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Overview

+ High Performance Computing
+ ATLAS

+ PAPI

+ NetSolve

High Performance Computers
Sustainable Performance

+ ~ 20 years ago
» 1x10¢ Floating Point Ops/sec (Mflop/s)
» Scalar based
+ ~ 10 years ago
» 1x10° Floating Point Ops/sec (Gflop/s)
» Vector & Shared memory computing, bandwidth aware
» Block partitioned, latency tolerant
¢+ ~ Today
» 1x10%2 Floating Point Ops/sec (Tflop/s)

» data decomposition, communication/computation

¢+ ~ 10 years away
» 1x10%5 Floating Point Ops/sec (Pflop/s)
> Many more levels MH, combination/grids&HPC
> More adaptive, LT and bandwidth aware, fault tolerant,
extended precision, attention to SMP nodes

> Highly parallel, distributed processing, message passing, network based

“Moore’s Wall” | _

“Moore’s Law” —
e
— Horst Simon, NERSC -
— ;-
¢ Moore's Law predicts i
exponential growth — e —
» Performance doubling every LLOTEe

18 months =
> Usually plotted on semi-lo? -
scale,appears as straight line . = e
¢ Human experience has a hard time deal with log
scale
> In 1980 a computation that took 1 full year to
complete can now be done in seconds!
» We are sitting at the bend of an exponential curve i
+ From our perspective Moore's Law appears |
as a “wall” /
> In a few years technology will again be completely j
different __,-"
> Hard to predict what the future will be.
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TOP500
- Listing of the 500 most powerful
Computers in the World
- Yardstick: Rmax from LINPACK MPP

Ax= b, dense problem

TPP performance
- Updated twice a year \—ﬁ—

SC'xy in the States in Nmber
Meeting in Mannheim, Germany in Jur

Rate

- All data available fronwww.top500.0r g
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Fastest Computer Over Time

GFlop/s

Fastest Computer Over Time
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In 1980 a computation that took 1 full year to complete
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In 1980 a computation that took 1 full year to complete
can now be done in ~ 10 hours!
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In 1980 a computation that took 1 full year to complete
can today be done in ~ 47 seconds!
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Top 10 Machines (Nov 2000)

Rank  Company Machine  Procs Gflop/s Place Country Year
1 IBM ASCI White 8192 4938 Livermore National Laboratory Livermore  2000|
2 intel ASCIRed o632 2080  “andiaiationallabs USA 1999

Albuquerque
ASCI Blue-Pacific Lawrence Livermore National
3 1BM 5808 2144 N USA 1999
SST, IBM SP 60de Laboratory Livermore
4 Gl ASCl BH‘JE 6140 1608 Los Alamos National Laboratory USA 1998
Mountain Los Alamos
SP Power3 Naval Oceanographic Office
5 1BM 1336 1417 USA 2000
375 MHz (NAVOCEANO)
6 1BM SP Power3 M 17 Nanona\ Cemerlor‘ USA 2000
375 MHz Environmental Protection
7 Hiachi  SRE0OFUIL 112 1035  CelomZRechenzemium o noo
Muenchen
SP Power3 UCSD/San Diego
2 L 375 MHz, 8 way e ) Supercomputer Center TR ey
High Energy Accelerator
9 Hitachi SR8000-F1/100 100 917 Research Organization /KEK ~ Japan 2000
Tsukuba
10 Cray Inc. T3E1200 1084 892 Government USA 1998
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Moore’s Law

Super Scalar/Vector/Parallel
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Petaflops (10'° flop/s) Computer Today?

