A Web-based Metacomputing Problem-Solving
Environment for Complex Applications

Ranieri Baraglia', Domenico Laforenza', and Antonio Lagan?

! CNUCE-Institute of the Italian National Research Council
CNR Research Campus, Via V. Alfieri 1, 56010 Ghezzano, Pisa, Italy
e-mail: (Ranieri.Baraglia,Domenico.Laforenza)@cnuce.cnr.it
% Dipartimento di Chimica, Universita di Perugia
Via Elce di Sotto, 8 - 106123 Perugia (Italy)
e-mail:lagQunipg.it

Abstract In this paper a kernel of Problem Solving Environment aimed
at managing complex chemical meta-applications based upon an a pri-
ori simulation of molecular structure and dynamics has been presented.
By considering as a case study the simulation of a molecular beam ex-
periment (SIMBEX), a metacomputing environment able to facilitate
the SIMBEX execution through the Web has been designed. This choice
is due to the rapid and impressive growth of Internet, Java and, Web
technologies. The current work focus on the architectural aspects of the
implemented environment.

1 Introduction

Modern Computational Sciences increasingly stimulate the development of ad-
vanced computing tools because of their need for realistic simulations of complex
systems relevant to the modeling of several modern technologies and environ-
mental phenomena. This type of simulations usually needs to include, though
not necessarily in a completely rigorous manner, a detailed description of rel-
evant molecular structures and processes. As a result, related computational
procedures not only need to be run by coordinating several complementary ex-
pertises but also by integrating several extremely powerful computing platforms
in a metacomputer system. From this derives the need to build smart and user-
friendly Problem Solving Environments (PSE) enabling computational scientists
to carry out their investigations without caring about the complexity of the
computing platform being used. As defined in literature, a PSE is a computer
system that provides all the computational facilities needed to solve a target
class of problems. These features include advanced solution methods, automatic
and semiautomatic selection of solving procedures, easy incorporation tools of
novel approaches [1].

A European COST Initiative has been recently proposed [2] to promote the
gathering of research laboratories having complementary expertises in clusters
grafted on metacomputer systems (Metalaboratories). This action has been re-
cently approved (D23) and a call for cooperative projects is being issued. These



projects should tackle complex modeling problems without conveying in a single
location all the required laboratories, programs and pieces of hardware. Our pro-
posal focuses on building a Metalaboratory devoted to the a priori simulation of
molecular processes, and in particular of crossed molecular beam experiments.

The metacomputing [3,4] approach harnesses different computational re-
sources and uses their aggregate power as if it was contained in a single machine.

From a technological point of view, the rapid and impressive growth of the
Internet has generated a rising interest in Web-based parallel computing. In
fact, many worldwide projects are focused on the exploitation of the Web as
an infrastructure for running coarse-grained distributed parallel applications. In
this context, the Web has the capability to become a suitable and potentially
infinite scalable metacomputer for parallel and collaborative work as well as a
technological key to create a pervasive and ubiquitous grid infrastructure [5,7].

As a case study, we should consider here the simulation of crossed molecu-
lar beam experiments whose (on a small scale) prototype numerical procedure
(SIMBEX) has already been discussed in literature [8].

Aim of the present paper is to briefly describe the main features of the sim-
ulation and the characteristics of the software tools developed to facilitate the
SIMBEX execution on a metacomputer through the Web. These tools are de-
signed to supply a completely transparent support to the user who does not have
to care about the localization and the allocation of computing resources. All the
needed functionalities were implemented on a properly extended Web server us-
ing, whenever possible, standard tools. In particular, use of the Java Servlet [9]
and Directory Service facilities of LDAP [10,11] have been made. Moreover, a
modular design has been adopted to guarantee an easy maintenance and ex-
tendibility of the product.

The paper is articulated as follows. In Section 2 is given a short description
of SIMBEX. Section 3 focuses on the architectural aspects of the metacomput-
ing environment. Related work on Web-based metacomputing environments is
presented in Section 4. Finally, we summarize our work in Section 5.

2 A Short Description of SIMBEX

SIMBEX is a computational procedure based on a priori calculations of struc-
tures and processes of molecular systems. The procedure is articulated into sev-
eral modules derived from the theoretical approach to the problem (see Figure
1).

