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Abstract: The concept of coupling geographically distributed (high-end) resources for
solving large-scale problems is becoming increasingly popular, forming what is
popularly called grid computing. The management of resources in the grid
environment becomes complex as they are (geographically) distributed, heterogeneous
in nature, owned by different individuals/organizations each having their own resource
management policies and different access-and-cost models. In this scenario, a number
of alternatives exist while creating a framework for grid resource management. In this
paper, we discuss the three alternative models—hierarchical, abstract owner, and
market—for grid resource management architectures. The hierarchical model exhibits
the approach followed in (many) contemporary grid systems. The abstract owner
model follows an order and delivery approach in job submission and result gathering.
The (computational) market model captures the essentials of both hierarchical and
abstract owner models and proposes the use of computational economy in the
development of grid resource management systems.

1. Introduction

The growing popularity of the Internet and the availability of powerful computers and
high-speed networks as low-cost commodity components are changing the way we do
computing and use computers today. The interest in coupling geographically
distributed (computational) resources is also growing for solving large-scale
problems, leading to what is popularly known as grid computing. In this environment,
a wide variety of computational resources (such as supercomputers, clusters, and
SMPs including low-end systems such as PCs/workstations), visualisation devices,
storage systems and databases, special class of scientific instruments (such as radio
telescopes), computational kernels, and so on are logically coupled together and
presented as a single integrated resource to the user (see Figure 1). The user
essentially interacts with a resource broker that hides the complexities of grid
computing. The broker discovers resources that the user can access through grid
information server(s), negotiates with (grid-enabled) resources or their agents using



middleware services, maps tasks to resources (scheduling), stages the application and
data for processing (deployment) and finally gathers results. It is also responsible for
monitoring application execution progress along with managing changes in the grid
infrastructure and resource failures. There are a number of projects worldwide [5],
which are actively exploring the development of various grid computing system
components, services, and applications. They include Globus [7], Legion [9],
NetSolve [10], Ninf [15], AppLes [11], Nimrod/G [3], and JaWS [16]. In [2], all these
grid systems have been discussed.

Figure 1: A Generic View of GRID System.

The current research and investment into computational grids is motivated by an
assumption that coordinated access to diverse and geographically distributed
resources is valuable.  In this paradigm, it is not only important to determine
mechanisms and policies that allows such coordinated access, but it also seems
reasonable that owners of those resources, or of mechanisms to connect and utilize
them should be able to recoup some of the resulting value from users or clients.
Approaches to recouping such value in the existing Internet/web infrastructure, where
e-commerce sites use advertising and/or mark-ups on products sold to show revenue,
do not translate well (or are unsuitable) to a computational grid framework, primarily
due to the fact that the immediate user of any specific resource in a computational
grid is often not a human. Instead, in a grid, many different resources, potentially
controlled by diverse organizations with diverse policies in widely-distributed
locations, must all be used together, and the relationship between the value provided
by each resource and the value of the product or service delivered to the eventual
human consumer may be very complex. In addition, it is unrealistic to assume that
human-created contracts can be developed between all potential resource users and
resource owners in these situations, since the potential of computational grids can
only be fully exploited if similar resources owned by different owners can be used
almost interchangeably.

Still, the existing real world must be acknowledged.  Grid resources are largely
owned and used by individuals or institutions who often provide "free" access for
solving problems of common interest/public good (e.g., SETI@Home [13]),
prize/fame (e.g., distributed.net [14] response to challenge for breaking RSA security



algorithms), collaborative resources (GUSTO [6]), or by companies that are loathe to
allow others to use them, primarily due to concerns about competition and security.
The existing control over resources is subject to different policies and restrictions, as
well as different software infrastructure used to schedule them.  Any new approach to
manage or share these resources will not be viable unless it allows a gradual layering
of functionality or at least a gradual transition schedule from existing approaches to
more novel ones.  Even in the existing cases where money does not actually change
hands, it is often important to provide a proper accounting of cross-organizational
resource usage. In order to address these concerns, we propose different approaches
for modeling grid resource management systems.