1 GHz processor (O(10°) ops/s)
>1 Million PCs
>$1B ($1K each)
»100 Mwatts
»5 acres
»>1 Million Windows licenses!!
»PC failure every second

TOFSHI
Chip Technology
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Petaflop Computers Within the
Next Decade

+ Five basis design points:
» Conventional technologies
»4.8 GHz processor, 8000 nodes, each w/16 processors
> Processing-in-memory (PIM) designs
> Reduce memory access bottleneck
» Superconducting processor technologies
> Digital superconductor technology, Rapid Single-Flux-

Quantum (RSFQ) logic & hybrid technology multi-
threaded (HTMT)

» Special-purpose hardware designs
> Specific applications e.g. GRAPE Project in Japan for
gravitational force computations
» Schemes utilizing the aggrega're computing power
of processors distributed on the web
» SETI@home ~26 Tflop/s
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Top 500 Architectures

Cluster - NOW

A C O O 09“ SEFPLLSS
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112 const, 28 clus, 343 mpp, 17 sm|

High-Performance Computing Directions;
Beowulf-class PC Clusters

Definition: = Advantages:
¢+ COTS PC Nodes + Best price-

> Pentium, Alpha,
PowerPC, SMP
¢+ COTS LAN/SAN .
Infer-conneér + Just-in-place
Ethernet. Myrinet configuration
- eigfr’.;": ’AT,)X""Q ‘ A + Vendor invulnerable
+ Open Source Unix %<& ¢ Scalable
> Linux, BSD + Rapid technology
+ Message Passing tracking
Computing
> MPI, PVM
> HPF the cost and availability of industry standard message
m passing libraries. However, much more of a contact sport.

performance
+ Low entry-level cost

Enabled by PC hardware, networks and operating system

achieving capabilities of scientific workstations at a fraction of
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¢+ Peak performance
+ Interconnection
+ http://clusters.top500.0rg 9

Where Does the Performance Go? or
Why Should | Care About the Memory Hierarchy?
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Processor-DRAM Memory Gap (latency)

“Moore’s Law’,

|Processor-M

= uProc
60%/yr.
(2X/1.5yr)

emory

Performance Gap:
|(grows 50% / year)
»—DRAM
o QOp/yr.
(2X/10 yrs)

Optimizing Computation and
Memory Use

+ Computational optimizations
> Theoretical peak:(# fpus)*(flops/cycle) * Mhz
»PIII: (1 fpu)*(1 flop/cycle)*(850 Mhz) = 850 MFLOP/s
» Athlon: (2 fpu)*(1flop/cycle)*(600 Mhz) = 1200 MFLOP/s
» Power3: (2 fpu)*(2 flops/cycle)*(375 Mhz) = 1500 MFLOP/s
+ Operations like:
> a=xy: 2 operands (16 Bytes) needed for 2 flops:
at 850 Mflop/s will requires 1700 MW/s bandwidth
» y =ax + y 3 operands (24 Bytes) needed for 2 flops:
at 850 Mflop/s will requires 2550 MW/s bandwidth
¢+ Memory optimization
» Theoretical peak: (bus width) * (bus speed)
> PIII: (32 bits)*(133 Mhz) = 532 MB/s = 66.5 MW/s
» Athlon: (64 bits)*(133 Mhz) = 1064 MB/s = 133 MW/s

> Power3: (128 bits)*(100 Mhz) = 1600 MB/s = 200 MW/s

Memory Hierarchy
+ By taking advantage of the principle of locality:

> Present the user with as much memory as is available in

the cheapest technology.
> Provide access at the speed offered by the fastest

technology.

Processor

Control

Datapath

spsIboy |
ayoeD
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|

Speed (ns): 1s 10s
Size (bytes): 100s

Tertiary
Storage
Secondary .
Storage (Disk/T ape)
(Disk)
Level Main
2and 3 Memory | |Distributed || Remote
Cache (DRAM) Memory Cluster
(SRAM) Memory
100s  10.000,000s 16,000,000,0004
(10s ms) (10s sec)
Ms 100,000s 10,000,000
(-1sms) (10s ms)
Gs Ts

Self-Adapting Numerical
Software (SANS)

+ Today's processors can achieve high-performance, but
this requires extensive machine-specific hand tuning.
+ Operations like the BLAS require many man-hours /
platform
- Software lags far behind hardware introduction
+ Only done if financial incentive is there
+ Hardware, compilers, and software have a large
design space w/many parameters
> Blocking sizes, loop nesting permutations, loop unrolling
depths, software pipelining strategies, register allocations,
and instruction schedules.
> Complicated interactions with the increasingly sophisticated
micro-architectures of new microprocessors.
¢ Need for quick/dynamic deployment of optimized routines.
¢ ATLAS - Automatic Tuned Linear Algebra Software

Software Generation
Strategy - BLAS

: N

+ Parameter study of the hw
+ Generate multiple versions
of code, w/difference
values of key performance
parameters
+ Run and measure the
performance for various
versions
+ Pick best and generate
library
¢+ Level 1 cache multiply
optimizes for:
» TLB access
» L1 cache reuse
» FP unit usage
» Memory fetch
> Register reuse

» Loop overhead minimization

!