Each module consists of alternative or coordinated computer codes which
accomplish particular tasks. In particular, in module I the construction of the
potential energy surface is performed (see Figure 2). This procedure may be
bypassed when the potential energy surface is already available or used “on the
fly” during dynamical calculations when a direct approach is chosen. If this step
is not bypassed then the level of accuracy of ab initio calculations, the number
and location of points to be considered, the fitting of calculated ab initio values
to a given functional form have to be performed.



Construction of the
Potential Energy
Surface

(Module T)

>

Iterative Process

Figurel. SIMBEX: Computational Control Flow

Are
Ab Initio
Calculations
Available

Are
Ab Initio
Calculations
Feasible

Use
Empirical Data
from
Data Bases
(Mew York, Sussex)

Applications
Using
Fitting Programs

{Salamanca)

Applications Using
Ab Initio Programs
for Electronic Structure
(Perugia)

Figure2. SIMBEX: Module I Control Flow




In module IT dynamics calculations are carried out (see Figure 3). These cal-
culations too can be performed at different levels of accuracy. For small molecules
it is possible to perform exact quantum dynamical calculations that can be either
of the time dependent or of the time independent type. When considering larger
molecules, approximations need to be introduced. This may consist of dynamics
constraints leading to a dimensionality reduction in quantum calculations, or
of a mixing of quantum and classical techniques, or of a use of pure classical
methods.

Application
Q“mmf“ Using
D Time-Dependent
Calculation Quantum
Techniques
(Bristol)

Application APPll?ahon
Using Classical Dynamics Using
o i Time-Independent
(Trajectory) Techniques Techmqnes
(Vitoria, Salamanca, Perugia) )

!

v
@)
Figure3. SIMBEX: Module IT Control Flow

Finally, in module III (see Figure 4), when scattering matrix elements or
state to state probabilities have already been calculated, an averaging over un-
observed variables needs to be made to reproduce experimental properties and
distributions.

More detailed information about SIMBEX can be found in [8,12].

3 The Metacomputing Environment: Architectural
Aspects

To implement SIMBEX on a Web-based metacomputer platform we have de-
signed a 3-tier architecture having the following components:

— Client side: a Web browser;

— Middleware: Web servers exploiting Java Servlets and Lightweight Directory
Accesss Protocol (LDAP) functionalities;

— Back-end: the ensemble of computing resources.



Stateto State
Osservable
Quantities

Rate Coefficient
Virtual
Monitor
(Perugia)

State Specific
Osservable
Quantities

Vibrational,
Rotational,
Angular Distributions
Virtual Monitors
(Perugia)

0

Figure4. SIMBEX: Module III Control Flow

Cross Section
Virtual Monitors
(Perugia)

!

Figure 5 shows the architectural scheme singling out the key interactions
among the mentioned components. The user, after being authorized when ac-
cessing the system, is offered a choice of applications available on the back-end.
Next step deals with the handling of input data. In order to satisfy the requests
of the users, the server makes use of the LDAP functionalities to localize avail-
able computing resources capable to provide requested services. LDAP provides
information about the computing resources by accessing to a Directory Informa-
tion Tree (DIT). The tree is made up of entries which represent the computing
resources by a group of attributes. After collecting related information, the server
activates a remote execution of the application on the selected machine. When
the execution is completed, results are passed to the server that forwards them
to the Client.

3.1 The Client Side

The client is made of a Web browser representing the graphical interface driving
the user in the selection of the required application, inputting the necessary data
and collecting the results. HTML forms ensure the interaction of the user with
the Web server: they activate the execution of the Java servlet that corresponds
to the requested action (application selection, data input, etc.). Obviously, the
address of the Web server providing the service has to be known in advance
to the user. The initial page allows the specification of the userid and of his
password which implies also the process of crediting a user (see Figure 6).

This implies the transfer on the network of private information that could
be made using HTML forms. In order to check the integrity of the information
transmitted we use a Java applet that implements a HMAC [15] mechanism
which exploits the iterative cryptographic MD5 hash function.



i < Application App. Input A pplication
C-hent Login List gﬁhm?t l;glasult,s
Side

;] 7 7 4

Middle \

ware \ \Web Server

T
profiles profiles profiles

LDAF Server
|/
¥
Back Application
exenpion
end
(Und) Host-n Host-2 Host-1

Figureb. The Architectural Scheme Singling out the key Interactions among the Sys-
tem Components.