2. Architecture Models

As the grid logically couples multiple resources owned by different individuals or
organisations, the choice of the right model for resource management architecture
plays a major role in its eventual (commercial) success. There are a number of
approaches that one can follow in developing grid resource management systems. In
the next three sections, we discuss the following three different models for grid
resource management architecture:

•  Hierarchical Model
•  Abstract Owner Model
•  Computational Market/Economy Model

In the first, we characterize existing resource management and scheduling
mechanisms by suggesting a more general view of those mechanisms.  Next, we
suggest a rather idealistic and extensive proposal for resource sharing and economy,
which for the most part, ignores existing infrastructure in order to focus on long-term
goals.  Finally, we describe a more incremental architecture that is already underway
to integrate some aspects of a computational economy into the existing grid
infrastructure. Table 1 shows a few representative systems whose architecture
complies with one of these models.

 MODEL REMARKS SYSTEMS

Hierarchical
It captures architecture model followed in
most contemporary systems.

Globus, Legion,
Ninf, NetSolve.

Abstract Owner

It follows an order and delivery model for
resource sharing, which for the most part,
ignores existing infrastructure in order to
focus on long-term goals.

Expected to
emerge.

Market/Economy

It follows economic model in resource
discovery and scheduling that can co-
exist or work with contemporary systems
and captures the essence of both
hierarchical and abstract owner models.

Nimrod/G, JaWS,
Myriposa,

JavaMarket.

Table 1: Three Models for a Grid Resource Management Architecture.



The grid architecture models need to encourage resource owners to contribute their
resources, offer a fair basis for sharing resources among users, and regulate resource
demand and supply. They influence the way scheduling systems are built as they are
responsible for mapping user requests to the right set of resources. The grid
scheduling systems need to follow multilevel scheduling architecture as each resource
has its own scheduling system and users schedule their applications on the grid using
super-schedulers called resource brokers (see Figure 1).

3. Hierarchical Resource Management

The hierarchical model for grid resource management architecture (shown in Figure
2) is an outcome of the Grid Forum [20] second meeting proposed in [21].  The major
components of this architecture are divided into passive and active components.  The
passive components are:

•  Resources are things that can be used for a period of time, and may or may
not be renewable.  They have owners, who may charge others for using
resources and they can be shared, or exclusive. Resources might be explicitly
named, or be described parametrically. Examples of resources include disk
space, network bandwidth, specialized device time, and CPU time.

•  Tasks are consumers of resources, and include both traditional computational
tasks and non-computational tasks such as file staging and communication.

•  Jobs are hierarchical entities, and may have recursive structure; i.e., jobs can
be composed of subjobs or tasks, and subjobs may themselves contain
subjobs.  The leaves of this structure are tasks.  The simplest form of a job is
one containing a single task.

•  Schedules are mappings of tasks to resources over time.  Note that we map
tasks to resources, not jobs, because jobs are containers for tasks, and tasks
are the actual resource consumers.

The active components are:

•  Schedulers compute one or more schedules for input lists of jobs, subject to
constraints that can be specified at runtime.  The unit of scheduling is the
job, meaning that schedulers attempt to map all the tasks in a job at once, and
jobs, not tasks, are submitted to schedulers.

•  Information Services act as databases for describing items of interest to the
resource management systems, such as resources, jobs, schedulers, agents,
etc. We do not require any particular access method or implementation; it
could be LDAP, a commercial database, or something else entirely.

•  Domain Control Agents can commit resources for use; as the name implies,
the set of resources controlled by an agent is a control domain.  This is what
some people mean when they say local resource manager.  We expect
domain control agents to support reservations.  Domain Control Agents are
distinct from Schedulers, but control domains may contain internal
Schedulers. A Domain Control Agent can provide state information, either



through publishing in an Information Service or via direct querying.
Examples of domain control agents include the Maui Scheduler, Globus
GRAM, and Legion Host Object.

•  Deployment Agents implement schedules by negotiating with domain control
agents to obtain resources and start tasks running.

•  Users submit jobs to the Resource Management System for execution.

•  Admission Control Agents determine whether the system can accommodate
additional jobs, and reject or postpone jobs when the system is saturated.

•  Monitors track the progress of jobs.  Monitors obtain job status from the
tasks comprising the job and from the Domain Control Agents where those
tasks are running.  Based on this status, the Monitor may perform outcalls to
Job Control Agents and Schedulers to effect remapping of the job.

•  Job Control Agents are responsible for shepherding a job through the system,
and can act both as a proxy for the user and as a persistent control point for a
job.  It is the responsibility of the job control agent to coordinate between
different components within the resource management system, e.g. to
coordinate between monitors and schedulers.