+ Takes ~ 20 minutes to

run.

+ “"New” model of high

performance programming
where critical code is
machine generated using
parameter optimization.

+ Designed for RISC arch

» Super Scalar
> Need reasonable C
compiler

¢ Today ATLAS in use by

Matlab, Mathematica,
Octave, Maple, Debian,
Scyld Beowulf, SuSE, ..

24




ATLAS (DGEMM n =500)

2000.0 ‘lvendﬂr BLAS‘
18000 ATLAS BLAS

16000 lmFr7eias |

1400.0

1200.0

1000.0

MFLOPIS

800.0

600.0
400.0

¢
Architectures &

¢ ATLAS is faster than all other portable BLAS
implementations and it is comparable with
machine-specific libraries provided by the vendor.

Intel P11 933 MHz
MKL 5.0 vs ATLAS 3.2.0 using Windows 2000

800

m Vendor BLAS ‘

ATLAS BLAS

700

600

500

400

MFLOP/S

300

200

100

0
BLAS
¢ ATLAS is faster than all other portable BLAS
implementations and it is comparable with
machine-specific libraries provided by the vendor.
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Related Tuning Projects

+ PHIPAC
» Portable High Performance ANSI C
www.icsi.berkeley.edu/~bilmes/phipac initial automatic GEMM
generation project
+ FFTW Fastest Fourier Transform in the West
> www.fftw.org
¢+ UHFFT
» tuning parallel FFT algorithms
» rodin.cs.uh.edu/~mirkovic/fft/parfft.htm
+ SPIRAL
» Signal Pr ing Algorithms Imp ation Research for
Adaptable Libraries maps DSP algorithms to architectures
+ Sparsity
> Sparse-matrix-vector and Sparse-matrix-matrix multiplication
www.cs.berkeley. edu/~ejim/publication/ tunes code to sparsity
structure of matrix more later in this tutorial
» University of Tennessee

—K— Intel IA64 666MHz

Mflop/s

Recursive Approach for
Other Level 3BLAS
+ Recur down to L1 Recursive TRMM
cache block size D
+ Need kernel at of O 0
bottom of Q0
recursion N
»Use gemm-based 0 0
kernel for 0
portability 5
0
0
500x500 Recursve BLAS
on UltraSparc 2200
400
0 [ mvendorsias B ATLAS/GEMM-based BLAS m Reference BLAS
300
1250
EZOO*
ElSO*
100
.
ol
ATLAS Matrix Multiply
(64-bit floating point results)
4500
4000
3500 ——Intel P4 1.5 GHz
3000 AMD Athlon 1GHz

AMD -
PN 100 200 300 400 500 600 700 800 oC =l




Pentium 4 - SSE2

+ 1.5 6Hz, 400 MHz system bus, 16K L1
& 256K L2 Cache, theoretical peak of
1.5 Gflop/s, high power consumption

+ Streaming SIMD Extensions 2 (SSE2)
»which consists of 144 new instructions
# includes SIMD IEEE double precision floating

oint
P’ Peak for 64 bit floating point 2X
»Peak for 32 bit floating point 4X
> SIMD 128-bit integer
»new cache and memory management
instructions.
# Intel's compiler supports these instructions
today

31

Pentium 4

¢ The Pentium 4 consumes a lot of power, 55 -
64 Watts, (33 W for PIII) and is able to
generates a lot of heat.