User
Authentication
Page
Web Server + Servlet Engine

o

=<userid, password > st

@ i
i, HTLE
T L
g WWW Client
Authentication
l Confirmation
%
}:4 ,,\" Search(login) { User Group
JNDI (loqtn=user1d) +-us=r0001
s | +-legin
| +-password
LDAP +-user0002

| +-login
| +-password

Figure6. User Authentication Process.



In order to control the access to the system’s resources, it is possible to
define different user profiles according to predefined politics. This has been im-
plemented using LDAP.

After authentication, the user is offered a list of applications that can be run
on the machines belonging to the back-end system (see Figure 7). The application
selection can be performed by clicking on the hyperlink related to the application.

Application
Selection
Web Server + Servlet Engine

Hyperlink b
HITTE

HTML page
for input submitting

o,
£ 2 % search(application){
fprt (sw—application namd Applications

INDI ¥ +-appnamel

+ | t-verszion
LDAP | 4-sw
LDAP Server

I e
| + input type

Application Profile .+~
W3

Figure7. Application Selection Process.

Each application has an associated profile describing its computational char-
acteristics (requirements): e.g., name, version, documentation available, type of
input required, sources of data, etc. The application profile is stored in the LDAP
server that is searched by the Web server in order to drive the input process.
According to the characteristics of the application, by driving the input of data
by the user, a HTML page is produced.

The input data can be submitted (see Figure 8) to the application according
to three different modalities:

— by a data entry phase;

— by selecting a file resident on the client local disk;

— by choosing a link to a remote data source (a file located on a metacomputer
machine).

In general, the application execution is expected to take a significant amount
of time. Consequently, the user can leave its metacomputing session after sub-
mitting the application. At job completion the user is notified by an e-mail
message. The message allows the user to reconnect and access the page of the
results built by a proper Java servlet. Serious difficulties may arise when dealing
with the transfer of large amounts of data due to the limited bandwidth available



¢ Gather UserInput

¢ Check & Format Data
¢ Host Discovery

* Resources Allocation

Input Source
Selection
(local or remote)

Web Server +

2. HTTP g

Job Submission VW Client

Notification

2Py
I 72 § Search(hosts){
Gy (sw=application namé

INDI H

Applications
+-host_namel
| +-ip address

LDAP
Server

| +-sw
| +-hn
| + proc

Figure8. Application Input Process.

on the network. Transfer time and data integrity cannot be guaranteed on the
Internet.

3.2 The Middleware

The middleware layer consists of a Web and a LDAP servers. The Web server
takes care of the interaction with the client and performs the Java servlets han-
dling user’s requests. The servlets residing on the Web server are:

servl. Authentication of the user and his profile. According to the chosen
policy, serv! handles the various phases of the authentication and the interac-
tion with the client to establish his identity. To achieve this, the list of users
allowed to make use of the services has to be accessed. This can be coded as an
entry set of LDAP (see Figure 6). Among the attributes belonging to the user
object there are those which identify the user profile (i.e. the applications he can
submit for execution plus some auxiliary attributes useful for his identification).
Auxiliary attributes can vary depending on the chosen policy. As an example, if
an algorithm of the Challenge-Response type is implemented, the public key of
the user should be stored (the assumption is that the decision on allowing access
to the system should be hand made and left with the manager of the system).

These user profiles are necessary to state “who can do what” and “where
should the results of a run be stored”.

serv2. Application profiles management. According to the selected applica-
tion, serv2 needs to set the modality for transferring input data. To this end
LDAP services are used too, in order to set input formats. In the DIT section
of LDAP all entries related to a given application implemented in the back-end
are defined. Its attributes define how data to be passed to executables have
to be defined. As already singled out for the Client-end, there are three main



ways of inputting data. According to the characteristics of the application serv2
produces a HTML page that drives the user while inputting data (see Figure 8).

serv3. Validation of input data, resource localization, allocation and con-
figuration, remote execution of the application, recollection and forwarding of
results (see Figure 8 and 9). This is the most complex servlet which takes care
of:

checking data format. Data input by the client need to match re-
quirements set by the application. In case they do not, a HTML page is
generated to inform the user about the error;

Web Server + i R~ it
Servlet Engine Job End : f

-Transfer Data Files
-Drive the E.M.
-Start the application
-Collect Results

Figure9. Application Execution Process.