 We have striven to be as general as is feasible in our definitions.  Many of these
distinctions are logical distinctions. For example, we have divided the responsibilities
of schedulers, deployment agents, and monitors, although it is entirely reasonable and
expected that some scheduling systems may combine two or all three of these in a
single program.   Schedulers outside control domains cannot commit resources; these
are known as metaschedulers or super schedulers.  In our early discussions, we
intentionally referred to control domains as “the box” because it connotes an
important separation of “inside the box” vs. “outside the box.”  Actions outside the
box are requests; actions inside the box may be commands.  It may well be that the
system is fractal in nature, and that entire grid scheduling systems may exist inside the
box. Therefore, we can treat the control domain as a black box from the outside.

We have intentionally not defined any relationship between the number of users,
jobs, and the major entities in the system (admission agents, schedulers, deployment
agents, and monitors).  Possibilities range from per-user or per-job agents to a single
monolithic agent per system; each approach has strengths and weaknesses, and
nothing in our definitions precludes or favors a particular use of the system.  We
expect to see local system defaults (e.g. a default scheduler or deployment agent) with
users substituting their personal agents when they desire to do so.

One can notice that the word queue has not been mentioned in this model; queuing
systems imply homogeneity of resources and a degree of control that simply will not
be present in true grid systems.  Queuing systems will most certainly exist within
control domains.

Interaction of Components

The interactions between components of the resource management system are shown
in Figure 2.  An arrow in the figure means that communication is taking place



between components.  We will next describe, at a high level, what we envision these
interactions to be.  This is the beginning of a protocol definition.  Once the high-level
operations are agreed upon, we can concern ourselves with wire-level protocols.

Figure 2: Hierarchical Model for Grid Resource Management.

We will begin with an example.  A user submits a job to a job control agent, which
calls an admission agent.  The admission agent examines the resource demands of the
job (perhaps consulting with a grid information system) and determines that it is safe
to add the job to the current pool of work for the system.  The admission agent passes
the job to a scheduler, which performs resource discovery using the grid information
system and then consults with domain control agents to determine the current state
and availability of resources.

The scheduler then computes a set of mappings and passes these mappings to a
deployment agent.  The deployment agent negotiates with the domain control agents
for the resources indicated in the schedule, and obtains reservations for the resources.
These reservations are passed to the job control agent.  At the proper time, the job
control agent works with a different deployment agent, and the deployment agent
coordinates with the appropriate domain control agents to start the tasks running.  A
monitor tracks progress of the job, and may later decide to reschedule if performance
is lower than expected.

This is but one way in which these components might coordinate.  Some systems
will omit certain functionality (e.g. the job control agent), while others will combine
multiple roles in a single agent.  For example, a single process might naturally
perform the roles of job control agent and monitor.



4. Abstract Owner (AO) Model

Where is the grid, and who owns it?  These puzzles are not unique to the grid.  When
one makes a long distance phone call, who "owns" the resource being used? Who
owns the generators that create the electricity to run an appliance? Who owns the
Internet? Users of these resources don’t care, and don’t want to care. What they do
want is the ability to make an agreement with some entity regarding the conditions
under which the resources can be used, the mechanisms for using the resources, the
cost of the resources, and the means of payment. The entity with which the user deals
(the phone company, power company, or ISP) is almost certainly not the owner of the
resources, but the user can think of them that way abstractly. They are actually
brokers, who may in turn deal with the owners, or perhaps with more brokers. At each
stage, the broker is an abstraction for all of the owners and so it is with the grid.

The grid user wants an abstraction of an entity that "owns" the grid, and to make
an arrangement with that "owner" regarding the use of their resources, possibly
involving a trade of something of value for the usage (which could be nothing more
tangible than goodwill or the future use of their own resources). It is proposed here
that each grid resource, ranging in complexity from individual processors and
instruments to the grid itself, be represented by one or more “abstract owners”
(abbreviated as AOs) that are strongly related to schedulers.  For complex resources,
an AO will certainly be a broker for the actual owners or other brokers, though the
resource user doesn't need to be aware of this. (A resource user will hereafter be
assumed to be a program, and referred to as a client. Human clients are assumed to
use automated agents to represent him/her in negotiations with an AO.) The
arrangement between the client and an AO for acquiring and using the resource can
be made through a pre-existing contract (e.g. flat rate or sliding scale depending on
time until resource available) or based on a dialogue between client and AO regarding
the price and availability of the resource.