¢ Processor may get too hot and if so processor
is shutdown for short periods

32

ATLAS Matrix Multiply
Intel Pentium 4 — using SSE2

4500

P4 32-bit fl pt using SSE2

4000

/0/\,,,/

—#— Intel P4 1.5 GHz 32-bit SSE2

3500

—8— Intel P4 1.5 GHz 64-bit SSE2

3000
—>—Intel P4 1.5 GHz
bit fl pt using SSE2
e

v
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LU Factorization
Pentium 4, 1.5 GHz, using SSE2
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Experiments with C, Fortran, and
Javafor ATLAS (DGEMM kernel)

800
700
600
500
400
300
200

100

0

Mflop/S

Intel
Compa
Pentium Il Pad15M Pow er

s0omHz APha 3375 Mg

B Fortran Linux ana o254

D C IBM1.1.8 Java 2
IOK spk1.2.2

O Java w ith Fast

VM 1.2.2

Machine-Assisted Application
Development and Adaptation

+ Communication libraries

>Optimize for the specifics of one's
configuration.

¢+ Algorithm layout and implementation

»>Look at the different ways to express
implementation




Work in Progress:
ATLAS like Approach Applied to Broadcast

(PII 8 Way Cluster with 100 Mb/s switched network)

L

Sequentidl Binay Binomidl
Rin
S b o i Message Size Optimal algorithm Buffer Size
. (bytes) (bytes)
8 binomial 8
16 binomial 16
2 binary 2
64 binomial 64
128 binomial 128
- 256 binomial 256
512 binomial 512
K ‘sequential 1K
% binary K
4K binary K
- 8K binary K
- 16K binary 4K
- 2K binary 4K
— 64K ring K
— 128K ing 4K
C A L 256K ting K
NI — 512K ring 4K v
m binary K

Reformul ating/Rearranging/Reuse

¢ Example is the reduction to narrow band
from for the SVD

A, =A-uy" —w'
Yoer = ATU
Wnew = A]GNV

+ Fetch each entry of A once
¢ Restructure and combined operations
¢+ Results in a speedup of > 30%

Conjugate Gradient Variants by
Dynamic Selection at Run Time

Conjugate Gradient Variants by
Dynamic Selection at Run Time

+ Variants combine
inner products to
reduce
communication
bottleneck at the
expense of more
scalar ops.

+ Same number of
iterations, no
advantage on a
sequential processor

+ With a large number
of processor and a
high-latency network
may be advantages.

+ Improvements can
range from 15% to
50% depending on
size. e

+ Variants combine
inner products to
reduce
communication
bottleneck at the
expense of more
scalar ops.

+ Same number of
iterations, no
advantage on a
sequential processor

+ With a large number
of processor and a
high-latency network
may be advantages.

+ Improvements can

Toolsfor
Performance Evaluation

+ Timing and performance evaluation has
been an art
» Resolution of the clock
» Issues about cache effects
> Different systems

» Can be cumbersome and inefficient with
traditional tools

+ Situation about to change
y » Today's processors have internal counters

range from 15% to — — — = --
59% depending on il a:
Performance Counters

¢ Almost all high performance processors
include hardware performance counters.

+ Some are easy to access, others not
available to users.

+ On most platforms the APIs, if they
exist, are not appropriate for the end
user or well documented.

+ Existing performance counter APIs

» Compaq Alpha EV 6 & 6/7 > IA-64
> SGI MIPS R10000 > HP-PA RISC

> IBM Power Series o .
> CRAY T3E > Hitachi Y /// )

> Sun Solaris > Fujitsu //,
» Pentium Linux and Windows » NEC
I/ ¥




Performance Data
That May Be Available

» Pipeline stalls due to
memory subsystem

> Pipeline stalls due to
resource conflicts

»I/D cache misses for
different levels

» Cache invalidations
> TLB misses
> TLB invalidations

» Cycle count

# Floating point
instruction count

» Integer instruction
count

» Instruction count
> Load/store count

» Branch taken / not
taken count

» Branch mispredictions

Overview of PAPI

+ Performance Application
Programming Interface

+ The purpose of the PAPI project is
to design, standardize and
implement a portable and efficient
API to access the hardware
performance monitor counters found
on most modern microprocessors

