
1

Design Patterns In Java Bob Tarr

The
Proxy

Pattern

 Bob TarrDesign Patterns In Java The Proxy Pattern
22

The Proxy PatternThe Proxy Pattern

l Intent
é Provide a surrogate or placeholder for another object to control access to it

l Also Known As
é Surrogate

l Motivation
é A proxy is

Ý a person authorized to act for another person

Ý an agent or substitute

Ý the authority to act for another

é There are situations in which a client does not or can not reference an
object directly, but wants to still interact with the object

é A proxy object can act as the intermediary between the client and the target
object

2

 Bob TarrDesign Patterns In Java The Proxy Pattern
33

The Proxy PatternThe Proxy Pattern

l Motivation
é The proxy object has the same interface as the target object

é The proxy holds a reference to the target object and can forward requests to
the target as required (delegation!)

é In effect, the proxy object has the authority the act on behalf of the client to
interact with the target object

l Applicability
é Proxies are useful wherever there is a need for a more sophisticated

reference to a object than a simple pointer or simple reference can provide

 Bob TarrDesign Patterns In Java The Proxy Pattern
44

The Proxy PatternThe Proxy Pattern

l Types of Proxies
é Remote Proxy - Provides a reference to an object located in a different

address space on the same or different machine

é Virtual Proxy - Allows the creation of a memory intensive object on
demand. The object will not be created until it is really needed.

é Copy-On-Write Proxy - Defers copying (cloning) a target object until
required by client actions. Really a form of virtual proxy.

é Protection (Access) Proxy - Provides different clients with different levels
of access to a target object

é Cache Proxy - Provides temporary storage of the results of expensive target
operations so that multiple clients can share the results

é Firewall Proxy - Protects targets from bad clients (or vice versa)

é Synchronization Proxy - Provides multiple accesses to a target object

é Smart Reference Proxy - Provides additional actions whenever a target
object is referenced such as counting the number of references to the object

3

 Bob TarrDesign Patterns In Java The Proxy Pattern
55

The Proxy PatternThe Proxy Pattern

l Structure

 Bob TarrDesign Patterns In Java The Proxy Pattern
66

Copy-On-Write Proxy ExampleCopy-On-Write Proxy Example

l Scenario: Suppose we have a large collection object, such as a
hash table, which multiple clients want to access concurrently.
One of the clients wants to perform a series of consecutive fetch
operations while not letting any other client add or remove
elements.

l Solution 1: Use the collection's lock object. Have the client
implement a method which obtains the lock, performs its fetches
and then releases the lock.

l For example:

public void doFetches(Hashtable ht) {

 synchronized(ht) {

 // Do fetches using ht reference.

 }

}

4

 Bob TarrDesign Patterns In Java The Proxy Pattern
77

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

l But this method may require holding the collection object's lock
for a long period of time, thus preventing other threads from
accessing the collection

l Solution 2: Have the client clone the collection prior to
performing its fetch operations. It is assumed that the collection
object is cloneable and provides a clone method that performs a
sufficiently deep copy.

l For example, java.util.Hashtable provides a clone method that
makes a copy of the hash table itself, but not the key and value
objects

 Bob TarrDesign Patterns In Java The Proxy Pattern
88

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

l The doFetches() method is now:

public void doFetches(Hashtable ht) {

 Hashtable newht = (Hashtable) ht.clone();

 // Do fetches using newht reference.

}

l The collection lock is held while the clone is being created. But
once the clone is created, the fetch operations are done on the
cloned copy, without holding the original collection lock.

l But if no other client modifies the collection while the fetch
operations are being done, the expensive clone operation was a
wasted effort!

5

 Bob TarrDesign Patterns In Java The Proxy Pattern
99

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

l Solution 3: It would be nice if we could actually clone the
collection only when we need to, that is when some other client
has modified the collection. For example, it would be great if the
client that wants to do a series of fetches could invoke the clone()
method, but no actual copy of the collection would be made until
some other client modifies the collection. This is a copy-on-write
cloning operation.

l We can implement this solution using proxies

l Here is an example implementation of such a proxy for a hash
table written by Mark Grand from the book Patterns in Java,
Volume 1

 Bob TarrDesign Patterns In Java The Proxy Pattern
1010

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

l The proxy is the class LargeHashtable. When the proxy's clone()
method is invoked, it returns a copy of the proxy and both proxies
refer to the same hash table. When one of the proxies modifies
the hash table, the hash table itself is cloned. The
ReferenceCountedHashTable class is used to let the proxies know
they are working with a shared hash table . This class keeps track
of the number of proxies using the shared hash table.