The remainder of this AO proposal describes what an AO looks like (externally
and internally), what a resource looks like, how a client negotiates with an AO to
acquire a resource, how a client interacts with a resource, and how AOs can be
assembled into other constructs which may more closely resemble traditional
schedulers. This work is still in the high-level design stages, in hopes that it will draw
out refinements, corrections, and extensions that might help it to become viable.

General Structure of AO

At its most abstract, an AO outwardly resembles a fast-food restaurant (see Figure
3a).  To acquire access to a resource from an AO that “owns” it, the prospective client
(which may be another AO) negotiates with that AO through its Order Window.
These negotiations may include asking how soon the resource may become available,
how much it might cost, etc. If the prospective client is not happy with the results of
the negotiations, it may just terminate negotiations, or might actually place an order. 
After being ordered, the resources are delivered from the AO to the client through the
Pickup Window. The precise protocol to be used for acquiring the resources is
flexible and may also be negotiated at order time--e.g. the client may be expected to
pick up the resource at a given time, or the AO may alert the client (via an interrupt or



signal) when the resource is ready. Even if an order is placed (but the resource has not
yet been delivered), the client may cancel the order through the order window.

Figure 3: Abstract Owner Model for Grid Resource Management Architecture.

Little more is said here about the actual form of these “windows” except that they
need to be accessible remotely, and must support a standard procedure-like interface
in which values are passed to and returned from the window. Since interaction with an
AO is likely to be rather infrequent and requires a relatively small amount of
information flow, maximum efficiency is not necessarily required: CORBA or any
number of other remote procedure invocation techniques can be used.

For the purposes of this discussion, a resource is roughly defined as any
combination of hardware and software that helps the client to solve a problem, and a
task is that part of a problem that is specified by the client after the resource has been
delivered ("picked up") from the AO.  Note that, unlike some other definitions of
"task", these tasks may be very simple (e.g. a data set to be analyzed or a message to
be sent), more general (e.g. a process to be executed), or very complex (e.g. a
complete multi-process program and/or set of programs or processes to be executed in
some order). While AOs do not specifically deal with entities called "jobs",
techniques for applying the AO approach to traditional job scheduling will be
addressed in the last subsection.

Resources can (and will) be regarded as objects, in the sense that they have an
identity, a set of methods for initiating and controlling tasks, and attributes that serve
to customize the resource.  In general, the desired attributes will be determined during
negotiation through the Order Window, when the client requests the resource, and
will only be queried (not altered) after the resource is delivered.  The methods may
take many different forms, depending upon circumstances such as the type of
resource, availability of hardware protections, and whether the method is to be
invoked locally or remotely.  For example, access to a local memory resource may
have virtually no method protocol interfering with standard memory access



operations, while initiating a process on a distant processor may require more
substantial method invocation protocol.  A resource is relinquished by invoking its
"relinquish" method (or by timing out).

The external structure of an AO was formulated to allow any level of nesting. 
Internally, an AO will differ in structure depending on whether it is a broker or an
owner (or a combination). A pure owner of a single physical resource might be very
simple (see Figure 3b), where the "manager" includes the intelligence required to
negotiate, keep the schedule, and deliver the resource. For a higher-level broker, it
might be more complex (see Figure 3c).  Here, AO1, AO2, and AO3 represent other
Abstract Owners, each with an Order Window used by the Sales Representative, and a
Pickup Window used by the Delivery representative. Though these subordinate AOs
are shown within a single parent AO, there is no reason that this relation must be
hierarchical;  a single AO may provide resources to a number of different parent AOs,
which may assemble these into more complex resources in different ways or for
different clients sets or may support different protocols or strategies or policies.

Grid Resources

Three primary classes are proposed here to represent resources:  Instruments,
Channels, and Complexes.  An Instrument is a resource which logically exists at some
location for some specific period of time, and which creates, consumes, or transforms
data or information. The term "location" may be as specific or general as the situation
merits. A Channel is a resource that exists to facilitate the explicit transfer of data or
information between two or more instruments, either at different locations, or in the
same location at different times (acting as sort of a temporary file in that case), or
instruments which share space-time coordinates but have different protection
domains.  A Channel connects to an Instrument through a Port (on the instrument).  A
Complex is nothing more than a collection of (connected) Channel and Instrument
resources.