PAPI Implementation

Java Monitor GUI

Portable PAPI High Level

Layer

Machine |
Specific
Layer

45

PAPI - Supported Processors

+ Pentium,Pro,II III,
»>Linux 2.4, 2.2, 2.0 and perf kernel patch
+ Power 3,604,604e
»For AIX 4.3 and pmtoolkit (in 4.3.4 available)
» (laderose@us.ibm.com)
+ UltraSparc I&II (IIT soon)
» Solaris 8
MIPS R10K, R12K
¢+ AMD Athlon
»Linux 2.4 and perf kernel patch
Cray T3E, SV1, sV2

>

>

>

Soon: Alpha EV6, EV67

Graphical Tools
Perfometer Usage

+ Application is instrumented with PAPI
» call perfometer()

¢+ Will be layered over the best existing vendor-
specific APIs for these platforms

+ Application is started, at the call to
performeter signal handler and timer set to
collect and send the information to a Java
applet containing the graphical view.

+ Sections of code that are of interest can be
designated with specific colors
» Using a call to set_perfometer('color’)

Machine info

Perfometer

o

D
Flops issued

_ Flop/s Rate

... = Flop/s Instantaneous Rate
Process & T

Real ti

Call Perfometer(‘red”)




Go To Demo

PAPI

Next Version of
Perfometer | mplementation

PAPI's Parallel Interface

[T F, PIPPPPTI J—
e mm pe mmd g o g o

e L L]

— = [rsT ="

PAPI Release

+ Platforms

» Pentium Linux/x86

» Require patch to kernel

» Sun Solaris/Ultra 2.8
» IBM AIX/Power

» Contact IBM for PMtoolkit

» SGI IRIX/MIPS
» AMD Athlon Linux
» Compaq Trué4/Alpha (Soon)

¢ C and Fortran bindings

+ To download software see:
http://icl.cs.utk.edu/papi/

¢ Mailing list

>

>

send “subscribe ptools-
perfapi” to

maj or dono@t ool s. org

pt ool s- per f api @t ool s. org
is the reflector

SETI@home

¢ Use thousands of Internet-
connected PCs to help in
the search for
extraterrestrial
intelligence.

+ Uses data collected with
the Arecibo Radio
Telescope, in Puerto Rico

+ When their computer is idle
or being wasted this
software will download a
300 kilobyte chunk of data
for analysis.

+ The results of this analysis
are sent back to the SETI
team, combined with
thousands of other
participants.

+ Largest distributed
computation project in
existence

» ~ 400,000 machines
> Averaging 26 Tflop/s

+ Today many companies
trying this for profit.

S
Distributed Qéb > N @QQ 05 @gMassively
systems S 2 8s ¥ o859 lel
@ § 5§ § & &3 5 o paale
hetero- N N & & systems
geneous 0‘)" & @d’@ ¢ F s d homo-
|| geneaus
ot 1 e e e s e
+ Gather (unused) resources + Bounded set of resources
+ Steal cycles + Apps grow to consume all cycles
+ System SW manages resources ¢ Application manages resources
+ System SW adds value + System SW gets in the way
+ 10% - 20% overhead is OK + 5% overhead is maximum
+ Resources drive applications + Apps drive purchase of
+ Time to completion is not equipment

critical
Time-shared

. .

Real-time constraints
Space-shared




. S e i e Ea
The Grid bl L o N
B = e
- i
¢+ To treat CPU cycles and software like commodities. §
T

. = -~~~ on steroids.

+ Enable the coordinated use of geographically

distributed resources - in the absence of central :"' .’_. .

control and existing trust relationships. : e -
+ Computing power is produced much like utilities such W ’/’”

as power and water are produced for consumers. prierretect e I et e v e 8 g
¢ Users will have access to “power” on demand = -~

-_.-'

The Grid Architecture Picture NetSolve Overview
u L . . .
ser Portals proiem sowing B popication Science + Problem Solving Environment Toolkit

Grid Access & Info Environments N Portals

+ Client/Agent/Server system.

