The University of Melbourne
Department of Computer Science and Software Engineering
433-254 Software Design
Second Semester, 2003
Tutorial 11
Week 12

1. What are design patterns? Develop and discuss a singleton design pattern with a suitable
example of your own.

Sample Answer:

A pattern can be defined a solution for a problem in a context. Thus, a design pattern can be
defined as: @ common solution for a common problem faced during the design of
software systems. Design patterns are abstract (not concrete), thus, they may have
many implementations.

Singleton Design Pattern:

Intent: Ensure a class only has one instance, and provide a global point of accessto it.

Idea: Have an encapsulated static variable holding the single instance of a class. Provide a static
get-operation that creates the single instance once and returns it from then on.

Example: While Java has many Singleton-like classes, java.lang.Runtime is a by the book example
of asingleton. Every Java application has a single instance of class Runtime that allows the
application to interface with the environment in which the application is running. The current
runtime can be obtained from the getRuntime method.

public class Runtine {
private static Runtinme currentRuntine = new Runtine();

/**

Returns the runtine object associated with the current

Java application.

Most of the nethods of class <code>Runti ne</code> are instance

met hods and nust be invoked with respect to the current runtinme object.

L

@eturn the <code>Runtinme</code> object associated with the current
* Java application.
*/
public static Runtinme getRuntine() {
return currentRunti ne;
}

/** Don't |let anyone else instantiate this class */
private Runtinme() {}

"private static Runtime currentRuntime = new Runtinme();' makesthe
classitself responsible for keeping track of its sole instance.”, the key word private means that only
this class may access the field currentRuntime. The keyword static denotes that only one instance
of particular field may exist.

The first method in the class goes on to implement "there must be exactly one instance of a class,
and it must be accessible to clients from a well-known access point." Both of these idioms are
further reinforced by the privatization of the Runtime constructor, as the author notesin her
comments.

2. Discuss the process of creation of server and client sockets with Exceptions handled explicitly with
a suitable example.

Sample Answer:

When programming a client, you must follow these four steps:

 Open a socket.

e Open an input and output stream to the socket.

« Read from and write to the socket according to the server's protocol.
e Clean up.

These steps are pretty much the same for all clients. The only step that varies is step
three, since it depends on the server you are talking to.

How do I open a socket?

If you are programming a client, then you would open a socket like this:

Socket Mydient;
MyCl i ent = new Socket (" Machi ne name", PortNunber);

Where Machine name is the machine you are trying to open a connection to, and
PortNumber is the port (a number) on which the server you are trying to connect to
is running. When selecting a port humber, you should note that port numbers
between 0 and 1,023 are reserved for privileged users (that is, super user or root).
These port numbers are reserved for standard services, such as email, FTP, and
HTTP. When selecting a port number for your server, select one that is greater than
1,023!

In the example above, we didn't make use of exception handling; however, it is a
good idea to handle exceptions. The above can be rewritten as:

Socket MWyCient;

try {
MyCient = new Socket ("Machi ne name", PortNunber);

}

catch (1 CeException e) {
System out . println(e);

}

If you are programming a server, then this is how you open a socket:

Server Socket MyServi ce;

try {
MyServerice = new Server Socket (Port Nunber) ;

}

catch (1 OException e) {
System out . println(e);

}

When implementing a server you also need to create a socket object from the
Ser ver Socket in order to listen for and accept connections from clients.

Socket client Socket = null;
try {
servi ceSocket = MyService. accept();

}

catch (1 OException e) {
Systemout. println(e);
}

How do I create an input stream?

On the client side, you can use the Dat al nput St r eamclass to create an input stream
to receive response from the server:

Dat al nput St ream i nput ;

try {
i nput = new Dat al nput Streanm{ MyCl i ent. getl nput Stream());

}

catch (1 OException e) {
Systemout.println(e);

}

The class Dat al nput St r eamallows you to read lines of text and Java primitive data
types in a portable way. It has methods such as read, readChar, readl nt,
readDoubl e, and readLi ne, . Use whichever function you think suits your needs
depending on the type of data that you receive from the server.

On the server side, you can use Dat al nput St r eamto receive input from the client:

Dat al nput St ream i nput ;

try {
i nput = new Dat al nput Strean{(servi ceSocket. getl nput Stream());
}

catch (1 CException e) {
Systemout.println(e);
}

How do I create an output stream?

