A Grid Computing Environment for Enabling
Large Scale Quantum Mechanical Simulations

Jack J. Dongarra! and Padma Raghavan®

Department of Computer Science
The University of Tennessee
1122 Volunteer Blvd.
Knoxville, TN 37996-3450
{dongarra, padma}@cs.utk.edu

Abstract. This paper describes work-in-progress towards developing
a simulation environment that utilizes recent advances in in the areas
of grid middleware and computational kernels. Our goal is to develop
an environment suitable for composing and deploying an overall high-
performance, flexible and robust software solution for large-scale quan-
tum mechanical simulations.

1 Introduction

Research in recent years has advanced the state of computational technology for
enabling large scale science and engineering applications along two broad fronts.
The first concerns the hardware and middleware infrastructure where the evo-
lution is towards computational grids; disparate ensembles of high-performance
computers, clusters, networks, and storage can now be integrated to form pow-
erful unified systems [5,6,10,11]. The second concerns the large number of
fundamental computational kernels that have been developed for parallel and
distributed scientific computing. These have emerged from a variety of research
on new parallel algorithms and software development and include advances in
both dense and sparse matrix computations [1, 4, 15,20, 22]. We plan to develop
a simulation environment that utilizes recent advances in in the areas of grid
middleware and computational kernels. Our environment is geared towards com-
posing and deploying an overall high-performance, flexible and robust software
solution for certain large-scale applications of interest.

We believe the main problem facing application developers is that of compos-
ing an overall high-performance solution by selecting judiciously from the array
of available alternate methods for underlying subproblems. A typical large scale
application requires the solution of several subproblems of differing granularity
with differing amounts of parallelism, computation and communication require-
ments. Consequently, a simple parallel model of computation involving the same
number of processors from start to end cannot result in an efficient solution.
Furthermore, there are a variety of solution techniques for a given problem; the
choice of the best alternative often depends on the problem characteristics as

2 J. Dongarra and P. Raghavan

well as hardware and network speeds. Additionally, problem characteristics can
change dramatically within the life of the same simulation. Finally, the overall
characteristics of the application may allow various ways of decomposing it into
subproblems further compounding the problems of composing an overall efficient
solution.

We plan to develop a pipelined-parallel software architecture to harness the
power of computational grids to enable large scale simulations. At the University
of Tennessee, NSF has recently funded a five-year effort for building a “Scalable
Intra campus Research Grid,” henceforth called SInRG [8]. Our simulation envi-
ronment will be developed on this grid. Our focus will be simulations involving
large-scale eigenvalue computations associated with sparse matrices. These oc-
cur in a variety of molecular dynamics applications. Quantum nanotechnology
simulations based on a “generalized tight binding molecular dynamics” [16, 18,
21] are extremely compute-intensive; for example, each time-step in a simula-
tion may require the solution of the standard eigenvalue problem to compute
all the eigenvalues and eigenvectors of a symmetric, positive definite sparse ma-
trix. Molecular dynamics for restricted closed-shell Hartree-Fock approximation
through the Roothan equations [23] also require similar computations.

2 Computational Problem

The central problem in molecular dynamics applications of interest is that of
computing O(N) eigenvalues and eigenvectors of an N x N symmetric posi-
tive definite matrix. Such computations are intrinsically expensive; for N x N
matrices, the storage requirements grow as N2 while the number of operations
grow as N3 when the matrices are treated as dense. The constant in the N3
cost term is larger for the generalized eigenvalue problem but the solution meth-
ods for the two problems are closely related. For molecular dynamics models of
interest with several thousand atoms, the matrix dimension N is in the range
10,000 to 50,000. The eigenvalue problem has to be solved in each time-step of
the simulation and a simulation typically involves a thousand time-steps. Con-
sequently, for matrix dimensions of ~ 10,000, a simulation with one thousand
time-steps requires computations in the order of 10'5. Making such simulations
tractable is challenging and must necessarily involve utilizing performance gains
from all possible enhancements including those from algorithmic improvements,
efficient utilization of hardware resources, and selective composition of solution
alternatives.

The standard eigenvalue problem can be generically stated as computing:
Hz = Az. Given that our application needs O(N) eigenvalues and eigenvectors,
direct methods are of primary interest. The direct solution process consists of
the following three main steps:

1. Transform the matrix to a tridiagonal matrix 7' using orthogonal transfor-
mations.
2. Compute eigenvalues and eigenvectors of T.