6

 Bob TarrDesign Patterns In Java The Proxy Pattern
1111

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

// The proxy.

public class LargeHashtable extends Hashtable {

 // The ReferenceCountedHashTable that this is a proxy for.

 private ReferenceCountedHashTable theHashTable;

 // Constructor

 public LargeHashtable() {

 theHashTable = new ReferenceCountedHashTable();

 }

 // Return the number of key-value pairs in this hashtable.

 public int size() {

 return theHashTable.size();

 }

 Bob TarrDesign Patterns In Java The Proxy Pattern
1212

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

 // Return the value associated with the specified key.

 public synchronized Object get(Object key) {

 return theHashTable.get(key);

 }

 // Add the given key-value pair to this Hashtable.

 public synchronized Object put(Object key, Object value) {

 copyOnWrite();

 return theHashTable.put(key, value);

 }

 // Return a copy of this proxy that accesses the same Hashtable.

 public synchronized Object clone() {

 Object copy = super.clone();

 theHashTable.addProxy();

 return copy;

 }

7

 Bob TarrDesign Patterns In Java The Proxy Pattern
1313

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

 // This method is called before modifying the underlying

 // Hashtable. If it is being shared then this method clones it.

 private void copyOnWrite() {

 if (theHashTable.getProxyCount() > 1) {

 synchronized (theHashTable) {

 theHashTable.removeProxy();

 try {

 theHashTable = (ReferenceCountedHashTable)

 theHashTable.clone();

 } catch (Throwable e) {

 theHashTable.addProxy();

 }

 }

 }

 }

 …

 Bob TarrDesign Patterns In Java The Proxy Pattern
1414

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

 // Private class to keep track of proxies sharing the hash table.

 private class ReferenceCountedHashTable extends Hashtable {

 private int proxyCount = 1;

 // Constructor

 public ReferenceCountedHashTable() {

 super();

 }

 // Return a copy of this object with proxyCount set back to 1.

 public synchronized Object clone() {

 ReferenceCountedHashTable copy;

 copy = (ReferenceCountedHashTable)super.clone();

 copy.proxyCount = 1;

 return copy;

 }

8

 Bob TarrDesign Patterns In Java The Proxy Pattern
1515

Copy-On-Write Proxy Example (Continued)Copy-On-Write Proxy Example (Continued)

 // Return the number of proxies using this object.

 synchronized int getProxyCount() {

 return proxyCount;

 }

 // Increment the number of proxies using this object by one.

 synchronized void addProxy() {

 proxyCount++;

 }

 // Decrement the number of proxies using this object by one.

 synchronized void removeProxy() {

 proxyCount--;

 }

 }

}

 Bob TarrDesign Patterns In Java The Proxy Pattern
1616

Cache Proxy ExampleCache Proxy Example

l Scenario: An Internet Service Provider notices that many of its
clients are frequently accessing the same web pages, resulting in
multiple copies of the web documents being transmitted through
its server. What can the ISP do to improve this situation?

l Solution: Use a Cache Proxy!

l The ISP's server can cache recently accessed pages and when a
client request arrives, the server can check to see if the document
is already in the cache and then return the cached copy. The ISP's
server accesses the target web server only if the requested
document is not in the cache or is out of date.

9

 Bob TarrDesign Patterns In Java The Proxy Pattern
1717

Synchronization Proxy ExampleSynchronization Proxy Example

l Scenario: A class library provides a Table class, but does not
provide a capability to allow clients to lock individual table rows.
We do not have the source code for this class library, but we have
complete documentation and know the interface of the Table
class. How can we provide a row locking capability for the Table
class?

l Solution: Use a Synchronization Proxy!

l Here is an example implementation written by Roger Whitney

 Bob TarrDesign Patterns In Java The Proxy Pattern
1818

Synchronization Proxy Example (Continued)Synchronization Proxy Example (Continued)

l First the Table class, just so we can see its interface:

public class Table {

 public Object elementAt(int row, int column) {

 // Get the element.

 }

 public void setElementAt(Object element, int row, int column) {

 // Set the element.

 }

}

10

 Bob TarrDesign Patterns In Java The Proxy Pattern
1919

Synchronization Proxy Example (Continued)Synchronization Proxy Example (Continued)

l Here is the table proxy:

public class RowLockTableProxy {

 Table realTable;

 Integer[] locks;

 public RowLockTableProxy(Table toLock) {

 realTable = toLock;

 locks = new Integer[toLock.numberOfRows()];

 for (int row = 0; row < toLock.numberOfRows(); row++)

 locks[row] = new Integer(row);

 }

 Bob TarrDesign Patterns In Java The Proxy Pattern
2020

Synchronization Proxy Example (Continued)Synchronization Proxy Example (Continued)

 public Object elementAt(int row, int column) {

 synchronized (locks[row]) {

 return realTable.elementAt(row, column);

 }

 }

 public void setElementAt(Object element, int row, int column) {

 synchronized (locks[row]) {

 return realTable.setElementAt(element, row, column);

 }

 }

}

11

 Bob TarrDesign Patterns In Java The Proxy Pattern
2121

Virtual Proxy ExampleVirtual Proxy Example

l Scenario: A Java applet has some very large classes which take a
long time for a browser to download from a web server. How can
we delay the downloading of these classes so that the applet starts
as quickly as possible?

l Solution: Use a Virtual Proxy!

l When using a Virtual Proxy:
é All classes other than the proxy itself must access the target class indirectly

through the proxy. If any class makes a static reference to the target class,
the Java Virtual Machine will cause the class to be downloaded. This is
true even if no instantiation of the target class is done.