+ Remote access to hardware AND

Service Layers Cor Seheduling Resource Discovery sof'l‘war‘e .
- uli & Allocation Fault Tolerance " .
A — o— + "Robust, fault-tolerant, flexible,
Authenticaton ¥ Naming & Files -~ | he'rer‘o_geneous environment that _provides
A— AR dynamic management and allocation
! ! ! policies for distributed computational
Resource Layer COmpUters Data bases On/if/‘ns[ruments Software r‘esources."

High speed networks and routers 57 58

NetSolve o
Network Enabled Sa've' | N(glte%)lve The Blg PIC'[UI’e e
Database
+ NetSolve is an example of a grid based EA frnet
hardware/software server. [ —I S21
+ Easy-of-use paramount -
+ Based on a RPC model but with ... ¢, Fortran ' L
» resource discovery, dynamic problem solving Java, Excel

capabilities, load balancing, fault tolerance
asynchronicity, security, ..

¢ Other examples are NEOS from Argonne % %
and NINF Japan. 7 000 0000 C 6000 000

+ Use a resource, not tie together r
geographically distributed resources for EEE I_-’

a single application. 5o
9 PP No knowledge of the grid required, RPC like.




NetSolve Agent

+ Name server for the
NetSolve system.
+ Information Service
» client users and administrators can query the
hardware and software services available.
+ Resource scheduler

» maintains both static and dynamic
information regarding the
NetSolve server components to
use for the allocation of resources

NetSolve Agent

NetSolve Client

+ Function Based Interface.

+ Client program embeds call
from NetSolve's API to access
additional resources.

+ API available to C, Fortran, Matlab,
Mathematica, and Java.

+ Opaque networking interactions.

+ NetSolve can be invoked using a variety
of methods: blocking, non-blocking, task
farms, ..

NetSolve Client

i. Client makes request to agent.
ii. Agent returns list of servers.

iii. Client tries each one in turn until
one executes successfully or list is
exhausted.

+ Resource Scheduling (cont'd):
» CPU Performance (LINPACK).
» Network bandwidth, latency.
» Server workload.
> Problem size/algorithm complexity.

> Calculates a "Time to Compute.” for each
appropriate server.

» Notifies client of most appropriate server.

NetSolve Client

+ Intuitive and easy to use.

+ Matlab Matrix multiply e.g.:
»A = matmul(B, C):;

A = netsolve(‘matmul’, B, C);

+ Possible parallelisms hidden.

NetSolve Server

+ Computational backbone
of NetSolve.

+ Daemon waiting to service client
requests.

+ Configured to solve a set of problems.
+ Reports host status to agent
periodically (host status
includes workload,
bandwidth, latency, etc.)

11



NetSolve Server |

+ Access control enabled
by Kerberos V5.
+ NetSolve is able to appropriately
deal with failed servers.
+ Special configurations:
» Parallel Servers
> Condor Servers

Problem Description File

+ Problem Description File defines problem
specification used to add functional
modules to NetSolve server.

+ Wrapper to provide binding between the
NetSolve client interface and server
function being integrated.

+ Complex syntax defines input/output
objects, calling sequences, libraries to
link, etc...

+ Parsed by NetSolve to create “service”
program.

Generating New Services

New Service Added!

!

@PROBLEM degs/
@DESCRIPTION

This isalinear solver for
densemalrices from the LAPACK.
Library. Solves Axb.

@INPUT 2

Goazctvatxpoveica | [N n—)
Ooblopreison

GOBELTVECTOR BoUBLED

Right hand side

@OUTPUT 1
@OBXECT VECTOR DOUBLE X

69

Basic Usage g -
Scenarios : i%

+ Grid based numerical =
Il‘br'ar'y r'ou‘h'nes + "Blue Collar” Grid Based
> User doesn’t have to have Compu ting

software library on their
machine, LAPACK, SuperlLU, » Does not require deep
ScalAPACK, PETSc, AZTEC, knowledge of network

ARPACK programming
+ Task farming applications > Level of expressiveness
> "Pleasantly parallel” right for many users
execution > User can set things up,
> eg Parameter studies no “su” required
+ Remote application > In use today, up to 200
execution servers in 9 countries
» Complete applications with
user specifying input
parameters and receiving
outnut

NetSolve and Numerica
Libraries

+ Access to mathematical software without
having to install packages

»User doesn't have to have software library
on their machine, LAPACK, Scal APACK,
PETSc, AZTEC, ARPACK, and others

¢ Fortran, C, Matlab, ..

