The Promise of the InfiniBand[™] Architecture INFINIBAT for Cluster Computing

Gregory Pfister IBM Server Technology & Architecture, Austin, TX


CCGRID2001

Legalities...

- InfiniBand is a trademark and service mark of the InfiniBand Trade Association. RapidIO is a trademark of the RapidIO Trade Association. Lightning Data Transport and Hyper Transport are trademarks of Advanced Micro Devices, Inc.
- All other product names mentioned herein may be trademarks or registered trademarks of other manufacturers. We respectfully acknowledge any such that have not been included above.
- None of the opinions expressed here necessarily reflect the position of the IBM Corporation.

Before I forget:

- Ask questions!
- Or make comments.
- Please.

Random gratuitous clipart

Agenda

- Something Strange is happening
- What is the problem?
- InfiniBand and the InfiniBand[™] Trade Association
- The InfiniBand Architecture
- Industry Implications and Conclusions

More random gratuitous clipart

A Very Strange Thing is Happening

• Flamboyant words are in the industry press:

- They have nothing to do with microprocessors.
- They are being used for, of all things,

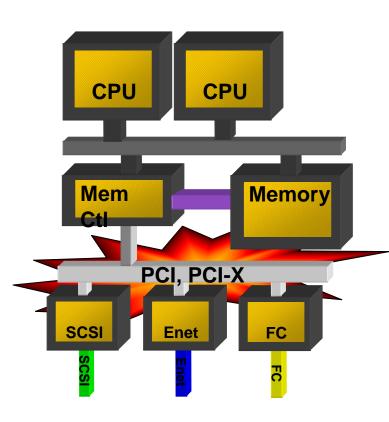
I/O Systems

Eh What?

- Isn't I/O that dull stuff called names like PCI, ISA, Fibre Channel, scuzzy, ... ?
- Not any more.

- Moving bits into and out of computers is <u>hot</u>.
- Definitely includes moving bits *between* computers:
 - High bandwidth, low overhead
 - Broadly implemented industry standards
- Key hardware barriers to cluster exploitation are collapsing.

What Happened?


- PC market saturation
 - So everyone has decided they better do servers
 - Which actually need good I/O (other than graphics)
- "Good enough" inexpensive microprocessors
 - Hence web server farms as an industry-wide paradigm
- Genuine technical problems with busses,
 + general march of technology
 - networks can replace busses in high volume products.

Agenda

- Something Strange is happening
- What is the problem?
- InfiniBand and the InfiniBand[™] Trade Association
- The InfiniBand Architecture
- Industry Implications and Conclusions

The Problem With Busses: Simple, Useful, but Running Out

- Widespread realization: standard I/O busses (PCI familiy) can't keep up with
 - -processors
 - -LAN, etc.
- Bus frequency just 2X / 3 years
- Arbitration limits real bandwidth
- Load/store memory model
- Single fault domain for all I/O Note: I/O includes sys-sys comm.

What Is InfiniBand?

- Replaces bus with industry-standard network
 - Connecting to devices and other systems
- Standard across the industry: 220+ companies
 - backed by <u>all</u> the major players
- Aim: an architecture able to track future technology and server requirements:
 - scalable bandwidth & fanout, up and down
 - high reliability, availability
 - low overhead
- Spec 1.0 published 11/23/2000
 - available for download: http://www.infinibandta.org

IBTA: A Merger, 9/99

INFINIBAND

SCom

FUITSU SHUTS

uppert Technolo

Many (Compaq, HP, IBM founders)

Steering Committee

Microsoft

COMPAO

inte

Intel, Dell, Sun, others (Intel founded)