Some important sub-classes of the Instrument class are the Compute instrument,
the Archival instrument, and the Personal instrument.  The Compute instrument
corresponds to a processor or set of processors along with associated memory, temp
files, software, etc. Archival Instruments (of which a permanent file is one sub-class)
correspond to persistent storage of information. Personal instruments are those that
are assumed to interface directly to a human being, ranging from a simple terminal to
a more complex CAVE or speech recognition/synthesis device, and its specification
may include the identity of the person involved.  Of course, the Instrument class is
also meant to accommodate other machines and instruments such as telescopes,
electron microscopes, automatic milling machines, or any other sink or source for grid
data.

As stated, an instrument exists in a location, and its methods may need to be called
either locally (from the instrument itself) or remotely. For example, if a (reference to
a) Compute instrument is acquired from an AO, the potentially distant process may
want to invoke a "load_software" method to initiate a program on the resource. This
new program may then want to invoke methods to access the temporary files or ports
associated with the resource. Since the latter accesses will be local and must be



efficient, it is desirable to provide separate method invocation protocols for remote
and local method invocation. Moreover, remote method invocations (RMIs) may
themselves require the use of intermediate communication resources between the
client and the resource, perhaps with associated quality of service (QoS) constraints.

To facilitate remote method invocations, any port(s) of an instrument can be
specially designated as an RMI port.  Such ports will have the appropriate RMI
protocol handlers assigned to them.  This designation is an attribute of the port--i.e.,
specified at resource negotiation time, through the "order window", just as
authorization and notification style are. Methods can be invoked through such a port
either by connecting a channel to the port and issuing the RMI request through the
channel or in a connectionless mode by specifying the object and port.  The former
approach is best when issuing repeated RMI calls or when QoS is desired for RMI
calls, the latter is best for one-time-only calls such as initializing an instrument which
has just been acquired from an AO.

Negotiating with an AO

When negotiating through the order window, the client first effectively creates a
"sample" resource object of the appropriate structure and assigns each attribute either
(1) a constant value, (2) a "don’t care" value, or (3) a variable name (which will
actually take the form of, and be interpreted as, an index into a variable value table).
If the same variable name is used in multiple places, it has the effect of constraining
those attributes to have the same value. An example of this is to use a single variable
to specify the "beginning time" attribute on several Instrument objects to cause them
to be co-scheduled. Another is to specify variables for Instruments’ object IDs, then to
use those same variables when specifying the endpoints of the channels between
them. The client may also specify simple constraints on the variables in a separate
constraint list.

Usually, the values in the variable value table are filled and returned by the AO
when the resource is acquired, but the client can designate some subset of those
variables as negotiating variables.  For these, the AO will propose values during
negotiation, which the client can then examine to decide whether or not to accept the
resource. (If accepted, these values essentially become constants.) In general, it is
quicker for the client to specify additional constraints instead of using negotiation
variables, allowing the decision on suitability to be made wholly within the AO, but
negotiating variables can help when more complex constraints are required or when a
client must decide between similar resources offered by different AOs.

In all, submissions to the Order Window from the client include the sample object
attributes, the variable constraint list, a Negotiation Style, a Pickup Approach, an
Authorization, a Bid, and a Negotiation ID. The Negotiation Style specifies whether
the AO is to schedule the resource immediately (known as “Immediate”), or is to
return a specified number of sets of proposed values for the negotiation variables
(known as “Pending”), or is to finish scheduling based on an earlier-returned set of
negotiation variable values (known as “Confirmation”), or is to cancel an earlier
Pending negotiation (known as “Cancel”). The Pickup Approach specifies the
protocol to be used between the AO and client at the Pickup Window—i.e. whether



the AO will alert the client with a signal, interrupt, or message when the resource
becomes available, or the client will poll the Pickup Window for the resource, or the
client can expect to find the resource ready at the window at a specified time. The
Authorization is a capability or key which allows the AO to determine the authority of
the client to access resources (and to bill the client accordingly when the resources are
delivered).  The Bid is a maximum price that the client is willing to pay for the
resource, and may denote a pre-understood algorithm (or “contract”) specifying how
much the resource will cost under certain conditions.  The Negotiation ID serves as a
“cookie”, and is passed back and forth between the client and AO to provide an
identity and continuity for a multi-interaction negotiation, and continuity between the
negotiation of a resource and the ultimate delivery of the resource through the Pickup
Window.  (A zero Negotiation ID designates the beginning of a new negotiation.)