>> [, its] = netsolve( ‘itmeth’, ‘petsc’, A, rhs );

call NETSL('DGESV()',NSINFO,
N,1,A,MAX,IPIV,B,MAX,INFO)

NPACI AlphaProject - MCdT:
3-D Monte-Carlo Simulation of Neuro-
Transmitter Releasein Between Cells

*UCSD (F. Berman, H. Casanova, M. Ellisman), Salk Institute (T.
Bartol), CM U (J. Stiles), UTK (Dongarra, R. Wolski)

*Study how neurotransmitters diffuse and activate receptorsin synapses
*blue unbounded, red singly bounded, green doubly bounded closed,
yellow doubly bounded open
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M Ceéll: 3-D Monte-Carlo Simulation of Neuro-
Transmitter Releasein Between Cells

*Developed at: Salk Institute, CMU

«In the past, manually run on available workstations
*Transparent Parallelism, Load balancing, Fault-tolerance
*Fitsthe farming semantic and need for NetSolve

IPARS-encbled
= Web ‘ Sarvers ‘ ‘

& IPARS

Web NetSolve
Interface Client ?@ HEI'
T I—

+ Integrated Parallel Accurate Reservoir
Simulator.

» Mary Wheeler's group, UT-Austin

Reservoir and Environmental Simulation.

> models black oil, waterflood, compositions

> 3D transient flow of multiple phase
Integrates Existing Simulators.
Framework simplified development

» Provides solvers, handling for wells, table lookup.
> Provides pre/postprocessor, visualization.

Full IPARS access without Installation.
IPARS Interfaces:

» C, FORTRAN, Matlab, Mathematica, and Web.

>

> *

> *

Data M anagement

+ Recent work experimenting with
data staging and wide area caching
- leveraging Distributed Storage
Infrastructures (currently IBP).

+ Management and Caching of large
objects (i.e. input/output data
sets, NOT “"messages”).

Data Management:
Work in Progress

+ NetSolve integration with Internet
Backplane Protocol
(http://icl.cs.utk.edu/ibp).

+ Distributed Storage Infrastructure
(DSI) that is used to access and manage
remote storage components.

+ Daemon runs on storage server and
programs use IBP's API to store and
manage data for later retrieval (not
necessarily from same host).

+ Uses a “capability” or handle to
encapsulate remote data's location and 7=

a ihilitv roctnictinne

NetSolve and IBP

¢ NetSolve API extended with functions to
create, destroy, read and write IBP
storage.

¢ API can also store “named” IBP
capabilities at NetSolve agent so that
multiple NetSolve clients can use name
to access same data.

+ For computational services, client can
choose to use either remote or local
data sets.

NetSolve and IBP gcont’d)

int client_program(){
NS _DSI_FILE * remote file;
NS DSI_OBJECT * remote_object;
int *datal, size_datal;

remote_file = ns_dsi_open(“machine.domain.edu”, “write”);
remote_object = ns_dsi_write(remote_file, datal, size_datal)

netsolve(“compare”, datal, remote_object);

}
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NetSolve and IBP (cont'd)
—Exempteofchent-ushgremotecate:

int client_program1(){
NS _DSI_FILE * remote file;
NS _DSI_OBJECT * remote_object;
int *datal, size_datal;

remote file=ns_dsi_open(*machine.domain.edu”, “write”);
remote_object = ns_dsi_write(remote_file, datal, size_datal);
store_handle(remote_object; “handle_name”);

}

int client_program2(){
NS_DSI_OBJECT * remote_object;

remote_object = retrieve_handle(“handle_name”);
status = netsolve(“‘compute”, remote_object, output)

}

Data Persistence

¢ Chain together a sequence of requests.