On the client side, you can create an output stream to send information to the server
socket using the class Pri nt St r eamor Dat aCut put St r eamof java.io:

Print Stream out put;

try {
output = new PrintStream(MyClient.getQutputStream));
}

catch (1 OException e) {
Systemout. println(e);
}

The class PrintStream has methods for displaying textual representation of Java
primitive data types. Its Write and printin methods are important here. Also, you may
want to use the Dat aQut put Stream

Dat aQut put St r eam out put ;

try {
out put = new Dat aQut put Strean(MyCl i ent. get Qut put Strean());
}

catch (1 OException e) {
Systemout. println(e);
}

The class Dat aCut put St r eamallows you to write Java primitive data types; many of
its methods write a single Java primitive type to the output stream. The method
writ eByt es is a useful one.

On the server side, you can use the class Pri nt St r eamto send information to the
client.

Print Stream out put;

try {
out put = new PrintStrean(servi ceSocket. get Qut putStream));

}

catch (1 CeException e) {
Systemout.println(e);

}

Note: You can use the class Dat aQut put St r eamas mentioned above.
How do I close sockets?
You should always close the output and input stream before you close the socket.

On the client side:

try {
out put . cl ose();

i nput . cl ose();
MyCient.close();

}

catch (1 CeException e) {
System out . println(e);

}

On the server side:

try {
out put . cl ose();

i nput. cl ose();
servi ceSocket . cl ose();
MyServi ce. cl ose();

}

catch (1 CException e) {
Systemout.println(e);

}

Examples
Here are two applications: a simple SMTP (simple mail transfer protocol) client, and a
simple echo server.

1. SMTP client

Let's write an SMTP (simple mail transfer protocol) client -- one so simple that we
have all the data encapsulated within the program. You may change the code around
to suit your needs. An interesting modification would be to change it so that you
accept the data from the command-line argument and also get the input (the body of
the message) from standard input. Try to modify it so that it behaves the same as
the mail program that comes with Unix.

i mport java.io.*;
i mport java.net.*;

public class smpCient {
public static void main(String[] args) {

/1 declaration section:

/1l snmtpCient: our client socket
/1 o0s: output stream

/1l is: input stream

Socket smtpSocket = null;
Dat aQut put Stream os = nul | ;
Dat al nput Streamis = nul|;

/1 Initialization section:
/1 Try to open a socket on port 25
/1 Try to open input and output streamns

try {
snt pSocket = new Socket ("host name", 25);

os = new Dat aQut put St reanm(st pSocket . get Qut put Strean());
is = new Dat al nput St rean(snt pSocket . get | nput Stream());
} catch (UnknownHost Exception e) {
Systemerr.printin("Don't know about host: hostnane");
} catch (I Oexception e) {
Systemerr.printin("Couldn't get I/O for the connection to:
host nanme") ;

}

/1 1f everything has been initialized then we want to wite sonme data
/1 to the socket we have opened a connection to on port 25

if (smpSocket !'=null & & os !'= null & & is !'= null) {
try {

/1 The capital string before each colon has a special nmeaning to SMIP
/1 you may want to read the SMIP specification, RFC1822/3

os.writeBytes("HELO n");
os.witeBytes("MAIL From k3is@ undy. csd. unbsj.ca\n");
os.witeBytes("RCPT To: k3is@undy. csd. unbsj.ca\n");
os.writeBytes("DATA\Nn");
os.writeBytes("From k3is@undy. csd. unbsj.ca\n");
os.writeBytes("Subject: testing\n");
os.witeBytes("H there\n"); // message body
os.witeBytes("\n.\n");

os.writeBytes("QU T");

/1l keep on reading fromto the socket till we receive the "Ck" from
SMTP,
/1 once we received that then we want to break.

String responseli ne;

while ((responseLine = is.readLine()) !'= null) {
Systemout.println("Server: " + responseline);
if (responseLine.indexOF("Ck") = -1) {
br eak;
}
}

/'l clean up:

/1l close the output stream
/1l close the input stream
/1 close the socket

0s. cl ose();
is.close();
snt pSocket . cl ose();
} catch (UnknownHost Exception e) ({
Systemerr.println("Trying to connect to unknown host: "
+e);
} catch (1 CException e) {
Systemerr.println("lCException: " + e);
}
}
}
}

2. Echo server

Now let's write a server. The echo server receives text from the client and then sends
that exact text back to the client. This is just about the simplest server you can write.
Note that this server handles only one client. Try to modify it to handle multiple
clients using threads.