CISCO SYSTEMS

NEC

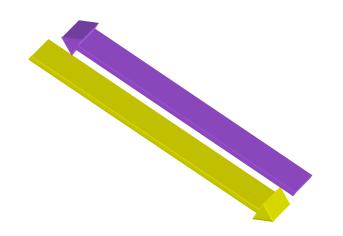
Sponsor Member Companies

HITACHI

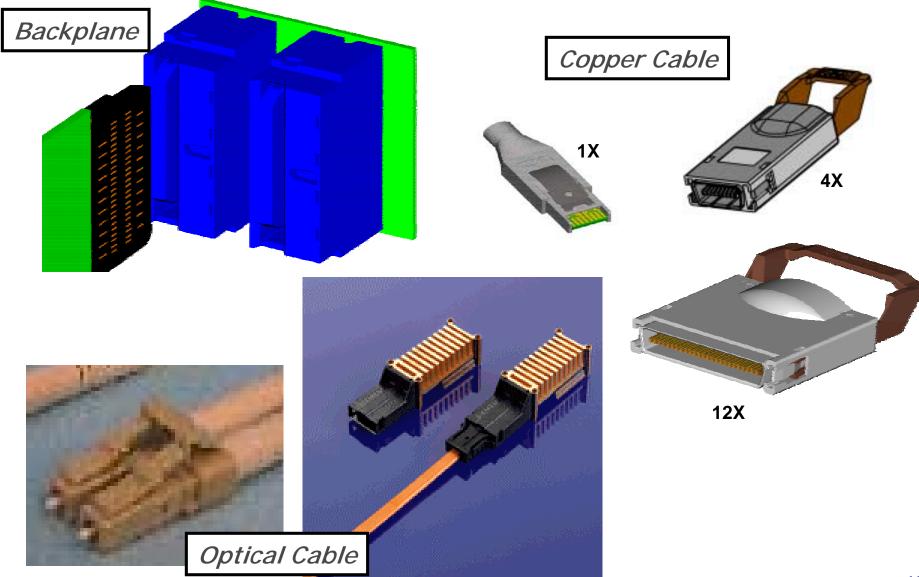
dadaptec

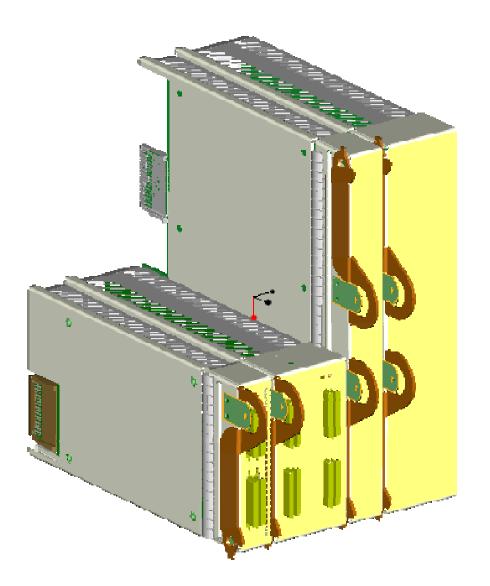
 Right Ts&Cs for wide adoption: "fair & nondiscriminatory" licensing

- Not an open standards group (time to market)
 - Anyone can join with member or associate status.
- Managed like a SIG


Agenda

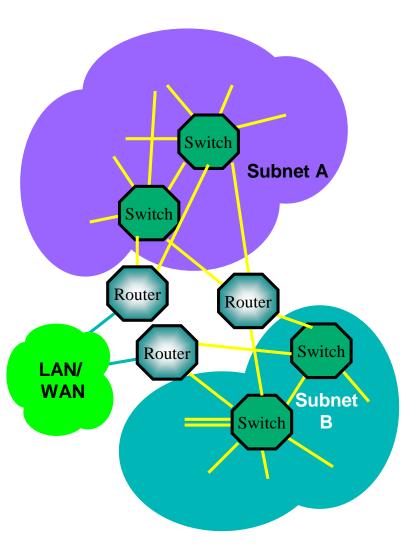
- Something Strange is happening
- What is the problem?
- InfiniBand and the InfiniBand[™] Trade Association
- The InfiniBand Architecture
- Industry Implications and Conclusions


The Link

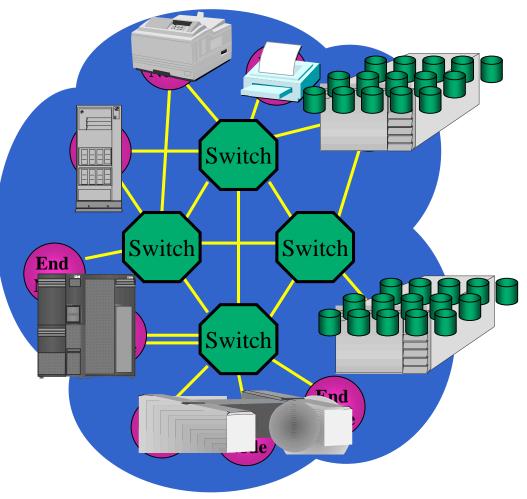

Width	Bi-directional Bandwidth
1	500 MB/s
4	2 GB/s
12	6 GB/s
	I

- Bidirectional, 4 wires (copper)
 - Parallel links for 4X, 12X widths
- 2.5 Gbaud signal rate
- No length spec
 - attenuation budget: 15dB
- Multimode and single mode fibre
 - single only 1X, but goes 10Km
- Hot plug, of course
- Training sequence and credit exchange when connected.
- MTU 256B to 4KB