+ Analyze parameters to determine data
dependencies. Essentially a DAG is
created where nodes represent
computational modules and arcs
represent data flow.

¢ Transmit superset of all input/output
parameters and make persistent near
server(s) for duration of sequence
execution.

+ Schedule individual request modules for
execution. 50

Request Sequencing

¢ Goals:

» Transmit no unnecessary (redundant)
data parameters.

» Ensure all necessary data parameters
are transmitted.

»Execute modules simultaneously
whenever possible.

o1

Request Sequencing Interface

netsl_begin_sequence();

netsl(“‘commandl”, A, B, C); netsl(“commandl”, A, B, C);
netsl(“‘command2”, A, C, D); netsl(“command2”, A, C, DJ;
netsl(“‘command3”, D, E, F); netsl(“command3”, D, E, F)[

netsl_end_sequence(C, D)

&z

DAG Construction

+ "C" Implementation.

+ Analyze all input/output references in
the request sequence.

+ Two references are equal if they refer
to the same memory address.

+ Size parameters checked for “subset”
objects.

¢ Only NetSolve MATRICES, VECTORS,
and FILES are checked.

+ Constructed DAG scheduled for
execution at NetSolve server.

DAG for Example Sequence

netsl_begin_sequence( );

netsl(“‘command1”, A, B, C)|
netsl(“‘command?2”, A, C, D)|
netsl(“‘command3”, D, E, F)
nets|_end_sequence(C, D)j|

84
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Data Persistence (cont’'d)
sequerae(A(A5 5j)

- result C -

AR C RetSIkea 'HTéH A 8
iy REES Eﬁfeemmaﬂ ZAE %.

resuit D ' netsl_end_sequence(C, D)

intermediate output D,

input E
command3(D, E)

-
———

result F

Enhanced Sequencing

+ Multiple NetSolve server sequencing.

> First prototype used only single NetSolve
server.

» If no single server possessed all software,
sequence could not be executed.

» Truly parallel execution only on SMPs.
+ DSIs are heavily leveraged in this on-
going work.

Multiple Server Sequencing and
le

DSl data caches

&7

Data Management: Future Work

¢ Cache cooperation mechanisms where
distributed caches manage, share and
trade both metadata and contents to
optimize availability and accessibility.

+ Grid-accessible data repositories that
scientists can easily utilize within their
applications (ideally by a simple
abstraction akin to a URL). Promotes
Wide Area Collaborations or research on
“hard-to-come-by"” data. Scientists
don't have to worry about storage of
raw or input data, only analytical
results.

Futures for Numerical Algorithms
and Software

¢ Numerical software will be adaptive,
exploratory, and intelligent
> Polyalgorithms, bombardment techniques

+ Determinism in numerical computing will be
gone.
» After dll, its not ble to ask for in numeri i
> Auditability of the computation, reproducibility at a
cost
. Imcror"rance of floating point arithmetic will be
undiminished.

» 16, 32, 64, 128 bits and beyond.
> Interval arithmetic
Reproducibility, fault tolerance, and auditability
. Adapﬁvifr is a key so applications can
effectively use the resources. e

*

Contributors to These ldeas

Top500

> Erich Strohmaier, LBL, NERSC

> Hans Meuer, Mannheim U

AT'-:S . s F For additional

> Antoine Petitet, Sun France H .

> Clint Whaley, UTK information see...
http://icl.cs.utk.edu/top500/

> Parallel Computing, Vol 27,

PAP;IO 1-2. pp 3-25, 2001 http://icl.cs utk.edu/atlas/

> Shirley Browne, UTK http://icl.cs.utk.edu/papi/

> Kevin London, UTK http://icl.cs.utk.edu/netsolve/

» Phil Mucci, UTK o
> Keith Seymour, UTK www.cs.utk.edu/~dongarra/

NetSolve

> Dorian Arnold, UTK

> Susan Blackford, UTK
> Henri Casanova, UCSD
> Michelle Miller, UTK
» Sathish Vadhiyar, UTK

Many opportunities within the
group at Tennessee
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