i mport java.io.*;
i nport java.net.*;

public class echo3 {
public static void main(String args[]) {

/] declaration section:
/] declare a server socket and a client socket for the server
/1l declare an input and an out put stream

Server Socket echoServer = null;
String line;

Dat al nput Stream i s;

Print Stream os;

Socket clientSocket = null;

/1l Try to open a server socket on port 9999
/1 Note that we can't choose a port less than 1023 if we are not
/1l privileged users (root)

try {
echoServer = new Server Socket (9999);

}
catch (1 CException e) {
Systemout.println(e);

}

/1l Create a socket object fromthe ServerSocket to |listen and accept
/1 connections.
/1 Open input and output streans

try {
cl i ent Socket = echoServer. accept();

is = new Datal nput Strean{client Socket. getlnputStream));
0s = new PrintStreamclient Socket. get Qut putStream());

/1 As long as we receive data, echo that data back to the client.

while (true) {
line = is.readLine();
os.println(line);

}

}
catch (1 OException e) {
System out . println(e);
}

What are threads? Discuss some new applications of threads (apart from those explained in the
lecture).

Sample Answer:

To improve aprogram's performance, developers typically use threads. A thread--sometimes called an
execution context or alightweight process--is a single sequentia flow of control within a program. Y ou use
threads to isolate tasks.

Well you are familiar with writing sequential programs. Y ou've written a program that displays "Hello
World!" or sorts alist of names or computes alist of prime numbers. These are sequential programs. That is,
each has a beginning, an execution sequence, and an end. At any given time during the runtime of the
program, there isa single point of execution.

A thread is similar to the sequential programs. A single thread aso has a beginning, a sequence, and an end
and at any given time during the runtime of the thread, there is a single point of execution. However, a
thread itself is not a program; it cannot run on its own. Rather, it runs within a program. The following
figure shows this relationship.

—

¥
7 e
k2

AProgram =

=

LS

Definition: A thread isasingle sequentia flow of control within a program.

Thereis nothing new in the concept of asingle thread. The real hoopla surrounding threads is not about a
single sequential thread. Rather, it's about the use of multiple threads in a single program, running at the
same time and performing different tasks. Thisisillustrated by the following figure:

T
Threads

A Program -<:

e

The HotJava Web browser is an example of a multithreaded application. Within the HotJava browser you
can scroll apage whileit's downloading an applet or image, play animation and sound concurrently, print a
page in the background while you download a new page, or watch three sorting algorithms race to the
finish. Y ou are used to life operating in a concurrent fashion...so why not your browser?

Some texts use the name lightweight process instead of thread. A thread is similar to areal processin that a
thread and a running program are both a single sequential flow of control. However, athread is considered
lightweight because it runs within the context of a full-blown program and takes advantage of the resources
alocated for that program and the program'’s environment.

Asasequential flow of control, athread must carve out some of its own resources within arunning
program. (It must have its own execution stack and program counter for example.) The code running within
the thread works only within that context. Thus, some other texts use execution context as a synonym for
thread.

The following diagram shows the states that a Java thread can be in during itslife. It also illustrates which
method calls cause a transition to another state. This figure is not a complete finite state diagram, but rather

running

yield

stant

; "
Mew Thread " rot Runnahble I

l The run rmethod ferminates

an overview of the more interesting and common facets of athread's life.

Discuss two methods of implementing the running behavior of Java Threads with suitable
examples.

Sample Answer:

Subclassing Thread and Overriding run

The first way to customize what a thread does when it is running is to subclass Thread (itself a Runnable
object) and override its empty run method so that it does something. Let's look at the SimpleThread class,
the first of two classesin this example, which does just that:
public class SinpleThread extends Thread {
public SinpleThread(String str) {
super(str);
}

public void run() {
for (int i =0; i < 10; i++) {
Systemout.printin(i + " " + getNane());

try {
sl eep((1l ong) (Mat h. randonm() * 1000));
} catch (InterruptedException e) {}
}
Systemout.println("DONE! " + getNane());

}

The first method in the SimpleThread classis a constructor that takes a String as its only argument. This
congtructor isimplemented by calling a superclass constructor and isinteresting to us only because it sets
the Thread's name, which is used later in the program.

The next method in the SimpleThread class is the run method. The run method is the heart of any Thread
and where the action of the Thread takes place. The run method of the SimpleThread class contains a for
loop that iterates ten times. In each iteration the method displays the iteration number and the name of the
Thread, then sleeps for arandom interval of up to 1 second. After the loop has finished, the run method
prints DONE! along with the name of the thread. That'sit for the SimpleThread class.