A Grid Computing Environment 3

3. The eigenvalues of T' are the eigenvalues of the original matrix; the eigen-
vectors of the latter are computed by multiplying the eigenvectors of T by
the orthogonal matrix composed of transforms used in the first step in the
conversion to tridiagonal form.

For a detailed discussion and overview of fundamental eigensolution tech-
niques, two excellent sources are the books Demmel and Parlett [7,19]. Good
serial and parallel implementation exist in form of packages LAPACK [1] and
ScaLAPACK [4].

For the three step solution process described above there are several algorith-
mic choices for each step. The simplest model might be to treat to the matrix as
dense; now the choice of kernels for steps 1 and 3 are obvious. However, step 2
could be performed using at least three broad classes of methods: (a) based on
bisection and inverse iteration, (b) using the QR method, and (c) using divide
and conquer. The performance of each alternative depends to a large extent on
the eigenspectrum of the problem as well as machine characteristics such as the
computation to communication ratio.

The matrices arising from simulations of interest are sparse; i.e., and N x N
matrix has typically some ¢N nonzeroes where c¢ is a small constant. Sparsity of
the matrix can be exploited for the first step; if the matrix can be put into a band
form with a bandwidth of b, the intrinsic cost of the first step decreases from N3
to b2N. The best algorithm for converting a banded matrix to tridiagonal form
on parallel computers is still under research.

One interesting aspect of our application is that although O(N) eigenvalues
and eigenvectors are needed, they are not needed all at once. That is, it suffices
to compute and use the eigenvectors one at a time. Hence at the very least ,
by reorganization of the underlying computation, the space requirement could
be reduced from O(N?) to O(bN) when band methods are used for step 1. A
first alternative would be to compute only eigenvalues of the tridiagonal matrix
T in the second step. The computations of eigenvectors could be postponed to
the third step, where as earlier the eigenvectors of T could be calculated and
then used to compute eigenvectors of the original matrix. Furthermore, a key
issue in the parallel implementation of step (2) using divide-and-conquer (al-
ternative ¢ above) relates to the data-distribution of the eigenvectors as well
as their re-orthogonalization. By moving eigenvector computation to the third
step, one can eagsily explore models where the eigenvalues are divided into sev-
eral groups (spectrum slicing) and the eigenvector computation for each group
proceeds independently on a single processor. This could be done using explicit
parallelization and LAPACK [1] kernels for eigenvector computation. Yet an-
other interesting alternative would be to compute eigenvectors of the original
matrix directly using inverse iterations. This could be especially advantageous
when the sparsity of the matrix is utilized. This choice in turn leads to other
alternatives, for example, a wide variety of choices for the sparse linear solution
scheme for inverse iteration [2].

Our development effort is geared towards exploring such alternatives for the
subproblems in order to compose an overall efficient solution. Another aspect

4 J. Dongarra and P. Raghavan

of our approach relates to overcoming the traditional problem with decreasing
speedups on increasing the numbers of processors using fixed-problem size. Con-
sider for example, the simple solution process which involves treating the matrix
as dense and using the routines from ScaLAPACK to solve the overall problem
on a multiprocessor or a cluster. In our earlier work [17], we took exactly this ap-
proach and enabled a relaxation of a 1061 atom carbon cluster that forms part of
a “knee” junction with interesting metal-semiconductor contact for connecting
nanotubes of different diameters. The matrix dimension was 4244 and using 8-16
processors of a NOW with Intel Pentium-II processors and a Myrinet switch [9],
computation time for a single time-step drops to under several minutes (speed-
ups compared to one processor execution were nearly ideal). However, the overall
simulation which required nearly 800 time-steps took several days of non-stop
execution. Furthermore, this time cannot be reduced by simply increasing the
number of processors; this lowers the per-processor utilization and we observed
a slowdown with as few as 32 processors.

By developing a software pipeline, we can tackle as many different simulations
as the number of pipeline stages. Now the actual time for a single time-step of any
given simulation could be reduced by a factor equal to the number of pipeline
stages. Each pipeline stage will be deployed on disjoint groups of processors.
Parallelism within each stage will be exploited using the message passing model
and MPI. The overall solution will be composed using NetSolve which will also
be used to deploy the application on the SInRG computational grid.