 Bob TarrDesign Patterns In Java The Proxy Pattern
2222

Virtual Proxy Example (Continued)Virtual Proxy Example (Continued)

l When using a Virtual Proxy (Continued):
é Even the proxy can not make a static reference to the target class initially.

So how does the proxy reference the target class? It must use some form of
dynamic reference to the target. A dynamic reference encapsulates the
target class name in a string so that the Java compiler does not actually see
any reference to the target class and does not generate code to have the
JVM download the class. The proxy can then use the new Reflection API
to create an instance of the target class.

é Both the proxy and the target object implement the same interface which in
Java will be a regular Java interface. Any class can reference this interface,
since the interface definition is small and will be quickly downloaded.

12

 Bob TarrDesign Patterns In Java The Proxy Pattern
2323

Virtual Proxy Example (Continued)Virtual Proxy Example (Continued)

l Suppose one of the large classes is called LargeClass. It
implements the ILargeClass interface as shown here:

// The ILargeClass interface.

public interface ILargeClass {

 public void method1();

 public void method2();

}

// The LargeClass class.

public class LargeClass implements ILargeClass {

 private String title;

 public LargeClass(String title) {this.title = title;}

 public void method1() {// Do method1 stuff.}

 public void method2() {// Do method2 stuff.}

}

 Bob TarrDesign Patterns In Java The Proxy Pattern
2424

Virtual Proxy Example (Continued)Virtual Proxy Example (Continued)

l Here's the proxy class:

// The LargeClassProxy class.

public class LargeClassProxy implements ILargeClass {

 private ILargeClass largeClass = null; // Ref to LargeClass inst

 private String title; // Title arg for LargeClass constructor

 // Constructor

 public LargeClassProxy(String title) {

 this.title = title;

 }

 // Method 1. Create LargeClass instance if needed.

 public void method1() {

 if (largeClass == null)

 largeClass = createLargeClass();

 largeClass.method1();

 }

13

 Bob TarrDesign Patterns In Java The Proxy Pattern
2525

Virtual Proxy Example (Continued)Virtual Proxy Example (Continued)

 // Method 2. Create LargeClass instance if needed.

 public void method2() {

 if (largeClass == null)

 largeClass = createLargeClass();

 largeClass.method2();

 }

 // Private method to create the LargeClass instance.

 private ILargeClass createLargeClass() {

 ILargeClass lc = null;

 try {

 // Get Class object for LargeClass.

 // When we do this, the class will be downloaded.

 Class c = Class.forName("LargeClass");

 // Get Class objects for the LargeClass(String) constructor

 // arguments.

 Class[] args = new Class[] {String.class};

 Bob TarrDesign Patterns In Java The Proxy Pattern
2626

Virtual Proxy Example (Continued)Virtual Proxy Example (Continued)

 // Get the LargeClass(String) constructor.

 Constructor cons = c.getConstructor(args);

 // Create the instance of LargeClass.

 Object[] actualArgs = new Object[] {title};

 lc = (ILargeClass) cons.newInstance(actualArgs);

 System.out.println("Creating instance of LargeClass");

 }

 catch (Exception e) {

 System.out.println("Exception: " + e);

 }

 return lc;

 }

}

14

 Bob TarrDesign Patterns In Java The Proxy Pattern
2727

Virtual Proxy Example (Continued)Virtual Proxy Example (Continued)

l Here's a typical client:

// Client of LargeClass.

public class Client {

 public static void main(String args[]) {

 // Create a LargeClass proxy.

 ILargeClass lc = new LargeClassProxy("Title");

 // Do other things...

 System.out.println("Doing other things...");

 // Now invoke a method of LargeClass.

 // The proxy will create it.

 lc.method1();

 }

}

 Bob TarrDesign Patterns In Java The Proxy Pattern
2828

Remote Proxy ExampleRemote Proxy Example

l Scenario: A machine at the College of OOAD has several utility
services running as daemons on well-known ports. We want to
be able to access these services from various client machines as if
they were local objects. How can this be accomplished?

l Solution: Use a Remote Proxy!

l This is the essence of modern distributed object technology such
as RMI, CORBA and Jini