localizing resources. By interacting with the LDAP server it is figured
out where the executable codes needed by the application are stored.
It is worth noticing that LDAP is intrinsically static. Therefore, some
mechanisms allowing a monitoring of the status of the resources of the
back-end need to be introduced in order to allow also an update of the
DIT entries guaranteeing the consistency of the information stored. This
can be obtained by adding a further attribute to the object describing
the characteristics of each machine. Aim of this attribute is to specify
the date in which the last access to the resource has taken place. When
the difference between the actual time and the time indicated by the
attribute is larger than a predetermined amount, one can reasonably
assume that the machine is available. Otherwise, the check is pushed to
a lower level by using commands like ping, top, procinfo to update the
entry related to the considered machine;

allocating and configuring resources previously localized. To this
end a session is activated on the account of the user made available by



the the back-end machine using remote shell mechanisms. Input files are
transferred into a given directory of the machine and a script to activate
the executable codes of the application is configured;

remote executing of the application. A script is launched to start
the execution of the application. System mechanisms like pvm daemon,
mpirun, Condor, etc, local to the chosen machine, take care of configuring
the virtual machine, of executing the parallel application and of storing
the results on a file;

collecting and forwarding results. serv3 waits until the application
is ended before starting the collections of all its results. Then it opens a
HTML page containing them or a link and forwards a mail to the user
so that he can connect and access the desired information.

As already mentioned, the LDAP server, keeps the information about reg-
istered users, the characteristics of the available software and hardware. This
information, initially provided by the systems administrator, due to the static
nature of LDAP, is maintained by the servd servlet that periodically updates the
content of the LDAP entries according to the checks performed on the resources
of the back-end. The Web and the LDAP servers interact via JNDI [16,17], an
interface written in Java. This can be easily integrated into Java applications.
The reason why JNDI has been chosen is that it has been developed with the
aim of prividing access to a generic directory service and, at the present, it can
interface not only LDAP but also NIS [16], DNS [18], and CORBA [19]. This
guarantees to the applications that make use of it an easy extensibility.

3.3 The Back-end

The back-end is made by high performing computing resources, multiprocessor
systems, workstation networks which provide computing power to the applica-
tions of the metacomputer. On these machines the Web server has user accounts
that allow the execution of the applications.

4 Web-based Metacomputing Environments: Related
Work

There is a growing number of worldwide projects related to metacomputing and
grid computing [6,7]. Some of those focus on the exploitation of Java technology
for Web-based metacomputing.

This section presents some of the most significative projects that are repre-
sentative of the Web-based approach.

Charlotte [20], developed at New York University, was the first environment
that has allowed any machine on the Web to participate in any ongoing compu-
tation. Charlotte is built on top of Java without relying on any native code.

Javelin [21] is a Java-based infrastructure for global computing. The system,
developed at the Department of the University of California, Santa Barbara, is
based on Internet and Web technology.



WebFlow [22], developed at the Northeast Parallel Architecture Center, is
a computational extension of the Web model that can act as a framework for
the wide-area distributed computing and metacomputing. The main goal of the
WebFlow design was to build a seamless framework to publish and reuse compu-
tational modules on the Web so that end users, via a Web browser, can engage
in composing distributed applications using WebFlow modules as visual compo-
nents and editors as visual authoring tools.

NetSolve [23], developed at University of Tennessee and Oak Ridge National
Laboratory, is a client/server application designed to solve computational science
problems in a distributed environment. Netsolve clients can be written in C and
Fortran, use Matlab or the Web to interact with the server. A Netsolve server
can use any scientific package to provide its computational software.

Although our approach inherits some interesting solutions exploited in the
previous mentioned projects, it is less general. In fact, our project focuses mainly
on the creation of a Web-based metacomputing PSE to supply a completely
transparent support to the user who does not have to care about the localization
and the allocation of computing resources.

5 Conclusions

In this paper we have presented the main features of a PSE designed to facilitate
the execution of a complex chemical application (SIMBEX) on a metacomputer
through the Web. This project is developed in the framework of a European
Communities COST Initiative-Action D23.

Our prototype is based on Web technologies and it is written in Java. The
Java programming language successfully addresses several key issues related to
grid environments. It also removes the need to install programs remotely; the
minimum execution environment is a Java-enabled Web browser.