If a Pending negotiation style is specified, the AO returns a value table containing
sets of proposed values for the negotation variables, and an “Ask” price for each set.
The intent of the Ask price is to inform the client of a sufficient Bid price to be used
when requesting the resource, but the AO may conceivably accept even lower Bid
prices depending upon the specific situation.  For all negotiations, the AO returns a
return code informing the client of the success of the operation, a Negotiation ID,
(equal to that submitted, if it was nonzero), and an expiration date for the Negotiation
ID. A single negotiation can continue until the Negotiation ID expires or a
Negotiation Style other than “pending” is specified.

On a successful Immediate or Confirm request, the client can then submit the
Negotiation ID to the Pickup Window, (at a time consistent with the Negotiation
Style), to retrieve the resource. The Pickup Window returns the resource object, the
variable value table, and a return code.  Although the returned resource is logically an
object, it is assumed that any attribute values that the client is concerned with are
being returned in the Variable Value table, so the resource object just takes the form
of a handle to access the resource object's methods.

Job Shops

AOs apparently perform only part of the standard job scheduling process—i.e.
acquiring a resource—leaving the remainder to the client—i.e. assigning tasks to the
resources and monitoring their completion and/or cleanup, often in sequential and
dependent steps. But this is only partially true. Recall that a Compute Instrument,
exclusive of the task that is eventually assigned to it by the client, may consist of both
hardware and software components.  While the software components often serve to
create an environment in which the eventual task will execute (such as libraries or
interpreters), they may also be compilers and/or complete user programs.  That is, the
Compute Instrument itself can be defined as a processor executing a specific program.
The task assigned to such an instrument may be a data-set or source code to be read
by that program (or compiler), or even nothing at all if the resource is completely self-
contained.  Since the AO is responsible for preparing the instrument for delivery
through the Pickup Window and recovering it after it has been relinquished, it is
indeed responsible for initiating this software and cleaning up after it.

The traditional sequential nature of job steps has resulted from the prevalence of



uniprocessors and traditional sequential thinking, but it is already common for parallel
“make” utilities, for example, to exploit potential parallelism in job-like scripts.
Similarly, in an AO resource, compute instruments running the individual “job steps”
can be connected to communicate through channels, allowing them to be scheduled
locally or in a distributed fashion, and scheduled sequentially or in parallel by the AO,
subject to the dependences dictated by the channels and the QoS constraints assigned
to those channels by the client.  In this way, a job can be represented as a Complex
Instrument in the AO infrastructure, where it will be scheduled.

Even with these capabilities, there is always the possibility that a more traditional
job scheduler is required.  In such a case, consider a new construct called a job shop,
which uses AOs only to acquire resources, as shown in Figure 3d.  See Figure 3e for
an example of the internals of a standard job shop. The job shop primarily comprises
“estimator” and “executor”, much like an auto repair shop. The estimator deals with
the customer to help determine how soon the job might be done and how much it
might cost, requests the resources needed from the grid AO (through its order
window), and records what needs to be done (in a job queue) when the resources are
ready.  The executor takes ready resources from the AO delivery window, dequeues
the associated work from the job queue, builds any necessary environment for those
tasks (e.g. telling message passing routines which channels to use), initiates tasks,
collects answers, and notifies and returns the answer to the client.

Nesting job shops (or traditional job schedulers in general) is not as natural as
nesting AOs, primarily because a job shop provides little feedback to the client until it
has acquired resources and assigned tasks to them.  This means that tasks are often
assigned to some resources even before others have been allocated, and may be
shipped around to where the resources are, long before they are needed there.

AO Summary

There are many remaining gaps in the above description, both in detail and in
functionality. For example, little has been said about how any client, whether an end-
user or another AO, will find AOs that own the desired kind of resources. Certainly,
one approach is to imagine a tree of AOs (as in Figure 3c), with the client always
interacting with the root AO, but it is unrealistic to consider this tree as being
hardwired when residing in an environment as dynamic as a computational grid.
More likely, existing Internet protocols can be adapted for this purpose, and an AO
might have a third “business dealings” window to facilitate them. Before an approach
like AO has any likelihood of acceptance in a large community, it must address many
such challenges.  Even a potentially useful and well-defined (successfully prototyped)
AO protocol will not be viable unless it can coexist with other contemporary
approaches.  It is therefore important to understand how AOs and constructs in these
other systems can build upon one another and mimic one another.

