Java, Proc. of ACM
1997 PPoPP Workshop on Java for Science and Engineering Computation, (1997).

4. T. Brecht, H. Sandhu, M. Shan, J. Talbot, ParaWeb: towards world-wide supercomputing,
Proc. of 7th ACM SIGOPS European Workshop, (1996).

5. Baratloo, M. Karaul, Z. Kedem, P. Wijckoff, Charlotte: Metacomputing on the Web,
Future Generation Computer Systems, Vol. 15, (1999), 559-570.

6. N. Camiel, S. London, N. Nisan, O. Regev, The POPCORN project: Dsitributed
Computation over the Internet in Java, 6th International World Wide Web Conference,
(1997).

7. M. Neary, B. Christiansen, P. Cappello, K. Schauser, Javelin: Parallel computing on the
internet, Future Generation Computer Systems, Vol. 15, (1999), 659-674.

8. L. Sarmenta, Bayanihan: Web-Based Volunteer Computing Using Java, 2nd International
Conference on World Wide Computing and its Applications, (1998).

9. H.Takagi, S. Matsuoka, H. Nakada, S. Sekiguchi, M. Satoh, U. Nagashima, Ninflet: a
Migratable Parallel Objects Framework using Java, Proc. of the ACM 1998 Workshop on
Java for High_performance Network Computing, Palo Alto, CA, (1998).

10. T. Haupt, E. Akarsu, G. Fox, W. Furumanski, Web based metacomputing, Furture
Generation Computer Systems, Vol. 15, (1999), 735-743.

11. Haresh Bhatt, CVS Prakash, A K Aggarwal, DEDIP: Development Environment for
Distribute Image Processing, Submitted to DS Online, http://computer.org/channels/ds/

12. Java based client object library for interfacing with FTP servers, Technical report,
DWPIP project, (1999).

13. Design of Web based DEDIP using UML, Technical report, DWPIP project, (2000).
14. Design overview of project & work-flow management automation, Technical report,

CNF/SIIPA, Space Applications Centre, Ahmedabad, India.
15. Globus project- http://www.globus.org/