3 Developing a Software Environment

The primary building block of the SInRG architecture is the Grid Service Cluster
(GSC). A GSC is an ensemble of hardware and software constructed and admin-
istered by a single research group but also optimized to make its resources easily
available for the overall user community. A GSC is a concentration of (possi-
bly specialized) computing resources in an advanced local to wide-area network.
Each GSC has three basic hardware components: a high-speed data switch ca-
pable of providing at least 1Gb/s per link, a data-storage unit connected to the
switch, and computational resources customized for specific research. The latter
could be an SMP, an MPP, a cluster of workstations, etc. Six GSCs are being
established, with each one having typically in excess of the raw computing power
of the state-of-the-art cluster of 32-node multiple-CPU computers. The total raw
computing power over all GSCs will be in the range of Teraops/second. We next
describe NetSolve, the software environment on SInRG and then outline our
strategy for developing our simulation environment. We view this project as a
precursor to the development of general-purpose software component technology
based on object-oriented methods, an emerging field of research [12,13].

3.1 NetSolve

High-level access across all GSC’s and to CPUs within each GSC is provided
through NetSolve [5]. NetSolve is a software environment designed to transform

A Grid Computing Environment 5

disparate computers and software libraries into a unified, easy-to-access com-
putational service. It aggregates the hardware and software resources of any
number of computers that are loosely connected across a network and offers up
their combined power through familiar client interfaces such as MATLAB, and
C. It uses a client-agent-server paradigm to deliver this power to users without
revealing the complexity of the underlying system. The user’s data is sent to the
server, where the programs or numerical libraries operate on it; the result then
is sent back to the user’s machine.

NetSolve provides the user with a pool of computational resources. These
resources are in the form of servers that have access to ready-to-use numerical
software. These computational servers can be running on single workstations,
networks of workstations, or MPP (Massively Parallel Processor) systems. The
user gains access by using any one of the NetSolve client interfaces such as MAT-
LAB. The main function of the NetSolve agent is to process user requests and to
choose the most suitable server for the underlying computation. An added ad-
vantage is that the agent performs load-balancing among the different resources.

When building NetSolve, one of the challenges was to design a suitable model
for the computational servers. Features include uniform access to the software,
configurability, and preinstallation. To make the implementation of such a com-
putational server model possible, NetSolve has a general, machine-independent
way of describing a specific numerical process, as well as a set of tools to gener-
ate new computational modules. The main component is a descriptive language
which is used to specify the functionality of a computational server. The de-
scription files written in this language can be compiled by NetSolve into com-
putational modules executable on any UNIX or NT platform. This approach al-
lows machine independence as well as the ability to integrate arbitrary software
components into NetSolve. Additionally, this framework also allows increased
collaboration between research teams across institutions. Description files for
a given numerical library need be written only once. These files can then be
transferred to other locations and then compiled to create a new stand-alone
NetSolve system or to contribute new servers to an existing system. Each time
a new description file is created, the capabilities of the entire NetSolve system
are increased. A number of description files have been generated for the fol-
lowing numerical libraries: ARPACK, FitPack, ItPack, MinPack, FFTPACK,
LAPACK, BLAS, and ScaLAPACK. A Graphical User Interface (GUI) is pro-
vided to simplify generation of description files. This interface performs various
error checking on user input in the form of choices from a menu. Using this
interface is much easier than creating a description file manually, especially as
the complexity of the problem increases.

3.2 A Pipelined Parallel Architecture

As mentioned in Section 2, the underlying eigenvalue computations can be di-
vided into three main stages. We propose a pipelined parallel architecture in
which each stage of the pipeline represents a major stage in the underlying com-
putations. Now each one of the pipeline stages can be made to execute on the

6 J. Dongarra and P. Raghavan

right number of processors such that per-processor efficiency is maintained while
the pipeline stages are kept balanced. The pipeline stages are motivated by the
three stage solution process described earlier. However, they are somewhat dif-
ferent both to reduce inter-stage communication and to easily allow the use of
different kernels within the stages.

