The University of Melbourne
Department of Computer Science and Software Engineering
433-254 Software Design
Semester 2, 2003

Answers for Tutorial 6
Week 7

1. What are similarities and differences between interfaces and classes?

Sample Answer:
Please refer to the sample answer for exercise 5, tutorial 5, week 6.

2. How interfaces can be used to support multiple-inheritance (give an example)?
Sample Answer:

As discussed earlier, Java does not allow a class to inherit more than one class
as in C++. That is,

cl ass Test extends aClass, bClass{ // Error !!

There are situations where multiple inheritance can be useful but it can also lead
to problems. For example, a reference to a method with the same name in both
classes needs a system for making it explicit as to which class should be used.

Interfaces provide most of the advantages of multiple inheritance with fewer
problems. An interface is basically an abstract class but with all of the methods
abstract. (The methods in an interface do not need the explicit abstract modifier
since they are abstract by definition.)

A class implements an interface rather than extends it. Any class that implements
the interface must override all the interface methods with it's own methods.

(In the case of identical method names in two interfaces, it's irrelevant since both
methods are abstract and carry no code body. In a sense, both are overridden by
the single method of that name in the implementing class.)

3. Compare File manipulation steps in C and Java with a suitable example.

Sample Answer:

In C, all file related information is captured in an standard data structure called
FILE. In order to manipulate a file, a file handle of type FILE *, must be obtained
(using standard fopen function). Once a file handle obtained, it can be used by
verity of standard file 1/0O functions (e.g. fread, fscanf, fread, etc.) to manipulate
the corresponding file. At the end, the file must be closed by calling fclose
function.

Java /O centers around the concept of the stream, which is an in or out flow of
data. For example, an output stream carries data to a file and an input stream
brings data from a file. The base file stream classes are

Fi | el nput Stream - binary file input base class
Fi | eQut put St ream- binary file output base class

Fi | eReader - read text files
FileWiter - writeto text files

An input stream from a file can be created with:

File fileln = new File("data.dat");
FilelnputStreamin = new FilelnputStrean(fileln);

If the file doesn't exist, this will throw an exception.

Usually, the Fi | el nput St r eamobject is wrapped with another stream to obtain
greater functionality. For example, Buf f er edl nput St r eamis used to smooth
out the data flow.

Similarly, output streams to files are opened like:

File fileQut = new File("tnp.dat");
Fi |l eQut put Stream out = new FileQutputStrean(fil eQut);

If the file doesn't exist, it will be created.

Also here, the output streams are wrapped with one or more other streams to
obtain greater functionality such as Buf f er edQut put St r eam

To create a directory use the mkdir() method in Fi | e class.

To append to an existing file use the overloaded constructor:

File fileQut = new File("old.dat");
Fi | eQut put Stream out = new Fil eQutputStream(fileCQut,true);

where the second argument indicates that the file should be opened for
appending. (RandomAccessFi | e can also be used for appending.)

The following example illustrates how to use the FileReader stream to read
character data from text files.

i mport java.io.*;

import java.util.*;

/1 Denonstrate reading text froma file.
public class TxtlInFile

public static void main(String arg[])

{
File file = new Fil e("TextFil el nput_Appl.java");

i nt nunmByt esRead=0;
try {
Fi |l eReader fil eReader = new Fil eReader (file);
/!l Read the bytes directly and count them
while (fileReader.read() != -1)
nunByt esRead++;

}
catch (1 OException e){
Systemout.println("lIOerror:" + e);

}

System out. println("Nunber bytes read = "+ nunBytesRead);
/1 Compare to the length reported by File class.
Systemout.printin("File.length() ="+ file.length());

}
}

4. Write statements to create data streams for the following operations:
a. Reading primitive data from a file.
b. Writing primitive data to a file.

Sample Answer:

a) In the following example, we can read a binary file by opening the file with a
Fi | el nput St ream object. Then we wrap this with a Dat al nput St ream
class to obtain the many readXxx() methods that are very useful for reading
the various primitive data types.

i mport java.io.*;

i mport java.util.*;

/I Denpbnstrate reading primtive type values to a binary file.
public class BinlnFile

public static void main(String arg[])

File file = new Fil e("numerical.dat");

try {
/1 Wap the FilelnputStreamw th a Datal nput St ream

/1 to obtain its readDoubl e() method
FilelnputStreamfilelnput = new Fil el nput Strean(file);
Dat al nput Stream dataln = new Dat al nput Strean{ filel nput);

whi | e(true)

{
doubl e d = datal n. readDoubl e();
Systemout.println(“double =" + d);
int i = dataln.readlnt();
Systemout.println(“int =" +1i);

}

catch (EOFException eof){
Systemout.println("End of File");

}

catch (1 Oexception e){
Systemout.printin("IOerror: " + e);

}

}
}

b) In this example, we open the file with the binary Fi | eQut put St r eamclass.
Then we wrap it with the Dat aCut put St r eam class that contains many
useful methods for writing various primitive types.

i mport java.io.*;

import java.util.*;

// Denpbnstrate witing primtive type values to a binary file.
public class BinQutFile

{

public static void main(String arg[])

File file = new Fil e("numerical.dat");

try {

/1 Wap the FileQutputStreamw th a Dat aCut put St ream

/1 to obtain its witeDoubl e() method

FileQutputStream fileQut = new Fil eQutputStrean(file);
Dat aQut put St r eam dat aOut = new Dat aQut put Strean(fil eQut);
dat aQut. wri t eDoubl e(3. 14);

dataQut.witelnt(7);

catch (1 Oexception e){
Systemout.printin("IOerror: " + e);
}

}
}

5. Write and discuss a program to create a sequential file that could store details
about five products. Details include product code, cost, and the number of items
available. These details are provided through the keyboard.

Sample Answer:

i mport java.io.*;

i mport java.util.*;

/1 Denonstrate reading text froma file.
public class Products

public static void main(String arg[])

File file = new Fil e("products");
/1l Read the bytes directly and count them

try

Fi | eQut put St ream f os
Dat aQut put St r eam dos

new Fi |l eQut put Strean(file);
new Dat aQut put St rean(f 0s);

Dat al nput Stream dis = new Dat al nput Strean(System i n);
StringTokeni zer st;

for(int i=0; i<5; i++){
System out. print("Please enter the product code: ");
st = new StringTokeni zer(dis.readLine());
String pnum = new String(st.nextToken());

System out. print("Please enter the cost: ");
st = new StringTokeni zer(dis. readLine());
doubl e cost = new Doubl e(st. next Token()). doubl evVal ue();

System out. print("Please enter the quantity: ");
st = new StringTokeni zer(dis.readLine());

int gty = new I nteger (st.nextToken()).intValue();
dos. witeBytes(pnun;

dos. wi t eDoubl e(cost);

dos.witelnt(qty);

dos. cl ose();

}
catch (1 OException e)
{

}
}

Systemout.println("lOerror:" + e);

}