Connectors



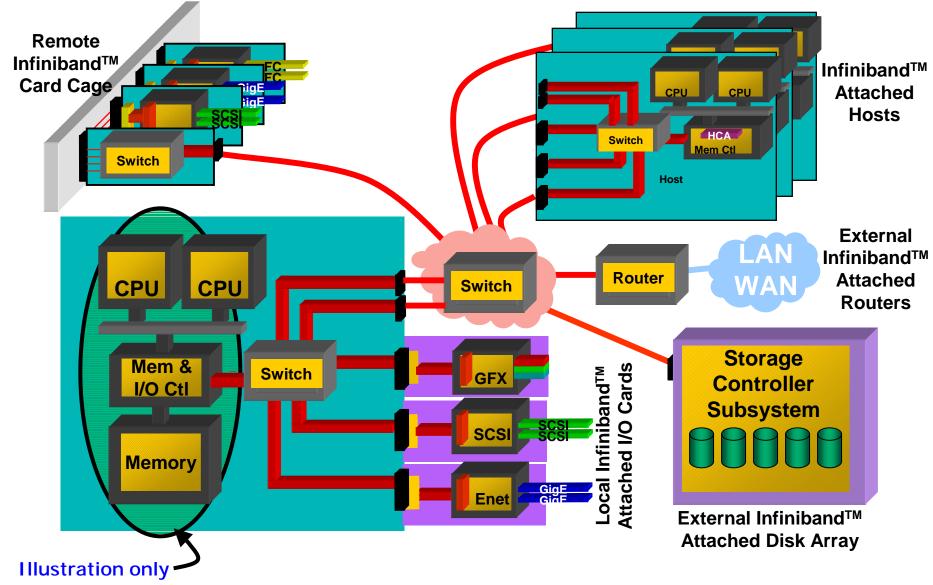
Electromechanical


- Four adapter form factors:
 - standard, standard wide, tall, tall wide
 - standard approx. 20/100/220 mm wide/high/deep
 - face plate can support quad SCSI / HSSDC connectors
- Standardized baseboard mgmt, thermal, EMC, hot swap, E/M interfaces, modules, slots, LEDs.

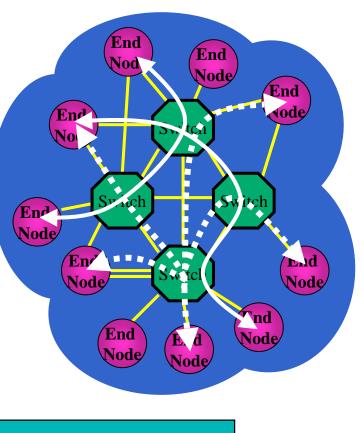
Switches and Routers

- Switch: routes packets within subnet.
 - -Destination routed, based on LID
 - Special direct route for initialization
 - Up to 48K unicast LIDs per subnet.
 - -SLs provide service differentiation.
 - -Multicast (optional)
 - Switch size, network topology are vendor-specific
- Router: routes packets between subnets
 - -Based on GID (128 bit IPv6 Address)
 - -Can transfer through disparate fabrics

Endnodes


Hosts

-processors, memory


Devices

- -Storage, network adapters, etc.
- Bridges
 - to "legacy" I/O busses: PCI, etc.; vendor unique; not part of spec
- Channel Adapters attach endnodes to links
 - -Host (HCA) vs. Target (TCA)
 - Only difference: TCA has no defined software interface.