The first stage is responsible for conversion of the matrices to a tridiagonal
matrix T'. The second stage computes eigenvalues of the tridiagonal matrix; the
eigenvectors of T are not computed in this stage. The third stage computes
eigenvectors of the original matrix and this may involve using the traditional
method of computing eigenvectors of T' or new methods to be developed [2].
Our software will be designed is to select the optimal number of processors
for each stage of the pipeline; each stage uses a disjoint set of processors. By
careful selection of the number of processors per stage, the pipeline can be kept
balanced, i.e., with each stage requiring approximately the same amount of time.
By working on three different simulations at the same time, we can ensure that
one time-step of a simulation will be completed in the time required for a single
pipeline stage. If ¢ units of time are required at most by any pipeline stage, then
after the first 3¢ units of time, one time-step will be completed for a simulation
every t time units. This pipeline architecture is shown in Figure 1.

We have selected the stages so that amount of information to be communi-
cated between stages is typically O(IN). We expect the original sparse matrices
to be transferred from each stage to the next. These matrices are very sparse and
have only O(N) nonzeroes. Additionally, from stage one and two, the tridiagonal
matrix must be transferred and this obviously is O(N) amount of data. From
stage two to three O(NV) eigenvalues need be transmitted. In the last stage the
eigenvalues are used to compute the corresponding eigenvectors, however if the
simulation is to proceed for another time step all eigenvectors need not be com-
puted and stored all at once. In the molecular dynamics model, each eigenvector
and eigenvalue can be used as soon as it is computed to calculate its contribution
to the force equations. Only the matrices for the next time-step need to passed
from stage three back to one if the simulation is to proceed.

To implement the pipeline we will develop a NetSolve server which will
contain suitably encapsulated kernels from ScaLAPACK, LAPACK and sparse
solvers such as DSCPACK. The application interface will be through the MAT-
LAB interface to NetSolve. We will begin with a static allocation of processors
to pipeline stages as well as a static choice of kernels for each stage. We will
migrate to dynamic, on-the-fly selection as the capabilities in NetSolve are en-
hanced. When resources permit, the three-stage pipelined parallel architecture
can be replicated and farmed out to SInRG using NetSolve, thus enabling sev-
eral independent groups of simulations. By utilizing the performance monitoring
features of NetSolve, we will attempt to reduce simulation times through the
use of scheduling strategies. Some recent work on application specific schedul-
ing enhancements has yielded promising results [3] and these schemes will be
integrated into NetSolve. There are also plans to incorporate fault-tolerance and

A Grid Computing Environment 7
Sagel Sae? Sae3
Conversion to Tridiagonal Form Compute Eigenvaluesof Compute Eigenvectors and
. . Sop?
ol cpu2 Triciiagonal Matrix UpteModdl
L o2 - cpud qul 2 U3 opud
Processor Group 1 Processor Group 2 Processor Group 3 s
cpu3 - cpud
Next Time-Step
Time (apipeline stage requires a most t units)
I Simulation A, time-step 1
il SimulationB, time-tep 1 Simulation A, time-step 1
3 Simulation C, time-step 1 Simulation B, time-gtep 1 Simulation A, time-sten 1
i Simulation A, time-sten 2 Simulation C, time-step 1 Simulation B, time-step 1
G Simulation B, time-sep 2 Simulation A, time-sep 2 Simulation C, time-sep 1
it Simulation C, time-step 2 Simulation B, time-step 2 Simulation A, time-step 2
Tt Simulation A, time-step 3 Simulation C, time-step2 SimulationB, time-step 2
8 Simulation B, time:step 3 Simulation A, time-step 3 Simulation C, time-step 2

Fig. 1. A pipelined parallel software architecture to enable molecular dynamics simu-

lations on a computational grid

8 J. Dongarra and P. Raghavan

visualization capabilities to NetSolve and these features will also be of potential
use for our target applications.

4 Concluding Remarks

We plan to use our simulation environment to enable “generalized tight binding
molecular dynamics” models of Carbon nanotubes developed by Menon. These
nanotechnology simulations concern exploring the properties of complex and
three-point, four-point and hetero-junctions of nanotubes to suggest experimen-
tally feasible transistor-like devices [16-18,21]. These simulations are based on
generalized tight-binding molecular dynamics scheme which has been shown to
obtain equilibrium geometries for carbon clusters that are in very good agree-
ment with ab initio and experimental results. Such simulations are essential
for gaining a better understanding of the electronic and material properties of
nanoscale clusters to allow design of nanoscale devices in the near future.

5 Acknowledgments

This work was supported in part through grants ACI-97-21361, CCR-98-18334,
and CDA-99-72889 from the National Science Foundation.