5. Market Model

The resources in the grid environment are geographically distributed and each of them
is owned by a different organisation. Each of them has its own resource management



mechanisms and policies and may charge different prices for different users
necessitating the need for the support of computational economy in resource
management. In [17], we have presented a number of arguments for the need of an
economy (market) driven resource management system for the grid. It offers resource
owners better “incentive” for contributing their resources and help recover cost they
incur while serving grid users or finance services that they offer to users and also
make some profit. This return-on-investment mechanism also helps in
enhancing/expanding computational services and upgrading resources. It is important
to note that an economy1 is one of the best institutions for regulating demand and
supply. Naturally, in a computational market environment, resource users want to
minimise their expenses (the price they pay) and owners want to maximise their
return-on-investment. This necessitates a grid resource management system that
provides appropriate tools and services to allow both resource users and owners to
express their requirements. For instance, users should be allowed to specify their
“QoS requirements” such as minimise the computational cost (amount) that they are
willing to pay and yet meet the deadline by which they need results. Resource owners
should be allowed to specify their charges—that can vary from time to time and users
to users—and terms of use. Systems such as Mariposa [17], Nimrod/G [3], and JaWS
[16], architect their user service model based on the economy of computations and it
is likely that more and more systems are going to emerge based on this concept.

Figure 4: Market Model for Grid Resource Management Architecture.

The market model for grid resource management captures the essentials of both
hierarchical and AO model presented above. Many of the contemporary grid systems
fit to the hierarchical model and AO appears to be futuristic, but points out the need
for economy in computation implicitly. The issues discussed in the hierarchical model
apply to the market model, but it emphasizes the use of economic based resource

                                                          
1 We use terms “economy” and “market” interchangeably.



management and scheduling. One of the possible architectures for grid resource
management based on computational market model is shown in Figure 4. Resource
trading model can vary depending on the method/protocol used (by trade manager) in
determining the resource access cost.

The following are the key components of economy-driven resource management
system:

•  User Applications (sequential, parametric, parallel, or collaborative
applications)

•  Grid Resource Broker (a.k.a., Super/Global/Meta Scheduler)
•  Grid Middleware
•  Domain Resource Manager (Local Scheduler or Queuing system)

Grid Resource Broker (GRB)

The resource broker acts as a mediator between the user and grid resources using
middleware services. It is responsible for resource discovery, resource selection,
binding of software (application), data, and hardware resources, initiating
computations, adapting to the changes in grid resources and presenting the grid to the
user as a single, unified resource. The components of resource broker are the
following:

•  Job Control Agent (JCA): This component is a persistent central
component responsible for shepherding a job through the system.  It takes
care of schedule generation, the actual creation of jobs, maintenance of job
status, interacting with clients/users, schedule advisor, and dispatcher.

•  Schedule Advisor (Scheduler): This component is responsible for resource
discovery (using grid explorer), resource selection, and job assignment
(schedule generation). Its key function is to select those resources that meet
user requirements such as meet the deadline and minimize the cost of
computation while assigning jobs to resources.

•  Grid Explorer: This is responsible for resource discovery by interacting
with grid-information server and identifying the list of authorized machines,
and keeping track of resource status information.

•  Trade Manager (TM): This works under the direction of resource selection
algorithm (schedule advisor) to identify resource access costs. It interacts
with trade servers (using middleware services/protocols such as those
presented in [4]) and negotiates for access to resources at low cost. It can
find out access cost through grid information server if owners post it.

•  Deployment Agent: It is responsible for activating task execution on the
selected resource as per the scheduler’s instruction. It periodically updates
the status of task execution to JCA.

Grid Middleware

The grid middleware offers services that help in coupling a grid user and (remote)
resources through a resource broker or grid enabled application. It offers core services
[12] such as remote process management, co-allocation of resources, storage access,
information (directory), security, authentication, and Quality of Service (QoS) such as



resource reservation for guaranteed availability and trading for minimising
computational cost. Some of these services have already been discussed in the
hierarchical model, here we point out components that are specifically responsible for
helping out in offering computational economy services:

•  Trade Server (TS): It is a resource owner agent that negotiates with
resource users and sells access to resources. It aims to maximize the resource
utility and profit for its owner (earn as much money as possible). It consults
pricing algorithms/models defined by the users during negotiation and
directs the accounting system to record resource usage.