A Less Cloudy View

Channel Adapters

connection

datagram

- Attach nodes to links: data engines
- Service types:
 - Reliable Connection, (Unreliable) Datagram, Unreliable Connection, Reliable Datagram (optional)
- Very low software overhead
 - reliable = in-order, correct, receipt acknowledged *provided by hardware*
 - *zero-copy* data transfer operations
 - *in user mode*; no switch to OS
- Low-overhead byte-gran mem protection
- Remote DMA on reliable services
 - user-mode virtual addresses; memory windows
- Optional: atomic operations (inter-node); (Unreliable) Multicast

Subnet Management

- Each subnet has a master subnet manager
 - resides on endnode or switch
- Discovers & initializes network
 - assigns LIDs, determines MTUs, loads switch routing tables
- Provides path information
 - what devices can I access?
 - what path(s) to a device?
- Scans/traps for hot plug/unplug
- Multiple SMs for HA failover
- Other managers: Baseboard, Performance, Device, etc.

Other Topics Not Covered

- InfiniBand spec is over 1500 pages long.
- Some other topics that could be covered:
- Compliance and interoperability
- Partitioning
- How Reliable Datagram
 works and why it's there
- Queue Pairs
- Automatic Path Migration

- Various management functions:
 - Subnet administration, performance, device, configuration, boot, etc.
- Verbs
- Link vs. transport layers
- Electronic/Mechanical issues

Agenda

- What is the problem?
- InfiniBand and the InfiniBand[™] Trade Association
- The InfiniBand Architecture
- Industry Implications and Conclusions

What About 10 Gb Ethernet & IP?

Semi-gratuitous clipart (featuring really stupid armor)

- Enet+IP: widespread, incumbent, familiar.
 - NAS and iSCSI compete directly with IB
 - Why don't they just win in the market?
- Why this may not happen (but it might):
 - IP software overhead:
 - serious server I/O requires major IP offload
 - hard! <u>full</u> offload never commercially successful.
 - must re-invent IB-like zero-copy/user-mode
 - IB *is* I/O: direct IB communication must be more efficient than anything going through IB to an adapter
 - Volumes & Presence:
 - If IB already comes out of every SHV system, and IB switches = cost/port of 10 GigE switches -- it's already there!
 - Rapid adoption rate predicted.

InfiniBand is a & Big_Deal. (All the terms are overused. Use the one in your context.)

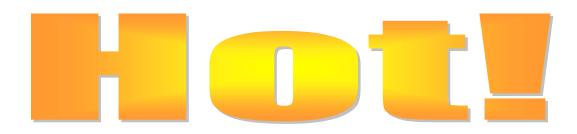
- Standard, high-volume enterprise-class server fabric:
 - RAS; management; performance; scalability
- Non-proprietary, low-overhead inter-host communication
 - enables open function now only on proprietary systems
 - will result in new cluster multi-tier server solutions/markets that have been impossible
- Host-I/O separation enable higher density and data-centric system organizations

Separately, any of those would be very significant.

Together: foreshadow widespread new hardware/software system structures.

But It's Still the Software, Stupid!

- ... even though hardware vendors would much prefer otherwise.
- Still must deal with unfinished business:
 - Programming models; sharing vs. shared-nothing; security & authorization; accounting & chargeback; scheduling; process and data co-location; resource discovery and/or recruiting; global naming of several sorts; QoS support; heterogeneous interoperability
 - Many of these now being visited (or re-visited) in work on Grids.
- However, a new context: No longer hamstrung by hardware that's slow, inefficient, or nonstandard.

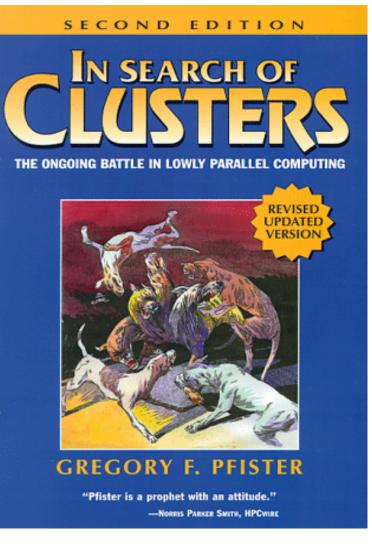


Another fine example of semi-gratuitous clipart

Which Means

- We may be at the start of a new cluster era.
- Those industry trumpets are sounding for you

Cluster Computing is



• Thank you for listening.

Any (more) Questions?

Just in case any of you were wondering...

Extremely nonrandom clipart

(No, I can't give a presentation without plugging my book.)