Many researchers agree with the fact that frameworks incorporating CORBA
services will be very influential on the design of grid environments in the future.
For this, we would like to investigate on the usage of CORBA technology to
enhance some features of our PSE prototype.

6 Acknowledgments

We would like to thank the Master Thesis students, Fiorenzo D’Alberto and
Andrea Vasapollo, who worked with us during the design and the development
of this software environment.

References

1. S. Gallopoulos, E. Houstis, and J. Rice, Computer as Thinker/Doer: Problem-
Solving Environments for Computational Science, IEEE Computational Science
and Engineering, Summer (1994).



10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

Metachem Workshop, European Community, Brussels, 26-27 November 1999.
C. Catlett, L. Smarr, Metacomputing, Communications of the ACM, 35(6), 44
(1992).

. Baker M., Fox G., Metacomputing: Harnessing Informal Supercomputers, In High

Performance Cluster Computing: Architectures and Systems, R. Buyya Ed., Vol-
ume 1, Prentice Hall PTR, NJ, USA (1999).

The Grid: Blueprint for a Future Computing Infrastructure, 1. Foster and C. Kessel-
man Eds., Morgan Kaufmann Publishers, USA (1999).

W. Gentzsch (editor), Special Issue on Metacomputing: From Workstation Clus-
ters to Internet computing, Future Generation Computer Systems, No. 15, North
Holland, 1999.

M. Baker, R. Buyya, and D. Laforenza, The Grid: International Efforts in Global
Computing, International Conference on Advances in Infrastructure for Electronic
Business Science,and Education on the Internet (SSGRR’2000), L‘Aquila, Italy,
July 31 - August 6. 2000.

O. Gervasi, D. Cicoria, A. Lagana, and R. Baraglia Pixel 10, 19 (1994)

A. Patzer, Introduction to Servlets, in Professional Java Programming, Wrox Press
Ltd (1999).

M. Wahl,T. Howes, and S. Kille, Lightweight Directory Accesss Protocol, RFC 2251,
December (1997).

T.A. Howes, The Lightwweight Directory Accesss Protocol:X.500 Lite, Center for
Information Technology Integration, July (1995).

A. Lagana and O. Gervasi,A structured computational approach to chemical reac-
tivity, Chem. Phys., in press.

A. Lagana, G. O. de Aspuru, and E. Garcia, J. Chem. Phys. 108, 3886 (1998).
A.J.C. Varandas, Multivalued Potential Energy Surfaces for Dynamics Studies,
A. Lagana and A. Riganelli Eds., in Lecture Notes in Chemistry, Springer-Verlag,
in the press.

H. Krawczyk, M. Bellare,and R. Canetti, HMAC: Keyed-Hashing for Message Au-
thentication, RFC 2104, February (1997).

M. Wilcox, Server Programming with JNDI, in Professional Java Programming,
Wrox Press Ltd, December (1999).

JNDI - www.javasoft.com/products/jndi/index.html.

P. Mockapetris, Domain Names - Concepts and Facilities, RFC 1034, November
(1987).

Object Management Group, Common Object Request Broker: Architecture and
Specification, OMG Doc. No. 91.12.1 (1991).

A. Baratloo, M. Karaul, , Z.M. Kedem, and P. Wyckoff, Charlotte:
Metacomputing on the Web, Special Issue on Metacomputing, Future
Generation Computer Systems, pages 559-570, North Holland 1999.
http://www.cs.nyu.edu/milan/charlotte/index.html

M.O. Neary, B.O.Christiansen, P.Cappello, K.E.Schauser Javelin: Parallel comput-
ing on the Internet, Special Issue on Metacomputing, Future Generation Computer
Systems, pages 659-673, North Holland 1999. http://www.cs.ucsb.edu/

Haupt T., Akarsu E., and Fox G., Furmanski W, Web Based Metacomputing, Spe-
cial Issue on Metacomputing, Future Generation Computer Systems, North Hol-
land (1999) http://osprey7.npac.syr.edu:1998/iwt98/products/webflow/

H. Casanova and J. Dongarra, NetSolve: A Network Server for Solv-
ing Computational Science Problems, Intl. Journal of Supercomput-
ing Applications and High Performance Computing, 11, 3, (1997).
http://www.cs.utk.edu/ casanova/NetSolve/