•  Pricing Algorithms/Methods: These define the prices that resource owners
would like to charge users. The resource owners may follow various policies
to maximise profit and resource utilisation and the price they charge may
vary from time to time and one user to another user and may also be driven
by demand and supply like in the real market environment.

•  Accounting System: It is responsible for recording resource usage and bills
the user as per the usage agreement between resource broker (TM, user
agent) and trade server (resource owner agent) [19].

Domain Resource Manager

Local resource managers are responsible for managing and scheduling computations
across local resources such as workstations and clusters. They are even responsible
for offering access to storage devices, databases, and special scientific instruments
such as a radio telescope. Example local resource managers include, cluster operating
systems such as MOSIX [18] and queuing systems such as Condor [12].

Comments

The services offered by trade server could also be accessed from or offered by grid
information servers (like yellow pages/advertised services or posted prices). In this
case a trade manager or broker can directly access information services to identify
resource access cost and then contact resource agents for confirmation of access. The
trade manager can use these advertised/posted prices (through information server) or
ask/invite for competitive quotes (tenders) or bids (from trade server/resource owner
agents) and choose resources that meet user requirements.

From the above discussion it is clear that there exist numerous methods for
determining/knowing access cost. Therefore resource trading shown in Figure 4 is one
of the possible alternatives for computational market model and it can vary depending
on, particularly, trading protocols like in real world economy. Some of the real-world
trading methods that can also be applied for computational economies include:

•  Advertised/posted prices (classified advertisements) through information server
•  Commodity exchanges
•  Negotiated prices
•  Call for (closed) tenders
•  Call for (open) bids

Each of these methods can be applied in different situations for computational



economies and they create a competitive computational market depending on the
demand and supply and the quality of service. The mechanism for informing resource
owners about the availability of service opportunities can vary depending on its
implementation. One of the simplest mechanisms is users (buyers) or/and resource
owners (sellers or their agents renting/leasing computational services) make available
or post/publicise their requirements in a known location (for instance, “exchange
centre, share market, or grid information service directory”). Any one or all can
initiate computational service trading. Through these mechanisms one can perform
the following types of actions like in real world market economies:

•  Users can post their intentions/offers to buy access to resources/services
(e.g., “20 cluster nodes for 2 hours for $50);

•  Resource owners/grid nodes/providers/agents can post offers to sell (e.g.,
systems like NetSolve can announce “we solve 1000 simultaneous linear
equations for $5”);

•  Users/resource owners can query about current opportunities including
prices/bids and historical information.

The different grid systems may follow different approaches in making this happen
and it will be beneficial if they are all interoperable. The interoperability standards
can be evolved through grid user/developer community forums or standardization
organisations such as GF [20] and eGRID [22].

6. Discussion and Conclusions

In this paper we have discussed three different models for grid resource management
architecture inspired by three different philosophies. The hierarchical model captures
the approach followed in many contemporary grid systems. The abstract owner shows
the potential of an order and delivery approach in job submission and result gathering.
The (computational) market model captures the essentials of both hierarchical and
abstract owner models and uses the concept of computational economy. We have
attempted to present these models in abstract high-level form as much as possible and
have skipped low-level details for developers to decide (as they mostly change from
one system to another). Many of the existing, upcoming and future grid systems can
easily be mapped to one or more of the models discussed here (see Table 1). It is also
obvious that real grid systems (as they evolve) are most likely to combine many of
these ideas into a hybridized model (that captures essentials of all models) in their
architecture. For instance, our Grid Economy [4] is developed as a combination of
Globus and GRACE services based on a (hybridized) market model.

The importance of market models for grid computing is also reported in the journal
of Scientific American [23]: “So far not even the most ambitious metacomputing
prototypes have tackled accounting: determining a fair price for idle processor cycles.
It all depends on the risk, on the speed of the machine, on the cost of communication,
on the importance of the problem--on a million variables, none of them well
understood. If only for that reason, metacomputing will probably arrive with a
whimper, not a bang”. We hope that (our proposed) computational market model for
grid systems architecture along with others will help the arrival of computational
grids with a big bang (not a whimper)!
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