The TwoThreadsDemo class provides a main method that creates two SimpleThread threads: one is named
"Jamaica' and the other is named "Fiji". (If you can't decide on where to go for vacation you can use this
program to help you decide--go to the island whose thread prints "DONE!" first.)

public class TwoThreadsDenmo {

public static void main (String[] args) {

new Si nmpl eThread("Jamaica").start();
new Sinmpl eThread("Fiji").start();

}
}
The main method also starts each thread immediately following its construction by calling the start method.
Compile and run the above program and watch your vacation fate unfold. Y ou should see output similar to
the following:
Janmai ca
Fiji
Fiji
Jamai ca
Jamai ca
Fiji
Fiji
Jamai ca
Jamai ca
Fiji
Janmai ca
Fiji
Fiji
Jamai ca
Jamai ca
Fiji
Fiji
Fiji
Jamai ca
DONE! Fiji
9 Jamai ca
DONE! Janai ca
(Looks like I'm going to Fiji!!) Notice how the output from each thread is intermingled with the output from
the other. Thisis because both SimpleT hread threads are running concurrently. Thus, both run methods are
running at the same time and each thread is displaying its output at the same time as the other.

COWONNOOOOUITUORARDRWWNNRERPEPOO

Try This: Change the main program so that it creates a third thread with the name "Bora Bora'. Compile
and run the program again. Does this change the island of choice for your vacation?

Now, let'slook at another example, the Clock applet, that uses the other technique for providing arun
method to a Thread.

Implementing the Runnable Interface

The Clock applet shown below displays the current time and updates its display every second. The Clock
applet uses a different technique than SimpleThread for providing the run method for its thread. Instead of
subclassing Thread, Clock implements the Runnable interface (and therefore implements the run method
defined init). Clock then creates a thread and providesitself as an argument to the Thread's constructor.
When created in this way, the Thread gets its run method from the object passed into the constructor. The
code that accomplishes thisis shown in bold here:

i nport java.awt. G aphi cs;

i mport java.util.*;

i mport java.text.DateFornat;

i mport java. appl et. Appl et;

public class C ock extends Applet inmplements Runnable {
private Thread cl ockThread = null;
public void start() {
if (clockThread == null) {
cl ockThread = new Thread(this, "C ock");
cl ockThread. start ();

}

}
public void run() {
Thread myThread = Thread. current Thread();
while (clockThread == nyThread) {
repaint();
try {
Thr ead. sl eep(1000);
} catch (InterruptedException e){
/1 the VM doesn't want us to sleep anynore,
/1 so get back to work
}
}
}
public void paint(Gaphics g) {
/1 get the tine and convert it to a date
Cal endar cal = Cal endar. getlnstance();
Date date = cal.getTinme();
/1l format it and display it
Dat eFor mat dat eFormatt er = Dat eFormat. get Ti el nst ance() ;
g.drawst ri ng(dateFormatter. fornat(date), 5, 10);
}
/1 overrides Applet's stop method, not Thread's
public void stop() {
cl ockThread = nul |
}

}

The Clock applet's run method loops until the browser asks it to stop. In each iteration of the loop,
the clock repaints its display. The paint method figures out what time it is, formats it in a localized
way, and displays it.

Deciding to Use the Runnable I nterface
Y ou have now seen two ways to provide the run method for a Java thread:

1. Subclassthe Thread class defined in the java.lang package and override the run method.

2. Provide aclass that implements the Runnable interface (also defined in the java.lang
package) and therefore implements the run method. In this case, a Runnabl e object
provides the run method to the thread.

There are good reasons for choosing either of these options over the other. However, for most cases,
including that of the Clock applet, the following rule of thumb will guide you to the best option.

Rule of Thumb: If your class must subclass some other class (the most common example being Applet),
you should use Runnable as described in option #2.

To run in aJava-enabled browser, the Clock class has to be a subclass of the Applet class. Also, the Clock
applet needs athread so that it can continuously update its display without taking over the process in which
it isrunning. (Some browsers might create a new thread for each applet so as to prevent a misbehaved
applet from taking over the main browser thread. However, you should not count on this when writing your
applets; your applets should create their own threads when doing computer-intensive work.) But since the
Java language does not support multiple class inheritance, the Clock class cannot be a subclass of both
Thread and Applet. Thusthe Clock class must use the Runnable interface to provide its threaded behavior.