References

1. E. Anderson, Z. Bai, S. Blackford, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen: LAPACK Users’
Guide, Third Edition. SIAM, Philadelphia, PA (1999)

2. J. Barlow, P. Raghavan, K. Teranishi, C. Yang, and R.C. Ward: Computing Eigen-
vectors of Sparse Matrices Using Inverse Iterations. In preparation

3. F. Berman and R. Wolski: AppLeS: Application Level Scheduling. See

http://apples.ucsc.edu

4. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-
garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley: ScaLAPACK Users’ Guide. SIAM, Philadelphia, PA (1997)

5. H. Casanova and J. Dongarra: NetSolve: A Network Server for Solving Computa-
tional Science Problems. The International Journal of Supercomputing Applications,
11 (1997) 212-223

6. K. M. Chandy, A. Rifkin, P. A. G. Sivilotti, J. Mandelson, M. Richardson, W.
Tanaka, and L. Weisman: A Word-Wide Distributed System Using Java and the
Internet. Proc. of the Fifth IEEE International Symposium of High-Performance
Distributed Computing (1996)

7. J. W. Demmel: Applied Numerical Linear Algebra. SIAM, Philadelphia, PA (1997)

8. J. J. Dongarra, M. W. Berry, M. Beck, J. Gregor, M. A. Langston, T. Moore, J. S.
Plank, P. Raghavan, M. G. Thomason, R. C. Ward, and R. M. Wolski: A Scalable
Intracampus Research Grid. Available at website: http://www.cs.utk.edu/ sinrg,
Funded by NSF-CISE

A Grid Computing Environment 9

9. J. J. Dongarra, J. S. Plank, and P. Raghavan: Enabling Technology for High-
Performance Heterogeneous Clusters. National Science Foundation, $150,000 (1999)

10. I. Foster and C. Kesselman: Globus: A Metacomputing Infrastructure Toolkit. The
International Journal of Supercomputing Applications (1997)

11. G. Fox and W. Furmanski: Web Technologies in High-Performance Distributed
Computing. In Computational Grids (1998)

12. D. Gannon, R. Bramley, S. Diwan, B. Temko, N. Mukhi, K. Chiu, M. Govindaraju,
M. Yechuri, and J. Villacis: Common Component Architecture. Available at website:
http://www.cs.indiana.edu/ccat.

13. D. Gannon, R. Bramley, J. Villacis and A. Whitaker: Using the Grid to Support
Software Component Systems. SIAM Conference on Parallel Processing (1999)

14. M. Smir, S. Otto, S. Huss-Lederman, D. Walker, and J. J. Dongarra: MPI: The
Complete Reference. The MIT Press Cambridge, MA (1996)

15. G. Karypis and V. Kumar: METIS: Unstructured graph partitioning and sparse
matrix ordering system. Technical Report, Department of Computer Science, Uni-
versity of Minnesota, Minneapolis, MN (1995)

16. M. Menon, E. Richter and K. R. Subbaswamy: Structural and Vibrational Prop-
erties of Fullerenes and Nanotubes in a Non-orthogonal Tight-Binding Scheme. J.
Chem. Phys. 104 (1996).

17. M. Menon, R. Richter, P. Raghavan and K. Teranishi: Large Scale Quantum Me-
chanical Simulations of Carbon Wires. Superlattices and Microstructures 27 (2000)
577581

18. M. Menon and K.R. Subbaswamy: Non-orthogonal Tight-Binding Scheme for Sil-
icon with Improved Transferability. Phys. Rev., 55 (1997)

19. B. Parlett: The Symmetric Eigenvalue Problem. Prentice Hall, Engle-wood Cliffs,
NJ (1980)

20. P. Raghavan: DSCPACK: A Domain-Separator Cholesky Package for solving sparse
linear systems on multiprocessors and NOWs using C and MPI. Available upon
request

21. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S.
Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and
M. S. Dresselhouse: Diameter-Selective Raman Scattering from Vibrational Modes
in Carbon Nanotubes. Science 275(1997)

22. B. Smith, L. McInnes, and W. Gropp: PETSc 2.0 user’s manual. Mathematics
and Computer Science Division, Argonne National Laboratory, Report ANL-95-11-
Revision 2.0.22, (1997)

23. R.C. Ward, Talk on applications of eigenvalue computations (1999)

